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Abstract
Reinforcement learning, such as PPO and GRPO,
has powered recent breakthroughs in LLM rea-
soning. Scaling rollout to sample more prompts
enables models to selectively use higher-quality
data for training, which can stabilize RL training
and improve model performance, but at the cost
of significant computational overhead. In this pa-
per, we first show that a substantial portion of
this overhead can be avoided by skipping unin-
formative prompts before rollout. Our analysis of
reward dynamics reveals a strong temporal consis-
tency in prompt value: prompts that are uninfor-
mative in one epoch are likely to remain uninfor-
mative in near future epochs. Based on these in-
sights, we propose GRESO (GRPO with Efficient
Selective Rollout), an online, lightweight pre-
rollout filtering algorithm that predicts and skips
uninformative prompts. By evaluating GRESO
on a broad range of math benchmarks and mod-
els, like Qwen2.5-Math-1.5B/7B and DeepSeek-
R1-Distill-Qwen-1.5B, we show that GRESO
achieves up to 2.4× wall-clock time speedup in
rollout and up to 2.0× speedup in total training
time without accuracy degradation.

1. Introduction
Recent reasoning models (Jaech et al., 2024; Guo et al.,
2025; Team et al., 2025), such as OpenAI’s o1 and
DeepSeek’s R1, leverage Chain-of-Thought as a form of
test-time scaling to significantly enhance the reasoning ca-
pabilities of large language models (LLMs). Reinforcement
Learning (RL) techniques, including PPO (Ouyang et al.,
2022) and GRPO (Guo et al., 2025), have emerged as key
drivers of this progress. By generating data online during
each training iteration (i.e., rollout), RL enables models
to iteratively refine their reasoning strategies through self-
exploration, often achieving or even surpassing human-level
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Figure 1: Left: GRPO training with more effective data
through Dynamic Sampling (DS) leads to improved final
model performance. Right: However, DS requires addi-
tional rollouts to maintain the same training batch size.

performance (Jaech et al., 2024; Sun et al., 2024; 2023). No-
tably, scaling computational resources to sample responses
for more prompts at this rollout stage can further enhance
training, which allows models to selectively utilize higher-
quality data and thus train models with better converged
performance (Yu et al., 2025). However, scaling up rollouts
introduces significant computational overhead, as rollout
remains a major bottleneck in RL training (Zhong et al.,
2025; Noukhovitch et al., 2024; Sheng et al., 2024; von
Werra et al., 2020). For instance, as shown in Figure 1, filter-
ing out uninformative examples1 and resampling to fill the
batch with effective data (also known as Dynamic Sampling
in (Yu et al., 2025)) can improve model performance, but
it comes at the cost of significantly increased rollout over-
head. Motivated by this challenge, we aim to investigate the
following research question in this paper:

How can we perform more selective roll-
outs—focusing on sampling more valuable
prompts—to make this scaling more efficient?

Existing methods face several limitations in addressing this
question. First, some approaches (Wang et al., 2025; Li
et al., 2025) attempt to improve data efficiency by prun-
ing datasets before training. These methods typically rely
on training a model to identify valuable data points; how-
ever, there is no conclusive evidence that such strategies
improve the overall efficiency of RL training as well. Sec-

1In GRPO, many examples yield identical rewards across all
responses, resulting in zero advantage and thus contributing no
learning signal during training.
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Figure 2: We train Qwen2.5-Math-1.5B/7B on the DAPO + MATH and evaluate them on five math benchmarks: MATH500,
AMC, Gaokao, Minerva, and Olympiad. Compared to the baseline method (Dynamic Sampling), our approach (GRESO)
reduces rollout overhead by up to 2× while achieving comparable accuracy, improving the efficiency of rollout scaling.

ond, these static pruning methods overlook the fact that
the value of a data point can vary across models and train-
ing stages, limiting their ability to support adaptive data
selection. Finally, online selection approaches such as Dy-
namic Sampling (Yu et al., 2025) perform oversampling
and filter out uninformative data only after rollout, lead-
ing to substantial additional rollout cost. Estimating data
quality accurately and efficiently before rollout remains a
challenging and underexplored problem.

Consequently, an ideal selective rollout algorithm for effi-
cient LLM RL should have the following properties: 1) On-
line data selection. Instead of relying on an auxiliary model
trained offline to pre-prune the dataset, an ideal method
should perform data selection online during training. This
avoids the additional overhead of training a separate model
and enables decisions to be made based on the current train-
ing states. 2) Model-based data value estimation. Data
values evolve throughout training and vary across differ-
ent models, requiring a selective rollout strategy to adapt
to different models and training stages. 3) Low computa-
tional overhead. To ensure scalability, the selective rollout
strategy should introduce minimal cost during training.

In this paper, we aim to design an efficient selective rollout
strategy for LLM RL to make rollout scaling more efficient.
We begin by analyzing the training dynamics of prompts
across epochs and observe a strong temporal consistency
across different training epochs (Section 2). In particular,
prompts that yield zero advantage in one epoch are more
likely to do so in future epochs as well. This temporal corre-
lation suggests that historical reward dynamics can be lever-
aged to predict and preemptively skip zero-variance exam-
ples before rollout. Building on these observations, we pro-
pose GRESO (GRPO with Efficient Selective Rollout) in
Section 3, an online efficient pre-rollout filtering algorithm
that reduces rollout cost by selectively skipping prompts pre-
dicted to be zero-variance. Instead of performing filtering
after rollout, GRESO estimates a skipping probability for
each prompt based on its reward dynamics during training
prior to the rollout stage, significantly reducing prompt se-

lection overhead and making rollout scaling more efficient.

In Section 4, we empirically verify the efficiency of
GRESO on six math reasoning benchmarks and three mod-
els (Qwen2.5-Math-1.5B (Yang et al., 2024), DeepSeek-R1-
Distill-Qwen-1.5B (Guo et al., 2025), and Qwen2.5-Math-
7B (Yang et al., 2024)). Our evaluation results show that
GRESO achieves up to 2.4× speedup in rollout and 2.0×
speedup in total training time while maintaining compara-
ble accuracy (Section 4.1). We also conduct a more detailed
study on how GRESO reduces training overhead by per-
forming selective rollout and ablation study on different
components of GRESO in Section D.3.

2. Observation
In this section, we empirically show that a high zero-
variance2 ratio can hurt the training performance. Besides,
our analysis reveals a strong temporal consistency in prompt
value: prompts that are uninformative in one training epoch
tend to remain uninformative in subsequent epochs.

2.1. Reduction of Effective Prompts in GRPO Training

The existence of zero-advantage prompts can largely reduce
the ratio of effective prompts in a training batch. During
GRPO training on Qwen2.5-Math-7B (Yang et al., 2024),
the ratio of effective prompts keeps decreasing as the train-
ing proceeds: at the late stage of training, this ratio can be
around only 20% (See an example in Figure 4a). A vary-
ing ratio of effective prompts can potentially hurt training
stability and final model performance (Yu et al., 2025).

A potential way to address this instability issue is to over-
sample and select a batch only containing effective prompts,
which is also known as Dynamic Sampling (DS) (Yu et al.,
2025). As shown in Figure 1, GRPO with DS consistently
outperforms the vanilla GRPO, particularly on datasets such

2We refer to prompts for which all sampled responses receive
identical rewards—and thus yield zero reward variance and no
learning signal—as zero-variance prompts, while those producing
non-identical rewards are termed effective prompts.
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as AMC and AIME24. This performance gain stems from
DS’s ability to filter out zero-variance prompts, thereby sta-
bilizing training. While DS leads to better performance,
it incurs significantly higher computational cost due to its
need to oversample more data to maintain the training batch
size of effective prompts (as shown in Figure 1). How-
ever, a substantial amount of rollout computation is wasted
on prompts that ultimately result in zero-variance prompts.
Identifying such prompts prior to rollout can significantly
reduce computational overhead.

2.2. Temporal Correlation of Examples across Epochs
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Figure 3: Temporal cor-
relation of prompts across
epochs.

Training data typically
exhibits strong tempo-
ral correlations across
epochs (Zheng et al., 2023;
Li et al., 2025; Toneva et al.,
2018). We hypothesize that
zero-variance prompts in
GRPO training also have
such strong correlations
in their training dynamics.
To test this hypothesis, we
conduct a study on the
temporal correlation of

zero-variance prompts in GRPO training. Specifically,
we train Qwen2.5-Math-7B with GRPO and measure
two probabilities: 1) P(Previous|Current): The
probability that a prompt identified as zero-variance in
the current epoch was also zero-variance in any previous
epoch. 2) P(Current|Previous): The probability
that a prompt identified as zero-variance in any previous
epoch remains zero-variance in the current epoch.

The results shown in Figure 3 indicate that zero-variance
prompts exhibit strong temporal correlations throughout
training. We have two key observations: 1) Prompts previ-
ously identified as zero-variance are likely to remain zero-
variance. P(Previous|Current) curve shows that the
majority of zero-variance prompts in a given epoch (e.g.,
over 90%) were also identified as zero-variance in earlier
epochs. 2) Some zero-variance prompts can become effec-
tive again in future epochs. P(Current|Previous)
curve shows that approximately 20% of prompts previously
labeled as zero-variance become effective prompts that con-
tribute to training again. This suggests that, rather than
statically pruning zero-variance prompts, it is beneficial to
retain some degree of exploration.

3. Methodology: GRESO
In this section, we present GRESO (GRPO with Efficient
Selective Rollout), a novel, online, efficient selective rollout
algorithm that predicts and skips zero-variance prompts
using reward training dynamics before the rollout stage. The
full algorithm is provided in Algorithm 1 in the appendix.

3.1. Probabilistic Pre-rollout Example Filtering
Building on our observation in Section 2.2, we propose to
leverage reward training dynamics to detect and filter these
prompts before rollout to save rollout computation. During
training, each prompt xi is associated with a training dy-
namics trace: Ti = (ei,1, Ri,1), . . . , (ei,n, Ri,n), where ei,j
denotes the epoch number of the j-th sampling for example
xi, and Ri,1 = {r(k)i,1 }Gk=1 represents the set of response
rewards obtained in that epoch. The goal of our algorithm
is to predict whether xi is a zero-variance prompt—i.e., one
that yields identical rewards for all responses – based on its
reward dynamics Ti prior to rollout.

Probabilistic Filtering. To utilize this reward train-
ing dynamics, we propose a probabilistic filtering strat-
egy: each prompt is calculated with a filtering proba-
bility based on its current training dynamics. As ob-
served in Section 2.2, some zero-variance prompts can be-
come effective again in later epochs. A key advantage of
this probabilistic-based approach is that it naturally bal-
ances exploitation and exploration, allowing zero-variance
prompts to still be occasionally sampled. More specifi-
cally, given a prompt xi whose training dynamics trace is
Ti = (ei,1, Ri,1), . . . , (ei,n, Ri,n), we calculated the filter-
ing probability by:

pf (xi) = 1− pzie , (1)

zi = max

k ∈ [0, n]

∣∣∣∣∣∣
n∏

j=n−k+1

Ii,j = 1

 , (2)

Ii,j =

{
1, if all rewards in Ri,j are identical,
0, otherwise,

(3)

where pe is the base exploration probability controlling how
likely a prompt is selected for rollout. zi represents the
number of most recent consecutive rollouts for prompt xi

that were zero-variance.

Self-adjustable Base Exploration Probability. One chal-
lenge of the above probabilistic filtering algorithm lies in
determining the base exploration probability, which can vary
across models, datasets, and even different training stages.
In addition, different base probabilities may be appropriate
for easy and hard zero-variance prompts. Manually select-
ing the probabilities for all scenarios is impractical.

To address this challenge, GRESO employs an adaptive
algorithm that automatically adjusts the base exploration
probability at each training iteration (Lines 16–25 in Algo-
rithm 1). Rather than requiring users to manually select the
base probability, which can vary across different settings,
GRESO only requires a target zero-variance percentage. It
then automatically increases or decreases the exploration
rate by a step size ∆p based on whether the observed zero-
variance percentage is above or below the target. (We set
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Table 1: Performance (%) comparison across six math reasoning benchmarks. We train three models on DAPO +
MATH (DM). Compared to Dynamic Sampling (DS), GRESO achieves similar accuracy while significantly reducing
the number of rollouts. The results trained on Open R1 subset (OR1) can be found in Table 2 in the Appendix.

Dataset Method Math500 AIME24 AMC Gaokao Miner. Olymp. Avg. # Rollout

Qwen2.5-Math-1.5B (Yang et al., 2024)

DM DS 77.3 16.7 61.7 64.2 31.8 38.7 48.4 7.6M
GRESO 76.6 15.0 61.4 66.2 33.3 38.5 48.5 3.3M

DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025)

DM DS 87.9 36.7 71.7 78.7 35.3 55.9 61.0 2.4M
GRESO 87.7 36.7 71.1 78.4 33.9 55.1 60.5 1.6M

Qwen2.5-Math-7B (Yang et al., 2024)

DM DS 82.9 34.2 79.2 71.7 35.4 43.6 57.8 13.1M
GRESO 82.2 32.5 80.7 70.2 35.4 44.1 57.5 6.3M

∆p to 1% in all our evaluations.) Additionally, instead of us-
ing a single base exploration probability, GRESO maintains
two separate values: one for easy zero-variance prompts
and another for hard ones. When computing the filtering
probability pf (xi), GRESO first determines whether xi is
an easy or hard zero-variance prompt and then applies the
corresponding exploration probability3.

Adaptive Sampling Batch Size. In the current design of
Dynamic Sampling (Yu et al., 2025), if the number of valid
examples is insufficient to meet the training batch size re-
quirement, the training performs rollout using a fixed batch
size. However, this may result in wasted computation when
only a small number of additional examples are needed
to complete the training batch. To further improve rollout
efficiency, GRESO adopts an adaptive rollout batch size:

Br = min(Bdefault
r ,

βB∆

(1− α)
), (4)

where Bdefault
r is the default rollout batch size, B∆ is the

number of examples needed to fill the training batch, α is
the current zero-variance example ratio in this iteration (as
some rollouts have already occurred in this iteration), and
β is a safety factor, which is fixed at 1.25 across all our
evaluations, to ensure sufficient valid examples are collected.

4. Experiment
In this section, we evaluate GRESO on multiple bench-
marks using three different models. We evaluate
our methods on two training datasets as two settings:
DAPO+Math (DM) (Yu et al., 2025; Hendrycks et al., 2021)
and OpenR1 Subset (OR1) (Face, 2025). The evaluation

3We set the target zero-variance ratio to 25% for all experiments
and allocate it between easy and hard prompts in an 1 : 2 ratio (i.e.,
8.3% for easy and 16.7% for hard zero-variance prompts), based
on the intuition that, as models become more capable during train-
ing, more exploration on hard examples can be more beneficial.
However, a more optimal allocation scheme may exist, which we
leave for our future study.

results show that GRESO achieves comparable performance
to DS while significantly reducing rollout and training costs.

4.1. End-to-end Efficiency Comparison
No performance drop with up to 3.35× fewer rollouts.
To verify the effectiveness of GRESO, we present a compre-
hensive evaluation of GRESO and Dynamic Sampling (DS),
which filters out zero-variance examples and resamples to
fill the batch with effective data, across six math reason-
ing benchmarks, using three different model settings in Ta-
ble 1. The models are trained on either the DAPO + MATH
dataset (DM) or the Open R1 subset (OR1). We report both
the performance and the number of rollouts from the check-
point that achieves the best average performance across six
benchmarks. Across all training settings, GRESO achieves
comparable accuracy as DS, while significantly reducing the
number of rollout samples—achieving up to 3.35× fewer
rollouts. For example, on Qwen2.5-Math-7B trained on the
DM dataset, GRESO achieves a comparable average accu-
racy to DS (57.5% vs. 57.8%), while reducing the number
of rollouts from 13.1M to 6.3M. These results demonstrate
that GRESO maintains performance while substantially low-
ering the cost on rollouts. Similar improvements are ob-
served across other evaluation settings. This rollout saving
enables GRESO to achieve up to 2.4× wall-clock speedup
in the rollout stage and up to 2.0× speedup in total training
time, all without compromising accuracy (we present more
detailed comparison in Appendix D.2).

5. Conclusion
In this paper, we present GRESO, a selective rollout algo-
rithm for LLM RL. GRESO aims to improve RL training ef-
ficiency by selecting effective prompts before rollout to save
unnecessary overhead on sampling uninformative prompts.
GRESO leverages reward dynamics to efficiently filter out
zero-variance prompts before rollout and significantly im-
prove the RL training efficiency.
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A. Background and Related Work
A.1. Background: Group Relative Policy Optimization

Group Relative Policy Optimization (GRPO)(Shao et al., 2024) is a variant of Proximal Policy Optimization (PPO) (Ouyang
et al., 2022) tailored for language model fine-tuning. Instead of computing advantages using a value function, GRPO
normalizes reward scores within groups of responses sampled for the same prompt, which largely improves the training
efficiency. GRPO has shown superior performance in recent advances (Yu et al., 2025; Li et al., 2025; Wang et al., 2025;
Guo et al., 2025) in RL for LLMs, especially for reasoning tasks. GRPO aims to maximize the following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL (πθ||πref )

)
,

(5)

where Ai is the advantage, computed using a group of rewards {r1, r2, . . . , rG} corresponding to the outputs within each
group:

Ai,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (6)

The advantage of each response is computed as a normalized reward within a group of repeated rollouts. When all responses
in a group receive the same reward, regardless of whether they are all correct or all incorrect, the resulting reward variance is
zero, and the computed advantages for those responses are all zero. As a result, these examples provide no learning signal
during training. In this paper, we refer to such prompts as zero-variance prompts, while prompts that yield non-identical
rewards across responses are termed effective prompts.

A.2. Related Work

RL for LLM Reasoning. Reinforcement learning (RL) was initially used to align model outputs with human prefer-
ences (Ouyang et al., 2022; Dai et al., 2023). Since then, RL has become a commonly used technique for fine-tuning
LLMs, enabling them to generate more helpful, harmless, and honest responses by incorporating reward signals from
human feedback (Christiano et al., 2017; Bai et al., 2022). Recent advances (Guo et al., 2025; Yu et al., 2025; Team et al.,
2025; Gao et al., 2024) in LLM reasoning show that Reinforcement Learning with Verifiable Reward (RLVR), which relies
on verifiable reward signals instead of model-generated scoress, can effectively improve model reasoning ability. These
gains are achieved using various policy optimization methods such as PPO (Ouyang et al., 2022) and GRPO (Shao et al.,
2024). Encouraged by the success of RLVR, a growing body of work (Kazemnejad et al., 2024; Yuan et al., 2025b;a; Yu
et al., 2025; Liu et al., 2025; Luo et al., 2025; Zhang et al., 2025; Hu, 2025; Xiong et al., 2025) has emerged to further
improve reinforcement learning methods for LLM reasoning. For instance, methods such as VinePPO (Kazemnejad et al.,
2024), VC-PPO (Yuan et al., 2025b), and VAPO (Yuan et al., 2025a) aim to enhance LLM reasoning by optimizing the
value function Meanwhile, DAPO (Yu et al., 2025) introduces several techniques to improve GRPO training, including
Dynamic Sampling, which filters out zero-variance prompts and refills the training batch with effective training data through
resampling.

Data Selection for LLM. In addition to improving training algorithms, another line of work (Ivison et al., 2025; Xia et al.,
2024; Muennighoff et al., 2025a; Ye et al., 2025) seeks to enhance the efficiency and effectiveness of LLM training through
data selection strategies. Several approaches (Xia et al., 2024; Chen et al., 2024; Ivison et al., 2023) focus on pruning data
used for supervised fine-tuning. For example, S1 (Muennighoff et al., 2025b) reduces a large set of 59k examples to just 1k
high-quality samples. In parallel, another thread of research (Muldrew et al., 2024; Liu et al., 2024; Das et al., 2024; Li et al.,
2025; Fatemi et al., 2025; Wang et al., 2025) targets improving data efficiency in reinforcement learning for LLMs. For
instance, recent research (Li et al., 2025; Wang et al., 2025) shows that only a small subset of the original training dataset is
necessary for GRPO to improve the model’s reasoning ability. However, those methods rely on training models with the full
dataset first to identify important samples and do not offer clear improvements in end-to-end RL training efficiency.
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Algorithm 1 Training Iteration in GRESO

1: Input: Dataset D; Default rollout batch size Bdefault
r ; Training batch size Bt; Base exploration probability: peasy, phard;

Targeted zero-variance percentage: αeasy, αhard

2: B ← ∅;
3: Br ← Bdefault

r ;
4: neasy, nhard, ntotal ← 0, 0, 0;
5: repeat
6: Sample prompts {xi}Br

i=1 from D
7: and filter with Eq. 1 until batch size = Br;
8: Generate rollouts: {xi, ri}Br×G

i=1 ;
9: Filter out zero-variance prompts: {xi, ri}Bf×G

i=1 ;
10: neasy ← neasy+ filtered easy zero-var count;
11: nhard ← nhard+ filtered hard zero-var count;
12: ntotal ← ntotal +Br;
13: B ← B ∪ {xi, ri}Bf×G

i=1 ;
14: Br ← min(Bdefault

r ,Adaptive batch size by Eq. 4);
15: until |B| ≥ Bt
16: if neasy/ntotal ≥ αeasy then
17: peasy ← peasy −∆p;
18: else
19: peasy ← peasy +∆p;
20: end if
21: if nhard/ntotal ≥ αhard then
22: phard ← phard −∆p;
23: else
24: phard ← phard +∆p;
25: end if
26: Select Bt examples from B;
27: Update actor model with GRPO on selected batch;

B. Methodology Details

C. Detailed Experimental Setting
Models & Datasets. We run our experiments on Qwen2.5-Math-1.5B (Yang et al., 2024), DeepSeek-R1-Distill-Qwen-
1.5B (Guo et al., 2025), and Qwen2.5-Math-7B (Yang et al., 2024). For Qwen2.5-Math-1.5B/7B models, we use 4096 as the
context length, as it is the maximum context length for those two models. For DeepSeek-R1-Distill-Qwen-1.5B, we set the
context length to 8196. We evaluate our methods on two training datasets as two settings: 1) DAPO+MATH (DM): We
combine the DAPO dataset (Yu et al., 2025), which contains only integer solutions, with the MATH dataset (Hendrycks
et al., 2021), which also contains LaTeX-formatted solutions. We find that training on DAPO alone can degrade performance
on LaTeX-based benchmarks, so we augment it with MATH to preserve formatting diversity and improve generalization. 2)
OPEN-R1 30k subset (R1): A 30,000-example subset of the OPEN-R1 math dataset (Face, 2025).

Training. Our method is implemented based on verl (Sheng et al., 2024) pipeline and uses vLLM (Kwon et al., 2023) for
rollout. We use 4xH100 for Qwen2.5-Math-1.5B training and 8xH100 for Qwen2.5-Math-7B and DeepSeek-R1-Distill-
Qwen-1.5B. We set the rollout temperature to 1 for vLLM (Kwon et al., 2023). The training batch size is set to 256,
and the mini-batch size to 512. We sample 8 responses per prompt. We set the default rollout sampling batch size as
384. For DeepSeek-R1-Distill-Qwen-1.5B, we set the context length to 8196. The training batch size is set to 128, and
the mini-batch size to 512. We also sample 8 responses per prompt. We set the default rollout sampling batch size as
192. We train all models for 1000 steps, and we optimize the actor model using the AdamW (Loshchilov & Hutter, 2019)
optimizer with a constant learning rate of 1e-6. We use β1 = 0.9, β2 = 0.999, and apply a weight decay of 0.01. We
use the following question template to prompt the LLM. For reward assignment, we give a score of 0.1 for successfully
extracting an answer and a score of 1.0 if the extracted answer is correct. Similar to (Yu et al., 2025), we remove the
KL-divergence term. The optimization is performed on the parameters of the actor module wrapped with Fully Sharded Data
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Figure 4: (a) Dynamics of effective prompts ratio in each step in GRPO training. The ratio keeps decreasing as the training
proceeds. (b) Pipeline comparison between Dynamic Sampling and our GRESO method. Unlike Dynamic Sampling, which
filters out zero-variance prompts after rollout, GRESO efficiently predicts and filters them based on training dynamics
before rollout, which improves rollout efficiency. The probabilistic filtering also allows zero-variance prompts to still be
occasionally sampled, enabling the model to revisit potentially valuable prompts.

Parallel (FSDP) (Zhao et al., 2023) for efficient distributed training. We use 4 H100 for Qwen2.5-Math-1.5B training and 8
H100 for Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B (as it has a longer context length.) We set the targeted
zero-variance percentage to 25% for all experiments and allocate it between easy and hard prompts in an 1 : 2 ratio (i.e.,
8.3% for easy and 16.7% for hard zero-variance prompts), based on the intuition that, as models become more capable
during training, more exploration on hard examples can be more beneficial. However, a more optimal allocation scheme
may exist, which we leave for future study. We set the initial exploration probability to 50% and base exploration probability
adjustment step size ∆p for base exploration probability to 1%. We also set a minimal base exploration probability to 5% to
ensure a minimal level of exploration on zero-variance prompts throughout training.

GRESO with Fixed Parameters Across All Experiments. Although GRESO introduces a few hyperparameters, we argue
that hyperparameter tuning is not a major concern in practice. We designed GRESO (e.g., self-adjustable base exploration
probability) to be robust under default settings and conducted all experiments using a single fixed set of hyperparameters
across models and tasks. The consistent performance observed across different models and tasks demonstrates that GRESO
does not rely on extensive hyperparameter tuning, making it both practical and easy to integrate into existing RL fine-tuning
pipelines.

Evaluation. For benchmark datasets, we use six widely used complex mathematical reasoning benchmarks to evaluate
the performance of trained models: Math500 (Hendrycks et al., 2021; Lightman et al., 2023), AIME24 (Art of Problem
Solving, 2024a), AMC (Art of Problem Solving, 2024b), Minerva Math (Lewkowycz et al., 2022), Gaokao (Zhang et al.,
2023), Olympiad Bench (He et al., 2024). Same as the training setting, For Qwen2.5-Math-1.5B/7B models, we use 4096 as
the context length. For DeepSeek-R1-Distill-Qwen-1.5B, we set the context length to 8196. Similar to (Wang et al., 2025),
we evaluate models on those benchmarks every 50 steps and report the performance of the checkpoint that obtains the best
average performance on six benchmarks. We evaluate all models with temperature = 1 and repeat the test set 4 times for
evaluation stability, i.e., pass@1(avg@4), for all benchmarks.

Question Template

Please solve the following math problem: {{Question Description}}. The assistant first thinks about the reasoning
process step by step and then provides the user with the answer. Return the final answer in \boxed{} tags, for example
\boxed{1}. Let’s solve this step by step.

D. Additional Experiments
D.1. Detailed Sampling Comparison

We include Open R1 subset (OR1) in Table 2. GRESO achieves comparable performance with many fewer rollouts.
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Table 2: Performance (%) comparison across six math reasoning benchmarks. We train three models on DAPO +
MATH (DM) and the Open R1 subset (OR1). Compared to Dynamic Sampling (DS), GRESO achieves similar accuracy
while significantly reducing the number of rollouts.

Dataset Method Math500 AIME24 AMC Gaokao Miner. Olymp. Avg. # Rollout

Qwen2.5-Math-1.5B (Yang et al., 2024)

DM DS 77.3 16.7 61.7 64.2 31.8 38.7 48.4 7.6M
GRESO 76.6 15.0 61.4 66.2 33.3 38.5 48.5 3.3M

OR1 DS 77.1 16.7 50.3 65.5 30.9 39.7 46.7 3.8M
GRESO 76.1 20.0 50.6 65.1 30.0 39.2 46.8 1.6M

DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025)

DM DS 87.9 36.7 71.7 78.7 35.3 55.9 61.0 2.4M
GRESO 87.7 36.7 71.1 78.4 33.9 55.1 60.5 1.6M

OR1 DS 84.8 25.0 68.4 74.0 34.1 54.2 56.7 2.4M
GRESO 85.9 26.7 66.9 75.2 33.6 55.5 57.3 1.5M

Qwen2.5-Math-7B (Yang et al., 2024)

DM DS 82.9 34.2 79.2 71.7 35.4 43.6 57.8 13.1M
GRESO 82.2 32.5 80.7 70.2 35.4 44.1 57.5 6.3M

OR1 DS 82.9 34.2 63.1 67.3 34.9 46.3 54.8 11.4M
GRESO 82.3 35.0 64.5 66.8 36.5 45.7 55.1 3.4M

Table 3: Training time (hours) breakdown and comparison for models trained on DAPO + MATH dataset. GRESO
consistently lowers rollout cost and achieves up to 2.4× speedup in rollout and 2.0× speedup in total training cost over
Dynamic Sampling.

Method Training Other Rollout Total

Qwen2.5-Math-1.5B

DS 8.1 3.6 41.0 (1.0×) 52.6 (1.0×)
GRESO 8.9 3.9 25.2 (1.6×) 37.9 (1.4×)

DeepSeek-R1-Distill-Qwen-1.5B

DS 6.1 3.3 92.4 (1.0×) 101.9 (1.0×)
GRESO 6.8 4.0 62.0 (1.5×) 72.7 (1.4×)

Qwen2.5-Math-7B

DS 16.1 6.1 155.9 (1.0×) 178.0 (1.0×)
GRESO 16.6 6.3 65.5 (2.4×) 88.3 (2.0×)

D.2. Wall-clock Time Performance Comparison

Up to 2.4× wall-clock time speed-up in rollout and 2.0× speed-up in training. To better understand the efficiency of
our proposed methods, we report the detailed end-to-end training time (1000 steps) breakdown for different stages: rollout
generation, actor model update, and other overheads (e.g., reference model and advantage calculation). Qwen2.5-Math-1.5B
is trained on 4×H100 GPUs, while the other two models are trained on 8×H100 GPUs. Table 3 compares the training
time breakdown between GRESO and Dynamic Sampling for models trained on the DAPO + MATH dataset. For all three
models, GRESO significantly reduces rollout time—achieving up to 2.4× speedup in rollout and 2.0× speedup in total
training time compared to DS. For instance, on Qwen2.5-Math-7B, GRESO reduces rollout time from 155.9 hours to 65.5
hours, cutting overall training time from 178.0 to 88.3 hours.

D.3. Analysis and Ablation Study

In this section, we use Qwen-Math-1.5B trained on the DAPO + MATH dataset to analyze in detail how GRESO reduces
training overhead by enhancing rollout quality, and we also conduct an ablation study on the contribution of each component
in GRESO.

GRESO improves effective prompt ratio and rollout efficiency. As shown in Figure 5a, compared to Dynamic Sampling,
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Figure 5: Training dynamics analysis of Qwen-Math-1.5B trained on the DAPO + MATH dataset: (a) Effective prompt ratio
in each step. GRESO maintains a consistently higher effective prompt ratio during training. (b) To obtain the same number
of effective prompts per batch, GRESO requires less rollout time. (c) GRESO achieves more effective rollouts for training
under the same rollout time budget compared to Dynamic Sampling. (d) Ablation study on adaptive batch size (ABS) for
sampling: Both ABS and GRESO effectively reduce the number of rollouts per training step.

where effective prompt ratio steadily decreases during training, since GRESO filter out many zero-variance prompts before
rollout, GRESO consistently maintains a significantly higher effective prompt ratio. For instance, as effective prompt ratio
drop to around 20% in the late stage of training, GRESO maintains the effective prompt ratio larger than 70%. This higher
ratio directly translates into reduced rollout time per training step, as fewer zero-variance prompts are sampled. Figure 5b
shows that GRESO has significantly less rollout time per step compared to dynamic sampling. Figure 5c compares the total
number of effective rollouts used during training under the same rollout time budget for GRESO and Dynamic Sampling.
GRESO consistently generates more effective rollouts over time. For instance, GRESO reaches 2 million effective rollouts
in approximately 25 hours, while Dynamic Sampling requires over 40 hours to achieve the same, which demonstrate the
efficiency of GRESO.
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Figure 6: (a) Dynamics of base exploration probabilities.
(b) Dynamics of easy and hard zero-variance prompt ratio.

Dynamics of self-adjustable base exploration proba-
bilities. A key parameter in GRESO is the base explo-
ration probability pe defined in Equation 1. As discussed
in Section 3.1, this probability can vary depending on
the model, dataset, and training stage. Instead of manu-
ally tuning pe, GRESO employs an adaptive mechanism
to automatically adjust it during training. Specifically,
GRESO maintains separate exploration probabilities for
hard and easy zero-variance prompts, denoted as pe,hard
and pe,easy, respectively. In Figure 6a, we plot the dy-
namics of both pe,hard and pe,easy, along with the ratio of
easy and hard zero-variance prompts over time. We ob-
serve that after the first training epoch, both exploration
probabilities initially decline. However, as the model ability improves, pe,hard begins to increase, enabling more exploration
of hard examples during later stages of training. Figure 6b shows the dynamics of easy and hard zero-variance ratios. Unlike
Dynamic Sampling, GRESO effectively maintains both ratios close to their target values during training, which demonstrates
the effectiveness of its self-adjusting mechanism.
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Figure 7: Selection Dynamics of different
prompts in GRESO. Each row is a prompt,
and each column is an epoch.

Selection Dynamics. In Figure 7, we present a case study illustrating how
GRESO selects or skips prompts over training epochs. We observe that
very easy prompts tend to remain easy throughout training; although fre-
quently skipped, GRESO still occasionally selects them to ensure a minimal
level of exploration. For prompts of moderate difficulty, as the model be-
comes stronger over time, these prompts gradually become easier and are
increasingly skipped. In contrast, some hard prompts become solvable (i.e.,
effective prompts) in later epochs or even easy prompts. However, certain
hard prompts remain unsolved throughout training.

Ablation study on adaptive batch size (ABS) for sampling. In addition
to the prompt selection algorithm based on training dynamics, another key
component of GRESO is the adaptive batch size (ABS) for sampling. When
only a small number of effective prompts are needed to fill the training batch,
ABS enables rollout on a smaller batch instead of using the default large
sampling batch size, thereby reducing unnecessary computation. Figure 5d
compares the number of rollouts per training step across three methods:
Dynamic Sampling (DS), DS with Adaptive Batch Size (DS + ABS), and
GRESO. DS maintains a fixed sampling batch size, leading to consistently
high sampling overhead. DS + ABS dynamically adjusts the batch size,
reducing the number of samples in earlier steps, but still shows increasing
sampling as training progresses and the effective prompt ratio decreases. In
contrast, GRESO consistently maintains a much lower number of samples per step due to its more selective rollout strategy
combined with ABS, resulting in significantly reduced rollout overhead throughout training.

D.4. Impact of Targeted Zero-variance Percentage
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Figure 8: Comparison of the number
of rollouts across different target zero-
variance ratios.

In this section, we study how varying the targeted zero-variance percentage
impacts training and rollout efficiency. In addition to the default setting of 25%
used throughout our experiments, we also evaluate alternative values of 0, 50%,
100% (i.e., always allow exploration). As shown in Table 4, different zero-
variance targets give us nearly identical accuracy. We also present the number
of rollouts per step in Figure 8. When we reduce the targeted zero-variance
ratio to 0, we observe that the number of rollouts per step remains similar to
that of the 25% setting. This lack of difference can be attributed to two factors.
First, we enforce a minimum exploration rate of 5%, which ensures that some
exploration still occurs. As a result, the actual zero-variance percentage never
truly reaches 0. Second, we always oversample some data in the first batch
of rollouts in each iteration to provide some redundancy to avoid the second
batch of rollouts. With this setting, as long as the first batch generates enough
effective training data to fill the training batch, regardless of whether the target
is 0 or 25%, the total number of rollouts remains approximately the same.
In addition, as the targeted zero-variance percentage increases, more zero-
variance prompts are allowed during rollout, leading to a higher number of rollouts per step. When the targeted percentage
becomes sufficiently large, GRESO gradually approaches the behavior of dynamic sampling with adaptive rollout batch size.

Table 4: Average accuracy across six math reasoning benchmarks under different targeted zero-variance percentages.

Target (%) 0 25 50 100

Acc. (%) 48.1 48.5 48.5 48.4
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D.5. Alternative Design: Linear Backoff
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namic for linear backoff.

In addition to the probabilistic filtering approach introduced in Section 4.2
of the main paper, we also explored an alternative solution for filtering zero-
variance prompts during the early stages of this project. One such method is the
backoff algorithm (Kwak et al., 2005) (e.g., linear backoff). Specifically, if a
prompt is identified as zero-variance in the most recent k rollouts, it is skipped
for the next k training epochs. However, there are several limitations to this ap-
proach. As discussed in Section 4 of the paper, the degree of exploration should
adapt to the model, dataset, and training stage. The linear backoff algorithm
schedules the next rollout for a zero-variance prompt k epochs into the future.
As a result, if we wish to adjust the exploration intensity dynamically based on
new observations or evolving training dynamics, the backoff algorithm cannot
directly affect prompts that have already been deferred to future epochs. For
instance, as shown in Figure 9, unlike probabilistic filtering, filtering based on
linear backoff can cause periodic fluctuations in zero-variance prompt ratio,
which differs from the smoother dynamics enabled by probabilistic filtering
This lack of flexibility limits its ability to adapt exploration strategies in a
fine-grained or responsive manner, which motivated the design of our current GRESO algorithm based on probabilistic
filtering.

D.6. Case study of Filtered Examples

To better understand the behavioral patterns of our selective filtering algorithm, we present a case study of prompts that
were frequently skipped or selected during training from the MATH (Hendrycks et al., 2021) dataset. We categorize the
examples into three groups: Frequently Skipped Prompts (Easy), Frequently Skipped Prompts (Hard), Frequently Selected
Prompts. We observe that frequently skipped easy prompts often involve straightforward calculations or routine applications
of formulas, making them more likely to be solved across all sampled responses. Frequently selected prompts tend to exhibit
moderate difficulty, contributing more consistently to model improvement. As for frequently skipped hard prompts, these
problems are too challenging for the model to solve, even across multiple rollouts, resulting in zero variance among the
rewards and ultimately failing to contribute to training.

Frequently Skipped Prompts (Easy)

1. Question: Johnny has 7 different colored marbles in his bag. In how many ways can he choose three different
marbles from his bag to play a game? Solution: 35.

2. Question: The number n is a prime number between 20 and 30. If you divide n by 8, the remainder is 5. What is
the value of n? Solution: 29.

3. Question: Evaluate: 10−2·50
10−3 Solution: 10.

4. Question: The Ponde family’s Powerjet pumps 420 gallons of water per hour. At this rate, how many gallons of
water will it pump in 45 minutes? Solution: 315.

5. Question: Suppose that n, n+1, n+2, n+3, n+4 are five consecutive integers. Determine a simplified expression
for the sum of these five consecutive integers. Solution: 5n+ 10.
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Frequently Skipped Prompts (Hard)

1. Question: A parabola and an ellipse share a focus, and the directrix of the parabola is the line containing the
minor axis of the ellipse. The parabola and ellipse intersect at two points. Given that the equation of the ellipse is
x2

25 + y2

9 = 1, find the distance between those two points. Solution: 4
√
14
3 .

2. Question: In triangle ABC, AB = AC = 100, and BC = 56. Circle P has radius 16 and is tangent to AC and
BC. Circle Q is externally tangent to P and is tangent to AB and BC. No point of circle Q lies outside of△ABC.
The radius of circle Q can be expressed in the form m− n

√
k, where m, n, and k are positive integers and k is the

product of distinct primes. Find m+ nk. Solution: 254.

3. Question: Let EFGH , EFDC, and EHBC be three adjacent square faces of a cube, for which EC = 8, and
let A be the eighth vertex of the cube. Let I , J , and K, be the points on EF , EH , and EC, respectively, so that
EI = EJ = EK = 2. A solid S is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes
parallel to AE, and containing the edges IJ , JK, and KI . The surface area of S, including the walls of the tunnel, is
m+ n

√
p, where m, n, and p are positive integers and p is not divisible by the square of any prime. Find m+ n+ p.

Solution: 417.

4. Question: Let a and b be nonnegative real numbers such that

sin(ax+ b) = sin 29x

for all integers x. Find the smallest possible value of a. Solution: 10π − 29.

5. Question: Four people sit around a circular table, and each person will roll a standard six-sided die. What is the
probability that no two people sitting next to each other will roll the same number after they each roll the die once?
Express your answer as a common fraction. Solution: 35

72 .

Frequently Selected Prompts

1. Question: Let x, y, and z be three positive real numbers whose sum is 1. If no one of these numbers is more than
twice any other, then find the minimum value of the product xyz. Solution: 1

32 .

2. Question: The number
e7πi/60 + e17πi/60 + e27πi/60 + e37πi/60 + e47πi/60

is expressed in the form reiθ, where 0 ≤ θ < 2π. Find θ. Solution:
9π

20
.

3. Question: For what values of x is
x− 10x2 + 25x3

8− x3

nonnegative? Answer as an interval. Solution: [0, 2).

4. Question: Determine all real numbers a such that the inequality |x2 +2ax+3a| ≤ 2 has exactly one solution in x.
Solution: 1, 2.

5. Question: By starting with a million and alternatively dividing by 2 and multiplying by 5, Anisha created a
sequence of integers that starts 1000000, 500000, 2500000, 1250000, and so on. What is the last integer in her
sequence? Express your answer in the form ab, where a and b are positive integers and a is as small as possible.
Solution: 512.

E. Limitations
While GRESO effectively filters out the most obvious zero-variance training prompts—those that contribute no learning
signal to the model, it does not estimate or rank the value of the remaining prompts, which can also contain uninformative
prompts that provide limited contribution to training. A potential future work for GRESO is to extend its filtering mechanism
beyond binary decisions by incorporating a finer-grained scoring or ranking system to prioritize prompts based on their
estimated training utility. Despite that, we view GRESO as an important first step toward such an advanced data selection
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algorithm for efficient rollout and believe it provides a solid foundation for more adaptive and efficient reinforcement
learning in LLM training.

F. Broader Impact
This work enhances the efficiency and scalability of RL-based fine-tuning for language models by introducing a lightweight,
selective rollout mechanism that filters out uninformative prompts. By significantly reducing redundant computation, our
method lowers overall training costs. This makes it easier for institutions with limited computational budgets to train
strong models, helping democratize access to advanced AI. Furthermore, our approach promotes more sustainable and
resource-efficient practices, encouraging future research toward greener and more inclusive large-scale training.
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