Mastering Multi-Drone Volleyball through
Hierarchical Co-Self-Play Reinforcement Learning

Ruize Zhang, Sirui Xiang, Zelai Xu, Feng Gao, Shilong Ji, Wenhao Tang,
Wenbo Ding, Chao Yu', Yu Wang'
Tsinghua University
jimmyzhangruize@gmail.com, {yuchao,yu-wang}@mail.tsinghua.edu.cn

Abstract: In this paper, we tackle the problem of learning to play 3v3 multi-drone
volleyball, a new embodied competitive task that requires both high-level strate-
gic coordination and low-level agile control. The task is turn-based, multi-agent,
and physically grounded, posing significant challenges due to its long-horizon de-
pendencies, tight inter-agent coupling, and the underactuated dynamics of quadro-
tors. To address this, we propose Hierarchical Co-Self-Play (HCSP), a hierarchi-
cal reinforcement learning framework that separates centralized high-level strate-
gic decision-making from decentralized low-level motion control. We design a
three-stage population-based training pipeline to enable both strategy and skill to
emerge from scratch without expert demonstrations: (I) training diverse low-level
skills, (II) learning high-level strategy via self-play with fixed low-level skills,
and (III) joint fine-tuning through co-self-play. Experiments show that HCSP
achieves superior performance, outperforming non-hierarchical self-play and rule-
based hierarchical baselines with an average 82.9% win rate and a 71.5% win rate
against the two-stage variant. Moreover, co-self-play leads to emergent team be-
haviors such as role switching and coordinated formations, demonstrating the ef-
fectiveness of our hierarchical design and training scheme. The project page is at
https://sites.google.com/view/hi-co-self-play.

Keywords: Hierarchical Reinforcement Learning, Self-Play, Multi-Agent System

1 Introduction

Competitive tasks have long served as benchmarks for progress in artificial intelligence. Landmark
results have been achieved in domains such as Go [1], poker [2], and real-time strategy games [3],
where agents learn to plan, adapt, and compete under structured rules. As research moves from vir-
tual environments to the physical world, robot sports—structured, rule-based competitions involving
physical agents—have emerged as a promising frontier for embodied intelligence. Examples include
robot soccer [4, 5], table tennis [6, 7], and multi-drone pursuit-evasion [8], which combine high-level
strategy with low-level motion control in physically grounded settings.

In this paper, we tackle a new embodied competitive task proposed by the VolleyBots testbed [9]:
3v3 multi-drone volleyball. This task exemplifies the structure of a robot sport—well-defined objec-
tives, explicit rules, and head-to-head competition—while presenting a set of unique and underex-
plored challenges. Each team must coordinate three quadrotors to rally a ball over a net, switching
roles dynamically between offense and defense in a turn-based fashion. The environment is highly
dynamic and demands precise timing, agile 3D maneuvering, and strategic team-level behavior.
The turn-based nature of ball exchange introduces long-horizon temporal dependencies; the multi-
agent setting requires tightly coupled tactics; and the underactuated dynamics of quadrotors call for
fine-grained, reactive motor skills. Compounding these challenges, no expert demonstrations are

1 Corresponding authors.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.



available, ruling out imitation learning [10] and requiring agents to discover both motion primitives
and team strategies from scratch.

To address these challenges, we propose Hierarchical Co-Self-Play (HCSP), a hierarchical reinforce-
ment learning (HRL) framework that separates strategic reasoning from motor control. The policy
is decomposed into a high-level strategy responsible for team tactics and multiple low-level skills
responsible for drone-specific motion control. The high-level strategy is a centralized multi-layer
perceptron (MLP) with three output heads, each producing commands for one drone, enabling syn-
chronized decision-making across the team. The low-level policies are independent across drones
and operate at a higher frequency to ensure responsive, fine-grained control. To reflect the turn-based
structure of the game, the high-level strategy is only activated upon discrete game events—when the
ball is struck or crosses the net—while low-level control runs continuously between these moments.

Training such a system end-to-end is challenging due to the tight coupling between high-level strat-
egy and low-level control. To address this, we propose a three-stage training pipeline that enables
both skills and strategies to emerge from scratch, without relying on any expert supervision. In
Stage I, we train diverse low-level motion skills using reward shaping and policy chaining, an iter-
ative training method that ensures smooth transitions between temporally adjacent skills. In Stage
II, we freeze the low-level controllers and train the high-level strategy via population-based self-
play and sample reallocation, allowing the team to learn fundamental cooperative and adversarial
behaviors. In Stage III, we jointly fine-tune both high- and low-level policies through co-self-play,
enabling mutual adaptation and further performance gains.

Our experiments show that the policy trained with HCSP significantly outperforms both standard
self-play and rule-based hierarchical baselines. Beyond overall performance, we conduct a detailed
analysis of the three-stage training pipeline. In particular, the final co-self-play stage (Stage III)
leads to the emergence of sophisticated team behaviors, such as specialized formations and adaptive
role switching between passing and attacking, which are absent in earlier stages. This results in a
71.5% win rate over Stage II, validating the benefits of end-to-end hierarchical adaptation. Ablation
studies further confirm the contribution of HCSP’s core components, including policy chaining in
Stage I and sample reallocation in Stage II, each playing a critical role in enabling the emergence of
effective and coordinated multi-agent behavior.

Our main contributions are as follows:

* We conduct the first systematic study of the 3v3 multi-drone volleyball task, which com-
bines strategic team play, precise motion control, and high-speed aerial agility in a turn-
based, multi-agent physical environment.

* We propose Hierarchical Co-Self-Play (HCSP), a hierarchical reinforcement learning
method that integrates a centralized high-level strategy for team tactics and decentralized
low-level skills for agile control.

* We introduce a three-stage population-based training pipeline that enables the emergence of
both motion skills and tactical strategies without expert demonstrations. The final co-self-
play stage fosters emergent behaviors such as role switching and formation specialization.

* In extensive experiments, HCSP outperforms both non-hierarchical self-play and rule-
based hierarchical baselines, achieving an 82.9% average win rate against the baselines
and a 71.5% win rate against the two-stage variant.

2 Preliminaries

2.1 3v3 Multi-Drone Volleyball Task

VolleyBots [9] introduces a drone volleyball testbed built on the OmniDrones [11] simulator, lever-
aging NVIDIA Isaac Sim’s [12, 13] high-fidelity physics engine for efficient training. Our work
focuses on VolleyBots’s 3v3 competitive task, which slightly simplifies real-world volleyball rules



Observations

(Decision-Making Level) (Motion Level)

Environment Low-Level Skill Pool Drones

Actions

Figure 1: HCSP architecture: an event-driven high-level strategy handles strategic decisions, while
multiple low-level skills manage continuous control. Each drone ¢ runs its low-level skill at 5S0Hz,
taking local observation oF and high-level tactical parameters to produce continuous action a’. The
high-level strategy activates only on discrete events (racket strike or ball crossing the net), observes
of, and outputs a’? to choose each drone’s skill and supply tactical information. It is implemented
as a shared MLP with three output heads, one per drone.

for drone implementation. Two teams of three drones each compete on a scaled-down 6m x 12m
court while maintaining the official net height of 2.43m. Each team must return the ball across the
net within three consecutive hits using coordinated actions. A team loses points for failing to re-
turn the ball, hitting out-of-bounds, violating turn-based interaction rules, or having drones collide
with the ground. Each episode lasts a maximum of 15 seconds, starting with a randomized serving
team. The episode ends when either one team scores or the time limit is reached. The simulation
employs Iris quadrotors [14] equipped with horizontal 0.2m-radius rackets with 0.8 restitution coef-
ficient. The drones are controlled via Per-Rotor Thrust (PRT) inputs at 50 Hz and receive state-based
observations. The volleyball itself is modeled as a 5g sphere with 0.1m radius and 0.8 restitution
coefficient to simulate realistic collision dynamics. See Appendix A for more details.

2.2 Markov Game and MARL

We model the 3v3 multi-drone volleyball task as a Partially Observable Markov Game (POMG) [15,
16], defined by the tuple (N, S, {A;}ien, {Oitiens P,{Ri}ien,y). N = {1,--- ,n} denotes the
set of agents. S represents the global state space. Each agent ¢ operates within an action space A;
and receives observations from an observation space ;. The state transition probability function
P : S8 x {Ai}ieny xS — [0,1] defines the probability of transitioning from one state to another
given the joint actions of all agents. R; : S x A; — R is the reward function of agent i, and
~ € [0, 1] is the discount factor determining the importance of future rewards. The 3v3 multi-drone
volleyball task is a symmetric game. Both teams share the same continuous observation and action
space and payoff structures (win or lose). Multi-agent reinforcement learning (MARL) provides
a natural framework for addressing Markov Games. In MARL, at each time step ¢, every agent ¢
receives an observation o; ; from the environment and selects an action a; ; according to its policy
m; € IL; : O; x A; — [0,1]. Given the joint action of all agents, the environment transitions from
the current state s; to the subsequent state s;4; based on the transition function P and returns an
immediate reward r; ;1 to each agent ¢. Ultimately, the goal of agent i is to learn a policy =; that
maximize its expected discounted cumulative reward E, >0 o 77 141]-

3 Method

The 3v3 multi-drone volleyball task presents dual challenges of precise motion control and coordi-
nated team strategy. To address these requirements, we propose Hierarchical Co-Self-Play (HCSP)
(architecture in Fig. 1), a hierarchical reinforcement learning (HRL) method that decomposes the
overall policy into an event-driven high-level strategy for team tactics and low-level skills for indi-
vidual maneuvers. HCSP’s training pipeline comprises three stages: (I) We train each low-level skill



Table 1: Description of seven low-level skills acquired in stage I and their corresponding tactical
observations provided by the high-level strategy.

Skill Name Skill Description Observation Provided by the High-Level Strategy

Serve Serve the ball toward the opponent’s court Target ball position (z,y, 2)

Receive Receive the serve ball and pass it to the setter /
Pass Pass the ball to the setter Pass from court side {left, right}

Set Place the ball optimally for the attacker /

Attack Strike the ball toward the opponent’s court Attack direction {left, right}

Hover Maintain at a fixed position and altitude Preceding skill {Serve, Receive, Pass, Set, Attack }
GoTo Move the drone to a specified location Target drone position (x, y, z)

via RL using policy chaining, which addresses the challenge of executing temporally adjacent prim-
itives smoothly by incrementally training each new skill in the context of previously learned ones,
resulting in a robust pool of motion primitives. (II) With the low-level skill pool frozen, we pretrain
the high-level strategy through population-based team-level self-play, enabling it to acquire initial
cooperative and competitive tactics. (III) We utilize co-self-play to co-optimize both skill levels
through team-level self-play, where the high-level strategy dynamically selects from continuously
improving low-level skills while simultaneously refining their execution.

3.1 Stage I: Low-Level Skill Acquisition

Low-level skills focus on controlling individual drones to execute specific motion primitives without
tactical reasoning. Each drone is regarded as a low-level agent. Agent ¢’s low-level skill observation
ol (i € {1,---,6}) consists solely of ball dynamics and the drone’s own state, together with high-
level tactical parameters, but excludes information about other drones. Following VolleyBots [9],
which shows that Per-Rotor Thrust (PRT) slightly outperforms Collective Thrust and Body Rates
(CTBR) in multi-drone volleyball by leveraging independent rotor control for greater agility, we
adopt PRT as our low-level action space a’(i € {1,---,6}). Low-level actions are executed at 50
Hz. Additionally, we apply reward shaping to supply dense feedback and accelerate skill acquisition.
For more details on the low-level skill design, see Appendix B.

Due to the challenge of ensuring smooth transitions between temporally adjacent low-level primi-
tives, especially when control switches across drones or skill types, we employ policy chaining to it-
eratively train each low-level skill for seamless execution under the event-driven high-level strategy.
For example, under policy chaining, the Attack skill is trained following a teammate’s execution
of the Set skill, enabling coordinated multi-agent behaviors. This approach enhances intra-drone
motion continuity and inter-drone cooperation. Our experiments show that policy chaining signifi-
cantly improves the reliability of sequential skill execution and accelerates learning. Detailed anal-
ysis is provided in Sec 4.3.1. All low-level skills are optimized using Proximal Policy Optimization
(PPO) [17], resulting in a diverse skill pool summarized in Table 1.

3.2 Stage II: High-Level Strategy Pretraining

High-level Strategies Continue sampling

: ‘] “ Sample 1 batch from env until filled in a batch
. : P 3 Win Rate

NE-based | win_rate > threshold | Heatmap
Sampling |

1 num
: Traini
| Compute NE-based envs » » » raining
3 Sampling Strategy
vs '
a8 N —
Team 2 Team 1 3 batch_size
W 3 Policy Population Evaluation not event-driven event-driven
(a) Full training schedule for Stage II. (b) Sample reallocation for high-level strategy training.

Figure 2: Illustrations of the high-level strategy pretraining stage (Stage II).



High-level strategies enable team-level decision-making, with each team modeled as a centralized
high-level agent. The observation of (j € {1,2}) includes the states of all six drones (three team-
mates and three opponents), the ball dynamics, and other game-relevant features. At each decision
point, the high-level strategy outputs an action af that assigns a low-level skill and corresponding
tactical parameters to each of its three drones. To support coordinated control, we implement the
policy network as a shared multilayer perceptron (MLP) with three output heads, one per drone. Be-
cause the task is turn-based, high-level strategies are executed only at discrete events, such as when
a racket hits the ball or when the ball crosses the net, indicating a possible change in team roles. The
reward for the high-level strategy ﬂ']H at timestep ¢ is defined as:

rft = ¢ X win_or_lose; + ¢z X racket_hit_ball;, (L

where win_or_lose; = 1 if team j wins, —1 if it loses, and 0 otherwise; racket_hit_ball; = 1 if any
racket of team j contacts the ball at timestep ¢, and 0 otherwise.

In this stage, we freeze the low-level skills and pretrain the high-level strategy through team-level
iterative self-play [18] (Fig. 2a). As the game is symmetric, both teams share the same high-level
strategy population, and we train only one side against the other. At each iteration, a candidate high-
level strategy competes against frozen opponents sampled from the population according to the Nash
equilibrium (NE)-based distribution derived from the current win-rate matrix. When the candidate’s
win rate exceeds a threshold or a maximum step count is reached, it is added to the shared popula-
tion. We then perform pairwise evaluations of all population policies to produce an updated win-rate
matrix, recompute the NE-based sampling distribution, and repeat the cycle. Since the high-level
strategy is event-driven, its action steps are temporally sparse, leading to high-variance gradients
and unstable learning. To mitigate this issue, we apply sample reallocation (Fig. 2b), which ex-
tracts transitions at event-triggered timesteps and attributes cumulative rewards over the intervals
between events. These event-triggered transitions are stored in a separate buffer for training. The
effectiveness of sample reallocation is analyzed in detail in Sec. 4.3.2.

3.3 Stage III: Co-Self-Play

From Scratch
T

win_rate > threshold

Augmented Low-
level Skill Pool

Vs . 5 ; Vs

Low-level Skill Pool

Low-level Skill
Pool

win_rate > threshold
Team 2 Team 1 ' Team 2 Team 1

]
i
i
Training ! Training

Figure 3: Tllustration of the co-self-play stage (Stage III).

As high-level strategies can motivate low-level skill development and, in turn, improvements in low-
level skills inform high-level decision-making, co-self-play is essential to iteratively optimize both
layers. In Stage III, we jointly refine both high- and low-level policies (Fig. 3). Similar to Stage
II, we train only one team at a time against a frozen opponent, with the candidate high- and low-
level skills learning together while the opponent’s policies remain frozen. Whenever the candidate’s
win rate exceeds a threshold, the newly trained low-level policies are added to the low-level pool.
As the low-level skill pool has grown, the high-level actor’s output layer needs to accommodate
the expanded action set. We then freeze the augmented low-level pool and train a new high-level
strategy from scratch against the former high-level strategy and the original low-level skill pool.

In Stage III, a key challenge in co-self-play lies in defining appropriate reward signals for low-level
skills. A naive choice is to reuse the hand-crafted rewards from Stage I; however, this approach
fails to account for two critical issues. First, the task setting fundamentally changes in a game



x10° Attack x10° Hover

Sp PSROysifom Bot A 3
FSP PSROy,q, Average ? 1.00
S100° 72 soa B8 913 82.9 %D o7s B2 2
<
L I I 7£0 I = }E 0.50 E
> S o Kl 1
s § § TaENE W . Mg 0.25
g B 0.00 0 0
B J 0.0 i 0.5 1.9 0.0 . 0.5 1.9
0 ABCDEFGHI J tlmgstep ) '><10 tlAmCSth‘ X10
Opponent Methods Column Team Policy chaining Single-policy
(a) (b) ()

Figure 4: Experiment results. (a) HCSP performance against baseline policies. (b) Cross-play win
rate heatmap among ten randomly picked policies. (c) Ablation study on policy chaining in Stage I:
policy chaining enables a successful transition from Atfack to Hover, whereas single-policy fails.

context—for example, a ball that appears to be landing might still be intercepted by an opponent
drone, making previous reward definitions inconsistent or even misleading. Second, Stage I rewards
are task-specific and offer limited room for further evolution, thus constraining the emergence of
advanced behaviors. Alternatively, manually redesigning reward functions for every skill under
game dynamics would demand substantial expert effort and risks introducing bias. To overcome
these limitations, we directly adopt the high-level reward as the learning signal for low-level skills
during co-training. This approach is entirely free of manual design and promotes the emergence
of skill adaptations driven by strategic outcomes, enabling the co-evolution of high-level tactics and
low-level execution. Because low-level actions execute at 50 Hz while high-level rewards occur only
at discrete events, this reward signal is too sparse for effective low-level learning. To mitigate this,
we add a KL-divergence penalty between the current low-level policy 71 and its reference policy
ﬂiL)m - Due to space limitation, we analyze the impact of this KL penalty in detail in Appendix D.2.
The resulting co-self-play reward for low-level agent ¢ on team j € {1, 2} at time ¢ is:

rk, =11 — 3 x KL(nF||wk ;). )

4 Experiments

We conduct a series of experiments to evaluate HCSP and elucidate its design. In particular, we seek
to answer the following two questions: (1) How does HCSP’s performance compare with baseline
methods? (2) What is the impact of Stage III co-self-play on overall policy effectiveness? (3) Which
HCSP components are the key elements to its success?

Baselines. We evaluate HCSP against five baselines following VolleyBots [9]. Four of them are non-
hierarchical game-theoretic self-play methods: Self-Play (SP) [19], Fictitious Self-Play (FSP) [20],
and two variants of Policy-Space Response Oracles (PSRO) [18] using either a uniform meta-solver
(PSROuymiform) or a Nash meta-solver (PSROy,s). The fifth is a rule-based hierarchical policy in-
cluded in VolleyBots, which we denote as “Bot”. See Appendix E for a detailed baseline description.

Evaluation metrics. Head-to-head win rate, evaluated over 500 trajectories per matchup, serves as
our primary metric for comparing relative policy strength. However, it may fail to reflect absolute
strength due to potential cyclic dominance in non-transitive games. As noted by Liu et al. [21], al-
though Elo rating [22] is commonly used for this purpose, it is sensitive to the policy population. To
mitigate this, they propose the Nash-averaging evaluator, which computes a Nash equilibrium over
randomly sampled ten policies. We adopt it as our secondary metric in Sec. 4.2.1. All evaluations
are averaged over three seeds. Details of implementation can be found in Appendix F.

4.1 Game Results Against Baselines

Fig. 4a shows the win rates when HCSP plays against each of the five baseline methods. HCSP
achieves an average win rate of 82.9% across all matchups, demonstrating its strong competitive
advantage. Notably, it significantly outperforms all four non-hierarchical game-theoretic methods.
Moreover, HCSP attains a 71% win rate against the strongest baseline, the rule-based hierarchical
Bot policy provided in VolleyBots [9]. These results indicate that HCSP both outperforms traditional
self-play strategies and competes strongly against the handcrafted hierarchical policy.



(a) (©
Figure 5: Sequence of six temporally sampled frames illustrating an emergent team behavior. (a)
The opponent team passes the ball to the setter. (b) The opponent team sets the ball to the attacker.
(c) The opponent team attacks the ball towards our side. (d) Our team passes the ball to the setter.
(e) Our team performs a “dump” shot, sending the ball directly onto the opponent’s court. (f) The
opponent team fails to return the ball, so our team scores the point.

4.2 Analysis of Stage III Co-Self-Play
4.2.1 Quantitative Analysis

To evaluate the effectiveness of Stage III training, we first conduct a head-to-head tournament be-
tween the Stage I and Stage III policies, as shown in the first two columns of Tab. 2. The Stage III
policy achieves a 71.5% win rate over the Stage II policy, demonstrating clear improvement under
the co-self-play framework. However, this comparison only reflects relative performance between
two policies. To assess absolute robustness, we construct a Nash-averaging evaluator following Liu
et al. [21]. Specifically, we randomly sample ten policies from all trained populations, including
baselines and all HCSP stages, and compute their pairwise win rates (Fig. 4b). We then apply Nash
averaging to obtain a mixed evaluation policy, which assigns non-zero weights to three policies {A
(0.37), E (0.07), G (0.56)} while assigning zero weight to all others. Finally, we evaluate both the
Stage II and Stage III policies against this Nash-averaged opponent. As shown in Tab. 2, the Stage
IIT policy improves its win rate from 31.4% (Stage II) to 47.6%, a 16.2% absolute gain. Notably, the
Stage III policy reaches approximately 50% win rate against the Nash-averaged evaluator, indicating
competitive performance near the Nash Equilibrium of the sampled strategy set.

Table 2: Win rates of Stage II policy and Stage III policy against different opponents.

Stage I policy ~ Stage III policy | Nash-averaged Policy

Stage II policy 50.0+£0.0 28.5 8.0 31.4+9.3
Stage III policy 71.5+8.0 50.0 £ 0.0 476 +1.0

4.2.2 Emergent Low-Level Skill

From a qualitative perspective, the experimental results further show that Stage III’s co-self-play
induces emergent low-level behaviors that were not designed in the initial stage. In Stage I, policy
chaining yields three motion primitives, Pass, Set, and Attack, with high accuracy, so each team
always uses three consecutive contacts (Pass to the setter drone, Ser to the attacker drone, Attack
over the net). During Stage II, with low-level skills frozen, the high-level strategy continues to
learns this three-touch sequence. In contrast, after the Stage III, we observe a novel two-touch
maneuver, akin to the real-world volleyball “dump” shot, in which the setter itself redirects the ball
over the net instead of raising it for a teammate. This emergent “dump” skill requires no additional
reward design and illustrates two key effects of co-self-play: low-level primitives can evolve beyond
their initial definitions, and the high-level strategy adapts its skill allocation (for example, omitting
Attack and assigning Hover to the would-be attacker drone) to leverage these new behaviors. Fig. 5
presents a case study in which one team uses the emergent “dump” skill to score a point.

4.3 Ablation Study
4.3.1 Policy Chaining in Stage I

In Stage I, we employ policy chaining, an iterative training method designed to ensure smooth
transitions between temporally adjacent low-level skills. We compare policy chaining with a single-
policy approach by training the “Attacking the ball to the opponent’s side, followed by Hovering to
maintain stability” behavior under the same reward settings. Through policy chaining, we first train



an Attack policy using Attack-specific rewards, then train a subsequent Hover policy with Hover-
specific rewards. In contrast, the single-policy approach trains one unified policy using the combined
Attack and Hover rewards. In Fig. 4c, they achieve similar performance in Attack. However, only
policy chaining successfully learns Hover after Attack, demonstrating that policy chaining reduces
exploration difficulty by decomposing the complex behavior into sequential, specialized policies.

4.3.2 High-level Strategy Sample Reallocation in Stage II

Because the high-level strategy is activated
0.500 0.440 0.427 0.395 0.500 0.232 0.263 0.257 0.222
only at discrete time steps, standard mini- =~ ©* e " .
)
batch sampling yields sparse effective sam- ~ 0500 ©18) ©isn @180 - @000 o | @109
ples and high variance. To address this, We 3 s os1 om0 os  oer2 2. P N 022 | oz0o
. . S 7 (0.213) (0.153) (0.000) (0.042) (0.109) SRl (0.122) (0.000) E(XEINN(Xrg))
introduce the sample reallocation procedure = &
1mi _ ¥ (0214) (0.151) (0.042) (0.000) (0.092) Al (0.135 0N (0.000) | (0:117)
that reconstructs each training batch exclu 85 @%) 08 O 8 dor ReEag
sively from event-driven steps (Fig. 2b). We . ‘gz g% o3 8% o3 - 85 &%

compare standard minibatch sampling to our I . s
sample reallocation method by visualizing

the high-level strategy’s evolution over five (a) w/o sample reallocation.  (b) w/ sample reallocation.

sel.f—play iterations using win-rate heatmaps Figure 6: Comparison of policy population evolution
(Figs. 6a and 6b). In these heatmaps, yip-rate heatmaps in Stage II.
off-diagonal entries reflect each new policy’s

win rate against its predecessors. Using sample reallocation, these off-diagonal cells become
strongly favorable much earlier, indicating faster skill progression, and exhibit lower win-rate vari-
ance, indicating more stable training. Also, we compare two policy populations in 500 head-to-head
matches averaged over three random seeds, where each side samples a strategy from its population
according to its NE-based distribution at the start of each match. The sample reallocation population
wins 90.5% + 4.5% of matches against the standard-sampling population.

4 5 1 2

3 3
Policy Policy

5 Related Work

The domain of robot sports has become a critical frontier for robotics research, demanding advances
in real-time decision-making, dynamic control, and multi-agent collaboration. Initiatives such as
RoboCup [4] have driven progress in robot football, enabling humanoid and quadruped platforms
to compete in full-scale matches [21, 5, 23, 24], while other systems have demonstrated human-
level performance in table tennis [6], drone racing [25], and beyond. Yet these benchmarks tackle
only isolated aspects—team tactics, split-second precision, or high-speed maneuvering—whereas
the 3v3 multi-drone volleyball task combines all of these under a turn-based game structure that
existing methods cannot fully address. Hierarchical control architectures offer a promising solution
by managing complexity across levels of abstraction: traditional behavior-based approaches [26]
and recent learning-based frameworks such as HiREPS [27] and SayCan [28] show how decompos-
ing tasks into low-level skills and high-level planners improves adaptability and sample efficiency.
Building on these insights, our work introduces an event-driven hierarchical policy that decomposes
the volleyball task into a centralized high-level strategy for team tactics and multiple drone-specific
low-level skills for motion control, enabling both rapid aerial agility and coordinated tactics.

6 Conclusion

To solve the 3v3 multi-drone volleyball task, we propose Hierarchical Co-Self-Play (HCSP), a novel
hierarchical reinforcement learning framework. By decomposing policy into an event-driven high-
level strategy for sparse strategic decisions and a suite of low-level skills for dense motion control,
HCSP separates the challenges of team tactics, fine-grained control, and high-speed aerial agility.
Our three-stage, demonstration-free training pipeline enables tactical strategies and agile controllers
to emerge from scratch. Empirical results demonstrate that HCSP significantly outperforms base-
lines, and the co-self-play stage even triggers emergent behaviors without additional reward design.



Limitations

Our approach is currently limited to high-fidelity simulation, which cannot fully capture real-world
sensor noise or hardware latency. Consequently, HCSP-trained policies may encounter a sim-to-real
gap and are unlikely to transfer zero-shot to physical drones. Nonetheless, we report preliminary
sim-to-real results in Appendix G, which provide promising initial validation in real-world exper-
iments. Furthermore, HCSP assumes access to full state information (drone poses, velocities, and
ball dynamics) rather than raw sensor or vision inputs, restricting its applicability in settings where
only onboard cameras are available.

Acknowledgments

We sincerely thank Jiayu Chen, Chuqi Wang, and Yinuo Chen for their insightful discussions and
experimental assistance throughout the course of this work. We are also grateful to Sicheng He
for his initial involvement in the project. Their support and thoughtful input have contributed to
clarifying our ideas and enhancing the overall quality of the paper.

This research was supported by National Natural Science Foundation of China (N0.62406159,
62325405), Postdoctoral Fellowship Program of CPSF under Grant Number (GZC20240830,
2024M761676), China Postdoctoral Science Special Foundation 2024T170496. Additional sup-
port was provided by Tsinghua-Efort Joint Research Center for EAI Computation and Perception,
Beijing National Research Center for Information Science and Technology (BNRist), Beijing Inno-
vation Center for Future Chips, and State Key laboratory of Space Network and Communications.

References

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484-489, 2016.

[2] M. Morav¢ik, M. Schmid, N. Burch, V. Lisy, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Jo-
hanson, and M. Bowling. Deepstack: Expert-level artificial intelligence in heads-up no-limit
poker. Science, 356(6337):508-513, 2017.

[3] O. Vinyals, 1. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350-354, 2019.

[4] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: The robot world cup
initiative. In Proceedings of the First International Conference on Autonomous Agents, pages

340-347, 1997.

[5] S. Liu, G. Lever, Z. Wang, J. Merel, S. A. Eslami, D. Hennes, W. M. Czarnecki, Y. Tassa,
S. Omidshafiei, A. Abdolmaleki, et al. From motor control to team play in simulated humanoid
football. Science Robotics, 7(69):eabo0235, 2022.

[6] D. B. D’Ambrosio, S. Abeyruwan, L. Graesser, A. Iscen, H. B. Amor, A. Bewley, B. J. Reed,
K. Reymann, L. Takayama, Y. Tassa, et al. Achieving human level competitive robot table
tennis. arXiv preprint arXiv:2408.03906, 2024.

[7] H. Ma, J. Fan, H. Xu, and Q. Wang. Mastering table tennis with hierarchy: a reinforcement
learning approach with progressive self-play training. Applied Intelligence, 55(562), 2025.

[8] J. Chen, C. Yu, G. Li, W. Tang, S. Ji, X. Yang, B. Xu, H. Yang, and Y. Wang. Online planning
for multi-uav pursuit-evasion in unknown environments using deep reinforcement learning.
IEEE Robotics and Automation Letters, 10(8):8196-8203, 2025.



[9] Z. Xu, C. Yu, R. Zhang, H. Yuan, X. Yi, S. Ji, C. Wang, W. Tang, and Y. Wang. Volleybots:
A testbed for multi-drone volleyball game combining motion control and strategic play. arXiv
preprint arXiv:2502.01932, 2025.

[10] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1-179, 2018.

[11] B. Xu, FE. Gao, C. Yu, R. Zhang, Y. Wu, and Y. Wang. Omnidrones: An efficient and flexible
platform for reinforcement learning in drone control. IEEE Robotics and Automation Letters,
9(3):2838-2844, 2024.

[12] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[13] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo, H. Mazhar,
et al. Orbit: A unified simulation framework for interactive robot learning environments. /EEE
Robotics and Automation Letters, 8(6):3740-3747, 2023.

[14] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. Rotors—a modular gazebo mav simulator
framework. Robot Operating System (ROS) The Complete Reference (Volume 1), pages 595—
625, 2016.

[15] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):
1095-1100, 1953.

[16] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pages 157-163. Elsevier, 1994.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[18] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Perolat, D. Silver, and T. Grae-
pel. A unified game-theoretic approach to multiagent reinforcement learning. Advances in
Neural Information Processing Systems, 30, 2017.

[19] A.L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3(3):210-229, 1959.

[20] J. Heinrich, M. Lanctot, and D. Silver. Fictitious self-play in extensive-form games. In Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37, pages 805—
813. PMLR, 2015.

[21] S. Liu, G. Lever, N. Heess, J. Merel, S. Tunyasuvunakool, and T. Graepel. Emergent coordi-
nation through competition. In International Conference on Learning Representations, 2019.

[22] A.E.Elo and S. Sloan. The rating of chessplayers: Past and present. 1978.

[23] T.Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala, J. Humplik, M. Wulfmeier, S. Tun-
yasuvunakool, N. Y. Siegel, R. Hafner, et al. Learning agile soccer skills for a bipedal robot
with deep reinforcement learning. Science Robotics, 9(89):eadi8022, 2024.

[24] Z. Xiong, B. Chen, S. Huang, W.-W. Tu, Z. He, and Y. Gao. Mge: Unleashing the power of
interaction with multi-agent quadruped environment. In 2024 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 5918-5924. IEEE, 2024.

[25] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and D. Scaramuzza.
Champion-level drone racing using deep reinforcement learning. Nature, 620(7976):982-987,
2023.

10



[26] R. C. Arkin. Behavior-based robotics. MIT press, 1998.

[27] C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hierarchical relative entropy policy search.
Journal of Machine Learning Research, 17(93):1-50, 2016.

[28] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In
Proceedings of The 6th Conference on Robot Learning, pages 287-318. PMLR, 2023.

[29] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness
of ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems,
35, 2022.

[30] R. Zhang, Z. Xu, C. Ma, C. Yu, W.-W. Tu, W. Tang, S. Huang, D. Ye, W. Ding, Y. Yang, et al.
A survey on self-play methods in reinforcement learning. arXiv preprint arXiv:2408.01072,
2024.

11



A Details of the 3v3 Muiti-Drone Volleyball Task

L=12m

________ 0,3)
& - Legends:
Court (-6,0) Net H=2.43m 6,0
13 Net W=6m x
T
23 (A, 2%, Our Drone
3 o Opponent Drone
/\ Ball : 0,-3) :
3 —> Our Drone Trajectory 1 1
1 1
i i

/ — Ball Trajectory

(a) Task overview. (b) Top-down view of the court layout.

Figure 7: Illustrations of the 3v3 multi-drone volleyball task.

A.1 Court

The 3v3 multi-drone volleyball task is illustrated in Fig. 7a, with a top-down, 2D court layout shown
in Fig. 7b. The origin lies at the center of the court, and the y-axis divides it into two equal halves
(each team’s side). The x-axis runs the 12m length (from x = —6 to = 6), while the court spans
6m in width along the y-axis (from y = —3 to y = 3). A net of height 2.43m stretches horizontally
along the line z = 0, from (0, —3) to (0, 3).

A.2 Drone

Our primary drone platform is the Iris quadrotor [14], virtually equipped with a 0.2 m radius racket
(coefficient of restitution 0.8) for ball striking. The drone’s root state used by the simulation frame-
work is described by a 23-dimensional vector containing its position, rotation (quaternion), lin-
ear and angular velocities, forward and upward orientation vectors (corresponding to the first two
columns of the rotation matrix derived from the quaternion), and normalized rotor speeds. The con-
trol dynamics governing the drone’s motion arise from its physical configuration and the interplay
of forces and torques, as described below:

Tw =vw, Ow =Rwpf+g+F 3)
1
q:§q®w, w=J 1 (n-wxJw) ())

where xy and vy are the position and velocity of the drone in the world frame, Ryy g is the rotation
matrix from the body frame to the world frame, J is the diagonal inertia matrix, g represents gravity,
q is attitude in quaternion, and w is the angular velocity. The operator for quaternion multiplication
is denoted by ®. External forces F' include aerodynamic drag and downwash effects. The collective
thrust f and torque 7 are calculated based on the thrust of each rotor f; as:

f=> RYfi 5)
n= Z Tg) x fi + sign;k; f (6)

where Rg) and Tg) are the orientation and position of the ¢-th rotor in the body frame, k; is the
force-to-moment ratio and sign; is 1 for clockwise propellers and -1 for counterclockwise pro-
pellers.

12



A.3 Game Rules

The multi-drone game is governed by a set of well-defined rules that closely mimic the cooperative
and competitive dynamics of real-world volleyball, subject to the following simplifications. Unlike
standard volleyball, there is no positional rotation or fixed court zones, so drones do not change roles
between rallies, and the three-meter attack line is omitted. At the start of each episode, a serving
side is randomly selected, and the ball is released in free fall from a point Sm above the midpoint of
that team’s baseline, with slight random positional noise.

During the rally phase, teams alternate in attempting to return the ball over the net while obeying
two key constraints: (i) each team is allowed no more than three successive hits before the ball must
cross to the opponent’s side, (ii) the same drone is not permitted to hit the ball twice in succession.

The game outcome is determined by a series of terminal conditions that reflect violations of basic
physical or tactical rules. A team loses a rally if (i) any of its drones hits the ground (i.e., descends
below a predefined altitude threshold), (ii) any drone illegally crosses the net, (iii) any drone per-
forms a racket hit in violation of timing or rule constraints, (iv) the ball lands on their own side of
the court, (v) the team hit the ball outside the boundary of the court, or (vi) the ball collides with the
net due to their last action.

In rare cases, both sides violate the rules of the game at the same time. If drones of both sides hit the
ground or both sides cross the net in the same simulation step, a draw will be declared. This ensures
that the environment maintains fairness while accounting for simultaneity in physical interactions.

B Details of Stage I: Low-Level Skill Acquisition

Ensuring smooth transitions between temporally adjacent low-level primitives—especially when
control must switch between different drones or skill types—poses a significant challenge. To ad-
dress this, we employ policy chaining, iteratively training each primitive so it executes seamlessly
under the event-driven high-level strategy. Concretely, we implement seven fundamental low-level
skills (serve, receive, set, attack, pass, hover, goto) as single-agent reinforcement learning (RL)
tasks, each of which is trained separately using Proximal Policy Optimization (PPO) [17].

Moreover, for ball-interaction skills (serve, receive, set, attack, pass), we design a three-stage re-
ward: (i) The before hit phase: optimal preparation incentives through alignment rewards and pos-
ture optimization; (ii) The after hit phase: contact quality evaluation based on ball dynamics metrics;
(iii) The end phase: bonuses for task success or penalties for incorrect end states.

B.1 Low-Level Skills
B.1.1 Serve

Description. The serve skill is executed by the serving drone of the randomly selected team at the
start of each episode. Given a designated target point on the opponent’s court, the drone must hit
the ball once to send it close to that location. The skill’s duration spans from the beginning of the
episode to the moment the serving drone makes contact with the ball.

Observation and reward. The drone’s observation is a vector of dimension 37 including the drone’s
root state, the ball’s position, the ball’s relative position to the drone, the ball’s linear velocity, a
one-hot flag indicating whether the drone is permitted to hit the ball, and the ball’s relative position
to the target ball position. The detailed specification of the task’s reward function per time step can
be found in Table 3.

B.1.2 Receive

Description. The receive skill is used by the receiving drone to counter the opponent’s serve. Dur-
ing the receive skill training, the opponent’s serving drone executes the serve skill as part of the
environment. The receiving drone needs to hit the ball to the passing drone positioned at the front-

13



Table 3: Reward of the serve skill

Type Name Sparse  Value Range Description
dist_to_ball X [0,0.16] drone’s distance to the ball
drone_hit_ball {0,10} drone hitting the ball
Before penalty_pos_x {-150,0} being too close to the net
Hit penalty_pos_z X [—o0, 0] being too high or too low
penalty roll X [—00,0] excessive roll angle
penalty_yaw X [—00, 0] excessive yaw angle
After Hit dist_to_anchor X [0, 16] ball’s distance to anchor
in_side {0,10} ball landing in opponent’s court
End highest_ball_pos {0,1.5} ball’s peak height exceeding 3m
Reward  penalty_ground_collision {-0.1,0} drone colliding with the ground
penalty_wrong_hit {-10,0} drone not using racket to hit the ball

Table 4: Reward of the receive skill

Type Name Sparse  Value Range Description
dist_to_ball X [0,10] drone’s distance to the ball
drone_hit_ball {0,150} drone hitting the ball
Before penalty_pos_x {-5,0} being too close to the net
Hit penalty_pos_z [—00,0] being too high or too low
penalty _roll [—00, 0] excessive roll angle
penalty_yaw [—00, 0] excessive yaw angle

X X X | X X X

After dist_to_anchor [0,50] ball’s distance to anchor
Hit ball_vel_direction [0, 150] velocity direction to the anchor
secondary_dist_to_anchor [0, 200] height-limited ball’s distance to anchor
in_side {0,10} ball landing in opponent’s court
End highest_ball_pos X [0, 200] ball’s peak height exceeding 3m
Reward  penalty_ground_collision {-100,0} drone colliding with the ground
penalty_wrong_hit {-10,0} drone not using racket to hit the ball

left side of its own court. The skill’s duration spans from the moment the opponent’s serving drone
hits the ball to the moment the receiving drone makes contact with it.

Observation and reward. The drone’s observation is a vector of dimension 34 including the drone’s
root state, the ball’s position, the ball’s relative position to the drone, the ball’s linear velocity, and
a one-hot flag indicating whether the drone is permitted to hit the ball. The detailed specification of
the task’s reward function per time step can be found in Table 4.

B.1.3 Set

Description. The ser skill is executed by the setting drone and constitutes the second touch during
a team’s turn. During the set skill training, the ball is initialized using a Gaussian distribution to
simulate the moment it is passed by the teammate. The setting drone is required to redirect the ball
to the front-right side of its own court, enabling the attacking drone to perform a strike. The skill’s
duration spans from the moment the passing drone contacts the ball to the moment the setting drone
hits it.

Observation and reward. The drone’s observation is a vector of dimension 34 including the drone’s
root state, the ball’s position, the ball’s relative position to the drone, the ball’s linear velocity, and
a one-hot flag indicating whether the drone is permitted to hit the ball. The detailed specification of
the task’s reward function per time step can be found in Table 5.

14



Table 5: Reward of the set skill

Type Name Sparse  Value Range Description
dist_to_ball X [0,2] drone’s distance to the ball
Before drone_hit_ball {0,40} drone hitting the ball
Hit penalty _pos_xy X [—00,0] being too far from the ideal point
penalty_pos_z X [—00,0] being too high or too low
penalty_yaw X [—00, 0] excessive yaw angle
After dist_to_anchor X [0, 10] ball’s distance to anchor
Hit drone_dist_to_anchor X [0, 200] drone’s distance to anchor
End highest_ball_pos X [0, 400] ball’s peak height exceeding 3m
Reward Penalty-ground_collision {-10,0} drone colliding with the ground
penalty_wrong_hit {-10,0} drone not using racket to hit the ball
Table 6: Reward of the attack skill
Type Name Sparse  Value Range Description
dist_to_ball X [0,1] drone’s distance to the ball
Before drone_hit_ball {0,20} drone hitting the ball
Hit drone_pos_z X [0, 400] height of drone hitting the ball
penalty yaw X [—27,0] excessive yaw angle
penalty roll X [—27,0] excessive roll angle
After dist_to_anchor X [0, 150] ball’s distance to anchor
Hit ball_vel x {0,1} velocity direction of the ball
ball_vel z {0,150} downward velocity of the ball
ball_hit_ground {0,5} ball hit the ground successfully
ball_final _vel X [0, <] ball’s velocity hitting the ground
End in_side {0,10} ball landing in opponent’s court
Reward penalty_ground_collision {-10,0} drone colliding with the ground
penalty_wrong_hit {-10,0} drone not using racket to hit the ball
penalty _hit_net {-10,0} ball hit the net

B.1.4 Attack

Description. The attack skill is executed by the attacking drone and constitutes the third touch in a
team’s sequence. During the attack skill training, the setting drone performs the ser skill as part of
the environment. The attacking drone must deliver an effective offensive strike toward one of two
predefined target positions on the opponent’s court (left or right). The duration of the skill spans
from the moment the setting drone contacts the ball to the moment the attacking drone strikes it.

Observation and reward. The drone’s observation is a vector of dimension 36 including the drone’s
root state, the ball’s position, the ball’s relative position to the drone, the ball’s linear velocity, a
one-hot flag indicating whether the drone is permitted to hit the ball, and a one-hot flag indicating
the attack direction. The detailed specification of the task’s reward function per time step can be
found in Table 6.

B.1.5 Pass

Description. The pass skill is used to counter the opponent’s attack and constitutes the first touch
in a team’s sequence. During the pass skill training, the opponent side includes a setting drone that
performs the set skill and an attacking drone that performs the attack skill as part of the environment.
The passing drone needs to hit the ball to the teammate positioned at the front-left side of its own
court. The duration of the skill spans from the moment the opponent’s attacking drone spikes the
ball to the moment the passing drone makes contact with it.

15



Table 7: Reward of the pass skill

Type Name Sparse  Value Range Description
dist_to_ball X [0,10] drone’s distance to the ball
drone_hit_ball {0,150} drone hitting the ball
Before drone_vel_z X [0,2.5] drone’s rising speed
Hit penalty_pos_x {-5,0} being too close to the net
penalty_pos_z X [—00,0] being too high or too low
penalty roll X [—0.57, 0] excessive roll angle
penalty _yaw X [—0.57, 0] excessive yaw angle
After dist_to_anchor X [0,10] ball’s distance to anchor
Hit ball_vel_direction X [0, 150] velocity direction to the anchor
secondary_dist_to_anchor X [0, 200] height-limited ball’s distance to anchor
highest_ball_pos X [0, 200] ball’s peak height exceeding 3m
End penalty_ground_collision {-100,0} drone colliding with the ground
Reward penalty_not_hit_ball {-10,0} drone not hitting the ball
penalty_wrong_hit {-10,0} drone not using racket to hit the ball
Table 8: Reward of the hover skill
Type Name Sparse  Value Range Description
drone_pos X [0, 3] drone’s relative position to the target point
Hover . .
drone_up X [0, 3] drone upright position
Reward - . .
drone_spin X [0, 3] drone spin suppression

Observation and reward. The drone’s observation is a vector of dimension 36 including the drone’s
root state, the ball’s position, the ball’s relative position to the drone, the ball’s linear velocity, a
one-hot flag indicating whether the drone is permitted to hit the ball, and a one-hot flag indicating
the opponent’s attacking direction. The detailed specification of the task’s reward function per time
step can be found in Table 7.

B.1.6 Hover

Description. The hover skill is executed immediately after the drone hits the ball. The drone
stabilizes at a predetermined altitude and position to prepare for the next move. Given that differ-
ent ball-interaction skills terminate in distinct end states, we define five corresponding hover skills
(serve_hover, receive_hover, set_hover, attack_hover, pass_hover) and train each independently to sta-
bilize the agent after the associated interaction with the same hover reward. Here, we specifically
illustrate the hover skill following the serve skill. During training, the serving drone performs the
serve skill as part of the environment, and immediately after it contacts the ball, its policy switches
to the hover skill.

Observation and reward. The drone’s observation is a vector of dimension 26 including the drone’s
relative position to the target point, the drone’s root state except position, and the drone’s relative
orientation to the ideal state. The detailed specification of the task’s reward function per time step
can be found in Table 8.

B.1.7 GoTo

Description. The goto skill is performed after the drone has stabilized and involves navigating to a
designated target position at a fixed altitude, preparing the drone for an upcoming hit. In training,
the drone’s initial and target positions are randomized to encourage generalization across various
scenarios.

Observation and reward. The drone’s observation is a vector of dimension 26 including the drone’s
relative position to the target point, the drone’s root state except position, and the drone’s relative

16



Table 9: Reward of the goto skill

Type Name Sparse  Value Range Description
drone_pos X [0,1] drone’s relative position to the target point
H drone_up X [0,1] drone upright position
over : . .
Reward drone_spin X [0,1] drone spin suppression
drone_effort X [0,0.1] hover with low effort

orientation to the ideal state. The detailed specification of the task’s reward function per time step
can be found in Table 9.

B.2 Training Result

The training results of low-level skills are shown in Fig. 8.

200 Serve Serve Hover Receive 2000 Receive Hover
1
5150 4000 000 3000
<4
©
100 2000
5 2000 500
* 50 1000
%00 05 o %% 2 4 %% 2 r %% 2 )
Time Step 1e9 Time Step 1e8 Time Step 1e8 Time Step 1e8
1000 Pass Pass Hover 1000 Set Set Hover
1000 4000
o 750 750
©
500 500
5 500 2000
< 250 250
%.0 0.5 1.0 0% 2 4 %0 0.5 1.0 0% 1 2
Time Step  1e9 Time Step  1e8 Time Step  1e9 Time Step 1e8
3000 Attack 2000 Attack Hover Goto
B 2000 3000 1000
g 2000 500
[0}
o 1000 1000
0
%0 05 o Y0 05 1.0 0 2 3
Time Step 1e9 Time Step 1e9 Time Step le7

Figure 8: The training results of low-level skills.

B.3 Case Study

When training the attack and attack_hover skills through policy chaining, we observed the emer-
gence of a front-flip attack (Fig. 9). Executing a front flip is particularly challenging for a drone,
since it requires precise timing, rapid attitude changes, and tight control over thrust to complete
a full somersault without losing stability. Remarkably, even without explicitly designing for this
maneuver, policy chaining can facilitate learning to perform a front flip to attack the ball. More-
over, performing a front-flip attack allows the drone to impart additional downward and forward
momentum at the moment of impact, resulting in a higher ball speed. The finding shows that policy
chaining not only facilitates complex skill discovery but also naturally promotes the emergence of
aggressive, high-performance behaviors through the composition of simpler skills.

17



Figure 9: Sequence of six frames, sampled sequentially in time from the start to the completion of
the front-flip attack.

B.4 Hyperparameters

The PPO [17] hyperparameters applied to all low-level skill training tasks are listed in Table 10. All
parameters in the table are used unchanged except for the actor and critic learning rates:

* receive, pass, and pass_hover: actor learning rate & critic learning rate = 1 x 10—

* receive_hover: actor learning rate & critic learning rate = 1 x 10~

Table 10: Hyperparameters used for PPO in low-level skill training.

hyperparameters value | hyperparameters value | hyperparameters value
optimizer Adam max grad norm 10 entropy coef 0.001
buffer length 64 num minibatches 16 PPO epochs 4
value norm ValueNorml | clip param 0.1 normalize advantages True
actor learning rate 5x 107* hidden sizes [256,128,128] | GAE lambda 0.95
critic learning rate 5x 1074 gain 0.01 GAE gamma 0.995
max episode length 500 num envs 4096 train steps 1% 10°

C Details of Stage I1: High-Level Strategy Pretraining

The high-level strategy is invoked only at discrete events, namely when the ball is struck or crosses
the net, while low-level skills execute continuously between those moments. In Stage II, we freeze
the low-level skills and train the high-level strategy using PSROn,qn [18], an iterative game-theoretic
self-play method where policies compete against opponents sampled from a Nash equilibrium dis-
tribution. To address the sparsity of high-level decisions, we employ sample reallocation, focusing
training on event-triggered timesteps and redistributing rewards across intervals. The high-level
strategy is implemented as a centralized multi-layer perceptron (MLP) with three output heads, each
issuing commands to a specific drone, thereby enabling coordinated team-level decision making.
The entire framework is trained using MAPPO [29].

C.1 High-Level Strategy

Observation. The high-level strategy’s observation is a vector of dimension 100 including the root
states (position, rotation, linear velocity, angular velocity) of 6 drone agents (3 on each side), the
ball’s position, the ball’s linear velocity, binary flags indicating which drone agents have already hit
the ball, ball side information, a one-hot representation of the current game phase.

Action. The high-level action space is organized as a multi-head structure with three heads of sizes
6, 3, and 4, corresponding to the passing, setting, and attacking drone roles. Each head defines an in-
dependent categorical distribution: its output logits are converted to normalized action probabilities
via a softmax activation. Prior to discretizations, the logits for each head are sampled from Gaussian
distributions in a latent policy space, thereby facilitating probabilistic exploration.

Reward. The reward for the high-level strategy 7rf at timestep ¢ is defined as:

ri, = c1 x win_or_lose; + ¢z x racket_hit_ball;, 0

18



where win_or_lose; = 1 if team j wins, —1 if it loses, and 0 otherwise; racket_hit_ball; = 1 if any
racket of team j contacts the ball at timestep ¢, and 0 otherwise.

C.2 Training Result

The results of high-level strategy training are shown in Fig. 10. In our experiments, we set the max-
imum population size to five, yielding five iterative training phases; each phase terminates when
either a preset number of training steps is reached or a win-rate threshold is met. The lower tri-
angular portion of the matrix reports the win rate of each row policy against each column policy
(i.e., the probability that the row policy prevails). Because the game is symmetric and zero-sum, the
upper-triangular entries are complementary, such that each pair of win rates sums to one.

(0l 0232 | 0263 | 0257 | 0222
[OXLION (0.086) | (0.122) | (0.135) | (0.109)
« BEEN 0500 0.215 | 0.236
(OOEBN (0.000) (0.074) | (0.106)
B 0737 (O 0223 | 0.206
(0.122) (OXLON (0.079) | (0.077)
0.743 | 0.785 | 0.777 IEEIJRENOEH]
(ORED N RCLIZAN RO (0.000) | (0.117)
0.778 | 0.764 | 0794 [OCKIRNONEN)
(0.109) | (0.106) | (0.077) [N kkEs RIRCXLL)

Pollcy

Policy

Figure 10: Win-rate heatmap illustrating the evolution of high-level strategy training in Stage II.

C.3 Hyperparameters

The hyperparameters used for PSROy,q, in high-level strategy training are shown in Table 11.

Table 11: Hyperparameters used for PSROyyg, in high-level strategy training.

hyperparameters value | hyperparameters value | hyperparameters value
optimizer Adam max grad norm 10 entropy coef 0.001
buffer length 64 num minibatches 16 PPO epochs 4

value norm ValueNorm1 | clip param 0.1 normalize advantages True
actor learning rate 1x107* | hidden sizes [256,128,128] | GAE lambda 0.95
critic learning rate 1x 1074 gain 0.01 GAE gamma 0.995
max episode length 1500 num envs 512 min iteration steps 1.6384 x 10°
max population size 5 win rate threshold 0.9 max iteration steps 1.6384 x 108

D Details of Stage I1I: Co-Self-Play

Stage III consists of two steps (Fig. 3): the low-level skill refinement step and the high-level strategy
relearning step. In the low-level skill refinement step, the high-level strategy together with every low-
level skill except serve and receive are co-optimized, resulting in updated low-level skills, which are
then added to the existing low-level skill pool. The previous high-level strategy becomes invalid
due to the change in the size of the skill pool. Therefore, the high-level strategy relearning step
involves retraining the high-level strategy to accommodate the augmented low-level skill pool. To
analyze the low-level skill refinement step, we conduct two ablation studies: one on the refinement
schedule (Appendix D.1) and the other on the KL divergence penalty term (Appendix D.2). For the

19



high-level strategy relearning step, we perform an ablation study on the initialization of high-level
strategy parameters (Appendix D.3).

D.1 Ablation Study on Low-Level Skill Refinement Schedule

Instead of jointly co-optimizing the high-level strategy with all low-level skills simultaneously, we
co-optimize the high-level strategy with one low-level skill at a time (Algo. 1). We compare the
two co-optimization methods by evaluating the win rates of the saved checkpoints against the high-
level strategy and low-level skills obtained after Stage II, under identical settings. These settings
include the reward structure, maximum number of iterations (M = 4000), checkpoint saving inter-
val (N = 1000), and win rate threshold (f = 0.7). Each iteration collects 32768 sampled steps.
All results are averaged over three random seeds. As shown in Fig. 11a, jointly co-optimizing the
high-level strategy with all low-level skills leads to near-zero win rates. In contrast, co-optimizing
the high-level strategy with one low-level skill at a time can yield checkpoints that achieve win rates
above 50%. Since MARL is inherently non-stationary, simultaneously updating all low-level skills
destabilizes the learning process. In comparison, optimizing one low-level skill at a time reduces
non-stationarity and enables more stable and effective learning.

Algorithm 1 High-level strategy and one-at-a-time low-level skill joint optimization.

Require: Low-level skill set {7}, high-level policy 7%/, number of max iterations M, checkpoint
saving interval N, win rate threshold 7
Ensure: Augmented low-level skill set {7}, }
1: Initialize ITe, < 0
2: for each % € {7} do
3:  Freeze parameters of all other low-level policies in {7}

L’ L
7Tk <77Tk

4
5: 7T,€{ " nH

6:  Form team ({m*} \ {nL})U {77,%/} with high-level 7/’

7. fori=1to M do , ,

8: Jointly optimize 7" and 7rf" through self-play against the frozen team {7} and 7%
9: if i mod N = 0 then

10: Save a checkpoint of 72" and 7/’
11: end if
12:  end for

13:  For each 7/, 7} checkpoint, form team ({w’} \ {7F}) U {xL"} with high-level 7}’" and
evaluate the win rate against the frozen team {7} and 7.

14:  Select the checkpoint of ﬂ',%l with the highest win rate, denoted as W,% best

15:  if win rate of 7}/, > 7 then

16: Append ﬂ',ﬁbesl t0 I pew
17:  end if
18: end for

19: return {7} U Iley

D.2 Ablation Study on KL Divergence Penalty

As stated in Sec. 3.3, we incorporate a KL divergence penalty term into the low-level skill reward,
in addition to the game-result-related reward shared with the high-level strategy. Here, we conduct
a detailed ablation study on the KL divergence penalty to investigate its influence on training per-
formance. As shown in Fig. 11b, and following Algo. 1, we compare different settings of the KL
penalty by evaluating the win rates of the saved checkpoints against the high-level strategy and low-
level skills obtained after Stage II. We observe that a large KL penalty coefficient (e.g., 1e—2) causes
the policy performance to collapse rapidly; conversely, without a KL penalty (coefficient = 0), the
policy hovers only slightly above zero win rate. Only with a moderate coefficient (e.g., le—4) does
the policy yield checkpoints achieving win rates above 50%. This is because, without a KL penalty,

20



1.0 1.0 0.8
0.8 0.8
0.6
Lo6 Lo6 £
< | L4 0.4
< I\ < <
S0.4{ \ 204 \\ =
\ 0.2
0.2 N\ 0.2
N\ ]
0.0 1000 2000 3000 4000 90 1000 2000 3000 4000 0 T 2 3
iterations iterations time step x10
—— Simultaneous Training KL=0 —— KL=1le-2 From Scratch
One-at-a-Time Training KL=1e-4 Mean-Based Initialization for Newly Added Dimensions

(a) Comparison of win rates (b) Comparison of win rates un- (c) Comparison of win rates under dif-
under different co-optimization der different KL divergence coef- ferent high-level strategy parameter ini-
training schedules. ficients. tializations.

Figure 11: Ablation study results in Stage III.

the reward signal for low-level strategies becomes sparse, significantly slowing down learning. On
the other hand, an overly large KL penalty forces the policy to remain too close to the original one,
which leads to accumulated error over time as the policy rigidly imitates previous behaviors without
adaptation.

D.3 Ablation Study on High-Level Strategy Parameter Initialization

As the previous high-level strategy becomes invalid due to changes in the size of the low-level skill
pool, it is necessary to retrain the high-level strategy to accommodate the augmented skill set. The
initialization of this new high-level strategy is a critical factor influencing the overall performance
in Stage III. We compare two different initialization methods for the high-level strategy. The first is
a straightforward approach that trains the high-level strategy from scratch. In the second approach,
we expand each actor head’s parameter vector to match the larger action space by copying over its
original values. Any newly added dimensions are then initialized to the mean of that head’s original
parameters. In both settings, we train the new high-level strategy with frozen augmented low-level
skills against the frozen high-level strategy and low-level skills obtained after Stage II. As shown in
Fig. 11c, although training from scratch requires more time steps to converge, it ultimately achieves
a higher win rate. In contrast, the parameter-averaging initialization method tends to converge to a
suboptimal local solution.

E Baselines

We evaluate five baseline methods for this multi-drone game, including four non-hierarchical game-
theoretic approaches and one rule-based hierarchical baseline adapted from VolleyBots [9]. The
game-theoretic baselines follow estabilished literature [30] and comprise Self-Play (SP) [19], Ficti-
tious Self-Play (FSP) [20], Policy-Space Response Oracles [18] with Nash meta-solver (PSROyagsh),
and PSRO with uniform meta-solver (PSROuniform). Additionally, we incorporate a rule-based hier-
archical baseline from VolleyBots.

SP establishes the foundation by training agents against their current policy versions. FSP extends
this by maintaining a historical policy pool, forcing agents to adapt to an averaged opponent strategy.
PSROnNash employs Nash equilibrium weighting for strategic policy selection, while PSROyqiform
simplifies this by sampling policies uniformly at each iteration.

The rule-based hierarchical baseline from VolleyBots implements a structured volleyball-inspired
gameplay pipeline. In this system, the serving drone initiates play by executing a serve to a specific
target position on the opponent’s court. The receiving team then follows a deterministic sequence: (i)
the passing drone receives the ball and directs it to the setting drone, (ii) the setting drone positions
the ball for optimal attack placement, and (iii) the attacking drone executes an offensive strike.

21



To ensure fairness, we provide all baseline agents with the full-state observations of opponent drones
as those available to HCSP. Additionally, HCSP is trained independently without exposure to any of
the baseline agents, guaranteeing an unbiased evaluation.

F Evaluation Metrics

F.1 Win Rate

The win rate is computed by evaluating two populations across 500 independent episodes. At the
beginning of each episode, one strategy is sampled from each population according to a speci-
fied sampling distribution. The two strategies then compete, and the outcome (win/loss/draw) is
recorded. The final win rate represents the proportion of episodes won by one population relative to
the other, averaged over 3 random seeds to ensure statistical reliability.

F.2 Nash-Averaging Evaluator

While head-to-head win rates fail to reflect absolute policy strength in non-transitive games, and Elo
ratings [22] exhibit sensitivity to the composition of the policy population, the Nash-averaging eval-
uator, introduced by Liu et al. [21], provides a robust alternative. This method selects a randomly
sampled set of policies, then constructs a payoff matrix from pairwise match-ups, and finally com-
putes a Nash equilibrium (NE). The resulting equilibrium weights yield a comparatively population-
invariant measure of relative performance, mitigating biases induced by cyclic dominance. So we
adopt this as an evaluation metric. The details are as follows.

To compute a Nash-averaging evaluator, we first randomly select 10 different policy checkpoints:
1 each from SP, FSP, PSROuyniform, and PSROn,sh, along with 3 from Stage II and 3 from Stage 111
of training. All checkpoints are drawn from completely independent training runs with different
random seeds. Each policy pair then competes in 500 independent episodes under identical condi-
tions, with the row policy’s win rate against the column policy recorded as the corresponding matrix
element. All results are averaged across three seeds to ensure statistical reliability. Then, we get a
10 x 10 win rate heatmap (Fig. 4b).

The meta policy is derived by computing the NE of the 10 x 10 win rate matrix. Since the under-
lying game is zero-sum, win rates (probabilistic outcomes) must first be converted into zero-sum
payoff values within the range [—1, 1], where one agent’s gain is the other’s loss. Specifically, the
conversion follows:

payoffs[i, j| = 2 x win_rates][z, j] — 1 (8)

We then compute each player’s NE-based optimal mixed strategy, ensuring neither player can gain a
higher expected payoff by unilaterally deviating from their strategy. This computed mixed strategy
is the Nash-averaging evaluator we used in Sec. 4.2.1. We then evaluate the Stage II and Stage I1I
population against this Nash-averaging evaluator in the same way described in Appendix F.1.

G Preliminary Real-World Experiments

Although the current method is not yet sufficient for full 3v3 zero-shot deployment, we incorporate
key real-world factors in simulation. Our preliminary Sim2Real adaptations include:

* We support two action space options. In addition to the 50Hz PRT, we also support S0Hz
CTBR policy output followed by an 800Hz PID controller.

¢ We add both domain randomization (initial states and restitution coefficient) and observa-
tion latency.

22



(b) Serve (c) Solo Bump
o Start

° End

1.5
B
= 1.0
<
=
[0}
Tos

—— Drone
00 Ball
0 5 10 15 20 25
Time (s)
(d) Ball trajectory in Serve (e) Height variation in Solo Bump

Figure 12: Real-world experiments.

We further conduct preliminary real-world experiments to demonstrate the zero-shot Sim2Real po-
tential of our approach on learned low-level skills, such as the Serve skill and a Solo Bump task,
in which the drone is required to bump the ball repeatedly to showcase its agility and stability. As
shown in Fig. 12a, to stay within the quadrotor’s thrust margin, we mount a badminton racket (di-
ameter 22cm, mass 60g) on top of the drone and use a small foam ball (diameter 4cm, mass 47g).
Both the drone and the ball are tracked by a motion-capture system: the drone, modeled as a rigid
body, receives position and orientation directly from mocap, while an Extended Kalman filter fuses
these data with PX4 IMU readings to estimate velocity; the ball, treated as a point mass, also gets
position from mocap, and a Kalman filter differentiates these measurements to recover velocity. The
policies are deployed on the onboard Nvidia Orin processor. In zero-shot trials, the low-level skills
such as Serve are executed successfully (Fig. 12b and 12d) and the Solo Bump policy achieves 29
consecutive bumps (Fig. 12c and 12e). These results provide promising evidence for the physical
plausibility and transferability of our approach.

23



	Introduction
	Preliminaries
	3v3 Multi-Drone Volleyball Task
	Markov Game and MARL

	Method
	Stage I: Low-Level Skill Acquisition
	Stage II: High-Level Strategy Pretraining
	Stage III: Co-Self-Play

	Experiments
	Game Results Against Baselines
	Analysis of Stage III Co-Self-Play
	Quantitative Analysis
	Emergent Low-Level Skill

	Ablation Study
	Policy Chaining in Stage I
	High-level Strategy Sample Reallocation in Stage II


	Related Work
	Conclusion
	Details of the 3v3 Muiti-Drone Volleyball Task
	Court
	Drone
	Game Rules

	Details of Stage I: Low-Level Skill Acquisition
	Low-Level Skills
	Serve
	Receive
	Set
	Attack
	Pass
	Hover
	GoTo

	Training Result
	Case Study
	Hyperparameters

	Details of Stage II: High-Level Strategy Pretraining
	High-Level Strategy
	Training Result
	Hyperparameters

	Details of Stage III: Co-Self-Play
	Ablation Study on Low-Level Skill Refinement Schedule
	Ablation Study on KL Divergence Penalty
	Ablation Study on High-Level Strategy Parameter Initialization

	Baselines
	Evaluation Metrics
	Win Rate
	Nash-Averaging Evaluator

	Preliminary Real-World Experiments

