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Abstract

Current black-box variational inference (BBVI)
methods require the user to make numerous de-
sign choices—such as the selection of variational
objective and approximating family—yet there is
little principled guidance on how to do so. We
develop a conceptual framework and set of exper-
imental tools to understand the effects of these
choices, which we leverage to propose best prac-
tices for maximizing posterior approximation ac-
curacy. Our approach is based on studying the
pre-asymptotic tail behavior of the density ratios
between the joint distribution and the variational
approximation, then exploiting insights and tools
from the importance sampling literature. We fo-
cus on normalizing flow models, though we are
not limited to them.

1. Introduction

A great deal of progress has been made in black-box var
iational inference (BB VI) methods for Bayesian posterior
approximation, but the interplay between the approximat-
ing family, divergence measure, gradient estimators and
stochastic optimizer is non-trivial — and even more so for
high-dimensional posteriors (Wang et al., 2018; Geffner &
Domke, 2020; Agrawal et al., 2020). While the main focus
in the machine learning literature has been on improving
predictive accuracy, the choice of method components be-
comes even more critical when the goal is to obtain accurate
summaries of the posterior itself.

We show that, while the choice of approximating family and
divergence is often motivated by low-dimensional illustra-
tions, the intuition from these examples do not necessarily
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Figure 1. Illustration of a mean-field approximation with exclu-
sive (mode-seeking) and inclusive (mass-covering) divergences.
For correlated Gaussian targets in dimensions D = 2,5, 10, 50,
the marginal distributions of the distance from the mode for sam-
ples drawn from the approximation (red) and the target (blue).
The intuition from the low-dimensional examples does not carry
over to higher dimensions: although the importance ratios are still
bounded, even for a lower correlation level, the overlap in typi-
cal sets of the target and the approximations gets worse both for
exclusive and inclusive divergences.

carry over to higher-dimensional settings. By drawing a
connection between importance sampling and the estima-
tion of common divergences used in BBVI, we are able to
develop a comprehensive framework for understanding the
reliability of BBVI in terms of the pre-asymptotic behavior
of the density ratio between the target and the approximate
distribution. When this density ratio is heavy-tailed, even un-
biased estimators exhibit a large bias with high probability,
in addition to high variance. Such heavy tails occur when
there is a mismatch between the typical sets of the approxi-
mating and target distributions. In higher dimensions, even
over-dispersed distributions miss the typical set of the target
(MacKay, 2003; Vehtari et al., 2019). Thus, as illustrated
in Fig. 1, the benefits of heavy-tailed approximate families
and divergences favoring mass-covering diminish as dimen-
sionality of the target distribution increases. We develop a
conceptual and experimental framework for predicting and
empirically evaluating the reliability of BBVI based on the
choice of variational objective, approximating family, and
target distribution. Our framework also incorporates the
Pareto k diagnostic (Vehtari et al., 2019) as a simple and
practical approach for estimating both the required minimal
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sample size and obtaining empirical and conceptual insights
into the pre-asymptotic convergence rates of estimators of
common divergences and their gradients. Although nor-
malizing flow models offer high capacity to cover posterior
mass in high dimensions, they can be notoriously hard to
optimize and our proposed framework is general and can be
helpful to make design choices.

2. Preliminaries and Background

Let p(0,Y") be a joint distribution of a probabilistic model,
where # € RP is a vector of model parameters and Y is the
observed data. In Bayesian analysis, the posterior p() =
p(0|Y) =p(0,Y)/p(Y) (where p(Y) := [p(6,Y)dd) is
often the object of interest, but most posterior summaries of
interest are not accessible because the normalizing integral,
in general, is intractable. Variational inference approximates
the exact posterior p( | Y) using a distribution ¢ € Q from
a family of tractable distributions Q. The best approxima-
tion is determined by minimizing a divergence D(p || q),
which measures the discrepancy between p and g:

« = arg min D , 1
ax g min (rla) (1

where A € RX is a vector parameterizing the variational
family Q. Thus, the properties of the resulting approxima-
tion g are determined by the choice of variational family Q
as well as the choice of divergence D.

Let w(6) := p(0,Y)/q(0) denote the density ratio between
the joint and approximate distributions. For a function
¢ : RP — R, the self-normalized importance sampling
estimator for the posterior expectation Eg.,,[¢(0)] is given
by
S
(o) = & 0,),
RIS TS
where 61, ...,05 ~ g are independent. Using importance
sampling can allow for computation of more accurate pos-
terior summaries and to go beyond the limitations of the
variational family. Since importance sampling estimates
can have very high variance, Pareto smoothed importance
sampling (PSIS) can be used to substantially reduce the
variance with small additional bias (Vehtari et al., 2019).

Variational families. Let ¢, () be an approximating fam-
ily parameterised by a K -dimensional vector A € R¥ for
D-dimensional inputs & € R”. We focus on the most popu-
lar mean-field and normalizing flow families. Normalising
flows provide more flexible families that can capture corre-
lation and non-linear dependencies.

f-divergences. The most commonly used divergences are
f-divergences. For a convex function f satisfying f(1) = 0,
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Figure 2. The ratio of estimated mean and true mean for different
values of k shape parameter of a generalized Pareto distribution
and confidence intervals in a finite sample size simulation.

the f-divergence is given by

Ds(o 1) =g | £ (P07

q(0)
The exclusive Kullback-Leibler (KL) divergence corre-
sponds to f(w) = — log(w), the inclusive KL divergence

corresponds to f(w) = wlog(w), the x? divergence corre-
sponds to f(w) = (w — 1)2, and the general a-divergences
correspond to (w* — w)/{a(a — 1)}. We also consider the
adaptive f-divergence proposed by Wang et al. (2018).

Loss estimation and stochastic optimization. In all cases,
minimizing the f-divergence is equivalent to minimizing
the loss function L¢(p || ¢) = Eg~q[f(w(6))] (although,
see Wan et al. (2020) for a different approach). Let L(A) :=
L¢(p || gx) denote the loss as a function of the variational
parameters A. The loss and its gradient G(\) := V\L(\)
can both be approximated using the Monte Carlo estimates

L) =139 f(w(8)) and GO = L35 ¢(6,),

where 6,...,05 are independent draws from ¢, and
g : RE — RX is a gradient function that depends on f and
w. The gradient estimates can be used in a stochastic gradi-
ent optimization scheme such that

NFL A4, GO, 3)

where 7, is the step size. In practice, more stable adaptive
stochastic gradient optimisation methods such as RMSProp
or Adam (Hinton & Tieleman, 2012) are often used.

3. Assessing the Reliability of BBVI

3.1. Conceptual framework

The most common variational divergences and their Monte
Carlo gradient estimators can be expressed in terms of the
density ratio w(#). Reliable BBVI ultimately depends on
the behavior of w(6) since (1) accurate optimization re-
quires low-variance and (nearly) unbiased gradient esti-
mates G (), and (2) determining convergence and validat-
ing the quality of variational approximations can require
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Figure 3. Wonky posterior approximation (in red) by NVP for
robust regression heavy tailed posterior.

accurate estimates (\) of variational divergences (Kucukel-
bir et al., 2015; Huggins et al., 2020). While asymptotically
(in the number of iterations and Monte Carlo sample size
S) there may be no issues with stochastic optimization or
divergence estimation, in practice BBVI operates in the pre-
asymptotic regime. Therefore, the reliability of BBVI de-
pends on the pre-asymptotic behavior of the w(6), and
how it interacts with the choice of variational objective
and gradient estimator. Before accounting for the effects
of the objective and gradient estimator, first consider the
behavior of the density ratio w(6), which can also be in-
terpreted as an importance sampling weight with gy (6) as
the proposal distribution (cf. Li & Turner, 2016; Wang
et al., 2018; Bamler et al., 2017). Pickands (1975) proved,
under commonly satisfied conditions, that for v tending
to infinity, the distribution of w(#) | w(f) > wu is well-
approximated by the three-parameter generalized Pareto
distribution GPD(u, o, k), which for & > 0 has density
p(w | u,0,k) = 071 + k(w — u)/o} ' ~V/* where w
is restricted to (u,00). Since w(f) > 0, this implies its
distribution is heavily skewed to the right with a power-law
tail. Consider the idealized scenario of estimating the mean
of w(f) ~ GPD(u,0,k). We assume the mean is finite,
which is equivalent to assuming k¥ < 1 since |1/k| deter-
mines the number of finite moments. Because of the heavy
right skew, most of the mass of w(6) is below its mean.
Therefore, even after averaging a large number of samples,
most empirical estimates Zle w(d,) will be smaller than
the true mean. Figure 5 illustrates this behavior for differ-
ent values of k: even with 1 million samples, the empiri-
cal mean is far below the true mean when k£ > 0.7. The
highly variable sizes of the confidence intervals based on
10,000 replications further highlight the instability of the
estimator. So, even though the empirical mean is an unbi-
ased estimator, in the pre-asymptotic regime (before the
generalized central limit theorem is applicable (Chen &
Shao, 2004)), in practice the estimates are heavily biased
downward with high probability. If w(6) is not a gener-
alized Pareto distribution, we can instead treat k as the fail
index k = inf{¢ > 0 : Eg,{w(0)'/*} < oo}, which en-
codes the same tail behavior as GPD(u, 0, k). Crucially,

we should expect k to be much larger than 0 when there is
a significant mismatch between the target distribution and
the variational family. Since selecting a variational family
that can match the typical set tends to be more difficult
in higher dimensions, we should expect & to be larger
for higher-dimensional posteriors.

We can generalize our observations about pre-asymptotic
estimation bias to the estimators L(\) and G()). For the
loss estimator, we replace w(6s) with f(w(6s)), where f(w)
is polynomial in w and logw for the class of losses we
consider. If the dominant term of f(w) is of order w®, the
tail behavior will be similar to a generalized Pareto with
ko = ak. Thus, L(\) will have larger pre-asymptotic
bias as « increases. For example, estimation of the mass-
covering inclusive KL (where v = 1) — and, more generally,
mass-covering a-divergences with o > 0 — will suffer from
a large pre-asymptotic bias. On the other hand, for the
mode-seeking exclusive KL, f(w) = log(w), so we can
expect all moments to be finite and therefore a much smaller
pre-asymptotic bias.

Similar considerations apply to the gradient estimator. How-
ever, when using self-normalized weights for a-divergences,
we can expect a large pre-asymptotic bias whenever w(6)
has such bias since self-normalization involves estimating
the mean of w(#). This bias will affect the accuracy of the
solution found. The quality of the solutions found can only
partially be improved by using a smaller step size, since
smaller step sizes will only reduce the effects of a large
estimator variance, but not the effects from a large bias.

3.2. Experimental framework

In the light of potentially large non-asymptotic bias arising
from the heavy right tail of w(#), it is important to verify
the pre-asymptotic behavior of the Monte Carlo estimators
used in variational inference. We follow the approach de-
veloped by Vehtari et al. (2019) for importance sampling
and compute an empirical estimate k of the tail index k& by
fitting a generalized Pareto distribution to the observed tail
draws. Vehtari et al. (2019) show that the minimal sample
size to have a small error with high probability scales as
S = O(exp{k/(1 — k)?}). Two key propositions here are:
(P1) Mode-seeking divergences are more stable and re-
liable than mass-covering ones. Fig. 8 in Appendix shows
that gradient bias and variance increases with dimension for
inclusive KL and x2 but not exclusive KL.

(P2) Degree of polynomial dependence on w determines
sensitivity to approximation-target mismatch. Fig. 8
also shows that gradient estimates (divergence estimates
in Appendix A.1) of divergences that involve higher poly-
nomials of w (e.g. x?) become more and more unstable as
dimensions increase.
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Figure 4. Maximum dimensionality converged per step size for the
robust regression model.
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Figure 5. Results for posteriordb experiments. Dimensional-
ity of each dataset is given in parentheses.Pareto k values for BBVI

approximations.

4. Experiments

In this section, we describe a series of experiments to
show how our framework works. For all posteriors, we
fit mean-field Gaussian and Student-¢ families, a planar
flow (Rezende & Mohamed, 2015) with 6 layers and a non-
volume preserving (NVP) flow (Dinh et al., 2017) with 6
stacked neural networks with 2 hidden layers of 10 neu-
rons each for both the translation and scaling operations.
We use Stan (Stan Development Team, 2020) for model
construction.

Mode-seeking divergences are easier to optimize. In par-
ticular, the k values when using normalizing flows, which
are more challenging to optimize, is low for D < 20 when
using exclusive KL, but infinite when using either the in-
clusive KL or f-divergence. We can see that exclusive KL
provides also more accurate and reliable posterior approxi-
mations than the inclusive KL and adaptive f-divergence,
particularly for the normalizing flows. This is despite the
fact that we used 20 times as many MC samples to estimate
the gradients for the inclusive KL and the f-divergence
compared to the exclusive KL. To further illustrate the rel-
ative difficulty of optimizing the inclusive KL divergence,
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Figure 6. Relative error of mean and covariance estimates for
BBVI using exclusive KL (circles) and after PSIS correction (tri-
angles).

Fig. 4 shows the largest dimension for which the stochastic
optimization converged as a function of the step-size. For
most step-sizes, the combination of normalizing flows and
the inclusive KL divergence only converged for D = 2,
whereas convergence is possible in higher dimensions for
simpler variational families.

4.1. Realistic models and datasets

We compare variational approximations for models and
datasets from posteriordb (github.com/stan-dev/
posteriordb) in terms of accuracy of the estimated mo-
ments and predictive likelihood. We use Ti,.x = 15,000
and robust optimisation algorithm given in Dhaka et al.
(2020) for stochastic optimisation, for cases where the diver-
gence objectives are analytical, we used BFGS optimisation.

Exclusive KL remains the most reliable for realistic pos-
teriors. The results are summarized in Figs. 5 and 6: exclu-
sive KL is superior for higher-dimensional posteriors (e.g.,
D > 10) or when combined with normalizing flows, while
inclusive KL is better for the large values for k indicate that
fitting approximations based on normalizing flows remains
a challenge in high dimensions. The performance for the
adaptive f-divergence is comparable to the inclusive KL
divergence. Normalizing flows can be effective but are
challenging to optimize. Fig. 6 also shows that normaliz-
ing flows can be quite effective when used with exclusive
KL to ensure stable optimization However, as can be seen
in Fig. 5 and Fig. 3, when using out-of-the-box optimiza-
tion with no problem-specific tuning (as we have done for a
fair comparison), the normalizing flows approximations can
have pathological features — even in low dimensions.
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Figure 7. Results for the ratio of the f-divergence estimate to the
true value of a correlated Gaussian targets of dimension D =
1,..., 50 using either the exclusive or inclusive KL divergence as
the variational objective.
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Figure 8. The bias and variance of the gradients of the different
divergence objectives for one variational parameter at the end of
optimisation for correlated Gaussian targets of dimension D =
1-..20

A. Appendix
A.1. Divergence estimates

We add an additional visualization that demonstrates the
unstable behaviour of the f-divergence estimates as di-
mensions increase, particularly for divergences that involve
higher polynomials of w.

B. PosteriorDB datasets
In Table 1 we show the dimensionality of the datasets we

use for our real experiments.

C. Additional results for the pre-asymptotic
reliability case study

In Fig. 9 and Fig. 10 we show additional results for the pre-
asymptotic reliability case study for different objectives and
mean field Gaussian approximation. The results from opti-

Table 1. Datasets from PosteriorDB.

Name Dimensions
Dogs 5
Ark 7
Mesquite 8
Eight schools non centered 10
Eight schools centered 10
NES1996 11
Diamonds 26
Radon unpooled 90

mising 2, 1/2-divergence and tail adaptive f-divergence
follow similar trends as those resulting from optimising
exclusive and inclusive KL. Approximations obtained by
optimising x? and 1/2-divergence are more unstable and
end up diverging in similar ways as inclusive KL even for
moderately low dimensional problems. We use a warm start
procedure for x?2, 1/2-divergence and inclusive KL, starting
at the solution of exclusive KL for a given problem. On the
other hand, optimising tail adaptive f-divergence seems to
be more robust and behave similarly to exclusive KL even
in higher dimensions.
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Figure 9. Pareto k estimated for different objectives and divergences estimation for a 0.5 correlated Gaussian target and mean field
Gaussian approximation and increasing dimensionality. Here we compute the & for all the f(w) after optimizing a particular variational
objective.
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Figure 10. Divergences estimates for different objectives for a 0.5 correlated Gaussian target and mean field Gaussian approximation and
increasing dimensionality.



