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ABSTRACT

This paper introduces RETSim (Resilient and Efficient Text Similarity), a
lightweight, multilingual deep learning model trained to produce robust metric
embeddings for near-duplicate text retrieval, clustering, and dataset deduplication
tasks. We demonstrate that RETSim is significantly more robust and accurate
than MinHash and neural text embeddings, achieving new state-of-the-art perfor-
mance on dataset deduplication, adversarial text retrieval benchmarks, and spam
clustering tasks. We also introduce the W4NT3D benchmark (Wiki-40B 4dver-
sarial Near-T3xt Dataset) for evaluating multilingual, near-duplicate text retrieval
capabilities under adversarial settings. RETSim and the W4NT3D benchmark are
released under the MIT License at https://github.com/google/unisim.

1 INTRODUCTION

Robust near-duplicate text detection is an essential component of many tasks, including retriev-
ing documents, detecting plagiarism (Sun et al., 2013) and blocking adversarial spam cam-
paigns (Ahmed et al., 2022). Users have come to expect that systems can return accurate results
despite their queries exhibiting a 20% to 30% typo rate (Hagen et al., 2017). Furthermore, effi-
ciently deduplicating text datasets is critical to training state-of-the-art large language models (Lee
et al., 2022; Kandpal et al., 2022).

For more than two decades, MinHash-based (Broder et al., 1998) locality-sensitive hashing (LSH)
has been the most prevalent algorithm used for near-duplicate detection due to its simplicity, robust-
ness, and speed. For example, the vast majority of dataset deduplication efforts still rely on MinHash
(Lee et al., 2022; Kocetkov et al., 2022). However, like all LSH-based techniques, MinHash is not
without downsides; chief among them being that it is very parameter-sensitive and requires heavy
tuning. Additionally, MinHash lacks resilience to typos due to its reliance on n-grams, leading to
poor performance on noisy data and a vulnerability to hash-busting attacks (Issac et al., 2014).

On the other hand, deep learning models are the dominant way to perform vector-based semantic text
retrieval (Muennighoff et al., 2022), but so far, no neural embedding has been able to consistently
outperform MinHash for robust near-duplicate detection (Silcock et al., 2022). This is mostly due to
the focus on improving semantic capabilities, which leads models to be too large to run extremely
quickly and the use of sub-word level tokenization, which is not resilient to typos and adversarial
attacks (Morris et al., 2020; Bursztein et al., 2023).

To fill this gap, we introduce RETSim (Resilient and Efficient Text Similarity), a lightweight, mul-
tilingual deep learning model trained specifically to produce robust neural embeddings specialized
for near-duplicate detection. By combining the state-of-the-art RETVec text vectorizer, a modern
transformer block (Hua et al., 2022), a large typo-augmented training corpus, and a metric learn-
ing training regime, RETSim is able to achieve new state-of-the-art performance on near-duplicate
detection benchmarks (Section 4.2), dataset deduplication tasks (Sections 4.3 and 5.1), and spam
clustering applications (Section 5.2).

Furthermore, while datasets and benchmarks exist for corpus deduplication and near-duplicate text
retrieval, none of these have focused on systematically evaluating near-duplicate retrieval perfor-
mance under the presence of typos, word manipulations, and sentence or paragraph-level modifica-

*This work was done during the author’s internship at Google.

1



Published as a conference paper at ICLR 2024

tions. To address this need, we additionally introduce the W4NT3D benchmark (Wiki-40B 4dversar-
ial Near-T3xt Dataset) which enables the evaluation of algorithms on adversarial near-duplicate text
retrieval in a multilingual setting. We report the performance of RETSim, MinHash, and popular
neural embeddings such as Universal Sentence Encoder (Cer et al., 2018) and LaBSE (Feng et al.,
2022) on this new benchmark in Section 4.2, highlighting uneven performance across languages and
types of adversarial manipulations. The RETSim model and the W4NT3D benchmark are made
available at https://github.com/google/unisim under the MIT License.

2 RELATED WORK

Near-Duplicate Detection Identifying noisy near-duplicate documents in a large corpus is a fun-
damental task with a wide range of applications, such as detecting plagiarism, finding reproduced
content in literature or news articles (Gyawali et al., 2020; Silcock et al., 2022), and deduplicat-
ing training datasets for language models. Previous research has shown that duplicates in training
datasets lead to inefficient training (Lee et al., 2022) and privacy concerns for large language models
(LLMs), where models memorize and regenerate duplicated training sequences at a much higher
frequency (Kandpal et al., 2022).

Unlike semantic text similarity, the task of identifying textual near-duplicates has been predominated
by non-neural, n-gram-based algorithms such as MinHash (Broder et al., 1998), which is the most
widely used technique for deduplicating large training corpuses (Kocetkov et al., 2022; Lee et al.,
2022). MinHash is a technique for estimating the Jaccard similarity between two sets. Algorithms
such as MinHash or SimHash (Charikar, 2002) can be combined with locality-sensitive hashing
(LSH) techniques for fast, approximate nearest neighbor search and data clustering. This allows
them to scale and deduplicate corpuses containing terabytes of data such as C4 (Lee et al., 2022)
and The Stack (Kocetkov et al., 2022). However, n-gram or shingling-based techniques typically
require texts to be parsed into a standardized form (e.g. by lower-casing or stripping punctuation),
which makes them susceptible to typos and adversarial attacks and pose a challenge when attempt-
ing to differentiate between dissimilar documents and near-duplicate documents with adversarial
augmentations.

Semantic Text Similarity The task of computing semantic similarity between text is closely re-
lated to near-duplicate detection. Semantic text similarity refers to the assessment of the semantic
relatedness of two pieces of text based on their meaning rather than their syntactic structure, as in
the case of near-duplicate detection. Recently, transformer-based language models such as Universal
Sentence Encoder (Yang et al., 2019), LaBSE (Feng et al., 2022) and LLM-based embeddings (Anil
et al., 2023) which embed text into high-dimensional embedding vectors have been successfully
used to retrieve semantically-related documents using cosine similarity. Modern text retrieval sys-
tems combine these embeddings with an approximate nearest neighbor (ANN) search algorithm to
efficiently retrieve documents matching user queries.

However, language models have been shown to be vulnerable to adversarial attacks and naturally-
occurring typos (Alzantot et al., 2018; Gao et al., 2018; Morris et al., 2020). Furthermore, language
models are typically very large and costly to run even with hardware acceleration, which makes
them unsuited for large-scale dataset deduplication or identifying near-duplicates in the presence of
typos or adversarial text manipulations.

Metric Learning Metric learning aims to learn an embedding space where similar items have
a small distance between their embeddings and dissimilar items are further away. Many state-of-
the-art embeddings use metric learning for unsupervised training or fine-tuning including Sentence-
BERT (Reimers & Gurevych, 2019) and E5 (Wang et al., 2022).

RETVec is a resilient, multilingual embedding and text vectorizer trained to be robust against various
forms of character-level typos and adversarial attacks. We extend the RETVec training regime to
full text documents for RETSim. We use Multi-Similarity Loss (Wang et al., 2019) for pair-based
metric learning, where typo-laden and near-duplicate versions of texts are trained to be closer in
the embedding space, while other texts are pushed further away. Multi-Similarity Loss is based
on a general weighting framework for pair-based losses and achieves state-of-the-art performance,
outperforming alternatives such as Triplet Loss (Schroff et al., 2015).
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Figure 1: RETSim model architecture diagram. RETSim works on arbitrary length text by split-
ting texts into chunks of 512 characters during its vectorization phase and encodes them using the
RETVec character vectorizer. The RETSim model then embeds each chunk of text into 256-dim
partial embeddings and combines them to produce the global embedding.

3 RETSIM

3.1 ARCHITECTURE

The RETSim model is composed of three main components (as depicted in Figure 1):

The character-level vectorizer splits the input text into chunks of 512 characters, then uses the
RETVec chararcter encoder (Bursztein et al., 2023) to encode each chunk, resulting in a batch of
(512, 24) dense inputs. The RETVec character vectorizer encodes each Unicode character as a
compact 24-bit binary representation based on its integer codepoint value. This allows the vectorizer
to encode all valid Unicode characters and support all languages. Furthermore, the character-level
vectorizer has been shown to be more resilient against typos and adversarial attacks.

A small transformer model is used to compute 256-dimension embeddings for each chunk of the
input text. RETSimPartial-Dup uses these embeddings directly to finding documents that have matching
chunks of text. Architecturally, the model consists of two Gated Attention Unit (GAU) blocks (Hua
et al., 2022), followed by a Generalized-Mean pooling layer (Radenović et al., 2018), a dense
projection layer which projects the embedding into 256 dimensions, and an L2 normalization layer.
The model has only 536k parameters, which is more than two orders of magnitude smaller than other
neural embeddings (Table 1). L2-normalization allows the embeddings to be compared using cosine
similarity. We discuss the impact of key architecture design choices in Section 6. Hyperparameter
details are provided in Appendix A.1.1, and additional ablations results in Appendix A.5.

An embedding averaging module is then used to combine partial text embeddings into a full-text
embedding which is used for global near-duplicate matching (RETSimNear-Dup). Averaging chunked
embeddings to produce a global embedding is a standard technique used by many models (Cer
et al., 2018) to support infinite length inputs in a cost-efficient manner. We experimented with other
aggregation techniques to produce more accurate global embeddings, including training a deep-
averaging network (Iyyer et al., 2015), but this did not improve performance and resulted in higher
computation cost. RETSimNear-Dup and RETSimPartial-Dup are computed in a single forward pass
which makes it computationally efficient. We output both types of embeddings as they have different
applications: RETSimNear-Dup is better-suited for full-text matching and retrieval (Section 4.2), while
RETSimPartial-Dup is used to find partial text matches where the near-duplicate content appears only
in part of the document (Section 4.3).

3.2 MODEL TRAINING

Dataset We use the multilingual C4 dataset (mC4) for raw text data and following (Xue et al.,
2020), we use a language sampling exponent of α = 0.3 to balance sampling between low and
high-resource languages. We only use text containing at least 16 characters, and we randomly select
between 1 and 8 sentences (roughly 512 characters) for each text chunk. For each example in the
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training dataset, we generate 5 pairs of augmented examples. We apply three levels of augmentation
to each example text chunk (in this order): sentence-level, word-level, and character-level. For each
level, we randomly select the augmentation to be applied from the following categories: insertion,
deletion, substitution, and transposition. We randomly apply between 0 − 25% sentence-level aug-
mentation and up to 30% combined character and word-level augmentation. Empirically, we found
that increasing the percentage of augmentation beyond this point causes RETSim’s performance to
degrade. The full list of augmentations used can be found in Appendix A.2.

Training Procedure We train RETSim using Multi-Similarity Loss (Wang et al., 2019) with α =
4, β = 40, λ = 0.5, and ε = 0.1. We hypertuned these parameters and the results are shown in
Appendix A.5. We train for 1 million steps with batch size = 1024. The similarity loss trains the
model to embed augmented versions of the same text closer in the embedding space, while dissimilar
texts are pushed further apart. We use the LAMB optimizer (You et al., 2019) with a max learning
rate of 0.001 and cosine decay. Detailed training hyperparameters are reported in Appendix A.1.2.

4 EVALUATION

Model/Algorithm Type Embed./Hash Size # Model Parameters
LaBSE Neural 768 471M
Multilingual USE Neural 512 69M
Multilingual E5-Base Neural 768 278M
PaLM 2 (Gecko) Neural 768 ?

SimHash Hashing b bits N/A
MinHash Hashing n hashes N/A

RETSim Neural 256 536k

Table 1: Embedding models and hashing algorithms benchmarked in the paper.

4.1 MODELS AND ALGORITHMS EVALUATED

We benchmark RETSim against four multilingual semantic text embeddings as well as popular n-
gram based algorithms primarily used in near-duplicate text detection (Table 1). Our baseline text
embeddings include Multilingual Universal Sentence Encoder (Yang et al., 2019), LaBSE (Feng
et al., 2022), Multilingual E5 (Wang et al., 2022), and PaLM 2 Gecko Embeddings (Anil et al.,
2023). All text embeddings are L2-normalized and compared using cosine similarity. We use exact
search to index and retrieve nearest neighbors from our vector index for the experiments in Section 4.

For non-neural near-duplicate detection and clustering algorithms, we selected the two most popular
algorithms: MinHash (Broder et al., 1998) and SimHash (Charikar, 2002). For MinHash, we use
Datasketch’s MinHashLSH library. Following the most common practices in the literature (Silcock
et al., 2022), we use 10 hash functions for MinHash unless otherwise specified. We use word-level
n-grams where we select the best value out of n = {2, 3, 4, ..., 10}. For SimHash, we use 64-
bit SimHash and conduct shingling at the character level, where the shingle size is selected from
n = {2, 3, 4, ..., 10}. For the near-duplicate detection benchmarks (NEWS-COPY and CORE Near-
Duplicates datasets), we tune the optimal deduplication threshold (e.g. based on cosine similarity
for neural-based embeddings and Jaccard similarity for MinHash). Detailed hyperparameter settings
for RETSim and baseline algorithms used in the evaluation can be found in Appendix A.3.

4.2 W4NT3D: WIKI-40B 4DVERSARIAL NEAR-T3XT DATASET EVALUATION

Dataset Description The vast majority of text retrieval benchmarks are focused on evaluating
semantic performance. To the best of our knowledge, there is no multilingual benchmark for sys-
tematically measuring adversarial robustness for near-duplicate text retrieval. In an attempt to fill in
the gap, we create and publish the W4NT3D benchmark (Wiki-40B 4dversarial Near-T3xt Dataset),
which contains around 400k pairs of syntactically similar texts to evaluate near-duplicate text re-
trieval in the presence of various forms of text manipulations and typos.

W4NT3D is based on the Wiki-40B dataset (Guo et al., 2020). The dataset is split into query exam-
ples and target examples, where query examples are synthetically-modified near-duplicate versions
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of a target example (e.g. with typos). For each of the 41 language splits in Wiki-40B, we randomly
select 10,000 texts. The length of the target string is uniformly selected from between 16 and 8192
characters, in order to test performance on short and long text. To construct the query text corre-
sponding to a target text, we randomly apply up to 25% word and character augmentations, and up to
25% sentence and paragraph augmentations. For each augmentation, we uniformly select from the
[insert, delete, substitute, and swap] operations. We use Recall@k with k = 1 as the main metric,
following the setup commonly found in semantic text retrieval benchmarks.

Model/Algorithm Arabic Chinese English German French Spanish Japanese Korean Russian Thai Avg (41 Langs)
LaBSE 0.915 0.917 0.944 0.931 0.930 0.888 0.931 0.949 0.918 0.882 0.921
Multilingual USE 0.915 0.986 0.958 0.942 0.938 0.903 0.990 0.984 0.910 0.888 0.912
Multilingual E5-Base 0.936 0.980 0.959 0.944 0.948 0.896 0.979 0.986 0.911 0.921 0.937
PaLM 2 (Gecko) 0.497 0.623 0.961 0.932 0.934 0.911 0.578 0.701 0.851 0.571 0.823

SimHash 0.558 0.276 0.591 0.561 0.519 0.513 0.465 0.593 0.554 0.669 0.550
MinHash 0.633 0.172 0.591 0.558 0.556 0.575 0.223 0.814 0.523 0.416 0.538

RETSimPartial-Dup 0.928 0.946 0.954 0.949 0.947 0.938 0.963 0.971 0.946 0.941 0.949
RETSimNear-Dup 0.971 0.971 0.987 0.978 0.983 0.976 0.986 0.991 0.970 0.946 0.977

Table 2: Per-language retrieval performance for various embedding models and algorithms on the
W4NT3D benchmark. Results on selected languages are reported alongside the average Recall@1
for all 41 languages. Full results for all languages are reported in Appendix A.4.

Multilingual Performance Overall, RETSimNear-Dup achieves an average Recall@1 of 0.977
across all 41 languages on the W4NT3D benchmark (Table 2). RETSimPartial-Dup is second best
with a Recall@1 of 0.949 and Multilingual E5, the best-performing baseline, is third with an aver-
age Recall@1 of 0.932. We expect that RETSimNear-Dup outperforms RETSimPartial-Dup because the
W4NT3D benchmark requires an algorithm to not just find near-duplicates, but to find the most simi-
lar text. RETSimPartial-Dup optimizes for finding the most similar chunk of text in the corpus, which is
not always the most similar text overall. Similarly, we hypothesize that MinHash and SimHash per-
form poorly on the W4NT3D benchmark due to their lack of ability to distinguish which is the most
similar text among the near-duplicates detected, and embedding-based models and cosine similarity
offer a more fine-grained measure of similarity.

RETSimNear-Dup outperforms baseline algorithms on all languages except for Chinese and Japanese.
For these languages, we theorize that semantic embeddings may have the slight edge in performance
because their significantly larger model sizes (more than 100x larger than RETSim, as shown in Ta-
ble 1) allow them to have a better representation on languages with large character sets. Furthermore,
the sub-word level tokenizers used in the baseline embeddings often treat each character in Chinese
or Japanese as individual tokens, which could offer higher resilience to typos.
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Figure 2: Recall@1 performance on the W4NT3D benchmark, broken down by augmentation type.
Results are averaged across all 41 language splits in W4NT3D.

Adversarial Resilience Delving deeper into the impact of various types of text manipulation re-
veals that RETSimNear-Dup and RETSimPartial-Dup perform almost equally well regardless of the type
of augmentation applied (Figure 2). Semantic text embeddings perform well on paragraph, sentence
and word-level manipulations, but as expected, exhibit significantly weaker performance towards
character-level typos. MinHash and SimHash struggle more with word-level augmentations than
deep-learning based embeddings and collapse when character-level typos are introduced. We at-
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tribute RETSim’s resilience to adversarial manipulations to the RETVec character encoder as well
as using deep metric learning to train robust embeddings.

Figure 4 reports the Recall@1 performance of the algorithms as the amount of augmentation in-
creases. All algorithms perform perfectly when no augmentation is applied (exact matching), but as
the percentage of augmentation increases, n-gram based approaches exhibit a steep drop in perfor-
mance. Semantic text embeddings are able to sustain a larger degree of augmentation before their
retrieval capabilities start to degrade (over 20%). RETSimNear-Dup is the most robust algorithm, with
a noticeable drop in performance only after around 40% augmentation. This makes RETSim the
most effective approach at clustering and deduplicating text under adversarial settings.
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Figure 3: Recall@1 performances on the
W4NT3D benchmark (English only) for
varying max target lengths.
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Figure 4: Recall@1 performances on the W4NT3D
benchmark (English only) as the amount of augmenta-
tion applied to the query text increases.

Text Length Impact on Performance Figure 3 reports the Recall@1 performance of RETSim
and baseline algorithms as the length of the query and target text varies. We see that RETSimNear-Dup
and RETSimPartial-Dup outperforms all other methods on short texts with fewer than 128 characters.
As the text length increases beyond 512 characters, RETSimNear-Dup remains close to perfect while
RETSimPartial-Dup’s performance degrades since it splits the text into multiple embeddings and finds
the nearest matching chunk of text. MinHash and SimHash also perform poorly on short text lengths
and start to degrade on longer texts. For neural-based embeddings, we observe a slight drop in
performance on longer texts for all models except RETSimNear-Dup and Multilingual USE, the only
two embeddings that can handle arbitrary length inputs.

4.3 REAL-WORLD NEAR-DUPLICATE DETECTION EVALUATION

Setup We benchmark RETSim’s ability to identify near-duplicate content on real-world datasets
from the literature. The NEWS-COPY Deduplication dataset (Silcock et al., 2022) contains 27,210
historical news articles with 122,876 positive duplicate pairs. The dataset consists of noisy near-
duplicates due to factors like OCR errors, plagiarism, and news aggregation. We also evaluate the
algorithms on the CORE Near-Duplicates dataset (Gyawali et al., 2020), which consists of 100k
scholarly articles (title + abstract) with 25k exact duplicates, 25k near-duplicates, and 50k non-
duplicates. Near-duplicates in this dataset arise from article revisions, versioning and metadata
differences, and human typos. A key difference between these two benchmarks and the W4NT3D
benchmark is that these two benchmarks are focused on detecting and clustering near-duplicate text,
rather than robust text retrieval based on syntactic similarity. For both benchmarks, we follow the
experimental setup provided in the papers and report Adjusted Rand Index (ARI) for the NEWS-
COPY dataset and report precision/recall/F1 scores on the CORE Near-Duplicates dataset.

Results On the NEWS-COPY dataset, RETSimPartial-Dup outperforms all other approaches by a
significant margin (4.8% ARI compared to our best MinHash result), as reported in Table 3. In the
dataset, there are many near-duplicate pairs where one text is significantly longer than the other, so it
is expected that RETSimPartial-Dup, which can find matching text chunks in documents, is more suited
for the task and outperforms RETSimNear-Dup. Bucketing the near-duplicate detection rate of each
algorithm by the length ratio between positive pairs (Figure 5), we observe that RETSimPartial-Dup
outperforms MinHash regardless of the length ratio, but MinHash surpasses RETSimNear-Dup per-
formance when one text is above roughly 1.5x the length of the other text in a near-duplicate pair.
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Model/Algorithm ARI
Multilingual USE 0.730
Multilingual E5-Base 0.742
S-BERT* 0.700

SimHash 0.695
MinHash* 0.737
MinHash (Ours) 0.783

RETSimPartial-Dup 0.831
RETSimNear-Dup 0.704

Table 3: Performance comparison on the
NEWS-COPY dataset. Adjusted Rand Index
(ARI) values are reported. * denotes results
from Silcock et al. (2022).
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Additionally, we noticed that the labels in the dataset were occasionally noisy, as a substantial por-
tion of the RETSim false positives appear to be near-duplicates upon inspection (Appendix A.6).

On the CORE Near-Duplicates dataset (Table 4), where documents are roughly the same size,
RETSimPartial-Dup and RETSimNear-Dup performance is nearly the same. RETSimPartial-Dup outper-
forms MinHash and semantic text embedding baselines on 5 out of 6 reported metrics, including
macro F1 score. We use MinHash + LSH with 256 hash functions for computational efficiency and
for better performance than the default setting, as recommended by the datasketch library1. Dedu-
plication thresholds and hyperparameter settings for the algorithms can be found in Appendix A.3.

Model / Algorithm
Precision

Duplicates
Recall

Duplicates
Precision

Non-Duplicates
Recall

Non-Duplicates Macro F1 Accuracy

Exact Title Matching* 0.830 0.500 0.709 0.992 0.757 0.746

LaBSE 0.937 0.923 0.930 0.943 0.933 0.919
Multilingual USE 0.917 0.907 0.918 0.927 0.917 0.909
Multilingual E5-Base 0.937 0.940 0.945 0.942 0.941 0.932
MinHash + LSH 0.929 0.902 0.915 0.938 0.921 0.918

RETSimPartial-Dup 0.945 0.941 0.945 0.949 0.945 0.928
RETSimNear-Dup 0.928 0.937 0.942 0.934 0.935 0.926

Table 4: Evaluation results on the CORE Near-Duplicates dataset. Precision/recall/macro F1 and
accuracy numbers are reported. * denotes results from Gyawali et al. (2020).

5 APPLICATIONS

5.1 TRAINING DATASET DEDUPLICATION

Model/Algorithm % train examples
with dup in train

% valid examples
with dup in train

MinHash + LSH 0.47% 0.46%
Exact Substring* 2.76% 0.52%
RETSimNear-Dup 3.17% 0.59%
RETSimPartial-Dup 12.77% 2.66%

Table 5: Deduplication rate on Wiki-40B (English). * denotes results from Lee et al. (2022).

Setup We evaluate RETSim’s ability to deduplicate text training datasets by deduplicating the
English split of Wiki-40B (Guo et al., 2020). We conservatively set the cosine similarity deduplica-
tion threshold to 0.1 for RETSimNear-Dup and 0.15 for RETSimPartial-Dup to limit the amount of false
positives, based on the optimal thresholds found in the evaluation (Appendix A.3). We use USe-
arch’s default vector index for approximate nearest neighbor search (Vardanian, 2023). We compare

1datasketch: Big Data Looks Small. https://github.com/ekzhu/datasketch.
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Model/Algorithm Accelerator Batch Size Embedding / Hashing
time (sec) examples/sec

MinHash + LSH CPU AMD 7950 32 cores - 234 12544
RETSim Onnx CPU AMD 7950 32 cores 256 10839 270
RETSim TensorFlow GPU RTX 4090 4096 720 4062
RETSim TensorFlow GPU NVIDIA H100 16384 363 8069

Table 6: Embedding/hashing speed of RETSim vs MinHash + LSH on the Wiki-40B dataset.

against MinHash + LSH, where we set the number of hash functions to be 256 following Kocetkov
et al. (2022) and use a Jaccard similarity threshold of 0.8 for deduplication (Lee et al., 2022).

Results Overall, as reported in Table 5, RETSimNear-Dup finds slightly more duplicates in the Wiki-
40B training and validation splits. This is in-line with our deduplication results (Section 4.3) where
RETSimNear-Dup outperforms other algorithms. On the other hand, RETSimPartial-Dup finds signifi-
cantly more matches than the exact substring matching algorithm used in the previous study (Lee
et al., 2022), showcasing the usefulness of performing both near-duplicate and partial-duplicate
matching at once. This larger-than-expected number of partial matches indicate that machine learn-
ing practitioners should take extra care to deduplicate Wikipedia at the chunk level to avoid feeding
duplicate text to their models.

In terms of embedding speed (Table 6), RETSim is significantly slower than MinHash + LSH on
CPU (46x slower), competitive when using a desktop GPU such as the RTX 4090 (3x slower) and
almost on-par when using a high-end GPU like the NVIDIA H100 (1.5x slower). Our current code
is written in Python and not fully optimized, so we expect this performance gap to significantly
shrink as we optimize our implementation. Although RETSim is slower than MinHash, RETSim
is significantly smaller and faster than other text embedding models, and closes the performance
gap between neural and non-neural based methods for near-duplicate text detection and dataset
deduplication. Both RETSimNear-Dup and RETSimPartial-Dup are returned at the same time so they
have the same embedding speed. Indexing and retrieval times will depend on the vector index and
search algorithm used. For longer documents, RETSimPartial-Dup will produce more embeddings
than RETSimNear-Dup, so RETSimPartial-Dup offers a tradeoff between finer-grained matching versus
indexing/retrieval speed, which will depend on the specific vector search algorithm and dataset used.

5.2 IN THE WILD: SPAM EMAIL CLUSTERING

In this section, we showcase RETSim’s real-world performance on clustering near-duplicate text
which has been heavily manipulated by adversarial attacks by performing an evaluation on spam
campaigns. Spam constitutes a strong proving ground for near-duplicate clustering algorithms as
spammers employ adversarial augmentation techniques in an attempt to evade detection. Such aug-
mentations typically include appending or prepending unrelated text, interleaving random words and
different languages, intentionally introducing typos, abusing extended character sets such as emojis
and homoglyphs, and more. These techniques are collectively referred to as hash-busting.

Setup The dataset consists of 5,252 spam emails from 196 spam campaigns, donated by Gmail
users who flagged them when they reached their inboxes. Each example contains the email subject
concatenated with the message content. The emails were misclassified by a spam classifier due to
their effective adversarial text manipulation techniques, which makes them a challenging test set for
clustering evaluations. Some examples of hash-busting attacks and adversarial manipulations we
observe include the use of homoglpyphs, uncommon Unicode character sets, invisible characters,
and padding with random words from different languages. To get the ground truth campaign clusters,
emails were manually reviewed and assigned to a specific spam campaign based on similarity by
human reviewers. We use agglomerative clustering to cluster spam emails, and report homogeneity,
completeness, V-Measure, and Adjusted Rand Index (ARI) metrics.

Results Overall, we observed that RETSim is significantly better at clustering near-duplicates
with adversarial manipulations, outperforming both SimHash and USE across all metrics considered
(Table 7). In particular, we observed that RETSim outperforms USE by 4.6% on the V-Measure
score which is our main metric. The results reported in this section are in-line with what we observe
since we deployed RETSim as our main near-duplicate detection algorithm in December 2022.
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Model / Algorithm Homogeneity Completeness V-Measure ARI
USE 0.856 0.955 0.903 0.6
SimHash + LSH 0.867 0.876 0.871 0.571
RETSimNear-Dup 0.937 0.963 0.949 0.747

Table 7: Performance on clustering adversarial spam campaigns in practice.

6 ABLATION STUDIES

Setup In this section, we summarize the key ablation studies we performed when designing RET-
Sim. All the models used in this section are trained using the setup detailed in Appendix A.1.2, ex-
cept we only train them for 100k steps to reduce computational costs. We evaluate RETSimNear-Dup’s
performance for each model on a subset of the W4NT3D benchmark, where we randomly select
1000 examples from each of the 41 language splits and use Recall@1 as reported metric.

Block Type Recall@1
RETVec MLP 0.975

ConvNeXt 0.978
BERT 0.973

T5 0.980
*GAU 0.986

Chunk Size Recall@1
128 0.979
256 0.984

*512 0.986
1024 0.983
2048 0.978

Embed. Dim Recall@1
64 0.969

128 0.980
*256 0.986

512 0.986
768 0.986

Table 8: RETSim ablation study results on architecture block type (left), text chunk size (middle),
and embedding dimension (right). *Bold denotes the value selected for the final RETSim model.

Results Table 8 contains RETSim ablation study results on max text chunk size, architecture block
type, and embedding size. The most important architectural decision was to decide the optimal text
chunk size and finding the right balance between having the smallest size possible to maximize
RETSimPartial-Dup efficiency while ensuring RETSimNear-Dup full-text embeddings can work effec-
tively on full documents. We find that chunks of 512 characters offer the best performance.

We also tested various model architectures and transformer blocks to find the best balance between
efficiency and performance. We find that the more modern GAU block (Hua et al., 2022) outper-
forms the vanilla BERT transformer block (Devlin et al., 2019) and the T5 block (Xue et al., 2020).
We also tried modern CNN architectures such as ConvNeXt (Liu et al., 2022) and the MLP architec-
ture proposed in RETVec (Bursztein et al., 2023), but both were worse than GAU block performance.
Last but not least, we found that increasing the embedding size past 256 dimensions does not yield
any meaningful improvements for RETSimNear-Dup. Accordingly, we opted to use a 256-dimension
embedding for space-efficiency and to maximize indexing and query speed. Additional ablation
studies for other hyperparameters can be found in Appendix A.5.

7 FUTURE WORK

RETSim’s novel training regime, which combines metric learning and data augmentation, has many
other potential applications that we plan to explore in future work. For example, it could be adapted
or extended to train robust semantic embeddings or image similarity embeddings. Additionally,
we expect that as general models become bigger and more expensive to run in the future, smaller,
specialized models such as RETSim will emerge as an efficient alternative for a wide range of tasks.

8 CONCLUSION

In this paper, we introduced RETSim, a novel, multilingual text embedding which achieves state-
of-the-art performance on near-duplicate text detection, dataset deduplication, and syntactic text
similarity benchmarks. RETSim is significantly faster than previous neural-based text embeddings
and more robust than n-gram based algorithms, which makes it suitable for large-scale text retrieval
and dataset deduplication, especially in adversarial settings such as spam detection. Furthermore,
we introduced the W4NT3D benchmark, the first multilingual dataset designed to measure the ad-
versarial robustness of near-duplicate text detection algorithms. We release both RETSim and the
W4NT3D benchmark under the MIT License.
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A APPENDIX

A.1 RETSIM DETAILS

A.1.1 RETSIM MODEL HYPERPARAMETERS

The full list of RETSim model hyperparameters can be found in Table 9.

Hyperparameter Value
Max input length (per chunk) 512
Block type GAU
# blocks 2
Hidden dim 256
Expansion rate 1
Activation function Swish
Attention activation function relu2
Absolute positional encoding ScaledSin
Relative positional encoding RoPE
Norm type ScaleNorm
Pooling type GeM (p = 3)
Dropout rate 0
Embedding dim 256
# Parameters 536k

Table 9: Detailed RETSim model hyperparameters.

A.1.2 RETSIM TRAINING HYPERPARAMETERS

Table 10 details the hyperparameters settings for training configuration, loss, and optimizer used to
train the RETSim model.

Hyperparameter Value
Batch size 1024
Train steps 1 million
LAMB ε 1e-6
LAMB β1 0.9
LAMB β2 0.999
Max learning rate 0.001
End learning rate 0
Learning rate decay Cosine
Weight decay 0

Table 10: RETSim detailed training hyperparameters.

A.2 TRAINING DATASET DETAILS

Below, we provide the full list of augmentations used to generate augmented text for the RETSim
training dataset, as described in Section 3.2.

SENTENCE-LEVEL AUGMENTATIONS

• Deletion:

– Random sentence deletion
– Random sentence truncation

• Insertion:
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– Random prefix sentence
– Random suffix sentence
– Random sentence insertion
– Repeat sentence

• Substitution:
– Lowercase/uppercase sentence
– Random sentence substitution

• Transposition:
– Neighboring Swap

WORD-LEVEL AUGMENTATIONS

• Deletion:
– Random word deletion

• Insertion:
– Random word insertion
– Random word insertion per language

• Substitution:
– 3-gram frequency based word substitution
– Random word substitution
– Random word substitution per language
– Repeat word

• Transposition:
– Neighboring Swap

CHARACTER-LEVEL AUGMENTATIONS

• Deletion:
– Random character deletion

• Substitution:
– Case substitution
– n-gram based substitution for n = 3, 4, 5

– QWERTY keyboard typo substitution
– Homoglyphs substitution
– Random ASCII substitution
– Random character from language alphabet substitution
– Random punctuation substitution
– Random Unicode character substitution

• Insertion:
– Character repetition
– n-grams based insertion for n = 3, 4, 5

– Random character from language alphabet insertion
– Random punctuation insertion
– Random Unicode character insertion

• Transposition:
– Neighboring swap

A.3 DETAILED EVALUATION HYPERPARAMETERS

Figures 6 and 7 contain information on deduplication thresholds values and hyperparameter settings
for each algorithm benchmarked on the NEWS-COPY and CORE deduplication datasets.
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Model / Algorithm Threshold Type Threshold Value Hyperparameters
Multilingual USE Cosine Similarity 0.88 -
Multilingual E5-Base Cosine Similarity 0.96 -
SimHash Hamming Distance 10 64 bits, 5-grams (character-level)
MinHash (Ours) Jaccard Similarity 0.6 10 hash functions, 2-grams (word-level)
RETSimNear-Dup Cosine Similarity 0.89 -
RETSimPartial-Dup Cosine Similarity 0.84 -

Figure 6: Hyperparameter settings for NEWS-COPY dataset evaluation in Section 4.3.

Model / Algorithm Threshold Type Threshold Value Hyperparameters
LaBSE Cosine Similarity 0.88 -
Multilingual USE Cosine Similarity 0.87 -
Multilingual E5-Base Cosine Similarity 0.96 -
SimHash + LSH Hamming Distance 6 64 bits, 3-grams (character-level)
MinHash + LSH Jaccard Similarity 0.5 256 hash functions, 3-grams (word-level)
RETSimNear-Dup Cosine Similarity 0.86 -
RETSimPartial-Dup Cosine Similarity 0.82 -

Figure 7: Hyperparameter settings for CORE Near-Duplicates dataset evaluation in Section 4.3.

A.3.1 DEDUPLICATION THRESHOLD IMPACT

Figure 8: Precision/Recall/F1 scores for different cosine distance deduplication thresholds for
RETSimNear-Dup (left) and RETSimPartial-Dup (right) on the NEWS-COPY dataset.

A.4 DETAILED W4NT3D BENCHMARK RESULTS

Tables 11 and 12 show detailed performance results for RETSim and all baseline algorithms for
every language split in the W4NT3D benchmark.
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A.5 ADDITIONAL ABLATION STUDIES

This section includes ablation studies on additional hyperparameters for the RETSim model, includ-
ing the loss function, pooling type, and model capacity.

α β λ Recall@1
2 20 0.5 0.982
2 20 1 0.948
2 40 0.5 0.984
2 40 1 0.919
4 20 0.5 0.982
4 20 1 0.947
4 40 0.5 0.986
4 40 1 0.923

Table 13: Ablation study on Multi-Similarity Loss hyperparameters for RETSim training. Bold
indicates the hyperparameter setting selected for the final model.

# Blocks Hidden Dim Recall@1
2 64 0.965
2 128 0.980
2 256 0.986
2 512 0.986
3 64 0.962
3 128 0.980
3 256 0.984
3 512 0.987
4 64 0.966
4 128 0.980
4 256 0.985
4 512 0.986

Table 14: Ablation study for RETSim model capacity and size (number of GAU blocks and hidden
dimension for the blocks). Bold indicates the hyperparameter setting selected for the final model.

Pooling Type Recall@1
Average Pooling 0.985
Max Pooling 0.983
Generalized Mean Pooling 0.986

Table 15: Ablation study on pooling type for the RETSim model. Bold indicates the hyperparameter
setting selected for the final model.

A.6 SELECTED EXAMPLES FROM NEWS-COPY DATASET

In this section, we randomly selected a set of false positives and false negatives for RETSim on the
NEWS-COPY deduplication dataset to provide further insight into the results.
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Text 1 Text 2
chauffeur, a policeman and a passing jour-
nalist who tried to intervene. Beaton and the
policeman were reported in serious condition.
The 23-year-old princess and her husband of
five months, Capt. Mark Phillips, were not
hurt. But police experts said the holes left by
one of the bullets fired into the car indicated it
passed between them, missing them by inch-
es. A police informant said it was believed 11
shots were fired by the assailant. Experts were
studying two revolvers found at the scene.
They said fi...

‘LONDON (AP) — Ian Ball, a 26-year- old
unemployed Englishman, was brought into
court today and charged with attempted mur-
der during an at- tempt to kidnap Princess
Anne from her car in the heart of London
Wed- nesday night. Ball, lean-faced and
bearded, stood stiffly in the dock at the Bow
Street Magistrate’s court, handcuffed to two
detectives. He spoke only once during his 60-
second appearance, saying iha London accent:
“I want to apply for legal aid.” The court or-
dered him held for another hearing on Ma...

By United Press tnfernational Ay SSAST OR
BE FRE NG SG The federal government has
proposed new methods of eoustructing federal
buildings in a move to save ad- ditional en-
ergy and suggested ils elfort could be adapted
to all new buildings,

Hy United Press International The federal
government has Proposed new methods of
constructing federal buildings in a move lo
save addilional energy and suggested ils effort
could be adapted to all new buildings, Arthur
F, Sampson, General Services Administration
ad- ministrater, said new features for such
construction would include the collection of
rain waler for cooling and irriga- tion, solar
energy collectors and the covering of exterior
walls with earth. “Whal we are saying is that
these design criteri...

Washington, Jan. 27. —(P)—Im- mediate
removal of John F. J. Her- bert, as prohibition
administrator for Montana and Idaho, was
de- manded in the senate today by Sen- ators
Borah, Idaho, and Wheéeler, Montana, on
the ground of charges placed before them by
department of justice investigators. Wheeler
accompanied his demand (Continued on Page
2)

— Washington, Jan. 27 1 AP).—Immiedl-
aie mmoval of John F. Herbert as pro- — hi-
bition administrator for Montana and ‘Idaho
was demanded m the Seuate to- ‘day by Sen-
ators Borah. idaho, and Waeeler, Montana. on
the ground of charges placed before them by
Depart- meat of Justice investigators. Wheeler
accompanied his demand nith a declaration
that prohibition en- foreemen: had brukea
down. He blamed the “politicians” and called
upon the Law Enforcement Commussion to
sum- mon members of the Republican Na-
tona...

By RAYMOND CLAPPEA (Dnited
Presa Stal Correspandoayy London, Jai,
38—(UP—-The Am ‘erlcnn delegation to
the navat confer ence today won ls demand
for pre- sentation: of the cnse of suxiliary
warships limitation first at tho noxt plenary
session Thuvaday, ‘Tho chlet delegates, mec-
tittg at St. James palace, also decided that tho
plenary sesslon would discuss the Main con-
ference questions in alpha betical order of ihe
countriea pro- posing. Press ta be Admitted
The American delegation woo a second vic-
tory whe...

London, Jan. 24, W.P—The Amer- jean dele-
gation fo the naval cen- ference teday won its
demand for presentation of the case of auxil-
jary warships linsitation flrst at the next ple-
trary session ‘Vhursday, The chief delegates,
meeting at Si, James Pelace, also decided that
the plenary session would discuss the main
confeyence questions in alphabetical order af
the cauntries proposing. The American del-
egation won a second victory when it was
decided to udmil certain representatives of the
press at fie plenary...

Table 16: Example false negatives for RETSim on the NEWS-COPY dataset (pairs of texts not
detected as near-duplicates by RETSim but labeled as near-duplicates in the original dataset). Ex-
amples are randomly selected and truncated at 512 characters for display.
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Text 1 Text 2
BOZEMAN, Mont. (AP) — Chet Huntley,
whose resonant voice and rough-hewn face
be- came familiar to millions on the nightly
television news, died Wednesday in his moun-
tain resort home. He was 62. He underwent
surgery for lung cancer in January but had
remained activesuntil recent weeks. He died
at 2:20 a.m, according to his widow, Tippy
Hunt.cy. Huntiey was teamed for 14 years
with David Brinkley on NBC’s Huntley-
Brinkley Re- port. He quit in 1970 and re-
turned to his native Montana to develop the
$20-millio...

BOZEMAN, Mont. (AP) - Chet Huntley,
whose resonant voice and rough-hewn face
became familiar to millions on the nightly
television news, died Wednesday in his moun-
tain resort home. He was 62. He underwent
surgery for lung cancer in January but had
remained active until recent weeks. He died
at 2:20 a.m., according to his widow, Tippy
Huntley. Huntley was teamed for 14 years
with David Brinkley on NBC’s Huntley-
Brinkley Report. He quit in 1970 and returned
to his native Montana to develop the $20 mil-
lion Bi...

By THE ASSOCIATED PRESS Some Amer-
icans are paying up to 50 per cent more per
month for electricity this year than they did
last, an Associ- ated Press survey shows. Con-
sumers are beginning to organize to fight the
rate hikes. A spot check of monthly elec- tric
bills this year and last showed that most in-
creases have been about $1 or $2, gen- erally
about 10 per cent, with the highest reported
boost com- ing in Jacksonville, Fia., where
the average tab went from $17.90 last year to
$27.70 this year. Utility...

By Louise Cook Acenciaiod Prece Writer
Same Americans are paying up io 20 per cent
more per month far electricity this year ihan
they did last, an -Associ- Press survey shows.
onsumers are beginning to ze to fight the rate
hikes, A spot check of monthly elec- tre hills
this year and Jast showed that most increases
ve been about $1 or $2, gen- erally about 10
per cent, with the highest reported boost com-
ing in Jacksonville, Fla., where the average
tab went from $17.90 last year to $27.70 this
year...

BOZEMAN, Mont. (AP) — Vice President
Gerald R. Ford says the world will miss the
“‘unique abilities” of former television news
anchorman Chet Huntley. Huntley, 62, died
at his home Wednesday after a long bout
with lung cancer. Family ‘spokesmen said
a memorial service would be conducted for
Huntley Sunday at the Big Sky of Montana’
resort and recreation area south of Bozeman.
Huntley was chairman of the Big Sky board
of directors. Another memorial service is
scheduled Tuesday in the New York studios
of the...

BOZEMAN, Mont. (AP) — Vice President
Gerald R. Ford says the world will miss the
“unique abilities” of former television news
anchorman Chet Huntley. Huntley, 62, died
at his home Wednesday after a long bout with
lung cancer. Family spokesmen said a me-
morial service would be con- ducted for Hunt-
ley Sunday at the Big- Sky of Montana resort
and recreation area south of Bozeman. Hunt-
ley was chair- man of the Big Sky board of
directors. Another memorial service is sched-
uled Tuesday in the New York studios of...

WASHINGTON (AP) — The House has
passed legislation raising the minimum wage
from $1.60 an hour to $2 this year for most
workers covered and to $2.30 for all by 1978.
The bill, approved Wednesday 375 to 37, also
would increase by 7 million to 56.5 million
the number of workers covered by the mini-
mum wage laws. The bill is a modified ver-
sion of one President Nixon vetoed last year.
However, he is expected to sign this one if it
is finally approved after ad- justment with a
similar Senate passed measure, altho...

WASHINGTON (AP) — The House has
passed legislation raising the minimum wage
from $1.60 an hour to $2 this year for most
workers covered and to $2.30 for all by 1978.
The bill, approved Wednes- day 375 to 37,
also would in- crease by 7 million to 56.5 mil-
lion the number of workers cov- ered by the
minimum wage laws. The bill is a modified
version of one President Nixon vetoed last
year. However, he is ex- ted to sign this one if
it is inally approved after adjust- ment with a
similar Senate- passed measu...

Table 17: Example false positives for RETSim on the NEWS-COPY dataset (pairs of texts detected
as near-duplicates by RETSim but not labeled as near-duplicates in the original dataset). Examples
are randomly selected and truncated at 512 characters for display.
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