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Abstract

Inverse reinforcement learning (IRL) aims to re-
cover the reward function of an expert agent from
demonstrations of behavior. It is well-known that
the IRL problem is fundamentally ill-posed, i.e.,
many reward functions can explain the demon-
strations. For this reason, IRL has been recently
reframed in terms of estimating the feasible re-
ward set (Metelli et al., 2021), thus, postponing
the selection of a single reward. However, so far,
the available formulations and algorithmic solu-
tions have been proposed and analyzed mainly
for the online setting, where the learner can inter-
act with the environment and query the expert at
will. This is clearly unrealistic in most practical
applications, where the availability of an offline
dataset is a much more common scenario. In this
paper, we introduce a novel notion of feasible
reward set capturing the opportunities and limi-
tations of the offline setting and we analyze the
complexity of its estimation. This requires the
introduction of an original learning framework
that copes with the intrinsic difficulty of the set-
ting, for which the data coverage is not under
control. Then, we propose two computationally
and statistically efficient algorithms, IRLO and
PIRLO, for addressing the problem. In particular,
the latter adopts a specific form of pessimism to
enforce the novel, desirable property of inclusion
monotonicity of the delivered feasible set. With
this work, we aim to provide a panorama of the
challenges of the offline IRL problem and how
they can be fruitfully addressed.
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1. Introduction
Inverse reinforcement learning (IRL), also called inverse
optimal control, consists of recovering a reward function
from expert’s demonstrations (Russell, 1998). Specifically,
the reward is required to be compatible with the expert’s
behavior, i.e., it shall make the expert’s policy optimal. As
pointed out in Arora & Doshi (2018), IRL allows mitigat-
ing the challenging task of the manual specification of the
reward function, thanks to the presence of demonstrations,
and provides an effective method for imitation learning (Osa
et al., 2018). In opposition to mere behavioral cloning, IRL
allows focusing on the expert intent (instead of behavior),
and, for this reason, it has the potential to reveal the under-
lying objectives that drive the expert’s choices. In this sense,
IRL enables interpretability, improving the interaction with
the expert by explaining and predicting its behavior, and
transferability, as the reward (more than a policy) can be
employed under environment shifts (Adams et al., 2022).

One of the main concerns of IRL is that the problem is
inherently ill-posed or ambiguous (Ng & Russell, 2000), i.e.,
there exists a variety of reward functions compatible with
expert’s demonstrations. In the literature, many criteria for
the selection of a single reward among the compatible ones
were proposed (e.g., Ng & Russell, 2000; Ratliff et al., 2006;
Ziebart et al., 2008; Boularias et al., 2011). Nevertheless,
the ambiguity issue has limited the theoretical understanding
of the IRL problem for a long time.

Recently, IRL has been reframed by Metelli et al. (2021) into
the problem of computing the set of all rewards compatible
with expert’s demonstrations, named feasible reward set (or
just feasible set). By postponing the choice of a specific
reward within the feasible set, this formulation has opened
the doors to a new perspective that has enabled a deeper
theoretical understanding of the IRL problem. The majority
of previous works on the reconstruction of the feasible set
have focused mostly on the online setting (e.g., Metelli et al.,
2021; Lindner et al., 2022; Zhao et al., 2023; Metelli et al.,
2023), in which the learner is allowed to actively interact
with the environment and with the expert to collect samples.

Although these works succeeded in obtaining sample effi-
cient algorithms and represent a fundamental step ahead in
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the understanding of the challenges of the IRL problem (e.g.,
providing sample complexity lower bounds), the underlying
basic assumption that the learner is allowed to govern the
exploration and query the expert wherever is far from being
realistic. Indeed, the most common IRL applications are nat-
urally framed in an offline scenario, in which the learner is
given in advance a dataset of trajectories of the expert (and,
possibly, an additional dataset collected with a behavioral
policy, e.g., Boularias et al. 2011). Typically, no further
interaction with the environment and with the expert is al-
lowed (Likmeta et al., 2021). The offline setting has been
widely studied in (forward) reinforcement learning (RL, Sut-
ton & Barto, 2018), and a surge of works have analyzed the
problem from theoretical and practical perspectives (e.g.,
Munos, 2007; Levine et al., 2020; Buckman et al., 2020;
Yu et al., 2020; Jin et al., 2021). In this context, a powerful
technique is represented by pessimism, which discourages
the learner from assigning credit to options that have not
been sufficiently explored in the available dataset, allowing
for sample efficiency guarantees (Buckman et al., 2020).

The IRL offline setting has been investigated for the problem
of recovering the feasible set in the recent preprint (Zhao
et al., 2023). The authors consider the same feasible set
definition employed for the online case, which enforces the
optimality of the expert’s policy in every state (Metelli et al.,
2021; Lindner et al., 2022). However, in the offline setting,
this learning target is unrealistic unless the dataset covers
the full space. This implies that the produced rewards can
be safely used in forward RL when the behavioral policy
covers the whole reachable portion of the state-action space
only. For this reason, Zhao et al. (2023) apply a form of
pessimism which allows delivering rewards that make the
expert’s policy ϵ-optimal even in the presence of partial cov-
ering of the behavioral policy but only when the latter is
sufficiently close to the expert’s. These demanding require-
ments, however, collide with the intuition that, regardless of
the sampling policy, if we observe the expert’s actions, we
can deliver at least one reward, making the expert optimal.1

Desired Properties In this paper, we seek to develop novel
appropriate solution concepts for the feasible reward set and
new effective actionable algorithms for recovering them in
the offline IRL setting. Specifically, we aim at fulfilling the
following three key properties:

(i) (Sample Efficiency) We should output, with high
probability, an estimated feasible set using a number
of samples polynomial w.r.t. the desired accuracy,
error probability, and relevant sizes of the problem.

(ii) (Computational Efficiency) We should be able to
check the membership of a candidate reward in the
feasible set in polynomial time w.r.t. the relevant

1For instance, simply assign 0 when playing the expert actions
and ´1 otherwise.
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Figure 1. R = set of all rewards, R = true feasible set, pRX and
pRY = examples of inclusion monotonic estimated feasible set

(i.e., pRX
ĎRĎ pRY), pR = example of inclusion non-monotonic

estimated feasible set (i.e., pRĘR and RĘ pR).

sizes of the problem.
(iii) (Inclusion Monotonicity) We should output one es-

timated feasible set that includes and one that is in-
cluded in the true feasible set with high probability.

While properties (i) and (ii) are commonly requested, (iii)
deserves some comments. Inclusion monotonicity, intu-
itively, guarantees that we produce a set that does not ex-
clude any reward function that can be feasible and a set that
includes only reward functions that are surely feasible, given
the current samples (Figure 1). This, remarkably, allows de-
livering (with high probability) reward functions that make
the expert’s policy optimal (not just ϵ-optimal) regardless of
the accuracy with which the feasible set is recovered.

Contributions The contributions of this paper are summa-
rized as follows:

• We propose a novel definition of feasible set that takes
into account the intrinsic challenges of the offline setting
(i.e., partial covering). Moreover, we introduce appropri-
ate solution concepts, which are learnable based on the
coverage of the given dataset (Section 3).

• We adapt the probably approximately correct (PAC)
framework from Metelli et al. (2023) to our offline setting
by proposing novel semimetrics which, differently from
previous works, allow us to naturally deal with unbounded
rewards (Section 4).

• We present a novel algorithm, named IRLO (Inverse Re-
inforcement Learning for Offline data), for solving offline
IRL. We show that it satisfies the requirements of (i) sam-
ple and (ii) computational efficiency (Section 5).

• After having formally defined the notion of inclusion
monotonicity, we propose a pessimism-based algorithm,
named PIRLO (Pessimistic Inverse Reinforcement Learn-
ing for Offline data), that achieves (iii) inclusion mono-
tonicity preserving sample and computational efficiency,
at the price of a larger sample complexity (Section 6).

• We discuss a specific application of our algorithm PIRLO
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for reward sanity check (Section 7).
• We present a negative result for offline IRL when only

data from a deterministic expert are available (Section 8).

Additional related works are reported in Appendix A. The
proofs of all the results are reported in the Appendix B-J.

2. Preliminaries
Notation Given a finite set X , we denote by |X | its cardinal-
ity and by ∆X :“tqPr0,1s|X | |

ř

xPX qpxq“1u the simplex
on X . Given two sets X and Y , we denote the set of con-
ditional distributions as ∆X

Y :“tq :Y Ñ∆X u. Given N PN,
we denote JNK :“t1, . . . ,Nu. Given an equivalence rela-
tion ”ĎX ˆX , and an item xPX , we denote by rxs” the
equivalence class of x.

Markov Decision Processes (MDPs) without Reward A
finite-horizon Markov decision process (MDP, Puterman,
1994) without reward is defined as M :“xS,A,µ0,p,Hy,
where S is the finite state space (S :“|S|), A is the finite
action space (A :“|A|), µ0 P∆S is the initial-state distribu-
tion, p“tphuhPJHK where ph P∆S

SˆA for every hPJHK is
the transition model, and H PN is the horizon. A policy is
defined as π“tπhuhPJHK where πh P∆A

S for every hPJHK.
Pp,π denotes the trajectory distribution induced by π and
Ep,π the expectation w.r.t. Pp,π (we omit µ0 in the notation).
The state-action visitation distribution induced by p and π
is defined as ρp,πh ps,aq :“Pp,πpsh “s,ah “aq and the state
visitation distribution as ρp,πh psq :“

ř

aPA ρp,πh ps,aq, so that
ř

sPS ρ
p,π
h psq“1 for every hPJHK.

Additional Definitions The sets of transition models, poli-
cies, and rewards are denoted as P :“∆S

SˆAˆJHK, Π:“

∆A
SˆJHK, and R :“tr :SˆAˆJHKÑRu, respectively.2

For every hPJHK, we define the set of states and state-
action pairs reachable by π at stage hPJHK as Sp,π

h :“tsP

S |ρp,πh psqą0u and Zp,π
h :“tps,aqPSˆA |ρp,πh ps,aqą0u,

respectively. Moreover, we define Sp,π :“tps,hq :
hPJHK, sPSp,π

h u and Zp,π :“tps,a,hq :hPJHK, ps,aqP

Zp,π
h u, with cardinality Sp,π ďSH and Zp,π ďSAH , re-

spectively. We refer to these sets as the “support” of ρp,π.
We denote the cardinality of the largest set Sp,π

h varying
hPJHK, as Sp,π

max :“maxhPJHK |Sp,π
h |ďS. Finally, we de-

note the minimum of the state-action distribution on set
Y ĎSˆAˆJHK as ρπ,Ymin :“minps,a,hqPY ρp,πh ps,aq.

Value Functions and Optimality The Q-function of
policy π with transition model p and reward function
r is defined as Qπ

hps,a;p,rq :“Ep,πr
řH

t“h rtpst,atq|sh “

s,ah “as and the optimal Q-function as Q˚
hps,a;p,rq :“

maxπPΠQπ
hps,a;p,rq. The utility (i.e., expected return) of

policy π under the initial-state distribution µ0 is given by

2We remark that we consider real-valued rewards without re-
quiring boundedness.

Jpπ;µ0,p,rq :“Es„µ0,a„πp¨|sqrQπ
1 ps,a;p,rqs and the opti-

mal utility by J˚pµ0,p,rq :“maxπPΠJpπ;µ0,p,rq. An
optimal policy π˚ is a policy that maximizes the utility
π˚ PargmaxπPΠJpπ;µ0,p,rq. The existence of a deter-
ministic optimal policy is guaranteed (Puterman, 1994).

Equivalence Relations We introduce two equivalence re-
lations: ”S (over policies) and ”Z (over transition models),
defined for arbitrary SĎSˆJHK and Z ĎSˆAˆJHK.
Specifically, let π,π1 PΠ be two policies, we have:

π”S π
1 iff @ps,hqPS : πhp¨|sq“π1

hp¨|sq. (1)

Similarly, let p,p1 PP , be two transition models, we have:

p”Z p1 iff @ps,a,hqPZ : php¨|s,aq“php¨|s,aq. (2)

We will often use S“Sp,π and Z “Zp,π for some pPP
and πPΠ. Intuitively, the equivalence relation ”Sp,π (resp.
”Zp,π ) group policies (resp. transition models) indistin-
guishable given the support Sp,π (resp. Zp,π) of ρp,π .

Offline Setting We assume the availability of two
datasets Db “txsb,i1 ,ab,i1 , . . . ,sb,iH´1,a

b,i
H´1,s

b,i
H yuiPJτbK and

DE “txsE,i
1 ,aE,i

1 , . . . ,sE,i
H´1,a

E,i
H´1,s

E,i
H yuiPJτEK of τ b and

τE independent trajectories collected by playing a behav-
ioral policy πb and the expert’s policy πE , respectively.
Furthermore, we enforce the following assumption.

Assumption 2.1 (Expert’s covering). The behavioral policy
πb plays with non-zero probability the actions prescribed
by the expert’s policy πE in its support Sp,πE

:

@ps,hqPSp,πE

: πb
hpπE

h psq|sqą0.

Assumption 2.1 holds when πb “πE and generalizes that
setting when the behavioral policy πb is “more explorative”,
possibly playing actions other than expert’s ones.3 It should
be remarked that Assumption 2.1 is useful but not strictly
necessary. As we will explain later on, it is possible to
avoid it by using all samples DE YDb to compute the vari-
ous estimates that will be needed. Even though this seems
reasonable, from a practical viewpoint, it complicates the
theoretical analysis of the algorithms. Thus, we will enforce
Assumption 2.1 in the following for simplicity.

3. Solution Concepts for Offline IRL
In this section, we introduce a novel definition of feasible
reward set, discuss its learnability properties, and propose
suitable solution concepts to be targeted for the offline IRL.

3We elaborate on the limits of learning with just a dataset
collected with the expert’s policy πE in Section 8. Moreover, we
discuss how we can use a single dataset collected with πb, at the
price of a slightly larger sample complexity in Appendix D.1.
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A New Definition of Feasible Set Let us start by recall-
ing the original definition of feasible set presented in the
literature and discussing its limitations for offline IRL.

Definition 3.1 (“Old” Feasible Set Rp,πE , Metelli et al.
2021). Let M be an MDP without reward and let πE be the
deterministic expert’s policy. The “old” feasible set Rp,πE

of rewards compatible with πE in M is defined as:4

Rp,πE :“trPR |@ps,hqPSˆJHK, @aPA :

QπE

h ps,πE
h psq;p,rqěQπE

h ps,a;p,rqu. (3)

In words, Rp,πE contains all the reward functions that
make the expert’s policy optimal in every state-stage pair
ps,hqPSˆJHK. However, forcing the optimality of πE

in states that are never reached from the initial-state dis-
tribution µ0 is unnecessary (and even impossible) if our
ultimate goal is to use the learned reward function r to
train a policy π˚ that achieves the maximum utility, i.e.,
π˚ PargmaxπPΠJpπ;µ0,p,rq. This suggests an alternative
definition of feasible set.

Definition 3.2 (Feasible Set Rp,πE ). Let M be an MDP
without reward and let πE be the deterministic expert’s
policy. The feasible set Rp,πE of rewards compatible with
πE in M is defined as:

Rp,πE :“trPR |JpπE ;µ0,p,rq“J˚pµ0,p,rqu.

In words, Rp,πE contains all the reward functions that make
the expert’s policy πE a utility maximizer. Clearly, since
Definition 3.1 enforces optimality uniformly over SˆJHK,
we have the inclusion Rp,πE ĎRp,πE , where the equal-
ity holds when Sp,πE

“SˆJHK, i.e., rπEs”
Sp,πE

“tπEu.
The following result formalizes the intuition that for Rp,πE ,
differently from Rp,πE , the expert’s policy πE has to be
optimal (as in Equation 3) in a subset of SˆJHK only.

Theorem 3.1. In the setting of Definition 3.2, the feasible
reward set Rp,πE satisfies:

Rp,πE “trPR |@πPrπEs”
Sp,πE

,@ps,hqPSp,πE

, @aPA :

Qπ
hps,πE

h psq;p,rqěQπ
hps,a;p,rqu. (4)

Theorem 3.1 shows that the optimal action induced by
a reward rPRp,πE outside Sp,πE

, i.e., outside the sup-
port of ρp,π

E

induced by the expert’s policy πE , is not
relevant. The optimality condition of Equation (4) is re-
quested for all the policies π that play the expert’s ac-
tion within its support. Intuitively, those policies cover
the same portion of state space as πE , i.e., Sp,π “Sp,πE

4Actually, Metelli et al. (2021) consider rewards bounded in
r0,1s, while we consider all real-valued rewards in R.

and, since they all prescribe the same action in there,5

they all achieve the same utility, i.e., Jpπ;µ0,p,rq“

JpπE ;µ0,p,rq“J˚pµ0,p,rq. Thus, if we train an RL agent
with a reward function prPRp,πE zRp,πE , among the opti-
mal policies we obtain a policy pπPrπEs”

Sp,πE
, i.e., a policy

that plays optimal (expert) actions inside Sp,πE

. Clearly,
pπ will prescribe different actions than πE outside Sp,πE

,
but this is irrelevant since those states will never be reached
by pπ. This has important consequences from the offline
IRL perspective. Indeed, we can recover this new notion
Rp,πE (Definition 3.2) without the knowledge of πE in the
states outside Sp,πE

. Instead, to learn the old notion Rp,πE

(Definition 3.1), we would need to enforce that the policy
used to collect samples (either πE or πb) covers the full
space SˆJHK.6

Solution Concepts and Learnability To compute the fea-
sible set Rp,πE , we need to learn the expert’s policy πE

h psq

in every ps,hqPSp,πE

and the transition model php¨|s,aq

in every ps,a,hqPSˆAˆJHK, so that we are able to com-
pare the Q-functions. In the online setting (e.g., Metelli
et al., 2021), this is a reasonable requirement because the
learner can explore the environment and, thus, collect sam-
ples over the whole SˆAˆJHK space.7 However, in our
offline setting, even in the limit of infinite samples, triples
ps,a,hqRZp,πb

, i.e., outside the support of ρp,π
b

are never
sampled. Thus, we can identify the transition model p up to
its equivalence class rps”

Zp,πb
only. Intuitively, this means

that, unless Zp,πb

“SˆAˆJHK, i.e., πb covers the entire
space, since Rp,πE depends on the value of the transition
model in the whole SˆAˆJHK, the problem of estimat-
ing the feasible set Rp,πE offline is not learnable.6 Thus,
instead of learning Rp,πE directly, we propose to target as
solution concepts (i) the largest learnable set of rewards
contained into Rp,πE , and (ii) the smallest learnable set of
rewards that contains Rp,πE , defined as follows.

Definition 3.3 (Sub- and Super-Feasible Sets). Let M be
an MDP without reward and let πE be the deterministic
expert’s policy. We define the sub-feasible set RX

p,πE and
the super-feasible set RY

p,πE as:

RX
p,πE :“

č

p1Prps”
Zp,πb

Rp1,πE , RY
p,πE :“

ď

p1Prps”
Zp,πb

Rp1,πE .

5It is worth noting that, since ps,hqPSp,πE

, the following
identity hold: Qπ

hps,πE
h psq;p,rq“QπE

h ps,πE
h psq;p,rq.

6A formal definition of learnability and the proofs that Rp,πE

and Rp,πE are not learnable under partial cover (i.e., Sp,πE

‰

S ˆJHK and Zp,πb

‰S ˆAˆJHK) are reported in Appendix C.
7This is true for the generative model case. In a forward model,

in which we are allowed to interact through trajectories, we just
need to learn the transition model in all state-action pairs ps,a,hq

reachable from µ0 with any policy, i.e., ps,a,hqP
Ť

πPΠZp,π .
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Since pPrps”
Zp,πb

, we “squeeze” the feasible set Rp,πE

between these two learnable solution, i.e., RX
p,πE ĎRp,πE Ď

RY
p,πE . A more explicit representation is given as follows:

RX
p,πE “trPR|@p1 Prps”

Zp,πb
,@πPrπEs”

Sp,πE
,

@ps,hqPSp,πE

,@aPA :Qπ
hps,πE

h psq;p1, rqěQπ
hps,a;p1, rqu,

RY
p,πE “trPR|Dp1 Prps”

Zp,πb
,@πPrπEs”

Sp,πE
,

@ps,hqPSp,πE

,@aPA :Qπ
hps,πE

h psq;p1, rqěQπ
hps,a;p1, rqu.

Intuitively, to be robust against the missing knowledge of
the transition model outside Zp,πb

, we have to account
for all the possible p1 Prps”

Zp,πb
and retain the rewards

compatible with all of them (for the sub-feasible set RX
p,πE )

and with at least one of them (for super-feasible set RY
p,πE ),

as apparent from the quantifiers. Moreover, when Zp,πb

“

SˆAˆJHK, i.e., rps”
Zp,πb

“tpu, we have the equality:
RX

p,πE “Rp,πE “RY
p,πE . We now show that the RX

p,πE and
RY

p,πE are indeed the tightest learnable subset and superset
of Rp,πE (formal statement and proof in Appendix B).

Theorem 3.2. (Informal) Let M be an MDP without re-
ward, let πE and πb be the deterministic expert’s policy and
the behavioral policy, respectively. Then, RX

p,πE and RY
p,πE

are the tightest subset and superset of Rp,πE learnable from
data collected in M by executing πb and πE .

4. PAC Framework
We now propose a PAC framework for learning RX

p,πE and
RY

p,πE from datasets DE and Db, collected with πE and πb.
We first present the functions to evaluate the dissimilarity
between feasible sets and then define the PAC requirement.

Dissimilarity Functions Being RX
p,πE and RY

p,πE sets of
rewards, we need (i) a function to assess the dissimilarity
between items (i.e., reward functions), and (ii) a way of
converting it into a dissimilarity function between sets (i.e.,
the sub- and super-feasible sets) (Metelli et al., 2021). For
(i), we propose the following two semimetrics.

Definition 4.1 (Semimetrics d and d8 between rewards).
Let M be an MDP without reward and let πE be the expert’s
policy. Let πb be the behavioral policy and let tZp,πb

h uh be
its support. Given two reward functions r,prPR, we define
d :RˆRÑR and d8 :RˆRÑR as:

dpr,prq :“
1

Mpr,prq

ÿ

hPJHK

´

E
ps,aq„ρp,πb

h

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ

` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ

¯

,

d8pr,prq :“
1

Mpr,prq

ÿ

hPJHK

}rh ´prh}8,

where Mpr,prq :“max
␣

}r}8,}pr}8

(

. Moreover, we conven-
tionally set both d and d8 to 0 when Mpr,prq“0.

First, d8 corresponds to the ℓ8-norm between reward func-
tions, while d combines the ℓ1-norm between rewards in
Zp,πb

weighted by the visitation distribution of the behav-
ioral policy ρp,π

b

and the ℓ8-norm outside Zp,πb

. The intu-
ition is that, inside Zp,πb

, we weigh the error based on the
number of samples, which are collected by πb. Instead, out-
side Zp,πb

, we can afford the ℓ8-norm because we adopt as
solution concepts RX

p,πE and RY
p,πE that intrinsically man-

age the lack of samples so that we can confidently achieve
zero error in that region. Second, it is easy to verify that
both d and d8 are semimetrics.8 Third, the two semimet-
rics are related by the following double inequality, where

ρπ
b,Zp,πb

min ą0 by definition:

Proposition 4.1. For any r,r1 PR, it holds that:

dpr,r1qď2d8pr,r1qď
2

ρπ
b,Zp,πb

min

dpr,r1q.

Moreover, the normalization term 1{Mpr,prq enforces that
dpr,r1q and d8pr,r1q lie in r0,2Hs for every r,r1 PR. Dif-
ferently from previous works (e.g., Metelli et al., 2021; Lind-
ner et al., 2022), this term allows to deal with (unbounded)
real-valued rewards more naturally and effectively, at the
price of accepting a relaxed triangular inequality. We stress
that we have chosen distances d and d8 since they enforce
non-zero weight to the absolute difference between rewards
at all ps,a,hqPSˆAˆJHK. This property allows us to
control the distance between the optimal value function and
the value function of the policy π̂˚, i.e., the optimal policy
under the recovered reward pr. This can be obtained with
an analogous reasoning as that contained in Section 4.3 of
Metelli et al. (2023). More specifically, let

dGV ˚ pr, r̂q

:“
1

Mpr, r̂q
sup

π̂˚PΠ˚pr̂q

max
ps,hqPSˆJHK

|V ˚
h ps;rq´V π̂˚

h ps;rq|,

be the adaptation of the dissimilarity index defined in Metelli
et al. (2023), which measures the distance between the op-
timal value function V ˚p¨;rq (under a ground-truth reward
r) and the value function V π̂˚

p¨;rq (under the same ground-
truth reward r) of the policy π̂˚ that is learned using the
recovered reward pr. Then, it can be shown that:

Proposition 4.2. For any r,r1 PR, it holds that:

dGV ˚ pr,prqď2d8pr,prqď
2dpr,prq

ρπ
b,Zp,πb

min

.

8A semimetric fulfills all the properties of a metric except
for the triangular inequality. We show in Appendix I that our
semimetrics fulfill a “relaxed” form of triangular inequality.
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Clearly, a small value of d entails a small value of dGV ˚ .
Thus, controlling distances d and d8, by enforcing non-
zero weight to the absolute difference between rewards at all
ps,a,hqPSˆAˆJHK, we can control the distance between
value functions. Finally, as mentioned above, notice that we
can get rid of Assumption 2.1 by replacing the expectation
w.r.t. ρp,π

b

in the definition of d with some mixture between
πE and πb. However, for the sake of simplicity, we continue
with the current definition.

Next, to obtain a dissimilarity function between reward sets
(ii), we make use of the Hausdorff distance.

Definition 4.2 (Hausdorff distance, Rockafellar & Wets
1998). Let R, pRĎR be two sets of reward functions, and
let cPtd,d8u. The Hausdorff distance between R and pR
with inner distance c :RˆRÑR is defined as:

HcpR, pRq :“max
!

sup
rPR

inf
prP pR

cpr,prq,sup
prP pR

inf
rPR

cpr,prq

)

. (5)

Moreover, we abbreviate Hd8
with H8.

Since the feasible sets are closed (see Appendix I), using d
or d8, the Hausdorff distance is a semimetric and satisfies a
relaxed triangle inequality as well. Thus, HcpR, pRq“0 if
and only if the two sets coincide, i.e., R“ pR.

pϵ,δq-PAC Requirement We now formally define the sam-
ple efficiency requirement. To distinguish between the two
semimetrics d and d8, we denote by c-IRL the problem of
estimating RX

p,πE and RY
p,πE under Hc, where cPtd,d8u.

Definition 4.3 (pϵ,δq-PAC Algorithm). Let ϵPr0,2Hs and
δPp0,1q. An algorithm A outputting the estimated sub- and
super-feasible sets pRX and pRY is pϵ,δq-PAC for c-IRL if:

P
pp,πE ,πbq

`␣

HcpRX
p,πE , pRXqďϵ

(

X

␣

HcpRY
p,πE , pRYqďϵ

(˘

ě1´δ,

where Ppp,πE ,πbq denotes the probability measure induced
by πE and πb in M. The sample complexity is the number
of trajectories τE and τ b in DE and Db, respectively.

5. Inverse Reinforcement Learning for Offline
data (IRLO)

Our goal is to devise an algorithm that is (i) statistically
efficient, (ii) computationally efficient, and that provides
(iii) guarantees about the inclusion monotonicity property.
As a warm-up, in this section, we present IRLO (Inverse
Reinforcement Learning for Offline data), fulfilling (i) and
(ii), but not (iii).

Algorithm The pseudo-code of IRLO is reported in Algo-
rithm 1 (IRLO box). It receives two datasets DE and Db

of trajectories collected by policies πE and πb, respectively,

Algorithm 1 IRLO and PIRLO.
Input :Datasets DE

“txsE,i
h ,aE,i

h yhui, Db
“txsb,ih ,ab,i

h yhui

Output :Estimated sub- and super-feasible sets pRX, pRY

1 Estimate the expert’s support:
pSp,πE

Ðtps,hqPS ˆJHK |DiPJτEK : sE,i
h “su

2 Estimate the expert’s policy:

for ps,hqP pSp,πE

do
3 pπE

h psqÐaE,i
h for some iPJτEK s.t. sih “s

4 end
5 Estimate the state-action behavioral policy support:

pZp,πb

Ðtps,a,hqPSˆAˆJHK|DiPJτ bK:psb,ih ,ab,i
h q“ps,aqu

6 Compute the counts for every ps,a,hqP pZp,πb

and s1
PS:

Nb
hps,a,s1

qÐ
ř

iPJτbK1tpsb,ih ,ab,i
h ,sb,ih`1q“ps,a,s1

qu

Nb
hps,aqÐ

ř

s1PS Nb
hps,a,s1

q

7 Estimate the transition model:

for ps,a,hqP pZp,πb

do
8 for s1

PS do
9 pphps1

|s,aqÐ
Nb

hps,a,s1q

maxt1,Nb
h

ps,aqu

10 end
11 end

12

IRLOCompute RX

pp,pπE and RY

pp,pπE with Definition 3.3

using pp, pπE , pZp,πb

, and pSp,πE

return pRX

pp,pπE ,RY

pp,pπE q

13

PIRLOCompute the confidence set Cppp,bq via Eq. (7)
Compute rRX

pp,pπE and rRY

pp,pπE with Eq. (9)

using pp, pπE , pZp,πb

, and pSp,πE

return p rRX

pp,pπE , rRY

pp,pπE q

and it outputs the estimated sub- and super-feasible sets
pRX and pRY as estimates of RX

p,πE and RY
p,πE , respectively.

IRLO leverages DE to compute the empirical estimates of
the expert’s support Sp,πE

and policy πE , denoted by pSp,πE

and pπE (lines 1-3), and it uses Db to compute the empirical
estimates of the behavioral policy support Zp,πb

, and of
the transition model p, denoted by pZp,πb

and pp (lines 5-9).
Finally, it returns the sub- and super-feasible sets computed
with the estimated supports, expert’s policy, and transition
model: pRX “RX

pp,pπE and pRY “RY
pp,pπE (line 12).

Computationally Efficient Implementation In Algo-
rithm 1, IRLO outputs the estimated feasible sets pRY and
pRX obtained by computing the intersection and the union
of a continuous set of transition models (Definition 3.3). To
show the computational efficiency of IRLO, we provide in
Appendix G (Algorithm 2, IRLO box) a polynomial-time
membership checker that tests whether a candidate reward
function rPR belongs to pRY and/or pRX. We apply ex-
tended value iteration (EVI, Auer et al., 2008) to compute
an upper bound Q` and a lower bound Q´ of the Q-function
induced by the candidate reward r and varying the transition
model in a set C. For the IRLO algorithm, C corresponds to

6
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the equivalence class of the empirical estimate pp induced by
the empirical support pZp,πb

, i.e., rpps”
xZp,πb

:

C :“
!

p1 PP |@ps,a,hqP pZp,πb

: p1
hp¨|s,aq“ pphp¨|s,aq

)

. (6)

The algorithm has a time complexity of order OpHS2Aq.

Sample Complexity Analysis We now show that the IRLO
algorithm is statistically efficient. The following theorem
provides a polynomial upper bound to its sample complexity.

Theorem 5.1. Let M be an MDP without reward and let
πE be the expert’s policy. Let DE and Db be two datasets
of τE and τ b trajectories collected with policies πE and
πb in M, respectively. Under Assumption 2.1, IRLO is
pϵ,δq-PAC for d-IRL with a sample complexity at most:

τ b ď rO

˜

H3Zp,πb

ln 1
δ

ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

τE ď rO

˜

ln 1
δ

ln 1

1´ρπE,Zp,πE

min

¸

.

Some comments are in order. First, we observe that the sam-
ple complexity for the expert’s dataset τE is constant and
depends on the minimum non-zero value of the visitation

distribution ρπ
E ,Zp,πE

min ą0, but it does not depend on the
desired accuracy ϵ. This accounts for the minimum number
of samples to have pSp,πE

“Sp,πE

, with high probability.
Second, the sample complexity for the behavioral policy
dataset τ b displays a tight dependence on the desired accu-
racy ϵ and a dependence of order H4 on the horizon since in
the worst case, Zp,πb

ďSAH . Moreover, we notice the two-
regime behavior represented by lnp1{δq`Sp,πb

max (i.e., small
and large δ) as in previous works (Kaufmann et al., 2021;
Metelli et al., 2023). This term is multiplied by an additional
lnp1{δq term, which always appears in offline (forward) RL
(Xie et al., 2021) and it is needed to control the minimum
number of samples collected from every reachable state-
action pair. Finally, we observe a dependence analogous
to that of τE on the minimum non-zero value of the visita-
tion distribution ρπ

b,Zp,πb

min ą0, to ensure that pZp,πb

“Zp,πb

.
Note that when πb “πE , Assumption 2.1 is fulfilled, and
the sample complexity reduces to:

τE ď rO

˜

H3Sp,πE

ln 1
δ

ϵ2

ˆ

ln
1

δ
`Sp,πE

max

˙

`
ln 1

δ

ln 1

1´ρπE,Zp,πE

min

¸

.

Since Sp,πE

ďSH , the dependence on the number of ac-
tions is no longer present. An analogous result holds for d8.

Theorem 5.2. Under the conditions of Theorem 5.1, IRLO
is pϵ,δq-PAC for d8-IRL with a sample complexity at most:

τ b ď rO

˜

H4 ln 1
δ

ρπ
b,Zp,πb

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1.

We note that, since 1{ρπ
b,Zp,πb

min ěZp,πb

, Theorem 5.2 de-
livers a larger sample complexity w.r.t. Theorem 5.1. This
is expected because of the relation dpr,r1qď2d8pr,r1q be-
tween the two semimetrics (see Proposition 4.1).

6. Pessimistic Inverse Reinforcement Learning
for Offline data (PIRLO)

In this section, we present our main algorithm, PIRLO (Pes-
simistic Inverse Reinforcement Learning for Offline data).
Beyond statistical and computational efficiency, PIRLO
provides guarantees on the inclusion monotonicity of the
proposed feasible sets by embedding a form of pessimism.9

Before presenting the algorithm, we formally introduce the
notion of inclusion monotonicity and intuitively justify it.
Thanks to the PAC property (Theorem 5.1), in the limit of in-
finite samples τ b, τE Ñ`8, IRLO recovers exactly the sub-
pRX ÑRX

p,πE and the super- pRY ÑRY
p,πE feasible sets, and,

consequently, the property pRX ĎRp,πE Ď pRY holds. Be-
cause of the meaning of these sets, i.e., the tightest learnable
subset RX

p,πE and superset RY
p,πE of the feasible set Rp,πE ,

it is desirable to ensure the property pRX ĎRp,πE Ď pRY (in
high probability) in the finite samples regime τ b, τE ď`8

too. The following definition formalizes the property.
Definition 6.1 (Inclusion Monotonic Algorithm). Let δP

p0,1q. An algorithm A outputting the estimated sub- and
super-feasible sets pRX and pRY is δ-inclusion monotonic if:

P
pp,πE ,πbq

´

pRX ĎRp,πE Ď pRY
¯

ě1´δ.

Clearly, one can always choose pRX “tu and pRY “R to
satisfy Definition 6.1. Thus, the inclusion monotonicity
property will always be employed in combination with the
PAC requirement (Definition 4.3). The importance of mono-
tonicity will arise from a practical viewpoint in Section 7.

Algorithm The pseudocode of PIRLO is shown in Algo-
rithm 1 (PIRLO box). The first part (lines 1-11) is analo-
gous to IRLO and the main difference lies in the presence

9We remark on the substantial difference between our use of
pessimism and that of Zhao et al. (2023). Indeed, we apply pes-
simism to feasible sets to ensure that the estimated set fulfills the
inclusion monotonicity property, while Zhao et al. (2023) apply
pessimism to ensure the entry-wise monotonicity of the reward
function, i.e., prps,aqĺrps,aq, for all prP pR and rPR.

7
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of the confidence set Cppp,bqĎP (line 13), containing the
transition models in P close in ℓ1-norm to the empirical
estimate pp, except the ones that are not compatible with
expert’s actions. Formally, Cppp,bq is defined as:10

Cppp,bq :“
!

p1 PP|

@ps,hqP pSp,πE

, s1 R pSp,πE

h`1 : p1
hps1|s,pπE

h psqq“0

@ps,a,hqP pZp,πb

: }p1
hp¨|s,aq´ pphp¨|s,aq}1 ďpbhps,aq

)

,

(7)

where pbhps,aq is defined in Equation (18). The intuition is
that, with high probability, the true transition model p, and
its equivalence class rps”

Zp,πb
, will belong to Cppp,bq.

Drawing inspiration from pessimism in RL, PIRLO “penal-
izes” the estimates of the feasible set by removing from pRX

the rewards for which we are not confident enough of their
membership to RX

p,πE , and by adding to pRY the rewards for
which we are not confident enough of their non-membership
to RY

p,πE , based on the confidence set Cppp,bq on the transi-
tion model. This translates into the following expressions:

pRX “
č

p1PCppp,bq

RX
p1,pπE , pRY “

ď

p1PCppp,bq

RY
p1,pπE . (8)

This way, if pPCppp,bq and pπE “πE with high probability,
we have that, simultaneously, pRX ĎRX

p,πE and RY
p,πE Ď

pRY. This entails the inclusion monotonicity property (Defi-
nition 6.1) thanks to Definition 3.3.

Computationally Efficient Implementation Differently
from IRLO, computing the set operations of Equation (8)
cannot be directly carried out by EVI.11 For this reason, we
propose a relaxation which achieves the double objective of:
(i) enabling a computationally efficient implementation of
PIRLO (Algorithm 2, PIRLO box); and (ii) allowing for a
simpler statistical analysis, preserving both the PAC and the
inclusion monotonicity properties (details in Appendix G):

rRX :“trPR|@πPrpπE
s”

pSp,πE ,@ps,hqP pSp,πE

,@aPA:

min
p1PCppp,bq

QpπE

h ps,pπE
h psq;p1,rqě max

p2PCppp,bq
Qπ

hps,a;p2,rqu,

rRY :“trPR|@πPrpπE
s”

pSp,πE ,@ps,hqP pSp,πE

,@aPA:

max
p1PCppp,bq

QpπE

h ps,pπE
h psq;p1,rqě min

p2PCppp,bq
Qπ

hps,a;p2,rqu,

where the universal/existential quantification over the tran-
sition model of Definition 3.3 has been relaxed by the two
max´min. In other words, we allow a choice of differ-
ent transition models for the two Q-functions appearing in

10Actually, this definition does not take into account a corner
case. See Appendix D.5 for details and a more precise definition.

11Membership testing can be here implemented with a bilinear
program, which is, in general, a difficult problem (Appendix G).

the two members of the inequality. Thus, rRX Ď pRX and
pRY Ď rRY, preserving the inclusion monotonicity. For the
membership checking of a candidate reward rPR, similarly
to the IRLO case, we compute upper and lower bounds
Q` and Q´ to the Q-function by using EVI varying the
transition model in the confidence set Cppp,bq defined in
Equation (7). Now, the confidence set is made of ℓ1 con-
straints and the corresponding max and min programs can
be solved by using the approach of (Auer et al., 2008, Figure
2). The overall time complexity is of order OpHS2A logSq.

Sample Efficiency and Inclusion Monotonicity We now
show that PIRLO is statistically efficient, with the additional
guarantee (w.r.t. IRLO) of the inclusion monotonicity.
Theorem 6.1. Let M be an MDP without reward and let
πE be the expert’s policy. Let DE and Db be two datasets
of τE and τ b trajectories collected by executing policies πE

and πb in M. Under Assumption 2.1, PIRLO is pϵ,δq-PAC
for d-IRL with a sample complexity at most:

τ b ď rO

˜

H3Zp,πb

ln 1
δ

ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
H6 ln 1

δ

ρπ
b,Zp,πE

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1. Furthermore, PIRLO
is inclusion monotonic.

The price for the inclusion monotonicity is the additional
term in the sample complexity which grows with H6 and

with 1{ρπ
b,Zp,πE

min . The latter represents the minimum non-
zero visitation probability with which policy πb covers
Zp,πE

, i.e., the support of ρp,π
E

. Intuitively, since the ex-
pert’s policy is optimal, this additional term is due to a mis-
match between optimal Q-functions under the different tran-
sition models of Cppp,bq. Notice that, under Assumption 2.1,

Zp,πE

ĎZp,πb

, consequently, ρπ
b,Zp,πE

min ěρπ
b,Zp,πb

min . We
can provide an analogous result for d8.
Theorem 6.2. Under the conditions of Theorem 6.1, PIRLO
is pϵ,δq-PAC for d8-IRL with a sample complexity at most:

τ b ď rO

˜

H4 ln 1
δ

ρπ
b,Zp,πb

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
H6 ln 1

δ

ρπ
b,Zp,πE

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1. Furthermore, PIRLO
is inclusion monotonic.

Notice that both bounds in Theorem 6.1 and Theorem 6.2
also hold for the objectives defined in Equation (8).12

12In Appendix F.5, we provide a tighter bound for the superset

8
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7. Reward Sanity Check with PIRLO
In the literature, IRL algorithms (Ratliff et al., 2006; Ziebart
et al., 2008) provide criteria to select a specific reward func-
tion from the feasible set. Our algorithm, PIRLO, thanks
to the inclusion monotonicity property, provides a parti-
tion of the space of rewards R in three sets: (i) rewards
contained in the sub-feasible set pRX (i.e., feasible w.h.p.),
(ii) rewards not contained in the super-feasible set Rz pRY

(i.e., not feasible w.h.p.), and (iii) rewards that we cannot
discriminate with the given confidence ( pRYz pRX). The sit-
uation is illustrated in Figure 1. Thus, PIRLO can be used
both as a sanity checker on the rewards outputted by a spe-
cific IRL algorithm and for defining the set of rewards from
which selecting one. To exemplify this application, we have
run PIRLO using highway driving data from Likmeta et al.
(2021) and some human-interpretable reward. We provide
the experimental details and the results in Appendix K.

8. A Bitter Lesson
Up to now, we assumed to have two datasets DE and Db

of trajectories collected by policies πE and πb, respectively.
As already noted, this setting generalizes the most common
IRL scenario where the only dataset DE is collected by the
deterministic expert’s policy πE and there is no possibility
of collecting further data. A natural question arises: Why not
directly considering the setting with DE only? The reason
lies in the following negative result showing that the reward
functions that can be learned from a single expert’s dataset
DE are not completely satisfactory.
Proposition 8.1. Let M be the usual MDP without reward
with Aě2 and let πE be the deterministic expert’s policy.
Let DE be a dataset of trajectories collected by following
πE in M. Then, for any reward in rPRX

p,πE it holds that:

@ps,hqPSp,πE

, @aPA : rhps,πE
h psqqěrhps,aq. (9)

Thus, if we have no information about the transition model
in non-expert’s actions (as when we have DE only), there
exists no reward function r that simultaneously: (i) surely
belongs to the sub-feasible set (rPRX

p,πE ) and (ii) assigns
to a non-expert’s action a reward value greater than that
assigned to the expert’s action in the same ps,hq pair. This is
clearly a property that is undesirable as it significantly limits
the expressive power of the reward function, making IRL
closer to behavioral cloning and, consequently, inheriting its
limitations. As mentioned above, this issue can be overcome
with a behavioral policy πb that explores enough.
Proposition 8.2. Under the conditions of Proposition 8.1,
assume that php¨|s,aq is known, where aPA is a non-

pRY without using the relaxation. Moreover, in Appendix F.4, we
prove a larger sample complexity upper bound, when including an
additional useful requirement.

expert’s action in ps,hqPSp,πE

. Then, if php¨|s,aq‰

php¨|s,πE
h psqq, there exists a reward rPRX

p,πE such that:

rhps,πE
h psqqărhps,aq.

9. Conclusion
In this paper, we have introduced a novel notion of feasible
set and an innovative learning framework for managing the
intrinsic difficulties of the offline IRL setting. Furthermore,
we have motivated the importance of inclusion monotonic-
ity, and we have devised an original form of pessimism to
achieve it. Then, we have presented two provably efficient
algorithms, IRLO and PIRLO. We have shown that the
latter provides guarantees of inclusion monotonicity and
that it can be employed as a reward sanity checker. Finally,
we have highlighted an intrinsic limitation of the offline
IRL setting when samples from the experts are the only
available.

Limitations and Future Works To understand whether
our algorithms are minimax optimal, future works should fo-
cus on the derivation of sample complexity lower bounds for
offline IRL. Moreover, it would be appealing to extend our
framework to more challenging (non-tabular) environments.
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A. Related Works
Related works can be distinguished in theoretical IRL works and works about Reinforcement Learning (RL) in the offline
setting. Since the former group of papers is more closely connected to the subjects of this work, we focus on it here, and we
refer to Appendix A for a presentation of the remaining literature.

The notion of feasible set has been introduced implicitly by Ng & Russell (2000). More recently, Metelli et al. (2021)
build upon previous works to define the feasible set explicitly. They propose two algorithms for the estimation of feasible
set in the online setting with generative model. Moreover, the authors analyze the sample complexity of the algorithms
and prove the first upper bound to the number of samples required for the estimation of the feasible set in the discounted
infinite-horizon setting. Such bound is in the order of rO

`

SA
p1´γq4ϵ2

˘

, where S and A denote, respectively, the cardinality of
the state and action spaces, γ is the discount factor and ϵ is the accuracy, measured as distance in max norm between the
induced Q-functions. Later, Lindner et al. (2022) proposes an algorithm, named AceIRL, to estimate the feasible set in the
online setting with forward model. The result is an upper bound of rO

`

H5SA
ϵ2

˘

to the number of trajectories required in the
episodic finite-horizon setting. The first lower bound to the sample complexity of IRL has been devised by Komanduru &
Honorio (2021). However, their setting concerns state-only rewards in tabular Markov Decision Processes (MDPs) with
only two actions, resulting in a lower bound in the order of ΩpS lnSq. Metelli et al. (2023) analyzes the online setting with
generative model by measuring the accuracy using the max norm directly between rewards. By adopting two different
constructions for the hard instances, it proves a lower bound, along with a matching upper bound, for the sample complexity
of estimating the feasible set. The number of samples is in the order of rΘ

`

H3SA
ϵ2 pln 1

δ `Sq
˘

, where δ is the confidence. It is
worth mentioning the work of Zhao et al. (2023), which analyze the sample complexity of estimating the reward mapping, a
concept analogous to that of feasible set, in the context of offline IRL. They propose algorithms for solving the problem in
both the offline and online settings, and analyze the sample complexity, obtaining an upper bound of rO

`

H4S2C˚

ϵ2

˘

for the
offline setting, where C˚ is a concentrability coefficient. However, Zhao et al. (2023) adopts a solution concept which is
intrinsically connected to the coverage of the state-action-stage space, which is a strong requirement in the offline context.
As a consequence, the entrywise reward-based pessimistic approach proposed by the authors is not able to recover the
solution concept exactly. We also mention (Yue et al., 2023) and (Zeng et al., 2023) as two additional IRL works that adopt
pessimism but with different settings than ours.

For a clear comparison of these works, see Table 1.

Additional Related Works It is worth mentioning also the works that focus on (forward) RL in the offline setting, because
they share with our topic some important concepts and technical tools. We provide a brief overview in this section.

The principle of optimism in the face of uncertainty is a well-established tool for favoring exploration in the context of
online bandits (Lattimore & Szepesvári, 2020) and online (forward) RL (Kearns & Singh, 2002; Brafman & Tennenholtz,
2003; Azar et al., 2017; Dann et al., 2017). However, in the offline setting, the learning agent is given a batch dataset and is
not allowed to interact with the environment, thus the adoption of optimism does not improve the performances. Moreover,
one of the biggest challenges of the offline RL setting is that the given dataset might suffer from an insufficient coverage
of the space (Levine et al., 2020). To improve the performances of algorithms for solving the offline policy optimization
problem, the commonly adopted mechanism is the pessimism principle: “Behave as though the world was plausibly worse
than you observed it to be” (Buckman et al., 2020). As opposed to the principle of optimism in the face of uncertainty
which favors exploration, the pessimism principle favors exploitation. This tool has been adopted in a variety of works
for devising algorithms to solve the offline policy optimization problem (Yu et al., 2020; Kumar et al., 2020; Liu et al.,
2020). From a theoretical perspective, Buckman et al. (2020) proposes a unified framework for the study of this kind of
algorithms, revealing the reasons why the pessimism principle can demonstrate good performance even when the dataset is
not informative of every policy. Moreover, Jin et al. (2021) proposes a pessimistic variant of the value iteration algorithm,
named PEVI, and it shows that the pessimism principle is not only provably efficient, but also minimax optimal. Another
line of research more closely related to the offline IRL setting is that introduced by Rashidinejad et al. (2021). They analyse
the offline policy optimization problem in the novel setting in which the composition of the batch dataset can be located at
any point in the range between expert data and uniform coverage data. Expert data means that the dataset has been collected
by an expert, and the problem reduces to the imitation learning problem (Osa et al., 2018), while uniform coverage data
refers to a dataset that guarantees a uniform coverage of the space, which is a common setting in which it is usually required
the existence of a uniformly bounded concentrability coefficient (Munos, 2007). Specifically, Rashidinejad et al. (2021)
proposes a new framework that smoothly interpolates between the two extremes of data composition, and analyses the
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information-theoretic limits of LCB, the algorithm they propose, in three different settings. Finally, Xie et al. (2021) builds
upon Rashidinejad et al. (2021) and devises policy finetuning, a framework that interpolates between online and offline
RL. Remarkably, Xie et al. (2021) designs a novel algorithm, PEVI-Adv, which achieves a sample complexity of at most
rO
`

H3SC˚

ϵ2

˘

episodes in the finite-horizon setting, where C˚ is the single-policy concentrability coefficient. Also notice that
the authors prove a matching lower bound.

B. A Framework for the “old” Feasible Set
In this section, we apply the framework we presented in Section 3 to the “old” notion of feasible set (Definition 3.1). In
addition, we present a rather negative result on the kind of reward functions contained in the subset of Rp,πE .

Let us begin by adapting Definition 3.3 to Rp,πE . Recall that we use DE to estimate πE , and Db to estimate p.

Definition B.1 (Subset and Superset of Rp,πE ). Let M“xS,A,p,µ0,Hy be an MDP without reward and let πE be the
deterministic expert’s policy and πb the behavioral policy. Then, we define the subset RX

p,πE and the superset RY

p,πE of the
feasible set Rp,πE as:

RX

p,πE :“
č

p1Prps”
Zp,πb

č

π1PrπEs”
Sp,πE

Rp1,π1 ,

RY

p,πE :“
ď

p1Prps”
Zp,πb

ď

π1PrπEs”
Sp,πE

Rp1,π1 .

Clearly, since pPrps”
Zp,πb

and πE PrπEs”
Sp,πE

, it holds that RX

p,πE ĎRp,πE ĎRY

p,πE . Also notice that when Zp,πb

“Sˆ

AˆJHK (and so, because of Assumption 2.1, Sp,πE

“SˆJHK), then RX

p,πE “Rp,πE “RY

p,πE . The intuition underlying
the definition is analogous to that for RX

p,πE and RY
p,πE .

The following theorem shows that RX

p,πE and RY

p,πE are “well-defined”.

Theorem (Informal) B.1. Let M“xS,A,p,µ0,Hy be an MDP without reward and let DE and Db be two datasets of
trajectories collected by policies πE and πb. Then, subset RX

p,πE and superset RY

p,πE are the tightest learnable subset and
superset of Rp,πE from DE and Db.

In Appendix C, we enunciate this result formally and we provide a proof.

The following theorem shows a negative result on the kind of reward functions contained in RX

p,πE under reasonable
conditions. The intuition is that, since Rp,πE requires the knowledge of the optimal (expert’s) action in the entire SˆJHK,
then if there are pairs ps,hqPSˆJHK in which we cannot have this information, then we are forced to make all actions
optimal there (this is exactly what the intersection over policies makes in RX

p,πE ). This imposes many constraints on the
structure of the rewards, resulting in the following theorem. It should be remarked that, if we had only dataset Db and if
Assumption 2.1 was violated, then we might not know the expert’s action in some ps,hqPSp,πE

, and a similar result would
also hold for Rp,πE ; however, that would be a non-realistic setting for IRL.
Theorem B.2. Let M be an MDP without reward and let πE be the expert’s policy and πb be the behavioral policy. If
for any stage hPJHK there is at least a state, say sh, for which psh,hqRSp,πb

h , then RX

p,πE is made of “almost-constant”
rewards. Formally: rPRX

p,πE if and only if there exists a sequence tkhuh of H real numbers and a set tr̄sus with as many
real numbers as the cardinality of the support of µ0, such that, for any ps,a,hqPSˆAˆJHK:

$

’

’

&

’

’

%

rhps,aq“xph,sq if ps,hqPSp,πb

h ^a“πE
h psq

rhps,aqďxph,sq if ps,hqPSp,πb

h ^a‰πE
h psq

rhps,aq“kh if ps,hqRSp,πb

h

,

where xph,sq :“ r̄s if h“1, and xph,sq :“kh otherwise.

This theorem states that, under reasonable conditions, i.e., if at every stage h there is at least one state not reached by the
behavioral policy πb, then all the rewards of the subset RX

p,πE have a trivial form, which, i.a., does not depend on the specific

14
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value of the transition model, but only on its “support” Sp,πb

. In practice, this means that RX

p,πE does not represent an
interesting target for learning.

Proof of Theorem B.2. The theorem expresses a necessary and sufficient condition, thus two proofs are required. In the
following, recall that Sp,πb

ĚSp,πE

because of Assumption 2.1, and so the existence of psh,hqRSp,πb

h for all hPJHK entails

the existence of psh,hqRSp,πE

h for all hPJHK. Moreover, we consider the representation of Rp,πE as provided in Eq. 13.
We begin with the proof of the sufficiency.

The proof of the sufficiency proceeds in four steps. First, we show that, outside Sp,πE

, the definition of RX

p,πE enforces all
actions to be optimal. Then, we use this condition to show that, for any hě2, irrespective of the transition model, all states
take on the same value function value tV̄huh, and that all the actions in ps,hq outside Sp,πE

have the same reward value
tkhuh. The subsequent steps build upon these findings to show that expert’s actions take on constant reward value tkhuh for
hě2, and that non-expert’s actions are smaller than the corresponding expert’s action.

Let us begin by showing that, outside Sp,πE

, all actions shall be optimal. By definition of RX

p,πE , we have:

RX

p,πE :“
č

p1Prps”
Zp,πb

č

π1PrπEs”
Sp,πE

Rp1,π1

“trPR |@p1 Prps”
Zp,πb

,@π1 PrπEs”
Sp,πE

,@ps,hqPSˆJHK : E
a„π1

hp¨|sq
Q˚

hps,a;p1, rq“max
a1PA

Q˚
hps,a1;p1, rqu

“trPR |@p1 Prps”
Zp,πb

,@ps,hqPSˆJHK ,@π1 PrπEs”
Sp,πE

: E
a„π1

hp¨|sq
Q˚

hps,a;p1, rq“max
a1PA

Q˚
hps,a1;p1, rqu

(1)
“trPR |@p1 Prps”

Zp,πb
:
`

@ps,hqPSp,πE

:Q˚
hps,πE

h psq;p1, rq“max
aPA

Q˚
hps,a;p1, rq^

@ps,hqRSp,πE

: @π1
hp¨|sqP∆A : E

a„π1
hp¨|sq

Q˚
hps,a;p1, rq“max

a1PA
Q˚

hps,a1;p1, rq
˘

u

“trPR |@p1 Prps”
Zp,πb

:
`

@ps,hqPSp,πE

:Q˚
hps,πE

h psq;p1, rq“max
aPA

Q˚
hps,a;p1, rq^

@ps,hqRSp,πE

: @aPA :Q˚
hps,a;p1, rq“max

a1PA
Q˚

hps,a1;p1, rq
˘

u,

where, at (1), we have partitioned SˆJHK using Sp,πE

and we have applied the definition of ”Sp,πE . This shows that,
outside Sp,πE

, all actions must be optimal.

Now, we show that, for any reward rPRX

p,πE , there exists a sequence of value functions13 tV̄huhPJ2,HK induced by r which
does not depend neither on the transition model nor on the state considered: V ˚

h ps;p1, rq“ V̄h for any sPS,hPJ2,HK, and
for any p1 of rps”

Zp,πb
. So, let r be a reward of RX

p,πE and let ps,hq be a pair not in Sp,πb

ĚSp,πE

, for hPJH ´1K. Notice
that the existence of pair ps,hq is guaranteed by hypothesis. For what we have seen at the previous step, for any pair of
actions a1,a2, for any p1 Prps”

Zp,πb
, it holds that Q˚

hps,a1;p
1, rq“Q˚

hps,a2;p
1, rq. Through the Bellman’s equation, we

can write:
rhps,a1q` E

s1„p1
hp¨|s,a1q

rV ˚
h`1ps1;p1, rqs“rhps,a2q` E

s1„p1
hp¨|s,a2q

rV ˚
h`1ps1;p1, rqs. (10)

Let s1,s2 PS . By definition of ”Zp,πb , this condition must hold for any p1
hp¨|s,a1qP∆S and p1

hp¨|s,a2qP∆S . In particular,
let us take two transition models p1,p2 Prps”

Zp,πb
such that :

p1 “

#

p1hps1|s,a1q“1

p1hps1|s,a2q“1
,

p2 “

#

p2hps1|s,a1q“1

p2hps1|s,a2q“0
.

13The value function of policy π at ps,hq under transition model p and reward r is defined as: V π
h ps;p,rq :“

ř

a„πhp¨|sq
Qπ

hps,a;p,rq.
The optimal value function is defined as: V ˚

h ps;p,rq :“maxaPAQ˚
hps,a;p,rq.
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Inserting p1 into Eq. 10, we get:

rhps,a1q`V ˚
h`1ps1;p

1, rq“rhps,a2q`V ˚
h`1ps1,p

1, rq ùñ rhps,a1q“rhps,a2q.

Because a1 and a2 are arbitrary, this holds for any action aPA in ps,hqRSp,πb

. Therefore, we have shown that (the
condition at H is trivial since V ˚

H`1ps;p1, rq“0):

rPRX

p,πE ùñ DtkhuhPJHK : @ps,hqRSp,πb

, @aPA : rhps,aq“kh.

Inserting p2 into Eq. 10, we obtain:

rhps,a1q`V ˚
h`1ps1;p

2, rq“rhps,a2q`V ˚
h`1ps2;p

2, rq ùñ V ˚
h`1ps1;p

2, rq“V ˚
h`1ps2;p

2, rq,

since rhps,a1q“rhps,a2q. Because p2 (and so the next state s1) can be chosen arbitrarily in h`1ě2, then we have proved
that:

rPRX

p,πE ùñ DtV̄huhPJ2,HK : @p1 Prps”
Zp,πb

, @ps,hqPSˆJHK : V ˚
h ps;p1, rq“ V̄h.

In a similar manner, we can prove the same result also for ps,hqPSp,πb

zSp,πE

.

The next step of the proof consists in showing that, for any hPJ2,HK, for any sPSp,πE

h , the reward value assigned to
expert’s action coincides with kh. Let ps,hqPSp,πE

with hě2. For any p1 Prps”
Zp,πb

, it holds:

V̄h “V ˚
h ps;p1, rq“Q˚

hps,aE ;p1, rq“rhps,aEq` E
s1„p1

hp¨|s,aEq
rV ˚

h`1ps1;p1, rqs

“rhps,aEq` E
s1„p1

hp¨|s,aEq
rV̄h`1s

“rhps,aEq` V̄h`1.

(11)

By hypothesis, there exists s1 RSp,πb

h such that, for any aPA:

V̄h “V ˚
h ps1;p1, rq“Q˚

hps1,a;p1, rq“rhps1,aq` E
s2„p1

hp¨|s1,aq
rV ˚

h`1ps2;p1, rqs

“kh ` E
s1„p1

hp¨|s1,aq
rV̄h`1s

“kh ` V̄h`1.

(12)

Comparing Eq. 11 and Eq. 12, we infer that rhps,aq“kh.

With a similar reasoning, we can prove that the reward value of non-expert’s action shall be at most kh. For simplicity, set
V̄H`1 “0. Let ps,hq be any pair in Sp,πE

and let a be any non-expert’s action. Then, for any p1 Prps”
Zp,πb

, we have:

Q˚
hps,a;p1, rq“rhps,aq` E

s1„p1
hp¨|s,aq

rV ˚
h`1ps1;p1, rqs

“rhps,aq` V̄h`1

ďV ˚
h ps;p1, rq

“rhps,πE
h psqq` V̄h`1

“kh ` V̄h`1.

From which it follows that rhps,aqďkh. This concludes the proof of the sufficiency.

With regards to the necessity, we have to show that any reward r that can be expressed as in the statement of the theorem
belongs to RX

p,πE . It is easy to notice that, irrespective of the transition model p1, the optimal value function of any state
sPS at stage hě2 is V ˚

h ps;p1, rq“
řH

i“h ki, and that it is achieved by playing the expert’s policy. At step h“1, since all
next states take on the same optimal value function, the result is immediate.
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C. On the Learnability of the Feasible Set
In this section, we formalize the notion of (PAC-)learnability and we analyze the learnability properties of the various
objects that we introduced in Section 3 (and in Appendix B). Specifically, we show that both the definitions of feasible set
Rp,πE and Rp,πE are not learnable in the setting of Section 3 unless the behavioral policy covers the entire SˆAˆJHK
space. Next, we demonstrate that the framework we have introduced cannot be improved; simply put, we show that RX

p,πE

and RY

p,πE are the tightest learnable bounds of Rp,πE according to partial order Ď, and that RX
p,πE and RY

p,πE are the
tightest learnable bounds of Rp,πE .

We give a definition of learnability in the context of the Probably Approximately Correct (PAC) framework since our main
focus is on PAC bounds to the sample complexity in this work. Let ϕPΦ be our target of learning, i.e., the quantity that
we aim to estimate, and let µ be a certain distribution that provides us with N independent samples X1,X2, . . . ,XN „µ.
Intuitively, ϕ can be learned from µ if there exists a procedure able to use the samples X1,X2, . . . ,XN of µ to create a
“good-enough” estimate of ϕ, where the “goodness” is measured by a meaningful notion of distance. We formalize the
intuition in the following definition.

Definition C.1 (PAC-learnability). A quantity ϕPΦ is PAC-learnable from a distribution µ if there exists a semimetric d in
Φ, that satisfies a ρ-relaxed triangle inequality with finite ρ, and an algorithm A such that, for any ϵ,δPp0,1q, there exists a
finite N PN for which:

Pµ

`

dpϕ, pϕďϵq
˘

ě1´δ,

where pϕPΦ is the estimate of ϕ computed by A using at least N samples, and Pµ is the probability measure induced by µ.

Simply put, ϕ is PAC-learnable if the samples from µ leak “enough” information about ϕ. Notice that any metric satisfies a
ρ-relaxed triangle inequality with ρ“1. See Appendix I for an in-depth analysis of the semimetrics used in this work.

In the context of Section 3, we identify as quantity of interest ϕ the feasible set Rp,πE (Rp,πE ), and as distribution generating
samples14 µ“Pp,πb . We have the following result of non-learnability of the feasible set in the offline setting.

Theorem C.1. Let M“xS,A,p,µ0,Hy be an MDP without reward and let πE be the deterministic expert policy. Assume to
know πE in all ps,hqPSˆJHK and also to know Sp,πE

, i.e., there is no need to learn them. Let Zp,πb

denote the portion of
space covered by a behavioral distribution πb in M. If Zp,πb

‰SˆAˆJHK, then Rp,πE is not PAC-learnable from Pp,πb .
Moreover, if Zp,πb

‰SˆAˆJHK and for at least one ps,hqRSp,πb

there exists a policy πPΠ such that Pp,πpsh “sqą0,
then not even Rp,πE is PAC-learnable from Pp,πb .

Proof. Let us start with Rp,πE . The idea is to construct two problem instances whose feasible sets lie at a fixed non-zero
distance and such that samples do not allow to discriminate between them.

We start with the construction of the two instances. Let πE be the expert’s policy and let M1 “xS,A,p1,µ0,Hy be an
MDP without reward in which policy πb induces the distribution over trajectories Pp1,πb . By hypothesis, there exists
triple ps,a,hqPSˆAˆJHK not in Zp,πb

, i.e., such that Pp1,πbpsh “s,ah “aq“0. Let us construct another problem
instance M2 “xS,A,p2,µ0,Hy such that p2 ”Zp,πb p1. This is possible by simply setting, at triple ps,a,hq, the condition
p1hp¨|s,aq‰p2hp¨|s,aq, and equality elsewhere. Observe that, because of this choice, Pp1,πb “Pp2,πb . Let Rp1,πE and
Rp2,πE denote, respectively, the feasible sets of instances M1 and M2 with expert’s policy πE .

Now we show that Rp1,πE ‰Rp2,πE . To do so, we claim the existence a reward rPRp1,πE such that rRRp2,πE .
W.l.o.g., assume a be a non-expert’s action15. By definition of Rp1,πE , at triple ps,a,hq, it holds that QπE

h ps,a;p1, rqď

QπE

h ps,πE
h psq;p1, rq. Since p2 coincides with p1 everywhere except for triple ps,a,hq, the constraint is equivalent

to QπE

h ps,a;p1, rqďQπE

h ps,πE
h psq;p2, rq. Similarly, we have that rPRp2,πE if QπE

h ps,a;p2, rqďQπE

h ps,πE
h psq;p2, rq.

14Observe that, to avoid mentioning the creation of a mixture of distributions Pp,πb and Pp,πE (because of the two datasets), we assume

that πE and Sp,πE

are given and need not to be learned. While this simplifies the learning problem, notice that even the estimation of the
transition model alone can end up in non-learnability issues.

15Otherwise, we can make the same construction with any non-expert’s action a1
PA, and we can show that the constraints of the feasible

sets of M1 and M2 have the same lower bounds QπE

h ps,a1;p1, rq“QπE

h ps,a1;p2, rq, but different upper bounds QπE

h ps,πE
h psq;p1, rq‰

QπE

h ps,πE
h psq;p2, rq.
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Clearly, both the constraints have the same upper bound QπE

h ps,πE
h psq;p2, rq, and since QπE

h`1ps1,πE
h`1ps1q;p1, rq“

QπE

h`1ps1,πE
h`1ps1q;p2, rq for any s1 PS, then p1hp¨|s,aq‰p2hp¨|s,aq entails QπE

h ps,a;p1, rq‰QπE

h ps,a;p2, rq. Therefore,
we can find rPRp1,πE such that rRRp2,πE , thus Rp1,πE ‰Rp2,πE .

We proceed by contradiction. Let us assume that the feasible set Rp,πE is PAC-learnable in both M1 and M2. By definition
of learnability, there exists a semi-metric d and an algorithm A with certain properties. By definition of semi-metric,
since Rp1,πE ‰Rp2,πE , then there exists a certain cą0 such that dpRp1,πE ,Rp2,πE q“c. Moreover, by ρ-relaxed triangle
inequality, we know that a set of rewards rR such that dp rR,Rp1,πE qăc{p2ρq and dp rR,Rp2,πE qăc{p2ρq at the same time
does not exist, thus the two events

␣

dp rR,Rp1,πE qăc{p2ρq
(

and
␣

dp rR,Rp2,πE qăc{p2ρq
(

are disjoint. By the choices
ϵăc{p2ρq and δă1{2, algorithm A must satisfy

P
p1,πb

´

dp pRA,Rp1,πE qă
c

2ρ

¯

ą
1

2
^ P

p2,πb

´

dp pRA,Rp2,πE qă
c

2ρ

¯

ą
1

2
.

By construction, we have Pp1,πb “Pp2,πb . In other words, samples do not allow to discriminate between instances M1 and
M2, and so between Rp1,πE and Rp2,πE . Therefore, when faced with M1, independently on the number N of samples,
algorithm A outputs pRA such that:

P
p1,πb

ˆ

␣

dp pRA,Rp1,πE qă
c

2ρ

(

Y
␣

dp pRA,Rp2,πE qă
c

2ρ

(

˙

“ P
p1,πb

ˆ

dp pRA,Rp1,πE qă
c

2ρ

˙

looooooooooooooooomooooooooooooooooon

ą1{2

` P
p1,πb

ˆ

dp pRA,Rp2,πE qă
c

2ρ

˙

looooooooooooooooomooooooooooooooooon

ą1{2

ą1,

where we have used that the two events are disjoint. This is clearly a contradiction, thus the statement of the theorem holds
for the notion of feasible set in Definition 3.1.

With regards to the novel notion of feasible set Rp,πE , the proof is analogous. The only difference is in how to show that
Rp1,πE ‰Rp2,πE when the triple ps,a,hqRZp,πb

is such that ps,hqRSp,πb

. Indeed, by Definition 3.2, in such ps,hq there is
no constraint on which action shall be optimal. However, by the hypothesis contained in the statement of the theorem, there
exists a policy that brings to ps,hq, so since πb does not reach ps,hq, then there exists another triple ps1,a1,h1q, with h1 ăh,
such that ps1,a1,h1qRZp,πb

and ps1,h1qPSp,πb

. Therefore, the same passages adopted to show that Rp1,πE ‰Rp2,πE can
be used to show also that Rp1,πE ‰Rp2,πE . It should be remarked that the hypothesis Zp,πb

‰SˆAˆJHK alone is not
sufficient16 for the non-learnability of Rp,πE . This concludes the proof.

The following theorem demonstrates that the solution concepts (subset and superset) that we propose in our framework are
the tightest learnable. Observe that Theorem C.2 entails Theorem C.1. However, since in the proof of Theorem C.2 we
make use of the construction introduced in the proof of Theorem C.1, we prefer to keep the two theorems separated.

Theorem C.2. Let M“xS,A,p,µ0,Hy be an MDP without reward and let πE be the deterministic expert policy. Assume
to know πE in all ps,hqPSˆJHK and also to know Sp,πE

, i.e., there is no need to learn them. Let Sp,πb

,Zp,πb

denote the
portion of space covered by a behavioral distribution πb in M. Then, RX

p,πE and RY

p,πE are, respectively, the tightest subset
and superset of Rp,πE that can be learned from Pp,πb . Moreover, RX

p,πE and RY
p,πE are, respectively, the tightest subset and

superset of Rp,πE that can be learned from Pp,πb .

Proof. The theorem states that the considered quantities are the tightest learnable. Thus, we split the proof in two parts.
First, we prove that such quantities are PAC-learnable, then we show that there is no other object that is at the same time
learnable and tighter.

Let us begin with RX
p,πE and RY

p,πE . By Definition C.1, these quantities are PAC-learnable if we can find a semi-metric d
between sets of rewards and an algorithm A such that, for any arbitrarily small choice of the accuracy ϵ and confidence

16Consider for instance the MDP without reward M in which S ˆJHKzSp,πb

“tps̄,1qu and S ˆAˆJHKzZp,πb

“

tps̄,a1,1q, . . . ,ps̄,aA,1qu, i.e., that πb covers the entire space except for a state s̄ at stage h“1 (µ0ps̄q“0). Clearly, such state
does not appear in the constraints defining the feasible set, and the feasible set Rp,πE is learnable by Pp,πb !
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δ, we can always find a finite number of samples that algorithm A can use to compute a set of rewards ϵ-close, according
to semi-metric d, to RX

p,πE (or to RY
p,πE ) w.h.p.. This is exactly what, for instance, Theorem 5.1 states: Algorithm 1

requires a finite number of samples to compute an ϵ-correct estimate of RX
p,πE (or of RY

p,πE ) w.h.p. according to any of the
semi-metrics presented in Definition 4.1 (for which we prove in Appendix I that a ρ-relaxed triangle inequality holds). We
are not going to show that an analogous of Theorem 5.1 holds also for RX

p,πE and RY

p,πE .

Now we show that these quantities are the tightest learnable. Let us start with RX

p,πE , and then we will move to RY

p,πE ,
RX

p,πE , and RY
p,πE .

The idea is to construct by contradiction another concept R
X

p,πE (non calligraphic) of subset of Rp,πE which is tighter
than RX

p,πE , and then show that we can construct a problem instance in which the newly defined concept R
X

p,πE fails at
being a subset of Rp,πE . Thus, by contradiction, let us assume that there exists a problem instance M“xS,A,p,µ0,Hy

with expert’s policy πE and distribution generating samples Pp,πb , in which there exists a PAC-learnable set R
X

p,πE

from Pp,πb such that RX

p,πE ĂR
X

p,πE ĎRp,πE . If Zp,πb

“SˆAˆJHK, then RX

p,πE “Rp,πE , so we consider the case in
which Zp,πb

ĂSˆAˆJHK. Let r̄ be a reward of R
X

p,πE which is not present in RX

p,πE . By definition of RX

p,πE , we
have that r̄RRX

p,πE if and only if there exists p1 Prps”
Zp,πb

and π1 PrπEs”
Sp,πb

such that r̄RRp1,π1 . Therefore, similarly
to the proof of Theorem C.1, we can construct a new problem instance M1 “xS,A,p1,µ0,HyYtπ1u such that, since
Zp,πb

ĂSˆAˆJHK, Rp,πE ‰Rp1,π1 . By definition of p1, we know that Pp1,πb “Pp,πb , thus any algorithm A estimating
the new concept of subset R

X

p,πE fails to distinguish instances M and M1. This means that we can choose ϵ,δ so that if A
returns in M a set containing r̄, then with high probability it will return it also in M1. However, r̄RRp1,π1 , so we get a
contradiction.

The proof for RY

p,πE is analogous. By contradiction, we claim the existence of a set R
Y

p,πE such that Rp,πE ĎR
Y

p,πE ĂRY

p,πE .
The contradiction will be shown by considering a reward r̄ of RY

p,πE which is not in R
Y

p,πE , and then constructing the

problem instance in which the feasible set contains exactly that reward, but set R
Y

p,πE does not (w.h.p.).

As far as RX
p,πE and RY

p,πE are concerned, the proofs are analogous to those presented above. However, there is a detail

that has to be explained. Specifically, we have seen in the proof of Theorem C.1 that the condition Zp,πb

ĂSˆAˆJHK
is not a sufficient condition for Rp1,πE ‰Rp2,πE . Therefore, in principle, the proof for RX

p,πE (RY

p,πE ) cannot be adapted
directly to RX

p,πE (RY
p,πE ). However, we observe that RX

p,πE ĂRp,πE (respectively, Rp,πE ĂRY
p,πE ) holds strictly if

Zp,πb

‰SˆAˆJHK and for at least one ps,hqRSp,πb

there exists a policy πPΠ such that Pp,πpsh “sqą0. Otherwise, it
holds that RX

p,πE “Rp,πE “RY
p,πE , as explained in Section D.4. This is exactly the condition required in Theorem C.1 for

proving Rp1,πE ‰Rp2,πE . Therefore, by using this observation, we can prove the statement of the theorem also for RX
p,πE

and RY
p,πE .

D. Further considerations
In this appendix, we collect a variety of considerations and remarks about the learning framework introduced, about the
need of two datasets, alternative representations of the feasible set, and some others.

D.1. About the need of two datasets

We presented IRLO (and, subsequently, PIRLO) in the case two datasets Db and DE collected with πb and πE , respectively,
are available. This scenario is common in previous IRL works (Boularias et al., 2011) but, although convenient for our
analysis, it is not strictly necessary to achieve a meaningful sample complexity. Indeed, we remark that the expert’s dataset is
employed for estimating the expert’s support Sp,πE

and policy πE . This task can be anyway achieved under Assumption 2.1
using just one dataset D“txsb,i1 ,ab,i1 ,aE,i

1 , . . . ,sb,iH´1,a
b,i
H´1,a

E,i
H´1,s

b,i
H yuiPJτK playing the behavioral policy πb and keeping

track of the expert’s actions too. In such a case, we must require that every transition ps,πE
h psq,s1q is exercised at least once

in D. This leads to a sample complexity bound which is larger in the last constant term in which ρπ
E ,Zp,πE

min is replaced with:

min

#

ρπ
E ,Zp,πE

min , min
ps,hqPSp,πE

,

s1
PS:phps1

|s,πE
h psqqą0

ρp,π
b

h ps,aqphps1|s,πE
h psqq

+

.
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D.2. About the dependence on ρmin

The majority of the results presented for the d8 semimetric in this paper are characterized by a dependence on the minimum

non-zero visitation probability ρπ
b,Zp,πb

min of the behavioral policy πb. This is expected since we are targeting as solution
concept the tightest learnable subset and supersets of the feasible set. Clearly, one can further relax this requirement,
accepting to target non-tightest learnable sets with a benefit in the sample complexity. Consider a minimum-visitation
threshold ρ, we define Zp,πb

ρ “tps,a,hq : ρp,π
b

h ps,aqąρu as the set of triples ps,a,hq that are visited by at least ρ probability

(notice that Zp,πb

“Zp,πb

0 ). We can use this set to employ suitable equivalence ”
Zp,πb

ρ

relations over transition models to

group together those that differ in triples ps,a,hq visited with probability smaller than ρ. This allows to redefine the sub-
and super-feasible sets as follows:

RX
p,πE ,ρ :“

č

p1Prps”

Zp,πb

ρ

Rp1,πE , RY
p,πE ,ρ :“

ď

p1Prps”

Zp,πb

ρ

Rp1,πE .

Obviously, by the definition of the equivalence relation, we have that RX
p,πE ,ρ ĎRX

p,πE and RY
p,πE ĎRY

p,πE ,ρ. Under the

assumption that ρďρp,π
b

h ps,πE
h psqq for every ps,hq, these sets are clearly learnable, but lose the property of being the

tightest ones. The advantage of targeting these feasible sets is that we can reproduce the same proofs done for the original
RX

p,πE and RY
p,πE obtaining a smaller sample complexity that scales with ρ instead of ρp,π

b

min .

D.3. Equivalent definitions of the feasible sets

In both Definition 3.1 and Theorem 3.1, we represent the set of constraints defining the (old) feasible set using the Q-function
of policy πE or of some policy πPrπEs”

Sp,πE
. However, it is possible to provide an alternative equivalent representation

based on the optimal Q-function Q˚. It is easy to notice that the old feasible set Rp,πE can be rewritten as:

Rp,πE “trPR |@ps,hqPSˆJHK,@aPA :Q˚
hps,πE

h psq;p,rqěQ˚
hps,a;p,rqu. (13)

Moreover, thanks to Lemma E.1, the new feasible set Rp,πE can be rewritten as:

Rp,πE “trPR |@ps,hqPSp,πE

,@aPA :Q˚
hps,πE

h psq;p,rqěQ˚
hps,a;p,rqu.

We prefer to work with the representations presented in the main paper because the relaxations (see Section 6) of those
representations are “better” (See Appendix G) than the relaxations of the representations just introduced.

As a direct consequence of Theorem 3.1, we have the following corollary (see Appendix E for the proof).

Corollary D.1. In the setting of Definition 3.2 the feasible reward set Rp,πE satisfies:

Rp,πE “
ď

π1PrπEs”
Sp,πE

Rp,π1 .

This corollary provides the explicit relationship between the old Rp,πE and new Rp,πE definitions of feasible set. Clearly
Rp,πE ĎRp,πE . By using Corollary D.1, we can rewrite RX

p,πE as RX
p,πE “

Ş

p1Prps”
Zp,πb

Ť

π1PrπEs”
Sp,πE

Rp1,π1 . Observe

that in general RX
p,πE ‰

Ť

π1PrπEs”
Sp,πE

Ş

p1Prps”
Zp,πb

Rp1,π1 , because the union of the intersection is different from the

intersection of the union. Furthermore, because of the different definitions of Rp,πE and Rp,πE , we have that, in general,
RX

p,πE ĘRp,πE i.e., the subset for the new notion of feasible set is not a subset of Rp,πE . Differently, with regard to the
superset, it holds that RY

p,πE ĚRp,πE .

It should be remarked that Corollary D.1 and Theorem 3.1 are not in contradiction. Indeed, looking at the union over policies
in Corollary D.1, one might expect an existential quantifier inside Theorem 3.1, but we find a universal quantifier. By using
Corollary D.1 and Eq. 13, we can “transform” the union into an existential quantifier to obtain:

Rp,πE “trPR |DπPrπEs”
Sp,πE

:@ps,hqPSˆJHK,@aPA :Q˚
hps,πhpsq;p,rqěQ˚

hps,a;p,rqu,
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i.e., we are representing the feasible set Rp,πE as the set of all the rewards that induce an optimal policy in rπEs”
Sp,πE

.
From Theorem 3.1, we have:

Rp,πE “trPR |@πPrπEs”
Sp,πE

,@ps,hqPSp,πE

, @aPA :Qπ
hps,πE

h psq;p,rqěQπ
hps,a;p,rqu,

i.e., we are representing the feasible set Rp,πE as the set of all the rewards for which playing the expert’s action in Sp,πE

is
the optimal strategy irrespective of the optimal action outside Sp,πE

. To put it simple, Corollary D.1 uses the existential
quantifier because it says that a certain policy in rπEs”

Sp,πE
is optimal, while Theorem 3.1 uses the universal quantifier

because it does not care about which policy in rπEs”
Sp,πE

is optimal, but only that the expert’s action is played in Sp,πE

.
The D gives the optimal policy, while the @ says that one of the policies in rπEs”

Sp,πE
is optimal, without telling which.

Clearly, there is no contradiction.

D.4. A remark about non reachable states

The strict condition Zp,πb

ĂSˆAˆJHK alone is not a sufficient condition to have RX
p,πE ‰Rp,πE ‰RY

p,πE . Indeed, if

the portion of SˆAˆJHK not contained into Zp,πb

is made only of ps,hqPSˆJHK for which there is no πPΠ such
that ps,hqPSp,π for the given pPP , then neither the policy nor the transition model in ps,hq appears in the constraints of
RX

p,πE ,Rp,πE , or RY
p,πE (when viewed using Theorem 3.1). In practice, the values of the rewards r of RX

p,πE (and Rp,πE ,

and RY
p,πE ) in such ps,a,hqRZp,πb

can be chosen arbitrarily, irrespective of the reward in any other ps1,a1,h1qPSˆAˆJHK,
and therefore we have RX

p,πE “Rp,πE “RY
p,πE .

D.5. An annoying corner case

To cope with the bitter lesson of Section 8, we work with two datasets. As aforementioned, we use DE to estimate Sp,πE

and πE , and we use Db to estimate p. However, it might happen the following situation. Let ps,hqP pSp,πE

(where pSp,πE

is the estimate of Sp,πE

computed from DE), and let pSp,πE

h`1 “tsu, i.e., dataset DE tells us that the support of the expert’s
policy at h`1 is made of state s only. Let aE :“pπE

h psq. By using dataset Db, we might come up with the estimate of the
transition model at ps,aE ,hq:

#

pphps|s,aEqą0

pphps1|s,aEqą0
,

where s1 PS is some other state not in pSp,πE

h`1 . Clearly, this means that s1 PSp,πE

h`1 ; however, due to finite data, dataset DE

does not provide us with this information. This fact provides a contradiction between pp and pSp,πE

. To avoid issues in the
implementation of PIRLO, we define the confidence set Cppp,bq (see Eq. 7) by allowing the support of the transition model
of expert’s actions to be compatible with the estimate provided by Db, i.e., we set:

Cppp,bq :“
!

p1 PP |@ps,a,hqP pZp,πb

: }p1
hp¨|s,aq´ pphp¨|s,aq}1 ďbhps,aq^

@ps,hqP pSp,πE

,@s1 R
`

pSp,πE

h`1 Ysupp pphp¨|s,pπE
h psq

˘

: p1
hps1|s,pπE

h psqq“0
)

.

Observe that the union over the support of pphp¨|s,aEq solves the potential issue created by the corner case described in
this section. It should be remarked that, under good event E (see Appendix F), it holds that pSp,πE

“Sp,πE

, and therefore
pSp,πE

h`1 Y supp pphp¨|s,pπE
h psqq“ pSp,πE

h`1 “Sp,πE

h`1 .

D.6. Distances d and d8 control the distance between value functions

We provide the proof of the proposition reported in Section 4.

Proposition 4.2. For any r,r1 PR, it holds that:

dGV ˚ pr,prqď2d8pr,prqď
2dpr,prq

ρπ
b,Zp,πb

min

.
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Proof. The proof is similar to that of Theorem 4.1 of (Metelli et al., 2023). For any s,h and policy pπ˚ optimal in some pr,
we can write:

V ˚
h ps;rq´V pπ˚

h ps;rq“V ˚
h ps;rq´V pπ˚

h ps;rq˘V pπ˚

h ps;prq

“

´

V ˚
h ps;rq´V pπ˚

h ps;prq

¯

`

´

V pπ˚

h ps;prq´V pπ˚

h ps;rq

¯

(1)
ď

´

V ˚
h ps;rq´V π˚

h ps;prq

¯

`

´

V pπ˚

h ps;prq´V pπ˚

h ps;rq

¯

“

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

Pp,π˚ psl “s1,al “a1|sh “sqprlps
1,a1q´prlps

1,a1qq

`

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

Pp,pπ˚ psl “s1,al “a1|sh “sqprlps
1,a1q´prlps

1,a1qq

ď2
H
ÿ

l“h

}rl ´prl}8,

where at (1) we have used that pπ˚ is optimal under pr.

Multiplying both sides by 1{Mpr,prq concludes the proof, and noticing that ρp,π
b

permits to bound d8 by d, we get the
result.

E. Proofs of Section 3 and Section 4
In this section, we provide the missing proofs of Section 3 and Section 4.

To prove Theorem 3.1, it is useful to introduce the following lemma.

Lemma E.1. In the setting of Definition 3.2, the feasible reward set Rp,πE satisfies:

Rp,πE “trPR |@ps,hqPSp,πE

,@aPA :Q˚
hps,πE

h psq;p,rqěQ˚
hps,a;p,rqu.

Proof. The statement of the theorem is equivalent to the necessary and sufficient condition:

JpπE ;µ0,p,rq“max
πPΠ

Jpπ;µ0,p,rq ðñ @ps,hqPSp,πE

:Q˚
hps,πE

h psq;p,rq“max
aPA

Q˚
hps,a;p,rq.

We split the proof in two parts. First we show the sufficiency, then the necessity.

Let us start with the sufficiency. Let r be any reward in R and p any transition model in P . By contradiction, suppose
that there exists a policy π1 PargmaxπPΠJpπ;µ0,p,rq for which there exists a ps1,h1q in the union of the supports of the
hPJHK distributions ρp,π

1

h p¨q in which Q˚
h1 ps1,π1

h1 ps1q;p,rqămaxa1PAQ˚
h1 ps1,a1;p,rq (the notation refers to a deterministic

π1 but it can be taken stochastic by computing the expected value). Let π˚ PargmaxπPΠV π
h ps;p,rq@ps,hqPSˆJHK be an

auxiliary optimal policy whose existence is a widely-known result in RL (see Puterman, 1994). By hypothesis, it holds that:

Jpπ1;µ0,p,rq“max
πPΠ

Jpπ;µ0,p,rq“Jpπ˚;µ0,p,rq.

From the performance difference lemma (Kakade & Langford, 2002), by denoting the advantage function by Aπ
hps,a;p,rq :“

Qπ
hps,a;p,rq´V π

h ps;p,rq, we can write:

Jpπ1;µ0,p,rq´Jpπ˚;µ0,p,rq“
ÿ

hPJHK

E
ps,aq„ρp,π1

h p¨,¨q

“

Aπ˚

h ps,a;p,rq
‰

(1)
“ρp,π

1

h1 ps1qAπ˚

h1 ps1,π1
h1 ps1q;p,rq

(2)
ă0,
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where at (1) we have used that in all ps,hqPSˆJHKztps1,h1qu the policy π1 prescribes the action greedy w.r.t. Q˚, and thus
the advantage is 0, and (2) holds by (contradiction) hypothesis. However, by hypothesis, we know that Jpπ˚;µ0,p,rq´

Jpπ1;µ0,p,rq“0, thus we have obtained a contradiction, so the sufficiency holds.

As far as the necessity is concerned, let us consider again an auxiliary optimal policy π˚ and a policy π1 such that
Q˚

h1 ps1,π1
h1 ps1q;p,rq“maxa1PAQ˚

h1 ps1,a1;p,rq in the support of the hPJHK distributions ρp,π
1

h p¨q. By applying the perfor-
mance difference lemma, we can write:

Jpπ1;µ0,p,rq´Jpπ˚;µ0,p,rq“
ÿ

hPJHK

E
s„ρp,π1

h p¨q

“

Aπ˚

h ps,a;p,rq
‰

“
ÿ

hPJHK

ÿ

ps,aqPSˆA:ρp,π1

h ps,aqą0

ρp,π
1

h ps,aqAπ˚

h ps,a;p,rq
looooooomooooooon

“0

“0,

where we have simply used the hypothesis.

By setting πE ”π1, we get the result.

Now, we are ready to prove Theorem 3.1:

Theorem 3.1. In the setting of Definition 3.2, the feasible reward set Rp,πE satisfies:

Rp,πE “trPR |@πPrπEs”
Sp,πE

,@ps,hqPSp,πE

, @aPA :

Qπ
hps,πE

h psq;p,rqěQπ
hps,a;p,rqu. (4)

Proof. Thanks to Lemma E.1, to prove the statement of the theorem we have to show the equivalence of the constraints:

@ps,hqPSp,πE

,@aPA : Q˚
hps,πE

h psq;p,rqěQ˚
hps,a;p,rq (14)

ðñ

@ps,hqPSp,πE

,@aPA,@πPrπEs”
Sp,πE

: Qπ
hps,πE

h psq;p,rqěQπ
hps,a;p,rq, (15)

where we have exchanged the order of the quantifiers (because they all are of the same type). Observe that Eq. 14 can be
rewritten as:

@ps,hqPSp,πE

,@aPA : Qπ˚

h ps,πE
h psq;p,rqěQπ˚

h ps,a;p,rq,

because of the existence of some optimal policy π˚ (see Puterman, 1994). Now, by induction over hPJHK, it is easy to
show that Eq. 14 entails the existence of an optimal policy π˚ PrπEs”

Sp,πE
. Therefore, we can rewrite the constraint as:

@ps,hqPSp,πE

,@aPA : QπE

h ps,πE
h psq;p,rqěQπ˚

h ps,a;p,rq,

since playing π˚ from Sp,πE

brings again into Sp,πE

. By definition of π˚, we have:

Qπ˚

h ps,a;p,rq“Q˚
hps,a;p,rq :“max

πPΠ
Qπ

hps,a;p,rqěQπ
hps,a;p,rq,

for all πPrπEs”
Sp,πE

. Since π˚ PrπEs”
Sp,πE

, then we have shown that the two conditions in Eq. 14 and Eq. 15 are
equivalent.

As a direct consequence of Theorem 3.1, we have the following corollary.

Corollary D.1. In the setting of Definition 3.2 the feasible reward set Rp,πE satisfies:

Rp,πE “
ď

π1PrπEs”
Sp,πE

Rp,π1 .
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Proof. Let ps,a,hqPSˆAˆJHK and let p be a transition model in P . Define:

Ra :“trPR |Q˚
hps,a;p,rq“max

a1PA
Q˚

hps,a1;p,rqu,

i.e., the set of rewards satisfying the constraint on the optimality of action a in a single ps,hq pair. It is well known (see
Puterman, 1994) that, given a reward function and a transition model, there always exists an optimal policy whose Q-function
coincides, by definition, with the optimal Q-function. In other words, for any pPP and any rPR, the optimal Q-function is
“well-defined”. Therefore, it holds that:

ď

aPA
Ra “R,

because we are making the union of the rewards that induce action a to be optimal in ps,hq for any aPA. To put it simple,
if we add the constraint that at pair ps,hqPSˆJHK there exists an optimal action, we are not actually adding a constraint.
Notice that we can do the same with policies πPΠ instead of actions aPA. Thanks to Lemma E.1 and the property just
highlighted, we can write:

Rp,πE “trPR |@ps,hqPSp,πE

:Q˚
hps,πE

h psq;p,rq“max
aPA

Q˚
hps,a;p,rqu

“trPR |Dπ1 PrπEs”
Sp,πE

: @ps,hqPSˆJHK :Q˚
hps,π1

hpsq;p,rq“max
aPA

Q˚
hps,a;p,rqu

“
ď

π1PrπEs”
Sp,πE

Rp,π1 .

In this way, the constraints are defined only for ps,hqPSp,πE

.

With regards to Section 4, we provide the following proposition.
Proposition 4.1. For any r,r1 PR, it holds that:

dpr,r1qď2d8pr,r1qď
2

ρπ
b,Zp,πb

min

dpr,r1q.

Proof. The first inequality is straightforward. For the second, observe that:

d8pr,prq :“
1

M

ÿ

hPrHs

max
ps,aqPSˆA

|rhps,aq´prhps,aq|

“
1

M

ÿ

hPrHs

max
␣

max
ps,aqPZp,πb

h

|rhps,aq´prhps,aq|, max
ps,aqRZp,πb

h

|rhps,aq´prhps,aq|
(

“
1

ρπ
b,Zp,πb

min

1

M

ÿ

hPrHs

max
␣

max
ps,aqPZp,πb

h

ρπ
b,Zp,πb

min |rhps,aq´prhps,aq|,ρπ
b,Zp,πb

min max
ps,aqRZp,πb

h

|rhps,aq´prhps,aq|
(

(1)
ď

1

ρπ
b,Zp,πb

min

1

M

ÿ

hPrHs

max
␣

max
ps,aqPZp,πb

h

ρp,π
b

h ps,aq|rhps,aq´prhps,aq|, max
ps,aqRZp,πb

h

|rhps,aq´prhps,aq|
(

(2)
ď

1

ρπ
b,Zp,πb

min

1

M

ÿ

hPrHs

max
␣

ÿ

ps,aqPZp,πb

h

ρp,π
b

h ps,aq|rhps,aq´prhps,aq|, max
ps,aqRZp,πb

h

|rhps,aq´prhps,aq|
(

“
1

ρπ
b,Zp,πb

min

1

M

ÿ

hPrHs

max
␣

E
ps,aq„ρp,πb

h p¨,¨q

|rhps,aq´prhps,aq|, max
ps,aqRZp,πb

h

|rhps,aq´prhps,aq|
(

(3)
ď

1

ρπ
b,Zp,πb

min

1

M

ÿ

hPrHs

ˆ

E
ps,aq„ρp,πb

h p¨,¨q

|rhps,aq´prhps,aq|` max
ps,aqRZp,πb

h

|rhps,aq´prhps,aq|

˙

“:
1

ρπ
b,Zp,πb

min

dpr,prq,

where at (1) we have upper bounded ρπ
b,Zp,πb

min ďρp,π
b

h ps,aq for ps,aqPZp,πb

h , and ρπ
b,Zp,πb

min ď1, and at (2) and (3) we have
used that maxta,buďa`b for a,bě0.
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F. Sample Complexity Analysis
In this section, we present our results on the sample complexity of IRLO (Algorithm 1 - IRLO box) and PIRLO (Algorithm
1 - PIRLO box) with both distances d and d8.

The section is organized into various subsections. We begin with Section F.1, in which we present the concentration results
that will be used in all the sample complexity proofs. Section F.2 contains the proofs of sample complexity of IRLO w.r.t.
distances d and d8. Analogously, Section F.3 contains the proofs of sample complexity of PIRLO w.r.t. distances d and d8.
In Section F.4, we present additional sample complexity results for PIRLO w.r.t. d,d8 under additional requirements. We
conclude with Section F.5, in which we present a result of sample complexity on the estimation problem of the superset only,
as defined in Equation (8).

F.1. Concentration Lemmas

We define good event E as the intersection of four events E1,E2,E3,E4. Events E1 and E2 allow to obtain exact estimates of
Zp,πb

and Sp,πE

w.h.p., while events E3 and E4 allow to concentrate the estimates of the transition models around their
means.

Lemma F.1 (Coverage Events). Let M be an MDP without reward and let πE be the expert’s policy. Let Db “

txsb,ih ,ab,ih yhPJHKuiPJτbK and DE “txsE,j
h ,aE,j

h yhPJHKujPJτKE be datasets of τ b and τE trajectories collected by executing
policies πb and πE in M. Denote with N b

hps,aq the visitation count of triple ps,a,hqPZp,πb

computed using Db, and by
NE

h ps,aq the analogous for DE . For any δPp0,1q, define events E1,E2 as:

E1 :“

#

N b
hps,aqě1, @ps,a,hqPZp,πb

when τ b ěc1
ln |Zp,πb

|

δ

ln 1

1´ρπb,Zp,πb

min

+

,

E2 :“

#

NE
h ps,aqě1, @ps,a,hqPZp,πE

when τE ěc2
ln |Sp,πE

|

δ

ln 1

1´ρπE,Zp,πE

min

+

,

where c1 and c2 are universal constants. Then, event E1 XE2 holds with probability at least 1´δ{2.

Proof. Let us begin with event E1. We observe that N b
hps,aq„Binpτ b,ρp,π

b

h ps,aqq. In an analogous manner as Lemma E.5
of Metelli et al. (2023), we can write:

P
p,πb

pEA
1q“ P

p,πb
pDps,a,hqPZp,πb

:N b
hps,aq“0q

(1)
ď

ÿ

ps,a,hqPZp,πb

P
p,πb

pN b
hps,aq“0q

“
ÿ

ps,a,hqPZp,πb

p1´ρp,π
b

h ps,aqqτ
b

(2)
ď

ÿ

ps,a,hqPZp,πb

p1´ρπ
b,Zp,πb

min qτ
b

“|Zp,πb

|p1´ρπ
b,Zp,πb

min qτ
b

ď
δ

4
,

where at (1) we used a union bound, and at (2) the definition of ρπ
b,Zp,πb

min :“min
ps,a,hqPZp,πb ρp,π

b

h ps,aq. Solving w.r.t. τ b

we get:

τ b ě
ln 4|Zp,πb

|

δ

ln 1

1´ρπb,Zp,πb

min

,

from which the bound for event E1 holds for some uninteresting constant c1.
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Observe that, by following a similar reasoning, we can prove the bound for event E2, by recalling that, by hypothesis, the
expert’s policy is deterministic, so |Zp,πE

|“|Sp,πE

|. The statement of the theorem follows by an application of the union
bound.

Before presenting the next lemma, we introduce the symbols:

bhps,aq :“

d

2βpN b
hps,aq, δq

maxtN b
hps,aq,1u

, (16)

and

βpn,δq :“ lnp4Zp,πb

{δq`pSp,πb

max ´1q lnpep1`n{pSp,πb

max ´1qqq, (17)

with Zp,πb

:“|Zp,πb

| and Sp,πb

max :“maxhPJHK |Sp,πb

h |. The corresponding counterparts with the estimated quantities are
given as follows:

pbhps,aq :“

d

2pβpN b
hps,aq, δq

maxtN b
hps,aq,1u

, (18)

and

pβpn,δq :“ lnp4 pZp,πb

{δq`ppSp,πb

max ´1q lnpep1`n{ppSp,πb

max ´1qqq, (19)

with pZp,πb

:“| pZp,πb

| and pSp,πb

max :“maxhPJHK | pSp,πb

h |. Clearly, under the good event E1 XE2, the two versions coincide.

Lemma F.2 (Concentration). Let M be an MDP without reward and let πE be the expert’s policy. Let Db “

txsb,ih ,ab,ih yhPJHKuiPJτbK and DE “txsE,j
h ,aE,j

h yhPJHKujPJτKE be datasets of τ b and τE trajectories collected by executing
policies πb and πE in M. Denote with pphp¨|s,aq the empirical transition model of triple ps,a,hqPZp,πb

computed using
Db. For any δPp0,1q, define events E3,E4 as:

E3 :“

#

N b
hps,aqKLppphp¨|s,aq}php¨|s,aqqďβpN b

hps,aq, δq, @τ b PN, @ps,a,hqPZp,πb

+

,

E4 :“

#

1

N b
hps,aq_1

ďc4
ln |Zp,πb

|

δ

τ bρp,π
b

h ps,aq
, @ps,a,hqPZp,πb

+

,

where c4 is a universal constant. Then, event E3 XE4 holds with probability at least 1´δ{2.

Proof. We show that both events E3,E4 hold with probability at least 1´ δ
4 . The thesis follows through the application of a

union bound.

Let us begin with event E3. Similarly to the proof of Lemma 10 in Kaufmann et al. (2021), we apply Lemma J.2 and a union
bound to get:

P
p,πb

pEA
3q“ P

p,πb

ˆ

Dps,a,hqPZp,πb

, Dτ b PN :N b
hps,aqKLppphp¨|s,aq}php¨|s,aqqąβpN b

hps,aq, δq

˙

ď
ÿ

ps,a,hqPZp,πb

P
p,πb

ˆ

Dτ b PN :N b
hps,aqKLppphp¨|s,aq}php¨|s,aqqąβpN b

hps,aq, δq

˙

ď
ÿ

ps,a,hqPZp,πb

δ

4|Zp,πb
|

“
δ

4
.

It should be remarked that, in the definition of β (Equation 17), we have used |Sp,πb

max | instead of S because it better represents
the support of the transition model in triples ps,a,hqPZp,πb

.
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As far as event E4 is concerned, consider an arbitrary triple ps,a,hqPZp,πb

. Observe that the visitation count N b
hps,aq

is binomially distributed, i.e., N b
hps,aq„Binpτ,ρp,π

b

h ps,aqq. Therefore, similarly to Lemma B.1 of (Xie et al., 2021), by
applying Lemma J.1 with confidence δ{p4|Zp,πb

|q, we can concentrate the binomial as:

ρp,π
b

h ps,aq

N b
hps,aq_1

ď
8ln 4|Zp,πb

|

δ

τ
,

from which we get:

P
p,πb

´ 1

N b
hps,aq_1

ď
8ln 4|Zp,πb

|

δ

τρp,π
b

h ps,aq

¯

ě1´
δ

4|Zp,πb
|
.

We can perform a union bound over ps,a,hqPZp,πb

to get:

P
p,πb

´

Dps,a,hqPZp,πb

:
1

N b
hps,aq_1

ą
8ln 4|Zp,πb

|

δ

τρp,π
b

h ps,aq

¯

ď
δ

4
.

By choosing c4 appropriately, we get the result.

Since E :“E1 XE2 XE3 XE4, then, by combining Lemma F.1 with Lemma F.2 through a union bound, we get that E holds
w.p. 1´δ.

F.2. Proof of Theorem 5.1 and Theorem 5.2

The next lemmas show that, for any reward in RX
p,πE (RY

p,πE ), it is possible to find a “similar” reward in the estimate RX
p̂,π̂E

(RY
p̂,π̂E ). Notice that, under events E1 and E2 we have that, respectively, pZp,πb

“Zp,πb

and pSp,πE

“Sp,πE

. For the sake of
simplicity, we provide here the (recursive) definitions of pm,pM Prps”

Zp,πb
for any rPR:

pM :“

$

&

%

pMh p¨|s,aq“php¨|s,aq, @ps,a,hqPZp,πb

pMh p¨|s,aq“1t¨“argmax
s1PS

V πM

h`1ps1;pM , ru, otherwise ,

pm :“

$

&

%

pmh p¨|s,aq“php¨|s,aq, @ps,a,hqPZp,πb

pmh p¨|s,aq“1t¨“argmin
s1PS

V πm

h`1ps1;pm, ru, otherwise ,

(20)

where we have used the following (recursive) policy definitions πM ,rπm PrπEs”
Sp,πE

:

πM :“

$

&

%

πM
h psq“πE

h psq, if ps,hqPSp,πE

πM
h p¨|sq“1t¨“argmax

aPA
QπM

h ps,a;pM , rqu, if ps,hqRSp,πE ,

πm :“

$

&

%

πm
h psq“πE

h psq, if ps,hqPSp,πE

πm
h p¨|sq“1t¨“argmax

aPA
Qπm

h ps,a;pm, rqu, if ps,hqRSp,πE .

(21)

Thanks to these definitions, we can rewrite RX
p,πE and RY

p,πE as:

RX
p,πE “trPR |@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ;p,rqěQπM

h ps,a;pM , rqu,

RY
p,πE “trPR |@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ;p,rqěQπm

h ps,a;pm, rqu.
(22)

We will denote by ppM , ppm,pπM ,pπm the transition models and policies defined as in Eq. 20 and Eq. 21 but for transition
model pp.
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Lemma F.3 (Reward Choice Subset). Let RX
p,πE be the subset of the feasible set Rp,πE estimated through RX

p̂,π̂E outputted
by Algorithm 1. Under event E , for any rPRX

p,πE , the reward pr constructed as:
$

&

%

prhps,aq“rhps,aq`
ř

s1PS
phps1|s,aqV πM

h`1ps1;pM , rq´
ř

s1PS
pphps1|s,aqV pπM

h`1ps1; ppM ,prq, @ps,a,hqPZp,πb

prhps,aq“rhps,aq, @ps,a,hqRZp,πb
,

belongs to RX
p̂,π̂E . Moreover, for any reward prPRX

p̂,π̂E , we can construct in the same manner a reward r that belongs to
RX

p,πE .

Proof. The idea of the proof is to show that QπM

h ps,a;pM , rq“QpπM

h ps,a; ppM ,prq for all ps,a,hqPSˆAˆJHK. Indeed, in
this way, since rPRX

p,πE , then it holds that:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; pp,prq´QpπM

h ps,a; ppM ,prq“QπE

h ps,aE ;p,rq´QπM

h ps,a;pM , rqě0.

Let us begin with any ps,a,hqPZp,πb

. By definition of pr and by rearranging the terms, we obtain:

prhps,aq`
ÿ

s1PS
pphps1|s,aqV pπM

h`1ps1; ppM ,prq“rhps,aq`
ÿ

s1PS
phps1|s,aqV πM

h`1ps1;pM , rq

ðñ QpπM

h ps,a; ppM ,prq“QπM

h ps,a;pM , rq. (23)

In particular, observe that, by Assumption 2.1, it holds Zp,πE

ĎZp,πb

; moreover, by definition of ppM and pM , playing an
expert’s action from Sp,πE

brings again into Sp,πE

, therefore, for ps,aE ,hqPZp,πE

, this means:

QπE

h ps,aE ; pp,prq“QπE

h ps,aE ;p,rq.

Now, we show by induction that, for any ps,a,hqRZp,πb

, it holds that:

QpπM

h ps,a; ppM ,prq“QπM

h ps,a;pM , rq.

As case base, consider stage H . Clearly, for any ps,aqRZp,πb

H , we have:

QpπM

H ps,a; ppM ,prq“prHps,aq

“rHps,aq

“QπM

h ps,a;pM , rq,

where we have used the definition of pr. Make the inductive hypothesis that, at stage h`1, for any ps,aqRZp,πb

h`1 , it holds
that QpπM

h`1ps,a; ppM ,prq“QπM

h`1ps,a;pM , rq, and consider stage h:

QpπM

h ps,a; ppM ,prq“prhps,aq`
ÿ

s1PS
ppMh ps1|s,aqV pπM

h`1ps1; ppM ,prq

(1)
“rhps,aq`

ÿ

s1PS
ppMh ps1|s,aqV pπM

h`1ps1; ppM ,prq

(2)
“rhps,aq`max

s1PS
V pπM

h`1ps1; ppM ,prq

“rhps,aq`max
␣

max
s1PSp,πb

h`1

V pπM

h`1ps1; ppM ,prq, max
s1RSp,πb

h`1

V pπM

h`1ps1; ppM ,prq
(

(3)
“rhps,aq`max

␣

max
s1PSp,πb

h`1

V πM

h`1ps1;pM , rq, max
s1RSp,πb

h`1

V pπM

h`1ps1; ppM ,prq
(

(4)
“rhps,aq`max

␣

max
s1PSp,πb

h`1

V πM

h`1ps1;pM , rq, max
s1RSp,πb

h`1

V πM

h`1ps1;pM , rq
(
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“rhps,aq`max
s1PS

V πM

h`1ps1;pM , rq

“QπM

h ps,a;pM , rq,

where at (1) we use the definition of r̂ outside Zp,πb

, at (2) we use the definition of ppM , at (3) we use Eq. 23, and at (4) we
use the inductive hypothesis.

Notice that the same passages can be carried out if we exchanged p and pp. This concludes the proof.

Notice that the reward function chosen in Lemma F.3 can be interpreted, in an analogous manner as in the proof of Theorem
3.1 of Metelli et al. (2021), as the reward that provides, in transition model pp, the same Q-function provided by the given
reward in p.

We can prove an analogous result for the superset RY
pp,pπE .

Lemma F.4 (Reward Choice Superset). Let RY
p,πE be the subset of the feasible set Rp,πE estimated through RY

p̂,π̂E outputted
by Algorithm 1. Under event E , for any rPRY

p,πE , the reward pr constructed as:
$

&

%

prhps,aq“rhps,aq`
ř

s1PS
phps1|s,aqV πm

h`1ps1;pm, rq´
ř

s1PS
pphps1|s,aqV pπm

h`1ps1; ppm,prq, @ps,a,hqPZp,πb

prhps,aq“rhps,aq, @ps,a,hqRZp,πb
,

belongs to RY
p̂,π̂E . Moreover, for any reward prPRY

p̂,π̂E , we can construct in the same manner a reward r that belongs to
RY

p,πE .

Proof. The idea of the proof is analogous to that of Lemma F.3, and is reported here for completeness. We aim to show that
Qπm

h ps,a;pm, rq“Qpπm

h ps,a; ppm,prq for all ps,a,hqPSˆAˆJHK. Indeed, in this way, since rPRY
p,πE , then it holds that:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; pp,prq´Qpπm

h ps,a; ppm,prq“QπE

h ps,aE ;p,rq´Qπm

h ps,a;pm, rqě0.

Let us begin with any ps,a,hqPZp,πb

. By definition of pr and by rearranging the terms, we obtain:

prhps,aq`
ÿ

s1PS
pphps1|s,aqV pπm

h`1ps1; ppm,prq“rhps,aq`
ÿ

s1PS
phps1|s,aqV πm

h`1ps1;pm, rq

ðñ Qpπm

h ps,a; ppm,prq“Qπm

h ps,a;pm, rq. (24)

In particular, observe that, by Assumption 2.1, it holds Zp,πE

ĎZp,πb

; moreover, by definition of ppm and pm, playing an
expert’s action from Sp,πE

brings again into Sp,πE

, therefore, for ps,aE ,hqPZp,πE

, this means:

QπE

h ps,aE ; pp,prq“QπE

h ps,aE ;p,rq.

Now, we show by induction that, for any ps,a,hqRZp,πb

, it holds that:

Qpπm

h ps,a; ppm,prq“Qπm

h ps,a;pm, rq.

As case base, consider stage H . Clearly, for any ps,aqRZp,πb

H , we have:

Qpπm

H ps,a; ppm,prq“prHps,aq

“rHps,aq

“Qπm

h ps,a;pm, rq,

where we have used the definition of pr. Make the inductive hypothesis that, at stage h`1, for any ps,aqRZp,πb

h`1 , it holds
that Qpπm

h`1ps,a; ppm,prq“Qπm

h`1ps,a;pm, rq, and consider stage h:

Qpπm

h ps,a; ppm,prq“prhps,aq`
ÿ

s1PS
ppmh ps1|s,aqV pπm

h`1ps1; ppm,prq
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(1)
“rhps,aq`

ÿ

s1PS
ppmh ps1|s,aqV pπm

h`1ps1; ppm,prq

(2)
“rhps,aq`min

s1PS
V pπm

h`1ps1; ppm,prq

“rhps,aq`min
␣

min
s1PSp,πb

h`1

V pπm

h`1ps1; ppm,prq, min
s1RSp,πb

h`1

V pπm

h`1ps1; ppm,prq
(

(3)
“rhps,aq`min

␣

min
s1PSp,πb

h`1

V πm

h`1ps1;pm, rq, min
s1RSp,πb

h`1

V pπm

h`1ps1; ppm,prq
(

(4)
“rhps,aq`min

␣

min
s1PSp,πb

h`1

V πm

h`1ps1;pm, rq, min
s1RSp,πb

h`1

V πm

h`1ps1;pm, rq
(

“rhps,aq`max
s1PS

V πm

h`1ps1;pm, rq

“Qπm

h ps,a;pm, rq,

where at (1) we use the definition of r̂ outside Zp,πb

, at (2) we use the definition of ppm, at (3) we use Eq. 24, and at (4) we
use the inductive hypothesis.

Notice that the same passages can be carried out if we exchanged p and pp. This concludes the proof.

From the proofs of Lemma F.3 and Lemma F.4, we notice that proving the result for the superset is “easier”, because we
simply have to consider a single transition model; instead, for the subset, we have to consider all the transition models in the
equivalence class. Luckily, we can single out a “worst” transition model from this class and provide the proof only for it.
We will see in the proofs of the results with pessimism how to cope with the trickier problem in which there exist many
“worst” transition models, and thus the recursion cannot be applied directly.

Thanks to Lemma F.3 and Lemma F.4, we can upper bound the distance between sets of rewards by a term that depends on
the distance between the transition models. We do not have error for the policy because, under good event E , we have that
pπE “πE in pSp,πE

“Sp,πE

.

Lemma F.5 (Performance Decomposition Subset and Superset). Let pRX :“RX
p̂,π̂E and pRY :“RY

p̂,π̂E be the output of IRLO
(Algorithm 1). Under the good event E , it holds that:

HdpRX
p,πE , pRXqďH

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq,

and:

HdpRY
p,πE , pRYqďH

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq.

Proof. By Definition 4.2, we can write:

HpRX
p,πE , pRXq :“maxt sup

rPRX

p,πE

inf
prP pRX

dpr,prq, sup
prP pRX

inf
rPRX

p,πE

dpr,prqu

(1)
ďmaxt sup

rPRX

p,πE

dpr,rr1q, sup
prP pRX

dprr2,prqu

(2)
“max

#

sup
rPRX

p,πE

1

M

ÿ

hPJHK

ˆ

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rr1hps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´rr1hps,aq
ˇ

ˇ

looooooooooooooooomooooooooooooooooon

“0

˙

,

sup
prP pRX

1

M

ÿ

hPJHK

ˆ

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇ

prhps,aq´rr2hps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇ

prhps,aq´rr2hps,aq
ˇ

ˇ

looooooooooooooooomooooooooooooooooon

“0

˙

+
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(3)
“max

"

sup
rPRX

p,πE

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇ

ÿ

s1PS
pphps1|s,aq´ pphps1|s,aqqV πM

h`1ps1;pM , rq
ˇ

ˇ,

sup
prP pRX

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇ

ÿ

s1PS
ppphps1|s,aq´phps1|s,aqqV pπM

h`1ps1; ppM ,prq
ˇ

ˇ

*

(4)
ďmax

"

sup
rPRX

p,πE

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ÿ

s1PS

ˇ

ˇpphps1|s,aq´ pphps1|s,aqqV πM

h`1ps1;pM , rq
ˇ

ˇ,

sup
prP pRX

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ÿ

s1PS

ˇ

ˇppphps1|s,aq´phps1|s,aqqV pπM

h`1ps1; ppM ,prq
ˇ

ˇ

*

(5)
ďmax

"

sup
rPRX

p,πE

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ÿ

s1PS

ˇ

ˇpphps1|s,aq´ pphps1|s,aqqH
ˇ

ˇ,

sup
prP pRX

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ÿ

s1PS

ˇ

ˇppphps1|s,aq´phps1|s,aqqH
ˇ

ˇ

*

“
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ÿ

s1PS

ˇ

ˇpphps1|s,aq´ pphps1|s,aqqH
ˇ

ˇ

“
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

H
›

›php¨|s,aq´ pphp¨|s,aq
›

›

1

(6)
ď

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

H
b

2KL
`

php¨|s,aq}pphp¨|s,aq
˘

(7)
ď

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

H

d

2
βpN b

hps,aq, δq

N b
hps,aq

“H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq,

where at (1) we have applied Lemma F.3, denoting by rr1 P pRX and rr2 PRX
p,πE the choices of rewards, and used that

infxPX fpxqďfpx̄q for any x̄PX ; at (2) we have used the definition of distance d, at (3) we have inserted the definitions of
rr1 and rr2 as provided by Lemma F.3, in particular using that QπM

h ps,a;pM , rq“QpπM

h ps,a; ppM ,prq, at (4) we have applied
triangle inequality, to bring the absolute value inside the summation, at (5) we upper bound V πM

h`1ps1;pM , rqďH}r}8 and
V pπM

h`1ps1; ppM ,prqďH}pr}8, and since M :“1{maxt}r}8,}pr}8u, we obtain H}r}8{M ďH and H}pr}8{M ďH; at (6) we
have applied Pinsker’s inequality, and at (7) we have applied the bound of E3 ĚE noticing that N b

hps,aqě1 because of event
E1 ĚE .

A similar procedure can be carried out also for the supersets, using Lemma F.4 instead of Lemma F.3.

Finally, we have all the tools we need to prove Theorem 5.1.

Theorem 5.1. Let M be an MDP without reward and let πE be the expert’s policy. Let DE and Db be two datasets of τE

and τ b trajectories collected with policies πE and πb in M, respectively. Under Assumption 2.1, IRLO is pϵ,δq-PAC for
d-IRL with a sample complexity at most:

τ b ď rO

˜

H3Zp,πb

ln 1
δ

ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

τE ď rO

˜

ln 1
δ

ln 1

1´ρπE,Zp,πE

min

¸

.

Proof. First, observe that, thanks to Lemma F.1 and Lemma F.2, we have that good event E holds w.p. 1´δ with a number
of trajectories τE and τ b upper bounded as in events E1 and E2. Now, under good event E , the idea of the proof is to compute
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the number of trajectories τ b needed to have a distance between sets of rewards smaller than ϵ. Then, we combine it with the
number of trajectories required by event E through maxta,buďa`b for a,bě0.

Let us begin with the subset. Thanks to Lemma F.5, we can write:

HdpRX
p,πE , pRXqďH

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq

“H
ÿ

hPJHK

ÿ

ps,aqPZp,πb

h

ρp,π
b

h ps,aqbhps,aq

“H
ÿ

hPJHK

ÿ

ps,aqPZp,πb

h

ρp,π
b

h ps,aq

d

2
βpN b

hps,aq, δq

N b
hps,aq

(1)
ď

?
2H

ÿ

hPJHK

ÿ

ps,aqPZp,πb

h

ρp,π
b

h ps,aq

d

βpτ b, δq

N b
hps,aq

“

b

2βpτ b, δqH
ÿ

hPJHK

ÿ

ps,aqPZp,πb

h

ρp,π
b

h ps,aq

d

1

N b
hps,aq

(2)
ď

b

2βpτ b, δqH
ÿ

hPJHK

ÿ

ps,aqPZp,πb

h

ρp,π
b

h ps,aq

g

f

f

ec4
ln |Zp,πb

|

δ

τ bρp,π
b

h ps,aq

(3)
“c5

d

βpτ b, δq ln |Zp,πb
|

δ

τ b
H

ÿ

hPJHK

ÿ

ps,aqPZp,πb

h

b

ρp,π
b

h ps,aq

(4)
ďc5

d

βpτ b, δq ln |Zp,πb
|

δ

τ b
H

ÿ

hPJHK

b

|Zp,πb

h |

g

f

f

e

ÿ

ps,aqPZp,πb

h

ρp,π
b

h ps,aq

“c5

d

βpτ b, δq ln |Zp,πb
|

δ

τ b
H

ÿ

hPJHK

b

|Zp,πb

h |

(5)
ďc5

d

βpτ b, δq ln |Zp,πb
|

δ

τ b
H

b

H|Zp,πb
|ďϵ,

where at (1) we have used that τ b ěN b
hps,aq for all ps,a,hqPZp,πb

, and that function βp¨, δq is monotonically increasing;
at (2) we have applied the result in Lemma F.2 for event E4, at (3) we define constant c5 :“

?
2c4, and at (4) and (5) we have

applied the Cauchy-Schwarz’s inequality.

To compute an upper bound to the number of trajectories required to have HdpRX
p,πE , pRXqďϵ, we compute the smallest τ b

that satisfies:

c5

d

βpτ b, δq ln |Zp,πb
|

δ

τ b
H

b

H|Zp,πb
|ďϵ.

By using the definition of βpτ b, δq from Eq. 17 and rearranging the terms, this is equivalent to finding the smallest τ b such
that:

τ b ěc6
H3|Zp,πb

| ln |Zp,πb
|

δ

`

ln 4|Zp,πb
|

δ `p|Sp,πb

max |´1q ln
`

ep1`τ b{p|Sp,πb

max |´1qq
˘˘

ϵ2
,
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where c6 :“c25. If we define:

a :“c6
H3|Zp,πb

| ln |Zp,πb
|

δ ln 4|Zp,πb
|

δ

ϵ2
,

b :“c6
H3|Zp,πb

| ln |Zp,πb
|

δ p|Sp,πb

max |´1q

ϵ2
,

c :“
e

|Sp,πb

max |´1
,

d :“e,

then we can rewrite the previous expression as:

τ b ěa`b lnpcτ b `dq.

To solve it, we can notice that a,b,c,dą0 and 2bcąe, thus we can apply Lemma J.317 to obtain:

τ b ě2a`3b lnp2bcq`d{c.

Replacing a,b,c,d with their values, we get:

τ b ě2c6
H3|Zp,πb

| ln |Zp,πb
|

δ ln 4|Zp,πb
|

δ

ϵ2
`
`

|Sp,πb

max |´1
˘

`3c6
H3|Zp,πb

| ln |Zp,πb
|

δ p|Sp,πb

max |´1q

ϵ2
ln

ˆ

2c6e
H3|Zp,πb

| ln |Zp,πb
|

δ

ϵ2

˙

ď rO

˜

H3|Zp,πb

| ln 1
δ

ϵ2

ˆ

ln
1

δ
`|Sp,πb

max |

˙

¸

.

Now, observe that an upper bound to the number of trajectories needed to have HdpRY
p,πE , pRYqďϵ can be obtained with an

identical derivation, and, thus, it is of the same order. The statement of the theorem follows by the considerations at the
beginning of the proof.

We provide here the proof of Theorem 5.2. The proof is analogous to that of Theorem 5.1.
Theorem 5.2. Under the conditions of Theorem 5.1, IRLO is pϵ,δq-PAC for d8-IRL with a sample complexity at most:

τ b ď rO

˜

H4 ln 1
δ

ρπ
b,Zp,πb

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1.

Sketch of proof. The proof is exactly the same as that of Theorem 5.1. First, observe that it is possible to prove a lemma
analogous to Lemma F.5, so that:

H8pRX
p,πE , pRXqďH

ÿ

hPJHK

max
ps,aqPZp,πb

h

bhps,aq.

Next, when applying Lemma J.1, we simply notice that, for all hPJHK:

max
ps,aqPZp,πb

h

d

1

ρp,π
b

h ps,aq
ď

d

1

ρπ
b,Zp,πb

min

.

We can do the same also for the superset. Following the derivation in the proof of Theorem 5.1, the result can be obtained.
17It should be remarked that the adoption of Lemma 15 of (Kaufmann et al., 2021) provides the same asymptotical dependence on the

quantities of interest. However, Lemma J.3 is more concise.
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F.3. Proof of Theorem 6.1 and Theorem 6.2

We will denote by aE :“πE
h psq for all ps,hqPSp,πE

, the expert’s action. Given any reward rPR, it is useful to define
(recursively) the transition models rpM and rpm as:

rpM :“

$

’

’

’

&

’

’

’

%

rpMh p¨|s,aq“ argmax
p1:}p1

hp¨|s,aq´pphp¨|s,aq}1ďbhps,aq

^@s1
RSp,πE

h`1 :p1
hps1

|s,aq“0

E
s1„p1

hp¨|s,aq
V rπM

h`1ps1; rpM , rqu, if ps,a,hqPZp,πb

rpMh p¨|s,aq“1t¨“argmax
s1PS

V rπM

h`1ps1; rpM , rqu, if ps,a,hqRZp,πb

,

rpm :“

$

’

’

’

&

’

’

’

%

rpmh p¨|s,aq“ argmin
p1:}p1

hp¨|s,aq´pphp¨|s,aq}1ďbhps,aq

^@s1
RSp,πE

h`1 :p1
hps1

|s,aq“0

E
s1„p1

hp¨|s,aq
V rπm

h`1ps1; rpm, rqu, if ps,a,hqPZp,πb

rpmh p¨|s,aq“1t¨“argmin
s1PS

V rπm

h`1ps1; rpm, rqu, if ps,a,hqRZp,πb

,

(25)

where we have used the following (recursive) policy definitions rπM ,rπm PrπEs”
Sp,πE

:

rπM :“

$

&

%

rπM
h psq“πE

h psq, if ps,hqPSp,πE

rπM
h p¨|sq“1t¨“argmax

aPA
QrπM

h ps,a; rpM , rqu, if ps,hqRSp,πE ,

rπm :“

$

&

%

rπm
h psq“πE

h psq, if ps,hqPSp,πE

rπm
h p¨|sq“1t¨“argmax

aPA
Qrπm

h ps,a; rpm, rqu, if ps,hqRSp,πE .

(26)

Thanks to these definitions, we can rewrite rRX and rRY as:

rRX “trPR |@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; rpm, rqěQrπM

h ps,a; rpM , rqu,

rRY “trPR |@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; rpM , rqěQrπm

h ps,a; rpm, rqu.
(27)

Both Theorem 6.1 and Theorem 6.2 uses d8 instead of d use the same reward choice lemmas, but differ for the performance
decomposition lemmas.
Lemma F.6 (Reward Choice Subset). For any rPRX

p,πE , the reward pr constructed as:
$

’

&

’

%

prhps,aEq“rhps,aEq`
ř

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq´
ř

s1PS
rpmh ps1|s,aEqV πE

h`1ps1; rpm,prq, @ps,aE ,hqPZp,πE

prhps,aq“rhps,aq`
ř

s1PS
pMh ps1|s,aqV πM

h`1ps1;pM , rq´
ř

s1PS
rpMh ps1|s,aqV rπM

h`1ps1; rpM ,prq, otherwise,
,

belongs to rRX.

Proof. Consider any ps,aE ,hqPZp,πE

. By definition of pr, by rearranging the terms, we have that:

prhps,aEq`
ÿ

s1PS
rpmh ps1|s,aEqV πE

h`1ps1; rpm,prq“rhps,aEq`
ÿ

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq

ðñ QπE

h ps,aE ; rpm,prq“QπE

h ps,aE ;p,rq. (28)

Now, consider any other triple ps,a,hqRZp,πE

. Similarly, by rearranging the terms, we obtain:

QrπM

h ps,a; rpM ,prq“QπM

h ps,a;pM , rq. (29)

By hypothesis, rPRX
p,πE , therefore:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ;p,rqěQπM

h ps,a;pM , rq,

from which it follows that:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; rpm,prqěQrπM

h ps,a; rpM ,prq.
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For the superset, we have an analogous result.

Lemma F.7 (Reward Choice Superset). For any prP rRY, the reward r constructed as:
$

’

&

’

%

rhps,aEq“prhps,aEq`
ř

s1PS
rpMh ps1|s,aEqV πE

h`1ps1; rpM ,prq´
ř

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq, @ps,aE ,hqPZp,πE

rhps,aq“prhps,aq`
ř

s1PS
rpmh ps1|s,aqV rπm

h`1ps1; rpm,prq´
ř

s1PS
pmh ps1|s,aqV πm

h`1ps1;pm, rq, otherwise,
,

belongs to RY
p,πE .

Proof. Consider any ps,aE ,hqPZp,πE

. By definition of r, by rearranging the terms, we have that:

prhps,aEq`
ÿ

s1PS
rpMh ps1|s,aEqV πE

h`1ps1; rpM ,prq“rhps,aEq`
ÿ

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq

ðñ QπE

h ps,aE ; rpM ,prq“QπE

h ps,aE ;p,rq. (30)

Now, consider any other triple ps,a,hqRZp,πE

. Similarly, by rearranging the terms, we obtain:

Qrπm

h ps,a; rpm,prq“Qπm

h ps,a;pm, rq. (31)

By hypothesis, prP rRY, therefore:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; rpM ,prqěQrπm

h ps,a; rpm,prq,

from which it follows that:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ;p,rqěQπm

h ps,a;pm, rq.

Since pm Prps”
Zp,πb

and πm is the worst policy in rπEs”
Zp,πb

for pm, then we have rPRY
p,πE .

F.3.1. LEMMAS FOR THEOREM 6.1

Lemma F.8 (Performance Decomposition Subset). Under good event E , it holds that:

HdpRX
p,πE , rRXqď2H

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`8H3 max
ps,a,hqPZp,πE

bhps,aq.

Proof. Observe that:

HdpRX
p,πE , rRXq :“maxt sup

rPRX

p,πE

inf
rrP rRX

dpr,rrq, sup
rrP rRX

inf
rPRX

p,πE

dpr,rrqu

(1)
“ sup

rPRX

p,πE

inf
rrP rRX

dpr,rrq

“: sup
rPRX

p,πE

inf
rrP rRX

1

M

ÿ

hPJHK

´

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

¯

(2)
ď sup

rPRX

p,πE

1

M

ÿ

hPJHK

´

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ

¯

, (32)

where at (1) we have used that, under event E , we have rRX ĎRX
p,πE , and at (2) we have applied Lemma F.6, denoting with

pr the reward chosen from rRX.

Now, we consider the various triples ps,a,hqPSˆAˆJHK differently according to the definition of pr in Lemma F.6. Let us
begin with any ps,aE ,hqPZp,πE

. Thanks to Eq. 28, we know that, for any ps,hqPSp,πE

, it holds that QπE

h ps,aE ;p,rq“
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QπE

h ps,aE ; rpm,prq. Since any expert’s action when played from Sp,πE

brings to Sp,πE

(even under rpm, by definition) , then
we can write:

ˇ

ˇrhps,aEq´prhps,aEq
ˇ

ˇ“
ˇ

ˇ

ÿ

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq´
ÿ

s1PS
rpmh ps1|s,aEqV πE

h`1ps1; rpm,prq
ˇ

ˇ

“
ˇ

ˇ

ÿ

s1PSp,πE

phps1|s,aEqV πE

h`1ps1;p,rq´
ÿ

s1PSp,πE

rpmh ps1|s,aEqV πE

h`1ps1; rpm,prq
ˇ

ˇ

(1)
“
ˇ

ˇ

ÿ

s1PSp,πE

phps1|s,aEqV πE

h`1ps1;p,rq´
ÿ

s1PSp,πE

rpmh ps1|s,aEqV πE

h`1ps1;p,rq
ˇ

ˇ

“
ˇ

ˇ

ÿ

s1PS
pphps1|s,aEq´ rpmh ps1|s,aEqqV πE

h`1ps1;p,rq
ˇ

ˇ

(2)
ď

ÿ

s1PS

ˇ

ˇpphps1|s,aEq´ rpmh ps1|s,aEqqHM
ˇ

ˇ

ďHM
›

›php¨|s,aEq´ p̂hp¨|s,aEq
›

›

1
`HM

›

›

rpmh p¨|s,aEq´ p̂hp¨|s,aEq
›

›

1

(3)
ď2MHbhps,aEq, (33)

where at (1) we use Eq. 28, at (2) we use triangle inequality and we upper bound the value function by H times the maximum
reward, and at (3) we use the event in Lemma F.2 twice.

Now, let us consider any triple ps,a,hqPZp,πb

zZp,πE

. Thanks to Lemma F.6, we can write:
ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ“
ˇ

ˇ

ÿ

s1PS
pMh ps1|s,aqV πM

h`1ps1;pM , rq´
ÿ

s1PS
rpMh ps1|s,aqV rπM

h`1ps1; rpM ,prq
ˇ

ˇ

(1)
“
ˇ

ˇ

ÿ

s1PS
phps1|s,aqV πM

h`1ps1;pM , rq´
ÿ

s1PS
rpMh ps1|s,aqV rπM

h`1ps1; rpM ,prq

˘
ÿ

s1PS
phps1|s,aqV rπM

h`1ps1; rpM ,prq
ˇ

ˇ

(2)
ď
ˇ

ˇ

ÿ

s1PS
pphps1|s,aq´ rpMh ps1|s,aqqV rπM

h`1ps1; rpM ,prq
ˇ

ˇ

`
ˇ

ˇ

ÿ

s1PS
phps1|s,aq

`

V πM

h`1ps1;pM , rq´V rπM

h`1ps1; rpM ,prq
˘
ˇ

ˇ

(3)
ď2MHbhps,aq`

ˇ

ˇ

ÿ

s1PS
phps1|s,aq

`

V πM

h`1ps1;pM , rq´V rπM

h`1ps1; rpM ,prq
˘
ˇ

ˇ

(4)
ď2MHbhps,aq`

ˇ

ˇ

ÿ

s1PSp,πE

h`1

phps1|s,aq
`

QπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpM ,prq
˘
ˇ

ˇ

`
ˇ

ˇ

ÿ

s1RSp,πE

h`1

phps1|s,aq
`

max
a1PA

QπM

h`1ps1,a1;pM , rq´max
a2PA

QrπM

h`1ps1,a2; rpM ,prq
˘
ˇ

ˇ

(5)
ď2MHbhps,aq`

ˇ

ˇ

ÿ

s1PSp,πE

h`1

phps1|s,aq
`

QπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpM ,prq
˘
ˇ

ˇ

`
ˇ

ˇ

ÿ

s1RSp,πE

h`1

phps1|s,aq
`

max
a1PA

QπM

h`1ps1,a1;pM , rq´max
a2PA

QπM

h`1ps1,a2;pM , rq
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“0

˘
ˇ

ˇ

ď2MHbhps,aq`
ÿ

s1PSp,πE

h`1

phps1|s,aq
ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpM ,prq
ˇ

ˇ

looooooooooooooooooooooooomooooooooooooooooooooooooon

“:Xh`1ps1q

,

where at (1) we have used that, since ps,a,hqPZp,πb

, then pMh p¨|s,aq“php¨|s,aq, at (2) we have applied triangle inequality,
at (3) we upper bound the value function by H times the maximum reward and we use the event in Lemma F.2 twice, at (4)
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we use triangle inequality and the Bellman’s equation and that the expert’s action aE is played by both πM and rπM in any
ps,hqPSp,πE

, at (5) we apply Eq. 29.

Now, having defined terms Xhpsq for all ps,hqPSp,πE

as above, we recursively bound term Xh`1ps1q.

Xh`1ps1q :“
ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpM ,prq
ˇ

ˇ

(6)
“
ˇ

ˇrh`1ps1,aEq´prh`1ps1,aEq
ˇ

ˇ

`
ˇ

ˇ

ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEqV πE

h`2ps2;p,rq´
ÿ

s2PSp,πE

h`2

rpMh`1ps2|s1,aEqV πE

h`2ps2; rpM ,prq
˘
ˇ

ˇ

(7)
ď2MHbh`1ps1,aEq`

ˇ

ˇ

ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEqV πE

h`2ps2;p,rq´
ÿ

s2PSp,πE

h`2

rpMh`1ps2|s1,aEqV πE

h`2ps2; rpM ,prq
˘

˘
ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEqV πE

h`2ps2; rpM ,prq
ˇ

ˇ

(8)
ď2MHbh`1ps1,aEq`

ÿ

s2PSp,πE

h`2

ˇ

ˇ

`

ph`1ps2|s1,aEq´ rpMh`1ps2|s1,aEq
˘

V πE

h`2ps2; rpM ,prq
ˇ

ˇ

`
ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEq
ˇ

ˇV πE

h`2ps2;p,rq´V πE

h`2ps2; rpM ,prq
ˇ

ˇ

(9)
ď4MHbh`1ps1,aEq`

ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEq
ˇ

ˇQπE

h`2ps2,aE ;p,rq´QπE

h`2ps2,aE ; rpM ,prq
ˇ

ˇ

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“:Xh`2ps2q

,

where at (6) we use the definition of Q function, and we apply triangle inequality; at (7) we use again triangle inequality and
Eq. 33, at (8) we apply triangle inequality, and at (9) we use again the event in Lemma F.2 twice. The recursion on the X
terms tells us that:

Xhpsqď4MHbhps,aEq` E
s1„php¨|s,aEq

Xh`1ps1q. (34)

Therefore, we can upper bound the difference between rewards in ps,a,hqPZp,πb

zZp,πE

as:
ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇď2MHbhps,aq`4MH
ÿ

s1PSp,πE

h`1

phps1|s,aq
ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq.
(35)

Now, the only missing triples to consider are those ps,a,hqRZp,πb

. Similarly to the triples just considered, we can write:

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ“
ˇ

ˇ

ÿ

s1PS
pMh ps1|s,aqV πM

h`1ps1;pM , rq´
ÿ

s1PS
rpMh ps1|s,aqV rπM

h`1ps1; rpM ,prq
ˇ

ˇ

(1)
“
ˇ

ˇmax
s1PS

V πM

h`1ps1;pM , rq´max
s2PS

V rπM

h`1ps2; rpM ,prq
ˇ

ˇ

(2)
ďmax

s1PS

ˇ

ˇV πM

h`1ps1;pM , rq´V rπM

h`1ps1; rpM ,prq
ˇ

ˇ

(3)
“max

!

max
s1PSp,πE

h`1

ˇ

ˇV πE

h`1ps1;p,rq´V πE

h`1ps1; rpM ,prq
ˇ

ˇ,

max
s1RSp,πE

h`1

ˇ

ˇV πM

h`1ps1;pM , rq´V rπM

h`1ps1; rpM ,prq
loooooooooooooooooooomoooooooooooooooooooon

“0

ˇ

ˇ

)

“ max
s1PSp,πE

h`1

ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpM ,prq
ˇ

ˇ
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“: max
s1PSp,πE

h`1

Xh`1ps1q

(4)
ď4MH max

s1PSp,πE

h`1

´

bh`1ps1,aEq`
ÿ

h1PJh`2,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

¯

, (36)

where at (1) we have used that ps,a,hqRZp,πb

and the definitions of pM and rpM , at (2) we have used that for any pair
of real-valued functions f,g it holds that |maxx fpxq´maxx gpxq|ďmaxx |fpxq´gpxq|, at (3) we use Eq. 29 to realize
that in ps,hq outside Sp,πE

h`1 we have an equality of Q-functions, and thus the difference is 0, at (4) we have unfolded the
recursion on the X terms by using Eq. 34.

By combining Eq. 32 with Eq. 33, Eq. 35, and Eq. 36, we get:

HdpRX
p,πE , rRXqď

ÿ

hPJHK

ˆ

ÿ

ps,aqPZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq

`
ÿ

ps,aqPZp,πb

h zZp,πE

h

ρp,π
b

h ps,aq

´

2Hbhps,aq

`4H
ÿ

s1PSp,πE

h`1

phps1|s,aq
ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

¯

` max
ps,aqRZp,πb

h

4H max
s1PSp,πE

h`1

ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

˙

ď
ÿ

hPJHK

ˆ

ÿ

ps,aqPZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq

`
ÿ

ps,aqPZp,πb

h zZp,πE

h

ρp,π
b

h ps,aq

´

2Hbhps,aq`4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

¯

` max
ps,aqRZp,πb

h

4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

˙

ď
ÿ

hPJHK

ˆ

ÿ

ps,aqPZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq

`
ÿ

ps,aqPZp,πb

h zZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq`8H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

˙

ď2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`8H3 max
ps,a,hqPZp,πE

bhps,aq.

Lemma F.9 (Performance Decomposition Superset). Under good event E , it holds that:

HdpRY
p,πE

rRYqď2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`8H3 max
ps,a,hqPZp,πE

bhps,aq.

Proof. Observe that:

HdpRY
p,πE , rRYq :“maxt sup

rPRY

p,πE

inf
rrP rRY

dpr,rrq, sup
rrP rRY

inf
rPRY

p,πE

dpr,rrqu

(1)
“ sup

rrP rRY

inf
rPRY

p,πE

dpr,rrq
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“: sup
rrP rRY

inf
rPRY

p,πE

1

M

ÿ

hPJHK

´

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

¯

(2)
ď sup

rrP rRY

1

M

ÿ

hPJHK

´

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

¯

, (37)

where at (1) we have used that, under event E , we have RY
p,πE Ď rRY, and at (2) we have applied Lemma F.7, denoting with

r the reward chosen from RY
p,πE .

Now, we consider the various triples ps,a,hqPSˆAˆJHK differently according to the definition of r in Lemma F.7. Let
us begin with any ps,aE ,hqPZp,πE

. We can write:
ˇ

ˇrhps,aEq´prhps,aEq
ˇ

ˇ“
ˇ

ˇ

ÿ

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq´
ÿ

s1PS
rpMh ps1|s,aEqV πE

h`1ps1; rpM ,prq

“
ˇ

ˇ

ÿ

s1PSp,πE

h`1

phps1|s,aEqV πE

h`1ps1;p,rq´
ÿ

s1PSp,πE

h`1

rpMh ps1|s,aEqV πE

h`1ps1; rpM ,prq
ˇ

ˇ

“
ˇ

ˇ

ÿ

s1PSp,πE

h`1

phps1|s,aEqV πE

h`1ps1;p,rq´
ÿ

s1PSp,πE

h`1

rpMh ps1|s,aEqV πE

h`1ps1;p,rq
ˇ

ˇ

ď
›

›php¨|s,aEq´ rpMh p¨|s,aEq
›

›

1
MH

ď
›

›php¨|s,aEq´ p̂hp¨|s,aEq
›

›

1
MH `

›

›p̂hp¨|s,aEq´ rpMh p¨|s,aEq
›

›

1
MH

ď2MHbhps,aEq.

(38)

Now, let us consider any triple ps,a,hqPZp,πb

zZp,πE

. Thanks to Lemma F.7, we can write:
ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ“
ˇ

ˇ

ÿ

s1PS
pmh ps1|s,aqV πm

h`1ps1;pm, rq´
ÿ

s1PS
rpmh ps1|s,aqV rπm

h`1ps1; rpm,prq
ˇ

ˇ

(1)
“
ˇ

ˇ

ÿ

s1PS
phps1|s,aqV πm

h`1ps1;pm, rq´
ÿ

s1PS
rpmh ps1|s,aqV rπm

h`1ps1; rpm,prq

˘
ÿ

s1PS
phps1|s,aqV rπm

h`1ps1; rpm,prq
ˇ

ˇ

(2)
ď
ˇ

ˇ

ÿ

s1PS
pphps1|s,aq´ rpmh ps1|s,aqqV rπm

h`1ps1; rpm,prq
ˇ

ˇ

`
ˇ

ˇ

ÿ

s1PS
phps1|s,aq

`

V πm

h`1ps1;pm, rq´V rπm

h`1ps1; rpm,prq
˘
ˇ

ˇ

(3)
ď2MHbhps,aq`

ˇ

ˇ

ÿ

s1PS
phps1|s,aq

`

V πm

h`1ps1;pm, rq´V rπm

h`1ps1; rpm,prq
˘
ˇ

ˇ

(4)
ď2MHbhps,aq`

ˇ

ˇ

ÿ

s1PSp,πE

h`1

phps1|s,aq
`

QπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpm,prq
˘
ˇ

ˇ

`
ˇ

ˇ

ÿ

s1RSp,πE

h`1

phps1|s,aq
`

max
a1PA

Qπm

h`1ps1,a1;pm, rq´max
a2PA

Qrπm

h`1ps1,a2; rpm,prq
˘
ˇ

ˇ

(5)
ď2MHbhps,aq`

ˇ

ˇ

ÿ

s1PSp,πE

h`1

phps1|s,aq
`

QπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpm,prq
˘
ˇ

ˇ

`
ˇ

ˇ

ÿ

s1RSp,πE

h`1

phps1|s,aq
`

max
a1PA

Qπm

h`1ps1,a1;pm, rq´max
a2PA

Qrπm

h`1ps1,a2;pm, rq
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“0

˘
ˇ

ˇ

ď2MHbhps,aq`
ÿ

s1PSp,πE

h`1

phps1|s,aq
ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpm,prq
ˇ

ˇ

looooooooooooooooooooooooomooooooooooooooooooooooooon

“:Yh`1ps1q

,
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where at (1) we have used that, since ps,a,hqPZp,πb

, then pmh p¨|s,aq“php¨|s,aq, at (2) we have applied triangle inequality,
at (3) we upper bound the value function by H times the maximum reward and we use the event in Lemma F.2 twice,
at (4) we use triangle inequality and the Bellman optimality equation and that the expert’s action aE is optimal in any
ps,hqPSp,πE

, at (5) we apply Eq. 31.

Now, having defined terms tYhpsquh for all sPSp,πE

as above, we recursively bound term Yh`1ps1q. It should be remarked
that ps1,h`1qPSp,πE

.

Yh`1ps1q :“
ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpm,prq
ˇ

ˇ

(6)
“
ˇ

ˇrh`1ps1,aEq´prh`1ps1,aEq
ˇ

ˇ

`
ˇ

ˇ

ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEqV πE

h`2ps2;p,rq´
ÿ

s2PSp,πE

h`2

rpmh`1ps2|s1,aEqV πE

h`2ps2; rpm,prq
˘
ˇ

ˇ

(7)
ď2MHbh`1ps1,aEq`

ˇ

ˇ

ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEqV πE

h`2ps2;p,rq´
ÿ

s2PSp,πE

h`2

rpmh`1ps2|s1,aEqV πE

h`2ps2; rpm,prq
˘

˘
ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEqV πE

h`2ps2; rpm,prq
ˇ

ˇ

(8)
ď2MHbh`1ps1,aEq`

ÿ

s2PSp,πE

h`2

ˇ

ˇ

`

ph`1ps2|s1,aEq´ rpmh`1ps2|s1,aEq
˘

V πE

h`2ps2; rpm,prq
ˇ

ˇ

`
ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEq
ˇ

ˇV πE

h`2ps2;p,rq´V πE

h`2ps2; rpm,prq
ˇ

ˇ

(9)
ď4MHbh`1ps1,aEq`

ÿ

s2PSp,πE

h`2

ph`1ps2|s1,aEq
ˇ

ˇQπE

h`2ps2,aE ;p,rq´QπE

h`2ps2,aE ; rpm,prq
ˇ

ˇ

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“:Yh`2ps2q

,

where at (6) we use the definition of Q function, and we apply triangle inequality; at (7) we use again triangle inequality and
Eq. 38, at (8) we apply triangle inequality, and at (9) we use again the event in Lemma F.2 twice. The recursion on the Y
terms tells us that:

Yhpsqď4MHbhps,aEq` E
s1„php¨|s,aEq

Yh`1ps1q. (39)

Therefore, we can upper bound the difference between rewards in ps,a,hqPZp,πb

zZp,πE

as:
ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇď2MHbhps,aq`4MH
ÿ

s1PSp,πE

h`1

phps1|s,aq
ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq.
(40)

Now, the only missing triples to consider are those ps,a,hqRZp,πb

. Similarly to the triples just considered, we can write:
ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ“
ˇ

ˇ

ÿ

s1PS
pmh ps1|s,aqV πm

h`1ps1;pm, rq´
ÿ

s1PS
rpmh ps1|s,aqV rπm

h`1ps1; rpm,prq
ˇ

ˇ

(1)
“
ˇ

ˇmin
s1PS

V πm

h`1ps1;pm, rq´min
s2PS

V rπm

h`1ps2; rpm,prq
ˇ

ˇ

(2)
ďmax

s1PS

ˇ

ˇV πm

h`1ps1;pm, rq´V rπm

h`1ps1; rpm,prq
ˇ

ˇ

(3)
“max

!

max
s1PSp,πE

h`1

ˇ

ˇV πE

h`1ps1;p,rq´V πE

h`1ps1; rpm,prq
ˇ

ˇ,

40
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max
s1RSp,πE

h`1

ˇ

ˇV πm

h`1ps1;pm, rq´V rπm

h`1ps1; rpm,prq
looooooooooooooooooomooooooooooooooooooon

“0

ˇ

ˇ

)

“ max
s1PSp,πE

h`1

ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpm,prq
ˇ

ˇ

“: max
s1PSp,πE

h`1

Yh`1ps1q

(4)
ď4MH max

s1PSp,πE

h`1

´

bh`1ps1,aEq`
ÿ

h1PJh`2,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

¯

, (41)

where at (1) we have used that ps,a,hqRZp,πb

and the definitions of pm and rpm, at (2) we have used that for any pair of
real-valued functions f,g it holds that |minx fpxq´minx gpxq|ďmaxx |fpxq´gpxq|, at (3) we use Eq. 31 to realize that
in ps,hq outside Sp,πE

h`1 we have an equality of Q-functions, and thus the difference is 0, and that in Sp,πE

the optimal action
is always the expert’s action, at (4) we have unfolded the recursion on the Y terms by using Eq. 39.

By combining Eq. 37 with Eq. 38, Eq. 40, and Eq. 41, we get:

HdpRY
p,πE , rRYqď

ÿ

hPJHK

ˆ

ÿ

ps,aqPZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq

`
ÿ

ps,aqPZp,πb

h zZp,πE

h

ρp,π
b

h ps,aq

´

2Hbhps,aq

`4H
ÿ

s1PSp,πE

h`1

phps1|s,aq
ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

¯

` max
ps,aqRZp,πb

h

4H max
s1PSp,πE

h`1

ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

˙

ď
ÿ

hPJHK

ˆ

ÿ

ps,aqPZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq

`
ÿ

ps,aqPZp,πb

h zZp,πE

h

ρp,π
b

h ps,aq

´

2Hbhps,aq`4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

¯

` max
ps,aqRZp,πb

h

4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

˙

ď
ÿ

hPJHK

ˆ

ÿ

ps,aqPZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq

`
ÿ

ps,aqPZp,πb

h zZp,πE

h

ρp,π
b

h ps,aq2Hbhps,aq`8H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

˙

ď2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`8H3 max
ps,a,hqPZp,πE

bhps,aq.

F.3.2. LEMMAS FOR THEOREM 6.2

Lemma F.10 (Performance Decomposition Subset). Under good event E , it holds that:

H8pRX
p,πE , rRXqď2H2 max

ps,a,hqPZp,πb
bhps,aq`4H3 max

ps,a,hqPZp,πE
bhps,aq.
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Proof. Observe that:

H8pRX
p,πE , rRXq :“maxt sup

rPRX

p,πE

inf
rrP rRX

d8pr,rrq, sup
rrP rRX

inf
rPRX

p,πE

d8pr,rrqu

(1)
“ sup

rPRX

p,πE

inf
rrP rRX

d8pr,rrq

“: sup
rPRX

p,πE

inf
rrP rRX

1

M

ÿ

hPJHK

max
ps,aqPSˆA

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

(2)
ď sup

rPRX

p,πE

1

M

ÿ

hPJHK

max
ps,aqPSˆA

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ, (42)

where at (1) we have used that, under event E , we have rRX ĎRX
p,πE , and at (2) we have applied Lemma F.6, denoting with

pr the reward chosen from rRX.

By combining Eq. 42 with Eq. 33, Eq. 35, and Eq. 36, we get:

H8pRX
p,πE , rRXqď

ÿ

hPJHK

max

"

max
ps,aqPZp,πE

h

2Hbhps,aq,

max
ps,aqPZp,πb

h zZp,πE

h

2Hbhps,aq`4H
ÿ

s1PSp,πE

h`1

phps1|s,aq
ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq,

max
ps,aqRZp,πb

h

4H max
s1PSp,πE

h`1

ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

*

ď
ÿ

hPJHK

max

"

max
ps,aqPZp,πE

h

2Hbhps,aq,

max
ps,aqPZp,πb

h zZp,πE

h

2Hbhps,aq`4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq,

max
ps,aqRZp,πb

h

4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

*

ď
ÿ

hPJHK

max

"

max
ps,aqPZp,πE

h

2Hbhps,aq, max
ps,aqPZp,πb

h zZp,πE

h

2Hbhps,aq`4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

*

ď
ÿ

hPJHK

max
ps,aqPZp,πb

h

2Hbhps,aq`
ÿ

hPJHK

4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

*

ď2H2 max
ps,a,hqPZp,πb

bhps,aq`4H3 max
ps,a,hqPZp,πE

bhps,aq.

Lemma F.11 (Performance Decomposition Superset). Under good event E , it holds that:

H8pRY
p,πE

rRYqď2H2 max
ps,a,hqPZp,πb

bhps,aq`4H3 max
ps,a,hqPZp,πE

bhps,aq.

Proof. Observe that:

H8pRY
p,πE , rRYq :“maxt sup

rPRY

p,πE

inf
rrP rRY

d8pr,rrq, sup
rrP rRY

inf
rPRY

p,πE

d8pr,rrqu

(1)
“ sup

rrP rRY

inf
rPRY

p,πE

d8pr,rrq

“: sup
rrP rRY

inf
rPRY

p,πE

1

M

ÿ

hPJHK

max
ps,aqPSˆA

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ
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(2)
ď sup

rrP rRY

1

M

ÿ

hPJHK

max
ps,aqPSˆA

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ, (43)

where at (1) we have used that, under event E , we have RY
p,πE Ď rRY, and at (2) we have applied Lemma F.7, denoting with

r the reward chosen from RY
p,πE .

By combining Eq. 43 with Eq. 38, Eq. 40, and Eq. 41, we get:

H8pRY
p,πE , rRYqď

ÿ

hPJHK

max

"

max
ps,aqPZp,πE

h

2Hbhps,aq,

max
ps,aqPZp,πb

h zZp,πE

h

2Hbhps,aq`4H
ÿ

s1PSp,πE

h`1

phps1|s,aq
ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq,

max
ps,aqRZp,πb

h

4H max
s1PSp,πE

h`1

ÿ

h1PJh`1,HK

E
s2„ρp,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

*

ď
ÿ

hPJHK

max

"

max
ps,aqPZp,πE

h

2Hbhps,aq,

max
ps,aqPZp,πb

h zZp,πE

h

2Hbhps,aq`4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq,

max
ps,aqRZp,πb

h

4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

*

ď
ÿ

hPJHK

max

"

max
ps,aqPZp,πE

h

2Hbhps,aq, max
ps,aqPZp,πb

h zZp,πE

h

2Hbhps,aq`4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

*

ď
ÿ

hPJHK

max
ps,aqPZp,πb

h

2Hbhps,aq`
ÿ

hPJHK

4H2 max
ps1,aE ,h1qPZp,πE

bh1 ps1,aEq

*

ď2H2 max
ps,a,hqPZp,πb

bhps,aq`4H3 max
ps,a,hqPZp,πE

bhps,aq.

F.3.3. PROOFS OF THE MAIN THEOREMS

Thanks to Lemma F.8 and Lemma F.9, we can conclude the proof of Theorem 6.1.

Theorem 6.1. Let M be an MDP without reward and let πE be the expert’s policy. Let DE and Db be two datasets of τE

and τ b trajectories collected by executing policies πE and πb in M. Under Assumption 2.1, PIRLO is pϵ,δq-PAC for d-IRL
with a sample complexity at most:

τ b ď rO

˜

H3Zp,πb

ln 1
δ

ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
H6 ln 1

δ

ρπ
b,Zp,πE

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic.

Proof. The proof for the subset and superset is completely analogous. Under good event E , the performance decomposition
lemma for the subset (Lemma F.8) tells us that:

HdpRX
p,πE , rRXqď2H

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`8H3 max
ps,a,hqPZp,πE

bhps,aqďϵ.
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We upper bound both the terms of the sum by ϵ{2. The bound of the first term is analogous to the bound of the term provided
in the proof of Theorem 5.1, so we will not rewrite it here; with regards to the other term, we have:

8H3 max
ps,aE ,hqPZp,πE

bhps,aEqq
(1)
“8H3 max

ps,aE ,hqPZp,πE

d

2
βpN b

hps,aEq, δq

N b
hps,aEq

(2)
ď8

?
2H3

b

βpτ b, δq max
ps,aE ,hqPZp,πE

d

1

N b
hps,aEq

(3)
ď8

?
2H3

b

βpτ b, δq max
ps,aE ,hqPZp,πE

g

f

f

ec4
ln |Zp,πb

|

δ

τ bρp,π
b

h ps,aEq

(4)
“c5H

3

g

f

f

e

βpτ b, δq ln |Zp,πb
|

δ

τ bρπ
b,Zp,πE

min

ďϵ{2,

where at (1) we have used the definition of the b terms, at (2) we have upper bounded βpN b
h̄

ps̄,aEq, δqďβpτ b, δq for all

ps̄, h̄qPSp,πE

, at (3) we use event E4, at (4) we define c5 :“8
?
2c4 and we use the definition of ρπ

b,Zp,πE

min .

Similarly to the proof of Theorem 5.1, we apply Lemma J.3 to (c6 :“4c25):

τ b ěc6
H6 ln |Zp,πb

|

δ

ρπ
b,Zp,πE

min ϵ2

`

ln
4|Zp,πb

|

δ
`p|Sp,πb

max |´1q ln
`

ep1`τ b{p|Sp,πb

max |´1qq
˘˘

,

to obtain:

τ b ď rO

˜

H6 ln 1
δ

ρπ
b,Zp,πE

min ϵ2

ˆ

ln
1

δ
`|Sp,πb

max |

˙

¸

.

We can do the same for the superset through Lemma F.9. By combining the various bounds, we get the result.

Thanks to Lemma F.10 and Lemma F.11, we can conclude the proof of Theorem 6.2.

Theorem 6.2. Under the conditions of Theorem 6.1, PIRLO is pϵ,δq-PAC for d8-IRL with a sample complexity at most:

τ b ď rO

˜

H4 ln 1
δ

ρπ
b,Zp,πb

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
H6 ln 1

δ

ρπ
b,Zp,πE

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic.

Proof Sketch. The proof is analogous to that of Theorem 6.1. The only difference is that we use Lemma F.10 and Lemma
F.10, and that we follow the proof of Theorem 5.2 instead of that of Theorem 5.1 to bound the first term of:

2H2 max
ps,a,hqPZp,πb

bhps,aq`4H3 max
ps,a,hqPZp,πE

bhps,aqďϵ.

F.4. Sample complexity for PIRLO with additional requirements

In the proofs of Theorem 6.1 and Theorem 6.2, we have used reward choice lemmas that set prhps,aq‰rhps,aq in ps,a,hqR

Zp,πb

. However, it might be interesting to relate directly the error in the estimation of the transition model with the difference
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in the reward functions, so that where we do not have samples we have zero error. We would like to have prhps,aq“rhps,aq

in ps,a,hqRZp,πb

. Notice that this property is satisfied in the proofs of Theorem 5.1 and Theorem 5.2. Moreover, for a
notion of distance other than d or d8, the condition prhps,aq“rhps,aq in ps,a,hqRZp,πb

might even be needed. Therefore,
in this section, we provide reward choice lemmas that satisfy this property, and we show that this selection ends up in a H8

dependence in the sample complexity instead of H6.

Lemma F.12 (Reward Choice Subset). Under good event E , for any rPRX
p,πE , the reward pr constructed (recursively) as:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

prhps,aEq“rhps,aEq`
ř

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq´
ř

s1PS
rpmh ps1|s,aEqV πE

h`1ps1; rpm,prq

`max
s1PS

V rπM

h`1ps1; rpM ,prq´max
s1PS

V πM

h`1ps1;pM , rq, @ps,hqPSp,πE

prhps,aq“rhps,aq, @ps,a,hqRZp,πb

prhps,aq“rhps,aq`
ř

s1PS
pMh ps1|s,aqV πM

h`1ps1;pM , rq´
ř

s1PS
rpMh ps1|s,aqV rπM

h`1ps1; rpM ,prq, otherwise

,

belongs to rRX.

Proof. By definition of rRX, the reward pr belongs to rRX if and only if:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; rpm,prqěQrπM

h ps,a; rpM ,prq.

By hypothesis, rPRX
p,πE , therefore:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ;p,rqěQπM

h ps,a;pM , rq,

thus, if we show that @ps,hqPSp,πE

,@aPAztaEu, it holds that:

QπE

h ps,aE ; rpm,prq´QrπM

h ps,a; rpM ,prqěQπE

h ps,aE ;p,rq´QπM

h ps,a;pM , rq,

then we are done.

Let us begin with triples ps,a,hqRZp,πb

such that ps,hqPSp,πE

. By rearranging the terms in the definition of pr, we observe
that:

prhps,aEq`
ÿ

s1PS
rpmh ps1|s,aEqV πE

h`1ps1; rpm,prq“rhps,aEq`
ÿ

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq

`max
s1PS

V rπM

h`1ps1; rpM ,prq´max
s1PS

V πM

h`1ps1;pM , rq

ðñ QπE

h ps,aE ; rpm,prq“QπE

h ps,aE ;p,rq`max
s1PS

V rπM

h`1ps1; rpM ,prq´max
s1PS

V πM

h`1ps1;pM , rq˘prhps,aq

(1)
ðñ QπE

h ps,aE ; rpm,prq“QπE

h ps,aE ;p,rq`prhps,aq`max
s1PS

V rπM

h`1ps1; rpM ,prq´
`

rhps,aq`max
s1PS

V πM

h`1ps1;pM , rq
˘

ðñ QπE

h ps,aE ; rpm,prq“QπE

h ps,aE ;p,rq`QrπM

h ps,a; rpM ,prq´QπM

h ps,a;pM , rq

ùñ QπE

h ps,aE ; rpm,prq´QrπM

h ps,a; rpM ,prqěQπE

h ps,aE ;p,rq´QπM

h ps,a;pM , rq,

where at (1) we have used that prhps,aq“rhps,aq by definition.

Now, consider any other triple ps,a,hqPZp,πb

zZp,πE

such that ps,hqPSp,πE

. By rearranging the terms, we obtain:

QrπM

h ps,a; rpM ,prq“QπM

h ps,a;pM , rq, (44)

therefore, it suffices to show that

QπE

h ps,aE ; rpm,prqěQπE

h ps,aE ;p,rq.

By using again the definition of pr for ps,a,hqPZp,πE

, we know that:

QπE

h ps,aE ; rpm,prq“QπE

h ps,aE ;p,rq`max
s1PS

V rπM

h`1ps1; rpM ,prq´max
s1PS

V πM

h`1ps1;pM , rq, (45)

45



Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms

therefore, if we show that

max
s1PS

V rπM

h`1ps1; rpM ,prqěmax
s1PS

V πM

h`1ps1;pM , rq,

then we are done. We do it by induction. At stage H ´1, we have that:

max
s1PS

V rπM

H ps1; rpM ,prq“max
s1PS

E
a1„rπM

H p¨|s1q
prHps1,a1q

(1)
“max

s1PS
E

a1„πM
H p¨|s1q

rHps1,a1q

“max
s1PS

V πM

H ps1;pM , rq,

where at (1) we have used the definition of pr at stage H , and the definitions of rπM and πM . We make the inductive
hypothesis that, at stage h`1, it holds that maxs1PS V

rπM

h`2ps1; rpM ,prqěmaxs1PS V
πM

h`2ps1;pM , rq, and we consider stage h:

max
s1PS

V rπM

h`1ps1; rpM ,prq
(1)
“max

!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ; rpM ,prq, max
s1RSp,πE

h`1

max
a1PA

QrπM

h`1ps1,a1; rpM ,prq

)

(2)
ěmax

!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ; rpm,prq, max
s1RSp,πE

h`1

max
a1PA

QrπM

h`1ps1,a1; rpM ,prq

)

(3)
ěmax

!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq, max
s1RSp,πE

h`1

max
a1PA

QrπM

h`1ps1,a1; rpM ,prq

)

“max
!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

max
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

QrπM

h`1ps1,a1; rpM ,prq, max
a1PA:ps1,a1,h`1qRZp,πb

QrπM

h`1ps1,a1; rpM ,prq
(

)

(4)
“max

!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

max
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

QπM

h`1ps1,a1;pM , rq,

max
a1PA:ps1,a1,h`1qRZp,πb

prh`1ps1,a1q`max
s2PS

V rπM

h`2ps2; rpM ,prq
(

)

(5)
ěmax

!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

max
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

QπM

h`1ps1,a1;pM , rq,

max
a1PA:ps1,a1,h`1qRZp,πb

rh`1ps1,a1q`max
s2PS

V πM

h`2ps2;pM , rq
(

)

“max
!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

max
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

QπM

h`1ps1,a1;pM , rq, max
a1PA:ps1,a1,h`1qRZp,πb

QπM

h`1ps1,a1;pM , rq
(

)

“max
!

max
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq, max
s1RSp,πE

h`1

max
a1PA

QπM

h`1ps1,a1;pM , rq

)

“max
s1PS

V πM

h`1ps1;pM , rq,

where at (1) we use the definition of rπM , at (2) we use the definition of rpm and rpM , at (3) we use the inductive hypothesis
along with Eq. 45, at (4) we use Eq. 44 and the definition of Q-function, at (5) we use the definition of pr and the inductive
hypothesis.
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This concludes the proof.

Lemma F.13 (Reward Choice Superset). Under good event E , for any prP rRY, the reward r constructed (recursively) as:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rhps,aEq“prhps,aEq`
ř

s1PS
rpMh ps1|s,aEqV πE

h`1ps1; rpM ,prq´
ř

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq

`min
s1PS

V πm

h`1ps1;pm, rq´min
s1PS

V rπm

h`1ps1; rpm,prq, @ps,hqPSp,πE

rhps,aq“prhps,aq, @ps,a,hqRZp,πb

rhps,aq“prhps,aq`
ř

s1PS
rpmh ps1|s,aqV rπm

h`1ps1; rpm,prq´
ř

s1PS
pmh ps1|s,aqV πm

h`1ps1;pm, rq, otherwise

,

belongs to RY
p,πE .

Proof. By definition of RY
p,πE , a sufficient condition for having the reward r belong to RY

p,πE is:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ;p,rqěQπm

h ps,a;pm, rq.

By hypothesis, rP rRY, therefore:

@ps,hqPSp,πE

,@aPAztaEu :QπE

h ps,aE ; rpM ,prqěQrπm

h ps,a; rpm,prq,

thus, if we show that @ps,hqPSp,πE

,@aPAztaEu, it holds that:

QπE

h ps,aE ;p,rq´Qπm

h ps,a;pm, rqěQπE

h ps,aE ; rpM ,prq´Qrπm

h ps,a; rpm,prq,

then we are done.

Let us begin with triples ps,a,hqRZp,πb

such that ps,hqPSp,πE

. By rearranging the terms in the definition of r, we observe
that:

prhps,aEq`
ÿ

s1PS
rpMh ps1|s,aEqV πE

h`1ps1; rpM ,prq“rhps,aEq`
ÿ

s1PS
phps1|s,aEqV πE

h`1ps1;p,rq

`min
s1PS

V rπm

h`1ps1; rpm,prq´min
s1PS

V πm

h`1ps1;pm, rq

ðñ QπE

h ps,aE ; rpM ,prq“QπE

h ps,aE ;p,rq`min
s1PS

V rπm

h`1ps1; rpm,prq´min
s1PS

V πm

h`1ps1;pm, rq˘rhps,aq

(1)
ðñ QπE

h ps,aE ; rpM ,prq“QπE

h ps,aE ;p,rq`prhps,aq`min
s1PS

V rπm

h`1ps1; rpm,prq´
`

rhps,aq`min
s1PS

V πm

h`1ps1;pm, rq
˘

ðñ QπE

h ps,aE ; rpM ,prq“QπE

h ps,aE ;p,rq`Qrπm

h ps,a; rpm,prq´Qπm

h ps,a;pm, rq

ùñ QπE

h ps,aE ; rpM ,prq´Qrπm

h ps,a; rpm,prqěQπE

h ps,aE ;p,rq´Qπm

h ps,a;pm, rq,

where at (1) we have used that rhps,aq“prhps,aq by definition.

Now, consider any other triple ps,a,hqPZp,πb

zZp,πE

such that ps,hqPSp,πE

. By rearranging the terms, we obtain:

Qrπm

h ps,a; rpm,prq“Qπm

h ps,a;pm, rq, (46)

therefore, it suffices to show that

QπE

h ps,aE ;p,rqěQπE

h ps,aE ; rpM ,prq.

By using again the definition of pr for ps,a,hqPZp,πE

, we know that:

QπE

h ps,aE ; rpM ,prq“QπE

h ps,aE ;p,rq`min
s1PS

V rπm

h`1ps1; rpm,prq´min
s1PS

V πm

h`1ps1;pm, rq, (47)

therefore, if we show that

min
s1PS

V rπm

h`1ps1; rpm,prqďmin
s1PS

V πm

h`1ps1;pm, rq,
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then we are done. We do it by induction. At stage H ´1, we have that:

min
s1PS

V rπm

H ps1; rpm,prq“min
s1PS

E
a1„rπm

H p¨|s1q
prHps1,a1q

(1)
“min

s1PS
E

a1„πm
H p¨|s1q

rHps1,a1q

“min
s1PS

V πm

H ps1;pm, rq,

where at (1) we have used the definition of pr at stage H , and also the definitions of rπm and πm. We make the inductive
hypothesis that, at stage h`1, it holds that mins1PS V

rπm

h`2ps1; rpm,prqďmins1PS V
πm

h`2ps1;pm, rq, and we consider stage h:

min
s1PS

V rπm

h`1ps1; rpm,prq
(1)
“min

!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ; rpm,prq, min
s1RSp,πE

h`1

max
a1PA

Qrπm

h`1ps1,a1; rpm,prq

)

(2)
ďmin

!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ; rpM ,prq, min
s1RSp,πE

h`1

max
a1PA

Qrπm

h`1ps1,a1; rpm,prq

)

(3)
ďmin

!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq, min
s1RSp,πE

h`1

max
a1PA

Qrπm

h`1ps1,a1; rpm,prq

)

“min
!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

min
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

Qrπm

h`1ps1,a1; rpm,prq, max
a1PA:ps1,a1,h`1qRZp,πb

Qrπm

h`1ps1,a1; rpm,prq
(

)

(4)
“min

!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

min
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

Qπm

h`1ps1,a1;pm, rq,

max
a1PA:ps1,a1,h`1qRZp,πb

prh`1ps1,a1q`min
s2PS

V rπm

h`2ps2; rpm,prq
(

)

(5)
ďmin

!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

min
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

Qπm

h`1ps1,a1;pm, rq,

max
a1PA:ps1,a1,h`1qRZp,πb

rh`1ps1,a1q`max
s2PS

V πm

h`2ps2;pm, rq
(

)

“min
!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq,

min
s1RSp,πE

h`1

max
␣

max
a1PA:ps1,a1,h`1qPZp,πb

Qπm

h`1ps1,a1;pm, rq, max
a1PA:ps1,a1,h`1qRZp,πb

Qπm

h`1ps1,a1;pm, rq
(

)

“min
!

min
s1PSp,πE

h`1

QπE

h`1ps1,aE ;p,rq, min
s1RSp,πE

h`1

max
a1PA

Qπm

h`1ps1,a1;pm, rq

)

“min
s1PS

V πm

h`1ps1;pm, rq,

where at (1) we use the definition of rπm, at (2) we use the definition of rpm and rpM , at (3) we use the inductive hypothesis
along with Eq. 47, at (4) we use Eq. 46 and the Bellman’s equation, at (5) we use the definition of r and the inductive
hypothesis.

This concludes the proof.

F.4.1. LEMMAS FOR THEOREM F.18

We can exploit Lemma F.12 to bound the error for the subset.
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Lemma F.14 (Performance Decomposition Subset). Under good event E , it holds that:

HdpRX
p,πE , rRXqď2H

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H4 max
ps,hqPSp,πE

bhps,aEq.

Proof. We can write:

HdpRX
p,πE , rRXq :“maxt sup

rPRX

p,πE

inf
rrP rRX

dpr,rrq, sup
rrP rRX

inf
rPRX

p,πE

dpr,rrqu

(1)
“ sup

rPRX

p,πE

inf
rrP rRX

dpr,rrq

“: sup
rPRX

p,πE

inf
rrP rRX

1

M

ÿ

hPJHK

ˆ

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

˙

(2)
ď sup

rPRX

p,πE

1

M

ÿ

hPJHK

ˆ

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ

looooooooooooooooomooooooooooooooooon

“0

˙

“ sup
rPRX

p,πE

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ

(48)

where at (1) we have used that, under good event E , rRX ĎRX
p,πE , and at (2) we apply Lemma F.12, by denoting with pr the

chosen reward from rRX.

In the following, it is useful to denote, for any hPJHK:

Xh :“max
s1PS

ˇ

ˇV rπM

h`1ps1; rpM ,prq´V πM

h`1ps1;pM , rq
ˇ

ˇ.

Let us consider any ps,hqPSp,πE

. The difference between the rewards of expert’s action can be bounded by:

ˇ

ˇ

prhps,aEq´rhps,aEq
ˇ

ˇ

(1)
ď
ˇ

ˇ E
s1„php¨|s,aEq

V πE

h`1ps1;p,rq´ E
s1„rpm

h p¨|s,aEq
V πE

h`1ps1; rpm,prq
ˇ

ˇ

`
ˇ

ˇmax
s1PS

V rπM

h`1ps1; rpM ,prq´max
s1PS

V πM

h`1ps1;pM , rq
ˇ

ˇ

(2)
ď
ˇ

ˇ E
s1„php¨|s,aEq

V πE

h`1ps1;p,rq´ E
s1„rpm

h p¨|s,aEq
V πE

h`1ps1; rpm,prq˘ E
s1„php¨|s,aEq

V πE

h`1ps1; rpm,prq
ˇ

ˇ

`max
s1PS

ˇ

ˇV rπM

h`1ps1; rpM ,prq´V πM

h`1ps1;pM , rq
ˇ

ˇ

(3)
ďMH

ˇ

ˇ

ˇ

ˇphp¨|s,aEq´ rpmh p¨|s,aEq
ˇ

ˇ

ˇ

ˇ

1
` E

s1„php¨|s,aEq

ˇ

ˇV πE

h`1ps1;p,rq´V πE

h`1ps1; rpm,prq
ˇ

ˇ`Xh

(4)
ď2MHbhps,aEq` E

s1„php¨|s,aEq

ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpm,prq
ˇ

ˇ`Xh

(5)
“2MHbhps,aEq` E

s1„php¨|s,aEq

ˇ

ˇmax
s2PS

V πM

h`2ps2;pM , rq´max
s2PS

V rπM

h`2ps2; rpM ,prq
ˇ

ˇ`Xh

ď2MHbhps,aEq` E
s1„php¨|s,aEq

“

Xh`1

‰

`Xh

(6)
“2MHbhps,aEq`Xh `Xh`1,

where at (1) we use the definition of pr in Lemma F.12 and triangle inequality, at (2) we use that, for any pair f,g of real-
valued functions, it holds that |maxx fpxq´maxx gpxq|ďmaxx |fpxq´gpxq|, at (3) we apply triangle inequality twice, we
recognize the definition of Xh, we upper bound the value function by MH , and we recognize the definition of ℓ1 norm, at (4)
we first use triangle inequality }php¨|s,aEq´ rpmh p¨|s,aEq}1 ď}php¨|s,aEq´ pphp¨|s,aEq}1 `}rpmh p¨|s,aEq´ pphp¨|s,aEq}1,
then we use Pinsker’s inequality, event E3 from Lemma F.2, and the definition of bhps,aEq; at (5) we use the definition of pr
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in Lemma F.12 in the form of Eq. 45, by noticing that the support of php¨|s,aEq is contained in Sp,πE

, and at (6) we realize
that Xh`1 depends only on h and not on s1.

In order to upper bound the term Xh, we write:

Xh :“max
s1PS

ˇ

ˇV rπM

h`1ps1; rpM ,prq´V πM

h`1ps1;pM , rq
ˇ

ˇ

(1)
“max

"

max
s1RSp,πE

h`1

ˇ

ˇ

ˇ
max
a1PA

QrπM

h`1ps1,a1; rpM ,prq´max
a1PA

QπM

h`1ps1,a1;pM , rq

ˇ

ˇ

ˇ
,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpM ,prq´QπE

h`1ps1,aE ;p,rq

ˇ

ˇ

ˇ

*

(2)
ďmax

"

max
s1RSp,πE

h`1

max
a1PA

ˇ

ˇ

ˇ
QrπM

h`1ps1,a1; rpM ,prq´QπM

h`1ps1,a1;pM , rq

ˇ

ˇ

ˇ
,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpM ,prq´QπE

h`1ps1,aE ;p,rq˘QπE

h`1ps1,aE ; rpm,prq

ˇ

ˇ

ˇ

*

(3)
“max

"

max
s1RSp,πE

h`1

max
!

max
a1PA:ps1,a1,h`1qPZp,πb

ˇ

ˇ

ˇ
QrπM

h`1ps1,a1; rpM ,prq´QπM

h`1ps1,a1;pM , rq
loooooooooooooooooooooooomoooooooooooooooooooooooon

“0

ˇ

ˇ

ˇ
,

max
a1PA:ps1,a1,h`1qRZp,πb

ˇ

ˇ

ˇ
QrπM

h`1ps1,a1; rpM ,prq´QπM

h`1ps1,a1;pM , rq

ˇ

ˇ

ˇ

)

,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpM ,prq´QπE

h`1ps1,aE ; rpm,prq`max
s2PS

V rπM

h`2ps2; rpM ,prq´max
s2PS

V πM

h`2ps1;pM , rq

ˇ

ˇ

ˇ

*

(4)
ďmax

"

max
s1RSp,πE

h`1

max
a1PA:ps1,a1,h`1qRZp,πb

ˇ

ˇ

ˇ
prh`1ps1,a1q´rh`1ps1,a1q
loooooooooooooomoooooooooooooon

“0

`max
s2PS

V rπM

h`2ps2; rpM ,prq´max
s2PS

V πM

h`2ps2;pM , rq

ˇ

ˇ

ˇ
,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpM ,prq´QπE

h`1ps1,aE ; rpm,prq

ˇ

ˇ

ˇ
`Xh`1

*

(5)
ďmax

"

Xh`1, max
s1PSp,πE

h`1

´
ˇ

ˇ

ˇ
E

s2„rpM
h`1p¨|s1,aEq

V πE

h`2ps2; rpM ,prq´ E
s2„rpm

h`1p¨|s1,aEq
V πE

h`2ps2; rpm,prq

ˇ

ˇ

ˇ
`Xh`1

¯

*

“Xh`1 ` max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
E

s2„rpM
h`1p¨|s1,aEq

V πE

h`2ps2; rpM ,prq´ E
s2„rpm

h`1p¨|s1,aEq
V πE

h`2ps2; rpm,prq˘ E
s2„rpm

h`1p¨|s1,aEq
V πE

h`2ps2; rpM ,prq

ˇ

ˇ

ˇ

(6)
ďXh`1 ` max

s1PSp,πE

h`1

ˆ

MH
›

›

›
rpMh`1p¨|s1,aEq´ rpmh`1p¨|s1,aEq

›

›

›

1
` E

s2„rpm
h`1p¨|s1,aEq

ˇ

ˇ

ˇ
V πE

h`2ps2; rpM ,prq´V πE

h`2ps2; rpm,prq

ˇ

ˇ

ˇ

˙

(7)
ďXh`1 ` max

s1PSp,πE

h`1

ˆ

2MHbh`1ps1,aEq

` E
s2„rpm

h`1p¨|s1,aEq

ˇ

ˇ

ˇ
E

s3„rpM
h`2p¨|s2,aEq

V πE

h`3ps3; rpM ,prq´ E
s3„rpm

h`2p¨|s2,aEq
V πE

h`3ps3; rpm,prq

ˇ

ˇ

ˇ

˙

(8)
ďXh`1 `2MH max

s1PSp,πE

h`1

ÿ

h1PJh`1,H´1K

E
s2„ρ rpm,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

(9)
ď2MH

ÿ

h1PJh,H´1K

max
s1PSp,πE

h1`1

ÿ

h2PJh1`1,H´1K

E
s2„ρ rpm,πE

h2 p¨|sh1`1“s1q

bh2 ps2,aEq

ď2MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq,

where at (1) we apply the Bellman’s equation and the definition of rπM and πM , at (2) we use that |maxx fpxq´

maxx gpxq|ďmaxx |fpxq´gpxq|, at (3) we use the definition of pr in the form of Eq. 44 and Eq.45, at (4) we apply
the Bellman’s equation and the definition of pr to recognize that prh`1ps1,a1q´rh`1ps1,a1q“0; moreover, we apply triangle

50



Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms

inequality along with the usual bound |maxx fpxq´maxx gpxq|ďmaxx |fpxq´gpxq|, and we recognize the definition of
Xh`1. At (5) we proceed similarly as (4) and we use the Bellman optimality equation, and we observe that Xh`1 does not
depend on s1; at (6) we upper bound the value function by HM and recognize the ℓ1-norm, at (7) we use the concentration
bound of event E3 in Lemma F.2 (both rpM and rpm lie at a “distance” of b from pp). At (8) we have unfolded the recursion to
bound the difference of value functions between transition models rpm and rpM , at (9) we have unfolded the recursion on the
X terms.

Thanks to this expression, we can upper bound the difference of rewards in expert’s action as:

ˇ

ˇ

prhps,aEq´rhps,aEq
ˇ

ˇď2MHbhps,aEq`4MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq.

With regards to visited ps,a,hqPZp,πb

zZp,πE

, we can write:

ˇ

ˇ

prhps,aq´rhps,aq
ˇ

ˇ“
ˇ

ˇ E
s1„rpM

h p¨|s,aq
V rπM

h`1ps1; rpM ,prq´ E
s1„php¨|s,aq

V πM

h`1ps1;pM , rq
ˇ

ˇ

ď2MHbhps,aq` E
s1„rpM

h p¨|s,aq

ˇ

ˇ

ˇ
V rπM

h`1ps1; rpM ,prq´V πM

h`1ps1;pM , rq

ˇ

ˇ

ˇ

ď2MHbhps,aq`max
s1PS

ˇ

ˇ

ˇ
V rπM

h`1ps1; rpM ,prq´V πM

h`1ps1;pM , rq

ˇ

ˇ

ˇ

“2MHbhps,aq`Xh

ď2MHbhps,aq`2MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq

ď2MHbhps,aq`4MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq.

Obviously, for ps,a,hqRZp,πb

, we have:

ˇ

ˇ

prhps,aq´rhps,aq
ˇ

ˇ“0.

Therefore, by Eq. 48, we can write:

HdpRX
p,πE , rRXqď sup

rPRX

p,πE

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ

ď
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˆ

2Hbhps,aq`4H3 max
ps1,h1qPSp,πE

bh1 ps1,aEq

˙

“2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H3
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

max
ps1,h1qPSp,πE

bh1 ps1,aEq

“2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H3
ÿ

hPJHK

max
ps1,h1qPSp,πE

bh1 ps1,aEq

“2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H4 max
ps1,h1qPSp,πE

bh1 ps1,aEq.

This concludes the proof w.r.t. the subset.

Now we can exploit Lemma F.13 to bound the error for the superset.

Lemma F.15 (Performance Decomposition Superset). Under good event E , it holds that:

HdpRY
p,πE , rRYqď2H

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H4 max
ps,hqPSp,πE

bhps,aEq.
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Proof. We can write:

HdpRY
p,πE , rRYq :“maxt sup

rPRY

p,πE

inf
rrP rRY

dpr,rrq, sup
rrP rRY

inf
rPRY

p,πE

dpr,rrqu

(1)
“ sup

rrP rRY

inf
rPRY

p,πE

dpr,rrq

“: sup
rrP rRY

inf
rPRY

p,πE

1

M

ÿ

hPJHK

ˆ

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

˙

(2)
ď sup

rrP rRY

1

M

ÿ

hPJHK

ˆ

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ` max
ps,aqRZp,πb

h

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

looooooooooooooooomooooooooooooooooon

“0

˙

“ sup
rrP rRY

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´rrhps,aq
ˇ

ˇ

(49)

where at (1) we have used that, under good event E , RY
p,πE Ď rRY, and at (2) we apply Lemma F.13, by denoting with r the

chosen reward from RY
p,πE .

In the following, it is useful to denote, for any hPJHK:

Yh :“max
s1PS

ˇ

ˇV rπm

h`1ps1; rpm,prq´V πm

h`1ps1;pm, rq
ˇ

ˇ.

Let us consider any ps,hqPSp,πE

. The difference between the rewards of expert’s action can be bounded by:

ˇ

ˇ

prhps,aEq´rhps,aEq
ˇ

ˇ

(1)
ď
ˇ

ˇ E
s1„php¨|s,aEq

V πE

h`1ps1;p,rq´ E
s1„rpM

h p¨|s,aEq
V πE

h`1ps1; rpM ,prq
ˇ

ˇ

`
ˇ

ˇmin
s1PS

V rπm

h`1ps1; rpm,prq´min
s1PS

V πm

h`1ps1;pm, rq
ˇ

ˇ

(2)
ď
ˇ

ˇ E
s1„php¨|s,aEq

V πE

h`1ps1;p,rq´ E
s1„rpM

h p¨|s,aEq
V πE

h`1ps1; rpM ,prq˘ E
s1„php¨|s,aEq

V πE

h`1ps1; rpM ,prq
ˇ

ˇ

`max
s1PS

ˇ

ˇV rπm

h`1ps1; rpm,prq´V πm

h`1ps1;pm, rq
ˇ

ˇ

(3)
ďMH

ˇ

ˇ

ˇ

ˇphp¨|s,aEq´ rpMh p¨|s,aEq
ˇ

ˇ

ˇ

ˇ

1
` E

s1„php¨|s,aEq

ˇ

ˇV πE

h`1ps1;p,rq´V πE

h`1ps1; rpM ,prq
ˇ

ˇ`Yh

(4)
ď2MHbhps,aEq` E

s1„php¨|s,aEq

ˇ

ˇQπE

h`1ps1,aE ;p,rq´QπE

h`1ps1,aE ; rpM ,prq
ˇ

ˇ`Yh

(5)
“2MHbhps,aEq` E

s1„php¨|s,aEq

ˇ

ˇmin
s2PS

V πm

h`2ps2;pm, rq´min
s2PS

V rπm

h`2ps2; rpm,prq
ˇ

ˇ`Yh

ď2MHbhps,aEq` E
s1„php¨|s,aEq

“

Yh`1

‰

`Yh

(6)
“2MHbhps,aEq`Yh `Yh`1,

where at (1) we use the definition of r in Lemma F.13 and triangle inequality, at (2) we use that, for any pair f,g of real-
valued functions, it holds that |minx fpxq´minx gpxq|ďmaxx |fpxq´gpxq|, at (3) we apply triangle inequality twice, we
recognize the definition of Xh, we upper bound the value function by MH , and we recognize the definition of ℓ1 norm, at (4)
we first use triangle inequality }php¨|s,aEq´ rpMh p¨|s,aEq}1 ď}php¨|s,aEq´ pphp¨|s,aEq}1 `}rpMh p¨|s,aEq´ pphp¨|s,aEq}1,
then we use Pinsker’s inequality, event E3 from Lemma F.2, and the definition of bhps,aEq; at (5) we use the definition of pr
in Lemma F.13 in the form of Eq. 47, by noticing that the support of php¨|s,aEq is contained in Sp,πE

, and at (6) we realize
that Yh`1 depends only on h and not on s1.

In order to upper bound the term Yh, we write:

Yh :“max
s1PS

ˇ

ˇV rπm

h`1ps1; rpm,prq´V πm

h`1ps1;pm, rq
ˇ

ˇ
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(1)
“max

"

max
s1RSp,πE

h`1

ˇ

ˇ

ˇ
max
a1PA

Qrπm

h`1ps1,a1; rpm,prq´max
a1PA

Qπm

h`1ps1,a1;pm, rq

ˇ

ˇ

ˇ
,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpm,prq´QπE

h`1ps1,aE ;p,rq

ˇ

ˇ

ˇ

*

(2)
ďmax

"

max
s1RSp,πE

h`1

max
a1PA

ˇ

ˇ

ˇ
Qrπm

h`1ps1,a1; rpm,prq´Qπm

h`1ps1,a1;pm, rq

ˇ

ˇ

ˇ
,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpm,prq´QπE

h`1ps1,aE ;p,rq˘QπE

h`1ps1,aE ; rpM ,prq

ˇ

ˇ

ˇ

*

(3)
“max

"

max
s1RSp,πE

h`1

max
!

max
a1PA:ps1,a1,h`1qPZp,πb

ˇ

ˇ

ˇ
Qrπm

h`1ps1,a1; rpm,prq´Qπm

h`1ps1,a1;pm, rq
loooooooooooooooooooooooomoooooooooooooooooooooooon

“0

ˇ

ˇ

ˇ
,

max
a1PA:ps1,a1,h`1qRZp,πb

ˇ

ˇ

ˇ
Qrπm

h`1ps1,a1; rpm,prq´Qπm

h`1ps1,a1;pm, rq

ˇ

ˇ

ˇ

)

,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpm,prq´QπE

h`1ps1,aE ; rpM ,prq`min
s2PS

V rπm

h`2ps2; rpm,prq´min
s2PS

V πm

h`2ps1;pm, rq

ˇ

ˇ

ˇ

*

(4)
ďmax

"

max
s1RSp,πE

h`1

max
a1PA:ps1,a1,h`1qRZp,πb

ˇ

ˇ

ˇ
prh`1ps1,a1q´rh`1ps1,a1q
loooooooooooooomoooooooooooooon

“0

`min
s2PS

V rπm

h`2ps2; rpm,prq´min
s2PS

V πm

h`2ps2;pm, rq

ˇ

ˇ

ˇ
,

max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
QπE

h`1ps1,aE ; rpM ,prq´QπE

h`1ps1,aE ; rpm,prq

ˇ

ˇ

ˇ
`Yh`1

*

(5)
ďmax

"

Yh`1, max
s1PSp,πE

h`1

´
ˇ

ˇ

ˇ
E

s2„rpM
h`1p¨|s1,aEq

V πE

h`2ps2; rpM ,prq´ E
s2„rpm

h`1p¨|s1,aEq
V πE

h`2ps2; rpm,prq

ˇ

ˇ

ˇ
`Yh`1

¯

*

“Yh`1 ` max
s1PSp,πE

h`1

ˇ

ˇ

ˇ
E

s2„rpM
h`1p¨|s1,aEq

V πE

h`2ps2; rpM ,prq´ E
s2„rpm

h`1p¨|s1,aEq
V πE

h`2ps2; rpm,prq˘ E
s2„rpm

h`1p¨|s1,aEq
V πE

h`2ps2; rpM ,prq

ˇ

ˇ

ˇ

(6)
ďYh`1 ` max

s1PSp,πE

h`1

ˆ

MH
›

›

›
rpMh`1p¨|s1,aEq´ rpmh`1p¨|s1,aEq

›

›

›

1
` E

s2„rpm
h`1p¨|s1,aEq

ˇ

ˇ

ˇ
V πE

h`2ps2; rpM ,prq´V πE

h`2ps2; rpm,prq

ˇ

ˇ

ˇ

˙

(7)
ďYh`1 ` max

s1PSp,πE

h`1

ˆ

2MHbh`1ps1,aEq

` E
s2„rpm

h`1p¨|s1,aEq

ˇ

ˇ

ˇ
E

s3„rpM
h`2p¨|s2,aEq

V πE

h`3ps3; rpM ,prq´ E
s3„rpm

h`2p¨|s2,aEq
V πE

h`3ps3; rpm,prq

ˇ

ˇ

ˇ

˙

(8)
ďYh`1 `2MH max

s1PSp,πE

h`1

ÿ

h1PJh`1,H´1K

E
s2„ρ rpm,πE

h1 p¨|sh`1“s1q

bh1 ps2,aEq

(9)
ď2MH

ÿ

h1PJh,H´1K

max
s1PSp,πE

h1`1

ÿ

h2PJh1`1,H´1K

E
s2„ρ rpm,πE

h2 p¨|sh1`1“s1q

bh2 ps2,aEq

ď2MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq,

where at (1) we apply the Bellman’s equation and the definition of rπm and πm, at (2) we use that |minx fpxq´minx gpxq|ď

maxx |fpxq´gpxq|, at (3) we use the definition of r in the form of Eq. 46 and Eq.47, at (4) we apply the Bellman’s equation
and the definition of r to recognize that rh`1ps1,a1q´prh`1ps1,a1q“0; moreover, we apply triangle inequality along with the
usual bound |minx fpxq´minx gpxq|ďmaxx |fpxq´gpxq|, and we recognize the definition of Xh`1. At (5) we proceed
similarly as (4) and we use the Bellman’s equation, and we observe that Yh`1 does not depend on s1; at (6) we upper bound
the value function by HM and recognize the ℓ1-norm, at (7) we use the concentration bound of event E3 in Lemma F.2
(both rpM and rpm lie at a “distance” of b from pp). At (8) we have unfolded the recursion to bound the difference of value
functions between transition models rpm and rpM , at (9) we have unfolded the recursion on the Y terms.
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Thanks to this expression, we can upper bound the difference of rewards in expert’s action as:
ˇ

ˇ

prhps,aEq´rhps,aEq
ˇ

ˇď2MHbhps,aEq`4MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq.

With regards to visited ps,a,hqPZp,πb

zZp,πE

, we can write:
ˇ

ˇ

prhps,aq´rhps,aq
ˇ

ˇ“
ˇ

ˇ E
s1„rpm

h p¨|s,aq
V rπm

h`1ps1; rpm,prq´ E
s1„php¨|s,aq

V πm

h`1ps1;pm, rq
ˇ

ˇ

ď2MHbhps,aq` E
s1„rpm

h p¨|s,aq

ˇ

ˇ

ˇ
V rπm

h`1ps1; rpm,prq´V πm

h`1ps1;pm, rq

ˇ

ˇ

ˇ

ď2MHbhps,aq`max
s1PS

ˇ

ˇ

ˇ
V rπm

h`1ps1; rpm,prq´V πm

h`1ps1;pm, rq

ˇ

ˇ

ˇ

“2MHbhps,aq`Yh

ď2MHbhps,aq`2MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq

ď2MHbhps,aq`4MH3 max
ps1,h1qPSp,πE

bh1 ps1,aEq.

Obviously, for ps,a,hqRZp,πb

, we have:
ˇ

ˇ

prhps,aq´rhps,aq
ˇ

ˇ“0.

Therefore, by Eq. 49, we can write:

HdpRY
p,πE , rRYqď sup

rrP rRY

1

M

ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˇ

ˇrhps,aq´prhps,aq
ˇ

ˇ

ď
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

ˆ

2Hbhps,aq`4H3 max
ps1,h1qPSp,πE

bh1 ps1,aEq

˙

“2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H3
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

max
ps1,h1qPSp,πE

bh1 ps1,aEq

“2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H3
ÿ

hPJHK

max
ps1,h1qPSp,πE

bh1 ps1,aEq

“2H
ÿ

hPJHK

E
ps,aq„ρp,πb

h p¨,¨q

bhps,aq`4H4 max
ps1,h1qPSp,πE

bh1 ps1,aEq.

This concludes the proof w.r.t. the superset.

F.4.2. LEMMAS FOR THEOREM F.19

Lemma F.16 (Performance Decomposition Subset). Under good event E , it holds that:

H8pRX
p,πE , rRXqď2H2 max

ps,a,hqPZp,πb
bhps,aq`4H4 max

ps,hqPSp,πE
bhps,aEq.

Proof Sketch. The proof is analogous to that of Lemma F.14. We can reuse the bounds for the difference between rewards
proved in there and insert them into H8 to get the result.

Lemma F.17 (Performance Decomposition Superset). Under good event E , it holds that:

H8pRX
p,πE , rRXqď2H2 max

ps,a,hqPZp,πb
bhps,aq`4H4 max

ps,hqPSp,πE
bhps,aEq.

Proof Sketch. The proof is analogous to that of Lemma F.15. We can reuse the bounds for the difference between rewards
proved in there and insert them into H8 to get the result.
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F.4.3. PROOFS OF THE MAIN THEOREMS

Thanks to Lemma F.14 and Lemma F.15, we can conclude the proof of the main theorem for d.
Theorem F.18. Under the conditions of Theorem 6.1, PIRLO is pϵ,δq-PAC for d-IRL with a sample complexity at most:

τ b ď rO

˜

H3Zp,πb

ln 1
δ

ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
H8 ln 1

δ

ρπ
b,Zp,πE

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic.

Proof Sketch. The proof for the subset and superset is completely analogous. Thanks to Lemma F.14 and Lemma F.15, we
realize that we have to bound the sum of two terms, which are completely analogous to those in the proof of Theorem 6.1,
with the only difference of H4 instead of H3. By proceeding similarly, we get the result.

Thanks to Lemma F.16 and Lemma F.17, we can conclude the proof of the main theorem for d8.
Theorem F.19. Under the conditions of Theorem 6.1, PIRLO is pϵ,δq-PAC for d8-IRL with a sample complexity at most:

τ b ď rO

˜

H4 ln 1
δ

ρπ
b,Zp,πb

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
H8 ln 1

δ

ρπ
b,Zp,πE

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

and τE is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic.

Proof Sketch. The proof for the subset and superset is completely analogous. Thanks to Lemma F.16 and Lemma F.17, we
realize that we have to bound the sum of two terms, which are completely analogous to those in the proof of Theorem 6.2,
with the only difference of H4 instead of H3. By proceeding similarly, we get the result.

F.5. A note on the superset without relaxation

In this section, we show that, if we use the superset definition pRY of Eq. 8, i.e., the definition without relaxation, then we
are able to obtain the same performance decomposition result (see Lemma F.5) that we had for the case without pessimism,
and, thus, we end up with the same sample complexity result, which is much smaller than those computed for the relaxations.
Observe that we are not able to have an analogous result for the subset definition pRX of Eq. 8. Indeed, differently from
the relaxations defined in Eq. 9, the subset and the superset definitions of Eq. 8 are not exactly simmetric. While rP pRY

entails, by definition, the existence of (at least) one transition model in Cppp,bq in which r induces an optimal policy
π˚ PrπEs”

Sp,πE
, this is not true for r1 P pRX. Indeed, potentially, there might exist a (worst)18 transition model for every

ps,a,hqPSˆAˆJHK. Therefore, intuitively, in the reward choice lemma, we cannot make a choice of a single (worst)
transition model, but we have to choose many of them. This fact “breaks” the recursion and it does not allow us to perform
ℓ1-norm bounds. Instead, since the superset is of different nature, we can. It should be remarked that a membership checker
algorithm for superset pRY is inefficient to implement in practice because it requires to solve a bilinear optimization problem
(see Appendix G).

We will denote by pRY the superset definition of Eq. 8.
Lemma F.20 (Reward Choice). Under good event E , for any prP pRY, the reward r constructed as:

$

&

%

rhps,aq“prhps,aq`
ř

s1PS
pqphps1|s,aq´phps1|s,aqqV ˚

h`1ps1; qp,prq, @ps,a,hqPZp,πb

rhps,aq“prhps,aq, @ps,a,hqRZp,πb
,

18Worst because there is a universal quantifier @ over transition models in the definition of pRX.
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where qp is some transition model in Cppp,bq, belongs to RY
p,πE .

Proof. By definition of pRY, we have that prP pRY if and only if there exists a transition model p̄PCppp,bq such that prPRY
p̄,πE .

Let us construct r by choosing qp“ p̄. To show that rPRY
p,πE , we are going to show that the transition model rp defined as:

#

rphp¨|s,aq“php¨|s,aq, @ps,a,hqPZp,πb

rphp¨|s,aq“ p̄hp¨|s,aq, @ps,a,hqRZp,πb ,

belongs to rps”
Zp,πb

and is such that, for all ps,hqPSp,πE

, for all aPAztaEu:

Q˚
hps,a; rp,rqďQ˚

hps,aE ; rp,rq.

Then, by Lemma E.1, we can conclude that rPRY
p,πE .

Trivially, notice that rp”Zp,πb p. We proceed by induction to show that, for all ps,a,hqPSˆAˆJHK, the following identity
holds:

Q˚
hps,a; p̄,prq“Q˚

hps,a; rp,rq.

Then, since prP pRY, for all ps,hqPSp,πE

and for all aPAztaEu, the inequality Q˚
hps,a; p̄,prqďQ˚

hps,aE ; p̄,prq (Lemma E.1)
entails Q˚

hps,a; rp,rqďQ˚
hps,aE ; rp,rq, and the thesis follows.

As case base, consider stage H . For any ps,aqPSˆA, thanks to the definition of r, we can write:

Q˚
Hps,a; rp,rq“rHps,aq

“prHps,aq

“Q˚
Hps,a; p̄,prq.

Now, make the inductive hypothesis that for all ps1,a1qPSˆA, it holds that Q˚
h`1ps1,a1; rp,rq“Q˚

h`1ps1,a1; p̄,prq, and

consider stage h. For any ps,aqPZp,πb

h , we can write:

Q˚
hps,a; rp,rq

(1)
“rhps,aq`

ÿ

s1PS
rphps1|s,aqmax

a1PA
Q˚

h`1ps1,a1; rp,rq

(2)
“rhps,aq`

ÿ

s1PS
rphps1|s,aqmax

a1PA
Q˚

h`1ps1,a1; p̄,prq

(3)
“prhps,aq`

ÿ

s1PS
pqphps1|s,aq´phps1|s,aqqmax

a1PA
Q˚

h`1ps1,a1; qp,prq`
ÿ

s1PS
rphps1|s,aqmax

a1PA
Q˚

h`1ps1,a1; p̄,prq

(4)
“prhps,aq`

ÿ

s1PS
p̄hps1|s,aqmax

a1PA
Q˚

h`1ps1,a1; p̄,prq

(5)
“Q˚

hps,a; p̄,prq,

where at (1) we have applied the Bellman’s optimality equation, at (2) we have used the inductive hypothesis, at (3) we have
inserted the definition of rhps,aq along with the fact that ps,a,hqPZp,πb

, at (4) we have noticed that qp“ p̄ (by choice) and
that rphp¨|s,aq“php¨|s,aq (by definition); finally, at (5), we have applied again the Bellman’s optimality equation.

On the other side, for any ps,aqRZp,πb

h , we can write:

Q˚
hps,a; rp,rq“rhps,aq`

ÿ

s1PS
rphps1|s,aqmax

a1PA
Q˚

h`1ps1,a1; rp,rq

“rhps,aq`
ÿ

s1PS
rphps1|s,aqmax

a1PA
Q˚

h`1ps1,a1; p̄,prq

(1)
“prhps,aq`

ÿ

s1PS
p̄hps1|s,aqmax

a1PA
Q˚

h`1ps1,a1; p̄,prq
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“Q˚
hps,a; p̄,prq,

where at (1) we have used both the definition of rhps,aq and that rphp¨|s,aq“ p̄hp¨|s,aq, for ps,a,hqRZp,πb

.

This concludes the proof.

Thanks to the reward choice lemma just presented, we obtain the following sample complexity result.

Theorem F.21. Let M be an MDP without reward and let πE be the expert’s policy. Let DE and Db be two datasets of
τE and τ b trajectories collected with policies πE and πb in M, respectively. Under Assumption 2.1, any algorithm A that
outputs pRY (defined as in Eq. 8) is such that, for any ϵ,δPp0,1q:

P
pp,πE ,πbq

`␣

HcpRY
p,πE , pRYqďϵ

(

^tRY
p,πE Ď pRYu

˘

ě1´δ,

with a sample complexity at most:

τ b ď rO

˜

H3Zp,πb

ln 1
δ

ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

τE ď rO

˜

ln 1
δ

ln 1

1´ρπE,Zp,πE

min

¸

.

if c“d, and a sample complexity at most:

τ b ď rO

˜

H4 ln 1
δ

ρπ
b,Zp,πb

min ϵ2

ˆ

ln
1

δ
`Sp,πb

max

˙

`
ln 1

δ

ln 1

1´ρπb,Zp,πb

min

¸

,

τE ď rO

˜

ln 1
δ

ln 1

1´ρπE,Zp,πE

min

¸

.

if c“d8.

Proof Sketch. Observe that, thanks to Lemma F.20, we are able to obtain a performance decomposition lemma analogous to
Lemma F.5 for distance d (or analogous for distance d8). Next, following the steps in the proof of Theorem 5.1 (Theorem
5.2), we obtain the result.

G. Implementation
In this appendix, we provide some comments on the implementation of membership checker algorithms for IRLO, PIRLO,
and some comments about the subset and superset defined in Eq. 8. In Section G.1, we present the pseudocode of the
membership checker algorithms. In Section G.2, we provide more details on the definitions of the relaxations rRX and rRY.
In Section G.3 we show that the implementation of a membership checker algorithm for the subset and superset defined in
Eq. 8 is inefficient. Finally, in Section G.4, we give the intuition that a straightforward relaxation of the representation of the
sets provided by Lemma E.1 is worse than that obtained by relaxing the representation in Theorem 3.1.

G.1. Algorithm

The pseudocode of the membership checker algorithms for IRLO and PIRLO is provided in Algorithm 2.
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Algorithm 2 Membership checker for IRLO and PIRLO.
Input :Datasets DE

“txsE,i
h ,aE,i

h yhui, Db
“txsb,ih ,ab,i

h yhui, candidate reward function rPR

Output :True if rPp pRY, pRX
q

Run lines 1-11 of Algorithm 1
Define C as in Eq. (6) for IRLO and as in Eq. (7) for PIRLO
Extended value iteration:
AhpsqÐ if ps,hqP pSp,πE

then tpπE
h psqu else A,@ps,hqPSˆJHK

Q`
Hps,aq,Q´

Hps,aqÐrHps,aq @ps,a,hqPS ˆAˆJHK
for h“H ´1 to 1 do

for ps,aqPS ˆA do
Q`

h ps,aqÐrhps,aq`max
p1PC

ř

s1PS
p1
hps1

|s,aq max
a1PAh`1psq

Q`
h`1ps1,a1

q

Q´
h ps,aqÐrhps,aq`min

p1PC

ř

s1PS
p1
hps1

|s,aq max
a1PAh`1psq

Q´
h`1ps1,a1

q

end
end
Membership test:

inY
ÐTrue, inX

ÐTrue

for ps,hqP pSp,πE

do
for aPAztpπE

psqu do
IRLOif Q`

h ps,pπE
h psqqăQ`

h ps,aq then
inY

ÐFalse
end
if Q´

h ps,pπE
h psqqăQ´

h ps,aq then
inX

ÐFalse
end

PIRLOif Q`
h ps,pπE

h psqqăQ´
h ps,aq then

inY
ÐFalse

else if Q´
h ps,pπE

h psqqăQ`
h ps,aq then

inX
ÐFalse

end
end

end
return (inY, inX)

The idea is to find the worst (resp. best) transition model for the subset (resp. superset) among all those feasible. In practice,
what we do is to exploit the representation provided in Eq. 22 for IRLO and the representation provided in Eq. 27 for
PIRLO.

Observe that, inside the support ps,hqP pSp,πE

, we use the estimated expert’s action pπE
h psq, while outside the support we

always play the action that maximizes the Q-function (both Q` and Q´). Concerning the transition model, notice that,
for Q`, we consider the p1 PC that maximizes the expected Q`, while for Q´ we consider the p1 PC that minimizes the
expected Q´. Observe also that, for IRLO, because of the definition of C, inside the support pZp,πb

we use p1 “ pp, and
outside the support we consider p1 “argmaxs1PS for Q` and p1 “argmins1PS for Q´.

Finally, we check the Bellman optimality conditions to assess the membership of the candidate reward r in the estimated
sets pRY (boolean variable inY) and pRX (boolean variable inX) (line 2).

G.2. A better understanding of the relaxations

To get a better understanding of why rRX ĎRX
p,πE and RY

p,πE Ď rRY, under the hypothesis (good event) that the true transition

model pPCppp,bq and that pπE “πE in all Sp,πE

, observe that, for the subset:

RX
p,πE Ě

č

p1PCppp,bq

RX
p1,πE

“trPR |@p1 PCppp,bq,@π̄PrπEs”
Sp,πE

,@ps,hqPSp,πE

,@aPA :QπE

h ps,πE
h psq;p1, rqěQπ̄

hps,a;p1, rqu
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(1)
ĚtrPR |@π̄PrπEs”

Sp,πE
,@ps,hqPSp,πE

,@aPA : min
p1PCppp,bq

QπE

h ps,πE
h psq;p1, rqě max

p1PCppp,bq
Qπ̄

hps,a;p1, rqu

“trPR |@ps,hqPSp,πE

,@aPA : min
π̄PrπEs”

Sp,πE

´

min
p1PCppp,bq

QπE

h ps,πE
h psq;p1, rq´ max

p1PCppp,bq
Qπ̄

hps,a;p1, rq

¯

ě0u

(2)
“trPR |@ps,hqPSp,πE

,@aPA : min
p1PCppp,bq

QπE

h ps,πE
h psq;p1, rqě max

π̄PrπEs”
Sp,πE

max
p1PCppp,bq

Qπ̄
hps,a;p1, rqu

“: rRX,

where at (1) we have exchanged the order of the quantifiers, and we can do so because they all are of the same type, and
then we have observed that minxpfpxq´gpxqqěminx fpxq´maxx gpxq, and at (2) we recognize that the first term does
not depend on π̄. W.r.t. the superset, in an analogous manner, observe that:

RY
p,πE Ď

ď

p1PCppp,bq

RY
p1,πE

“trPR |Dp1 PCppp,bq,@π̄PrπEs”
Sp,πE

,@ps,hqPSp,πE

,@aPA :QπE

h ps,πE
h psq;p1, rqěQπ̄

hps,a;p1, rqu

(1)
ĎtrPR |@π̄PrπEs”

Sp,πE
,@ps,hqPSp,πE

,@aPA : max
p1PCppp,bq

QπE

h ps,πE
h psq;p1, rqě min

p1PCppp,bq
Qπ̄

hps,a;p1, rqu

“trPR |@ps,hqPSp,πE

,@aPA : min
π̄PrπEs”

Sp,πE

´

max
p1PCppp,bq

QπE

h ps,πE
h psq;p1, rq´ min

p1PCppp,bq
Qπ̄

hps,a;p1, rq

¯

ě0u

(2)
“trPR |@ps,hqPSp,πE

,@aPA : max
p1PCppp,bq

QπE

h ps,πE
h psq;p1, rqě max

π̄PrπEs”
Sp,πE

min
p1PCppp,bq

Qπ̄
hps,a;p1, rqu

“: rRY,

where at (1) we have relaxed and at (2) we recognize that the first term does not depend on π̄.

G.3. Testing the membership without relaxations

We show that the problem of testing the membership to the subset and superset defined as in Eq. 8 is equivalent to solving
a bilinear optimization problem, which is in general hard. We will denote the expert’s action by aE and we use the
representation provided by Lemma E.1.

Let us begin with the subset pRX. A given reward r belongs to pRX if and only if:

@p1 PCppp,bq,@ps,hqP pSp,πE

,@aPAztaEu :Q˚
hps,a;p1, rqďQ˚

hps,aE ;p1, rq,

where Cppp,bq is defined in Eq. 7. By applying the Bellman optimality equation, changing the order of the quantifiers, and
considering the worst possible transition model, we obtain:

@ps,hqP pSp,πE

,@aPAztaEu :

rhps,aqďrhps,aEq` min
p1PCppp,bq

ˆ

ÿ

s1PS
p1
hps1|s,aEqV ˚

h`1ps1;p1, rq´
ÿ

s1PS
p1
hps1|s,aqV ˚

h`1ps1;p1, rq

˙

.

It should be remarked that, differently from IRLO and PIRLO, to check whether a given reward r belongs to pRX, we cannot
optimize the value function, but we have to optimize the advantage function. Therefore, for all ps̄, h̄qP pSp,πE

, and for all
āPAztaEu, we have to solve the optimization problem:

min
p1

ÿ

s1PS

´

p1
h̄ps1|s̄,aEq´p1

h̄ps1|s̄, āq

¯

V ˚

h̄`1
ps1;p1, rq

s.t. }p1
hp¨|s,aq´ pphp¨|s,aq}1 ďbhps,aq @ps,a,hqP pZp,πb

p1
hp¨|s,aqP∆S @ps,a,hqPSˆAˆJHK

p1
hps1|s,aq“0 @ps,a,hqP pZp,πE

^s1 R
`

pSp,πE

h`1 Ysupp pphp¨|s,aEq
˘

.
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Observe that, while the set of constraints define a convex set, the objective involves the product of optimization variables.
We can introduce H variables tVsusPJSK to replace V ˚

h̄`1
ps1;p1, rq by adding suitable constraints that keep into account

also the presence of the maximum operator inside V ˚ (because of the Bellman’s optimality equation). In this way, due to
the product between variables p1 and V , we can conclude that this is a bilinear optimization problem, which is in general
difficult to solve.

W.r.t. the superset, we have that a reward r belongs to pRY if and only if:

Dp1 PCppp,bq,@ps,hqP pSp,πE

,@aPAztaEu :Q˚
hps,a;p1, rqďQ˚

hps,aE ;p1, rq.

This time, we cannot bring the transition model inside because we have different quantifiers. We can formulate the problem
as a feasibility problem by adding constraints because of the presence of @ps,hqP pSp,πE

,@aPAztaEu. In practice, the
presence of the product between “optimization” variables is now in the constraints, so the problem is again a bilinear
problem.

G.4. Relaxing the representation provided by Lemma E.1

We have seen that we can represent the feasible set by using Theorem 3.1 or Lemma E.1. While the two representations are
equivalent, observe that a straightforward relaxation of the constraints present in Lemma E.1 provides a different relaxation
of the subset and superset w.r.t. rRX and rRY (which are obtained by relaxing the representation in Theorem 3.1). Indeed, by
relaxing the representation with the Q˚ (Lemma E.1), we would obtain constraints of the form (ex. subset):

min
p1PCppp,bq

Q˚
hps,πE

h psq;p1, rqě max
p1PCppp,bq

Q˚
hps,a;p1, rq

ðñ min
p1PCppp,bq

max
πPΠ

Qπ
hps,πE

h psq;p1, rqě max
p1PCppp,bq

max
πPΠ

Qπ
hps,a;p1, rq. (50)

Clearly, this is different from rRX, whose constraints can be written as:

min
p1PCppp,bq

QπE

h ps,πE
h psq;p1, rqě max

p1PCppp,bq
max

πPrπEs”
Sp,πE

Qπ
hps,a;p1, rq.

Indeed, rRX puts the additional constraint that the Q˚ is achieved by a policy in rπEs”
Sp,πE

, which is not present in Eq. 50.

An analogous reasoning can be carried out also for the superset.

H. Proofs of Section 8
In this section, we provide the missing proofs of Section 8.
Proposition 8.1. Let M be the usual MDP without reward with Aě2 and let πE be the deterministic expert’s policy. Let
DE be a dataset of trajectories collected by following πE in M. Then, for any reward in rPRX

p,πE it holds that:

@ps,hqPSp,πE

, @aPA : rhps,πE
h psqqěrhps,aq. (9)

Proof. Let r be an arbitrary reward function of RX
p,πE . Consider a certain ps,hqPSp,πE

, with expert’s action πE
h psq“aE ,

and let aPA be a non-expert’s action. By Lemma E.1, we know that, for any p1 Prps”
Zp,πE

, it must hold:

rhps,aqďrhps,aEq` E
s1„p1

hp¨|s,aEq
V ˚
h`1ps1;p1, rq´ E

s1„p1
hp¨|s,aq

V ˚
h`1ps1;p1, rq

“rhps,aEq` E
s1„php¨|s,aEq

V ˚
h`1ps1;p,rq´ E

s1„p1
hp¨|s,aq

V ˚
h`1ps1;p1, rq,

where we have used the definition of rps”
Zp,πE

. Since ps,a,hqRZp,πE

, then the constraint must hold @p1
hp¨|s,aqP∆S . In

particular, it must hold for the transition model such that:

rhps,aqďrhps,aEq` E
s1„php¨|s,aEq

V ˚
h`1ps1;p,rq´max

s1PS
V ˚
h`1ps1;p1, rq

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

ď0

,

from which the thesis follows.
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Proposition 8.2. Under the conditions of Proposition 8.1, assume that php¨|s,aq is known, where aPA is a non-expert’s
action in ps,hqPSp,πE

. Then, if php¨|s,aq‰php¨|s,πE
h psqq, there exists a reward rPRX

p,πE such that:

rhps,πE
h psqqărhps,aq.

Proof. Let aE :“πE
h psq. Similarly to the proof of Proposition 8.1, we can write: php¨|s,aq:

rhps,aqďrhps,aEq` E
s1„p1

hp¨|s,aEq
V ˚
h`1ps1;p1, rq´ E

s1„p1
hp¨|s,aq

V ˚
h`1ps1;p1, rq

“rhps,aEq` E
s1„php¨|s,aEq

V ˚
h`1ps1;p,rq´ E

s1„php¨|s,aq
V ˚
h`1ps1;p1, rq,

where we have used that we have access to samples about php¨|s,aq. By hypothesis, php¨|s,aq‰php¨|s,aEq, therefore, by
taking r such that Es1„php¨|s,aEqV

˚
h`1ps1;p,rqąEs1„php¨|s,aqV

˚
h`1ps1;p1, rq, we can obtain a reward r in RX

p,πE such that
rhps,πE

h psqqărhps,aq.

I. A relaxed triangle inequality
In this section, we show that both our notions of distance d,d8, defined in Section 4, are semimetrics, and that they satisfy a
ρ-relaxed triangle inequality (see Fagin & Stockmeyer, 1998) with finite ρą1 for any pair of rewards r,r1 PR. Furthermore,
we show that the Hausdorff distance H, when applied to the sets of rewards considered in this work, inherits the relaxed
triangle inequality property. It should be remarked that we need the ρ-relaxed triangle inequality property with finite ρ just
for the learnability proofs of Appendix C. Moreover, notice that we do not care about a tight value of ρ, but only that it is
finite. Instead, if we wanted to compute a minimax lower bound, then we would need a tight value of ρ in order to obtain a
tight lower bound.

I.1. d and d8 satisfy a relaxed triangle inequality

In the following, for the sake of simplicity, we denote reward functions by vectors x,y,z, . . .PRk. Moreover, for any pair
x,yPRk, we will consider distance d for some distribution qP∆JkK as:

dpx,yq“

ř

iPJkK
qi|xi ´yi|

maxt}x}8,}y}8u
,

and distance d8 as:

d8px,yq“
}x´y}8

maxt}x}8,}y}8u
.

First of all, let us see that neither d nor d8 are metrics:

Proposition I.1. Both the functions d and d8 do not satisfy the triangle inequality.

Proof. To show that the triangle inequality property is not satisfied, we simply provide some counterexamples. For the sake
of simplicity, let k“2.

W.r.t. distance d, let the vectors x,y,zPR2 be defined as:
$

’

&

’

%

x“r1,0s⊺

y“r´1,´1s⊺

z“r´2,´1s⊺

,

and observe that, for any qP∆J2K such that q2 ą0:

dpx,yq“2q1 `q2
?
ďdpx,zq`dpy,zq“3{2q1 `q2{2`q1{2“2q1 `q2{2
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ðñ q2 ď0.

If q2 “0, we can take the second component of z to be arbitrary large so that the inequality is not verified.

As far as d8 is concerned, let x,y,zPR2 be the vectors defined as:
$

’

&

’

%

x“r0,2s⊺

y“r2,2s⊺

z“r1,3s⊺

.

We have:

d8px,yq“
2

2
“1

?
ďd8px,zq`d8py,zq“1{3`1{3“2{3

ðñ 1ď2{3,

which is clearly false.

Notice that it is possible to generate counterexamples for higher dimensions ką2 by using a simple script of code.

Having verified that distances d,d8 do not satisfy the triangle inequality, we can conclude that they are semimetrics, as it is
easy to check the other three properties of positivity, simmetry, and that the distance between two points is zero if and only
if the two points coincide. We are interested in verifying whether they satisfy a relaxed form of triangle inequality (Fagin
& Stockmeyer, 1998). Specifically, for any finite ρPR with ρą1, we say that a function d satisfies the ρ-relaxed triangle
inequality if, for any x,y,zPRk:

dpx,yqďρ
`

dpx,zq`dpy,zq
˘

.

We aim to show that both d and d8 satisfy the ρ-relaxed triangle inequality for some ρ. Let us begin with a useful lemma.

Lemma I.2. Let d2 :Rk ˆRk ÑR be the function that, for any pair x,yPRk, it returns:

d2px,yq :“
}x´y}2

maxt}x}2,}y}2u
.

Then, d2 is a metric.

Proof. It is easy to observe that d2px,yq“0 if and only if x“y. Moreover, notice that d2px,yqě0 for all x,yPRk, and
also that d2px,yq“d2py,xq.

It remains to prove that d2 satisfies the triangle inequality property, i.e., for any x,y,zPRk, it satisfies:

d2px,yqďd2px,zq`d2py,zq.

We distinguish two cases, one in which maxt}x}2,}y}2,}z}2u‰}z}2 and the other in which maxt}x}2,}y}2,}z}2u“}z}2.

Let us begin with the former case. W.l.o.g., assume that argmaxt}x}2,}y}2,}z}2u“y. Then, we can write:

d2px,yq :“
}x´y}2

maxt}x}2,}y}2u

“
}x´y}2

maxt}x}2,}y}2,}z}2u

(1)
ď

}x´z}2

maxt}x}2,}y}2,}z}2u
`

}y´z}2

maxt}x}2,}y}2,}z}2u

(2)
“

}x´z}2

maxt}x}2,}y}2,}z}2u
`

}y´z}2

maxt}y}2,}z}2u

(3)
ď

}x´z}2

maxt}x}2,}z}2u
`

}y´z}2

maxt}y}2,}z}2u
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“:d2px,zq`d2py,zq,

where at (1) we apply triangle inequality of the } ¨}2 norm, at (2) we use that maxt}x}2,}y}2,}z}2u“maxt}y}2,}z}2u“

}y}2, at (3) we use that, since maxt}x}2,}y}2,}z}2u“}y}2, then maxt}x}2,}y}2,}z}2uěmaxt}x}2,}z}2u.

Now, w.l.o.g., consider the case in which }x}2 ď}y}2 ď}z}2. Since the normed vector space Rk with } ¨}2 is an inner
product space, then the Ptolemy’s inequality (Steele, 2004) holds:

}x´y}2}z}2 ď}x´z}2}y}2 `}y´z}2}x}2

ď}x´z}2}y}2 `}y´z}2}y}2

“}y}2
`

}x´z}2 `}y´z}2
˘

.

By dividing both sides of the inequality by }z}2 and }y}2, we can write:

}x´y}2

}y}2
ď

}x´z}2

}z}2
`

}y´z}2

}z}2

ðñ
}x´y}2

maxt}x}2,}y}2u
ď

}x´z}2

maxt}x}2,}z}2u
`

}y´z}2

maxt}y}2,}z}2u
.

This concludes the proof.

It should be remarked that the Ptolemy’s inequality holds in inner product spaces only, and that the unique p-normed vector
space to be an inner product space is that with p“2. This is why our proof of Lemma I.2 works for function dp defined as:

dppx,yq :“
}x´y}p

maxt}x}p,}y}pu
,

if and only if p“2. Thanks to Lemma I.2, we are able to prove the main theorem of this section.

Theorem I.3. Let qP∆JkK such that qi ą0 for all iPJkK, and denote qmin :“miniPJkK qi. Then, both the semimetrics d and
d8 satisfy the ρ-relaxed triangle inequality with ρ upper bounded, respectively, by k{q2min and k.

Proof. First, we prove the statement of the theorem for d8, and then we use it to prove the statement for d.

Observe that, for any xPRk:

}x}8 ď}x}2 ď
?
k}x}8. (51)

Let us consider any three vectors x,y,zPRk. If argmaxt}x}8,}y}8,}z}8u‰z, then we can proceed as in the first part
of the proof of Lemma I.2 to show that d8px,yqďd8px,zq`d8py,zq. Therefore, w.l.o.g., we consider the case in which
argmaxt}x}8,}y}8,}z}8u“z. We can write:

d8px,yq“
}x´y}8

maxt}x}8,}y}8u

(1)
ď

}x´y}2

maxt}x}8,}y}8u

(2)
ď

?
k}x´y}2

maxt}x}2,}y}2u

“
?
kd2px,yq

(3)
ď

?
kd2px,zq`

?
kd2py,zq

“
?
k

}x´z}2

maxt}x}2,}z}2u
`

?
k

}y´z}2

maxt}y}2,}z}2u

(4)
ď

?
k

}x´z}2

maxt}x}8,}z}8u
`

?
k

}y´z}2

maxt}y}8,}z}8u
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(5)
ďk

}x´z}8

maxt}x}8,}z}8u
`k

}y´z}8

maxt}y}8,}z}8u

“k
`

d8px,zq`d8py,zq
˘

,

where at (1) and at (2) we use Eq. 51, at (3) we use the result in Lemma I.2, and at (4) and at (5) we use again Eq. 51.

Now, we move to prove the statement concerning d. In a similar way as in the proof of Proposition 4.1, we have that, for any
x,yPRk:

dpx,yqďd8px,yq :“
}x´y}8

maxt}x}8,}y}8u

“

max
iPJkK

qi
qi

|xi ´yi|

maxt}x}8,}y}8u

ď

max
iPJkK

qi
qmin

|xi ´yi|

maxt}x}8,}y}8u

ď

ř

iPJkK
qi|xi ´yi|

qminmaxt}x}8,}y}8u

“
dpx,yq

qmin
.

By using this relation in place of that in Eq. 51, we can carry out the same derivation made for d8 using d2 for the
semimetric d using d8.

It should be remarked that we are not claiming here that the values of ρ provided in Theorem I.3 are tight19.

I.2. The Hausdorff distance inherits the relaxed triangle inequality property

First, we show that, thanks to the definitions of d and d8, if we apply the Hausdorff distance to closed sets, then the (relaxed)
triangle inequality property is satisfied. Next, we show that the sets of rewards we work with are closed.

Let us begin with the following proposition.

Proposition I.4. Let Hd and H8 be defined as in Section 4. The closedness of the sets to which these distances are applied
is a sufficient condition for the (relaxed) triangle inequality property to hold.

Proof Sketch. We will not provide an exhaustive proof, since it is completely analogous to the proof that shows that
compactness is a sufficient condition for the Hausdorff distance with inner metric to satisfy triangle inequality. Instead, we
simply give an idea of why for d and d8 closedness (instead of compactness) suffices.

In practice, the compactness requirement is just needed to guarantee that the infimum is actually a minimum over the sets in
input to the Hausdorff distance. For a generic notion of inner distance, closedness is not sufficient because the infimum
might be at 8 and, thus, the minimum would not exist. However, observe that both d and d8 contain the normalization
term 1{M (see Section 4), therefore, for any finite vector xPRk, getting to infinity limyÑ8 }x´y}8{M “1 worsens the
distance to x w.r.t. any other finite z in the set containing y. This shows that boundedness is not required anymore, but
closedness suffices. This concludes the proof.

In this work we consider unbounded sets of rewards, so clearly compactness does not hold. The following proposition shows
the closedness of some sets of rewards.

Proposition I.5. The following sets are closed:

Rp,πE ,Rp,πE ,RX
p,πE ,RY

p,πE , rRX, rRY.

19Indeed, we do not believe so. By using a script to generate a large number of vectors, and using the intuition that the diagonal of the
unit square (} ¨}8) is

?
2 the radius of the unit circle (} ¨}2), we conjecture that a tighter value of ρ for d8 is ρ“2, irrespective of the

dimension.
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Proof. From Theorem 3 of Ng & Russell (2000), we observe that the old feasible set Rp,πE is closed because it is defined
by linear less than or equal to ď inequalities.

The new feasible set Rp,πE can be expressed, from Corollary D.1, as an arbitrary union of closed sets Rp,πE “
Ť

π1PrπEs”
Sp,πE

Rp,π1 . However, observe that the feasible sets Rp,π1 with stochastic π1 are contained in the feasible

sets of some deterministic policies. Since there is a finite number of deterministic policies, then Rp,πE can be expressed as
a finite union of closed sets, so it is closed.

The subset RX
p,πE is an arbitrary intersection of Rp,πE , i.e., closed sets, thus it is closed.

The superset RY
p,πE is an arbitrary union of Rp,πE , so, potentially, it might not be non-closed. However, thanks to the

definitions of pm and πm in Eq. 20 and Eq. 21, we know that the arbitrary union representing RY
p,πE coincides with the

feasible set Rpm,πm , which is closed, thus RY
p,πE is closed.

In an analogous manner, by using Eq. 25 and Eq. 26, we observe that the relaxations rRX and rRY can be expressed by a
finite number of linear less than or equal to ď constraints, thus they are closed.

J. Technical Lemmas
In this section, we report some technical lemmas that are useful in the analysis of the sample complexity of IRLO and
PIRLO (see Appendix F). Lemma J.1 and Lemma J.2 are taken from other works, while Lemma J.3 takes inspiration from
Lemma B.9 of Metelli et al. (2021).

Lemma J.1 (Lemma A.1 of (Xie et al., 2021)). Suppose that N „Binpn,pq is a binomially distributed random variable,
with ně1 and pPr0,1s. Then, with probability at least 1´δ, we have that:

p

N _1
ď

8ln 1
δ

n
.

Lemma J.2 (Lemma 8 of (Kaufmann et al., 2021)). Let X1,X2, . . . ,Xn, . . . be i.i.d. samples from a distribution supported
over JmK, of probabilities given by pP∆JmK. We denote by ppn the empirical vector of probabilities, i.e., for all kPJmK:

ppn,k “
1

n

n
ÿ

l“1

1tXl “ku.

For all pP∆JmK, for all δPr0,1s:

P
ˆ

DnPNě0, nKLpppn}pqą lnp1{δq`pm´1q ln
`

ep1`n{pm´1qq
˘

˙

ďδ.

Lemma J.3. Let a,b,c,dą0 such that 2bcąe. Then, the inequality xěa`b lnpcx`dq is satisfied by all xě2a`

3b lnp2bcq`d{c.

Proof. Observe that, since function x grows faster than function a`b lnpcx`dq, then there exists x̄ such that, for all xě x̄,
the inequality is satisfied. Our goal here is to show that such x̄ can be upper bounded by 2a`3b lnp2bcq`d{c.

Let us consider any xě2a`d{c. We can write:

xěa`b lnpcx`dq ðñ
x´a

b
ě lnpcpx˘aq`dq

ðñ e
x´a
b ěcpx´aq`ca`d

(1)
ðù e

x´a
b ě2cpx´aq

ðñ
a´x

b
e

a´x
b ě´

1

2bc
, (I)

where at (1) we have used that, since xě2a`d{c, then cpx´aqěca`d, and thus we have replaced the constraint with a
stronger one.
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Hypothesis 2bcąe entails that ´ 1
2bc ě´ 1

e , thus we can apply the Lambert function, which provides as solution to inequality
I all the x such that:

a´x

b
ďW´1

ˆ

´
1

2bc

˙

or
a´x

b
ěW0

ˆ

´
1

2bc

˙

,

where W0 is the principal component of the Lambert W function. Consider the first inequality. We can write:

xěa´bW´1

ˆ

´
1

2bc

˙

(1)
ďa`b`b

a

2lnp2bcq´2`b lnp2bcq´b

ďa`3b lnp2bcq,

where at (1) we have applied the inequality W´1p´e´u´1qě´1´
?
2u´u from (Chatzigeorgiou, 2013).

To obtain the result, we use that maxta,buďa`b for any a,bě0 to upper bound:

max
␣

2a`d{c,a`3b lnp2bcq
(

“a`max
␣

a`d{c,3b lnp2bcq
(

ď2a`3b lnp2bcq`d{c.

K. Illustrative Experiment
We have applied PIRLO to the highway driving application domain. To this aim, we have used the data20 gathered by
Likmeta et al. (2021).

Data Description The dataset consists of trajectories of H “400 stages collected by 10 different human experts driving in
a simulator. The highway has 3 lanes. The goal of each expert is to change lane in order to drive safely and to minimize the
trip time. The action space A is made of 3 actions: Turn left, turn right, continue forward. The state space S is continue, and
it is represented by 25 features, keeping into account the speed and position of the car, and the speed and position of the
surrounding cars.

Data Preprocessing We have to transform the data to obtain a tabular MDP. To this aim, we construct 5 discrete features
from the 25 present in the original data: We use three binary features, free left, free right, free forward, that say whether
there is a vehicle on the left, on the right, or in front of our car; next, we use a binary feature that says whether the car is
changing lane, and a discrete feature with 5 possible values for the speed of the vehicle. In this way, we obtain a tabular
MDP with S“80.

Experiments Design As mentioned by Likmeta et al. (2021), this lane-change scenario represents a multi-objective task,
because humans consider several objectives while driving. We manually design some reward functions coherent with the
most common driving objectives and we use PIRLO to verify whether they are compatible w.h.p. with the demonstrations
of behavior provided by the 10 experts in the dataset. First, we construct a single behavioral dataset Db by joining the
trajectories of all the 10 experts, and then we consider one expert at a time to construct DE . Next, we design the reward
functions and we give them in input to the membership checker implementation of PIRLO.

Experiments Results We design 3 kinds of reward functions:

• reward rBC, i.e., the “behavioral cloning” reward, which is the reward that assigns positive values to actions played by
the expert’s policy;

• reward r, which is coherent with the observations provided in Section 5.3 of Likmeta et al. (2021). In words, it assigns
negative reward when (i) the right lane is not free, (ii) there is a car in front of us (and so it decreases our speed), (iii)
we change lane;

20The data is publicly available at https://github.com/amarildolikmeta/irl_real_life/tree/main/
datasets/highway.
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Alice Bob Carol Chuck Craig Dan Erin Eve Grace Judy
rBC Y,Y Y,Y Y,Y Y,Y Y,Y Y,Y Y,Y Y,Y Y,Y Y,Y
r N,N Y,N Y,N Y,N N,N Y,N Y,N N,N N,N Y,N
r N,N N,N N,N N,N N,N N,N N,N N,N N,N N,N

Table 2. The output of PIRLO when fed with the rewards designed for the highway driving task. The first letter refers to the superset,
while the second letter refers to the subset. “N” means that the reward does not belong to the set, while “Y” means that it belongs to the
set.

• reward r, which is ´r, i.e., it assigns positive reward to all the bad actions;

We provide the output of PIRLO in Table 2. Some comments are in order. First, our reduction to a smaller state space has
caused the policies of the agents to be (more) stochastic. Moreover, this reduction has increased the number of times that the
corner case described in Appendix D.5 takes place. Since this corner case is outside the good event, we have removed such
data from Db; in this way, we improve the performances of PIRLO.

Observe that the behavioral cloning reward rBC belongs to the subset and superset for all the experts. This is reasonable
since it assigns positive reward only to expert’s actions in the support of the expert’s policy. However, it should be remarked
that if we had not removed the “corner-case” samples, then rBC would not belong to the subsets.

The reward r compatible with the analysis provided in Likmeta et al. (2021) belongs to the superset of some experts only.
Specifically, for the experts Alice, Eve, Grace, and Craig, that belong to the clusters 1 and 3 of Table 1 of Likmeta et al.
(2021), the reward r is not in the superset. However, it should be remarked that reward r is not exactly the same as the
reward described by Likmeta et al. (2021), and also that we are working with a more aggregated state space.

Notice that, as expected, reward r“´r, which rewards “bad” actions, does not belong neither to the subset nor to the
superset of any expert.
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