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Abstract

We propose a causal path tracing framework to understand how information causally1

flows through the internal structures of transformers for a given decision. By2

unfolding each block into a causal graph of path nodes and applying a minimality-3

based subset search, our method identifies all possible causal paths within each4

block, with polynomial-time complexity on average. Furthermore, we demonstrate5

the reliability of a union-based causal path reference strategy, enabling efficient6

and reliable causal tracing throughout the model. The key contributions of this work7

are: (1) an automated, efficient framework for causal path tracing that exhaustively8

searches paths along direct dependencies; (2) theoretical and empirical validation9

demonstrating exhaustive search with polynomial-time complexity on average;10

(3) experimental findings showing that self-repair effects occur far less frequently11

along the identified causal paths, that certain paths are uniquely activated for12

specific classes, and that the traced paths are both accurate and faithful.13

1 Introduction14

With the success of transformers [1] across language and vision, interest has grown in understanding15

their internal mechanisms beyond their black-box nature, especially to enable safer deployment in16

high-stakes applications such as healthcare, law, and education. Mechanistic interpretability aims to17

identify specific components within the model, such as attention heads or MLPs, that contribute to its18

behavior. Building with mathematically grounded circuit discovery in simplified settings [2], recent19

efforts have incorporated Pearl’s causal theory [3], employing ablation-based interventions to trace20

which parts of the network support particular outputs.21

Depending on the granularity of analysis, prior work can be classified into: node-level patching [4,22

5, 6, 7, 8, 9], which identifies the role of individual input features; edge-level patching [10, 11, 12],23

which examines the influence of neighboring feature pairs with direct computational dependencies;24

and path-level patching [13, 14, 15], which investigates the contribution of distant feature pairs25

connected through multiple accumulated dependencies.26

Recent work [16] has shown that ablation-based methods often fail to estimate true causal effects27

due to self-repair (or backup behavior), where later components compensate for earlier ablations.28

This implies that, when unablated components lie between the target and the decision, internal29

explanations may be misattributed. To address this, one solution is to iteratively evaluate each compo-30

nent conditioned on priorly identified causal components along direct computational dependencies;31

here, we refer to as causal referencing. However, prior node- or edge-level approaches cannot fully32

support causal referencing over all relevant combinations; though sequentially feasible, it remains33

inaccurate. In contrast, path-level approaches can in principle support this, but due to their combina-34

torial complexity, existing studies typically rely on hypothetical tests [13] or assess a single subpath35

manually [14, 15], making it infeasible to capture a full explanation for a decision in time. (Table 1)36

To address this obstacle, we propose an automated and efficient framework for tracing causal paths37

given a decision. Specifically, we begin by unfolding all possible paths within each block of a38
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Approach Patching Path Tracing for Decision

Feasibility Reliability

[4, 5, 6, 7, 8, 9] Node ✓ backward chaining only ✗ no causal referencing
[10, 11, 12] Edge ✓ backward chaining only ✗ no causal referencing
[13] Path ✗ hypothetical only ✓ full coverage
[14, 15] Path ✗ manual subpath ✓ full coverage
Ours Path ✓ polynomial on average ✓ full coverage

Table 1: Comparison of patching methods for path tracing in a given decision. Feasibility refers
to empirical applicability for a given decision; reliability to its theoretical guarantees.

transformer, interpreted as a causal graph, into path nodes. Then, by introducing a minimality-based39

subset search strategy for identifying all possible causal path node combinations per block, we reduce40

the inherently exponential complexity to polynomial time on average. Furthermore, to enable efficient41

block-wise tracing, we demonstrate that referencing the union of causal paths identified in preceding42

blocks not only makes this feasible but also ensures reliability.43

Our approach reveals that self-repair occurs primarily outside the identified causal path; thus, the44

path contains information essential to the decision and not easily replaced, reflecting its critical role.45

Moreover, we found that there exist causal paths uniquely associated with specific classes. These46

paths are activated only for their corresponding classes, serving class-specific roles within the model.47

Taken together, our results show that the proposed method faithfully and accurately explains model48

behavior under empirical evaluation.49

2 Methodology50

2.1 Preliminaries51

To proceed, we introduce the definitions used throughout this work. Our goal is to reveal and explain52

internal components for decision by efficiently tracing causal paths. To enable this, following Pearl’s53

causal theory [3], we interpret the transformer as a causal graph, as formalized in Definition 1. Based54

on this interpretation, we define the causal path for a given model decision through Definitions 2 to 4,55

where Definition 4 is adapted from the Halpern–Pearl definition of actual causality [17, 18].56

Definition 1 (Transformer as Causal Graph). We say that a transformer is a causal graph G = (V, E),57

where each node v ∈ V denotes an internal component (e.g., intermediate feature) and each58

edge vi → vj ∈ E indicates a direct computational dependency, if it satisfies the following conditions:59

(1.a) Directed Acyclic Graph: Its internal computation proceeds layer by layer in a forward direction60

without cycles, which naturally forms a directed acyclic graph structure.61

(1.b) Markov: Each node is deterministically computed from its parent nodes. This ensures that each62

node is conditionally independent of its non-descendants, given its parents.63

(1.c) Causal Sufficiency: All nodes involved in its internal computation are observable, with no64

latent confounders or hidden common causes among nodes.65

Definition 2 (Model Decision). Let y ∈ RC be the model’s output over C classes. We define the66

model decision as the index c∗ such that y(c
∗) > y(i) for all i ̸= c∗, i.e., the strict argmax.67

Definition 3 (Causal Path). Given a transformer interpreted as a causal graph G, we define a causal68

path as a sequence of causal node sets P = (V1, V2, . . . ), where each Vi ⊆ V is a causal node set,69

and every node v ∈ Vi is connected via a directed edge to either the model input, the model output y,70

or a node in another causal node set Vj with j ̸= i.71

Definition 4 (Causal Node Set). Given a transformer interpreted as a causal graph G, a causal72

subpath reference P ⊆ P connecting a node set V ⊆ V to the output, and an off-path node set V̂73

such that P ∪ V̂ equals the set of all nodes between V and the output, and P ∩ V̂ = ∅, we say that V74

is causal for the decision if the following conditions are satisfied:75

(4.a) Necessity (Counterfactual): Let V ′ denote that V is intervened on to take a different value,76

and let V̂ ′ be defined analogously for V̂ to causally isolate V . Under these interventions, the77

output y′ satisfies argmaxi y
′(i) ̸= c∗, where c∗ denotes the decision without any intervention.78

(4.b) Sufficiency (Contingency): Given V , even if nodes in P are perturbed due to an intervention79

resulting in V̂ ′, the output y′ satisfies argmaxi y
′(i) = c∗.80

(4.c) Causal Minimality: V is minimal; no strict subset of V satisfies both (4.a) and (4.b).81
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Figure 1: Overview of our causal path tracing. L: linear layer, LN: layer normalization, z: feature.

Having established the definitions with respect to causal paths, we present the structural Property 182

that highlights their recursive nature: under a given decision, any causal node set must have at least83

one parent node set that is also causal. This recursive property enables us to identify exhaustive causal84

paths by ensuring that causal influence can be traced backward through successive parent node sets.85

Property 1 (Causal Edge: Existence of Causal Parent for Any Causal Node). In a transformer86

interpreted as a causal graph G, each child node has a direct computational dependency (i.e., edges)87

with its parent nodes. Thus, under sufficient intervention, for every child node in G that belongs88

to a causal node set (possibly not minimal), at least one of its parent node sets is also a causal89

node set (possibly not minimal), given the decision. Here, “possibly not minimal” indicates that90

the node set may satisfy only the intervention-based conditions (Conditions (4.a) and (4.b)) without91

the minimality condition (Condition (4.c)). Although such a set may not strictly qualify as a causal92

node set under the full definition, the minimality condition is dependent on the other two and is not93

required for this property to hold.94

Example 1. Consider a transformer interpreted as G, containing only a node vc and the set Vp of all95

parent nodes of vc. Suppose that vc belongs to a causal node set (i.e., the causal node set consists of96

vc alone). Since vc is deterministically computed from Vp, intervening on all of Vp leads to a different97

decision, satisfying Condition (4.a). Moreover, if Vp is unchanged, the decision remains the same98

since there is no off-path node set (i.e., V̂ = ∅), thereby satisfying Condition (4.b). Thus, Vp satisfies99

both conditions in Definition 4, implying that it is, at least, a causal node set.100

2.2 Intervention for Causal Isolation101

As established in the preceding definitions, applying an intervention to isolate a node set is essential for102

identifying its causal influence in transformers. While there are various possible forms of intervention,103

it is not always clear whether they guarantee causal isolation under our setting. To address this, we104

formally define a sufficient intervention in Definition 5, to serve as a basis for assessing whether an105

intervention achieves reliable causal isolation in our framework.106

Definition 5 (Sufficient Intervention). Given a transformer interpreted as a causal graph G, we say107

that a node set V is sufficiently intervened to V ′ if the following conditions are satisfied:108

(5.a) Causal Structural Isomorphism: The graphical structure of V in G, namely the adjacency109

structure between V and its neighboring nodes, must differ from that of V ′, and their corre-110

sponding mathematical structures (i.e., structural equations) must likewise differ. This reflects111

a one-to-one correspondence between graphical and mathematical structures.112

(5.b) Causal Edge Validity: Given that Property 1 holds in G, it must still hold even after an inter-113

vention on V . That is, the intervention must not violate the conditions specified in Definitions 1114

to 4 with respect to causal paths in G.115

(5.c) Intervention Controllability: An intervention must not be parametrically non-controllable;116

its effect must remain interpretable, rather than being overwhelmed by the parameters of the117

intervention, such as stochastic variations within them.118

Among possible intervention strategies within transformers, a straightforward approach is to add noise119

directly to the target node (DIRECT NOISE). However, such perturbation fails to satisfy Condition (5.a).120

Another commonly used strategy, as in prior works such as [6], involves forwarding a noise-perturbed121

token embedding through the model to obtain a corrupted version of the target node (NOISE TOKEN);122
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however, this violates Condition (5.c). A naive alternative, such as zero-masking (ZERO MASK), also123

proves inadequate, as it breaks Condition (5.b) by distorting Property 1.124

Since these strategies fail to satisfy the required conditions in our setting, we instead adopt a method125

that intervenes on the target node by resampling from alternative token embeddings (TOKEN RESAM-126

PLING). This approach satisfies all three conditions for a sufficient intervention, as demonstrated by127

the example in Appendix.128

2.3 Unfolding Transformer Block129

In this section, we introduce a mathematical formulation of paths within a standard transformer. We130

begin by representing paths in a single block to establish the idea of our approach. Subsequently, we131

extend this formulation to cover all possible paths from the given input to the output.132

Given an input x, our goal is to identify which structures within the transformer contribute to the133

decision as causal paths. This requires identifying the causal node sets from the decision, which in134

turn involves exploring the model in the backward direction. To this end, we first decompose a single135

block into circuits, i.e., paths, as follows (notation is provided in Figure 1):136 [
[z(h)q ]Hh=1; [z

(h)
k ]Hh=1; [z

(h)
v ]Hh=1

]
= Lia(LN1(zib)),

zoa = Loa([ softmax(z(h)q z
(h)⊤
k /

√
dh)z

(h)
v ]Hh=1),

zim = zib + zoa,
zom = Lom (ϕ(Lim(LN2(zim)))) ,
zob = zim + zom, (1)

where zib, zoa, zim, zom, zob ∈ RT×dm and z
(h)
q , z

(h)
k , z

(h)
v ∈ RT×dh , with T denoting the number137

of tokens, dm the model dimension, and dh = dm/H. Here, to identify the structures causally involved138

in the decision from the input, we treat the block input zib as a single node. If the block output zob139

can be unfolded with respect to zib, this allows us to capture the structures in a path-wise manner140

(zib ∼ zob), all at once, rather than laboriously analyzing them one by one in a structure-wise fashion.141

However, due to the presence of non-linear functions, i.e., softmax and GeLU ϕ, it is nontrivial142

to decompose the above equations into a single unified expression. To address this, we employ a143

minor computational trick that rewrites the non-linear functions in the form of Hadamard products:144

softmax(z/
√
dh) = z ⊙Dα and ϕ(z) = z ⊙Dβ , where the scaling factors Dα and Dβ are treated145

as fixed values once computed from the input z. In addition, we apply a similar simplification to layer146

normalization by treating its input-dependent statistics, mean and variance, as fixed after computation:147

LN(z) = zW⊤
ln + bln. Together, these interpretations allow us to express the block in a form that148

structurally resembles a composition of linear operations and element-wise products, as follows:149

zoa = (
H∑

h=1

z(h)q z
(h)⊤
k ⊙Dαz

(h)
v W⊤

oa) + boa,

zom = zoaW
⊤
ln2

W⊤
im ⊙DβW

⊤
om + zibW

⊤
ln2

W⊤
imDβW

⊤
om

+ bln2
W⊤

im ⊙DβW
⊤
om + bim ⊙DβW

⊤
om + bom,

zob = zib + zoa + zom

= zib︸︷︷︸
Residual Only (1 Path)

+

H∑
h=1

z(h)q z
(h)⊤
k ⊙Dαz

(h)
v W⊤

oa + battn︸ ︷︷ ︸
Attention Only (H Paths)

+ zibW
⊤
ln2

W⊤
imDβW

⊤
om + bmlp︸ ︷︷ ︸

MLP Only (1 Path)

+

H∑
h=1

z(h)q z
(h)⊤
k ⊙Dαz

(h)
v W⊤

oaW
⊤
ln2

W⊤
im ⊙DβW

⊤
om + battn+mlp︸ ︷︷ ︸

Attention+MLP (H Paths)

, (2)

Here, battn, bmlp, and battn+mlp represent the terms in the block output zob that do not directly involve150

the block input zib (the full derivation is provided in Appendix). By unfolding zob with respect to zib,151

we obtain a set of additive terms, which can be grouped into distinct paths depending on whether they152

contain zib as a multiplicative factor. Ultimately, we can treat each of these paths as a single node to153

assess its causal contribution.154

4



Algorithm 1 Minimality-based Causal Subset Search per Block

1: Input: A path node set Vp = [v1, . . . , vn] from a specific block (i.e., additive terms within
the block), a subgraph Gc (downstream blocks of Vp in the transformer G), causal subpaths P
connecting Vp to the decision c∗ in the output y, and an off-path node set V̂ such that P ∪ V̂

equals all nodes in Gc and P ∩ V̂ = ∅
2: Output: Vout = {V1, V2, . . .}, where each Vi ⊆ Vp satisfies Conditions (4.a), (4.b), and (4.c)
3: Vout ← ∅
4: for s = 1 to n do ▷ Subset size
5: for each V ⊆ Vp such that |V | = s do
6: if Vi ⊆ V for some Vi ∈ Vout then
7: continue ▷ Fail Condition (4.c) (causal minimality)
8: end if
9: Intervene on V → V ′, and on V̂ → V̂ ′

10: Let y′ ← model output under (V ′, V̂ ′, P ) ▷ for Condition (4.a) (necessity)
11: Let y′′ ← model output under (V, V̂ ′, P ) ▷ for Condition (4.b) (sufficiency)
12: if argmaxi y

′(i) = c∗ or argmaxi y
′′(i) ̸= c∗ then

13: continue ▷ Fail Condition (4.a) or (4.b)
14: end if
15: Vout ← Vout ∪ {V } ▷ Satisfies Conditions (4.a), (4.b), (4.c)
16: end for
17: end for
18: return Vout

Note that we omit the unfolding of z(h)q , z
(h)
k , and z

(h)
v for brevity, as they are linear functions of zib155

via Wln1
,Wia and follow the same path structure. Furthermore, we assume that bias terms explicitly156

excluding zib propagate uniformly their influence across all paths through their originating layers.157

2.4 Minimality-based Causal Subset Search per Block158

As shown earlier, all paths within a block can be decomposed into additive terms, each treated as159

an individual node. Based on this, we perform a block-wise backward search for causal node sets to160

trace the causal path for a given decision. Here, since path-level interactions must be considered, all161

possible combinations of path nodes within each block need to be evaluated. However, a brute-force162

approach incurs a complexity of O(2n), as this subset search problem is NP-complete, making it163

impractical for large-scale search. Although NP-complete problems cannot be solved in polynomial164

time in the worst case, we propose a strategy based on Condition (4.c) that enables polynomial-time165

search on average.166

The core idea, based on Condition (4.c), is that a causal node set must be minimal. That is, if a subset167

V ⊆ Vp is identified as a causal node set, where Vp denotes the set of all path nodes within a block,168

then any superset of V cannot be minimal and thus does not need to be evaluated. Building on this,169

our search strategy proceeds in steps by subset size, starting from the smallest. As illustrated in170

Algorithm 1, causal node sets identified at smaller steps are used to prune the search space at larger171

steps by eliminating supersets that violate minimality. This strategy leads to an average-case time172

complexity that is polynomial in practice, as formally analyzed in Theorem 1 (proof in Appendix).173

Theorem 1 (Expected Time Complexity of Minimality-based Subset Search). Consider a minimality-174

based subset search over n nodes, where each subset is independently selected as a causal node set175

with probability p. Then, the expected number of subset evaluations over all subsets is bounded by:176

n+ (1− p)×
n∑

s=2

max

0,

(
n

s

)
+

s−1∑
i=1

⌊p(ni)⌋∑
m=1

(−1)m
(
p
(
n
i

)
m

)(
n−mi

s−mi

) . (3)

Given this, the expected time complexity grows approximately as:177

O
(
n⌊log2( 1

p+2)⌋
)
. (4)

178

Remark 1. Although the exact value of p is unknown, the time complexity, depending on p, is179

polynomial in the best and average cases. For example, when p = 1, all subsets of size s ≥ 2 are180

pruned, so only singleton subsets are evaluated, resulting in a time complexity of O(n). However,181
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Algorithm 2 Unfolded Block-wise Causal Path Tracing

1: Input: A transformer G with D blocks, and a model output y with decision c∗ for a given input
2: Output: Causal paths P = (V

(D)
out , . . . , V

(1)
out ), a sequence of causal node sets identified per block

3: P ← {Lcls} ▷ By Property 1, the classifier Lcls serves as the initial causal path reference
4: P ← ∅; Gc ← {Lcls}
5: for j = D to 1 do ▷ Iterate backward through transformer blocks
6: Let V (j)

p ← unfolded path nodes in block j

7: V
(j)

out ← MIN_SEARCH(V
(j)
p ,Gc, P, c∗) ▷ See Algorithm 1

8: P ←
⋃
V

(j)
out ▷ Update causal path reference (see Theorem 2)

9: P ← P ∪ V
(j)

out ; Gc ← block j
10: end for
11: return P

since the problem is fundamentally NP-complete, exponential complexity is unavoidable in the182

worst case. Nonetheless, such worst-case scenarios occur only infrequently; for example, when183

p ≤ 1
2n−2 , causal node sets are rarely selected at each step, requiring exhaustive search over all184

subset combinations and leading to a time complexity of O(2n).185

2.5 Unfolded Block-wise Causal Path Tracing186

In this section, we extend the minimality-based causal subset search from a single block to the entire187

transformer. We traverse blocks backward, identifying causal node sets and updating the causal path188

reference P at each step. Using each causal set individually as P is computationally expensive, as it189

requires repeated searches. Instead, we use their union as the reference, which significantly reduces190

the cost. As in Theorem 2, the union-based strategy ensures that reliability converges to 1 (proof in191

Appendix), indicating near-complete causal coverage. Algorithm 2 outlines the full procedure.192

Theorem 2 (Causal Union Reference Reliability). Consider a minimality-based subset search over n193

nodes, where each subset is independently selected as a causal node set with probability p. Suppose194

that a collection of such sets, V (j+1)
out = {V (j+1)

i }ki=1, is identified from the (j+1)-th block, i.e., the195

one directly downstream. Their union, denoted as P =
⋃k

i=1 V
(j+1)
i , serves as the causal subpath196

reference for the minimality-based subset search in the j-th block. Let savg denote the average size of197

the k causal node sets in V
(j+1)

out . Then, the reliability of the resulting causal node set obtained using198

P is given by:199

p+ (1− p)

(
1−

(
1−

savg

n

)k
)n

→ 1 (5)
200

3 Experiments201

3.1 Models, Datasets, and Baselines202

We conduct experiments on five transformer models: three language models (GPT2-xs [19], Pythia-203

14m and Pythia-1b [20]) and two vision models (ViT-tiny [21] and DeiT-tiny [22]). For language204

tasks, we use the KNOWNS1000 [6] and T-REX [23, 24] datasets. For vision tasks, we evaluate on205

IMAGENET [25] and OFFICEHOME [26]. Due to space constraints, further results are provided in206

Appendix.207

As summarized in Table 1, we compare against existing methods that are feasible for decision-level208

path tracing. To enable fair comparison with our method, all baselines are extended under a backward209

chaining framework, assuming that residual connections are always present—even when reliability210

conditions are not met.211

Specifically, NT1 and NT10% are adaptations of the node-level patching method from [6], referred212

to as Node-level patching-based Tracing (NT), where the top-1 node (NT1) or the top 10% of213

nodes (NT10%), ranked by their estimated effect within each block, are selected as decision paths.214

ETall and ETcls are based on the edge-level patching method from [12], referred to as Edge-level215
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Figure 2: Comparison of empirical time complexity. Causal path tracing under our method runs in
polynomial time across models. Each subplot shows the reduced search space (in parentheses); n∗ is
the maximum step reached by the minimality-based search (i.e., the largest s such that the term in
Equation (3) is nonzero); the empirical p estimated from the average n∗ (see Theorem 1); and the
polynomial bound of p, which is the theoretical lower bound required to ensure polynomial-time
search (see Remark 1). Language models use T-Rex; vision models use ImageNet.

patching-based Tracing (ET), which assumes task-level edge attribution. Here, a “task” is defined as216

either the entire dataset (ETall) or a single class (ETcls).217

Note that path-level patching methods are not included in the comparison, as no existing method218

feasibly enumerates all decision paths for a given output—our method is the first to make this feasible.219

We refer to our approach as Causal Path Tracing (CPT). Implementation details are in Appendix.220

3.2 Results221

Minimality-based search converges empirically in polynomial time; furthermore, it reveals222

how models rely on path-level reasoning Figure 2 presents the empirical time complexity of our223

causal path tracing procedure across models. Each subplot shows the distribution of n∗, defined as224

the final step in the minimality-based search where no further superset remains due to pruning by225

already selected causal node sets. The average n∗ is used to estimate the empirical probability p that226

a randomly selected subset is causal (see Theorem 1), which is then compared against the theoretical227

lower bound required for polynomial-time search (see Remark 1).228

In all models, the empirical p exceeds the theoretical threshold, confirming that the proposed search229

converges in polynomial time in practice, as predicted. Notably, the search typically completes in few230

steps, with pruning often concluding well before the midpoint of the search space.231

The distribution of n∗ also reveals how the model leverages internal structure for decision making:232

a small n∗, especially when concentrated near one, indicates that the model relies primarily on the233

strength of individual paths; in contrast, a larger or more dispersed n∗ suggests that reasoning involves234

interactions among multiple paths rather than relying on any single strong one.235

Causal path components exhibit lower self-repair, suggesting irreplaceable decision signals236

We compare self-repair scores between attention heads on the causal path and those off the path, as237

identified by our tracing method. Following the prior work [16], we categorize components based on238

whether they belong to the traced causal path and measure their self-repair accordingly.239
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Figure 3: Self-repair scores on causal path vs. off-path components. Each bar shows the mean
(dot with arrow) and standard deviation (error bar); medians are shown as blue dashed lines. Lower
scores indicate less self-repair. Results are averaged over KNOWNS1000 and T-REX.

(a) (b)

Figure 4: Causal paths uniquely activated for specific classes. (a) Average causal path ratios for a
target class (left), all classes (right), and their difference (bottom), highlighting class-specific paths.
Here, res, mlp, and attn# indicate residual, MLP, and attention paths from head #, respectively. (b)
Accuracy drop when ablating the most class-specific path, showing selective reliance by each class.

We find that self-repair occurs less frequently on the causal path. While self-repair is known to be240

highly noisy, as noted in [16], the results still show a clear difference: both the mean and median241

scores are consistently lower on the causal path than off it. This suggests that the causal path captures242

components essential to the decision and less reliant on backup mechanisms. In other words, the243

selected paths carry information not easily replaceable, underscoring their critical role for decision.244

Class-specific causal subpaths play a functional role in predicting their respective classes Here,245

we aim to investigate whether the discovered causal paths contain class-wise causal nodes—nodes that246

are consistently utilized across samples within the same class group—and whether these nodes play a247

significant role in the model’s classification decisions. To improve clarity, we first select four super-248

classes—dog, bird, garment, and vehicle—among the 1,000 ImageNet classes based on semantic249

similarity derived from WordNet. We then aggregated the causal paths extracted from individual250

samples and compiled statistics on the frequency of each subpaths’ occurrence. By comparing251

these frequencies to the overall average across all samples, we identified causal subpaths that were252

significantly more active within specific super-classes (as shown in Figure 4-(a)). We refer to these as253

class-wise causal subpaths, hypothesizing that they store key discriminative information relevant to254

their respective super-classes due to their unusually high activation rates.255

To validate this hypothesis, we intervene in the class-wise causal subpaths and measure the perfor-256

mance drop. If these nodes indeed encode class-specific information, their removal should lead to257

a greater accuracy drop within the corresponding super-class than in others. Figure 4-(b) clearly258

demonstrates this pattern. For instance, when the class-wise causal subpaths for the dog super-class259

were deactivated in a ViT-tiny model, the top-1 accuracy for dog samples decreased by approximately260

44.7% more than that for other super-classes. Similar trends were observed across bird, garment, and261

vehicle classes, indicating that the proposed metric functions consistently across the model.262

It is important to note that due to inherent semantic overlap among ImageNet classes, interventions263

on class-wise causal subpaths may still affect the logits of unrelated classes. Additionally, due to264
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Hit. (↑) Faith. (↑) Spars. (↓)
NT1 0.0000 0.0005 0.6571
NT10% 0.0000 0.0006 0.5648
ETall 0.2079 0.2354 0.9806
ETcls 0.4808 0.4734 0.9909

CPT 0.9826 0.5466 0.8641

Table 2: Quantitative results (language). Av-
eraged over three models on two datasets; full
results in Appendix.

Hit. (↑) Faith. (↑) Spars. (↓)
NT1 0.0105 0.0136 0.7276
NT10% 0.0078 0.0133 0.0799
ETall 0.4454 0.3166 0.9999
ETcls 0.2627 0.1832 0.9650

CPT 0.9638 0.2991 0.7280

Table 3: Quantitative results (vision). Averaged
over two models on two datasets; see Appendix
for details.

visual diversity within each super-class, turning off only a small number of subpaths may not entirely265

collapse performance. Nevertheless, the consistent and pronounced patterns observed across all266

super-classes suggest that our method effectively identifies causal subpaths that play a meaningful267

role in class-specific inference.268

Quantitative results show our method yields reliable and faithful explanations Each value in269

Tables 2 and 3 represents the average score across models on two datasets. All methods are evaluated270

by pruning the model to retain only the paths identified by each method. We report three metrics:271

Hit. (hit rate) measures the proportion of cases in which the pruned model produces the same decision272

as the original; Faith. (faithfulness) quantifies the ratio of the original logit preserved after pruning;273

and Spars. (sparsity) denotes the proportion of model parameters retained by the identified path.274

Our method (CPT) achieves a near-perfect hit rate, consistent with the theoretical guarantee in275

Theorem 2 that the identified paths are reliably causal. In contrast, existing methods show substantially276

lower hit rates, supporting our claim in Table 1 that while tracing is feasible with backward chaining, it277

is generally not reliable for identifying true decision paths. CPT also achieves the highest faithfulness,278

indicating that it preserves the model’s original decision behavior more accurately than alternative279

methods. Notably, it does so while retaining significantly fewer parameters: whereas edge-level280

methods such as ETall and ETcls rely on nearly the entire model, CPT produces more faithful and281

compact explanations through substantially more efficient path selection.282

4 Conclusion283

In this paper, we presented an automated framework for tracing causal paths given a decision.284

We provide both theoretical analysis and empirical evidence showing that our method efficiently285

uncovers all causal paths responsible for a decision, with average-case polynomial-time complexity.286

Furthermore, we demonstrated that the identified causal paths (1) are less susceptible to self-repair287

effects, (2) reveal the structural grounds for subpaths uniquely activated for specific classes, and288

(3) yield more faithful and precise explanations than existing methods.289

Limitations and Future Work. First, the identified causal paths are derived under the assumptions290

of our proposed framework and may not generalize under different assumptions. In particular, our291

unfolding procedure assumes uniform propagation of bias terms across all paths; however, accurately292

quantifying their individual contributions is non-trivial and remains an open direction for future293

work. Second, we acknowledge that our experiments were conducted on smaller models compared to294

state-of-the-art architectures. Although our method achieves polynomial-time complexity on average,295

large models may still incur prohibitive runtime in worst-case scenarios, and the reduced search296

space can remain sizable. Extending our minimality-based subset search to also prune supersets297

of non-causal subsets could mitigate this issue. Lastly, while our analysis focuses on structural298

mechanisms within the model, it opens avenues for future integration with feature attribution methods,299

potentially bridging structural and feature-level interpretability.300

Despite these limitations, our work is the first to propose an efficient and reliable framework for301

tracing causal paths within transformer models for a given decision. We believe this represents an302

important step toward making transformers more transparent and robust in safety-critical domains,303

helping to prevent misuse and improve trust in deployment.304
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NeurIPS Paper Checklist379

1. Claims380

Question: Do the main claims made in the abstract and introduction accurately reflect the381

paper’s contributions and scope?382

Answer: [Yes]383

Justification: Yes, stated in the abstract and introduction.384

Guidelines:385

• The answer NA means that the abstract and introduction do not include the claims386

made in the paper.387

• The abstract and/or introduction should clearly state the claims made, including the388

contributions made in the paper and important assumptions and limitations. A No or389

NA answer to this question will not be perceived well by the reviewers.390

• The claims made should match theoretical and experimental results, and reflect how391

much the results can be expected to generalize to other settings.392

• It is fine to include aspirational goals as motivation as long as it is clear that these goals393

are not attained by the paper.394

2. Limitations395

Question: Does the paper discuss the limitations of the work performed by the authors?396

Answer: [Yes]397

Justification: Yes, stated in the conclusion.398

Guidelines:399

• The answer NA means that the paper has no limitation while the answer No means that400

the paper has limitations, but those are not discussed in the paper.401

• The authors are encouraged to create a separate "Limitations" section in their paper.402

• The paper should point out any strong assumptions and how robust the results are to403

violations of these assumptions (e.g., independence assumptions, noiseless settings,404

model well-specification, asymptotic approximations only holding locally). The authors405

should reflect on how these assumptions might be violated in practice and what the406

implications would be.407

• The authors should reflect on the scope of the claims made, e.g., if the approach was408

only tested on a few datasets or with a few runs. In general, empirical results often409

depend on implicit assumptions, which should be articulated.410

• The authors should reflect on the factors that influence the performance of the approach.411

For example, a facial recognition algorithm may perform poorly when image resolution412

is low or images are taken in low lighting. Or a speech-to-text system might not be413

used reliably to provide closed captions for online lectures because it fails to handle414

technical jargon.415

• The authors should discuss the computational efficiency of the proposed algorithms416

and how they scale with dataset size.417

• If applicable, the authors should discuss possible limitations of their approach to418

address problems of privacy and fairness.419

• While the authors might fear that complete honesty about limitations might be used by420

reviewers as grounds for rejection, a worse outcome might be that reviewers discover421

limitations that aren’t acknowledged in the paper. The authors should use their best422

judgment and recognize that individual actions in favor of transparency play an impor-423

tant role in developing norms that preserve the integrity of the community. Reviewers424

will be specifically instructed to not penalize honesty concerning limitations.425

3. Theory assumptions and proofs426

Question: For each theoretical result, does the paper provide the full set of assumptions and427

a complete (and correct) proof?428

Answer: [Yes]429
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Justification: Yes, stated in the methodology and Appendix.430

Guidelines:431

• The answer NA means that the paper does not include theoretical results.432

• All the theorems, formulas, and proofs in the paper should be numbered and cross-433

referenced.434

• All assumptions should be clearly stated or referenced in the statement of any theorems.435

• The proofs can either appear in the main paper or the supplemental material, but if436

they appear in the supplemental material, the authors are encouraged to provide a short437

proof sketch to provide intuition.438

• Inversely, any informal proof provided in the core of the paper should be complemented439

by formal proofs provided in Appendix or supplemental material.440

• Theorems and Lemmas that the proof relies upon should be properly referenced.441

4. Experimental result reproducibility442

Question: Does the paper fully disclose all the information needed to reproduce the main ex-443

perimental results of the paper to the extent that it affects the main claims and/or conclusions444

of the paper (regardless of whether the code and data are provided or not)?445

Answer: [Yes]446

Justification: Yes, stated in the experiments and the Appendix.447

Guidelines:448

• The answer NA means that the paper does not include experiments.449

• If the paper includes experiments, a No answer to this question will not be perceived450

well by the reviewers: Making the paper reproducible is important, regardless of451

whether the code and data are provided or not.452

• If the contribution is a dataset and/or model, the authors should describe the steps taken453

to make their results reproducible or verifiable.454

• Depending on the contribution, reproducibility can be accomplished in various ways.455

For example, if the contribution is a novel architecture, describing the architecture fully456

might suffice, or if the contribution is a specific model and empirical evaluation, it may457

be necessary to either make it possible for others to replicate the model with the same458

dataset, or provide access to the model. In general. releasing code and data is often459

one good way to accomplish this, but reproducibility can also be provided via detailed460

instructions for how to replicate the results, access to a hosted model (e.g., in the case461

of a large language model), releasing of a model checkpoint, or other means that are462

appropriate to the research performed.463

• While NeurIPS does not require releasing code, the conference does require all submis-464

sions to provide some reasonable avenue for reproducibility, which may depend on the465

nature of the contribution. For example466

(a) If the contribution is primarily a new algorithm, the paper should make it clear how467

to reproduce that algorithm.468

(b) If the contribution is primarily a new model architecture, the paper should describe469

the architecture clearly and fully.470

(c) If the contribution is a new model (e.g., a large language model), then there should471

either be a way to access this model for reproducing the results or a way to reproduce472

the model (e.g., with an open-source dataset or instructions for how to construct473

the dataset).474

(d) We recognize that reproducibility may be tricky in some cases, in which case475

authors are welcome to describe the particular way they provide for reproducibility.476

In the case of closed-source models, it may be that access to the model is limited in477

some way (e.g., to registered users), but it should be possible for other researchers478

to have some path to reproducing or verifying the results.479

5. Open access to data and code480

Question: Does the paper provide open access to the data and code, with sufficient instruc-481

tions to faithfully reproduce the main experimental results, as described in supplemental482

material?483

13



Answer: [Yes]484

Justification: Yes, stated in Appendix along with an anonymized code link.485

Guidelines:486

• The answer NA means that paper does not include experiments requiring code.487

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/488

public/guides/CodeSubmissionPolicy) for more details.489

• While we encourage the release of code and data, we understand that this might not be490

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not491

including code, unless this is central to the contribution (e.g., for a new open-source492

benchmark).493

• The instructions should contain the exact command and environment needed to run to494

reproduce the results. See the NeurIPS code and data submission guidelines (https:495

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.496

• The authors should provide instructions on data access and preparation, including how497

to access the raw data, preprocessed data, intermediate data, and generated data, etc.498

• The authors should provide scripts to reproduce all experimental results for the new499

proposed method and baselines. If only a subset of experiments are reproducible, they500

should state which ones are omitted from the script and why.501

• At submission time, to preserve anonymity, the authors should release anonymized502

versions (if applicable).503

• Providing as much information as possible in supplemental material (appended to the504

paper) is recommended, but including URLs to data and code is permitted.505

6. Experimental setting/details506

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-507

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the508

results?509

Answer: [Yes]510

Justification: Yes, stated in the experiments and the Appendix.511

Guidelines:512

• The answer NA means that the paper does not include experiments.513

• The experimental setting should be presented in the core of the paper to a level of detail514

that is necessary to appreciate the results and make sense of them.515

• The full details can be provided either with the code, in Appendix, or as supplemental516

material.517

7. Experiment statistical significance518

Question: Does the paper report error bars suitably and correctly defined or other appropriate519

information about the statistical significance of the experiments?520

Answer: [Yes]521

Justification: Yes, stated in the experiments and the Appendix.522

Guidelines:523

• The answer NA means that the paper does not include experiments.524

• The authors should answer "Yes" if the results are accompanied by error bars, confi-525

dence intervals, or statistical significance tests, at least for the experiments that support526

the main claims of the paper.527

• The factors of variability that the error bars are capturing should be clearly stated (for528

example, train/test split, initialization, random drawing of some parameter, or overall529

run with given experimental conditions).530

• The method for calculating the error bars should be explained (closed form formula,531

call to a library function, bootstrap, etc.)532

• The assumptions made should be given (e.g., Normally distributed errors).533

• It should be clear whether the error bar is the standard deviation or the standard error534

of the mean.535
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• It is OK to report 1-sigma error bars, but one should state it. The authors should536

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis537

of Normality of errors is not verified.538

• For asymmetric distributions, the authors should be careful not to show in tables or539

figures symmetric error bars that would yield results that are out of range (e.g. negative540

error rates).541

• If error bars are reported in tables or plots, The authors should explain in the text how542

they were calculated and reference the corresponding figures or tables in the text.543

8. Experiments compute resources544

Question: For each experiment, does the paper provide sufficient information on the computer545

resources (type of compute workers, memory, time of execution) needed to reproduce the546

experiments?547

Answer: [Yes]548

Justification: Yes, stated in the Appendix.549

Guidelines:550

• The answer NA means that the paper does not include experiments.551

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,552

or cloud provider, including relevant memory and storage.553

• The paper should provide the amount of compute required for each of the individual554

experimental runs as well as estimate the total compute.555

• The paper should disclose whether the full research project required more compute556

than the experiments reported in the paper (e.g., preliminary or failed experiments that557

didn’t make it into the paper).558

9. Code of ethics559

Question: Does the research conducted in the paper conform, in every respect, with the560

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?561

Answer: [Yes]562

Justification: Yes, we have identified no concerns.563

Guidelines:564

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.565

• If the authors answer No, they should explain the special circumstances that require a566

deviation from the Code of Ethics.567

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-568

eration due to laws or regulations in their jurisdiction).569

10. Broader impacts570

Question: Does the paper discuss both potential positive societal impacts and negative571

societal impacts of the work performed?572

Answer: [Yes]573

Justification: Yes, stated in the introduction and the conclusion.574

Guidelines:575

• The answer NA means that there is no societal impact of the work performed.576

• If the authors answer NA or No, they should explain why their work has no societal577

impact or why the paper does not address societal impact.578

• Examples of negative societal impacts include potential malicious or unintended uses579

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations580

(e.g., deployment of technologies that could make decisions that unfairly impact specific581

groups), privacy considerations, and security considerations.582

• The conference expects that many papers will be foundational research and not tied583

to particular applications, let alone deployments. However, if there is a direct path to584

any negative applications, the authors should point it out. For example, it is legitimate585

to point out that an improvement in the quality of generative models could be used to586
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generate deepfakes for disinformation. On the other hand, it is not needed to point out587

that a generic algorithm for optimizing neural networks could enable people to train588

models that generate Deepfakes faster.589

• The authors should consider possible harms that could arise when the technology is590

being used as intended and functioning correctly, harms that could arise when the591

technology is being used as intended but gives incorrect results, and harms following592

from (intentional or unintentional) misuse of the technology.593

• If there are negative societal impacts, the authors could also discuss possible mitigation594

strategies (e.g., gated release of models, providing defenses in addition to attacks,595

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from596

feedback over time, improving the efficiency and accessibility of ML).597

11. Safeguards598

Question: Does the paper describe safeguards that have been put in place for responsible599

release of data or models that have a high risk for misuse (e.g., pretrained language models,600

image generators, or scraped datasets)?601

Answer: [NA]602

Justification: Our work does not introduce or release any new models or datasets. Rather than603

posing risks of misuse, it contributes to preventing them by improving model transparency604

and interpretability.605

Guidelines:606

• The answer NA means that the paper poses no such risks.607

• Released models that have a high risk for misuse or dual-use should be released with608

necessary safeguards to allow for controlled use of the model, for example by requiring609

that users adhere to usage guidelines or restrictions to access the model or implementing610

safety filters.611

• Datasets that have been scraped from the Internet could pose safety risks. The authors612

should describe how they avoided releasing unsafe images.613

• We recognize that providing effective safeguards is challenging, and many papers do614

not require this, but we encourage authors to take this into account and make a best615

faith effort.616

12. Licenses for existing assets617

Question: Are the creators or original owners of assets (e.g., code, data, models), used in618

the paper, properly credited and are the license and terms of use explicitly mentioned and619

properly respected?620

Answer: [Yes]621

Justification: We use publicly available pretrained models (e.g., GPT2, Pythia) under their622

respective licenses. All models and tools used are properly credited and cited in the main623

paper. No modifications were made to their original distributions, and we adhered to their624

terms of use.625

Guidelines:626

• The answer NA means that the paper does not use existing assets.627

• The authors should cite the original paper that produced the code package or dataset.628

• The authors should state which version of the asset is used and, if possible, include a629

URL.630

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.631

• For scraped data from a particular source (e.g., website), the copyright and terms of632

service of that source should be provided.633

• If assets are released, the license, copyright information, and terms of use in the634

package should be provided. For popular datasets, paperswithcode.com/datasets635

has curated licenses for some datasets. Their licensing guide can help determine the636

license of a dataset.637

• For existing datasets that are re-packaged, both the original license and the license of638

the derived asset (if it has changed) should be provided.639
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• If this information is not available online, the authors are encouraged to reach out to640

the asset’s creators.641

13. New assets642

Question: Are new assets introduced in the paper well documented and is the documentation643

provided alongside the assets?644

Answer: [Yes]645

Justification: We release anonymized code in the Appendix. The code includes instructions646

for reproducing the main experiments.647

Guidelines:648

• The answer NA means that the paper does not release new assets.649

• Researchers should communicate the details of the dataset/code/model as part of their650

submissions via structured templates. This includes details about training, license,651

limitations, etc.652

• The paper should discuss whether and how consent was obtained from people whose653

asset is used.654

• At submission time, remember to anonymize your assets (if applicable). You can either655

create an anonymized URL or include an anonymized zip file.656

14. Crowdsourcing and research with human subjects657

Question: For crowdsourcing experiments and research with human subjects, does the paper658

include the full text of instructions given to participants and screenshots, if applicable, as659

well as details about compensation (if any)?660

Answer: [NA]661

Justification: This work does not involve crowdsourcing or any research with human subjects.662

Guidelines:663

• The answer NA means that the paper does not involve crowdsourcing nor research with664

human subjects.665

• Including this information in the supplemental material is fine, but if the main contribu-666

tion of the paper involves human subjects, then as much detail as possible should be667

included in the main paper.668

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,669

or other labor should be paid at least the minimum wage in the country of the data670

collector.671

15. Institutional review board (IRB) approvals or equivalent for research with human672

subjects673

Question: Does the paper describe potential risks incurred by study participants, whether674

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)675

approvals (or an equivalent approval/review based on the requirements of your country or676

institution) were obtained?677

Answer: [NA]678

Justification: This work does not involve research with human subjects and does not require679

IRB or equivalent approval.680

Guidelines:681

• The answer NA means that the paper does not involve crowdsourcing nor research with682

human subjects.683

• Depending on the country in which research is conducted, IRB approval (or equivalent)684

may be required for any human subjects research. If you obtained IRB approval, you685

should clearly state this in the paper.686

• We recognize that the procedures for this may vary significantly between institutions687

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the688

guidelines for their institution.689

• For initial submissions, do not include any information that would break anonymity (if690

applicable), such as the institution conducting the review.691
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16. Declaration of LLM usage692

Question: Does the paper describe the usage of LLMs if it is an important, original, or693

non-standard component of the core methods in this research? Note that if the LLM is used694

only for writing, editing, or formatting purposes and does not impact the core methodology,695

scientific rigorousness, or originality of the research, declaration is not required.696

Answer: [NA]697

Justification: We used an LLM solely for grammar correction.698

Guidelines:699

• The answer NA means that the core method development in this research does not700

involve LLMs as any important, original, or non-standard components.701

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)702

for what should or should not be described.703
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