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ABSTRACT

We study the geometry of token representations at the prompt level in large language
models through the lens of intrinsic dimension. Viewing transformers as mean-field
particle systems, we estimate the intrinsic dimension of the empirical measure at
each layer and demonstrate that it correlates with next-token uncertainty. Across
models and intrinsic dimension estimators, we find that intrinsic dimension peaks
in early to middle layers and increases under synthactic and semantic disruption
(by shuffling tokens), and that it is strongly correlated with average surprisal,
with a simple analysis linking logits geometry to entropy via softmax. As a case
study in practical interpretability and safety, we train a linear probe on the per-
layer intrinsic dimension profile to distinguish malicious from benign prompts
before generation. This probe achieves accuracy of 90 to 95% in different datasets,
outperforming widely used guardrails such as Llama Guard and Shield Gemma.
We further compare against linear probes built from layerwise entropy derived via
the Tuned Lens and find that the intrinsic dimension-based probe is competitive and
complementary, offering a compact, interpretable signal distributed across layers.
Our findings suggest that prompt-level geometry provides actionable signals for
monitoring and controlling LLM behavior, and offers a bridge between mechanistic
insights and practical safety tools.

1 INTRODUCTION

Large language models (LLMs) make predictions by iteratively refining token representations across
layers. Understanding how these internal representations evolve and what they reveal about the
underlying model remains a core challenge for interpretability and safety. We take a geometric
perspective, grounded in recent analytic views of transformers as mean-field interacting systems,
where tokens evolve under dynamics driven by their empirical measure Vuckovic et al. (2020);
Geshkovski et al. (2024a;b;c); Sander et al. (2022). In particular, Geshkovski et al. (2024b) showed
that phenomena like rank collapse can be understood by studying the geometry of tokens, motivating
further analysis. We propose prompt-level intrinsic dimension (ID) as a probe of the empirical
measure. We aim to show that it directly characterizes the internal geometry that governs token
interactions and that it encodes information directly usable for downstream tasks. Our approach
is inspired by geometric studies that have measured dataset-level properties (e.g., of last-token
representations Valeriani et al. (2023); Cheng et al. (2023); Skean et al. (2024); Acevedo et al. (2024))
to locate semantic phases across layers. However, last-token analyses obscure intra-prompt structure
and do not directly probe the empirical measure governing token dynamics. We instead compute
ID at the prompt level, i.e. using all tokens within a prompt. This allows us to connect geometry to
model uncertainty at the resolution where interactions actually occur.

First, we provide qualitative evidence that prompt-level geometry tracks semantic organization.
Across models, the intrinsic dimension exhibits a characteristic peak in early-to-middle layers.
When we disrupt syntax and semantics by shuffling tokens, this peak increases, indicating higher-
dimensional geometry. We then show that intrinsic dimension is quantitatively related to model
uncertainty: the prompt-level ID correlates with the model’s average surprisal (i.e., next-token cross-
entropy), and the correlation appeares already in early layers. We explain this through an analysis
consisting of three steps: last-layer hidden states map linearly to logits, and softmax entropy increases
with the effective dimensionality of the logit manifold. We demonstrate this fact analytically in toy
settings and empirically via contextual entropy.
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To demonstrate that these insights are directly useful for downstream tasks, we present an experiment
in pre-output safety screening. We extract a per-layer ID feature vector for each prompt and train a
linear classifier to distinguish benign from malicious prompts. This simple geometric signal achieves
90–95% accuracy, outperforming Llama Guard Inan et al. (2023) and Gemma Shield Zeng et al.
(2024) on the same data. For comparison, we also build a different data vector using tuned-lens to
unembed next token predictions and computing entropy on them. This technique shows comparable
performance to the ID feature vector, confirming that internal geometry and latent uncertainty provide
complementary, actionable safety signals before generation.

Overall, we provide the following contributions:

• We introduce prompt-level intrinsic dimension as a probe of the empirical measure that
governs token dynamics, and map its evolution across layers.

• We establish a layerwise correlation between geometry (ID) and uncertainty (average
surprisal), with supporting theoretical intuition from logits–softmax geometry.

• We provide a practical case study of pre-output safety screening, where a linear classifier on
ID features separates malicious from benign prompts with 90–95% accuracy, outperforming
standard safety tools, and corroborated by tuned-lens entropy

• We clarify how prompt-level geometry differs from dataset-level last-token analyses, and
release code to reproduce all results.

Together, these findings position token-geometry as a unifying lens: it summarizes how transformers
organize contextual information, predicts uncertainty without accessing outputs, and enables simple,
effective, pre-output interventions for interpretability and safety.

2 RELATED WORK

Analytic Approaches to Transformer Models. Recent analytical works Geshkovski et al. (2024b;
2023); Castin et al. (2024); Cowsik et al. (2024) indicate that analyzing geometric properties of
token representations at the prompt level and their dynamics can offer meaningful insights into how
transformers function by viewing the evolution of tokens in the transformer layers as particles in a
dynamical system. This perspective not only offers insights into the geometric dynamics of tokens
but also addresses the trainability of transformers based on initialization hyperparameters, including
the strength of attentional and MLP residual connections. This analytical framework highlights the
significance of studying the distribution of the internal representations of the tokens (referred to as
the empirical measure) by i) suggesting a relation between the empirical measure to the next token
prediction Geshkovski et al. (2024b) ii) understanding the role of the empirical measure in governing
the token dynamics Agrachev & Letrouit (2024).

Geometric Approaches to Transformer Models. The manifold hypothesis posits that real-world
high-dimensional data often lie on or near a lower-dimensional manifold within the high-dimensional
space Goodfellow et al. (2016). The dimension of this approximating manifold is usually named the
intrinsic dimension of the data. Several studies have demonstrated that the intrinsic dimension of
data representations in deep networks shows a remarkable dynamic range, characterized by distinct
phases of expansion and contraction Ansuini et al. (2019); Doimo et al. (2020); Pope et al. (2021).
Data manifolds created by internal representations in deep networks have been also explored from
the perspective of neuroscience and statistical mechanics Chung et al. (2018); Cohen et al. (2020). In
LLMs, a geometric analysis of representations has uncovered a rich set of phenomena. Geometric
properties, such as intrinsic dimension and the composition of nearest neighbors, evolve throughout
the network’s sequence of internal layers. These changes mark distinct phases in the model’s operation,
signaling the localization of semantic information Valeriani et al. (2023); Cheng et al. (2023); Skean
et al. (2024). Acevedo et al. (2024) analyze the intrinsic dimension by considering all tokens to reveal
semantic correlations in images and text inside deep neural networks. While the aforementioned
works analyze internal representations in linguistic processing, the geometry of context embeddings
has been linked to language statistics Zhao et al. (2024) and used to highlight differences between
real and artificial data Tulchinskii et al. (2023). Complementary views include information-geometry
analyses that track higher-order structure via cumulant expansions Viswanathan & Park (2025),
and topological data analysis that follows cross-layer evolution to characterize persistent features
Gardinazzi et al. (2024).
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Safety in LLMs. Existing literature dealing with LLM safety typically targets two related threats:
jailbreaks and prompt injections. In both cases, an attacker’s text can override guardrails or combine
untrusted with trusted instructions, forcing a model to produce harmful content, or driving it to take
unintended actions (for example, leaking data or misusing tools) Greshake et al. (2023); Zou et al.
(2023). Public benchmarks are useful for comparing defenses, but many have well-known issues: i)
they quickly become obsolete as models and attacks evolve, ii) labels may mix up toxicity/politics
with true attacks and iii) engineered prompts often dominate, which do not resemble well real-life
usage Chao et al. (2024); Mazeika et al. (2024); Schulhoff et al. (2023) (see also this recent article
Stangl & Davis (2025)). Usable systems commonly rely on moderation and safety classifiers, such
as Llama Guard Inan et al. (2023) and ShieldGemma Zeng et al. (2024)) and on probability-based
detectors such as GLTR Gehrmann et al. (2019) or DetectGPT Mitchell et al. (2023), which look for
statistical anomalies in text. These baselines are practical but can miss paraphrased or domain-specific
attacks and may degrade under distribution shift (see Huang et al. (2024) for a comprehensive review).

3 METHOD

Transformer models take as input a sequence of vectors embedded in d-dimensions of varying length
N , {xi}i∈[N ] ∈ Rd×N . Each element of the sequence is called a token, while the entire sequence is a
prompt. A transformer is then a sequence of maps:

{xi(1)}i∈[N ] → {xi(2)}i∈[N ] · · · → {xi(Nlayers)}i∈[N ] , (1)

where xi(ℓ) ∈ Rd×N represents the i-th token at layer ℓ, Nlayers the total number of model layers
and N is the number of tokens.

In transformer models, prompts can vary based on the specific application, representing protein
sequences, image pixels, or text sentences. In this study, we focus on causal language models and use
sentences as our input prompts, though the technique can be extended to other input types as well.
The prompt size can significantly vary depending on the dataset considered: sentences can be O(10) -
O(1000) tokens long. Given that our goal is to study and interpret the geometrical behavior at the
token level across model layers, we select prompts with a sufficient number of tokens, i.e. N ≳ 500
tokens, to ensure reliable estimates of our observables.

Empirical measure. Given n points at positions x1, . . . , xn ∈ Rd (a point cloud), their empirical
measure is the probability measure µ = 1

n

∑n
j=1 δxj

, i.e., the empirical measure encodes the
distribution of points in the embedding space. In the context of transformers Geshkovski et al.
(2024b), the empirical measure characterizes the distribution of the tokens at each layer of the
sequence 1. The empirical measure for the last layer is the output measure. The dynamical evolution
of tokens in this framework, as described by Equation (1) in Agrachev & Letrouit (2024), indicates
that the change in the token representation of token i is controlled by a layer-dependent kernel Kℓ

and depends purely on the current token representation xi(ℓ) and the empirical measure1. To probe
the empirical measure across layers, we use the intrinsic dimension, as defined below.

Intrinsic Dimension Estimators. We estimate the intrinsic dimension (ID) of each prompt’s token
cloud using kNN-based estimators as they are comparatively robust to high ambient dimensionality
and can capture nonlinear manifold structure by operating locally rather than fitting a global linear
subspace. They typically assume locally approximately uniform density (often modeled by a Poisson
process) and small curvature at the neighborhood scale, and are naturally multiscale via the choice of
k, which we use to assess stability. Concretely, we use: GRIDE Denti et al. (2022), a likelihood-based
estimator from kNN distance ratios with analytical finite-sample corrections; ESS (expected simplex
skewness) Johnsson et al. (2015), which maps the shape of local simplices to ID via closed-form
expectations under isotropy; and TLE (tight local ID estimation) Amsaleg et al. (2019), which fits
the tail behavior of kNN distances with bias-reduced corrections for small samples. We report
layerwise prompt-level IDs by averaging local estimates across tokens. In the main text, we quote
results for GRIDE only, since all three methods give qualitatively similar results. Precise definitions,
assumptions, and hyperparameters, as well as results for ESS and TLE and a comparison of all
methods are provided in the Appendix A.

1The dynamics of a token i depends on the position of all the tokens xj(ℓ) but not on their labels, which is
an assumption in the mean-field interacting particle framework.
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3.1 MODELS AND DATASETS

Models. In sections 4 and 5, we analyze 4 different pre-trained decoder-only LLMs: Llama 3 8B
Meta (2024), Mistral 7B Jiang et al. (2023), Pythia 6.9B (Deduplicated) Biderman et al. (2023)
and Opt 6.7B Zhang et al. (2022) each of them having 32 hidden layers and a hidden dimension of
4096. We use the PYTHIA models that were trained on the Pile after the dataset has been globally
deduplicated. For brevity, we call them LLAMA, MISTRAL, PYTHIA and OPT from now on. In the
plots, layer 0 represents the embedding layer, with the hidden layers starting from layer 1. We extract
internal representations from these models using the HuggingFace Transformers library2. The token
representations, stored in the hidden state variable, correspond to the representations in the
residual stream Elhage et al. (2021) after one attention and one MLP update. In the models considered,
layer normalization is applied before self-attention and MLP sublayers. LLAMA, MISTRAL and
OPT add the self-attention outputs to the residual stream before the MLP whereas PYTHIA adds the
self-attention and MLP sublayer outputs to the residual stream in parallel. In Appendix F, we use
TunedLens3 Belrose et al. (2023) to obtain the entropy of the latent predictions for the GPT-2 Radford
et al. (2019) models (small, large and XL), PYTHIA models (160M, 410M, 2.8B and 6.9B), OPT and
LLAMA.

Datasets. As a dataset representative of text in an extensive way, we use the Pile dataset, which
comprises text from 22 different sources Gao et al. (2020). For computational reasons, we opted
for the reduced size version Pile-10K Nanda (2022). We further filter only prompts of sequence
length N ≥ 1024 according to the tokenization schemes of all the above models. This choice ensures
a reliable estimate of ID. This results in 2244 prompts after filtering. We truncate the prompts by
retaining the first N = 1024 tokens to eliminate the length-induced bias in our ID estimates, if it were
to be present. We describe datasets that are specific to the downstream task experiment of pre-output
screening in Section 6.

4 QUALITATIVE DESCRIPTION OF INTRINSIC DIMENSION OF PROMPTS

We examine the intrinsic dimension profile of tokens as a function of layers. For a qualitative
understanding of the intrinsic dimension at the prompt level, we plot the intrinsic dimension for a given
prompt and its shuffled version. By disrupting the syntactic and semantic structure while preserving
unigram frequency distribution, we observe the effect of shuffling on the intrinsic dimension profile
across layers for different models.

Shuffling method. We define the shuffling of tokens in the following way: given a prompt with N
tokens, X = {xi}i∈[N ], we split the sequence into nBlocks blocks of size B such that nBlocks×
B = N and take one random permutation of the blocks, as schematically presented in Figure 7. Note
that the shuffle index for the fully shuffled case (Ŝ) corresponds to the value of S when the number
of tokens N = 4Ŝ . In Appendix B we include the shuffling algorithm and a schematic example of
the shuffling method.

We show two main results: i) the effect of various degrees of shuffling on our metrics for a single,
random prompt and ii) the qualitative behavior of the unshuffled and the fully shuffled prompts on
average. For the former observable, we consider the the 3218th prompt from the Pile-10K dataset, with
the Pile set name: ArXiv. This prompt is shuffled to six different levels labeled by (S = 0, 1, . . . , 5)
where the shuffle index S quantifies the degree of shuffling: S = 0 represents the unshuffled state,
while S = 5 corresponds to the fully shuffled case. We study the representations of this prompt using
representations from LLAMA. For the average behavior, we find the averages of the ID over 2244
prompts. Figure 1 displays the ID calculated for a range scaling of 4 for LLAMA. The Left Panel
shows the ID profile of a single prompt at various levels of shuffling, while the Right Panel presents
the average ID across 2244 prompts for both fully shuffled and structured cases. In all scenarios, we
observe a peak in ID in the early to middle layers. Additionally, the height of this peak increases with
the degree of shuffling, indicating a correlation between the two. We show results for other models
and estimators in Appendix C.

2Link to the library: https://huggingface.co/docs/transformers
3Link to the repository: https://github.com/AlignmentResearch/tuned-lens
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Figure 1: Intrinsic Dimension. Left Panel: intrinsic dimension for a single random prompt as a
function of model layers. Right Panel: intrinsic dimension averaged over 2244 prompts as a function
of layers for the full shuffle (S = 5) and the structured case (S = 0). The shaded regions indicate the
standard deviation from the mean. The color bar indicates the shuffle index S. All curves have been
calculated for the LLAMA model.

Relation to previous work. Acevedo et al. (2024) examine how the semantic content of repre-
sentations influences their intrinsic dimension, suggesting that representations with shared semantic
content exhibit a lower intrinsic dimension. This explains the lower intrinsic dimension for the
unshuffled prompt. By contrast, prior studies at the dataset level using last-token representations
report the opposite shuffling effect: Cheng et al. (2024) find that shuffled prompts yield lower ID
than unshuffled ones. This discrepancy arises because dataset-level analyses aggregate last tokens
across many prompts, where semantic alignment is weak, inflating ID (typically O(40)) relative to
prompt-level token clouds (O(10)). In other words, dataset-level ID primarily reflects the global syn-
tactic/semantic mix of the corpus Cheng et al. (2024), whereas prompt-level ID captures intra-prompt
semantic correlations Acevedo et al. (2024). We analyze these differences in more detail in Section
D.

5 INTRINSIC DIMENSION IS CORRELATED WITH THE MODEL’S LOSS

In this section, we examine the correlation between the layerwise intrinsic dimension of prompts
and their average surprisal of the next token prediction. Given a prompt X = (x1, . . . , xN ) and the
model’s next token prediction pθ over a vocabulary V , the average surprisal4 is

average surprisal(X) = − 1

N

N∑
i

log pθ (xi | x<i) (2)

where log pθ (xi | x<i) is the log-likelihood of the ith token conditioned on the preceding tokens
(x<i). For the population of 2244 prompts across different models used in the previous section,
we evaluate the correlation between the log ID and average surprisal(X) for each layer using the
Pearson correlation coefficient (ρ), defined as the ratio between the covariance of two variables and
the product of their standard deviations.

As shown in left panel of Figure 2, all four models have a high positive correlation across the layers
of the model, implying that prompts with a higher average surprisal have a higher intrinsic dimension.
This behaviour is replicated across different estimators as well (right panel), and across choices of
range scalings for GRIDE, as shown in Figure 12 in Appendix E. This observation is qualitatively
consistent with the shuffling experiment in Section 4, the shuffled data is expected to have a higher
surprisal and hence a higher intrinsic dimension. Notably, this correlation exists in the early layers
even though the surprisal is calculated after the final layer. This can be attributed to the substantial

4This quantity is referred to by various names in the literature, including average cross-entropy loss, log
perplexity, and average next-token prediction error, among others.
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Figure 2: Correlation between intrinsic dimension and the average surprisal. Pearson coefficient
between the logarithm of the intrinsic dimension and model surprisal for different models and
estimators as a function of layers. Left Panel: The four curves correspond to LLAMA (orange),
MISTRAL (magenta), PYTHIA (blue), and OPT (yellow). The intrinsic dimension was calculated for
the GRIDE estimator at scaling = 4, refer to Figure 12 for scaling = 2 and 8. Right Panel: The three
curves correspond to three intrinsic-dimension estimators: ESS (k=10), TLE (k=20), and GRIDE
(range scaling = 4), calculated for LLAMA. We observe a positive correlation between intrinsic
dimension and surprisal across all models and estimators starting from the early layers. The p-values
for the Pearson coefficients in this plot are all below 0.01.

Pearson correlation coefficient (ρ > 0.6) between the intrinsic dimension of the internal layers and
the last layer. We empirically check this in Figure 13 in Appendix E where we also find a strong
correlation between the intrinsic dimension of adjacent layers.)

Why does intrinsic dimension track uncertainty? The observed correlation between a geometric
quantity (the ID of internal representations) and an information-theoretic quantity (the surprisal)
occurs at the softmax layer between the last layer representations and the next token predictions. It is
therefore worth discussing the relationship between the ID at the last layer and the surprisal in more
detail. We can summarize the idea with the following steps:

1. Unembedding Tokens to Logits: We expect the ID of the last layer to be strongly correlated
to the ID of the logits since the unembedding is a linear transformation. This is confirmed
by the Pearson coefficient of ρ = 0.98 between the log ID of the last layer and the logits.

2. Logits to Contextual Entropy: Here we relate the geometric perspective to the information-
theoretic perspective. In this context, a softmax layer converts the logits to next token
prediction probabilities, pθ (v | x<i). From this, the contextual entropy Wilcox et al. (2023)
is defined as

H (x<i) = −
∑
v∈V

pθ (v | x<i) log pθ (v | x<i) = E
v∼p(·|x<i)

[− log pθ (v | x<i)] (3)

where (x<i) is the context. We can average this quantity over all the tokens in a prompt to
obtain the average contextual entropyH(X):

H(X) =
1

N

N∑
i=1

H (x<i) = −
1

N

N∑
i=1

∑
v∈V

pθ (v | x<i) log pθ (v | x<i) (4)

We empirically show a correlation between the logarithm of logits ID and the contextual
entropy in the LLAMA model by observing a Pearson correlation of ρ = 0.6, as shown in
the left panel of Figure 3.

3. Contextual Entropy ∼ Cross-Entropy Loss: Equation 3 shows that the contextual entropy
is the expected value of the surprisal, with the expectation computed using the next token
probabilities pθ. When we consider a large number of tokens in the prompts, we expect the
contextual entropy to be almost equal to the surprisal of the next token predictions when
averaged over all the tokens. This can be seen empirically in the right panel of Figure 3.
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Figure 3: Correlating intrinsic dimension at the last layer to surprisal. The points in the following
plots are calculated using the 2244 prompts considered in this paper for the LLAMA model. - (a) Left
Panel: analysis of the correlation between the logits ID to the average contextual entropy and (b)
Right Panel: comparing the average contextual entropy to the average surprisal. On the left panel, we
observe a correlation of ρ = 0.6 between the logits ID and contextual entropy, and on the right panel,
we notice that the surprisal is approximately equal to the contextual entropy. The intrinsic dimension
was calculated at scaling = 4, refer to Figure 14 for scaling = 2 and 8.

Why are logit IDs and contextual entropy correlated? Given that the second step of the relation
above is non-trivial, we dedicate a more in-depth study. We wish to demonstrate that the correlation
between logit IDs and the contextual entropy (entropy of next token predictions) is a fundamental
property of the softmax layer, making this relationship more general.

Given z = (z1, z2, ...z|V|) where zα ∈ R, as the input to a softmax layer, the associated entropy of
the probability distribution generated by the softmax operation is

S(z) = −
|V|∑
α=1

p(z)α log p(z)α =

log

|V|∑
α=1

ezα −
∑|V|

α=1 zαe
zα∑|V|

α=1 e
zα

 , (5)

where p(z)α =
ezα∑|V|
β=1 e

zβ
is the probability of the αth word in a vocabulary with |V| entries.

When the next token predictions are obtained using the softmax activation function, the contextual
entropy reduces to the above expression, which we refer to as the softmax entropy5. From Equations
4 and 5, we see that the average contextual entropy for a prompt X is the average of the softmax
entropy of the corresponding logits -

H(X) =
1

N

N∑
i=1

S(zi). (6)

These relations suggest that the underlying manifold on which the logits lie plays a role in the
evaluation of the entropy. Given this manifold M with measure µ, and the logits z distributed
according to the density function P (z), the expected value of the softmax entropy is given by

⟨S⟩M =

∫
M
dµ(z) P (z)S(z). (7)

From what is observed empirically, we expect that the dimension of the manifold DM, typically
much smaller than |V|, should play a role in the integral.

We can show this explicitly in a toy example. Let us suppose that the next-token probabilities are
uniformly distributed over a probability simplex ∆DM . In this case, P (z) ∈ ∆DM is drawn from the

5We use S(z) to denote the softmax entropy that is defined at the level of logits and H(x<i) to denote the
contextual entropy which is more generically defined at the level of tokens. For clarity, we use the Greek letters
to indicate the index in vocabulary and the Roman letters to indicate indices of tokens in a prompt.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Dirichlet distribution with α = 1, where the expected entropy Wolpert & Wolf (1995); Nemenman
et al. (2001) is given by

⟨S⟩∆DM
= ψ(DM + 1)− ψ(2) =

DM∑
k=1

1

k
− 1 (8)

where ψ is the Digamma function. From the above relation and using bounds on the harmonic number
Viola (2017), it can be shown that(

logDM −
1

2

)
< ⟨S⟩∆DM

≤ logDM (9)

and in the asymptotic limit,

lim
DM→∞

⟨S⟩∆DM
= logDM + γ − 1 ∼ logDM − 0.42 (10)

where γ is the Euler-Mascheroni constant. We thus observe a logDM dependence for the expected
entropy in the probability simplex ∆DM . While this relation might not hold for a generic manifold, it
would be worth investigating this in more detail.

Relation to previous work. The connection between the surprisal and ID was discussed in Cheng
et al. (2023) where the correlation was calculated between the peak ID of the dataset of the last token
representations and the log of dataset perplexity in Fig. 2 of Cheng et al. (2023). However, we get
a correlation in similar spirit at a finer level since it reveals a correlation at the level of individual
prompts (more detailed comparison in Sec. D).

6 CASE STUDY: PRE-OUTPUT DETECTION OF MALICIOUS PROMPTS VIA
PROMPT GEOMETRY

The analyses in Sections 4 and 5 indicate that prompt-level intrinsic dimension encodes meaningful
information about how a model organizes and resolves uncertainty across layers. This suggests
a generic pre-output diagnostic: if different classes of prompts drive the model into measurably
different geometric regimes, then the layerwise ID profile should provide a compact feature for
flagging such prompts before decoding, without task-specific heuristics or access to generated text.
We therefore ask whether a simple linear probe on ID profiles can distinguish benign from malicious
prompts, as a proof-of-principle that the geometric signal is actionable.

Datasets description. This paper uses different curated datasets for jailbreak detection, taken
from three distinct public sources on HuggingFace: i) a dataset of malicious prompts6, ii) a dataset
of jailbreak attempts and benign prompts 7, and iii) a dataset containing exclusively jailbreaking
prompts8, from which we consider the ”attack” prompts. To create a balanced collection from this
source, we supplemented it with benign text samples extracted from the Pile dataset utilized in the
previous Sections. For clarity, we call these three datasets MALICIOUS, JAILBREAK and ATTACK,
respectively. Finally, to standardize the data for our experiments, we filter the combined collection,
retaining only those prompts with a token count in the range of [500, 1000], and considering subsets
of 3000 jailbreak and 3000 benign samples.

Experiment description. We process each benign/malicious prompt of a given dataset through
LLAMA and compute ID at each layer. 9 With the ID profile data vector, we train a linear classifier
(logistic regression) to predict a binary label (benign vs malicious) with a split of 80-20 between
training and test set. We compare results to the following alternatives:

• Guardrail Models: We utilize two trained models as a safety classifier. Llama Guard
8B Inan et al. (2023) performs a fine-grained classification, identifying the specific policy

6https://huggingface.co/datasets/guychuk/benign-malicious-prompt-classification
7https://huggingface.co/datasets/Bogdan01m/Catch the prompt injection or jailbreak or benign
8https://huggingface.co/datasets/Bravansky/compact-jailbreaks
9Here we quote results for GRIDE only since results on estimators TLE and ESS are quantitatively similar.
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Dataset Shield Gemma Llama Guard 3 TunedLens Entropy GRIDE

MALICIOUS 0.58 0.64 0.96 0.94

JAILBREAK 0.52 0.53 0.65 0.92

ATTACK 0.67 0.80 0.98 0.90

Table 1: Cross-validation accuracy from logistic regression for pre-output safety screening.
Results for the binary classification of malicious/benign prompts processed through LLAMA from
three different datasets. Values indicate cross-validation accuracy run on 5 different train/test splits
with 80/20 ratios. All uncertainties are within subpercent.

violation category from its safety taxonomy. Shield Gemma 9B Zeng et al. (2024) offers a
binary safe/unsafe classification based on a set of guidelines, all of which were used in our
experiments. Both models are configured to operate exclusively on the input prompt.

• TunedLens entropy: The Tuned Lens Belrose et al. (2023) analyzes transformers from
the perspective of iterative inference Jastrzebski et al. (2018), understanding how model
predictions are refined layer by layer. This is done by training linear probes to decode
intermediate hidden states into the model’s vocabulary space. Using this, we analyze the
hidden states by computing the average entropy of the unembedded predictions across all
the tokens in a prompt. We provide details on how this is computed in Appendix F.

We quote results in Table 1 for LLAMA. A linear classifier on the ID profile achieves 90–95%
accuracy across datasets and models, substantially outperforming Llama Guard and Gemma Shield
(60–70% on the same splits). TunedLens entropy features attain similar performance (90–95%). We
argue that this is consistent with the geometry–uncertainty link in Section 5, and investigate the
correlation between ID and the entropy of latent predictions in Appendix F.

7 CONCLUSIONS

We model prompts as token clouds and use intrinsic dimension to probe their empirical measure
across layers, showing that it peaks in early–middle layers, increases under semantic disruption, and
aligns with next-token uncertainty via a logits–softmax link. This yields a compact, interpretable,
pre-output signal: a linear probe on the layerwise ID profile can flag malicious prompts, requiring no
decoding. Conceptually, this positions geometry as a bridge between mechanistic tools of iterative
inference and practical safety interventions.

In this work, we demonstrated that prompt-level intrinsic dimension can effectively detect malicious
prompts, achieving 90-95% accuracy and substantially outperforming existing safety tools. This
success suggests that prompt geometry holds promise for a broader range of practical applications
beyond safety screening. The geometric signatures we identified could potentially be leveraged for
tasks such as detecting hallucinations, identifying out-of-distribution inputs, or predicting generation
quality before decoding. Additionally, while we focused on intrinsic dimension as our geometric
observable, exploring other geometric properties such as curvature, clustering metrics, or topological
features could reveal complementary signals about how models process different types of content.
These geometric approaches offer an unsupervised, interpretable window into model behavior that
operates directly on internal representations without requiring labeled data or task-specific fine-
tuning. The strong correlation we established between geometry and uncertainty further suggests
that monitoring these geometric properties during inference could enable real-time interventions,
potentially leading to more controllable language models.

Limitations. Our analysis relies on kNN-based estimators that assume local uniformity, and the
ID estimates are reliable when the prompts are sufficiently long (O(500) tokens), as seen in Section
6, limiting the applicability of pre-output screening. Moreover, absolute ID values can vary with
estimator choice and neighborhood scale, and a more comprehensive multiscale analysis is reserved
for future work. The theoretical connection between manifold geometry and entropy is demonstrated
in toy settings and empirically; a general proof for realistic logit manifolds remains open.
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8 REPRODUCIBILITY

All the results contained in this work are reproducible by means of an anonymised repository that can
be found at this https://anonymous.4open.science/r/token geometry-9DBC/.
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A MORE DETAILS ON INTRINSIC DIMENSION ESTIMATORS

In this section we introduce the intrinsic dimension estimators we use in the analysis and give provide
details on their implementation.

GRIDE. GRIDE Denti et al. (2021) is a likelihood-based ID estimator that estimates the intrinsic
dimension d̂ (n1, n2) using the ratios µ̇ = µi,n1,n2

=
ri,n2

ri,n1
, where ri,k is the Euclidean distance

between point i and its k-th nearest neighbour and 1 ≤ n1 < n2. Under the assumption of local
uniform density, the distribution of µi,n1,n2

is given by,

fµi,n1,n2
(µ̇, d) =

d
(
µ̇d − 1

)n2−n1−1

µ̇(n2−1)d+1B (n2 − n1, n1)
, µ̇ > 1 (11)

where B(·, ·) is the beta function. The ID estimate d̂(n1, n2) is obtained by maximizing the above
likelihood with respect to d assuming that the ratios µi,n1,n2

are independent for different points.
The conventional choice for the GRIDE algorithm is to set n2 = 2n1 and examine the variation of d̂
for n2 ∈ {2, 4, 8..}, where the parameter n2 is known as the range scaling parameter. While in the
main text we always use range scaling = 4, here we show the stability as a function of scaling. The
prompts we analyze have N = 1024 tokens and in Fig. 4 we check the dependence of ID estimate on
range scaling ∈ {2, 4, 8, ..256} for prompt 3218, which suggests the choice of scaling = 4.

Figure 4: GRIDE scale analysis for an unshuffled prompt (prompt number 3218) across layers.

TLE. The Tight Local intrinsic dimensionality Estimator Amsaleg et al. (2018; 2019) algorithm
is a nearest neighbor based local ID estimator that is obtained using maximum likelihood estimate
techniques over all available pairwise distances among the members of the neighborhood. In this
paper, we use k = 20 following Cheng et al. (2023) and use the implementation provided in Bac et al.
(2021).

ESS. The Expected Simplex Skewness (ESS) Johnsson et al. (2015) is a nearest neighbor based
local ID estimator that constructs a simplex with one vertex at the centroid of the local dataset and
other vertices at the neighbors. The expected simplex skewness is defined pointwise as the ratio of
the volume of the simplex over the volume if all the edges to the centroid were orthogonal. In this
paper, we use k = 10 following Cheng et al. (2023) and use the implementation provided in Bac et al.
(2021).

Local uniform density check. We note that the above kNN-based estimators rely on the assumption
of local homogeneity, that is, nearby points are assumed to be uniformly sampled from d-dimensional
balls. As a check of local uniform density, we employ the Point Adaptive kNN (PAk) method
introduced in Rodriguez et al. (2018). PAk determines the extent of the neighborhood over which the
probability density can be considered constant for each data point, given a predefined confidence level.
We show the results in Figure 5, where we plot the layerwise median (and 25th quantile) values of k∗,
the maximum k (neighborhood) around a token where the density can be assumed to be constant.
This implies the density around tokens is constant on average until large values of k ∼ 20.
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Figure 5: Check for local uniform density for tokens in a prompt across layers. The plots
correspond to the local homogeneity check for 6 prompts across the dataset for representation
obtained using LLAMA. In each plot, we find the median and the 25th quantile of k∗ across tokens for
a given prompt. Here k∗ stands for the neighborhood until which the local density aprroximation
holds. We do this for every layer given by the x-axis.

Pareto distribution of log ratios. To further test the validity of GRIDE, we provide evidence that
token representations meet a necessary condition for this assumption to hold in the context of the
TwoNN estimator.

In Facco et al. (2017), where the TwoNN estimator is introduced, the authors show that local
homogeneity leads to a linear relationship between quantities related to the log-ratios and the
empirical cumulative distribution. In particular, the linear relationship is between quantities related

to the log-ratios
(
µ =

r2
r1

)
, and its empirical cumulative distribution. The linear relationship is

between logµ and − log (1− F emp (µi)). For a more elaborate explanation, please refer to the
section ”A Two Nearest Neighbors estimator for intrinsic dimension” in Facco et al. (2017). The
intrinsic dimension is then estimated as the slope of this line, as illustrated in Figure 1 of Facco et al.
(2017).

We check if this distribution results in a straight line in our case by performing this check on prompt
3218 for all layers in figure 6. It can be seen that this results in a distribution implying that the token
representations satisfy a necessary condition of the local homogeneity hypothesis.

The plot uses neighbors with k = 1 and 2, as required by the TwoNN estimator. A natural next step is
to evaluate the distribution using k = 2 and 4, consistent with our range scaling factor of 4. However,
this results in a distribution that is not linear, suggesting that a more sophisticated test is needed.
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Figure 6: Local homogeneity across layers. Empirical check of the TwoNN assumption for prompt
3218 using representations extracted from LLAMA. The plot shows the relationship between logµ
and − log(1− F emp(µi)) across all layers, indicating that token representations satisfy the Pareto
condition of the log ratio distances.

B DETAILS ON THE SHUFFLING METHODOLOGY

The shuffling algorithm explained in the main text is schematically summarized in Figure 7, where
we also include a toy example. In this example, we have Ŝ = 2 since we consider 16 tokens, whereas
in the experiments, we have Ŝ = 5 because we have 1024 = 45 tokens.

C CONSISTENCY OF RESULTS FROM THE SHUFFLE EXPERIMENT

In this section, we show the consistency of the results that were discussed in Section 4. In Figure 8
we show 6 shuffled and unshuffled random prompts, computed for three different models: LLAMA,
MISTRAL and PYTHIA, showing qualitatively similar behaviour.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 Shuffling algorithm

Require: tokens, S ▷ S is the shuffle index
Ensure: permutedTokens
nBlocks← 4S

n← tokens.length()
B ← ⌈n/nBlocks⌉ ▷ B is the block size
blocks← splitInBlocks(tokens, nBlocks,B) ▷ Split list into nBlocks sublists of size B
permutedBlocks← randomPermutation(blocks)
permutedTokens← mergeBlocks(permutedBlocks)

Figure 7: The shuffling algorithm with an example. Top Panel: Algorithmic description of the
shuffling procedure described in Section 4. Bottom Panel: An example of the shuffling algorithm
using N = 16 tokens. The first row (S = 0) corresponds to the unshuffled sequence. When S = 1,
the tokens are split into 41 blocks first and then, the blocks are shuffled. The last row S = 2 shows
the fully shuffled case where the tokens are randomly permuted.

Figure 8: The curves have been calculated for 6 random prompts from the Pile-10K dataset at scaling
= 4 where the title indicates the prompt number in the dataset. Left Panels: intrinsic dimension for
a single prompt as a function of layers for different models, including the embedding layer. Right
Panels: intrinsic dimension for the shuffled version of the same prompt averaged over 20 random
permutations of tokens. The shaded regions indicate the standard deviation from the mean.
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We also want to verify that our main conclusions are robust to the choice of intrinsic dimension
estimator. Using ESS, TLE, and GRIDE, we replicate the shuffle experiment finding consistenty
behaviour across estimators, see Figure 9.

Figure 9: Shuffle experiment using different estimators. The qualitative trend from section 4
holds across all intrinsic-dimension estimators—ESS (k=10), TLE (k=20), and GRIDE (range
scaling = 4): the estimated ID increases with the shuffle index S. Top row: intrinsic dimension for a
single random prompt as a function of model layers (color bar indicates shuffle index S). Bottom
row: intrinsic dimension averaged over all 2244 prompts as a function of layers for the structured
case (S=0) and the full shuffle (S=5); shaded bands denote ±1 standard deviation. All curves are
computed for the LLAMA model.

D QUALITATIVE COMPARISON OF PROMPT-LEVEL GEOMETRY TO PREVIOUS
DATASET-LEVEL STUDIES

Previous work Ansuini et al. (2019); Doimo et al. (2020); Pope et al. (2021); Valeriani et al. (2023);
Cheng et al. (2023; 2024); Antonello & Cheng (2024) have studied internal representations from a
geometric point of view by considering point clouds of last token representations. While the approach
is similar in spirit, prompt-level and dataset-level measures of intrinsic dimension probe different
manifolds and thus different features of LLMs. We expect this because the relationship between the
last tokens is different from that of tokens within the same prompt. In the upcoming analysis, we
understand this difference intuitively by looking at the geometry of the shuffled and the unshuffled
prompts at the dataset and prompt-level around the peak layers.

While dataset-level and prompt-level ID profiles exhibit similar behavior qualitatively, e.g. they peak
in early-middle layers, there is a notable difference in the shuffled and unshuffled prompts. At the
dataset level, we see that the unshuffled ID has a more prominent peak than the shuffled ID, whereas
it is the other way around at the prompt level. In the shuffled case, the last token representations are
less likely to share semantic content, leading to a lower intrinsic dimension at the dataset level. At
the prompt level, the lesser prominence of the peak of the unshuffled case can be explained using the
ID loss correlation. Since the loss is expected to be lower for the unshuffled prompts, we can expect
their ID peak to be less prominent than that of the shuffled prompts.
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(a) Dataset level. Left and middle panels: The t-SNE plots represent the 2244 last token representations for both
the unshuffled and the shuffled cases. Right panel: The combined t-SNE projection comprises 4488 last token
representations from both cases.

(b) Prompt level. Left and middle panels: The t-SNE projections of token representations for prompt number
3218 from Pile-10K, truncated to 1024 tokens, for both the unshuffled and shuffled cases. Right panel: The
combined t-SNE projection comprises 2048 token representations from both cases.

Figure 10: Dataset geometry and Prompt geometry. A qualitative comparison of last-token
representations at the dataset level (top panel) and the prompt level (bottom panel) geometry at layer
11 using t-SNE projections. All the plots are obtained using the representations from LLAMA.

For the dataset-level analysis, we use a corpus of 2244 prompts (the same corpus used for the prompt-
level analysis), drawn from Pile-10K and consisting of prompts with at least 1024 tokens. The last
token representations are extracted from these prompts as follows - we choose tokens at positions
512 through 532 that result in a 20-token sequence for the unshuffled case10. We randomly permute
aforementioned the 20-token sequences in the shuffled case and obtain the last token representations.
The prompt-level analysis is done on prompt number 3218 from the Pile-10K dataset. In Figure 10,
we plot the t-SNE projections of the shuffled and unshuffled along with ID for different scalings
at both the dataset and prompt levels. We notice that in both levels, the shuffled and unshuffled
representations lie on separate manifolds Sarfati et al. (2024).

For the sake of completeness, we compare the results of the ID-loss correlation at the dataset and the
prompt level in the next section.

D.1 PROMPT LEVEL ID IS MORE STRONGLY CORRELATED TO SURPRISAL

Since there is an extensive amount of work done for the case of Opt-6.7B at the dataset level regarding
the ID-surprisal correlation, we compare the prompt level results to the dataset level for Opt-6.7B.
Before proceeding here is a summary of the dataset level results from Cheng et al. (2023) and Cheng
et al. (2024) that are relevant for our comparison.

10This is a simplified setup of the experiments in Cheng et al. (2024).
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Figure 11: Summary of results for Opt-6.7B at the prompt-level. Left panel: The ID curve for
Opt-6.7B for scaling = 2, 4, 8 for prompt number 3218 from Pile-10K. We observe a peak around
layer 20 as in the dataset level Cheng et al. (2024). Middle panel: Spearman correlation between ID
and loss for Opt-6.7B for different range scalings at the prompt level as a function of layers. Right
panel: Scatter plot with the ID (y-axis) and the average surprisal (x-axis) at scaling = 2, layer 17 for
the 2244 prompts we consider in this text.

• In Cheng et al. (2023), the authors show a positive Spearman correlation of 0.51 for Opt-
6.7B (Figure 2a in Cheng et al. (2023)) using the ID estimator Expected Simplex Skewness
(ESS) Johnsson et al. (2015) between ID at the peak and the surprisal.

• An analysis at a higher range scaling is done in Cheng et al. (2024) where they show a
negative correlation with surprisal (Figure 6 in Cheng et al. (2024)) among a population
consisting of different models and datasets with a relatively less statistical significance since
it has a high p-value = 0.09.

On the other hand, using the prompt-level approach, we measure a higher layerwise positive
correlation with surprisal. We summarize the results in Table 2.

Dataset
level
(ESS)

Dataset
level
(2NN)

Dataset level
(high scaling)
(many models ×
corpus)

Prompt
level
(2NN)

Prompt
level (scal-
ing = 8)

Spearman
ρ

0.51 0.13 -0.46 0.69 0.73

p-value 0.01 0.5 0.09 < 0.01 < 0.01

Table 2: Summary of Spearman correlations between ID and loss from prompt and prompt level
analysis for Opt-6.7B. The results for prompt level are from Figure 11 and the dataset level are from
Cheng et al. (2023) and Cheng et al. (2024).

E CONSISTENCY CHECKS FOR THE CORRELATION BETWEEN INTRINSIC
DIMENSION AND LOSS

In this section we provide further checks to support the results of the main text. In Figure 12, we
show that the correlation between log ID and surprisal is present also at range scalings 2 and 8 for
the GRIDE estimator, though weaker for range scaling 2. In Figure 13 we show that the correlation
between the intrinsic dimension of adjacent layers and the last layer is strong, providing a link
between ID of internal layers with surprisal.
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Figure 12: Scale analysis for the correlation between intrinsic dimension and loss. Pearson
coefficient between the logarithm of intrinsic dimension and model loss at scalings = 2, 4, 8 for
different models.

Figure 13: Correlation between the intrinsic dimension of adjacent layers and the last layer.
Pearson coefficient between the log of intrinsic dimension at layer ℓ and ℓ + 1 (left panel) and
between layer ℓ and the last layer ℓ = 32 for different models as a function of layers. The four
curves correspond to LLAMA (orange), MISTRAL (magenta), PYTHIA (blue), and OPT (yellow). The
p-values for the Pearson coefficients in this plot are below 0.01.

In Figure 14, we extend the analysis in Figure 3 to other range scalings by checking the scatter plot
between the logits ID and the contextual entropy.

Figure 14: Scale analysis for the correlation between intrinsic dimension of logits and contextual
entropy. Pearson coefficient between the logarithm of the intrinsic dimension of the logits and model
contextual entropy for scalings = 2, 4, 8 for LLAMA.
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F THE CORRELATION BETWEEN INTRINSIC DIMENSION AND ENTROPY OF THE
LATENT PREDICTIONS

In section 5, we discuss a correlation between the ID of the internal representations across the layers
and the surprisal of the model’s next token predictions. We extend the analysis to study how intrinsic
dimension relates to the statistical properties of the latent predictions in this section. Since the latent
predictions are obtained by unembedding the hidden states nostalgebraist (2020), we expect the
statistical properties of the latent predictions to be related to the geometric properties of the hidden
states. This motivates the analysis of the relation between intrinsic dimension of the prompts and the
average entropy of the latent predictions obtained from TunedLens Belrose et al. (2023).

For each layer ℓ, the TunedLens consists of learning an affine transformation of a hidden state(
x(ℓ) ∈ Rd

)
so that its image under unembedding is as close to the output logits as possible. This is

implemented by training translators Aℓ ∈ Rd×d, bℓ ∈ Rd to minimize the following loss -

min
Aℓ,bℓ

DKL (f>ℓ (x(ℓ)) ∥ LayerNorm (Aℓx(ℓ) + bℓ)WU ) (12)

where f>ℓ (x(ℓ)) is the model’s output logits corresponding to the hidden state x(ℓ) and WU is the
unembedding matrix. By doing so, the TunedLens finds a latent prediction corresponding to a hidden
state x(ℓ) given by

qℓ(v|x(ℓ)) = softmax( LayerNorm (Aℓx(ℓ) + bℓ)WU ) (13)

where qℓ(v|x(ℓ)) is a probability distribution over the model’s vocabulary V . Note that the latent pre-
dictions are obtained in a manner similar to the model’s prediction from the last layer representations,
with the key difference being the application of affine translators.

Given a promptX consisting of tokens represented as (x1(ℓ), x2(ℓ), ...xN (ℓ)) at layer ℓ, we calculate
the average entropy of the latent predictions at layer ℓ

Hℓ(X) = − 1

N

N∑
i=1

∑
v∈V

qℓ (v | xi(ℓ)) log qℓ (v | xi(ℓ)) (14)

We plot the Pearson correlation between the intrinsic dimension and the entropy of the latent
predictions (Hℓ) on the population of 2244 prompts across different models in Figure 15. Since the
latent predictions in the later layers are closer to the model’s prediction, we can expect its correlation
with the intrinsic dimension to be similar to the trend in Figure 2. We notice that in both cases (Figures
2, 15), ρ > 0.5 for LLAMA, PYTHIA, and OPT in the last layer consistent with our expectation.
We summarize the correlation between latent entropy and intrinsic dimension seen in Figure 15 as
follows -

1. GPT-2 models (left panel): There is a notable positive correlation ρ > 0.5 between the two
quantities from the early layers onwards. This implies that the prompts that have a high
dimensional representation tend to have a higher latent prediction entropy.

2. PYTHIA models (middle panel): In this case, we observe a positive correlation ρ > 0.5 from
the middle layer onwards. There is a similar trend in the correlation across different model
sizes.

3. LLAMA and OPT (right panel): In these models, we do not see a positive correlation until
the late layers. In LLAMA, we see a moderate negative correlation (ρ ∼ −0.5) around layer
20.

In the GPT-2 and PYTHIA models, we notice a positive correlation from the middle layers onwards
according to our expectations. However, the negative correlation found in LLAMA requires further
understanding, which we leave for future work.
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Figure 15: Correlation between intrinsic dimension and the layerwise entropy from TunedLens.
Pearson coefficient between the logarithm of the intrinsic dimension and the entropy of the latent
predictions for different models as a function of layers. Left panel: GPT-2 models consisting of
GPT-2 (blue), GPT-2 Large (orange) and GPT-2 XL (green). Middle panel: PYTHIA (deduplicated)
models with 160M (blue), 410M (orange), 2.8B (green) and 6.9B (red) parameters. Right panel:
LLAMA (orange) and OPT (yellow). The black marker indicates the p-values that are above 0.01. We
notice a consistent positive between the latent prediction entropy and the intrinsic dimension in the
GPT-2 models, a positive correlation from the middle layers for the PYTHIA models and a negative
correlation until the late layers for LLAMA.
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