
Published in Transactions on Machine Learning Research (10/2023)

Online model selection by learning how compositional ker-
nels evolve

Eura Shin eurashin@g.harvard.edu
Department of Computer Science
Harvard University

Predrag Klasnja klasnja@umich.edu
School of Information
University of Michigan

Susan A. Murphy samurphy@g.harvard.edu
Department of Computer Science
Harvard University

Finale Doshi-Velez finale@seas.harvard.edu
Department of Computer Science
Harvard University

Reviewed on OpenReview: https: // openreview. net/ forum? id= 23WZFQBUh5

Abstract

Motivated by the need for efficient, personalized learning in mobile health, we investigate
the problem of online compositional kernel selection for multi-task Gaussian Process regres-
sion. Existing composition selection methods do not satisfy our strict criteria in health;
selection must occur quickly, and the selected kernels must maintain the appropriate level
of complexity, sparsity, and stability as data arrives online. We introduce the Kernel Evo-
lution Model (KEM), a generative process on how to evolve kernel compositions in a way
that manages the bias-variance trade-off as we observe more data about a user. Using pilot
data, we learn a set of kernel evolutions that can be used to quickly select kernels for new
test users. KEM reliably selects high-performing kernels for a range of synthetic and real
data sets, including two health data sets.

1 Introduction

Online, multi-task learning is common in many machine learning applications, ranging from recommender
systems (Luo et al., 2020) to online education (Sayed et al., 2020). In these settings, pools of available
data grow for each user as they continue to interact with the application platform; a single task consists
of maintaining the best model for an individual at any given time. We are specifically motivated to model
online, multi-task problems in mobile health (mHealth). For example, in mobile fitness, we want to model a
user’s daily activity levels given other mobility data to plan the delivery of personalized messages. Each user’s
data is a time series in which model outputs are needed, online, in order to personalize health interventions.

Mobile health applications have a number of domain-specific assumptions and constraints. For our applica-
tions, we can assume the availability of pilot training data (on the order of tens to hundreds of users Lee
et al. (2016); Cafazzo et al. (2012); Choi et al. (2016)) that may be used to prepare a model for deployment
in a high-stakes clinical trial. We can assume a generous pre-deployment period to work with the pilot data
(on the order of months to years) and to commit to a set of modeling decisions (Trella et al., 2022). To
maintain the integrity of the study during deployment, our models are held to strict criteria; we must be
able to update the model for each user as data arrives online, and the updated model must be appropriately

1

https://openreview.net/forum?id=23WZFQBUh5

Published in Transactions on Machine Learning Research (10/2023)

(a) Baseline model, N = 5 (b) Baseline model, N = 30 (c) Our model, N = 5 (d) Our model, N = 30

Figure 1: Our selection model (in red, fig. 1c and fig. 1d) infers the kernel composition for a
new user and adjusts its complexity given more data, N . We demonstrate the quality of the kernels
selected by our method (red) versus the baseline method (blue) by plotting the GP predictions given varying
numbers of observations, shown in red “X”s. We want the selection method to choose kernels that result
in good predictions when we have observed little data (fig. 1a, fig. 1c) and sufficient data (fig. 1b, fig. 1d).
The GP mean predictions are dotted lines and the uncertainties are shaded; a good prediction is as close as
possible to the true function (the solid, black line) and has high test likelihood.

complex and interpretable. By appropriate complexity, we mean that the model should not overfit when
there is initially a small amount of data per user, or underfit as the available data grows; in mHealth, a
poorly fit model risks sending inappropriate interventions that lead to user dropout. By interpretable, we
mean that the model must predict uncertainties, include only a sparse number of relevant features, identify
the structural relationship of the feature to the predictions, and maintain stability in the features and rela-
tionships between updates. Such characteristics allow for verification of the model and scientific discovery
of meaningful relationships from the data.

Since Gaussian Processes naturally handle scarce, noisy data with the capacity to model complex trends and
their uncertainties, they are a good candidate to meet such interpretability standards in health (Tomkins
et al., 2020; Cheng et al., 2020; Ghassemi et al., 2015). As a result, we focus on GP regression for modeling
online health data. However, a poor choice of kernel is detrimental to GP performance (Oyetunde & Liem,
2022; Stephenson et al., 2021), and current kernel selection approaches do not meet the strict needs– adaptive
complexity and interpretability– of our multi-task, online health settings.

For single-task learning, compositional kernel search (CKS) methods use arithmetic combinations of simple
kernels to encode structures in data (Duvenaud et al., 2013). Structural kernels selected by CKS are sparse
and encode relationships that are intuitive to understand (Lloyd et al., 2014; Schulz et al., 2017). However,
restarting the selection procedure from scratch risks losing the stability of the structure: the kernel included
in one time step may differ in the next. Furthermore, these methods do not scale to the update cadence
that is required for multi-task settings—we need to repeat this expensive search every time a new user
joins the app or the model for an existing user is updated. With multiple users (tasks), we can share
information about the best kernel across users. CKS can be made scalable through multi-task learning,
in which a small set of representative kernels is selected on pilot users and then used for modeling new
users in general deployment. However, existing multi-task approaches consider the final data sets of pilot
users when identifying representative kernels (Titsias & Lázaro-Gredilla, 2011). For online selection, directly
transferring a complex kernel composition, learned on a pilot user with many data points, to a new user
with few points leads to overfitting (see fig. 1a).

Our method for choosing representative kernels explicitly addresses the challenges of online, multi-task model
selection in mHealth. We increase the complexity of the kernel only when demanded by data. To do so,
we learn the best sequences of kernels that will balance the bias-variance trade-off for users with growing
amounts of data (see fig. 1c and fig. 1d). These sequences, which we call kernel evolutions, encode the
relationship between former and current kernels, which can be transferred from pilot to test users. By
design, our kernel evolutions encode stability and sparsity, since they demonstrate how user compositions
change from one time step to the next.

We illustrate the efficacy of our approach on synthetic examples, UCI datasets, and real health data selected
to match the characteristics of data we would find in mHealth. When data arrive online, our method
selects kernels that are (1) sparse, including only features that are relevant to the prediction target; (2)

2

Published in Transactions on Machine Learning Research (10/2023)

stable, includes the same kernel components (i.e. features) consistently across time steps; (3) of adaptive
complexity, selecting kernels that manage the bias-variance trade-off.

2 Related Work

Batch Compositional Kernel Selection. Our compositional kernel selection strategy is specifically
designed for online settings. That said, one way to use batch selection methods for online data is to re-
run the selection algorithm on the user’s cumulative data set each time new data arrives. The Automatic
Statistician literature describes batch methods that search over a grammar of compositions (Steinruecken
et al., 2019). Duvenaud et al. (2013), and Lloyd et al. (2014) introduced Compositional Kernel Search
(CKS), a greedy search over the sums and products of simpler base kernels. Recent work has made CKS
more scalable by approximating the model evidence (Kim & Teh, 2018) or representing the search as a neural
network (Sun et al., 2018). The greedy method of Duvenaud et al. (2013) is most similar to our own, in
that it prioritizes building the strongest kernels from the data into the composition. However, the space of
compositions these batch methods must search over is already extremely large (Gardner et al., 2017), and
infeasible to repeat from scratch each time new data arrives.

Online Composition Selection. Probabilistic composition selection methods (Malkomes et al., 2016;
Gardner et al., 2017; Titsias & Lázaro-Gredilla, 2011; Tong et al., 2021; Zhang et al., 2019) are better suited
for online data since one can use the previous posterior over kernels as the updated prior for training on new
data. For example, Tong et al. (2021) uses shrinkage priors to select a sparse subset of kernel components.

A recent subset of CKS methods attempt kernel selection specifically for non-stationary functions– online
data whose generating kernel changes over time. Adaptations of Duvenaud et al. (2013) use a “sliding
window” on the data and a change-point detection algorithm for initializing CKS (Hüwel et al., 2021; 2022).
These methods are more scalable in time but not in users, as they still require many iterations of re-sampling
or re-approximating the updated posterior per user. In contrast, our method scales to new users by directly
transferring the compositions learned from pilot users.

Finally, there are areas of online (multi) kernel selection that are distinct from online compositional kernel
selection. Some online methods are designed specifically for Support Vector Machines (Zhang & Liao, 2018;
Yang et al., 2012; Orabona et al., 2010; Hoi et al., 2013), which lack predictive uncertainties and bypass
dealing with the cubic time complexity of calculating a GP marginal likelihood. Lu et al. (2020) use random
features to approximate an ensemble of stationary GPs but does not describe how to combine different base
kernels (e.g. linear and periodic), sparsely select over components, or search over hyperparameters. Similarly,
Zhang et al. (2019) learn a mixture of (infinite) GPs that evolves over time, but the GPs that they consider
have the same kernel composition and differ by the hyperparameters; they do not describe how to jointly
search over compositions and their hyperparameters. Finally, Levi & Ullman (2009) poses a model-agnostic
algorithm that incrementally increases the model’s capacity but does not address how to search over a large
composition space. In summary, these works are missing at least one key element of compositional kernels
for GPs, which are desirable for their interpretability in our setting.

Multi-task Selection. One way to make CKS amenable to multi-task settings is by leveraging kernel
similarities across tasks. Methods from Tong & Choi (2019) and Titsias & Lázaro-Gredilla (2011) learn a set
of kernel compositions on multiple users that can be transferred to new users. However, these approaches
risk overfitting, as they do not restrict the complexity of the composition that is being transferred.

KEM’s approach of transferring kernel evolutions from a set of pilot users to a set of test users is related to
the meta-learning paradigm. Classical MAML (Finn et al., 2017) and its variants (Yoon et al., 2018; Finn
et al., 2018) require differentiable loss functions– relaxing our discrete search over compositions to a soft
search would reduce sparsity. Similarly, non-compositional approaches from Garnelo et al. (2018); Rothfuss
et al. (2021a;b) sacrifice the sparsity and stability that our additive compositions provide.

3

Published in Transactions on Machine Learning Research (10/2023)

3 Background

Compositional kernels. We assume that the reader is familiar with GP regression (Rasmussen &Williams,
2006). Compositional kernels express complex functions through sums and products of simpler kernels
Duvenaud et al. (2013). The sum of two functions with independent priors, f1 ∼ GP (0, k1) and f2 ∼
GP (0, k2), corresponds to the same operations on the kernels: f1 + f2 ∼ GP (0, k1 + k2). Furthermore,
the product of two kernels that are defined on different dimensions of the data allows us to account for
interactions between the dimensions. Compositional kernel selection uses these rules to form an expressive
grammar over functions. For example, functions that can be recovered with a compositional kernel include
generalized additive models (

∑D
d=1 SEd) and automatic relevance determination (

∏D
d=1 SEd), where SEd is

a squared exponential kernel on the d-th dimension of the data.

Dirichlet process mixture models. A Dirichlet Process (DP) mixture model generalizes the Dirichlet
distribution from being a conjugate prior over a fixed number of clusters to an infinite number of clusters
(Li et al., 2019). The generative process for data under the DP is: H ∼ DP (α,G), θn|H ∼ H, Xn|θn ∼
p(Xn; θn), where Xn is the observation, θn are the parameters of the distribution that generated Xn, and
H is a distribution over the parameters (G is the base distribution). The Dirichlet Process assumes H
is discrete. Consequently, all Xi, Xj with the same θi = θj can be thought of as belonging to the same
cluster. Let {θc}Cc=1 represent the C clusters that exist among the observations and Zn ∈ {1, . . . , C} be the
assignment of an observation to one of these clusters.

One can track cluster assignments under this DP using a Chinese Restaurant Process (CRP). Given the
current cluster assignments of all other observations, the n-th observation is assigned to cluster c with the
following probability:

p(Zn = c|Z1, . . . , Zn−1) =
{

α
N+α−1 , if c = C + 1
Nc

N+α−1 , otherwise
, (1)

where Nc is the number of observations currently assigned to the c-th cluster of N total observations. Under
this model, the probability of starting a new cluster is determined by α. The probability of assignment to an
existing cluster is proportional to the number of observations already in that cluster. For more information
on DPs, see Teh (2010).

4 Problem Setting

During deployment, user data arrives online – in batches over multiple time steps – and we want to efficiently
select the “best” kernel for every user at every time step. Below, we define our kernel notation and what it
means to select the “best” kernel for a user at a given point in time.

Kernel notation. We denote kernel compositions as K, kernel hyperparameters (e.g., lengthscale, period)
as θ, and kernels (combination of a composition and hyperparameters) as Kθ. Bold notation represents a
set; for example, K is a set of kernel compositions. We attribute any of these entities to a user u and/or
time t through subscripts. For example, Kθu,t

is a kernel and Ku,t is a set of kernel compositions for the
u-th user at time t.

Kernel compositions. As in Tong et al. (2021), we define a kernel composition as a weighted sum of
“candidate kernels”:

K(x, x′) =
I∑
i=1

wiKi(x, x′), (2)

where ki is one of I candidate kernels and wi > 0 is the weight.

Formalizing online model selection. We begin by defining what it means for the user’s data to arrive
online. Let Du,t = {Xu,t,yu,t} represent the cumulative data set of all observations for user u up to time t.
We assume that the user’s data is generated by a fixed, latent function fu(x) : RD → R for D dimensional
inputs x. We assume fu was sampled from a GP with an unknown kernel. The observed targets are corrupted
by a user-specific level of noise, such that y = fu(x) + εu for εu ∼ N (0, σ2

u).

4

Published in Transactions on Machine Learning Research (10/2023)

Now we are prepared to define what it means to select the best kernel for a user’s online data. At time t, we
must select a kernel composition Ku,t and hyperparameters θu,t so that f̂u,t ≈ fu where f̂u,t ∼ GP (·,Kθu,t).
Using our observations from the user up to this point Du,t, the kernel Ku,t can be selected by maximizing
the marginal likelihood, or, as we will later do, by minimizing the BIC for a restricted set of compositions.

Stationarity assumptions. We make two stationarity assumptions on (1) the distributions between pilot
and deployment users; and (2) the data distribution within a single user. First, we assume there is no
distribution shift between pilot users and deployment users. In health, the pilot trial is designed to target
the same population as in deployment. For example, an earlier and follow-up version of the HeartSteps
trial targeted adults newly diagnosed with stage 1 hypertension in the Seattle area (Ghosh et al., 2023).
Second, we assume that the data-generating function for a single user, fu, does not change over time. The
evolution of the “best” composition between time steps does not indicate non-stationarity, but rather, our
adjustments to the bias–variance trade-off in selecting the best-fitting model for the data we currently have
about a user. In health settings, stationarity is often assumed because the noisiness and sparsity of the data
make it difficult to directly model non-stationary effects online (Trella et al., 2022).

5 Kernel Evolution Model (KEM)

Problem statement. During deployment, we must select kernel compositions for new users in a manner
that is of appropriate complexity to the currently available data, and interpretable– sparse and stable– in
the components that are included.

Our solution. We propose the Kernel Evolution Model (KEM), a Bayesian non-parametric model that
describes how a user’s kernel evolves as a function of observing additional data. Our solution happens in two
stages, pilot training and deployment testing, which we describe in section 5.1. We use KEM to find a set of
kernel evolutions offline (pilot training, section 5.3), which enables us to efficiently select kernel compositions
online (deployment testing, section 5.4) in a sparse and stable manner.

5.1 Pilot training vs. deployment testing.

Example timeline. KEM learns how to select kernels during a long pilot training phase in order to efficiently
select kernels for new users during deployment. In pilot training, we have the time and resources to perform
any necessary search operations over compositions. For example, there was over one year between the pilot
trial of HeartSteps V1, a micro-randomized trial for mobile health activity notifications (Klasnja et al., 2019),
and HeartSteps V2 (Liao et al., 2020). In contrast, during deployment testing, new users and their data
arrive online, and we must efficiently select kernels for these users with initially limited data. For example,
the kernel selection must occur daily (Liao et al., 2020) or weekly (Trella et al., 2022), in a stable manner,
for all users. We do not re-learn the set of kernel evolutions between the arrival of test users, so that kernel
selection remains stable during deployment.

Pilot training. Before the main study, we use data from a pilot study to identify sequences of kernel
compositions– which we call kernel evolutions– that manage the bias–variance trade-off as the amount of
data increases, per user, for different users. To do so, we process the training users’ data incrementally, as
though it were arriving “online.” For example, for some users, a linear kernel might best model the initial
data, but at a later time, a linear + periodic may be best; for others, a squared-exponential kernel may
always be preferred. In section 5.2 and section 5.3 we detail the pilot training process that identifies a set of
kernel evolutions– with emphasis on sparsity and stability– among the training users.

Deployment testing. During deployment, we use the previously learned evolutions to omit compositions that
are unlikely to fit, too complicated, not sparse, and not stable. In the above example, if a test user’s data is
currently modeled by a linear kernel, given new data we might consider either a linear or a linear+periodic
kernel, but not try a squared-exponential. (Note: while the selection model helps us efficiently select a
kernel composition for a new user, the hyperparameters of the composition must still be optimized to that
test user). In section 5.4 we detail how evolutions are used to select kernels for a new test user.

5

Published in Transactions on Machine Learning Research (10/2023)

Figure 2: Example visualization of a selection model learned by KEM on synthetic data. This
directed graph is one way to represent the Kparent → Kchild relationships that are learned in pilot training.
Each node in the graph is a DP. The arrows leaving from each node represent the “clusters” found at this
DP. It is possible for two separate DP to identify clusters with the same composition; this is why SE0 and
LIN0 both have arrows leading to LIN0 + PER0.

5.2 KEM: A Generative Process for Online Data

Modeling evolutions of kernel compositions with a Dirichlet Process. For a user u, we model
the evolution of a single composition from Ku,t−1 to Ku,t with a DP mixture model. Generically, we refer
to an evolution as a transition of the form Kparent → Kchild. Since the distribution over Kchild is only
conditioned on its immediate predecessor Kparent, our process is Markovian– not hierarchical– in how it
represents evolutions over time.

Why a mixture model? We will learn the set of evolutions Kparent → Kchild by observing the evolutions
that occurred among all our pilot users. It is possible that different pilot users, who started with the same
Kparent, required a different Kchild composition. Each cluster in our mixture model corresponds to a unique
composition for Kchild, and each cluster is populated with instances of the given evolution occurring among
the pilot users. Why a DP? Using a DP allows us to avoid having to pre-specify the number of clusters– the
number of unique compositions (Kchild) per Kparent that will exist.

Concretely, for every kernel composition Kparent, there is a DP over the composition of Kchild:

HKparent(Kchild) ∼ DP (α,Gparent|Kparent), (3)

where HKparent defines a distribution over the next composition leaving from Kparent. Gparent is the base
distribution (whose support is over kernel compositions) and α is the concentration parameter of the DP.

We will now discuss how our choice of Gparent encourages sparsity and stability in the evolution from Kparent
to Kchild. Recall from eq. (2) that a kernel composition is a weighted sum over candidate kernels, where
wi is the weight on the i-th candidate kernel. Gparent uses a spike-and-slab distribution for the weights:
wi = a2

i si, si ∼ Bernoulli(πi), a2
i ∼ p(a2

i). The “spike” is represented by Bernoulli(πi), and determines
whether or not the candidate kernel is included in the composition. The “slab” is represented by p(a2

i)
and is a prior on the weights themselves (note that this is equivalent to a prior on the kernel’s amplitude
hyperparameter). Our experiment settings for the DP parameters are given in appendix 10.2.5.

For sparsity, the spike-and-slab distribution encourages wi to be zero, which induces sparsity in the total
number of candidate kernels included. Smaller values of πi encourage greater sparsity (since wi = 0 if si = 0).
For stability, when Gparent is conditioned on Kparent, it places a higher probability of including the same
candidate kernels as Kparent. Specifically, if candidate kernel j was in the previous composition, then we set
its probability πj close to 1. Since the same candidate kernels are more likely to be included from one time
step to the next, the evolutions will be more stable.

Modeling online data generated by kernel evolutions. Now that we have defined the evolution of
a composition between time steps, we are prepared to define how Du,t is generated as a result of such

6

Published in Transactions on Machine Learning Research (10/2023)

evolutions:

Ku,t ∼ HKu,t−1 (4)
σ2
u,t ∼ p(σ2

u,t|Ku,t−1) (5)
θu,t ∼ p(θu,t|Ku,t) (6)
fu,t ∼ GP (0,Kθu,t

) (7)
Yu,t ∼ N (fu,t, σ2

u,t). (8)

Eq. 4: The kernel composition at time step t is sampled from the distribution over compo-
sitions defined by the preceding composition at t− 1. The DP from eq. (3) allows us to transfer
information about the likeliest next composition (evolution) between users with the same parent composi-
tion. As discussed, the base distribution of the DP also encourages stability; if a user has a “linear” kernel
one time step, they are likely to build from the “linear” kernel at the next time step.

Eq. 5 and 6: The prior over hyperparameters depends on the composition. If a composition
increases in complexity from one time step to the next, then the corresponding observation noise should
decrease, since the data-generating function is stationary. To encode this behavior, our prior on the noise σ2

u,t

is a decreasing function of the number of components. Our prior over the remaining kernel hyperparameters
helps separate the model classes. For example, a squared-exponential kernel with a large lengthscale maps
to functions that behave linearly; a prior on the lengthscale would minimize overlap between the Linear and
SE kernels. See appendix 10.2.5 for the priors used in experiments.

Eq. 7 and eq. (8): Each user’s function is sampled from a Gaussian Process. The GP is defined
by the kernel and the final observations are corrupted by Gaussian noise. Though in our model Yu,t will
overlap in data with Yu,t−1, we use different generative processes for each by noting that the bias–variance
trade-off, and therefore the best composition, may differ between the two overlapping data sets.

5.3 Pilot Training: Offline Inference for KEM

We are now prepared to infer the set of kernel evolutions that generated the pilot user’s “online” data. We
represent each DP as a Chinese Restaurant Process (CRP) to track the assignments of pilot data to clusters.
We will describe inference for the parameters of a single CRP (conditioned on a Kparent composition). This
inference jointly occurs for each unique Kparent composition.

We must infer the set of Kchild clusters and the assignments of pilot datasets (datasets for each user, at each
time step) to these clusters. The unknown parameters are Θ =

(
Z,K,θ,σ2). Assuming there areN datasets

and C clusters in the Kparent-th CRP, the cluster assignment of the n-th dataset is given by Zn ∈ {1, . . . , C}.
Each cluster represents a kernel. The c-th kernel is defined a composition Kc, hyperparameters θc, and
observation noise σ2

c . Inference of the unknown parameters involves sampling from the joint posterior,
p(Z,K,θ,σ2|D), where D = {Du,t} is the set of all training user’s data (separated by time step t so that
it is processed as though it is “online”). Each posterior sample results in a selection model like the one
shown in fig. 2. Following the marginal Gibbs sampler from Gelman et al. (2013), we alternate between the
following two steps (with further detail in appendix 10.3):

1. Assigning datasets to clusters. The goal is to sample from the posterior p(Z|K,θ,σ2,D). For a
single dataset Du,t, we sample from a multinomial posterior defined by the likelihood that the kernel within
the cluster generated Du,t and the prior probability the cluster assignment in eq. (1).

2. Assigning kernels to clusters. The goal is to sample from the posterior p(K,θ,σ2|Z,D). Each
dataset in the cluster is treated as a sample from a GP with the same kernel, and we use this data to
select a kernel to represent the cluster. It is possible for two different clusters to have the same composition
but different hyperparameters. We obtain samples from the posterior distribution of the kernel via the
Metropolis-Hastings algorithm (appendix 10.3.2).

7

Published in Transactions on Machine Learning Research (10/2023)

5.4 Deployment testing: Using KEM for New Users Online

Up to this point, we have described how to infer a set of kernel evolutions defined by the generative model
section 5.2 by applying the inference procedure in section 5.3 on pilot data. In algorithm 1, we define a
selection model that leverages these learned evolutions to select a kernel for a new test user u∗ at time t.

Algorithm 1 Selection method for KEM
Input : Test user’s current data Du∗,t = {Xu∗,t,yu∗,t}, preceding composition Ku∗,t−1
Output : kernel with composition K∗ and hyperparameters θ̂K∗

Define set of potential compositions K∗ = {K|Ku∗,t−1} ∪ {Ku∗,t−1}
for K ∈K∗ do

Initialize hyperparameters θK to pilot user’s hyperparameters
Optimize θ̂K = max

θK

log p(yu∗,t|Xu∗,t, θK)

end
Select K∗ = min

K∈K∗
BIC(K; θ̂K)

Return K∗, θ̂K∗

Our method minimizes the Bayesian Information Criterion (BIC): BIC(Kθ) = |θ|ln(n) − 2ln(Lθ̂), where
Lθ̂ is the log marginal likelihood of the data, for a GP with composition K and MLE hyperparameters θ̂.
The BIC is a common model selection metric that penalizes hyperparameter complexity (Duvenaud et al.,
2013; Kim & Teh, 2018); though it can be replaced with any model selection metric, KEM is still needed in
addition, to restrict the set of compositions to those that are stable and sparse for online selection. KEM
restricts K∗, the set of compositions considered, to those that were identified for pilot users with the same
preceding composition. We also allow no evolution to occur, by including the previous composition Ku∗,t−1
in the set. When t = 1, K∗ is initialized to those that were found at t = 1 for pilot users. Conceptually, our
approach corresponds to “traversing” the graph in fig. 2 to select a kernel; the test user is currently at node
Ku∗,t−1 and K∗ contains the children of the current node.

6 Experimental Setup

We evaluate a method’s ability to select compositions that are sparse (includes only relevant features), stable
(the same features are consistently included across time steps), and of adaptive complexity (the kernels
perform well across different data sizes). Furthermore, any method for online deployment must be sufficiently
scalable to multiple users and time steps. All empirical experiments are over 10 independent trials.

6.1 Baselines

KEM has three essential aspects, and each of our baselines omits at least one of these aspects: KEM
learns a model selection strategy from pilot users (pilot training), learns the kernel compositions at different
time points (adaptive complexity), and models composition evolutions between time points (stable). The
Memoryless method (as in (Tong et al., 2021), but with no variational GP approximations) does not have
a pilot training phase and always requires a new round of selection in deployment. The ARD method
represents using a GP with a fixed kernel composition– the ARD kernel– throughout the deployment, with
no kernel re-selection. The ARD kernel is a composition of SE kernels applied to each dimension d of a

D dimensional data set (Rasmussen & Williams, 2006):
D∏
d=1

SEd. Note that the lengthscales of ARD must

still be optimized to new data. The Final (Titsias & Lázaro-Gredilla, 2011) method transfers knowledge
obtained on the final data set of pilot users, ignoring the potential to overfit when there are fewer data points
for the test user. Finally, Stratified is an ablation of our approach that only transfers kernels from pilot to
test users if they were found at the same time step. It still has our innovation of suggesting kernels based on
how much data has been collected but does not enforce stability, since it treats kernels at subsequent time
steps independently. Overall, the methods with pilot training (Final, Stratified, KEM) transfer the kernel
compositions, but the kernel hyperparameters are re-optimized to the new user’s data during selection.

8

Published in Transactions on Machine Learning Research (10/2023)

6.2 Candidate Kernels

The set of candidate kernels contains “atomic kernels,” which are combinations of three commonly-used
kernel functions (Tong et al., 2021; Duvenaud et al., 2013) – linear (LIN), periodic (PER), and squared-
exponential (SE) – applied to a single dimension of the data. For example, LIN0 denotes a linear kernel
function that operates on the 0-th dimension of the data. WHITE means no kernel is selected. The candidate
kernel set also includes first-order interactions between these “atomic kernels”. For example LIN1 × LIN1
or LIN1 × SE1. Finally, the ARD kernel is included, so that the selection methods are comparable to the
SE-ARD method.

6.3 Overview of Datasets

Data set # instances # features # users # instances/user # time steps
Synthetic 1800 1 60 (10 train/50 test) 30 6
UCI: Energy 768 8 15 (7 train/8 test) 50 10
UCI: Housing 506 13 10 (5 train/5 test) 50 10
UCI: Fires 244 15 8 (4 train/4 test) 30 10
UCI: Concrete 1030 8 20 (10 train/10 test) 50 10
MIMIC-III 975 14 16 (8 train/8 test) varies varies
HeartSteps 1535 23 37 (18 train/19 test) varies varies

Table 1: Descriptions of datasets. For MIMIC and HeartSteps, different users had different available data
sizes, due to missingness in the data or different lengths of stay in the ICU.

The datasets used in our experiments, reflected in table 1, have different properties. By design, the users
in the UCI data sets are homogeneous, because they were artificially constructed by randomly splitting the
data. The MIMIC, HeartSteps, and Synthetic data are expected to have more heterogeneity– “clusters” of
users for whom different compositions are more appropriate. In terms of noise, the Synthetic (by design)
and UCI: Fires (a simpler prediction task) data are relatively low noise compared to the remaining data sets.
We are particularly interested in the performance of the kernel selection methods on the high noise, high
heterogeneity data– HeartSteps and MIMIC-III– since these characteristics reflect our health setting.

7 Results

In section 7.1, we begin with a pedagogical comparison of the methods on synthetic data and then demon-
strate that the same takeaways hold on real data sets in section 7.2.

7.1 Demonstrative Results on Synthetic Data

We will begin by examining what the selection models learned during pilot training and link them to per-
formance on selecting kernels for new users in testing. We find that KEM’s ability to identify simpler,
intermediary compositions during pilot training is crucial to performance in low-data regimes.

Synthetic data. We constructed a 1-D data set that contains two “types” of users. For half of the users,
we sampled each function from a GP prior with a LIN0 + PER0 kernel. The other half’s functions were
sampled from a SE0 kernel. Each user’s data arrives in batches of 5 data points over 6 total time steps (for a
total of 30 data points in the end). For a test user u∗, the train set is the cumulative data Du∗,t observed on
the user up to time t. The test set is composed of 200 uniformly spaced points along the x-axis from [0, 20].

Sparsity and stability: KEM tells a cohesive story about how kernels evolve with more data.
In fig. 3 we show an example of the kernel compositions learned by the Final, Stratified, and KEM methods
during pilot training; the ARD and Memoryless methods do not have a pilot phase. As expected, Stratified
and KEM learn simpler, intermediary kernels to account for varying time steps, while Final does not.
However, Stratified chooses kernels that lack congruence over time, since it does not share information about

9

Published in Transactions on Machine Learning Research (10/2023)

(a) Final

(b) Stratified (our ab.)

(c) KEM (ours)

Figure 3: During pilot training, KEM learns evolutions in which simple kernels consistently
precede complex kernels, whereas baselines do not. Final identifies two clusters, the two final
compositions (as expected). Stratified randomly adds and drops components, such as when it goes from a
PER0× PER0 + LIN0 composition to a LIN0 + PER0 composition from t = 1 to t = 2.

the composition across time steps. On the other hand, KEM tells a clear story about how the data is initially
best fit by a LIN0 kernel and subsequently evolves into either a LIN0+PER0 or SE0 kernel (the true kernels).
These relationships were enforced by our model’s definition of an “evolution.”

(a) Test likelihoods (b) Runtimes

Figure 4: KEM quickly selects high-performing kernels (log-likelihood) for new users across
varying amounts of synthetic data, by successfully managing the bias-variance trade-off. Left:
log-likelihood. Right: runtime in log scale. Error bars: two standard deviations. Memoryless is included,
but overlapping, with KEM.

Feasibility: The pre-trained selection methods select kernel compositions at a rate that is
feasible for online learning. In fig. 4b the methods with a pilot training phase are orders of magnitude
faster at selecting a kernel than Memoryless, which must re-perform kernel selection for each new user and
time step. ARD is quickest because it performs no selection. Though one might update the kernel on a
weekly or monthly time scale in a health setting, the runtime required for Memoryless would grow rapidly
with the number of users. Alternatively, the computation cost for the pre-trained methods is primarily spent
optimizing the hyperparameters for a small set of kernels (on the order of 2 or 3 comparisons for new data).

Adaptive complexity: KEM manages the bias-variance trade-off by regularizing the kernel
composition in low data regimes. We expect a method that manages the bias-variance trade-off to
have a high test likelihood when there is little data and after more data has been observed. In fig. 4, we see
evidence of KEM managing the bias-variance trade-off by maintaining the best test performance across time
steps. The mechanism through which KEM manages this trade-off is by regularizing the kernel composition
when there is little data. In fig. 5, KEM initially selects simpler compositions– LIN0 and White– for new
users. KEM eventually selects more complicated compositions– LIN0 + PER0, LIN0 + SE0, and SE0– as
necessitated by the test user’s data. KEM’s use of simpler compositions when data size is low reduces the
chances of overfitting the hyperparameters. Memoryless requires more data from the test user to identify
the true composition and underfits the data.

10

Published in Transactions on Machine Learning Research (10/2023)

Figure 5: KEM chooses simpler kernels where there are 5 data points and more complex kernels
(including ground truth) when there are 30 data points. We display distributions over 5 most common
compositions selected across all 10 trials when the ground truth is LIN0+PER0. ARD method is SE0 kernel
by default.

On the other hand, we see evidence that the more complicated compositions initially selected by the baseline
methods (e.g. a LIN0 + PER0 kernel) lead to overfitting hyperparameters (fig. 9). Fig. 4a demonstrates
that overfitting in low data regimes results in poor test likelihoods.

7.2 Generalization to Real Data

In this section, we verify that the behaviors of the selection methods from section 7.1 regarding sparsity,
stability, and adaptive complexity hold on more complex data. We omitted further experiments with Mem-
oryless due to impracticality with respect to computation time in online settings. For a test user u∗, the
train set is the cumulative data Du∗,t observed on the user up to time t. The test set is the incoming data
from the next time step: Du∗,t+1 \ Du∗,t. This procedure mimics the way that models are used in practice;
a kernel is selected with the user’s cumulative data and then used to make predictions on incoming data,
until the next time step, when the kernel must be selected again.

UCI data. We include four UCI regression tasks: Energy (Tsanas & Xifara, 2012), Concrete (Yeh, 1998),
Boston Housing (Harrison Jr & Rubinfeld, 1978), and Fires (Abid & Izeboudjen, 2019). We randomly split
these batch, single-task datasets into “users” and further into “batches” of 5 points each to reflect our setting.

MIMIC-III: Predicting plateau pressure. We use the Medical Information Mart for Intensive Care
(MIMIC-III) data set Johnson et al. (2016), which contains patient’s physiological readings from the ICU.
The regression goal is to predict plateau pressure– the amount of pressure applied to the airways during
mechanical ventilation– from the patient’s other vitals (e.g. heart rate). We grouped patients into 16 tasks
via their diagnosis upon admission, such as sepsis, and assumed data arrive in batches of 10 points.

mHealth: Imputing missing wearable data. HeartSteps V1 (Klasnja et al., 2019) was an mHealth
study that helped sedentary individuals increase physical activity (i.e. number of active minutes) through
contextually-tailored interventions. In mHealth, a major source of missing data is when users forget to wear
their tracking devices (Seewald et al., 2019). Our goal is to actively impute each participant’s missing values
of “daily active minutes” (square-root transformed), from other data sources (e.g. location data). We assume
that the data from 37 users arrive in batches of 5 points.

Adaptive complexity. We expect KEM to have high test-likelihood for varying levels of data. In fig. 6,
patterns from the synthetic experiments hold; KEM maintains high likelihood, while Final consistently
overfits when there are small amounts of data. We believe ARD performs worse on real data because it
has more opportunity to overfit the lengthscales to the multi-dimensional datasets. All methods perform
similarly on Fires, a simpler regression task with low noise.

Stability. On synthetic data, we noticed Stratified chose kernels that are inconsistent across time steps,
and we demonstrate that this behavior is exacerbated on real data in table 2.

Sparsity. In fig. 7, we provide a basic interpretation of the evolutions that KEM learned on the health data.
This is not to replace a domain expert but to demonstrate that KEM selects sparse compositions that are
easy to examine. In contrast, the composition implied by ARD is not sparse and is difficult to use in relating
the features to the predictions.

11

Published in Transactions on Machine Learning Research (10/2023)

Figure 6: KEM is the only kernel selection method to consistently perform well for all levels
of data in 5 of 6 datasets (including real health settings). All methods perform similarly on the
simplest of the data sets (fires). Error bars are 95% confidence intervals.

Dataset UCI: Energy UCI: Housing UCI: Fires UCI:Concrete MIMIC HeartSteps
KEM (ours) 0.08± 0.05 0.07± 0.04 0.29± 0.17 0.06± 0.04 0.07± 0.1 0.22± 0.05
Strat. (our ab.) 1.09± 0.14 0.73± 0.3 0.56± 0.2 0.46± 0.14 0.22± 0.12 0.62± 0.15

Table 2: KEM consistently includes the same features across time steps. Table shows avg. # of
features included in kernel at one time step but dropped the next for each test user (lower is better). We
report 95% confidence intervals.

For the MIMIC application of predicting plateau pressure, KEM prioritizes the “peak inspiratory pressure”
feature earlier in the evolution. Plateau pressure is directly related to the peak pressure through the resistance
of airflow in the lungs. Features farther down the evolution, such as inspired oxygen and respiratory rate,
also relate to passive and mechanical ventilation (Hagberg & Fasa, 2022). For imputing missing wearable
values in HeartSteps, we expected “GoogleFit (daily) steps” to be the most predictive feature. Interestingly,
some evolutions lead to a linear kernel on the “day in study,” which we hypothesize is because some users
decrease activity throughout the course of a study; this trend may only be apparent as enough days (and
data points) are observed for a user.

(a) ARD on MIMIC
(b) KEM on MIMIC

(c) KEM on Heartsteps

Figure 7: KEM selects sparse kernel compositions that are easily examined. Examples of the
selection model learned by KEM on MIMIC and HeartSteps shown. ARD “selects” a composition formed
by multiplying an SE kernel for each feature; remaining 8 of 14 features omitted due to space.

12

Published in Transactions on Machine Learning Research (10/2023)

20 40
T

0

2

H
ou

rs
Runtime per iteration

D = 5 (15 base kernels)
U=6
U=12
U=30

20 40
T

0

2

H
ou

rs

Runtime per iteration
D = 10 (30 base kernels)
U=6
U=12
U=30

20 40
T

0

2

H
ou

rs

Runtime per iteration
D = 20 (60 base kernels)
U=6
U=12
U=30

10 20 30
U

0

1

2

H
ou

rs

Runtime per iteration
D = 5 (15 base kernels)
T=5
T=10

T=20
T=50

10 20 30
U

0

1

2

H
ou

rs

Runtime per iteration
D = 10 (30 base kernels)
T=5
T=10

T=20
T=50

10 20 30
U

0

1

2

H
ou

rs

Runtime per iteration
D = 20 (60 base kernels)
T=5
T=10

T=20
T=50

Figure 8: KEM train times are most affected by the number of time steps. In top row, KEM
scales exponentially for increasing T . In bottom row, KEM scales linearly for increasing M . The runtime
per iteration does not scale with number of dimensions (each column).

7.3 Scalability of KEM in pilot training

Our experiments have demonstrated the benefits of using KEM during online deployment to select sparse
and adaptive kernel compositions. Though by design, KEM achieves these benefits online by frontloading the
computational cost of kernel selection to a long pilot training phase, for practical consideration, we explore
how pilot training scales with the size of the pilot data.

Experimental outline. Recall that our pilot training for KEM involves Gibbs sampling. The dependent
variable is the runtime per sample drawn from the posterior. The independent variables relate to the size
of the pilot data and include the number of users U , the number of time steps T , and the number of input
dimensions D. We constructed the pilot data as a D-dimensional data set that contains three “types” of
users– a LIN0 +PER0 composition, a LIN0 +PER1 composition, and a SE1 composition– and there are the
same number of users per type. Each user’s data arrives in batches of 5 data points over T total time steps.
We train on each pilot dataset for 100 posterior samples, though in practice the total number of samples
required for convergence will vary. The reported runtimes are on a 4 core Intel “Cascade Lake” CPU.

KEM training scales better to more users (linearly) than to more time steps (exponentially).
Figure 8 indicates that in general, KEM is most suitable for applications where the pilot data has a large
number of users but a small number of time steps. In our experiments on performance during deployment, we
demonstrated that KEM is useful for managing the bias-variance trade-off in earlier time steps. Therefore,
even when trained on pilot data with small T , KEM can achieve its purpose of appropriately adapting the
complexity of the kernel early on. Note that it is also possible to form the time steps in the pilot data with
irregular batch sizes (that is, smaller batch sizes initially, and then larger batch sizes later on).

The runtime per posterior sample is not affected by the dimensionality of the training data.
This is due to the fact that our sampling scheme searches over kernel compositions by randomly sampling
subsets of the base kernels. These operations do not scale with the size of the base kernel set; however, a
larger number of base kernels will make this sampling-based search more difficult, and therefore, require a
larger number of samples overall.

8 Discussion

Limitations and Future Work

13

Published in Transactions on Machine Learning Research (10/2023)

Scalability of KEM in pilot training. KEM scales poorly with more pilot users and time steps, since we require
repeated GP marginal likelihood per user and time step. However, in our setting, this is a manageable one-
time cost incurred during the long pilot period. Our only goal for pilot training is that it enables us to
perform online kernel selection for a large number of users in the real deployment (e.g. in fig. 4b, only 10
seconds per time step, on average, is required). In future work, we are excited to incorporate advancements
in scalable GPs, such as (Kim & Teh, 2018), to reduce the cost of the marginal likelihood calculations.

Limited interaction terms. The number of interaction terms considered in this approach is restricted to those
in the candidate kernel set. This is acceptable in health, where we do not expect to find higher-order effects
due to noise and sparse data (Trella et al., 2022). In future work, we may consider actively adapting the
candidate set to include more interactions.

Rigidity of the kernel evolutions from pilot to test. Though KEM’s strategy, which limits the space of kernels
considered for test users, is exactly what allows kernel selection to occur scalably in our setting, it also means
that test users are limited to the compositions found on training users. An interesting direction for future
work is to use the set of kernel evolutions from pilot training as a prior for new users, rather than a hard
constraint. The task of adapting the kernel evolution set online remains a challenge.

Conclusion In this work, we presented a method for compositional kernel selection in the online, multitask
setting. We illustrated that learning “evolutions” of kernel compositions is most beneficial in the low-
volume and/or heterogeneous user regime, when overfitting poses a significant concern. We demonstrated
across a variety of data sets, including two health applications, that our approach quickly selects kernels
that outperform baselines in predictive performance, sparsity, and stability – all crucial considerations for
real-world deployment.

9 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. IIS-
1750358 and the Graduate Research Fellowship Program under Grant No. DGE 2140743. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. The research reported in this publication
was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes
of Health under award number OD P41EB028242. ES’s work on the project was supported by a gift fund
from Benshi.ai.

References
Faroudja Abid and Nouma Izeboudjen. Predicting forest fire in algeria using data mining techniques: Case
study of the decision tree algorithm. In International Conference on Advanced Intelligent Systems for
Sustainable Development, pp. 363–370. Springer, 2019.

Joseph A Cafazzo, Mark Casselman, Nathaniel Hamming, Debra K Katzman, and Mark R Palmert. Design
of an mhealth app for the self-management of adolescent type 1 diabetes: a pilot study. Journal of medical
Internet research, 14(3):e2058, 2012.

Li-Fang Cheng, Bianca Dumitrascu, Gregory Darnell, Corey Chivers, Michael Draugelis, Kai Li, and Bar-
bara E Engelhardt. Sparse multi-output gaussian processes for online medical time series prediction. BMC
medical informatics and decision making, 20(1):1–23, 2020.

JiWon Choi, Ji Hyeon Lee, Eric Vittinghoff, and Yoshimi Fukuoka. mhealth physical activity intervention:
a randomized pilot study in physically inactive pregnant women. Maternal and child health journal, 20:
1091–1101, 2016.

David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahramani Zoubin. Structure
discovery in nonparametric regression through compositional kernel search. In International Conference
on Machine Learning, pp. 1166–1174. PMLR, 2013.

14

Published in Transactions on Machine Learning Research (10/2023)

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. arXiv preprint
arXiv:1806.02817, 2018.

Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and exploit-
ing additive structure for bayesian optimization. In Artificial Intelligence and Statistics, pp. 1311–1319.
PMLR, 2017.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian
data analysis. CRC press, 2013.

Marzyeh Ghassemi, Marco Pimentel, Tristan Naumann, Thomas Brennan, David Clifton, Peter Szolovits,
and Mengling Feng. A multivariate timeseries modeling approach to severity of illness assessment and
forecasting in icu with sparse, heterogeneous clinical data. In Proceedings of the AAAI conference on
artificial intelligence, volume 29, 2015.

Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasjna, Peng Liao, Kelly Zhang,
and Susan Murphy. Did we personalize? assessing personalization by an online reinforcement learning
algorithm using resampling. arXiv preprint arXiv:2304.05365, 2023.

Carin A Hagberg and MD Fasa. Benumof and Hagberg’s airway management. Elsevier Health Sciences,
2022.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air. Journal
of environmental economics and management, 5(1):81–102, 1978.

Steven CH Hoi, Rong Jin, Peilin Zhao, and Tianbao Yang. Online multiple kernel classification. Machine
learning, 90(2):289–316, 2013.

Jan David Hüwel, Fabian Berns, and Christian Beecks. Automated kernel search for gaussian processes on
data streams. In 2021 IEEE International Conference on Big Data (Big Data), pp. 3584–3588. IEEE,
2021.

Jan David Hüwel, Florian Haselbeck, Dominik G Grimm, and Christian Beecks. Dynamically self-adjusting
gaussian processes for data stream modelling. In German Conference on Artificial Intelligence (Künstliche
Intelligenz), pp. 96–114. Springer, 2022.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible
critical care database. Scientific data, 3(1):1–9, 2016.

Hyunjik Kim and Yee Whye Teh. Scaling up the automatic statistician: Scalable structure discovery using
gaussian processes. In International Conference on Artificial Intelligence and Statistics, pp. 575–584.
PMLR, 2018.

Predrag Klasnja, Shawna Smith, Nicholas J Seewald, Andy Lee, Kelly Hall, Brook Luers, Eric B Hekler, and
Susan A Murphy. Efficacy of contextually tailored suggestions for physical activity: a micro-randomized
optimization trial of heartsteps. Annals of Behavioral Medicine, 53(6):573–582, 2019.

Hee Yun Lee, Joseph S Koopmeiners, Jennifer McHugh, Victoria H Raveis, and Jasjit S Ahluwalia. mhealth
pilot study: text messaging intervention to promote hpv vaccination. American journal of health behavior,
40(1):67–76, 2016.

Dan Levi and Shimon Ullman. Learning model complexity in an online environment. In 2009 Canadian
Conference on Computer and Robot Vision, pp. 260–267. IEEE, 2009.

15

Published in Transactions on Machine Learning Research (10/2023)

Yuelin Li, Elizabeth Schofield, and Mithat Gönen. A tutorial on dirichlet process mixture modeling. Journal
of mathematical psychology, 91:128–144, 2019.

Peng Liao, Kristjan Greenewald, Predrag Klasnja, and Susan Murphy. Personalized heartsteps: A reinforce-
ment learning algorithm for optimizing physical activity. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(1):1–22, 2020.

James Lloyd, David Duvenaud, Roger Grosse, Joshua Tenenbaum, and Zoubin Ghahramani. Automatic
construction and natural-language description of nonparametric regression models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 28, 2014.

Qin Lu, Georgios Karanikolas, Yanning Shen, and Georgios B Giannakis. Ensemble gaussian processes with
spectral features for online interactive learning with scalability. In International Conference on Artificial
Intelligence and Statistics, pp. 1910–1920. PMLR, 2020.

Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng, and Zhenguo Li. Metase-
lector: Meta-learning for recommendation with user-level adaptive model selection. In Proceedings of The
Web Conference 2020, pp. 2507–2513, 2020.

Gustavo Malkomes, Chip Schaff, and Roman Garnett. Bayesian optimization for automated model selection.
In Workshop on Automatic Machine Learning, pp. 41–47. PMLR, 2016.

Francesco Orabona, Luo Jie, and Barbara Caputo. Online-batch strongly convex multi kernel learning. In
2010 IEEE computer society conference on computer vision and pattern recognition, pp. 787–794. IEEE,
2010.

Kehinde Sikirulai Oyetunde and Rhea P Liem. Navigating kernel selections in kernel-based methods: The
issues and possible solutions. In AIAA SCITECH 2022 Forum, pp. 0507, 2022.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. Adaptive
computation and machine learning. MIT Press, 2006. ISBN 026218253X.

Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and Andreas Krause. Pacoh: Bayes-optimal meta-learning
with pac-guarantees. In International Conference on Machine Learning, pp. 9116–9126. PMLR, 2021a.

Jonas Rothfuss, Dominique Heyn, Andreas Krause, et al. Meta-learning reliable priors in the function space.
Advances in Neural Information Processing Systems, 34:280–293, 2021b.

Wafaa S Sayed, Mostafa Gamal, Moemen Abdelrazek, and Samah El-Tantawy. Towards a learning style and
knowledge level-based adaptive personalized platform for an effective and advanced learning for school
students. In Recent Advances in Engineering Mathematics and Physics, pp. 261–273. Springer, 2020.

Eric Schulz, Joshua B Tenenbaum, David Duvenaud, Maarten Speekenbrink, and Samuel J Gershman.
Compositional inductive biases in function learning. Cognitive psychology, 99:44–79, 2017.

Nicholas J Seewald, Shawna N Smith, Andy Jinseok Lee, Predrag Klasnja, and Susan A Murphy. Practical
considerations for data collection and management in mobile health micro-randomized trials. Statistics in
biosciences, 11(2):355–370, 2019.

Christian Steinruecken, Emma Smith, David Janz, James Lloyd, and Zoubin Ghahramani. The automatic
statistician. In Automated Machine Learning, pp. 161–173. Springer, Cham, 2019.

William T Stephenson, Soumya Ghosh, Tin D Nguyen, Mikhail Yurochkin, Sameer K Deshpande, and
Tamara Broderick. Measuring the sensitivity of gaussian processes to kernel choice. arXiv preprint
arXiv:2106.06510, 2021.

Shengyang Sun, Guodong Zhang, Chaoqi Wang, Wenyuan Zeng, Jiaman Li, and Roger Grosse. Differentiable
compositional kernel learning for gaussian processes. In International Conference on Machine Learning,
pp. 4828–4837. PMLR, 2018.

16

Published in Transactions on Machine Learning Research (10/2023)

Yee Whye Teh. Dirichlet process., 2010.

Michalis Titsias and Miguel Lázaro-Gredilla. Spike and slab variational inference for multi-task and multiple
kernel learning. Advances in neural information processing systems, 24:2339–2347, 2011.

Sabina Tomkins, Peng Liao, Predrag Klasnja, Serena Yeung, and Susan Murphy. Rapidly personalizing
mobile health treatment policies with limited data. arXiv preprint arXiv:2002.09971, 2020.

Anh Tong and Jaesik Choi. Discovering latent covariance structures for multiple time series. In International
Conference on Machine Learning, pp. 6285–6294. PMLR, 2019.

Anh Tong, Toan Tran, Hung Bui, and Jaesik Choi. Learning compositional sparse gaussian processes with
a shrinkage prior. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9906–
9914, 2021.

Anna L. Trella, Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez, and Susan A. Mur-
phy. Designing reinforcement learning algorithms for digital interventions: Pre-implementation guidelines.
Algorithms, 15(8):255, Jul 2022. ISSN 1999-4893.

Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance of residential
buildings using statistical machine learning tools. Energy and buildings, 49:560–567, 2012.

Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Jinfeng Yi, and Steven Hoi. Online kernel selection: Algorithms
and evaluations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pp. 1197–
1203, 2012.

I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement and
Concrete research, 28(12):1797–1808, 1998.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn. Bayesian
model-agnostic meta-learning. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 7343–7353, 2018.

Michael Minyi Zhang, Bianca Dumitrascu, Sinead A Williamson, and Barbara E Engelhardt. Sequential
gaussian processes for online learning of nonstationary functions. arXiv preprint arXiv:1905.10003, 2019.

Xiao Zhang and Shizhong Liao. Online kernel selection via incremental sketched kernel alignment. In IJCAI,
pp. 3118–3124, 2018.

17

Published in Transactions on Machine Learning Research (10/2023)

10 Appendix

10.1 Additional Results

Figure 9: Baseline methods frequently underestimate the observation noise hyperparameter, a
sign of overfitting. We plot the log-distribution of σ2 of test users with 5 training points. True σ2 = 0.5
(dotted black line). We constrain σ2 ≥ 0.01 during optimization for numerical stability (hence the spikes
around −5).

10.2 Experimental Details

10.2.1 Datasets

Generation of synthetic data. Half of the user’s functions were generated from a LIN0 + PER0 kernel
composition. The other half’s functions were generated from a SE0 kernel. To generate the synthetic data
for each user, we first sample the hyperparameters of the ground-truth kernel. The users with a LIN0+PER0
compostion had hyperparameters that were sampled from as follows:

• θlengthscale ∼ Log-Normal(0, 0.1)

• θperiod ∼ Log-Normal(1.386, 0.1)

• θamplitude ∼ Log-Normal(1.609, 0.1)

• θshift ∼ Normal(5, 1)

The users with a SE0 kernel had hyperparameters that were sampled as follows:

• θlengthscale ∼ Log-Normal(0, 0.1)

• θamplitude ∼ Log-Normal(2.302, 0.1)

The observation-noise for the synthetic experiments was fixed for all users as θnoise = 0.5. After defining the
user’s kernel– by assigning the composition and hyperparameters– we sample the user’s function from a GP
prior with the kernel.

Pre-processing of real data. For the real data experiments, features are scaled to the range of [0, 1] using
min-max normalization. The prediction targets are standardized (y′ = y−mean(y)

std(y)). The prediction targets
for each of these data sets are as follows:

• UCI Energy: heating load

• UCI Housing: housing price

• UCI Fires: Build up Index (BUI) for Bejaia data, Initial Spread Index (ISI) for Sidi data.

• UCI Concrete: concrete compressive strength

• MIMIC-III: plateau pressure

• HeartSteps: square-root transformed daily values of “number of active minutes.”

18

Published in Transactions on Machine Learning Research (10/2023)

MIMIC-III Pre-processing The pre-processing steps for MIMIC are given below:

• Original number of data points: 331532 points

• Select data points where user is on ventilation: 39125 points

• Remove data points outside a valid range (as defined by medical expert): 22046 points

• Remove data points missing the prediction target (plateau pressure): 3321 points

• Group data points by diagnosis upon admission. Remove diagnoses with fewer than 30 points per
diagnosis: 975 points

HeartSteps Pre-processing The pre-processing steps for HeartSteps are as follows:

• Original number of data points, aggregated across all users: 1658 points

• Take square-root transformation of the target value (daily active minutes): 1658 points

• Drop points where daily active minutes are zero: 1535 points

10.2.2 Train/Test Splits

In the synthetic experiments, we have access to the ground-truth kernel which can be used to evaluate the
quality of the kernels selected for test users. This is not the case for real data. As a result, the training and
testing data splits differed slightly between the experiments involving real and synthetic data.

Synthetic Experiments

• Training Users (10 training users)

• Testing Users (50 test users)

– Training data is used to select the kernel. The training data is the cumulative data set at each
time step.

– Testing data is used to evaluate the kernel. Since we have access to the ground-truth kernel,
the test data is the function evaluated at 200 uniformly spaced points along the X-axis with
noise.

Real Data Experiments For the real data experiments, users were randomly assigned to either the
training or testing set in a 50 : 50 split.

• Training Users (50% of total users randomly selected)

• Testing Users (remaining 50% of users)

– Training data is used to select the kernel. The training data is the cumulative data set at each
time step.

– Testing data is used to evaluate the kernel. Since we do not have the ground truth kernel, the
test data refers to the future (unobserved) data that will arrive at the next time step.

The train/test split for the test users mirrors the realistic process of selecting a model for a user based on
his cumulative data and then using the selected model to make predictions on the data observed until the
next update point.

19

Published in Transactions on Machine Learning Research (10/2023)

10.2.3 Candidate Kernel Pool

Kernel functions Consistent with the previous kernel selection literature, we consider the linear, periodic,
and squared-exponential kernel functions.

kSE(x, x′) = a2 exp
(
− (x− x′)2

2`2

)
(9)

kPer(x, x′) = a2 exp
(
−2 sin2(π|x− x′|/p)

`2

)
(10)

kLin(x, x′) = a2(x− c)(x′ − c) (11)

kWhite(x, x′) = a2δi,j , δi,j = 1 if xi = xj (12)

The squared-exponential kernel (eq. (9)) has two hyperparameters, the lengthscale ` and amplitude a2. The
periodic kernel (eq. (10)) has three hyperparameters, the lengthscale `, amplitude a2, and period p. The
linear kernel (eq. (11)) has two hyperparameters, the amplitude a2 and offset c. Finally the white kernel
(eq. (12)) has one hyperparameter, the amplitude or noise parameter, a2.

Data specific Kernel pools The basic candidate kernel pool is formed by pairing each kernel function
with each dimension of the data. The synthetic experiments include first-order interaction terms between
these candidate kernels. The real data experiments include interaction terms on features that are identified
as important to the prediction target in the literature (for example, whether or not it is a weekend is an
important feature in determining how active a user will be for that day). Finally, the ARD kernel (the
product of an SE kernel on each dimension of the data) is included in the candidate pool as well, so that
our selection method can be directly compared to the SE-ARD method.

• Synthetic experiments: basic kernel functions on the first (and only) dimension of the data,
along with interaction kernels up to the second degree: {LIN0,PER0,SE0,LIN0 × PER0,LIN0 ×
SE0,LIN0× LIN0,PER0× SE0,PER0× SE0}

• Real data experiments:

– UCI Energy: 16 total candidate kernels.
– UCI Housing: 38 total candidate kernels.
– UCI Fires: Interaction term on windspeed. 35 total candidate kernels.
– UCI Concrete: Interaction term on cement and age. 39 total candidate kernels.
– MIMIC-III: Interaction term on whether patient is on vasos (binary). 50 total candidate kernels.
– HeartSteps: Interaction term on whether user is “traveling” (binary) and whether or not it is a

“weekend” (binary). 95 total candidate kernels.

10.2.4 KEM Inference Parameters

• Gibbs sampling during pilot training:

– until convergence, up to 200 iterations
– 10 iterations of global updates (assigning datasets to clusters)
– 100 samples from MH sampling algorithm during local updates (assigning kernels to clusters)

• MH sampling algorithm:

– Proposal distribution for kernel hyperparameters: N (0, σhyper) where σhyper = 0.1 for synthetic
experiments and σhyper = 0.05 for real data experiments (because features are normalized)

20

Published in Transactions on Machine Learning Research (10/2023)

10.2.5 KEM Priors

Dirichlet Process

• α = 1

• For the base distribution Gparent|Kparent:

– For s ∼ Bernoulli(π)
∗ πi = 0.1 if Ki is an atomic candidate kernel and Ki not in Kparent
∗ πi = 0.02 if Ki is an interaction candidate kernel and Ki not in Kparent
∗ πj = 0.9 for Kj in Kparent

– For a2
i ∼ p(a2

i): Because a2
i determines how the candidate kernel is scaled, it also refers to the

common “amplitude” hyperparameter included in most kernel definitions (see section 10.2.3);
therefore, p(a2

i) is a prior over the amplitude hyperparameter defined in the next paragraph.

Kernel Hyperparameter Priors The prior distribution on the kernel hyperparameters are as follows:

• Lengthscale: log p(θlengthscale) = N (0, 2) for synthetic data, log p(θlengthscale) = N (0.2, 0.5) for real
data

• Period: log p(θperiod) = N (5, 0.25) for synthetic data, log p(θperiod) = N (0.2, 0.25) for real data

• Amplitude: log p(θamplitude) = N (0, 2)

• Observation noise: log p(θnoise) = N (0, 2)

• Shift: p(θshift) = N (0, 0.1)

The lengthscale and period priors differ between the synthetic and real experiments because the features are
normalized between [0, 1] for the real experiments. For the synthetic experiments, the choice of µ = 5 for
the prior on θperiod reflects our general estimate that the period may be around 1

4 the domain of the input
space.

Prior on the observation noise for the KEM. The KEM (ours) model enforces a prior on the obser-
vation noise which depends on the parent composition. Let Nparent denote the number of kernel components
in the parent composition:

log p(θnoise|Kparent) =

 N (2, 0.5), for Nparent = 0
N (1, 1), for Nparent = 1
N (0, 2), for Nparent > 1

10.3 Inference Details for Kernel Evolution Model

10.3.1 Details of Gibbs sampler steps

Assigning datasets to clusters. The seating assignment for the mth customer is sampled from a multi-
nomial posterior with the probability:

p(Zn = c|D,K,θ,σ2) ∝ p(yn|Xn,K
−
c ,θ

−
c ,σ

2−
c , Zn = c)p(Zn = c|Z−) (13)

whereM−, θ−, σ2−, and Z− are the remaining kernel compositions, hyperparameters, noise levels, and
seating assignments at occupied tables after unseating customer m. Here p(yn|Xn,K

−
c ,θ

−
c ,σ

2−
c) is the

model likelihood. The table asssignment probability p(Zn = c|Z−) is as determined by a Chinese Restaurant
Process.

21

Published in Transactions on Machine Learning Research (10/2023)

Assigning kernels to cluster. We assign a kernel to a cluster c by sampling from the posterior distribution
over kernels defined by the data sets in the cluster. We obtain these samples via the Metropolis-Hastings
algorithm described in section 10.3.2.

p(Kc,θc,σ
2
c |D,Z) ∝ p(θc,σ2

c |Kc)Gparent(Kc)︸ ︷︷ ︸
Prior on kernel

×
∏

c:Zn=c
p(yn|Xn,Kc,θc,σ

2
c)︸ ︷︷ ︸

Likelihood of datasets

(14)

Since we are assigning a kernel at each cluster, it is possible for two different clusters to have the same
composition but different hyperparameters.

10.3.2 Metropolis-Hastings Sampler for Kernel Selection

In the following, we detail the proposal distribution over kernel compositions used by the Metropolis-Hastings
sampling algorithm in the paper.

10.3.3 Kernel Composition Proposal

Let K by the current kernel composition, which is a sum of kernel components: K =
NK∑
n=0

Cn, where Cn ∈ K
is a kernel component and part of the total candidate kernel pool K. Let N be the total number of candidate
kernels in the kernel pool. We propose new compositions by randomly adding a component, removing a
component, or doing nothing to the current composition. Doing nothing is an option because we may alter
the kernel by sampling the hyperparameters, even though the composition remains the same. The padd,
premove, and pnothing are parameters for the proposal distribution and must sum to 1.

s

P (add|K) P (remove|K) P (nothing|K)

1 ≤ NK < N 0.2 0.4 0.4

NK < 1 0.5 0 0.5

NK = N 0 0.5 0.5

If the action is to add or remove a component, we need to choose which kernel component, C ′, to add or
remove to the composition. If the action is to add, C ′ is uniformly sampled from the kernel pool excluding
the components that are already in K (there are N−NK options). If the action is to remove, C ′ is uniformly
sampled from the set of kernel components that currently compose K (there are NK options).

p(C ′|action,K) =

1

N−NK
, if action = add

1
NK

, if action = remove
1, otherwise

(15)

The probability of proposing kernel K ′ from K is then p(C ′, action|K) = p(C ′|action,K)p(action|K). Note
that this proposal distribution is not symmetric, and the corresponding acceptance ratio must incorporate
p(K|K ′) and p(K ′|K) appropriately.

10.3.4 Kernel Hyperparameter Proposal

The proposal distribution for the kernel hyperparameters is a random normal distribution centered at the
current log-transformed hyperparameter values. We apply the log transformation because the lengthscale,
period, amplitude, and observation noise parameters must be positive.

22

Published in Transactions on Machine Learning Research (10/2023)

The kernel composition and hyperparameters are closely related; a Linear kernel will not use a hyperparme-
ter on the period, just as a Periodic kernel will not use a “shift” hyperparameter. In order to track the
current hyperparameters under a changing kernel composition, the proposal distrbution samples the two
independently: p(K, θ) = p(K)p(θ). The current hyperparameters are represented by H ∈ R(D+1)×4, where
D is the dimensionality of the data and each column corresponds to a type of hyperparameter – a lengthscale,
period, amplitude, shift, and observation noise parameter – respectively. The last row in the matrix is always
reserved for the observation noise, which applies to the entire composition (not specific to a dimension). The
benefit of this representation is that hyperparameters can be sampled independently of the composition;
when the composition is sampled, it imposes a “mask” over the hyperparameter matrix. For example, for a
D = 3 dimensional data set, a SE0 + PER1 + LIN2 kernel composition would impose the following mask:

M =

1 0 1 0 0
1 1 1 0 0
0 0 1 1 0
0 0 0 0 0.

To reemphasize, each column corresponds to a lengthscale, period, amplitude, shift, and observation noise
parameter, respectively. Each row represents a different base kernel (kernel function type and the dimension
that it applies to). The final kernel hyperparameters would be represented by applying mask M to hyper-
parameter matrix H. In this example, where we have an SE kernel on the 0 dimension of the data, the
mask would ensure that the columns containing the relevant hyperparameters, which is the lengthscale (first
column) and amplitude (second column), are used with the composition. We recognize that a limitation of
this representation is that a composition that requires multiple copies of the same hyperparameter on the
same dimension, such as a PER0 × PER0 kernel, could only be represented with one value for the period.
However, this is a compact representation which avoids the need to maintain a hyperparameter matrix for
each potential kernel composition in the kernel space. To be clear, our proposal method does not imply
that different types of kernels would use the same lengthscale, since each row is a different base kernel (type
of kernel and dimension).

23

	Introduction
	Related Work
	Background
	Problem Setting
	Kernel Evolution Model (KEM)
	Pilot training vs. deployment testing.
	KEM: A Generative Process for Online Data
	Pilot Training: Offline Inference for KEM
	Deployment testing: Using KEM for New Users Online

	Experimental Setup
	Baselines
	Candidate Kernels
	Overview of Datasets

	Results
	Demonstrative Results on Synthetic Data
	Generalization to Real Data
	Scalability of KEM in pilot training

	Discussion
	Acknowledgements
	Appendix
	Additional Results
	Experimental Details
	Datasets
	Train/Test Splits
	Candidate Kernel Pool
	KEM Inference Parameters
	KEM Priors

	Inference Details for Kernel Evolution Model
	Details of Gibbs sampler steps
	Metropolis-Hastings Sampler for Kernel Selection
	Kernel Composition Proposal
	Kernel Hyperparameter Proposal

