
Understanding Bias Reinforcement in LLM Agents Debate

Jihwan Oh * 1 Minchan Jeong * 1 Jongwoo Ko † 1 Se-Young Yun † 1

Abstract
Large Language Models (LLMs) solve complex
problems using training-free methods like prompt
engineering and in-context learning, yet ensuring
reasoning correctness remains challenging. While
self-correction methods such as self-consistency
and self-refinement aim to improve reliability,
they often reinforce biases due to the lack of ef-
fective feedback mechanisms. Multi-Agent De-
bate (MAD) has emerged as an alternative, but
we identify two key limitations: bias reinforce-
ment, where debate amplifies model biases in-
stead of correcting them, and lack of perspec-
tive diversity, as all agents share the same model
and reasoning patterns, limiting true debate ef-
fectiveness. To systematically evaluate these is-
sues, we introduce MetaNIM Arena, a bench-
mark designed to assess LLMs in adversarial
strategic decision-making, where dynamic in-
teractions influence optimal decisions. To over-
come MAD’s limitations, we propose DReaMAD
(Diverse Reasoning via Multi-Agent Debate with
Refined Prompt), a novel framework that (1) re-
fines LLMs’ strategic prior knowledge to improve
reasoning quality and (2) promotes diverse view-
points within a single model by systematically
modifying prompts, reducing bias. Empirical re-
sults show that DReaMAD significantly improves
decision accuracy, reasoning diversity, and bias
mitigation across multiple strategic tasks, estab-
lishing it as a more effective approach for LLM-
based decision-making.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able problem-solving capabilities across a wide range of
tasks by leveraging knowledge acquired from vast datasets

*Equal contribution 1KAIST AI, Seoul, Republic of Korea.
†Correspondence to: Jongwoo Ko <jongwoo.ko@kaist.ac.kr>,
Se-Young Yun <yunseyoung@kaist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

(Achiam et al., 2023; The; Team et al., 2023; Dubey et al.,
2024). These models can address complex decision-making
problems using training-free methods such as prompt engi-
neering (White et al., 2023; Chen et al., 2023a; Schulhoff
et al., 2024b) and in-context learning (Brown et al., 2020;
Dong et al., 2022; Wei et al., 2022; Mavromatis et al., 2023;
Pan, 2023), which provide guidance for effective reasoning.
However, these approaches do not explicitly guarantee the
correctness of the generated responses.

To address this, recent research has explored self-correction
mechanisms that allow LLMs to refine their own outputs
without external feedback. Self-consistency (Wang et al.,
2022; Chen et al., 2023c) enhances reliability by ensembling
multiple responses. Self-refinement (Wan et al., 2023; Shinn
et al., 2023; Madaan et al., 2024) enables LLMs to iteratively
critique and revise their outputs. However, self-consistency
lacks a critical feedback mechanism, meaning it does not
iteratively refine responses but merely reduces the model’s
inherent randomness by converging on the most frequently
generated answer. Further recent studies (Huang et al., 2024)
suggest that self-refinement can degrade performance, as
models often struggle to assess the correctness of their own
reasoning.

Recently, inspired by the Society of Mind philosophy, Multi-
Agent Debate (MAD; Chan et al. 2023; Du et al. 2023;
Liang et al. 2023) has emerged as a promising alternative.
However, its success has been limited to static problem-
solving and lacks assessments for adversarial strategic rea-
soning (Cobbe et al., 2021; Edwards, 1994; He et al., 2020).
Additionally, current evaluations do not account for dy-
namic decision-making in interactive environments, where
an agent’s choices influence and adapt to an opponent’s
actions. This limitation hinders LLMs from retrieving and
applying strategic knowledge beyond the given context.

To overcome the above limitation, we introduce MetaNIM
Arena, a framework for evaluating LLMs in adversarial
strategic decision-making. It allows us to assess their abil-
ity to adapt dynamically and ensures robust reasoning un-
der mathematically rigorous conditions. Through MetaNIM
Arena, we systematically analyze two fundamental limita-
tions of MAD:

(1) Bias Reinforcement: In strategic reasoning tasks,
LLMs tend to rely on immediate context rather than

1

Understanding Bias Reinforcement in LLM Agents Debate

Table 1. Feature comparison between self-correction methods. In contrast to Multi-Agent Debate, DReaMAD encourages diverse viewpoints
by varying prompts and enhancing debate robustness through automated knowledge structuring.

Methods Single Model Usage Multiple Instances Rethinking Process Self-Feedback Diversity in reasoning Perspective Shifts

Self-Consistency ✓ ✓ ✗ ✗ ✗

Self-Refinement ✓ ✗ ✓ ✓ ✗ ✗

Multi-Agent Debate ✓ ✓ ✓ ✗ ✗

DReaMAD (Ours) ✓ ✓ ✓ ✗ ✓ ✓

: means diversity from LLM’s randomness, controlled by temperature hyperparameter.

retrieving broader strategic knowledge, leading to dis-
torted reasoning instead of correct inference. Debate-
based frameworks further amplify this issue by reinforc-
ing the model’s inherent biases rather than mitigating
them (§4.1-4.2).

(2) Lack of Perspective Diversity: Although MAD uses
a debate structure, it relies on multiple instances of the
same model. This limits the diversity of perspectives
introduced in the reasoning process, reducing its ability
to challenge inherent biases (§4.3).

Rooted in the Learning from Multiple Approaches frame-
work (Council et al., 2005; Cleaves, 2008), research shows
that engaging with multiple problem-solving representations
enhances comprehension and mitigates biases. Building
on this insight, we propose DReaMAD (Diverse Reasoning
via Multi-Agent Debate with Refined Prompt). DReaMAD
addresses the limitations of MAD by (1) refining LLMs’
domain-specific knowledge to guide more accurate strate-
gic reasoning, and (2) systematically modifying prompts
to foster diverse perspectives. A detailed comparison with
existing self-correction methods is presented in Table 1. Our
key contributions are as follows:

• We introduce MetaNIM Arena, a benchmark designed to
evaluate LLMs in adversarial strategic decision-making,
where mathematical rigor enables precise assessment of
reasoning quality and strategic adaptability.

• We identify the bias reinforcement in Multi-Agent De-
bate, showing that MAD strengthens both correct and
incorrect reasoning rather than inherently improving it.

• We propose DReaMAD, a novel framework that refines
strategic prior knowledge and enhances reasoning diver-
sity through structured self-prompt refinement and per-
spective diversification, achieving a +12.0% accuracy gain
over standard prompting on MetaNIM Arena dataset and
a +20.8% higher win rate than MAD in the simulator.

2. Preliminary
2.1. Bias in LLMs

Large Language Models (LLMs) can exhibit biases that lead
to unfair or skewed outcomes, arising from training data,
model architectures, learning objectives, or deployment con-
ditions (Guo et al., 2024). Such biases manifest both in-
trinsically, for instance in word embeddings (Bolukbasi

et al., 2016), and extrinsically, reflecting real-world dispar-
ities (Goldfarb-Tarrant et al., 2021). Moreover, biases can
emerge dynamically during interactive reasoning, where cur-
rent reinforcement mechanisms—like self-consistency and
self-refinement—often fail to mitigate them (Huang et al.,
2024; Shin et al., 2024). Indeed, recent research shows that
iterative interactions can reinforce existing biases instead of
diversifying reasoning (Ganguli et al., 2023).

2.2. Prompt Engineering and Self-Correction in LLMs

Prompt engineering shapes model outputs without retrain-
ing, potentially improving generalization and reducing
bias (Brown et al., 2020; Reynolds & McDonell, 2021; Zhao
et al., 2024; Schulhoff et al., 2024a; Shin et al., 2024). How-
ever, fully eliminating biases in complex reasoning remains
challenging (Jiang et al., 2022; Lu et al., 2022).

Meanwhile, self-correction mechanisms in LLMs refine re-
sponses without external supervision (Ganguli et al., 2023;
Liu et al., 2024; Kamoi et al., 2024). Self-consistency, for
instance, ensembles multiple outputs but converges on fre-
quent rather than correct answers (Wang et al., 2022; Chen
et al., 2023c), and self-refinement can reinforce rather than
fix biases (Wan et al., 2023; Shinn et al., 2023; Madaan et al.,
2024; Huang et al., 2024). Feedback-loop methods such as
STaR (Zelikman et al., 2022), Reflexion (Shinn et al., 2023),
and SCoRe (Kumar et al., 2024) also struggle to reliably
correct biases or foster diverse reasoning (Guo et al., 2024).

2.3. Multi-Agent Debate in LLMs

Multi-Agent Debate (MAD) enables LLM agents to critique
each other, enhancing reasoning on complex tasks (Liang
et al., 2023; Du et al., 2023). ChatEval (Chan et al., 2023),
a multi-agent evaluation system, simulates human judgment
to assess model output quality. Optimizations include task-
specific strategies for improving debate effectiveness (Smit
et al., 2024) and ACC-Debate, an actor-critic framework
that trains models to specialize in debates, achieving bench-
mark gains (Estornell et al., 2024). While these enhance-
ments improve performance, studies reveal a key limitation:
static evaluations focus on assessing predefined problems,
whereas real-world decision-making often involves dynamic,
interactive environments where biases can evolve. Under-
standing how biases shift in these settings is crucial for de-
veloping robust strategies that extend beyond conventional
static benchmarks.

2

Understanding Bias Reinforcement in LLM Agents Debate

Figure 1. An example demonstrating how the debate process converges to a biased outcome. We observed that bias reinforcement occurs
in the first debate. Blue text indicates the correct reasoning and orange text indicates the strong consistent (biased) reasoning. The second
debate is omitted, as its procedure replicates the first and third; all debates use GPT-4o-mini as the debating agent.

3. MetaNIM Arena
3.1. Overview
We introduce MetaNIM Arena, illustrated in Figure 7. It
features six impartial combinatorial games, meaning both
players share identical moves at each state, all information is
fully observable, and each game terminates in a finite num-
ber of moves. By merging combinatorial game theory with
adversarial play, MetaNIM Arena serves as a benchmark for
debate-based strategic reasoning in LLMs.

Dataset and Simulator. Key game situations are systemati-
cally collected into a dataset, each accompanied by an opti-
mal action, enabling LLMs to be tested for decision-making
accuracy. These results appear in Table 3, with details in
Appendix A.3. Separately, MetaNIM Arena can function as
a simulator: the model encounters an adaptive opponent,
so each trajectory depends on both the agent’s and the op-
ponent’s actions. Here, binary win/loss outcomes allows
evaluation by win rate. We demonstrate this approach in
Table 4, with further explanation in Appendix A.4. We refer
the Appendix B for details of opponent modeling.

3.2. Why MetaNIM Arena?
MetaNIM Arena provides a rigorous environment for ad-
versarial strategic reasoning in LLMs. Rather than isolated
problem-solving or factual recall, our framework uses im-
partial combinatorial games, where each position’s Grundy
number defines the provably correct move. We will discuss
further theoretical details in the following Section 3.4. This
design offers:

1. Adversarial Strategic Reasoning: Each scenario in-
cludes an opponent whose actions shape outcomes. Models
must anticipate adversarial moves across multiple turns,
going beyond static QA or single-step predictions. This ap-
proach tests latent strategic knowledge in an interactive,
step-by-step context.

2. Clear Optimality Criterion: By the Sprague-Grundy

Theorem, these games admit an optimal strategy. MetaNIM
Arena thus measures how closely a model’s reasoning aligns
with that strategy, instead of relying on approximate metrics
like BLEU or perplexity. We also assert that MetaNIM Arena
naturally supports reinforcement learning framework. By
providing a binary win/loss signal and structuring gameplay
as a Markov Decision Process (MDP), it enables iterative
strategy refinement—an advantage often absent in static
benchmarks.

3.3. Game Variants
Here, we introduce four settings of MetaNIM Arena. De-
tailed explanation and theoretically determined winning
strategies for these games are provided in Appendix A.

• NIM: Agents take turns removing 1 to N (typically 3)
objects from a set of heaps where the player who takes
the last object wins. Success requires maintaining specific
heap configurations to control the game’s outcome.

• Fibonacci: A variation of NIM where an agent’s maxi-
mum removal is constrained by the opponent’s previous
move. Each turn, an agent may remove between 1 and
2× the opponent’s last action. This rule introduces dy-
namic strategy adjustments, balancing immediate gains
with long-term positioning.

• Kayles: Played with a or two row(s) of pins, where
agents take turns knocking down one or two adjacent pins.
The player unable to make a move loses. The challenge
lies in evaluating pin configurations and predicting the
opponent’s responses to optimize each turn.

• Chomp: Played on a quadrangle grid, agents take turns
consuming a “block” of chocolate along with all blocks
below and to the right. The player forced to eat the top-
right (or top-left) “poisoned” block loses.

• Corner Queen: On a rectangular board, two players take
turns moving a queen left, down, or diagonally down-left.
The first to reach the bottom-left corner wins. Strategy
lies in limiting the opponent’s options while advancing.

3

Understanding Bias Reinforcement in LLM Agents Debate

Table 2. Bias reinforcement across models: showing that even after the debate concludes, strongly consistent actions continue to exhibit
strong consistency, reinforcing biased action distributions in the Fibonacci game. A wrong bias occurs when the model’s biased response
deviates from the optimal action, while a good bias refers to cases where the biased response aligns with the optimal action. (a, b) indicate
the state where the remaining items are a, and player can take the items maximum to b.

GPT-4o
Wrong Bias Good Bias

(20, 19) (12, 4) (7, 4) (15, 10) (16, 8) (7, 7)

Standard 0.700 0.675 0.600 0.525 0.725 0.850
+ After MAD 0.900 0.750 0.700 0.750 0.750 0.900

GPT-4o-mini
Wrong Bias Good Bias

(18, 4) (12, 6) (10, 4) (15, 10) (7, 2) (15, 2)

Standard 0.700 0.875 0.600 0.975 0.950 0.975
+ After MAD 0.850 0.950 0.750 1.000 0.950 1.000

GEMINI-1.5-pro
Wrong Bias Good Bias

(20, 19) (12, 4) (4, 4) (15, 10) (10, 4) (16, 8)

Standard 0.650 0.600 0.600 0.800 0.625 0.675
+ After MAD 0.700 0.650 0.800 0.800 0.800 0.700

GEMINI-1.5-flash
Wrong Bias Good Bias

(12, 6) (12, 4) (7, 4) (15, 4) (20, 19) (7, 7)

Standard 0.800 0.700 0.525 0.750 0.500 0.750
+ After MAD 0.850 1.000 0.750 0.750 0.650 1.000

3.4. Combinatorial Games: Theory and Strategy

All MetaNIM Arena games are impartial combinatorial
games, forming a Directed Acyclic Graph (DAG) where
vertices represent game states and edges denote valid moves.
The Grundy Number framework, along with the Sprague-
Grundy Theorem, guarantees the existence of a winning
strategy and provides a concrete method to determine it. In
the MetaNIM Arena dataset, each state has a mathematically
provable optimal move, allowing an LLM’s decisions to be
evaluated against the theoretical optimal strategy—a key
advantage for unbiased assessment.
Definition 3.1 (Grundy Number). For a finite impartial com-
binatorial game under normal play (where the last player to
make a valid move wins), the Grundy number (or Nimber)
G(S) is recursively defined as follows. If S is a terminal
state with no valid moves, set G(S) = 0. Otherwise,

G(S) = mex{G(S′) | S′ is reachable from S } .

Here, mex(X) is the smallest nonnegative integer not in X .

Note that the Grundy number is well-defined for every im-
partial combinatorial game, since the game’s state space
forms a DAG. In many combinatorial games, direct enu-
meration of all possible move sequences is computationally
infeasible. However, with Sprague-Grundy Theorem, we
can easily calculate Grundy Numbers on complex games.
See Appendix A.1.1 for further discussions.

Optimal Strategy. When G(S) ̸= 0, there is at least one
move to a successor S′ with G(S′) = 0, forcing the oppo-
nent into a losing position. Conversely, if G(S) = 0, all
successor states have G(S′) ̸= 0. Because the game DAG
is finite and acyclic, repeatedly applying “move to G = 0”
(or avoiding it) ensures a forced result under optimal play.
See Appendix A.1.2 for more details, including the misère
variant where taking the last object loses.

4. Understanding Bias Reinforcement in
Debate Process

To quantitatively analyze bias in the debate process, we
define strong consistency and bias reinforcement as below.

Figure 2. Bias reinforcement in NIM game by MAD. We compared
initial action distribution and action distribution after 3 rounds of
debates. MAD amplifies a model’s biases, making debates favor
consistent but potentially incorrect responses.

Definition 4.1 (Strong Consistency). Strong consistency
is a model’s tendency to consistently produce the same
output with high probability when given identical inputs.
If a response’s probability exceeds a threshold (set at 0.5)
across multiple trials, we label the behavior as strongly
consistent.

This phenomenon naturally emerges in strategic decision-
making contexts. As shown in Figure 1, when presented with
a specific game state, the model repeatedly generates the
same reasoning pattern, highlighted in orange. Rather than
effectively utilizing strategic prior knowledge, the model
fixates on a single line of reasoning, limiting adaptability
and decision quality.

Definition 4.2 (Bias Reinforcement). Bias reinforcement
in the context of large language models refers to the phe-
nomenon where iterative reasoning processes—such as
multi-agent debates—amplify pre-existing model biases in-
stead of mitigating them. Rather than converging toward

4

Understanding Bias Reinforcement in LLM Agents Debate

a more accurate or optimal reasoning outcome, the debate
process reinforces strongly consistent, yet potentially sub-
optimal or distorted, reasoning patterns.

In the rest of this section, we analyze bias reinforce-
ment and lack of diversity in the debate process, using
GPT-4o-mini and GEMINI-1.5-pro for the NIM
game, and then extend the evaluation to Fibonacci with
those two plus GPT-4o and GEMINI-1.5-flash.

4.1. Bias Reinforcement in MAD

In NIM: (Figure 2) We find that MAD amplifies models’
pre-existing biases rather than refining their reasoning. To
investigate this, we first identify game states where each
model exhibits strong consistency, i.e., consistently select-
ing the same action across multiple trials. For each such
state, we conduct multi-agent debates using two identical
agents instantiated from the same model.

Each agent generates 20 responses (40 per state) at a fixed
temperature of 0.7, maintained throughout the debate. Ini-
tial action distributions (light red) are compared against
post-debate distributions after three rounds (blue). If MAD
functioned as a self-correction mechanism, we would expect
the distribution to shift toward the optimal action.

However, we found the opposite: regardless of whether the
initial reasoning was correct, the debate process consistently
amplifies pre-existing biases rather than mitigating them.
For instance, in Figure 2 (top-left), GPT-4o-mini initially
selects a suboptimal action (Action 3) 82.5% of the time.
After the debate, this frequency increases to 90.0%, while
the proportion of optimal responses drops further. Rather
than correcting errors, the debate reinforces strongly consis-
tent—but incorrect—responses. This pattern persists across
model families. The GEMINI models (bottom row of Fig-
ure 2) exhibit similar behavior, regardless of whether the
initial bias aligns with optimal play (“good bias”) or not
(“wrong bias”). In both cases, MAD strengthens the domi-
nant trajectory without introducing new strategic insight.

Figure 1 provides a detailed view: two LLM agents receive
the same input and begin debating. Despite initial diver-
gence, they converge quickly—after the first round—on a
shared line of reasoning. Crucially, this convergence occurs
even when the initial consensus is incorrect, illustrating
that MAD often serves as an amplifier of bias rather than a
correction mechanism.

In Fibonacci: (Table 2) Extending our NIM analysis, we
evaluate MAD’s effect in the Fibonacci game, a more com-
plex setting with move constraints and dynamic interactions.
As in NIM, We identify states exhibiting strong consistency
and categorize them into two groups: those where consistent
responses align with the optimal strategy, and those where
they do not. We then apply MAD to examine how response

Figure 3. Decline in optimal actions over debate rounds, demon-
strating the convergence toward consistently biased reasoning.

distributions evolve post-debate.

Consistent with the NIM results, MAD reinforces the
model’s initial biases in Fibonacci as well. As shown in
Table 2, the frequency of initially consistent actions in-
creases after debate, regardless of whether those actions
are optimal. On average, reinforcement rises by 9.17% in
GPT models and 12.29% in GEMINI models, indicating
a systematic amplification of dominant reasoning patterns
across architectures.

4.2. Optimal Inputs Do Not Reduce Bias in MAD
To further assess the bias reinforcement in MAD, we con-
duct an experiment on the NIM game (5 items remaining)
using GPT-4o-mini, illustrated in Figure 3. We prepare
two sets of 20 responses: one exhibiting strong consistency
toward a biased action (Action 2), and another consist-
ing of optimal responses, where 80% of actions correspond
to the game-theoretic best move (Action 1). We then in-
troduced these responses into a multi-agent debate setting
using GPT-4o-mini, pairing each strongly consistent re-
sponse with an optimal response, and observed how the
model’s reasoning evolves over multiple rounds of debate
(denoted the game situation in detail in Appendix E).

Surprisingly, the debate fails to leverage the high-quality
input. Initially, the curated dataset contained 80% optimal
responses, yet after a single round of debate, the model
predominantly aligned with the biased responses. As de-
bate rounds proceed, this effect intensifies: the influence
of the optimal input diminishes, while the initially fre-
quent—but suboptimal—choice becomes dominant. These
results demonstrate that MAD is not only ineffective at
correcting bias, but can systematically aligns with its pre-
existing consistency patterns, reinforcing suboptimal but
frequent choices.

In contrast, applying DReaMAD with the curated optimal
responses preserves correct reasoning and mitigating bias
reinforcement. This underscores the need for mechanisms
that introduce diverse perspectives beyond internal debate,
which we further discuss in §5.

5

Understanding Bias Reinforcement in LLM Agents Debate

Figure 4. DReaMAD framework. DReaMAD improves LLM reasoning by combining Strategic Prior Knowledge Elicitation and Perspec-
tive Diversification. In the first stage, the model reinterprets the problem and formulates high-level strategies to reduce bias. In the second
stage, multiple agents adopt distinct viewpoints, engage in structured debate, and refine their conclusions to enhance decision-making.

4.3. Lack of Reasoning Diversity in MAD
While MAD is designed to refine reasoning through agent
interaction, its effectiveness is fundamentally constrained
by a lack of genuine diversity (§2.3). To address this lim-
itation, Chen et al. (2023b) propose a multi-model debate
framework that combines outputs from different models
to encourage diverse reasoning. In contrast, our approach
focuses on single-model self-correction.

Interestingly, we observe that even within a single model,
small variations in prompts can induce markedly different
reasoning paths (Appendix D). For example, including or
omitting the word Fibonacci leads to distinct strategies in
the same task. This suggests that diversity in reasoning can
be enhanced by strategically modifying prompts within the
same model, providing a practical alternative to multi-model
debate frameworks.

5. DReaMAD: Diverse Reasoning via MAD
To address the limitations of Multi-Agent Debate (MAD)
and improve strategic decision-making in Large Lan-
guage Models (LLMs), we introduce DReaMAD (Diverse
Reasoning via Multi-Agent Debate with Refined Prompt).
Our framework refines prior knowledge and ensures diverse
perspectives by extending MAD in two main stages:

1. Strategic Prior Knowledge Elicitation: The model re-
defines the problem, extracts key strategic insights, and
formulates a high-level strategy before reasoning.

2. Perspective Diversification: Multiple agents are instan-
tiated with self-generated distinct viewpoints to engage
in dialectical reasoning.

After these stages, the agents conduct a structured multi-
agent debate. A final post-debate refinement step then re-
visits their conclusions to improve reasoning quality. The
complete workflow is illustrated in Figure 4 and the de-

tailed prompt formulation used in these two modules is well
documented in the Appendix C.

5.1. Strategic Prior Knowledge Elicitation
To address strongly consistent bias, DReaMAD integrates a
structured module that ensures systematic extraction and re-
finement of the LLM’s internal strategic knowledge before
the debate. First, the model is prompted to reinterpret the
given problem, leading to a more organized understanding
of the strategic context (Game Situation Reinterpretation).
Next, it formulates a set of high-level strategies that can be
applied to the scenario at hand (General Strategy Formu-
lation), preventing the model from settling too early on
potentially flawed reasoning. As shown in Table 3, this mod-
ule enhances the model’s performance in tasks that require
strategic prior knowledge (Figure 4-1). We set the tempera-
ture hyperparameter to be 0.1 for strategic consistency.

5.2. Perspective Diversification
Building on MAD, DReaMAD mitigates argument homog-
enization by ensuring each agent adopts a distinct view-
point prior to the debate. This approach is inspired by the
Learning from Multiple Approaches concept in education
theory (Council et al., 2005; Cleaves, 2008), which sug-
gests that individuals improve their problem-solving skills
by exploring multiple representations of the same problem.
Analogously, this module ensures that each agent is given
differentiated initial prompts that guide reasoning along
distinct strategic trajectories. By self-customizing initial
prompts for each model instance, DReaMAD encourages
unique strategic perspectives and reduces the risk of bias
reinforcement (Figure 4-2) as demonstrated in Figure 5 and
Figure 6 (left). In Figure 5, although each agent receives the
same initial prompt, they independently generate different
optimal prompts, leading to distinct distributions of reason-
ing. This process reduces each agent’s bias and fosters a
more robust debate. Remarkably, even in a state with very

6

Understanding Bias Reinforcement in LLM Agents Debate

Figure 5. In this example, we illustrate how the debate process converges to an optimal outcome using DReaMAD. We begin with the
same current state shown in Figure 1, employing self-generated prompts for each LLM agent.

strong consistency, the discussion converges well toward
the correct reasoning direction. Here, we set temperature to
be 0.7 for diversity.

6. Experiments
We utilized the benchmark MetaNIM Arena as both our
dataset and simulator, as it provides a controlled environ-
ment for evaluating reasoning under grounded strategic
tasks. Our investigation focuses on three key questions:
(1) Does our approach improve reasoning quality com-
pared to existing prompting techniques? (2) Does our ap-
proach prove its strategic reasoning quality under adver-
sarial decision-making environments? (3) Does generating
diverse prompts contribute to better decision-making within
the debate framework?

To address these questions, we compare DReaMAD with
standard prompting methods including ReAct (Yao et al.,

2023), Chain-of-Thought (CoT), Self-Consistency (Wang
et al., 2022), Self-Refinement (Madaan et al., 2024), and
Multi-Agent Debate (MAD (Du et al., 2023), MAD2 (Liang
et al., 2023)). The details of standard and CoT prompts are
provided in Appendix B.

Our method builds on the MAD framework by Du et al.
(2023), augmenting it with structured self-prompt refine-
ment and perspective diversification. For self-refinement,
we follow the methodology of Madaan et al. (2024), apply-
ing three iterative refinement steps. Similarly, for MAD, we
conducted up to three rounds of debate, following Du et al.
(2023), with the process terminating early if a consensus is
reached before the final round.

We also investigate whether the observed improvements
generalize across different LLM architectures, including
both GPT and GEMINI models.

7

Understanding Bias Reinforcement in LLM Agents Debate

Table 3. Effect of Strategic Prior Knowledge Elicitation module. DReaMAD(−) indicates our method except multi-agent debate process.
We can fully evaluate reasoning ability between different prompting methods. The metric accuracy of selecting optimal action is used. The
best results are highlighted in bold.

LLM Models Prompting Methods NIM Fibonacci Chomp Kayles Average

GPT-4o
ReAct 0.95 ± 0.04 0.33 ± 0.04 0.18 ± 0.07 0.19 ± 0.08 0.41

+ CoT-Prompting 0.96 ± 0.04 0.43 ± 0.11 0.28 ± 0.09 0.20 ± 0.10 0.47
DReaMAD(−) 0.98 ± 0.04 0.44 ± 0.09 0.23 ± 0.10 0.23 ± 0.12 0.47

GPT-4o-mini
ReAct 0.75 ± 0.05 0.33 ± 0.04 0.40 ± 0.07 0.12 ± 0.06 0.40

+ CoT-Prompting 0.84 ± 0.08 0.36 ± 0.06 0.61 ± 0.05 0.02 ± 0.03 0.46
DReaMAD(−) 1.00 ± 0.00 0.49 ± 0.17 0.62 ± 0.10 0.18 ± 0.11 0.57

GEMINI-1.5-pro
ReAct 0.82 ± 0.06 0.42 ± 0.04 0.19 ± 0.08 0.57 ± 0.04 0.50

+ CoT-Prompting 0.88 ± 0.05 0.47 ± 0.11 0.22 ± 0.11 0.59 ± 0.04 0.54
DReaMAD(−) 0.97 ± 0.04 0.53 ± 0.07 0.24 ± 0.05 0.72 ± 0.12 0.62

GEMINI-1.5-flash
ReAct 0.94 ± 0.02 0.35 ± 0.04 0.05 ± 0.03 0.01 ± 0.02 0.34

+ CoT-Prompting 0.93 ± 0.02 0.33 ± 0.07 0.09 ± 0.04 0.0 ± 0.00 0.34
DReaMAD(−) 0.97 ± 0.04 0.45 ± 0.06 0.05 ± 0.00 0.42 ± 0.06 0.46

Average
ReAct 0.87 0.36 0.21 0.22 -

+ CoT-Prompting 0.90 0.40 0.30 0.20 -
DReaMAD(−) 0.98 0.48 0.29 0.39 -

Table 4. Winning rate comparison across different models and different self-correction methods. This is an result based on MetaNIM
Arena simulator. The best results are highlighted in bold.

LLM Models Prompting Methods
NIM Fibonacci Kayles Chomp C.Queen

Normal Misère Normal Misère Single 2 Rows Rectangular Square Normal

GEMINI-1.5-flash

Standard Prompting 0.32 0.54 0.16 0.10 0.54 0.56 0.78 0.18 0.46
+ ReAct 0.10 0.68 0.16 0.76 0.50 0.30 0.42 0.12 0.46
+ Self-Refinement 0.14 0.66 0.18 0.36 0.50 0.46 0.46 0.16 0.42
+ Self-Consistency 0.04 0.28 0.28 0.86 0.30 0.24 0.74 0.0 0.34
+ MAD 0.06 0.30 0.12 0.78 0.54 0.20 0.74 0.14 0.58
+ MAD2 0.26 0.26 0.08 0.06 0.44 0.36 0.68 0.10 0.58
+ DReaMAD 0.38 0.84 0.16 0.94 0.58 0.62 0.60 0.22 0.74

GPT-4o-mini

Standard Prompting 0.38 0.54 0.22 0.28 0.46 0.48 0.46 0.38 0.12
+ ReAct 0.22 0.68 0.20 0.34 0.40 0.26 0.58 0.34 0.28
+ Self-Refinement 0.22 0.70 0.18 0.50 0.46 0.52 0.52 0.44 0.24
+ Self-Consistency 0.14 0.52 0.34 0.46 0.32 0.20 0.54 0.26 0.30
+ MAD 0.28 0.62 0.22 0.64 0.42 0.28 0.52 0.56 0.44
+ MAD2 0.34 0.20 0.18 0.18 0.50 0.34 0.44 0.90 0.14
+ DReaMAD 0.98 0.74 0.54 0.72 0.68 0.84 0.64 0.22 0.76

6.1. Does DReaMAD Improve Reasoning Quality?

Figure 6. Effect of perspective diversification. Left: Average win
rate of (+)MAD and DReaMAD on NIM and Fibonacci (Normal
and Misère variants), aggregated over 50 simulations per setting.
Right: Accuracy on the Fibonacci benchmark with GPT-4o across
different sampling temperatures (15 runs each, 95% CI). Higher
temperatures yield greater prompt diversity, leading to improved
accuracy.

This experiment isolates the effect of strategic prior knowl-
edge elicitation (§5.1), allowing us to assess whether our
method enhances decision-making without relying on de-
bate dynamics.

Setup. To evaluate the effectiveness of our approach in
improving reasoning capabilities, we compare DReaMAD
without the debate process against ReAct and zero-shot CoT
prompting across multiple models in the MetaNIM Arena
dataset (§A.3). For showing versatility of DReaMAD, we
conduct experiments on four variants of LLMs as shown in
Table 3.
Results. Table 3 demonstrates that DReaMAD consistently
outperforms both ReAct and CoT prompting across all
models and tasks. These results highlight the impact of
our method in reinforcing structured strategic reasoning,
even without the iterative correction process of debate.
Notably, our approach leads to substantial improvements
in NIM, Fibonacci, and Kayles, which are environments
where long-term strategic planning plays a crucial role.
Since defining a general winning strategy in Chomp is
non-trivial, applying prior knowledge is challenging and
results in less effectiveness compared to other games. Fur-
thermore, we observe that models with inherently weaker
reasoning abilities benefit the most from strategic prior
knowledge elicitation (e.g., GPT-4o-mini with +17%p,
GEMINI-1.5-flash with +12%p on average).

8

Understanding Bias Reinforcement in LLM Agents Debate

Table 5. Accuracy (%) on math-reasoning benchmarks. Columns group the five algorithms for each backbone model. Bold indicates the
best algorithm for a given (dataset, model) pair.

Dataset GPT-o3-mini GPT-4o

ReAct Self-Refinement Self-Consistency MAD DReaMAD ReAct Self-Refinement Self-Consistency MAD DReaMAD

AIME 2024 76.7 73.3 86.7 73.3 90.0 0.0 3.3 10.0 3.3 10.0
AMC 2023 97.5 100 100 100 100 60.0 52.5 52.5 60.0 62.5

Table 6. Accuracy (%) on CommonsenseQA dataset. Bold indi-
cates the best performance. We abbreviate Self-Refinement as
Self-Refine. and Self-Consistency as Self-Consist.
Model ReAct Self-Refine. Self-Consist. MAD DReaMAD

GPT-4o 83.6 49.2 83.6 82.0 84.4
GPT-4o-mini 78.7 61.5 78.7 75.4 79.5

6.2. DReaMAD in Adversarial Strategic
Decision-Making

Setup. We applied DReaMAD to GPT-4o-mini and
GEMINI-1.5-flash and compared it with self-
correction methods, including standard-prompt, ReAct, self-
refinement, self-consistency, and MAD. To demonstrate its
effectiveness, we used GPT-4o as the opponent model due
to its superior performance. In this experiments, we utilized
MetaNIM Arena simulator (§A.4) to maximize the effect
of generating diverse prompts. We aimed to validate our
hypothesis in a simulator that requires strategic decision-
making within complex dynamics. We ran 50 independent
episodes and average the win-rate.

Results. As shown in Table 4, DReaMAD consistently out-
performs other self-correction methods across various strate-
gic environments, demonstrating a significant improvement
in winning rates. This result suggests that our approach en-
ables LLM agents to effectively adapt to complex dynamics,
particularly in adversarial decision-making scenarios where
strategic reasoning is crucial. However, we observe that
DReaMAD struggles in the Chomp game, which aligns with
our hypothesis that Chomp lacks a well-defined generalized
winning strategy. Unlike other tested environments, Chomp
requires more exploratory play rather than direct reason-
ing from prior knowledge, highlighting a limitation of our
method in environments where strategic heuristics are less
structured.

6.3. Does Generating Diverse Prompts Improve
Performance?

We assess whether prompt diversity improves decision qual-
ity within the MAD framework. To this end, we compare
two settings: (1) identical prompts generated via the Strate-
gic Prior Knowledge Elicitation module for both agents
((+)MAD), and (2) distinct, self-generated prompts per
agent, as in DReaMAD (Figure 6, left). Experiments were
conducted on four variants of the MetaNIM Arena simula-
tor, NIM (Normal and Misère) and Fibonacci (Normal and
Misère), over 50 episodes each (§A.4). Our results show that

incorporating diverse prompts within the MAD framework
significantly enhances performance, validating the effective-
ness of our Perspective Diversification module.

We also examine the effect of sampling temperature on
prompt diversity in the Fibonacci task. Within both the
Strategic Prior Knowledge Elicitation and Perspective Di-
versification modules, we vary the temperature from 0.0 to
1.0. As shown in Figure 6 right, higher temperature (further
diversity) correlates with increased optimal action accuracy,
indicating that greater diversity in generated prompts con-
tributes to improved reasoning performance.

6.4. Generalization to Math and Commonsense
Reasoning

While our primary benchmark focuses on structured games,
we further evaluate DReaMAD on NLP tasks to test its
broader applicability. Specifically, we consider algebra
and number theory problems from AIME 2024 and AMC
2023, as well as CommonsenseQA (Talmor et al., 2018),
which require symbolic reasoning and multi-step inference.
These tasks are representative of domains where chain-
of-thought reasoning is essential, making them suitable
for evaluating generalization. We also examine whether
DReaMAD benefits reasoning-specialized models, such as
GPT-o3-mini, in a similar manner as general-purpose
LMs. Experiments are conducted using standard accuracy
metrics across model-task pairs. Results in Table 5 and Ta-
ble 6 show that DReaMAD not only boosts accuracy across
heterogeneous tasks but also yields clear gains on reasoning-
oriented models such as GPT-o3-mini, underscoring the
method’s robustness well beyond the structured-game do-
main.

7. Conclusions
Our study shows that Multi-Agent Debate (MAD) often re-
inforces biases instead of reducing them, leading to subopti-
mal reasoning. Through our experiments with the MetaNIM
Arena, we have observed that models persist in biased
reasoning even when presented with superior alternatives.
While our current strategy focuses on strategic games, the
principles of structured self-refinement and diversified rea-
soning could be valuable for a wider range of NLP tasks.
These include complex activities such as multi-step rea-
soning in question answering, legal analysis, and scientific
inference. Future work will explore how these techniques
enhance decision-making beyond structured games.

9

Understanding Bias Reinforcement in LLM Agents Debate

Acknowledgments
This work was supported by Center for Applied Research in
Artificial Intelligence (CARAI) grant funded by DefenseAc-
quisition Program Administration (DAPA) and Agency for
Defense Development (ADD) (UD230017TD).

Impact Statement
This work advances Machine Learning by enhancing LLMs’
strategic reasoning through our approach, addressing bias re-
inforcement and lack of perspective diversity in Multi-Agent
Debate (MAD). Our method improves decision-making in
adversarial settings, with potential applications in automated
negotiations, economics, and multi-agent systems. However,
stronger AI-driven strategies could be misused in manipula-
tive or deceptive contexts. To ensure ethical deployment, fu-
ture research should focus on integrating fairness constraints
and transparency mechanisms in AI decision-making.

References
The claude 3 model family: Opus, sonnet, haiku.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., and
Kalai, A. Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Proceedings
of the 30th International Conference on Neural Informa-
tion Processing Systems, NIPS’16, pp. 4356–4364, Red
Hook, NY, USA, 2016. Curran Associates Inc. ISBN
9781510838819.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chan, C.-M., Chen, W., Su, Y., Yu, J., Xue, W., Zhang, S.,
Fu, J., and Liu, Z. Chateval: Towards better llm-based
evaluators through multi-agent debate. arXiv preprint
arXiv:2308.07201, 2023.

Chen, B., Zhang, Z., Langrené, N., and Zhu, S. Unleash-
ing the potential of prompt engineering in large lan-
guage models: A comprehensive review. arXiv preprint
arXiv:2310.14735, 2023a.

Chen, J. C.-Y., Saha, S., and Bansal, M. Reconcile:
Round-table conference improves reasoning via consen-
sus among diverse llms. arXiv preprint arXiv:2309.13007,
2023b.

Chen, X., Aksitov, R., Alon, U., Ren, J., Xiao, K., Yin, P.,
Prakash, S., Sutton, C., Wang, X., and Zhou, D. Univer-
sal self-consistency for large language model generation.
arXiv preprint arXiv:2311.17311, 2023c.

Cleaves, W. P. Promoting mathematics accessibility through
multiple representations jigsaws. Mathematics Teaching
in the Middle School, 13(8):446–452, 2008.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Council, N. R., Donovan, S., Bransford, J., et al. How
students learn. National Academies Press Washington,
DC, 2005.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Liu, T., et al. A survey on in-context
learning. arXiv preprint arXiv:2301.00234, 2022.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mor-
datch, I. Improving factuality and reasoning in lan-
guage models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Edwards, S. J. Portable game notation specification and
implementation guide. Retrieved April, 4:2011, 1994.

Estornell, A., Ton, J.-F., Yao, Y., and Liu, Y. Acc-debate:
An actor-critic approach to multi-agent debate, 2024.

Ganguli, D., Askell, A., Schiefer, N., Liao, T. I., Lukošiūtė,
K., Chen, A., Goldie, A., Mirhoseini, A., Olsson, C., Her-
nandez, D., Drain, D., Li, D., Tran-Johnson, E., Perez,
E., Kernion, J., Kerr, J., Mueller, J., Landau, J., Ndousse,
K., Nguyen, K., Lovitt, L., Sellitto, M., Elhage, N., Mer-
cado, N., DasSarma, N., Rausch, O., Lasenby, R., Larson,
R., Ringer, S., Kundu, S., Kadavath, S., Johnston, S.,
Kravec, S., Showk, S. E., Lanham, T., Telleen-Lawton,
T., Henighan, T., Hume, T., Bai, Y., Hatfield-Dodds,
Z., Mann, B., Amodei, D., Joseph, N., McCandlish, S.,
Brown, T., Olah, C., Clark, J., Bowman, S. R., and Ka-
plan, J. The capacity for moral self-correction in large
language models, 2023.

Goldfarb-Tarrant, S., Marchant, R., Muñoz Sánchez, R.,
Pandya, M., and Lopez, A. Intrinsic bias metrics do not
correlate with application bias. In Zong, C., Xia, F., Li,
W., and Navigli, R. (eds.), Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural

10

Understanding Bias Reinforcement in LLM Agents Debate

Language Processing (Volume 1: Long Papers), pp. 1926–
1940, Online, August 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.acl-long.150.

Grundy, P. M. Mathematics and games. Eureka, 2:6–8,
1939.

Guo, Y., Guo, M., Su, J., Yang, Z., Zhu, M., Li, H., Qiu,
M., and Liu, S. S. Bias in large language models: Origin,
evaluation, and mitigation, 2024.

He, J., Wang, T., Xiong, D., and Liu, Q. The box is in the
pen: Evaluating commonsense reasoning in neural ma-
chine translation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 3662–3672,
2020.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W.,
Song, X., and Zhou, D. Large language models cannot
self-correct reasoning yet. In The Twelfth International
Conference on Learning Representations, 2024.

Jiang, L., Hwang, J. D., Bhagavatula, C., Bras, R. L., Liang,
J., Dodge, J., Sakaguchi, K., Forbes, M., Borchardt, J.,
Gabriel, S., Tsvetkov, Y., Etzioni, O., Sap, M., Rini, R.,
and Choi, Y. Can machines learn morality? the delphi
experiment, 2022.

Kamoi, R., Zhang, Y., Zhang, N., Han, J., and Zhang, R.
When can LLMs actually correct their own mistakes?
a critical survey of self-correction of LLMs. Transac-
tions of the Association for Computational Linguistics,
12:1417–1440, 2024. doi: 10.1162/tacl a 00713.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Iqbal, S., Bishop, C., Roelofs, R.,
Zhang, L. M., McKinney, K., Shrivastava, D., Paduraru,
C., Tucker, G., Precup, D., Behbahani, F., and Faust, A.
Training language models to self-correct via reinforce-
ment learning, 2024.

Liang, T., He, Z., Jiao, W., Wang, X., Wang, Y., Wang,
R., Yang, Y., Shi, S., and Tu, Z. Encouraging divergent
thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Liu, G., Mao, H., Cao, B., Xue, Z., Zhang, X., Wang, R.,
Tang, J., and Johnson, K. On the intrinsic self-correction
capability of llms: Uncertainty and latent concept, 2024.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stene-
torp, P. Fantastically ordered prompts and where to
find them: Overcoming few-shot prompt order sensi-
tivity. In Muresan, S., Nakov, P., and Villavicencio,
A. (eds.), Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8086–8098, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.556.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Mavromatis, C., Srinivasan, B., Shen, Z., Zhang, J., Rang-
wala, H., Faloutsos, C., and Karypis, G. Which exam-
ples to annotate for in-context learning? towards effective
and efficient selection. arXiv preprint arXiv:2310.20046,
2023.

Pan, J. What in-context learning “learns” in-context: Dis-
entangling task recognition and task learning. Master’s
thesis, Princeton University, 2023.

Reynolds, L. and McDonell, K. Prompt programming for
large language models: Beyond the few-shot paradigm.
In Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems, CHI EA ’21, New
York, NY, USA, 2021. Association for Computing Ma-
chinery. ISBN 9781450380959. doi: 10.1145/3411763.
3451760.

Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A., Si,
C., Li, Y., Gupta, A., Han, H., Schulhoff, S., Dulepet, P. S.,
Vidyadhara, S., Ki, D., Agrawal, S., Pham, C., Kroiz, G.,
Li, F., Tao, H., Srivastava, A., Costa, H. D., Gupta, S.,
Rogers, M. L., Goncearenco, I., Sarli, G., Galynker, I.,
Peskoff, D., Carpuat, M., White, J., Anadkat, S., Hoyle,
A., and Resnik, P. The prompt report: A systematic survey
of prompting techniques, 2024a.

Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A.,
Si, C., Li, Y., Gupta, A., Han, H., Schulhoff, S., et al.
The prompt report: A systematic survey of prompting
techniques. arXiv preprint arXiv:2406.06608, 2024b.

Shin, P. W., Ahn, J. J., Yin, W., Sampson, J., and Narayanan,
V. Can prompt modifiers control bias? a comparative
analysis of text-to-image generative models, 2024.

Shinn, N., Cassano, F., Berman, E., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Language
agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

Smit, A., Grinsztajn, N., Duckworth, P., Barrett, T. D.,
and Pretorius, A. Should we be going mad? a look at
multi-agent debate strategies for llms. In Proceedings of
the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

Sprague, R. P. Über mathematische kampfspiele. Tôhoku
Mathematical Journal, 41:438–444, 1935.

11

Understanding Bias Reinforcement in LLM Agents Debate

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Common-
senseqa: A question answering challenge targeting com-
monsense knowledge. arXiv preprint arXiv:1811.00937,
2018.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Wan, Y. et al. Self-polish: Enhance reasoning in large lan-
guage models via problem refinement. arXiv preprint
arXiv:2305.14497, 2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert,
H., Elnashar, A., Spencer-Smith, J., and Schmidt, D. C.
A prompt pattern catalog to enhance prompt engineering
with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models. In International Conference on
Learning Representations (ICLR), 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. STar:
Bootstrapping reasoning with reasoning. In Oh, A. H.,
Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances
in Neural Information Processing Systems, 2022.

Zhao, X., Li, M., Lu, W., Weber, C., Lee, J. H., Chu, K.,
and Wermter, S. Enhancing zero-shot chain-of-thought
reasoning in large language models through logic. In
Calzolari, N., Kan, M.-Y., Hoste, V., Lenci, A., Sakti,
S., and Xue, N. (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING
2024), pp. 6144–6166, Torino, Italia, May 2024. ELRA
and ICCL.

12

Understanding Bias Reinforcement in LLM Agents Debate

- Appendix -

Understanding Bias Reinforcement in LLM Agents Debate

A. MetaNIM Arena

Figure 7. The concept illustration of MetaNIM Arena.

Algorithm 1 MetaNIM Arena: Turn-Based Opponent Task with Two Agents

Require: Initial State S0, Goal Condition G, Agents A1 and A2

Ensure: Final State Sf and Outcome
1: t← 0 Initialize turn counter
2: S ← S0 Set initial state
3: while S ̸∈ G and game is not terminated do
4: if t mod 2 = 0 then
5: at ← A1(S) Agent 1’s turn, selects action at
6: else
7: at ← A2(S) Agent 2’s turn, selects action at
8: end if
9: S ← UpdateState(S, at) Apply the action and update state

10: t← t+ 1 Increment turn counter
11: if S ∈ G then
12: Success: Goal Achieved
13: end if
14: end while

A.1. Theoretical Background on Combinatorial Impartial Games

Each game in MetaNIM Arena is a combinatorial impartial game. We begin by outlining the relevant theoretical foundation,
starting with the Sprague–Grundy theorem.

A.1.1. SPRAGUE-GRUNDY THEOREM

The Sprague-Grundy theorem provides a fundamental method for analyzing impartial combinatorial games by decomposing
complex games into simpler, independent subgames. As discussed in Section 3.4, every impartial combinatorial game can
be represented as a directed acyclic graph (DAG). However, directly computing Grundy numbers recursively from terminal
states is often impractical.

We summarize key results from Sprague (1935) and Grundy (1939). According to the theorem, the optimal strategy for
playing multiple impartial games simultaneously (in parallel), or a single complex game viewed as multiple independent
subgames, is equivalent to playing a single game of Nim with multiple heaps. This equivalence arises from the concept of
the disjunctive sum of DAGs.

Definition A.1 (Disjunctive Sum of DAGs). Let G1 = (X1, F1),G2 = (X2, F2), . . . ,Gn = (Xn, Fn) be DAGs representing

13

Understanding Bias Reinforcement in LLM Agents Debate

n impartial combinatorial games. The disjunctive sum of G1, . . . ,Gn is a DAG G = (X,F) defined as follows:

1. The vertex set X is the Cartesian product X1 ×X2 × · · · ×Xn.

2. The edge set F consists of edges connecting (x1, . . . , xn) to (y1, . . . , yn) if and only if exactly one pair (xi, yi) is in
Fi, and xj = yj for all j ̸= i.

Note. In a disjunctive sum of DAGs, each player chooses exactly one subgame to play during their turn and moves within
that subgame. The entire game ends when all subgames reach terminal positions.

Theorem A.2 (Sprague-Grundy (Sprague, 1935; Grundy, 1939)). A position S is losing if and only if its Grundy number
G(S) = 0; otherwise, if G(S) ̸= 0, it is winning. Furthermore, if a position S decomposes into independent subpositions
S1, . . . , Sk via the disjunctive sum of DAGs, then

G(S)(2) = G(S1)(2) ⊕G(S2)(2) ⊕ · · · ⊕G(Sk)(2),

where ⊕ denotes bitwise XOR.

This result implies that Grundy numbers for complex games, such as Kayles or Chomp, can be efficiently computed by
decomposing them into simpler subgames and combining the Grundy numbers using bitwise XOR.

For example, consider a variant of the game Kayles played on two separate rows of pins, each forming an independent
subgame. Suppose we computed the Grundy numbers separately for these rows, obtaining Grundy numbers 7 for the first
row and 4 for the second row. By the Sprague-Grundy theorem, the combined Grundy number of the position is given by:

7(2) ⊕ 4(2) = 111(2) ⊕ 100(2) = 011(2) = 3.

Thus, even though the original game involves two distinct rows of pins, the strategic analysis reduces precisely to analyzing
a Nim heap of size 3. Since a Nim heap of size 3 is nonzero, this indicates a winning position for the player about to move.

A.1.2. BASIC DISCUSSIONS ON THE OPTIMAL STRATEGY

Why G(S) = 0 Implies Losing. Recall that G(S) is defined as:

G(S) = mex
{
G(S′)

∣∣∣ S′ is reachable from S
}
,

where mex(X) is the smallest nonnegative integer not in the set X . Thus,

G(S) = 0 ⇐⇒ 0 /∈
{
G(S′) : S′ is reachable from S

}
.

Concretely, if G(S) = 0, then no valid move leads to a successor S′ with G(S′) = 0. In other words, from S, the player to
move cannot transition the game into a G(·) = 0 state. Because a state G(S′) = 0 corresponds to a losing position for the
player who faces it, the mover in state S has no way to force the opponent into a losing position on the next turn. Hence, S
is losing for the player to move.

Why G(S) ̸= 0 Implies Winning (Opposite viewpoint). By the same logic, if G(S) ̸= 0, then the definition of mex
guarantees 0 does appear among the Grundy values G(S′) of the successors. Thus, there exists some child state S′ for which
G(S′) = 0. Consequently, the current mover can place the opponent directly into a losing position (i.e. a position with
Grundy number 0). Recursively iterating this argument along the Directed Acyclic Graph of states ensures that the current
mover, if playing optimally, keeps forcing the opponent into G(·) = 0 states until the game ends. Therefore, S must be a
winning state.

Misère Variant. Misère play reverses the normal condition: taking the last object loses rather than wins. Although standard
Sprague-Grundy analysis still applies to most states, a special exception arises when all heaps (or subpositions) are size 1,
such as in misère Nim. In that endgame scenario, the usual strategy must switch to avoid forcing the final move, ensuring the
player leaves the opponent to pick the last object.

14

Understanding Bias Reinforcement in LLM Agents Debate

A.2. Game Variants in MetaNIM Arena

A.2.1. NIM

Nim is a mathematical strategy game where two players alternate turns removing objects from distinct heaps/piles. The
classic version follows these rules:

• Heaps: The game starts with k heaps containing n1, n2, . . . , nk objects respectively

• Moves: On their turn, a player must remove at least 1 to previously fixed number of objects from exactly one heap

• Objective: The player who takes the last remaining object wins (normal play convention)

Mathematical Strategy The game can be analyzed using binary representations through the concept of Nimbers (Grundy
numbers). For any position, the key is to calculate the binary XOR (exclusive OR) sum of all heap sizes:

Nim-sum = n1 ⊕ n2 ⊕ · · · ⊕ nk

A position is losing if the Nim-sum equals 0. The winning strategy consists of always moving to a position with Nim-sum 0.
For the single-heap variant (as in our current game), this simplifies to maintaining modular arithmetic conditions.

Example Consider a game with heaps [3, 4, 5]:

3 = 0112

4 = 1002

5 = 1012

Nim-sum = 0112 ⊕ 1002 ⊕ 1012 = 0102 = 2 ̸= 0

The first player can win by removing 2 objects from the 5-object heap to make the new Nim-sum 0.

Variants Several Nim variants exist, including:

• Single-heap Nim (as in our current game)

• Misère Nim (player taking last object loses)

• Multi-heap Nim with different removal constraints

The fundamental mathematical principles of combinatorial game theory apply to all variants.

A.2.2. FIBONACCI

The Fibonacci Game, also known as Fibonacci Nim, is a combinatorial number game where players alternate removing
items from a pile, with move constraints based on the Fibonacci sequence. The rules are:

• Initial Move: First player takes 1 ≤ k < n items from a pile of n items

• Subsequent Moves: Each player must take between 1 and twice the number of items taken by their opponent in the
previous move

• Objective: The player who takes the last item wins

15

Understanding Bias Reinforcement in LLM Agents Debate

Mathematical Strategy The game is governed by Fibonacci numbers (F1 = 1, F2 = 2, Fn = Fn−1 + Fn−2) and
Zeckendorf’s Theorem, which states that every positive integer can be uniquely expressed as a sum of non-consecutive
Fibonacci numbers.

• Losing Positions: Pile sizes equal to Fibonacci numbers (Fn)

• Winning Strategy: Reduce the pile to the largest Fibonacci number smaller than the current size

For a pile of size m, its Zeckendorf representation is:

m = Fk1
+ Fk2

+ · · ·+ Fkr
(|ki − kj | ≥ 2)

The optimal first move is to remove the smallest Fibonacci number in this decomposition.

Example For a starting pile of m = 20:

Zeckendorf: 20 = 13 + 5 + 2 (F7 = 13, F5 = 5, F3 = 2)

First move = Remove smallest term 2

New pile = 18 = 13 + 5

Now the opponent faces a position composed purely of Fibonacci numbers. Any move they make (1 ≤ x ≤ 4) can be
countered by reducing the pile to the next Fibonacci number.

Key Properties

• If m is a Fibonacci number, the first player will lose against perfect play

• The number of moves in a game is always ≤ the index of the largest Fibonacci number ≤ m

• The golden ratio ϕ = 1+
√
5

2 emerges in win/loss probability analysis

Variants

• Reverse Fibonacci Nim (last player to move loses)

• Multi-pile Fibonacci games

• Constrained Fibonacci sequences (e.g., Tribonacci variants)

This game demonstrates deep connections between combinatorial game theory, number theory, and the Fibonacci sequence.

A.2.3. KAYLES

Kayles is an impartial combinatorial game played with a linear arrangement of pins where players alternate knocking down
pins under specific adjacency rules. First analyzed in 1929 by Dudeney and later studied by Conway and Berlekamp, it
demonstrates complex mathematical patterns.

Basic Rules

• Initial Setup: A row of n identical pins

• Moves: On each turn, a player must either:

– Knock down 1 pin
– Knock down 2 adjacent pins

• Objective: Last player to make a valid move wins (normal play convention)

16

Understanding Bias Reinforcement in LLM Agents Debate

Mathematical Analysis The game is analyzed using Grundy numbers and the Sprague-Grundy theorem. Positions
split into independent segments after moves create disjunctive game components.

• Let G(n) be the Grundy number for a row of n pins

• Recursive Grundy number calculation:

G(n) = mex{G(n− 1), G(n− 2), G(a)⊕G(b)}

where a+ b = n− k for k ∈ {1, 2}, and mex = minimum excludant

Key Patterns

• Positions with Grundy number 0 are losing positions

• The Grundy sequence becomes periodic with period 12 for large n

• Known solution: G(n) = n mod 12 when n ≥ 70

Example Consider a row of 4 pins:

G(0) = 0

G(1) = mex{G(0)} = 1

G(2) = mex{G(1), G(0), G(0)⊕G(0)} = mex{1, 0, 0} = 2

G(3) = mex{G(2), G(1), G(1)⊕G(0)} = mex{2, 1, 1} = 0

G(4) = mex{G(3), G(2), G(2)⊕G(0)} = mex{0, 2, 2} = 1

A row of 4 pins has Grundy number 1, making it a winning position.

Strategic Principles

• Split long rows into independent segments with XOR-sum 0

• Mirror opponent’s moves in symmetric positions

• Avoid leaving isolated single pins

Variants

• Circular Kayles (pins arranged in a circle)

• Multi-row Kayles

• k-Kayles (allow knocking down up to k adjacent pins)

• Misère Kayles (last player to move loses)

Computational Complexity Kayles is:

• PSPACE-complete for general positions

• Solved in linear time for standard single-row play

• Used in complexity theory to study impartial games

This analysis demonstrates how simple rule sets can generate complex mathematical structures. The complete Grundy
number sequence for Kayles was only fully determined through extensive computational analysis.

17

Understanding Bias Reinforcement in LLM Agents Debate

A.2.4. CHOMP

Chomp is an impartial combinatorial game first formulated by David Gale in 1974. Played on a rectangular grid representing
a chocolate bar, it features unique topological constraints and demonstrates fundamental principles of partially ordered sets
(posets).

Basic Rules

• Initial Setup: An m× n rectangular grid of ”chocolate squares”

• Special Square: The lower-left square (position (1,1)) is poisoned

• Moves: On each turn, a player must:

– Select any remaining square
– Remove (”chomp”) all squares above and/or to the right of the selected square

• Objective: Avoid taking the poisoned square - last player to make a valid move wins (normal play convention)

Mathematical Analysis Chomp is particularly significant in combinatorial game theory because:

• It is a partisan game with inherent asymmetry

• The starting position is a poset under component-wise ordering

• A winning strategy exists for the first player (proven by strategy-stealing argument), though explicit strategies are
unknown for most grid sizes

Key Theorem (Gale, 1974)

Theorem A.3. For any initial grid size m× n where m,n ≥ 2, the first player has a winning strategy.

Example: 2 × 3 Grid [
◦ ◦ ◦
• ◦ ◦

]
First player wins by taking the (2,3) square:

• If Player 2 takes (1,3), Player 1 takes (2,2)

• If Player 2 takes (2,2), Player 1 takes (1,2)

• All paths eventually force Player 2 to take the poison

Strategic Principles

• Maintain control of the antidiagonal

• Force symmetry when possible

• Reduce the game to independent subgames

• Avoid leaving isolated columns

18

Understanding Bias Reinforcement in LLM Agents Debate

Computational Complexity

• General Chomp is PSPACE-complete

• Solved in polynomial time for:

– 2 × n grids
– Square grids up to 5 × 5

• Number of winning positions grows exponentially with grid size

Variants

• 3D Chomp (cuboidal grids)

• Circular Chomp

• Hypergraph Chomp

• Misère Chomp (taking poison square wins)

• Numerical Chomp (played on factor lattices)

Significance Chomp demonstrates fundamental connections between:

• Combinatorial game theory

• Computational complexity

• Algebraic geometry (via Gröbner basis interpretations)

Despite its simple rules, Chomp remains unsolved for general grid sizes, making it an active research area in computational
combinatorics.

A.2.5. CORNER QUEEN

Corner Queen is a two-player combinatorial impartial game played on a rectangular grid, where a single queen starts at an
arbitrary position and players alternate moving it toward the bottom-left corner. The player who moves the queen to the
target wins.

Basic Rules

• Initial Setup: A queen is placed on an m× n grid at position (x, y)

• Moves: On each turn, a player moves the queen in one of the following directions:

– Left: (x, y)→ (x− k, y)

– Down: (x, y)→ (x, y − k)

– Diagonally down-left: (x, y)→ (x− k, y − k)

– for any k ∈ Z>0 such that the move stays within the board

• Objective: The player who moves the queen to position (0, 0) wins

19

Understanding Bias Reinforcement in LLM Agents Debate

Mathematical Analysis Corner Queen is mathematically equivalent to Wythoff’s Game, a well-studied impartial game
in combinatorial game theory. Each game state (x, y) corresponds to a position on the board where x, y ∈ N and x ≤ y
(without loss of generality).

• The game’s Grundy function G(x, y) satisfies analyzed via Beatty sequences for Wythoff’s Game

• The losing positions (also called P -positions) are given by pairs of the form:

(⌊kϕ⌋, ⌊kϕ2⌋), k ∈ N

where ϕ = 1+
√
5

2 is the golden ratio

• Examples: The first few P -positions are (1, 2), (3, 5), (4, 7), (6, 10), (8, 13), and (9, 15).

Optimal Strategy

• A position is losing if and only if it lies on the Wythoff pairs described above

• The winning strategy is to move the queen to the nearest P -position

• These positions are sparse and non-periodic, but can be computed efficiently using Beatty sequences

A.3. Our Dataset used in Experiments

We construct simple dataset based on the MetaNIM Arena. This dataset doesn’t require any opponent model because samples
in this dataset is focusing on the specific scene in each game.

Table 7. Constructed dataset using MetaNIM Arena. We evaluate models on this dataset and report results in Table 3.

Methods NIM Fibonacci Chomp Kayles
Action space 1–3 dynamic (max 30) x, y coordinate (scenario-dependent) single pin or two adjacent pins
Variants Normal Normal Square (2×2 – 19×19) Normal
samples 20 11 20 18

A.4. Our Simulator used in Experiments

We build simulator based on the MetaNIM Arena. This simulator requires any opponent available to receive prompt and
make an output as an action. Here, we utilize the gpt-4o model as an opponent.

Features NIM Fibonacci

Normal Misère Normal Misère

Starting Point remaining items: 31 remaining items: 31 remaining items: 20 remaining items: 20

Winning Condition taking last item avoiding last item taking last item avoiding last item

First Player? ✓ ✓ ✓ ✓
Action Space 1 - 3 1 - 3 dynamic dynamic
Opponent GPT-4o-2024-08-06

Table 8. MetaNIM Arena Simulator: NIM and Fibonacci

20

Understanding Bias Reinforcement in LLM Agents Debate

Features Kayles Chomp Corner Queen

Single 2 Rows Rectangular Square Normal

Starting Point remaining items: 20 piles 5+6 2×8 5×5 queen at (4, 16)

Winning Condition take last item take last item avoid poison avoid poison reach (0, 0)
(top-left) (top-right) (lower-left corner)

First Player? ✓ ✓ ✓ ✓ ✓
Action Space pile index pile index (row, column) x, y coordinate x, y coordinate x, y coordinate
Opponent GPT-4o-2024-08-06

Table 9. MetaNIM Arena Simulator: Kayles, Chomp, and Corner Queen

21

Understanding Bias Reinforcement in LLM Agents Debate

B. Prompts Design
B.1. Game Prompts

Table 10. NIM game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.
#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for your opponent. The
person who takes the last item wins.
#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.
#Current State:
There are {remaining items} items remaining in the pile.
#Task:
Based on the current state of the game, decide how many items you will take (between 1 and {max take}) on this turn.

Table 11. Fibonacci game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a simple Fibonacci game.

#Objective:
Your goal is to win the game by taking all remaining stones on your turn, leaving no stones for your opponent. The
person who takes the last stones wins.

#Game Rule:
1. There is a single pile of stones.
2. Players take turns one after another.
3. The first player can take any number of stones, but not all the stones in the first move.
4. On subsequent turns, the number of stones a player can take must be at least 1 and at most twice the number of
stones the previous player took.
5. The player who takes the last stone wins the game.

#Current State:
There are {remaining items} stones remaining in the pile.

#Task:
You are the first player. Based on the current state of the game, decide how many items you will take (between 1 and
{remaining items - 1}) on this turn.

22

Understanding Bias Reinforcement in LLM Agents Debate

Table 12. Kayles game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a game of Kayles.

#Objective:
Your goal is to win the game by leaving your opponent with no valid moves. The player who takes the last pin(s) wins.

#Game Rule:
1. There is a single row of pins.
2. On your turn, you can remove:

• 1 pin,

• 2 adjacent pins.

3. You cannot remove non-adjacent pins or pins that have already been removed.

#Current State:
The row of pins is represented as a binary string:
– ’1’ means the pin is still there.
– ’0’ means the pin has already been removed.
Current state: {remaining pins}

#Task:
Based on the current state of the game, decide which pin(s) you will take on this turn.

Table 13. Chomp game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a game of Chomp.

#Objective:
Your goal is to force your opponent to take the top-left corner of the grid (position (0, 0)).

#Game Rule:
1. The game is played on a square grid.
2. On your turn, you select a position (row, col).
3. All positions to the right and below the selected position are removed.
4. The player forced to select (0, 0) loses.

#Current State:
The grid is represented as a binary matrix, where ’1’ means the position is still available, and ’0’ means it is removed:
{remaining grid}

#Task:
Based on the current state of the grid, decide which position (row, col) you will select.

23

Understanding Bias Reinforcement in LLM Agents Debate

Table 14. Corner-Queen game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a Corner-Queen game.

#Objective:
Move the queen so that you are the first to place it on the lower-left corner square.

#Game Rule:
1. Board size: {board height}×{board width}.
2. Coordinates use zero-based indices [row, col]. Row 0 is the top row; Col 0 is the leftmost column. Valid
ranges: row ∈ [0, board height− 1], col ∈ [0, board width− 1].
3. From the current position [r, c] the queen may move to **one** of: (a) left: [r, c′] with c′ < c;

(b) down: [r′, c] with r′ > r;
(c) left-down diagonal: [r + d, c− d] with d > 0.

4. The game ends when the queen reaches [row = board height-1, col = 0].

#Current State:
Current position: [row = {r}, col = {c}].

#Task:
Based on the current state, decide the next move [row, col].

B.2. Prompts for basic reasoning

B.2.1. STANDARD, REACT & COT PROMPTS

In our evaluation of LLMs within the MetaNIM Arena, we compare two key prompting techniques: Standard Prompting and
Chain-of-Thought (CoT) Prompting. The distinction between these approaches significantly impacts the model’s reasoning
and decision-making process.

Standard Prompting (Table 15) Standard prompting provides a direct task description, outlining the game rules, current
state, and the required decision. The model is expected to generate only an action to determine the best move. This method is
cheap and efficient but often leads to suboptimal decisions, as the model may fail to make proper reasoning before selecting
the action.

ReAct Prompting (Table 16) ReAct prompting provides a direct task description, outlining the game rules, current state,
and the required decision. The model is expected to generate an action with proper explicit reasoning steps to determine
the best move. This method is efficient but often leads to suboptimal decisions, as the model may fail to retrieve and apply
deeper strategic reasoning.

Chain-of-Thought (CoT) Prompting (Table 17) CoT prompting extends the standard prompt by explicitly instructing
the model to think step-by-step before making a decision. By guiding the model through an explicit reasoning process, CoT
enables it to break down the problem, consider strategic implications, and refine its choices before committing to an action.
This often leads to improved decision-making, particularly in multi-step strategic environments where deeper reasoning is
required.

Key Difference and Impact As illustrated in Table 17, the only modification in the CoT prompt is the addition of a simple
directive: “Let’s think step-by-step. What is the best move for you?” This small change significantly alters the model’s
reasoning trajectory, encouraging more structured and strategic decision-making. Our experimental results (detailed in §3)
confirm that CoT prompting leads to a measurable improvement in decision accuracy, particularly in complex scenarios
where retrieving and applying prior knowledge is essential.

By leveraging CoT, we can enhance the model’s ability to explain its decisions, mitigate biases, and adapt more effectively
to adversarial settings. However, as we further discuss in Experiment Section, CoT has limitations to leverage the strategic
reasoining well in our proposed environment, necessitating additional mechanisms to further enhance strategic reasoning.

24

Understanding Bias Reinforcement in LLM Agents Debate

Table 15. Standard Prompt in NIM

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.

#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for your opponent. The
person who takes the last item wins.

#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.

#Current State:
There are {remaining items} items remaining in the pile.

#Task:
Based on the current state of the game, decide how many items you will take (between 1 and {max take}) on this turn.

Output Format:
The output should be a Markdown code snippet with the following scheme, including leading and trailing triple
backticks with "json" and:
‘‘‘
{
action: integer // This is an action you take. Only integer between 1 and 3.
}
‘‘‘

Prompting Strategy for Opponent Modeling Anything can act as an opponent in the MetaNIM Arena simulator, but
we model OpenAI’s GPT-4o, the most powerful LLM model currently available, as the opponent and apply the ReAct
prompting method.

25

Understanding Bias Reinforcement in LLM Agents Debate

Table 16. ReAct Prompt in NIM

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.

#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for your opponent. The
person who takes the last item wins.

#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.

#Current State:
There are {remaining items} items remaining in the pile.

#Task:
Based on the current state of the game, decide how many items you will take (between 1 and {max take}) on this turn.

Output Format:
The output should be a Markdown code snippet with the following scheme, including leading and trailing triple
backticks with "json" and:
‘‘‘
{
reasoning: string // This is the reason for the action
action: integer // This is an action you take based on the reasoning. Only
integer between 1 and 3.
}
‘‘‘

Table 17. CoT Prompt in NIM

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.

#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for your opponent. The
person who takes the last item wins.

#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.

#Current State:
There are {remaining items} items remaining in the pile.

#Task:
Based on the current state of the game, decide how many items you will take (between 1 and {max take}) on this turn.

Output Format:
The output should be a Markdown code snippet with the following scheme, including leading and trailing triple
backticks with "json" and:
‘‘‘
{
reasoning: string // This is the reason for the action
action: integer // This is an action you take based on the reasoning. Only
integer between 1 and 3.
}
‘‘‘
Let’s think step-by-step. What is the best move for you?

26

Understanding Bias Reinforcement in LLM Agents Debate

C. DReaMAD (−): Structured Prompt Optimization without Debate
While the full DReaMAD framework integrates multi-agent debate to refine strategic reasoning, its core prompting method-
ology—excluding debate—remains a powerful mechanism for enhancing decision-making. This streamlined version,
DReaMAD (−), focuses on three key stages to systematically extract and refine strategic knowledge, improving reasoning
diversity and mitigating bias. We present the DReaMAD prompt as in Table 18.

1. Game Situation Reinterpretation The first step involves extracting fundamental game principles from the standard
prompt. The model is tasked with identifying key elements, such as:

• Game Definition: The nature of the game and its mechanics.

• Winning Condition: The criteria for victory.

• Move Constraints: The permissible actions per turn.

This step ensures that the model builds a structured understanding of the strategic environment before making decisions.

2. General Strategy Formulation After extracting the core game elements, the model derives a generalized winning
strategy applicable to various game states. It generates:

• State Evaluation: How to assess the game state at any given turn.

• Winning Strategy: The optimal decision-making framework for victory.

• Endgame Tactics: Best strategies in near-win scenarios.

This formulation helps structure the model’s reasoning beyond the immediate game context, fostering more strategic
foresight.

3. Perspective Diversification Finally, the model refines the original prompt using the extracted strategic knowledge.
This process introduces structured variations to the initial prompt to encourage diverse reasoning, rather than reinforcing a
singular bias. The self-refined prompt:

• Guides decision-making explicitly.

• Prioritizes winning strategies.

• Encourages logical, step-by-step reasoning.

This structured refinement ensures that LLMs adopt distinct strategic viewpoints even without external debate, improving
their adaptability and robustness in adversarial environments.

By systematically structuring knowledge retrieval and refining prompts, DReaMAD (−) enhances strategic reasoning as
illustrated in Figure 10, this approach strengthens the model’s ability to retrieve and apply prior knowledge effectively,
offering a scalable solution for improving LLM-based decision-making.

27

Understanding Bias Reinforcement in LLM Agents Debate

Table 18. DReaMAD prompt design before debate

#Game Situation Reinterpretation:
game prompt :
Below is a game description. Extract the key information.
Game Description: {current state}
Format response as:
‘‘‘
{
game definition: string // What is the definition of this game?
winning condition: string // How to win the game.
move constraints: string // What actions are allowed per turn.
}
‘‘‘

#General Strategy Formulation:
strategy prompt :
Based on the game information below, derive the general winning strategy in
this game
Game: {game definition}
Winning Condition: {winning condition}
Move Constraints: {move constraints}
Current State: {current state in very short}
Format response as:
‘‘‘
{
state evaluation: string // How to assess the game state.
winning strategy: string // Winning strategy in this turn to win this game.
endgame tactics: string // Best strategy in a near-win situation.
}
‘‘‘

#Perspective Diversification:
Refine the initial game prompt to improve decision-making based on the Game
and Strategy Information.
Initial Prompt: {given initial prompt}
Game and Strategy Information:
Game: {game definition}
Strategy:
- State Evaluation: {state evaluation}
- Winning Strategy: {winning strategy}
- Endgame Tactics: {endgame tactics}
Format response as:
‘‘‘
{
optimized prompt: string // The refined prompt that clearly directs
decision-making.
}
‘‘‘

28

Understanding Bias Reinforcement in LLM Agents Debate

D. A Word Change in Prompts Lead to Different Output

Figure 8. According the word Fibonacci usage, the reasoning and the performance differs.

D.1. Prompt Bias: The Sensitivity of LLM Reasoning to Prompt Variations

Despite the remarkable problem-solving capabilities of Large Language Models (LLMs), their reasoning is highly sensitive to
subtle changes in prompt phrasing. As demonstrated in Figure 8, even a single word variation in the prompt can significantly
alter the reasoning process and final decision-making. This phenomenon underscores a critical limitation in LLM-based
strategic reasoning: models do not inherently generalize optimal strategies but instead rely on heuristic cues embedded
within the prompt.

D.1.1. IMPACT OF WORD CHOICE ON STRATEGIC REASONING

Figure 8 compares LLM responses when the word Fibonacci is explicitly mentioned versus when it is omitted in an identical
game scenario. In the presence of the keyword Fibonacci, the model aligns its reasoning with Fibonacci-based strategy,
leveraging number sequences to maintain control over the game. Conversely, when the term is absent, the model defaults to
an alternative heuristic, such as maintaining a multiple of three or even resorting to a trivial greedy strategy. For instance,
in the first decision step, when instructed with Fibonacci, the model identifies 13 as the closest Fibonacci number and
takes 7 stones, ensuring an advantageous future state. Without the keyword, however, the model applies a modulo-based
heuristic, taking only 2 stones to leave a multiple of three. Similarly, in the second decision step, the Fibonacci-aware model
deliberately leaves 8 stones in the pile—another Fibonacci number—while the other instance simply takes all remaining
stones without strategic foresight.

29

Understanding Bias Reinforcement in LLM Agents Debate

D.1.2. IMPLICATIONS FOR ROBUST PROMPTING

This stark contrast highlights the fundamental issue that LLMs do not inherently retrieve the most effective strategic
reasoning but are instead disproportionately influenced by linguistic cues. The reliance on explicit terminology for optimal
reasoning raises concerns about robustness, as different wordings of the same task can lead to dramatically different
problem-solving approaches. This suggests that ensuring reliable strategic reasoning in LLMs requires more than just
fine-tuned prompts; it necessitates methods that encourage models to autonomously retrieve and apply domain knowledge
without over-reliance on explicit wording cues.

These observations motivate our approach in DReaMAD, where we systematically refine LLMs’ strategic reasoning by
structuring prior knowledge retrieval and diversifying input perspectives. By mitigating the sensitivity to prompt variations,
our method enhances the robustness and consistency of LLM decision-making across different strategic environments.

30

Understanding Bias Reinforcement in LLM Agents Debate

E. Ablation study & setup
E.1. Cost effectiveness of DReaMAD

While DReaMAD requires a single model, its inference involves additional prompt steps (e.g., prior knowledge elicitation)
and a debate process. However, we believe this test-time scaling method is much more efficient than train-time scaling. As
we utilized language models through an API, it was challenging to perform a precise quantitative comparison (e.g., GPU
usage time) between our test-time scaling approach and traditional model training. Therefore, we compared the costs using
dollar amounts, specifically contrasting the API cost per single game using our method versus the costs incurred when
OpenAI fine-tuning models on constructed datasets for NIM-N games.

The NIM-N dataset is constructed by mixing data from three different variants of the NIM game. In all variants, the game
starts with 31 stones remaining; however, the rules differ in terms of the maximum number of stones that can be removed
per turn—3, 4, or 5, respectively. For each variant, eight distinct game states were sampled and the corresponding optimal
action was used as the label, yielding a total of 24 training examples.

Additionally, testing was conducted on the aforementioned three scenarios (each 50 games) by using the GPT-4o model as
the opponent. The win rate was measured for each scenario, and the average win rate across these variants was reported.

The results of this comparison are illustrated in the table above. When fine-tuning a model using API-based fine-tuning
(GPT-4o-mini), the performance gradually improved with additional training epochs, achieving win-rates of 0.253, 0.300,
0.420, and 0.460 at 1, 2, 3, and 4 epochs respectively, with corresponding API costs of $0.013, $0.023, $0.033, and $0.043
(Here, the cost of constructing dataset is not included).

In contrast, our proposed method, DReaMAD, achieved significantly higher performance (0.966) with substantially lower
API costs ($0.0098). These results strongly suggest that our approach not only outperforms traditional fine-tuning methods
but also is far more cost-efficient. All the price is calculated by the pricing policy: https://openai.com/api/pricing/

Metric 1 ep. 2 ep. 3 ep. 4 ep. DReaMAD

Win-rate 0.253 0.300 0.420 0.460 0.966
API cost ($) 0.013 0.023 0.033 0.043 0.0098

Table 19. Performance and API expenditure for GPT-4o-mini fine-tuned on NIM-N (1–4 epochs) versus our zero-training DReaMAD
inference. Values are averaged over three game variants (50 matches each).

E.2. Applicability of Diverse Amplication on Self-Reflection and Self-Consistency

We show whether other self-correction methods—such as Self-Refinement and Self-Consistency—can benefit from structured
guidance that enhances reasoning diversity. In DReaMAD, this is operationalized through the Strategic Prior Knowledge
Elicitation (SPKE) module, which prompts the model to reinterpret the problem and formulate general strategies before
engaging in debate.

To isolate SPKE’s impact, we evaluate DReaMAD, which includes SPKE but excludes debate (see Table 3). We further apply
SPKE to Self-Refinement and Self-Consistency and compare them to their vanilla versions. The results show that SPKE
alone consistently improves performance across settings.

E.3. Experiments of Figure 3 setup

For Figure 3, we explain the situation used in this experiment. Figure 9 illustrates a Nim game scenario with a pile of 5
items remaining. On the left (Current State), we present the basic setting and the task: the player (Agent 1) must decide
how many items to take given the rules of the Nim variant. Below it (Strong Consistency), we see a single-agent reasoning
process where the agent internally evaluates the outcome of different moves and arrives at a conclusion (taking 2 items,
leaving 3 to the opponent).

On the right (Multi-Agent Debate), we show a contrasting approach in which two agents (Agent 1 and Agent 2) engage in a
debate. Each agent proposes a move and justifies why it would be advantageous. For example, Agent 1 reasons that taking 2
items leaves the opponent with a position that is favorable for Agent 1 (which is wrong reasoning), while Agent 2 counters
by proposing to take 1 item for a different strategic benefit (correct reasoning).

31

https://openai.com/api/pricing/

Understanding Bias Reinforcement in LLM Agents Debate

GPT-4o-mini

Method NIM-N NIM-M Fib-N Fib-M

Self-Refinement 0.22 0.70 0.18 0.50
Self-Refinement + DReaMAD(−) 0.66 0.66 0.16 0.46
Self-Consistency 0.14 0.52 0.34 0.46
Self-Consistency + DReaMAD(−) 0.34 0.66 0.48 0.54
MAD 0.28 0.62 0.22 0.82
DReaMAD 0.98 0.74 0.54 0.94

GEMINI-1.5-flash

Method NIM-N NIM-M Fib-N Fib-M

Self-Refinement 0.14 0.66 0.18 0.36
Self-Refinement + DReaMAD(−) 0.34 0.80 0.10 0.30
Self-Consistency 0.04 0.28 0.28 0.86
Self-Consistency + DReaMAD(−) 0.80 0.54 0.18 0.30
MAD 0.06 0.30 0.12 0.78
DReaMAD 0.38 0.84 0.16 0.94

Table 20. Win-rates on four combinatorial-game variants when applied DReaMAD(−) to Self-Refinement and Self-Consistency method.
Bold numbers mark the best score in each column. DReaMAD(−) indicates ablations where debate is not applied during inference.

Figure 9. The situation and debate process of the experiments in Figure 3

32

