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ABSTRACT

We propose TopDis (Topological Disentanglement), a method for learning dis-
entangled representations via adding a multi-scale topological loss term. Dis-
entanglement is a crucial property of data representations substantial for the ex-
plainability and robustness of deep learning models and a step towards high-level
cognition. The state-of-the-art methods are based on VAE and encourage the joint
distribution of latent variables to be factorized. We take a different perspective on
disentanglement by analyzing topological properties of data manifolds. In partic-
ular, we optimize the topological similarity for data manifolds traversals. To the
best of our knowledge, our paper is the first one to propose a differentiable topo-
logical loss for disentanglement learning. Our experiments have shown that the
proposed TopDis loss improves disentanglement scores such as MIG, FactorVAE
score, SAP score and DCI disentanglement score with respect to state-of-the-art
results while preserving the reconstruction quality. Our method works in an un-
supervised manner, permitting to apply it for problems without labeled factors of
variation. The TopDis loss works even when factors of variation are correlated.
Additionally, we show how to use the proposed topological loss to find disentan-
gled directions in a trained GAN.

1 INTRODUCTION

Learning disentangled representations is a fundamental challenge in deep learning, as it has
been widely recognized that achieving interpretable and robust representations is crucial for
the success of machine learning models (Bengio et al., 2013). Disentangled representations,
in which each component of the representation corresponds to one factor of variation (Des-
jardins et al., 2012; Bengio et al., 2013; Cohen & Welling, 2014; Kulkarni et al., 2015;
Chen et al., 2016; Higgins et al., 2017; Tran et al., 2021; Feng et al., 2020; Gonzalez-Garcia
et al., 2018), have been shown to be beneficial in a variety of areas within machine learning.

Figure 1: The TopDis pipeline process involves
the following steps: encoding a batch of data sam-
ples, applying shift in a latent code, decoding both
the original and the shifted latents, and finally cal-
culating the TopDis regularization loss between
the two resulting point clouds, for details see Sec-
tion 4.

One key benefit of disentangled representations
is that they enable effective domain adapta-
tion, which refers to the ability of a model
to generalize to new domains or tasks. Stud-
ies have shown that disentangled representa-
tions can improve performance in unsupervised
domain adaptation (Yang et al., 2019; Peebles
et al., 2020; Zou et al., 2020). Additionally, dis-
entangled representations have been shown to
be useful for zero-shot and few-shot learning,
which are techniques for training models with
limited labeled data (Bengio et al., 2013). Dis-
entangled representations have also been shown
to enable controllable image editing, which is
the ability to manipulate specific aspects of
an image while keeping the rest of the image
unchanged (Wei et al., 2021; Wang & Ponce,
2021). This type of control can be useful in a
variety of applications, such as image synthesis, style transfer and image manipulation. Furthermore,
disentangled representations are also believed to be a vital component for achieving high-level cog-
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nition. High-level cognition refers to the ability of a model to understand and reason about the
world, and disentangled representations can play a key role in achieving this goal (Bengio, 2018).

One line of research for finding disentangled representations is to modify the Variational Autoen-
coder (VAE) (Kingma & Welling, 2013) using some intuition, formalizing statistical independence
of latent components (Higgins et al., 2017; Chen et al., 2018; Kim & Mnih, 2018), or the group
theory based definition of disentanglement (Yang et al., 2021). Another line is to modify GANs
(Goodfellow et al., 2014; Chen et al., 2016; Lin et al., 2020; Peebles et al., 2020; Wei et al., 2021) to
enforce the change in a particular component being predictable or independent in some sense from
other components.

At the same time, Locatello et al. (2019) stated the impossibility of fully unsupervised learning of
disentangled representation with a statistical approach. But empirical evidence shows that disen-
tanglement learning is possible, probably due to inductive bias either in the model or the dataset
(Michlo et al., 2023; Rolinek et al., 2019). We follow Higgins et al. (2018), Section 3, where it
is pointed out that one can achieve disentanglement w.r.t. the natural decomposition through ac-
tive intervention, which in our case takes the form of the proposed group action shifts. Also our
work is based on exploring topological properties of a data manifold. Thus, statistical arguments of
Locatello et al. (2019) do not apply in our case.

In this paper, we take an approach to the problem of disentanglement learning. Our approach is
grounded in the manifold hypothesis (Goodfellow et al., 2016) which posits that data points are
concentrated in a vicinity of a low-dimensional manifold. For disentangled representations, it is
crucial that the manifold has a specific property, namely, small topological dissimilarity between
a point cloud given by a batch of data points and another point cloud obtained via the symmetry
group action shift along a latent space axis. To estimate this topological dissimilarity, we utilize the
tools from topological data analysis (Barannikov, 1994; Chazal & Michel, 2017). We then develop a
technique for incorporating the gradient of this topological dissimilarity measure as into the training
of VAE-type models.

Our contributions are the following:

• We propose TopDis (Topological Disentanglement), a method for unsupervised learning of
disentangled representations via adding to a VAE-type loss the topological objective;

• Our approach uses group action shifts preserving the Gaussian distribution;
• We improve the reconstruction quality by applying gradient orthogonalization;
• Experiments show that the proposed topological regularization improves disentanglement

metrics (MIG, FactorVAE score, SAP score, DCI disentanglement score) with respect to
state-of-the-art results. Our methods works even if factors of generation are correlated.

2 RELATED WORK

In generative models, disentangled latent space can be obtained by designing specific architectures
of neural networks (Karras et al., 2019) or optimizing additional loss functions. The latter approach
can require true labels for factors of variation (Kulkarni et al., 2015; Kingma et al., 2014; Paige
et al., 2017; Mathieu et al., 2016; Denton et al., 2017). However, the most interesting approach is to
learn a disentangled latent space in an unsupervised manner. This is because not all data has labeled
factors of variation, and at the same time, humans can easily extract factors of variation through
their perception.

One of the most widely used generative models is the Variational Autoencoder (VAE) (Kingma &
Welling, 2013). However, the VAE model alone is not able to achieve disentanglement. To address
this limitation, researchers have proposed different variants of VAE such as β-VAE (Higgins et al.,
2017), which aims to increase disentanglement by increasing the weight of KL divergence between
the variational posterior and the prior. Increasing disentanglement in β-VAE often comes at the
cost of a significant drop in reconstruction quality (Sikka et al., 2019). To overcome the trade-off
between reconstruction and disentanglement, some researchers have proposed to use the concept of
total correlation. In β-TCVAE (Chen et al., 2018), the KL divergence between the variational poste-
rior and the prior is decomposed into three terms: index-code mutual information, total correlation
(TC), and dimension-wise KL. The authors claim that TC is the most important term for learning
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disentangled representations, and they penalize this term with an increased weight. However, they
also note that it is difficult to estimate the three terms in the decomposition, and they propose a
framework for training with the TC-decomposition using minibatches of data. The authors of Fac-
torVAE (Kim & Mnih, 2018) propose to increase disentanglement also by reducing total correlation
within latent factors. Instead of using the β-TCVAE approach, they rely on an additional discrimina-
tor which encourages the distribution of latent factors to be factorized and hence independent across
the dimensions without significantly reducing the reconstruction loss.

In Locatello et al. (2019), the authors conduct a comprehensive empirical evaluation of a large
amount of existing models for learning disentangled representations, taking into account the influ-
ence of hyperparameters and initializations. They find that the FactorVAE method achieves the best
quality in terms of disentanglement and stability, while preserving the reconstruction quality of the
generated images.

Approaches to interpretation of neural embeddings are developed in (Bertolini et al., 2022; Zhang
et al., 2018; Zhou et al., 2018). Tools of topological data analysis were previously applied to disen-
tanglement evaluation (Barannikov et al., 2022; Zhou et al., 2021).

3 BACKGROUND

3.1 VARIATIONAL AUTOENCODER

The Variational Autoencoder (VAE) (Kingma & Welling, 2013) is a generative model that encodes
an object xn into a set of parameters of the posterior distribution qϕ(z|xn), represented by an encoder
with parameters ϕ. Then it samples a latent representation from this distribution and decodes it into
the distribution pθ(xn|z), represented by a decoder with parameters θ. The prior distribution for
the latent variables is denoted as p(z). In this work, we consider the factorized Gaussian prior
p(z) = N(0, I), and the variational posterior for an observation is also assumed to be a factorized
Gaussian distribution with the mean and variance produced by the encoder. The standard VAE model
is trained by minimizing the negative Evidence Lower Bound (ELBO) averaged over the empirical
distribution:

LV AE = Lrec + LKL =
1

N

N∑
n=1

[
− Eq [log pθ (xn | z)] + KL (qϕ (z | xn) || p(z))

]
.

Several modifications of VAE for learning disentangled representations were proposed: β-VAE
(Higgins et al., 2017), β-TCVAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018), ControlVAE
(Shao et al., 2020), DAVA (Estermann & Wattenhofer, 2023). The idea behind these methods to
formalize statistical independence of latent components.

3.2 REPRESENTATION TOPOLOGY DIVERGENCE

Representation Topology Divergence (RTD) (Barannikov et al., 2022) is a topological tool compar-
ing two point clouds X, X̃ with one-to-one correspondence between points. RTD compares multi-
scale topological features together with their localization. The distances inside clouds X, X̃ define
two weighted graphs Gw, Gw̃ with the same vertex set X , wAB = dist(A,B), w̃AB = dist(Ã, B̃).
For a threshold α, the graphs Gw≤α, Gw̃≤α are the α-neighborhood graphs of X and X̃ . RTD
tracks the differences in multi-scale topology between Gw≤α, Gw̃≤α by comparing them with the
graph Gmin(w,w̃)≤α, which contains an edge between vertices A and B iff an edge between A and
B is present in either Gw≤α or Gw̃≤α. Increasing α from 0 to the diameter of X , the connected
components in Gw≤α(X) change from |X| separate vertices to one connected component with all
vertices. Let α1 be the scale at which a pair of connected components C1, C2 of Gw≤α becomes
joined into one component in Gmin(w,w̃)≤α. Let at some α2 > α1, the components C1, C2 become
also connected in Gw≤α. R-Cross-Barcode1(X, X̃) is the multiset of intervals like [α1, α2], see
Figure 2. Longer intervals indicate in general the essential topological discrepancies between X
and X̃ . By definition, RTD is the half-sum of intervals lengths in R-Cross-Barcode1(X̃,X) and
R-Cross-Barcode1(X, X̃). Formal definition of R-Cross-Barcode based on simplicial complexes is
that it is the barcode of the graph Ĝw,w̃ from (Barannikov et al., 2022), see also Appendix N.
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Figure 2: An example of RTD calculation.

Figure 2 illustrates the calculation of RTD. The case
with three clusters in X merging into two clusters
in X̃ is shown. Edges of Gw̃≤α not in Gw≤α, are
colored in orange. In this example there are exactly
four edges of different weights (13), (14), (23), (24)
in the point clouds X and X̃ . The unique topologi-
cal feature in R-Cross-Barcode1(X, X̃) in this case
is born at the threshold w̃24 when the difference in
the cluster structures of the two graphs arises, as the
points 2 and 4 are in the same cluster at this threshold
in Gmin(w,w̃)≤α and not in Gw≤α. This feature dies
at the threshold α2 = w23 since the clusters (1, 2)
and (3, 4) are merged at this threshold in Gw≤α.

The differentiation of RTD is described in Trofimov
et al. (2023), see also Appendix R.

4 METHOD

(a) Example of traversals in dSprites dataset. (b) RTD values beetween point clouds represented as
rows in Figure 3a.

Figure 3: Left: rows represent point clouds (mini-batches). The 1st row represents some random
batch of samples; the 2nd row is obtained by equally shifting samples from 1st row to the right;
the 3rd row is placed the same as 2nd, but all objects are randomly transformed; the 4th row is a
scaling of samples from 3rd row. The RTD value between 1st and 2nd point clouds is zero, as RTD
between 3rd and 4th rows. While the RTD between 2nd and 3rd row have a large value because the
topological structures of these two clouds are not similar.

4.1 TOPOLOGY-AWARE LOSS FOR GROUP ACTION

To illustrate our approach, we present an analysis of specific traversals in the dSprites dataset with
known factors of variation. As shown in Figure 3a, we compute RTD values along shifts in latent
space and demonstrate that transformations in disentangled directions have minimal topological
dissimilarities between two sets of samples. In Figure 3b, the RTD values between point clouds
represented as rows are displayed. As we explain below, the minimization of RTD is implied by
continuity of the symmetry Lie group(oid) action on data distribution. Based on this, we focus on
optimizing RTD as the measure of disentanglement in the form of TopDis regularization.

Definition of VAE-based disentangled representation. We propose that the desired outcome of
VAE-based disentangled learning on data distribution X consists of (cf. Higgins et al. (2018)):

1. The encoder h : X → Z and the decoder f : Z → X neural networks, Z = Rn, maximizing
ELBO, with the standard N(0, I) prior distribution on Z.

2. Symmetry Lie group(oid) actions on distributions X and Z, such that the decoder and the encoder
are equivariant with respect to group(oid) action, f(g(z)) = g(f(z)), h(g(x)) = g(h(x)), g ∈ G.
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3. A decomposition G = G1 × . . . × Gn, where Gi ≃ R are 1-parameter Lie subgroup(oid)s. We
then distinguish two situations arising in examples: a) Gi are commuting with each other, b) Gi

commutes with Gj up to higher order O(C2).
4. The Lie group(oid) G action on the latent space decomposes and each Gi acts only on a single

latent variable zi, preserving the prior N(0, 1) distribution on zi; it follows from Proposition 4.1
that Gi acts on zi via the shifts (1).

The concept of Lie group(oid) is a formalization of continuous symmetries, when a symmetry action
is not necessarily applicable to all points. We gather necessary definitions in Appendix O.

The Lie group(oid) symmetry action by g ∈ G on the support of data distribution is continuous
and invertible. This implies that for any subset of the support of data distribution, the image of the
subset under g has the same homology or the same group of topological features. The preservation
of topological features at multiple scales can be tested with the help of the representation topology
divergence (RTD). If RTD is small between a sample from X and its symmetry shift, then the groups
of topological features at multiple scales are preserved.

Also the smallness of RTD implies the smallness of the disentanglement measure from (Zhou et al.
(2021)) based on the geometry scores of data subsets conditioned to a fixed value of a latent code.
Such subsets for different fixed values of the latent code are also related via the symmetry shift
action, and if RTD between them is small, the distance between their persistence diagrams and
hence the metric from loc cit is small as well.

4.2 GROUP ACTION SHIFTS PRESERVING THE GAUSSIAN DISTRIBUTION.

Our approach to learning disentangled representations is based on the use of an ad-
ditional loss function that encourages the preservation of topological similarity in
the generated samples when traversing along the latent space. Given a batch of
data samples, X = x1, . . . , xN , we sample the corresponding latent representations,

Figure 4: Shift of real line preserving
N(0, 1), C = 1/8. The three orange
curvilinear rectangles have the same area:
F (zshifted)− F (z) = 1/8

zn ∼ qϕ(z|xn), and the reconstructed samples,
x̂n ∼ pθ(x|zn). To ensure that the shifts in a la-
tent code preserve the prior Gaussian distribution,
we propose using the shifts defined by the equation:

zshifted = F−1(F (z | ρ, σ2) + C | ρ, σ2) (1)
Shifts in the latent space are performed using the cu-
mulative function F (z | ρ, σ2) of the Gaussian dis-
tribution. The mean value ρ and variance σ2 of the
distribution are calculated as the empirical mean and
variance of the latent code for the given sample of
the data, see Algorithm 1.
Proposition 4.1. a) For any fixed ρ, σ, the equation
(1) defines a local action of the additive group {C | C ∈ R} on real line. b) This abelian group(oid)
action preserves the N(ρ, σ2) Gaussian distribution density. c) Conversely, if a local action of this
abelian group preserves the N(ρ, σ2) distribution then the action is given by formula (1).

See Appendix B for the proof and more details. This process is illustrated in Figure 4. Notice that,
during the calculation of the topological term, we do not consider the data points with F (z)+C > 1
(F (z) + C < 0), i.e. whose latent codes are already at the very right (left) tail of the distribution
and which thus cannot be shifted to the right (respectfully, left).

Let q(z) be the aggregate posterior distribution over the latent space, aggregated over the whole
dataset X . And let q(zi) be the similar aggregate distribution over the latent code zi. The formula (1)
is valid and defines symmetry shifts if we replace the standard normal distribution by any distribution
over the real line, we use it with the distribution q(zi) over the i−th latent codes.
Proposition 4.2. a) If the distribution q(z) is factorized into product q(z) =

∏
i q(zi), then the shift

defined by the formula (1) and acting on a single latent code zi and leaving other latent codes fixed,
preserves the latent space distribution q(z). This defines the Gi groupoid action on z for any i,
whose action is then extended to points of the initial dataset X with the help of the decoder-encoder.
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Algorithm 1 Latent traversal with a shift in the latent space.

Input: z ∈ RN×d – an array of latent representations from encoder. C – the shift value. F (z | ρ, σ2)
– the cumulative function for N (ρ, σ2) distribution.
i ∼ {1, . . . , d}, random choice of latent code
s ∼ {−C,C}, random choice of shift direction.
ρ← mean(z(i)), empirical mean value for i-th latent representation along batch.
σ2 ← var(z(i)), empirical variance for the i-th latent representation along batch.
p← F (z(i) | ρ, σ2), p-values of batch along i-th latent code, p ∈ RN

J = {j | pj + s ∈ (0, 1)}, valid set of the batch elements that can be shifted
zoriginal ← {zj | j ∈ J }, batch of valid original latents
z
(i′)
shifted ← z

(i′)
original, copy of latents z(i

′)
original, i

′ ̸= i

z
(i)
shifted ← {F−1(pj + s | ρ, σ2) | j ∈ J }, apply the shift only along the i-th latent code.

Return: zoriginal, zshifted – valid original and shifted latents. zoriginal, zshifted ∈ R|J |×d

Algorithm 2 The TopDis loss.

Input: X ∈ RN×C×H×W , VAE parameters ϕ, θ, p ∈ {1, 2} – an exponent, C – the shift scale.
µz, σ

2
z ← qϕ(z|X), posterior parameters from encoder given batch X .

zoriginal, zshifted – valid original and shifted latents, obtained by Algorithm 1
X̂original ∼ pθ(x|zoriginal), a reconstruction of initial batch X

X̂shifted ∼ pθ(x|zshifted), a generation of modified X after applying shift along some fixed latent
code.
LT D ← RTD(p)(X̂original, X̂shifted)

Return: LT D – topological loss term.

b) Conversely, if q(z) is preserved for any i by the shifts acting on zi and defined via formula (1)
from the distribution q(zi), then q(z) =

∏
i q(zi).

The proof is given in Appendix C

4.3 THE TOPDIS LOSS

The TopDis regularization loss is calculated using the Representation Topology Divergence (RTD)
measure, which quantifies the dissimilarity between two point clouds with one-to-one correspon-
dence. The reconstructed batch of images, X̂ , is considered as a point cloud in the RH×W×C

space 1, H , W , and C are the height, width, and number of channels of the images respectively.
The one-to-one correspondence between the original and shifted samples is realized naturally by the
shift in the latent space. Finally, having an original and shifted point clouds:

X̂original ∼ pθ(x|zoriginal), X̂shifted ∼ pθ(x|zshifted), (2)

we propose the following topological regularization term (Algorithm 2):

LTD = RTD(p)(X̂original, X̂shifted), (3)

where the superscript (p) in RTD(p) stands for using sum of the lengths of intervals in R-Cross-
Barcode1 to the p−th power. The LTD term imposes a penalty for data point clouds having different
topological structures, like the 2nd and the 3rd rows in Figure 3a. Both standard values p = 1 and
p = 2 perform well. In some circumstances, the p = 2 value is more appropriate because it penalizes
more the significant variations in topology structures.

In this work, we propose to use the topological regularization term LTD, in addition to the VAE-
based loss:

L = LV AE−based + γLTD. (4)
1For complex images, RTD and the TopDis loss can be calculated in a representation space instead of the

pixel space X .
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All variants of VAEs (β-VAE, FactorVAE, ControlVAE, DAVA) are modified accordingly. The com-
putational complexity of LTD is discussed in Appendix M. We analyze sensitivity of the proposed
approach on the value of γ in (4) in Appendix Q.

4.4 GRADIENT ORTHOGONALIZATION

As all regularization terms, the LTD minimization may lead to lack of reconstruction quality. In or-
der to achieve state-of-the-art results while minimizing the topological regularization term LTD, we
apply the gradient orthogonalization between LTD and the reconstruction loss term Lrec. Specifi-
cally, if the scalar product between∇ϕ,θLrec and∇ϕ,θLTD is negative, then we adjust the gradients
from our LTD loss to be orthogonal to those from Lrec by applying the appropriate linear transfor-
mation:

∇ortLTD = ∇LTD −
⟨∇LTD,∇Lrec⟩
⟨∇Lrec,∇Lrec⟩

∇Lrec. (5)

This technique helps to maintain a balance between the reconstruction quality and the topological
regularization, thus resulting in improved overall performance. We provide an ablation study of
gradient orthogonalization technique in Appendix P.

5 EXPERIMENTS

5.1 EXPERIMENTS ON STANDARD BENCHMARKS

In the experimental section of our work, we evaluate the effectiveness of the proposed TopDis reg-
ularization technique. Specifically, we conduct a thorough analysis of the ability of our method to
learn disentangled latent spaces using various datasets and evaluation metrics. We compare the re-
sults obtained by our method with the state-of-the-art models and demonstrate the advantage of our
approach in terms of disentanglement and preserving reconstruction quality.

Datasets. We used popular benchmarks: dSprites (Matthey et al., 2017), 3D Shapes (Burgess &
Kim, 2018), 3D Faces (Paysan et al., 2009), MPI 3D (Gondal et al., 2019), CelebA (Liu et al.,
2015). See description of the datasets in Appendix J. Although the datasets dSprites, 3D Shapes,
3D Faces are synthetic, the known true factors of variation allow accurate supervised evaluation of
disentanglement. Hence, these datasets are commonly used in both classical and most recent works
on disentanglement (Burgess et al., 2017; Kim & Mnih, 2018; Estermann & Wattenhofer, 2023;
Roth et al., 2022). Finally, we examine the real-life setup with the CelebA (Liu et al., 2015) dataset.

Methods. We combine the TopDis regularizer with the FactorVAE (Kim & Mnih, 2018), β-VAE
(Higgins et al., 2017), ControlVAE (Shao et al., 2020), DAVA (Estermann & Wattenhofer, 2023).
Also, we provide separate comparisons with β-TCVAE (Chen et al., 2018) and vanilla VAE (Kingma
& Welling, 2013). Following the previous work Kim & Mnih (2018), we used similar architectures
for the encoder, decoder and discriminator (see Appendix D), the same for all models. The hyper-
parameters and other training details are in Appendix L. We set the latent space dimensionality to
10. Since the quality of disentanglement has high variance w.r.t. network initialization (Locatello
et al., 2019), we conducted multiple runs of our experiments using different initialization seeds2 and
averaged results.

Evaluation. Not all existing metrics were shown to be equally useful and suitable for disentangle-
ment (Dittadi et al., 2021), (Locatello et al., 2019). Due to this, hyperparameter tuning and model se-
lection may become controversial. Moreover, in the work Carbonneau et al. (2022), the authors con-
clude that the most appropriate metric is DCI disentanglement score (Eastwood & Williams, 2018),
the conclusion which coincides with another line of research Roth et al. (2022). Based on the existing
results about metrics’ applicability, we restricted evaluation to measuring the following disentangle-
ment metrics: the Mutual Information Gap (MIG) (Chen et al., 2018), the FactorVAE score (Kim &
Mnih, 2018), DCI disentanglement score, and Separated Attribute Predictability (SAP) score (Ku-
mar et al., 2017). Besides its popularity, these metrics cover all main approaches to evaluate the dis-
entanglement of generative models (Zaidi et al., 2020): information-based (MIG), predictor-based
(SAP score, DCI disentanglement score), and intervention-based (FactorVAE score).

2see Appendix K for more details.
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Table 1: Evaluation on the benchmark datasets. Bold denotes the best variant in the pair with vs.
without the TopDis loss. Blue denotes the best method for a dataset/metric.

Method FactorVAE score MIG SAP DCI, dis.
dSprites

β-TCVAE 0.810± 0.058 0.332± 0.029 0.045± 0.004 0.543± 0.049
β-TCVAE + TopDis (ours) 0.821± 0.034 0.341± 0.021 0.051± 0.004 0.556± 0.042

β-VAE 0.807± 0.037 0.272± 0.101 0.065± 0.002 0.440± 0.102
β-VAE + TopDis (ours) 0.833± 0.016 0.348± 0.028 0.066± 0.015 0.506± 0.050

ControlVAE 0.806± 0.012 0.333± 0.037 0.056± 0.002 0.557± 0.009
ControlVAE + TopDis (ours) 0.810± 0.012 0.344± 0.029 0.059± 0.002 0.578± 0.007

FactorVAE 0.819± 0.028 0.295± 0.049 0.053± 0.006 0.534± 0.029
FactorVAE + TopDis (ours) 0.824± 0.038 0.356± 0.025 0.082± 0.001 0.521± 0.044

DAVA 0.746± 0.099 0.253± 0.058 0.024± 0.015 0.395± 0.054
DAVA + TopDis (ours) 0.807± 0.010 0.344± 0.010 0.048± 0.012 0.551± 0.019

3D Shapes
β-TCVAE 0.909± 0.079 0.693± 0.053 0.113± 0.070 0.877± 0.018
β-TCVAE + TopDis (ours) 1.0± 0.0 0.751± 0.051 0.147± 0.064 0.901± 0.014

β-VAE 0.965± 0.060 0.740± 0.141 0.143± 0.071 0.913± 0.147
β-VAE + TopDis (ours) 1.0± 0.0 0.839± 0.077 0.195± 0.030 0.998± 0.004

ControlVAE 0.746± 0.094 0.433± 0.094 0.091± 0.068 0.633± 0.093
ControlVAE + TopDis (ours) 0.806± 0.046 0.591± 0.055 0.125± 0.02 0.795± 0.098

FactorVAE 0.934± 0.058 0.698± 0.151 0.099± 0.064 0.848± 0.129
FactorVAE + TopDis (ours) 0.975± 0.044 0.779± 0.036 0.159± 0.032 0.940± 0.089

DAVA 0.800± 0.095 0.625± 0.061 0.099± 0.016 0.762± 0.088
DAVA + TopDis (ours) 0.847± 0.092 0.679± 0.112 0.010± 0.043 0.836± 0.074

3D Faces
β-TCVAE 1.0± 0.0 0.568± 0.063 0.060± 0.017 0.822± 0.033
β-TCVAE + TopDis (ours) 1.0± 0.0 0.591± 0.058 0.062± 0.011 0.859± 0.031

β-VAE 1.0± 0.0 0.561± 0.017 0.058± 0.008 0.873± 0.018
β-VAE + TopDis (ours) 1.0± 0.0 0.545± 0.005 0.052± 0.004 0.854± 0.013

ControlVAE 1.0± 0.0 0.447± 0.011 0.058± 0.008 0.713± 0.007
ControlVAE + TopDis (ours) 1.0± 0.0 0.477± 0.004 0.074± 0.007 0.760± 0.014

FactorVAE 1.0± 0.0 0.593± 0.058 0.061± 0.014 0.848± 0.011
FactorVAE + TopDis (ours) 1.0± 0.0 0.626± 0.026 0.062± 0.013 0.867± 0.037

DAVA 1.0± 0.0 0.527± 0.002 0.047± 0.009 0.822± 0.006
DAVA + TopDis (ours) 1.0± 0.0 0.536± 0.012 0.052± 0.011 0.814± 0.008

MPI 3D
β-TCVAE 0.365± 0.042 0.174± 0.018 0.080± 0.013 0.225± 0.061
β-TCVAE + TopDis (ours) 0.496± 0.039 0.280± 0.013 0.143± 0.009 0.340± 0.055

β-VAE 0.442± 0.063 0.250± 0.063 0.104± 0.028 0.255± 0.032
β-VAE + TopDis (ours) 0.487± 0.040 0.363± 0.028 0.181± 0.030 0.348± 0.027

ControlVAE 0.394± 0.020 0.165± 0.053 0.107± 0.004 0.183± 0.031
ControlVAE + TopDis (ours) 0.545± 0.031 0.225± 0.019 0.154± 0.005 0.251± 0.027

FactorVAE 0.628± 0.039 0.351± 0.034 0.209± 0.043 0.414± 0.031
FactorVAE + TopDis (ours) 0.677± 0.017 0.420± 0.033 0.254± 0.031 0.469± 0.034

DAVA 0.407± 0.023 0.129± 0.028 0.076± 0.034 0.227± 0.035
DAVA + TopDis (ours) 0.613± 0.056 0.289± 0.009 0.148± 0.019 0.391± 0.023
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(a) FactorVAE. (b) FactorVAE + TopDis.

Figure 5: FactorVAE and FactorVAE + TopDis latent traversals on 3D Shapes.

5.1.1 QUANTITATIVE EVALUATION

The results presented in Table 1 demonstrate that TopDis regularized models outperform the orig-
inal ones for all datasets and almost all quality measures. The addition of the TopDis regularizer
improves the results as evaluated by FactorVAE score, MIG, SAP, DCI: on dSprites up to 8%, 35%,
100%, 39%, on 3D Shapes up to 8%, 36%, 60%, 25%, on 3D Faces up to 0%, 6%, 27%, 6%
and up to 50%, 124%, 94%, 72% on MPI 3D respectively across all models. The best variant for
a dataset/metrics is almost always a variant with the TopDis loss, in 94% cases. In addition, our
approach preserves the reconstruction quality, see Table 4 in Appendix E.

5.1.2 QUALITATIVE EVALUATION

In order to qualitatively evaluate the ability of our proposed TopDis regularization to learn disen-
tangled latent representations, we plot the traversals along a subset of latent codes that exhibit the
most significant changes in an image. As a measure of disentanglement, it is desirable for each
latent code to produce a single factor of variation. We compare traversals from FactorVAE and
FactorVAE+TopDis decoders. The corresponding Figures 18, 19 are in Appendix V.

dSprites. Figures 18a and 18b show that the TopDis regularizer helps to outperform simple Fac-
torVAE in terms of visual perception. The simple FactorVAE model is observed to have entangled
rotation and shift along axes (raws 1,2,5 in Figure 18a), even though the Total Correlation in both
models is minimal, which demonstrates the impact of the proposed regularization method.

3D Shapes. Figures 5a and 5b and show that our TopDis regularization leads to the superior dis-
entanglement of the factors as compared to the simple FactorVAE model, where the shape and the
scale factors remain entangled in the last row (see Figure 5a).

3D Faces. FactorVAE+TopDis (Figure 18f) outperforms FactorVAE (Figure 18e) in terms of dis-
entangling the main factors such as azimuth, elevation, and lighting from facial identity. On top of
these figures we highlight the azimuth traversal. The advantage of TopDis is seen from the observed
preservations in facial attributes such as the chin, nose, and eyes.

MPI 3D. Here, the entanglement between the size and elevation factors is particularly evident when
comparing the bottom two rows of Figures 18g and 18h. In contrast to the base FactorVAE, which
left these factors entangled, our TopDis method successfully disentangles them.

CelebA. For this dataset, we show the most significant improvements obtained by adding the TopDis
loss in Figure 19. The TopDis loss improves disentanglement of skin tone and lightning compared
to basic FactorVAE, where these factor are entangled with other factors - background and hairstyle.

5.2 LEARNING DISENTANGLED REPRESENTATIONS FROM CORRELATED DATA

Existing methods for disentanglement learning make unrealistic assumptions about statistical inde-
pendence of factors of variations (Träuble et al., 2021). Synthetic datasets (dSprites, 3D Shapes,
3D Faces, MPI 3D) also share this assumption. However, in real world, causal factors are typically
correlated. We carry out a series of experiments with shared confounders (one factor correlated to all
others, (Roth et al., 2022)). The TopDis loss isn’t based on assumptions of statistical independence.
Addition of the TopDis loss gives a consistent improvement in all quality measures in this setting,
see Table 10 in Appendix U.
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5.3 UNSUPERVISED DISCOVERY OF DISENTANGLED DIRECTIONS IN STYLEGAN

Figure 6: Three disentangled directions discov-
ered by TopDis in StyleGAN: azimuth, smile, hair
color.

We perform additional experiments to study
the ability of the proposed topology-based
loss to infer disentangled directions in a pre-
trained StyleGAN (Karras et al., 2019). We
searched for disentangled directions within
the space of principal components in latent
space by optimizing the multi-scale topolog-
ical difference after a shift along this axis
RTD(X̂original, X̂shifted). We were able to find
three disentangled directions: azimuth, smile,
hair color. See Figure 6 and Appendix I for
more details. Comparison of methods dedi-
cated to the unsupervised discovery of disen-
tangled directions in StyleGAN is qualitative
since the FFHQ dataset doesn’t have labels. We do not claim that our method outperforms alter-
natives (Härkönen et al., 2020), as our goal is rather to demonstrate the applicability of the TopDis
loss for this problem.

6 CONCLUSION

Our method, the Topological Disentanglement, has demonstrated its effectiveness in learning disen-
tangled representations, in an unsupervised manner. The experiments on the dSprites, 3D Shapes,
3D Faces and MPI 3D datasets have shown that an addition of our TopDis regularizer improves
β-VAE, ControlVAE, FactorVAE and DAVA models in terms of disentanglement scores (MIG, Fac-
torVAE score, SAP score, DCI disentanglement score) while preserving the reconstruction quality.
Inside our method, there is the idea of applying the topological dissimilarity to optimize disentangle-
ment that can be added to any existing approach or used alone. We proposed to apply group action
shifts preserving the Gaussian distribution in the latent space. To preserve the reconstruction quality,
the gradient orthogonalization were used. Our method isn’t based on the statistical independence
assumption and brings improvement of quality measures even if factors of variation are correlated.
In this paper, we limited ourselves with the image domain for easy visualization of disentangled di-
rections. Extension to other domains (robotics, time series, etc.) is an interesting avenue for further
research.
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A RANDOM DATASET SAMPLES

In Figures 7, 8, 9, 10 and 11 we demonstrate random samples from dSprites, 3D Shapes, 3D Faces,
CelebA and MPI 3D datasets respectively.

Figure 7: dSprites (64 × 64) Figure 8: 3D Shapes (64 × 64)

Figure 9: 3D Faces (64 × 64) Figure 10: CelebA (64 × 64)

B PROOF OF PROPOSITION 4.1

a) Two consecutive shifts defined in 1 give

F−1(F (F−1(F (z | ρ, σ2)+C1 | ρ, σ2)+C2 | ρ, σ2) = F−1(F (z | ρ, σ2)+C1+C2 | ρ, σ2)

So the two consecutive shifts with C1, C2 is the same as the single shift with C1 + C2.

b) We have for a given shift with parameter C and any pair of shifted points zshifted, z̃shifted ∈ R :

F (z̃shifted)− F (zshifted) = (F (z̃) + C)− (F (z) + C) = F (z̃)− F (z) (6)

i.e. if the shift of points z, z̃ ∈ R is defined, then the N(ρ, σ2) measure of the line segment [z, z̃] is
preserved under the shift.
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Figure 11: MPI 3D (64 × 64)

c) Conversely, if for z, z̃ ∈ R the N(ρ, σ2) measure of the line segment [z, z̃] is preserved under the
shift, i.e. F (z̃shifted) − F (zshifted) = F (z̃) − F (z), then setting z = −∞, we get F (z̃shifted) =
F (z̃) + C.

Notice also that F (zshifted)−F (z) = C, so the three orange curvilinear rectangles on Figure 4 have
the same area C = 1/8.

Recall that F (z | ρ, σ2) = 1
σ
√
2π

∫ z

−∞ exp
(
− (t−ρ)2

2σ2

)
dt denotes here the cumulative function of

the Gaussian distribution N(ρ, σ2).

C PROOF OF PROPOSITION 4.2

a) The shift defined by (1) for the distribution q(zi) acting on the latent space, preserves also any
q(zj) for j ̸= i. b) The result follows from the case of an arbitrary distribution over a pair of random
variables z1, z2. For two variables, it follows from the Bayes formula that the shifts of z1 preserve
the conditional q(z2|z1). Since the group(oid) action is transitive it follows that the conditional does
not depend on z1, and hence q(z1, z2) = q(z1)q(z2).

D ARCHITECTURE DETAILS

In Table 2 we demonstrate VAE architecture. The Discriminator’s architecture is described in
Table 3.

For experiments with VAE+TopDis-C (Table 11), we used the following architecture configurations:

• dSprites: num channels = 1,m1 = 1,m2 = 1,m3 = 1,m4 = 1, n = 5;

• 3D Shapes: num channels = 3,m1 = 1,m2 = 1,m3 = 1,m4 = 2, n = 5.

For experiments with β-VAE+TopDis, β-TCVAE+TopDis, ControlVAE+TopDis, Factor-
VAE+TopDis, DAVA+TopDis (Tables 1, 4), we used the following architecture configurations:

• dSprites: num channels = 1,m1 = 2,m2 = 2,m3 = 4,m4 = 4, n = 5;

• 3D Shapes: num channels = 3,m1 = 1,m2 = 1,m3 = 1,m4 = 2, n = 5;

• 3D Faces: num channels = 1,m1 = 1,m2 = 1,m3 = 1,m4 = 2, n = 5;

• MPI 3D: num channels = 3,m1 = 1,m2 = 1,m3 = 1,m4 = 2, n = 6.

• CelebA: num channels = 3,m1 = 1,m2 = 1,m3 = 1,m4 = 2, n = 5;
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Table 2: Encoder and Decoder architecture for the dSprites experiments.

Encoder Decoder

Input: 64× 64× num channels Input: R10

4× 4 conv, 32 ReLU, stride 2 1× 1 conv, 128×m4 ReLU, stride 1
4× 4 conv, 32 ·m1 ReLU, stride 2 4× 4 upconv, 64 ·m3 ReLU, stride 1
4× 4 conv, 64 ·m2 ReLU, stride 2 4× 4 upconv, 64 ·m2 ReLU, stride 2
4× 4 conv, 64 ·m3 ReLU, stride 2 4× 4 upconv, 32 ·m1 ReLU, stride 2
4× 4 conv, 128 ·m4 ReLU, stride 1 4× 4 upconv, 32 ReLU, stride 2
1× 1 conv, 2× 10, stride 1 4× 4 upconv, 1, stride 2

Table 3: FactorVAE Discriminator architecture.

Discriminator

[FC, 1000 leaky ReLU ]× n
FC, 2

E RECONSTRUCTION ERROR

See Table 4.

F TRAINING CURVES

Figure 12 shows that TopDis loss decreases during training and has good negative correlation with
MIG score, as expected. TopDis score was averaged in a sliding window of size 500, MIG was
calculated every 50000 iterations.

G MORE ON RELATED WORK

Recently, approaches for learning disentangled representations through Hausdorff Factorized Sup-
port criterion (Roth et al., 2022) and adversarial learning (DAVA) (Estermann & Wattenhofer, 2023)
were proposed.

Table 4: Reconstruction error.

Method dSprites 3D Shapes 3D Faces MPI 3D
VAE 8.67± 0.29 3494.10± 3.27 1374.42± 3.38 3879.11± 0.76

β-TCVAE 17.87± 0.56 3492.25± 5.79 1375.03± 3.41 3891.03± 1.41
β-TCVAE + TopDis (ours) 17.32± 0.31 3495.13± 2.49 1376.21± 3.09 3889.34± 1.97

β-VAE 12.97± 0.50 3500.60± 13.59 1379.64± 0.19 3888.75± 2.27
β-VAE + TopDis (ours) 13.75± 0.63 3495.76± 6.54 1380.10± 0.19 3886.61± 0.97

ControlVAE 15.32± 0.47 3499.61± 12.13 1404.42± 5.01 3889.81± 0.43
ControlVAE + TopDis (ours) 14.91± 0.39 3500.28± 10.73 1389.42± 4.47 3889.24± 0.50

FactorVAE 14.65± 0.41 3501.53± 13.43 1488.26± 4.47 3884.57± 0.52
FactorVAE + TopDis (ours) 14.72± 0.49 3504.42± 9.98 1377.93± 3.47 3886.10± 0.36

DAVA 36.41± 2.03 3532.56± 14.14 1403.77± 0.99 3902.54± 1.41
DAVA + TopDis (ours) 26.03± 2.51 3537.39± 40.52 1403.20± 0.49 3898.54± 1.33
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Figure 12: MPI 3D: Training curves of TopDis loss and MIG.

Table 5: Comparison with a recent state-of-the-art method

Method FactorVAE score MIG SAP DCI, dis.
dSprites

TCWAE 0.76± 0.03 0.32± 0.04 0.072± 0.004 -
FactorVAE + TopDis (ours) 0.82± 0.04 0.36± 0.03 0.082± 0.001 0.52± 0.04

The paper Barannikov et al. (2022) describes briefly an application of topological metric to evalua-
tion of interpretable directions in a simple synthetic dataset. They compare topological dissimilarity
in data submanifolds corresponding to slices in the latent space, while we use axis-aligned traversals
and samples from the whole data manifold. More importantly, we develop a differentiable pipeline
for VAE to learn disentangled representation from scratch. Also we use group action shifts and
gradient orthogonalization.

In recent works Farajtabar et al. (2020); Suteu & Guo (2019), the authors propose to use a technique
of gradient orthogonalization to overcome the problem of multi-task optimization. The main idea
behind gradient orthogonalization is to modify the gradients of different tasks in a way that they
become more orthogonal to each other, thus reducing conflicts during the optimization process.

In Table 5, we compare our results with another recent state-of-the-art method, TCWAE (Gaujac
et al., 2021). Since there is no code available to replicate their results, we present the values from
the original papers. The architecture and training setup were essentially identical to what is described
in this paper.

H VAE + TOPDIS-C

We also explore TopDis as self-sufficient loss. Specifically, we add simply our TopDis loss to
the classical VAE objective. We found that it is beneficial in this setting to use TopDis in con-
trastive learning setup, when we not only minimize the topological dissimilarity between shifted
point clouds, but also maximize the difference in topology structures if the shift is made not along
one latent code for all points in a batch but in random directions in latent space. We call this variant
of our method TopDis-C.

In Table 11 we demonstrate that the TopDis-C loss significantly improves, even without total cor-
relation loss, the disentanglement quality of simple VAE. See details of architecture and training
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(a) VAE, dSprites (b) VAE + TopDis-C, dSprites

Figure 13: VAE and VAE + TopDis-C latent traversals, dSprites.

Table 6: Evaluation of the proposed VAE + TopDis-C on the benchmark datasets.

Method MIG DCI, dis. Reconstruction error
dSprites

VAE 0.161± 0.058 0.301± 0.070 21.24± 3.34
VAE + TopDis-C (ours) 0.242± 0.019 0.430± 0.027 22.67± 4.87

3D Shapes

VAE 0.729± 0.070 0.952± 0.023 3494.10± 3.27
VAE + TopDis-C (ours) 0.773± 0.048 0.990± 0.006 3484.96± 3.40

in Sections D, L. We plot all latent traversals in Figures 13a, 13b for dSprites dataset, that confirm
quantitative results with visual perception, see e.g. the entangling of the size increase along the x-
and y-shifts traversals in raws 2, 8 on Figure 13a.

I UNSUPERVISED DISCOVERY OF DISENTANGLED DIRECTIONS IN
STYLEGAN

We perform additional experiments to study the ability of the proposed topology-based loss to
infer disentangled directions in a pretrained GAN. In experiments, we used StyleGAN (Karras
et al., 2019)3. The unsupervised directions were explored in the style space Z . To filter out non-
informative directions we followed the approach from Härkönen et al. (2020) and selected top 32
directions by doing PCA for the large batch of data in the style space. Then, we selected the new
basis ni, i = 1, . . . , 32 in this subspace, starting from a random initialization. Directions ni were
selected sequentially by minimization of RTD along shifts in Z space:

RTD(Genk(Z), Genk(Z + cni)),

where Genk(·) is the k−layer of the StyleGAN generator (we used k = 3). After each iteration the
Gram–Schmidt orthonormalization process for ni was performed. We were able to discover at least
3 disentangled directions: azimuth (Fig. 14), smile (Fig. 15), hair color (Fig. 16).

3we used a PyTorch reimplementation from:
https://github.com/rosinality/style-based-gan-pytorch.
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Figure 14: StyleGAN, change of an azimuth.

Figure 15: StyleGAN, change of a smile.

Figure 16: StyleGAN, change of a hair color.
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Table 7: Evaluation of the proposed FactorVAE + TopDis on the benchmark datasets for separate
runs.

Method FactorVAE score MIG SAP DCI, dis.

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

dSprites

FactorVAE 0.856 0.830 0.786 0.341 0.308 0.243 0.054 0.053 0.051 0.565 0.526 0.509
FactorVAE
+ TopDis (ours) 0.779 0.845 0.847 0.331 0.382 0.360 0.082 0.081 0.092 0.489 0.571 0.503

3D Shapes

FactorVAE 0.901 0.893 1.000 0.678 0.573 0.867 0.055 0.067 0.175 0.780 0.772 0.996
FactorVAE
+ TopDis (ours) 0.924 1.000 1.000 0.810 0.787 0.739 0.123 0.172 0.184 0.837 0.991 0.991

3D Faces

FactorVAE 1.000 1.000 1.000 0.597 0.533 0.649 0.059 0.048 0.076 0.843 0.840 0.861
FactorVAE
+ TopDis (ours) 1.000 1.000 1.000 0.631 0.596 0.651 0.058 0.051 0.077 0.859 0.835 0.907

MPI 3D

FactorVAE 0.582 0.651 0.650 0.323 0.388 0.341 0.160 0.230 0.239 0.379 0.435 0.430
FactorVAE
+ TopDis (ours) 0.696 0.662 0.674 0.455 0.416 0.389 0.283 0.259 0.221 0.505 0.464 0.437

J DATASETS

The dSprites dataset is a collection of 2D shapes generated procedurally from five independent
latent factors: shape, scale, rotation, x-coordinate, and y-coordinate of a sprite. The 3D Shapes
dataset, on the other hand, consists of 3D scenes with six generative factors: floor hue, wall hue,
orientation, shape, scale, and shape color. The 3D Faces dataset consists of 3D rendered faces with
four generative factors: face id, azimuth, elevation, lighting. The MPI 3D dataset contains images
of physical 3D objects with seven generative factors: color, shape, size, camera height, background
color, horizontal and vertical axes. We used the MPI3D-Real dataset with images of complex shapes
from the robotic platform provides a trade-off between real-world data with unknown underlying
factors of variations and a more controlled dataset allowing quantitative evaluation.

These datasets were chosen as they provide a diverse range of images and have well-defined disen-
tangled factors, making them suitable for evaluating the performance of our proposed method.

We also evaluate our method on CelebA dataset that provides images of aligned faces of celebrities.
This dataset doesn’t have any ground truth generative factors because of its real-world nature.

K MORE DETAILS ON THE SIGNIFICANCE OF TOPDIS EFFECT

In order to accurately assess the impact of the TopDis term, we employed a consistent set of ran-
dom initializations. This approach was adopted to eliminate potential confounding factors that may
arise from disparate initial conditions. This allowed us to attribute any observed improvements in
disentanglement quality specifically to the inclusion of the TopDis term in our model. In Table 7 we
demonstrate the consistent improvement across multiple runs.

L TRAINING DETAILS

Following the previous work Kim & Mnih (2018), we used similar architectures for the encoder,
decoder and discriminator, the same for all models. We set the latent space dimensionality to 10.
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We normalized the data to [0, 1] interval and trained 1M iterations with batch size of 64 and Adam
(Kingma & Ba, 2015) optimizer. The learning rate for VAE updates was 10−4 for dSprites and MPI
3D datasets, 10−3 for 3D Shapes dataset, and 2× 10−4 for 3D faces and CelebA datasets, β1 = 0.9,
β2 = 0.999, while the learning rate for discriminator updates was 10−4 for dSprites, 3D Faces,
MPI 3D and CelebA datasets, 10−3 for 3D Shapes dataset, β1 = 0.5, β2 = 0.9 for discriminator
updates. In order to speed up convergence on MPI 3D, we first trained the model with FactorVAE
loss only for 100000 iterations and then continued training with TopDis loss. We also fine-tuned
the hyperparameter γ over set commonly used in the literature (Kim & Mnih, 2018; Locatello et al.,
2019; Ridgeway & Mozer, 2018) to achieve the best performance on the baseline models.

The best performance found hyperparameters are the following:

• dSprites. β-TCVAE: β = 6, β-TCVAE+ TopDis: β = 6, γ = 5 β-VAE: β = 2, β-VAE +
TopDis: β = 2, γ = 4, FactorVAE: γ = 20, FactorVAE + TopDis: γ1 = 5, γ2 = 5, DAVA
+ TopDis: γ = 5;

• 3D Shapes. β-TCVAE: β = 4, β-TCVAE + TopDis: β = 4, γ = 5, β-VAE: β = 2, β-VAE
+ TopDis: β = 2, γ = 1, FactorVAE: γ = 30, FactorVAE + TopDis: γ1 = 5, γ2 = 5,
DAVA + TopDis: γ = 3;

• 3D Faces. β-TCVAE: β = 6, β-TCVAE + TopDis: β = 6, γ = 5, β-VAE: β = 2, β-VAE
+ TopDis: β = 2, γ = 1, FactorVAE: γ = 5, FactorVAE + TopDis: γ1 = 5, γ2 = 5, DAVA
+ TopDis: γ = 2;

• MPI 3D. β-TCVAE: β = 6, β-TCVAE + TopDis: β = 6, γ = 5, β-VAE: β = 2, β-VAE +
TopDis: β = 2, γ = 1, FactorVAE: γ = 10, FactorVAE + TopDis: γ1 = 5, γ2 = 6, DAVA
+ TopDis: γ = 5;

• CelebA. FactorVAE: γ = 5, FactorVAE + TopDis: γ1 = 5, γ2 = 2;

For the ControlVAE and ControlVAE+TopDis experiments4, we utilized the same set of relevant hy-
perparameters as in the FactorVAE and FactorVAE+TopDis experiments. Additionally, ControlVAE
requires an expected KL loss value as a hyperparameter, which was set to KL=18, as in the original
paper. It should also be noted that the requirement of an expected KL loss value is counterintuitive
for an unsupervised problem, as this value depends on the number of true factors of variation. For
the DAVA and DAVA + TopDis experiments5, we used the original training procedure proposed in
(Estermann & Wattenhofer, 2023), adjusting the batch size to 64 and number of iteration to 1000000
to match our setup .

M COMPUTATIONAL COMPLEXITY

The complexity of the LTD is formed by the calculation of RTD. For the batch size N , object
dimensionality C × H ×W and latent dimensionality d, the complexity is O(N2(CHW + d)),
because all the pairwise distances in a batch should be calculated. The calculation of the RTD itself
is often quite fast for batch sizes≤ 256 since the boundary matrix is typically sparse for real datasets
(Barannikov et al., 2022). Operation, required to RTD differentiation do not take extra time. For
RTD calculation and differentiation, we used GPU-optimized software.

N FORMAL DEFINITION OF REPRESENTATION TOPOLOGY DIVERGENCE
(RTD)

Data points in a high-dimensional space are often concentrated near a low-dimensional manifold
(Goodfellow et al., 2016). The manifold’s topological features can be represented via Vietoris-Rips
simplicial complex, a union of simplices whose vertices are points at a distance smaller than a
threshold α.

4https://github.com/shj1987/ControlVAE-ICML2020.
5https://github.com/besterma/dava
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We define the weighted graph G with data points as vertices and the distances between data points
d(AiAj) as edge weights. The Vietoris-Rips complex at the threshold α is then:

VRα(G) = {{Ai0 , . . . , Aik}, Ai ∈ Vert(G) | d(AiAj) ≤ α} ,

The vector space Ck consists of all formal linear combinations of the k-dimensional simplices
from VRα(G) with modulo 2 arithmetic. The boundary operators ∂k : Ck → Ck−1 maps each
simplex to the sum of its facets. The k-th homology group Hk = ker(∂k)/im(∂k+1) represents
k−dimensional topological features.

Choosing α is challenging, so we analyze all α > 0. This creates a filtration of nested Vietoris-Rips
complexes. We track the ”birth” and ”death” scales, αb, αd, of each topological feature, defining its
persistence as αd−αb. The sequence of the intervals [αb, αd] for basic features forms the persistence
barcode (Barannikov, 1994; Chazal & Michel, 2017).

The standard persistence barcode analyzes a single point cloud X . The Representation Topology
Divergence (RTD) (Barannikov et al., 2022) was introduced to measure the multi-scale topological
dissimilarity between two point clouds X, X̃ . This is done by constructing an auxilary graph Ĝw,w̃

whose Vietoris-Rips complex measures the difference between Vietoris-Rips complexes VRα(Gw)
and VRα(Gw̃), where w, w̃ are the distance matrices of X, X̃ . The auxiliary graph Ĝw,w̃ has the

double set of vertices and the edge weights matrix
(

0 (w+)
⊺

w+ min(w, w̃)

)
, where w+ is the w matrix

with lower-triangular part replaced by +∞.

The R-Cross-Barcodek(X, X̃) is the persistence barcode of the filtered simplicial complex
VR(Ĝw,w̃). RTDk(X, X̃) equals the sum of intervals’ lengths in R-Cross-Barcodek(X, X̃) and mea-
sures its closeness to an empty set, with longer lifespans indicating essential features. RTD(X, X̃)

is the half-sum RTD(X, X̃) = 1/2(RTD1(X, X̃) + RTD1(X̃,X)).

O SYMMETRY GROUP(OID) ACTION

A groupoid is a mathematical structure that generalizes the concept of a group. It consists of a set
G along with a partially defined binary operation. Unlike groups, the binary operation in a groupoid
is not required to be defined for all pairs of elements. More formally, a groupoid is a set G together
with a binary operation · : G × G → G that satisfies the following conditions for all a, b, c in G
where the operations are defined: 1) Associativity: (a · b) · c = a · (b · c); 2) Identity: there is an
element e in G such that a · e = e · a = a for each a in G; 3) Inverses: for each a in G, there is an
element a−1 in G such that a · a−1 = a−1 · a = e.

A Lie groupoid is a groupoid that has additional structure of a manifold, together with smooth struc-
ture maps.These maps are required to satisfy certain properties analogous to those of a groupoid, but
in a smooth category. See (Weinstein (1996)) for details.

P ABLATION STUDY

We have performed the experiments concerning the ablation study of gradient orthogonalization
technique. First, we evaluate the effect of gradient orthogonalization when integrating TopDis into
the classical VAE model on dSprites, see Figure P and Table 8. We conduct this experiment to
verify the gradient orthogonalization technique in the basic setup when additional terms promoting
disentanglement are absent. Second, we evaluate the effect of gradient orthogonalization when
integrating TopDis to FactorVAE on the MPI3D dataset. This experiment verifies how gradient
orthogonalization works for more complex data in the case of a more complicated objective. We
highlight that adding the gradient orthogonalization results in lower reconstruction loss throughout
the training. In particular, this may be relevant when the reconstruction quality is of high importance.

Q SENSITIVITY ANALYSIS

We provide the sensitivity analysis w.r.t. γ from equation 4 for FactorVAE+TopDis on MPI3D-Real
(3 · 105 training iterations), please see Table 9. In Table 9, γTD denotes the weight γ for the TopDis
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Figure 17: Effect of gradient orthogonalization on reconstruction loss. Left: VAE+TopDis, dSprites.
Right: FactorVAE+TopDis, MPI 3D.

Table 8: Effect of gradient orthogonalization on disentanglement.

Method FactorVAE MIG SAP DCI, dis.
dSprites

VAE + TopDis, no gradient orthogonalization 0.736 0.098 0.041 0.202
VAE + TopDis, gradient orthogonalization 0.723 0.121 0.031 0.229

MPI 3D

FactorVAE + TopDis, no gradient orthogonalization 0.696 0.455 0.283 0.505
FactorVAE + TopDis, gradient orthogonalization 0.707 0.466 0.288 0.508

loss from equation 4 while γTC denotes the weight for the Total Correlation loss from the Factor-
VAE model (see Kim & Mnih (2018) for details). In particular, γTC = 5, γTD = 0 corresponds to
plain FactorVAE model.

Table 9: Sensitivity analysis. γTD denotes the weight for the TopDis loss (see equation 4 for details)
while γTC denotes the weight for the Total Correlation loss from the FactorVAE model (see Kim &
Mnih (2018) for details).

Method FactorVAE MIG SAP DCI, dis. Reconstruction
FactorVAE + TopDis, MPI 3D

γTC = 5, γTD = 0 0.586± 0.038 0.300± 0.020 0.184± 0.028 0.357± 0.001 3888.96± 0.94
γTC = 5, γTD = 3 0.607± 0.047 0.320± 0.003 0.193± 0.015 0.401± 0.025 3891.28± 0.91
γTC = 5, γTD = 5 0.605± 0.048 0.332± 0.033 0.205± 0.025 0.397± 0.038 3892.51± 1.19
γTC = 5, γTD = 6 0.605± 0.051 0.340± 0.035 0.207± 0.036 0.412± 0.026 3892.17± 0.54
γTC = 5, γTD = 7 0.594± 0.041 0.297± 0.042 0.183± 0.029 0.362± 0.050 3892.98± 0.70

R RTD DIFFERENTIATION

Here we gather details on RTD differentiation in order to use RTD as a loss in neural networks.

Define Σ as the set of all simplices in the filtration of the graph V R(Ĝw,w̃), and Tk as the set of all
segments in R-Cross-Barcodek(X, X̂). Fix (an arbitrary) strict order on Tk.

There exists a function fk : {bi, di}(bi,di)∈Tk
→ Σ that maps bi (or di) to simplices σ (or τ ) whose

addition leads to “birth” (or “death”) of the corresponding homological class.
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Thus, we may obtain the following equation for subgradient

∂ RTD(X, X̂)

∂σ
=

∑
i∈Tk

∂RTD(X, X̂)

∂bi
I{fk(bi) = σ}+

∑
i∈Tk

∂RTD(X, X̂)

∂di
I{fk(di) = σ}

Here, for any σ no more than one term has non-zero indicator.

bi and di are just the filtration values at which simplices fk(bi) and fk(di) join the filtration. They
depend on weights of graph edges as

gk(σ) = max
i,j∈σ

mi,j

This function is differentiable (Leygonie et al., 2021) and so is fk ◦ gk. Thus we obtain the subgra-
dient:

∂ RTD(X, X̂)

∂mi,j
=

∑
σ∈Σ

∂ RTD(X, X̂)

∂σ

∂σ

∂mi,j
.

The only thing that is left is to obtain subgradients of RTD(X, X̂) by points from X and X̂ . Con-
sider (an arbitrary) element mi,j of matrix m. There are 4 possible scenarios:

1. i, j ≤ N , in other words mi,j is from the upper-left quadrant of m. Its length is constant
and thus ∀l : ∂mi,j

∂Xl
=

∂mi,j

∂X̂l
= 0.

2. i ≤ N < j, in other words mi,j is from the upper-right quadrant of m. Its length is
computed as Euclidean distance and thus ∂mi,j

∂Xi
=

Xi−Xj−N

∥Xi−Xj−N∥2
(similar for XN−j).

3. j ≤ N < i, similar to the previous case.

4. N < i, j, in other words mi,j is from the bottom-right quadrant of m. Here we have
subgradients like

∂mi,j

∂Xi−N
=

Xi−N −Xj−N

∥Xi−N −Xj−N∥2
I{wi−N,j−N < ŵi−N,j−N}

Similar for Xj−N , X̂i−N and X̂j−N .

Subgradients ∂ RTD(X,X̂)
∂Xi

and ∂ RTD(X,X̂)

∂X̂i
can be derived from the before mentioned using the chain

rule and the formula of full (sub)gradient. Now we are able to minimize RTD(X, X̂) by methods of
(sub)gradient optimization.

S DISCUSSING THE DEFINITION OF DISENTANGLED REPRESENTATION.

Let X ⊂ RNx×Ny denotes the dataset consisting of Nx × Ny pixels pictures containing a disk of
various color with fixed disk radius r and the center of the disks situated at an arbitrary point x, y.
Denote ρX the uniform distribution over the coordinates of centers of the disks and the colors. Let
Gx × Gy × Gc be the commutative group of symmetries of this data distribution, Gx × Gy is the
position change acting (locally) via

(a, b) : (x, y, c) 7→ (x+ a, y + b, c)

and Gz is changing the colour along the colour circle θ : (x, y, c) 7→ (x, y, c+θ mod 2π). Contrary
to Higgins et al. (2018), section 3, we do not assume the gluing of the opposite sides of our pictures,
which is closer to real world situations. Notice that, as a consequence of this, each group element
from Gx×Gy can act only on a subset of X , so that the result is still situated inside Nx×Ny pixels
picture. This mathematical structure when each group element has its own set of points on which it
acts, is called groupoid, we discuss this notion in more details in Appendix O.

The outcome of disentangled learning in such case are the encoder h : X → Z and the decoder
f : Z → X maps with Z = R3, f ◦ h = Id, together with symmetry group(oid) G actions on X
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Table 10: Evaluation on the benchmark datasets with correlated factors

Method FactorVAE score MIG SAP DCI, dis.
dSprites

FactorVAE 0.803± 0.055 0.086± 0.026 0.030± 0.010 0.216± 0.044
FactorVAE + TopDis (ours) 0.840 ± 0.011 0.103 ± 0.019 0.044 ± 0.014 0.270 ± 0.002

3D Shapes

FactorVAE 0.949 ± 0.67 0.363 ± 0.100 0.083 ± 0.004 0.477 ± 0.116
FactorVAE + TopDis (ours) 0.998 ± 0.001 0.403 ± 0.091 0.112 ± 0.013 0.623 ± 0.026

and Z, such that a) the encoder-decoder maps preserve the distributions, which are the distribution
ρX describing the dataset X and the standard in VAE learning N(0, 1) distribution in latent space
Z; b) the decoder and the encoder maps are equivariant with respect to the symmetry group(oid)
action, where the action on the latent space is defined as shifts of latent variables; the group action
preserves the dataset distribution X therefore the group(oid) action shifts on the latent space must
preserve the standard N(0, 1) distribution on latent coordinates, i.e. they must act via the formula 1.

Connection with disentangled representations in which the symmetry group latent space ac-
tion is linear. The normal distribution arises naturally as the projection to an axis of the uniform
distribution on a very high dimensional sphere SN ⊂ RN+1. Let a general symmetry compact
Lie group Ĝ acts linearly on RN+1 and preserves the sphere SN . Let Gab be a maximal com-
mutative subgroup in G. Then the ambient space RN+1 decomposes into direct sum of subspaces
RN+1 = ⊕αZα, on which Gab = ΠiGi, acts via rotations in two-dimensional space, and the orbit
of this action is a circle S1 ⊂ SN . If one chooses an axis in each such two-dimensional space then
the projection to this axis gives a coordinate on the sphere SN . And the group action of Gab decom-
poses into independent actions along these axes. In such a way, the disentangled representation in
the sense of Section 4.1 can be obtained from the data representation with uniform distribution on
the sphere/disk on which the symmetry group action is linear, and vice versa.

T ON EQUIVALENCE OF SYMMETRY BASED AND FACTORS INDEPENDENCE
BASED DEFINITIONS OF DISENTANGLEMENT

Proposition T.1. Assume that the variational autoencoder satisfies the conditions listed in Section
4.1. Then it satisfies the conditions of the ”factors independence definition” and vice versa.

U EXPERIMENTS WITH CORRELATED FACTORS

Table 10 shows experimental results for disentanglement learning with confounders - one factor
correlated with all others. The addition of the TopDis loss results in a consistent improvement of
all quality measures. For experiments, we used the implementation of the “shared confounders”
distribution from Roth et al. (2022)6 and the same hyperparameters as for the rest of experiments.

V VISUALIZATION OF LATENT TRAVERSALS

Images obtained from selected latent traversal exhibiting the most differences are presented in Figure
18 (FactorVAE, FactorVAE+TopDis trained on dSprites, 3D shapes, MPI 3D, 3D Faces) and Figure
19 (FactorVAE, FactorVAE+TopDis trained on CelebA).

Figures 20, 21, 22 shows latent traversals along all axes.

6https://github.com/facebookresearch/disentangling-correlated-factors
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(a) FactorVAE, dSprites. (b) FactorVAE + TopDis, dSprites.

(c) FactorVAE, 3D Shapes. (d) FactorVAE + TopDis, 3D Shapes.

(e) FactorVAE, 3D Faces. (f) FactorVAE + TopDis, 3D Faces.

(g) FactorVAE, MPI 3D. (h) FactorVAE + TopDis, MPI 3D.

Figure 18: FactorVAE and FactorVAE + TopDis latent traversals.

W EXPERIMENTS WITH VAE + TOPDIS

In this section we explore TopDis as the only regularization added to the classical VAE objective.
For results, see 11.
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(a) Skin tone (b) Lightning

Figure 19: Visual improvement from addition of TopDis, CelebA. Top: FactorVAE, bottom: Factor-
VAE + TopDis.

Table 11: Evaluation on the benchmark datasets for VAE + TopDis

Method FactorVAE score MIG SAP DCI, dis.
dSprites

VAE 0.781± 0.016 0.170± 0.072 0.057± 0.039 0.314± 0.072
VAE + TopDis (ours) 0.833± 0.068 0.200± 0.119 0.065± 0.009 0.394± 0.132

3D Shapes

VAE 1.0± 0.0 0.729± 0.070 0.160± 0.050 0.952± 0.023
VAE + TopDis (ours) 1.0± 0.0 0.835± 0.012 0.216± 0.020 0.977± 0.023

3D Faces

VAE 0.96± 0.03 0.525± 0.051 0.059± 0.013 0.813± 0.063
VAE + TopDis (ours) 1.0± 0.0 0.539± 0.037 0.063± 0.011 0.831± 0.023
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(a) FactorVAE, dSprites. (b) FactorVAE + TopDis, dSprites.

(c) FactorVAE, 3D Shapes. (d) FactorVAE + TopDis, 3D Shapes.

(e) FactorVAE, MPI 3D. (f) FactorVAE + TopDis, MPI 3D.

Figure 20: FactorVAE and FactorVAE + TopDis latent traversals .
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(a) FactorVAE, 3D Faces. (b) FactorVAE + TopDis, 3D Faces.

Figure 21: FactorVAE and FactorVAE + TopDis latent traversals, 3D Faces.

(a) FactorVAE, CelebA. (b) FactorVAE + TopDis, CelebA.

Figure 22: FactorVAE and FactorVAE + TopDis latent traversals, CelebA.
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