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Abstract

Inverse reinforcement learning (IRL) aims to re-
cover the reward function of an expert agent from
demonstrations of behavior. It is well-known that
the IRL problem is fundamentally ill-posed, i.e.,
many reward functions can explain the demon-
strations. For this reason, IRL has been recently
reframed in terms of estimating the feasible re-
ward set (Metelli et al., 2021), thus, postponing
the selection of a single reward. However, so far,
the available formulations and algorithmic solu-
tions have been proposed and analyzed mainly
for the online setting, where the learner can inter-
act with the environment and query the expert at
will. This is clearly unrealistic in most practical
applications, where the availability of an offline
dataset is a much more common scenario. In this
paper, we introduce a novel notion of feasible
reward set capturing the opportunities and limi-
tations of the offline setting and we analyze the
complexity of its estimation. This requires the
introduction of an original learning framework
that copes with the intrinsic difficulty of the set-
ting, for which the data coverage is not under
control. Then, we propose two computationally
and statistically efficient algorithms, and
PIRLO, for addressing the problem. In particular,
the latter adopts a specific form of pessimism to
enforce the novel, desirable property of inclusion
monotonicity of the delivered feasible set. With
this work, we aim to provide a panorama of the
challenges of the offline IRL problem and how
they can be fruitfully addressed.
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1. Introduction

Inverse reinforcement learning (IRL), also called inverse
optimal control, consists of recovering a reward function
from expert’s demonstrations (Russell, 1998). Specifically,
the reward is required to be compatible with the expert’s
behavior, i.e., it shall make the expert’s policy optimal. As
pointed out in Arora & Doshi (2018), IRL allows mitigat-
ing the challenging task of the manual specification of the
reward function, thanks to the presence of demonstrations,
and provides an effective method for imitation learning (Osa
et al., 2018). In opposition to mere behavioral cloning, IRL
allows focusing on the expert infent (instead of behavior),
and, for this reason, it has the potential to reveal the under-
lying objectives that drive the expert’s choices. In this sense,
IRL enables interpretability, improving the interaction with
the expert by explaining and predicting its behavior, and
transferability, as the reward (more than a policy) can be
employed under environment shifts (Adams et al., 2022).

One of the main concerns of IRL is that the problem is
inherently ill-posed or ambiguous (Ng & Russell, 2000), i.e.,
there exists a variety of reward functions compatible with
expert’s demonstrations. In the literature, many criteria for
the selection of a single reward among the compatible ones
were proposed (e.g., Ng & Russell, 2000; Ratliff et al., 2006;
Ziebart et al., 2008; Boularias et al., 2011). Nevertheless,
the ambiguity issue has limited the theoretical understanding
of the IRL problem for a long time.

Recently, IRL has been reframed by Metelli et al. (2021) into
the problem of computing the set of all rewards compatible
with expert’s demonstrations, named feasible reward set (or
just feasible set). By postponing the choice of a specific
reward within the feasible set, this formulation has opened
the doors to a new perspective that has enabled a deeper
theoretical understanding of the IRL problem. The majority
of previous works on the reconstruction of the feasible set
have focused mostly on the online setting (e.g., Metelli et al.,
2021; Lindner et al., 2022; Zhao et al., 2023; Metelli et al.,
2023), in which the learner is allowed to actively interact
with the environment and with the expert to collect samples.

Although these works succeeded in obtaining sample effi-
cient algorithms and represent a fundamental step ahead in
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the understanding of the challenges of the IRL problem (e.g.,
providing sample complexity lower bounds), the underlying
basic assumption that the learner is allowed to govern the
exploration and query the expert wherever is far from being
realistic. Indeed, the most common IRL applications are nat-
urally framed in an offline scenario, in which the learner is
given in advance a dataset of trajectories of the expert (and,
possibly, an additional dataset collected with a behavioral
policy, e.g., Boularias et al. 2011). Typically, no further
interaction with the environment and with the expert is al-
lowed (Likmeta et al., 2021). The offline setting has been
widely studied in (forward) reinforcement learning (RL, Sut-
ton & Barto, 2018), and a surge of works have analyzed the
problem from theoretical and practical perspectives (e.g.,
Munos, 2007; Levine et al., 2020; Buckman et al., 2020;
Yu et al., 2020; Jin et al., 2021). In this context, a powerful
technique is represented by pessimism, which discourages
the learner from assigning credit to options that have not
been sufficiently explored in the available dataset, allowing
for sample efficiency guarantees (Buckman et al., 2020).

The IRL offline setting has been investigated for the problem
of recovering the feasible set in the recent preprint (Zhao
et al., 2023). The authors consider the same feasible set
definition employed for the online case, which enforces the
optimality of the expert’s policy in every state (Metelli et al.,
2021; Lindner et al., 2022). However, in the offline setting,
this learning target is unrealistic unless the dataset covers
the full space. This implies that the produced rewards can
be safely used in forward RL when the behavioral policy
covers the whole reachable portion of the state-action space
only. For this reason, Zhao et al. (2023) apply a form of
pessimism which allows delivering rewards that make the
expert’s policy e-optimal even in the presence of partial cov-
ering of the behavioral policy but only when the latter is
sufficiently close to the expert’s. These demanding require-
ments, however, collide with the intuition that, regardless of
the sampling policy, if we observe the expert’s actions, we
can deliver at least one reward, making the expert optimal.’

Desired Properties In this paper, we seek to develop novel
appropriate solution concepts for the feasible reward set and
new effective actionable algorithms for recovering them in
the offline IRL setting. Specifically, we aim at fulfilling the
following three key properties:

(?) (Sample Efficiency) We should output, with high
probability, an estimated feasible set using a number
of samples polynomial w.r.t. the desired accuracy,
error probability, and relevant sizes of the problem.

(4%) (Computational Efficiency) We should be able to
check the membership of a candidate reward in the
feasible set in polynomial time w.r.t. the relevant

"For instance, simply assign 0 when playing the expert actions
and —1 otherwise.

R

Figure 1. 9% = set of all rewards, R = true feasible set, R and
R*“ = examples of inclusion monotonic estimated feasible set
(ie.,, RTSRCSRY), R = example of inclusion non-monotonic
estimated feasible set (i.e., R ERand RER).

sizes of the problem.

(¢1t) (Inclusion Monotonicity) We should output one es-
timated feasible set that includes and one that is in-
cluded in the true feasible set with high probability.

While properties () and (i) are commonly requested, (z:¢)
deserves some comments. Inclusion monotonicity, intu-
itively, guarantees that we produce a set that does not ex-
clude any reward function that can be feasible and a set that
includes only reward functions that are surely feasible, given
the current samples (Figure 1). This, remarkably, allows de-
livering (with high probability) reward functions that make
the expert’s policy optimal (not just e-optimal) regardless of
the accuracy with which the feasible set is recovered.

Contributions The contributions of this paper are summa-
rized as follows:

* We propose a novel definition of feasible set that takes
into account the intrinsic challenges of the offline setting
(i.e., partial covering). Moreover, we introduce appropri-
ate solution concepts, which are learnable based on the
coverage of the given dataset (Section 3).

* We adapt the probably approximately correct (PAC)
framework from Metelli et al. (2023) to our offline setting
by proposing novel semimetrics which, differently from
previous works, allow us to naturally deal with unbounded
rewards (Section 4).

* We present a novel algorithm, named IRLO (Inverse Re-
inforcement Learning for Offline data), for solving offline
IRL. We show that it satisfies the requirements of (7) sam-
ple and (i¢) computational efficiency (Section 5).

» After having formally defined the notion of inclusion
monotonicity, we propose a pessimism-based algorithm,
named PIRLO (Pessimistic Inverse Reinforcement Learn-
ing for Offline data), that achieves (zi%) inclusion mono-
tonicity preserving sample and computational efficiency,
at the price of a larger sample complexity (Section 6).

* We discuss a specific application of our algorithm PIRLO
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for reward sanity check (Section 7).
* We present a negative result for offline IRL when only
data from a deterministic expert are available (Section 8).

Additional related works are reported in Appendix A. The
proofs of all the results are reported in the Appendix B-J.

2. Preliminaries

Notation Given a finite set X', we denote by | X| its cardinal-
ity and by A% :={ge[0,1]1¥1| 32 _ q(x) =1} the simplex
on X. Given two sets X’ and ), we denote the set of con-
ditional distributions as A% :={q: Y —A%}. Given NeN,
we denote [N]:={1,...,N}. Given an equivalence rela-
tion =C X’ x X, and an item z€ X, we denote by [z]= the
equivalence class of x.

Markov Decision Processes (MDPs) without Reward A
finite-horizon Markov decision process (MDP, Puterman,
1994) without reward is defined as M :=(S, A, uo,p, H),
where S is the finite state space (S:=|S|), A is the finite
action space (A:=|Al), o€ AS is the initial-state distribu-
tion, p={pn } negr] Where pj, € AgXA for every he[H] is
the transition model, and H €N is the horizon. A policy is
defined as 7= {7, } e rr] Where 7, € A4 for every he [H].
P~ denotes the trajectory distribution induced by 7 and
E,,~ the expectation w.r.t. I, » (we omit 1 in the notation).
The state-action visitation distribution induced by p and 7
is defined as p}" (s,a) =P r(sp = s,a;, =a) and the state
visitation distribution as p}" (s):=>,c 4 p7" (s,a), so that
Dises P (s)=1for every he[H].

Additional Definitions The sets of transition models, poli-
cies, and rewards are denoted as P:= Agx.Ax[[H]]’ II:=
AL puy> and R:= {r:Sx Ax[H]—R}, respectively.?
For every he[H], we define the set of states and state-
action pairs reachable by 7 at stage he [H] as S}, :={se
S|p77"(s)>0} and 20" :={(s,a) €S x A| ph" (s,a) >0},
respectively. Moreover, we define SP™:={(s,h):
he[H],seSY™} and ZP7™:={(s,a,h):he[H], (s,a)e
ZP™}, with cardinality SP™ < SH and ZP" < SAH, re-
spectively. We refer to these sets as the “support” of pP™.
We denote the cardinality of the largest set S’" varying
he[H], as Siix =maxpeppy ]Sy " |<S. Finally, we de-
note the minimum of the state-action distribution on set
YeSxAx[H]as p:;;g/ =mingg o pyey 05 (5, a).

Value Functions and Optimality The QO-function of
policy m with transition model p and reward function
r is defined as Q7 (s,a;p,r) :=]Ep,,r[25{=h ri(se,ar)|sn =
s,ap =a] and the optimal Q-function as Qj(s,a;p,r):=
maxrer Q7 (s, a;p,r). The utility (i.e., expected return) of
policy 7 under the initial-state distribution p is given by

2We remark that we consider real-valued rewards without re-
quiring boundedness.

J(7510,0,7) = Eg g ann (1) [ QT (5,a;p,7)] and the opti-
mal utility by J*(ug,p,r) =maxqer J(m; 1o, p,7). An
optimal policy 7* is a policy that maximizes the utility
m*eargmax, . J (m; po,p,7). The existence of a deter-
ministic optimal policy is guaranteed (Puterman, 1994).

Equivalence Relations We introduce two equivalence re-
lations: =z (over policies) and = (over transition models),
defined for arbitrary SCSx [H] and Z=S x A x [H].
Specifically, let 7,7’ € II be two policies, we have:

r=gn’ iff V(s,h)eS:mp(-[s)=m,(|s). (D)
Similarly, let p, p’ € P, be two transition models, we have:
ngp/ iff V(Sva7h)€§:ph('|s7a):ph('|sva)' (2)

We will often use S =SP™ and Z = ZP™ for some peP
and 7 eIl Intuitively, the equivalence relation =gp.~ (resp.
=zp.,~) group policies (resp. transition models) indistin-
guishable given the support SP™ (resp. ZP°™) of pP".
Offline Setting We assume the availability of two
datasets D’ ={(s{",a}",..., )’ 1 a1 sy ) ieprep and
DE={(sy" ay ", ..osyty agty, 55 Yieprey of 70 and
7F independent trajectories collected by playing a behav-
ioral policy w° and the expert’s policy ©¥, respectively.
Furthermore, we enforce the following assumption.

Assumption 2.1 (Expert’s covering). The behavioral policy
7 plays with non-zero probability the actions prescribed
by the expert’s policy ©¥ in its support Sp

Y(s,h)eSP™ :  xb(xE(s)|s)>0.

Assumption 2.1 holds when 7° =7 and generalizes that
setting when the behavioral policy 7 is “more explorative”,
possibly playing actions other than expert’s ones.? It should
be remarked that Assumption 2.1 is useful but not strictly
necessary. As we will explain later on, it is possible to
avoid it by using all samples D¥ U D® to compute the vari-
ous estimates that will be needed. Even though this seems
reasonable, from a practical viewpoint, it complicates the
theoretical analysis of the algorithms. Thus, we will enforce
Assumption 2.1 in the following for simplicity.

3. Solution Concepts for Offline IRL

In this section, we introduce a novel definition of feasible
reward set, discuss its learnability properties, and propose
suitable solution concepts to be targeted for the offline IRL.

3We elaborate on the limits of learning with just a dataset
collected with the expert’s policy 7 in Section 8. Moreover, we
discuss how we can use a single dataset collected with 7, at the
price of a slightly larger sample complexity in Appendix D.1.
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A New Definition of Feasible Set Let us start by recall-
ing the original definition of feasible set presented in the
literature and discussing its limitations for offline IRL.

Definition 3.1 (“Old” Feasible Set ﬁme, Metelli et al.
2021). Let M be an MDP without reward and let 7% be the
deterministic expert’s policy. The “old” feasible set ﬁpﬂis
of rewards compatible with 7% in M is defined as:*

Ry e ={reR|V(s,h)eS x [H], Vac A:

QF (s, 7E(s);p,r) = QF (s,a5p,7)}. (3)

In words, ﬁpm—E contains all the reward functions that
make the expert’s policy optimal in every state-stage pair
(s,h)eS x [H]. However, forcing the optimality of 7%
in states that are never reached from the initial-state dis-
tribution g is unnecessary (and even impossible) if our
ultimate goal is to use the learned reward function 7 to
train a policy 7* that achieves the maximum utility, i.e.,
m*eargmax o J (7 io, p, 7). This suggests an alternative
definition of feasible set.

Definition 3.2 (Feasible Set R, .=). Let M be an MDP
without reward and let mF be the deterministic expert’s
policy. The feasible set R, .= of rewards compatible with
7% in M is defined as:

Ryne ={reR|J (7" uo,p,r) = J*(po,p.7)}

In words, Rp_’ﬂ-E contains all the reward functions that make
the expert’s policy 7 a utility maximizer. Clearly, since
Definition 3.1 enforces optimality uniformly over S x [H],
we have the inclusion ﬁme SR, -, where the equal-

ity holds when SP™" =8 x [H], i.e., [ﬂ'E]ESp e ={n"}.
The following result formalizes the intuition that for R, =,
differently from ﬁpﬂTE, the expert’s policy 7% has to be

optimal (as in Equation 3) in a subset of S x [H] only.

Theorem 3.1. In the setting of Definition 3.2, the feasible
reward set R, .= satisfies:

Ry e ={reR|vre[r?]=  , ¥(s,h)eS"™ VacA:

QR (s, (s):p,7) = QF (s,a3p,7) ). 4)

Theorem 3.1 shows that the optimal action induced by
a reward r€R, .r outside SWTE, i.e., outside the sup-
port of pp’”E induced by the expert’s policy 7%, is not
relevant. The optimality condition of Equation (4) is re-
quested for all the policies 7 that play the expert’s ac-
tion within its support. Intuitively, those policies cover
the same portion of state space as 7 ie., SPT = gp”

4Actually, Metelli et al. (2021) consider rewards bounded in
[0,1], while we consider all real-valued rewards in fR.

and, since they all prescribe the same action in there,’
they all achieve the same utility, i.e., J(7;uo,p,7)=
J(mF; o, p,m) = J* (110, p,7). Thus, if we train an RL agent
with a reward function 7€ R,, ,5\R,, =, among the opti-
mal policies we obtain a policy 7 € [Z ]Eszmr > 1.e., apolicy

that plays optimal (expert) actions inside spr” Clearly,
7 will prescribe different actions than 7 outside S””’E,
but this is irrelevant since those states will never be reached
by 7. This has important consequences from the offline
IRL perspective. Indeed, we can recover this new notion
Ry = (Definition 3.2) without the knowledge of 7F in the

states outside SP " Instead, to learn the old notion ﬁp,ﬂE
(Definition 3.1), we would need to enforce that the policy
used to collect samples (either 77 or 7°) covers the full
space S x [H].6

Solution Concepts and Learnability To compute the fea-
sible set R, .=, we need to learn the expert’s policy T (s)

in every (s,h)eSP™" and the transition model pj,(-|s,a)
in every (s,a,h)€S x A x [H], so that we are able to com-
pare the Q-functions. In the online setting (e.g., Metelli
et al., 2021), this is a reasonable requirement because the
learner can explore the environment and, thus, collect sam-
ples over the whole S x A x [H] space.” However, in our
offline setting, even in the limit of infinite samples, triples
(s,a,h)¢ 2Zp™ ie., outside the support of pp’”b are never
sampled. Thus, we can identify the transition model p up to
its equivalence class [p]Ezp,ﬂ' , only. Intuitively, this means

that, unless 2™ =S x A x [H], i.e., w° covers the entire
space, since R, = depends on the value of the transition
model in the whole § x A x [H], the problem of estimat-
ing the feasible set RWTE offline is not learnable.® Thus,
instead of learning R, .= directly, we propose to target as
solution concepts (¢) the largest learnable set of rewards
contained into R, =, and (i) the smallest learnable set of
rewards that contains R, =, defined as follows.

Definition 3.3 (Sub- and Super-Feasible Sets). Let M be
an MDP without reward and let ©% be the deterministic
expert’s policy. We define the sub-feasible set R;ﬂ 5 and
the super-feasible set R;,WE as:

n P
p,mE T

p'elpl=
ZP,T

Ryaes Rye= |

p’E[p]zZ

Ry nt-

b

p,T

°It is worth noting that, since (s,h)eS? ™ the following

identity hold: Q7 (s, 7F ();p,7) = Q7 (s, (s)ip,7).
SA formal definition of learnability and the proofs that Ry nE

. . E
and R, .= are not learnable under partial cover (i.e., S”7 #

S x [H] and 2P 28 x Ax [H]) are reported in Appendix C.
"This is true for the generative model case. In a forward model,
in which we are allowed to interact through trajectories, we just
need to learn the transition model in all state-action pairs (s,a, h)
reachable from po with any policy, i.e., (s,a,h)elJ g ZP".
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Since pe|[p]= ot WE “squeeze” the feasible set R, =
between these two learnable solution, i.e., Rp SRy e S
o A more explicit representation is given as follows:

RO _s={reR|Vp'e[p| vre [P

P:T"E - :3/' nb? sp, B

V(s,h) eSp’ﬂE, Yace A : Qf(s,wf(s);p/,r) > Qf(s, a;p’,m)},

RY _p={reR|Ip'e(p| ,,Vre[rF)

p,mE T . 1= b sp,rE?
(s, h)eS’””E7 Vae A: Q7 (s,7E (s);p',r) = Q7 (s,a;0,7)}.
Intuitively, to be robust against the missing knowledge of
.. . b
the transition model outside ZP'™ |, we have to account
for all the possible p'€[p]=_ , and retain the rewards
-

compatible with all of them (for the sub-feasible set R 1)
and with at least one of them (for super-feasible set RUﬂE)

as apparent from the quantifiers. Moreover, when ZP>" =
Sx Ax[H], ie., [p ]:Z ={p}, we have the equality:
R” E=Rpe=R> 5. We now show that the R“ & and
RU B are indeed the tlghtest learnable subset and superset
of R & (formal statement and proof in Appendix B).

Theorem 3.2. (Informal) Let M be an MDP without re-
ward, let T and 7 be the deterministic expert’s policy and
the behavioral policy, respectively. Then, R" e and Rp o F
are the tightest subset and superset of R, .= learnable from
data collected in M by executing w° and 7.

4. PAC Framework

We now propose a PAC framework for learning meE and

Rp from datasets DF and DY, collected with 7F and 7°
We ﬁrst present the functions to evaluate the d1s31m11ar1ty
between feasible sets and then define the PAC requirement.

Dissimilarity Functions Being R; £ and R;’ 5 sets of
rewards, we need (¢) a function to assess the dissimilarity
between items (i.e., reward functions), and (i7) a way of
converting it into a dissimilarity function between sets (i.e.,
the sub- and super-feasible sets) (Metelli et al., 2021). For
(7), we propose the following two semimetrics.

Definition 4.1 (Semimetrics d and d,, between rewards).
Let M be an MDP without reward and let TF be the expert’s

policy. Let w° be the behavioral policy and let {Zﬁ”rb }n be
its support. Given two reward functions r,7 € R, we define
d:RXR->Randdp: RxR—>Ras:

~ 1
d(r,7):= N Z ( E

) herH] (@) ~ph T

b’Th(Sva) _?h(saa')|

+ max b|rh(8,a)—?h(s7a)|),
(s,a)¢Z0™

1
= = l7n =Tl
M(r,7) he%:ﬂ «

where M (r,7) :=max{|r|w, |l|w }. Moreover, we conven-
tionally set both d and d, to 0 when M (r,7) =0.

First, do, corresponds to the ¢,,-norm between reward func-
tions, while d combines the ¢;-norm between rewards in
zp’ weighted by the visitation distribution of the behav-
ioral policy pWrb and the ¢, -norm outside 2ZP™" The intu-
ition is that, inside zZpr , we weigh the error based on the
number of samples, which are collected by 7b. Instead, out-
side ZP™", we can afford the {4-norm because we adopt as
solution concepts R“ B and RU B that intrinsically man-
age the lack of samples so that we can confidently achieve
zero error in that region. Second, it is easy to verify that
both d and d., are semimetrics.® Third, the two semimet-
rics are related by the following double inequality, where

b Zp,n?
p™ " 5 0 by definition:
Proposition 4.1. For any r,v’' € R, it holds that:
2
=d(r,r").

b, Zp,™

pmm

d(r,r") <2dy (r,r") <

Moreover, the normalization term 1/M (r,7) enforces that
d(r,r") and d(r,7') lie in [0,2H ] for every r,r’ e R. Dif-
ferently from previous works (e.g., Metelli et al., 2021; Lind-
ner et al., 2022), this term allows to deal with (unbounded)
real-valued rewards more naturally and effectively, at the
price of accepting a relaxed triangular inequality. We stress
that we have chosen distances d and d, since they enforce
non-zero weight to the absolute difference between rewards
at all (s,a,h)eS x Ax [H]. This property allows us to
control the distance between the optimal value function and
the value function of the policy 7*, i.e., the optimal policy
under the recovered reward 7. This can be obtained with
an analogous reasoning as that contained in Section 4.3 of
Metelli et al. (2023). More specifically, let

d\c/;* (Tv 72)

1
= 1%
T DR L

¥
Vh (S;T)‘v

be the adaptation of the dissimilarity index defined in Metelli
et al. (2023), which measures the distance between the op-
timal value function V*(-;7) (under a ground-truth reward
) and the value function yr* (+;7) (under the same ground-
truth reward r) of the policy #* that is learned using the
recovered reward 7. Then, it can be shown that:

Proposition 4.2. For any r,v’' € R, it holds that:

2d(r,7)

b, ZP b *
pmm

d$ (r,7) < 2d o (7, 7) <

8A semimetric fulfills all the properties of a metric except
for the triangular inequality. We show in Appendix I that our
semimetrics fulfill a “relaxed” form of triangular inequality.
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Clearly, a small value of d entails a small value of d‘G,*.
Thus, controlling distances d and d,, by enforcing non-
zero weight to the absolute difference between rewards at all
(s,a,h)eS x A x [H], we can control the distance between
value functions. Finally, as mentioned above, notice that we
can get rid of Assumption 2.1 by replacing the expectation
Ww.L.t. pp’“b in the definition of d with some mixture between
¥ and °. However, for the sake of simplicity, we continue
with the current definition.

Next, to obtain a dissimilarity function between reward sets
(27), we make use of the Hausdorff distance.

Definition 4.2 A(Hausdorff distance, Rockafellar & Wets
1998). Let R,R SR be two sets of reward functions, and
let ce{d,dy}. The Hausdorff distance between R and R
with inner distance c:R x R — R is defined as:

H.(R,R):=max { sup inf ¢(r,7),sup inf c(r, ?)} 5)

reRFeR Fep TE
Moreover, we abbreviate Hq,, with H.

Since the feasible sets are closed (see Appendix I), using d
or d,, the Hausdorff distance is a semimetric and saltisﬁes a
relaxed triangle inequality as well. Thus, H.(R,R)=0 if
and only if the two sets coincide, i.e., R = 7@

(¢,6)-PAC Requirement We now formally define the sam-
ple efficiency requirement. To distinguish between the two

semimetrics d and d,, we denote by c-IRL the problem of
estimating R;ﬂE and R;nE under H., where ce {d,d}.

Definition 4.3 ((¢,5)-PAC Algorithm). Let c€ [0,2H] and
0e(0,1). An algomhm A outputting the estimated sub- and
super-feasible sets R and RV is (e,0)-PAC for c-IRL if:

({7

[H(R

( E v) P‘“’E’Rﬁ)ge}ﬁ
p,mE

7rE7RU) })21_6’

where P, & vy denotes the probability measure induced
by ©F and 7 in M. The sample complexity is the number
of trajectories 7% and 7 in D and D, respectively.

5. Inverse Reinforcement Learning for Offline
data ( )

Our goal is to devise an algorithm that is () statistically
efficient, (i¢) computationally efficient, and that provides
(¢4¢) guarantees about the inclusion monotonicity property.
As a warm-up, in this section, we present (Inverse
Reinforcement Learning for Offline data), fulfilling (z) and
(22), but not (247).

Algorithm The pseudo-code of is reported in Algo-
rithm 1 ( box). It receives two datasets D and D?
of trajectories collected by policies 7% and 7°, respectively,

[

[N

n s W

=

N

®

b

10
11

13

Algorithm 1 and PIRLO.

:Datasets DF = {(s}" ar "}, D' = { h’,ah “Sn}i
Output : Estimated sub- and super-feasible sets R” RY
Estimate the expert’s support:

SP" —{(s,h)eS x [H]|Jie[r7]: s©
Estimate the expert’s policy:

for (s,h)eSP™ "

‘ 72 (s)—al’ for some i€ [T7] s.t. s, =
end
Estimate the state-action behavioral policy support:

Input

,i=8}

ZAP’”b<—{(s7a7h)eS><A><[[H]]Hie[[Tbﬂ (shl,azz) (s,a)}
Compute the counts for every (s,a,h)e ZP7 " and '€ S:
N}g(sva’sl)‘_Zie[rb] ]'{(Shl’a’hz S?Lj—l) (s a,s )}

N}:(S,O/) HZS/ES N};(s7a/75 )
Estimate the transition model:
for (s,a,h)eé’”’rb do
for s'eS do
Pr(s|s,a) —
end
end

N}:(s,a,s/)
max{l,NZ(s,a)}

Compute Rg -5 and R;ﬁ ~& with Definition 3.3

. A A =, b o E
using p, 7B Zp™ and 8P
N v
return (RY .5, R7 25)

Compute the confidence set C(p,b) via Eq. (7)

Compute RT ~p and R;ﬁ & with Eq. (9)
using ﬁ, Zp o , and Spo”

return (RA - ,R;;WE)

and it outputs the estimated sub- and super-feasible sets
R™ and R" as estimates of R;WE and R;’WE, respectively.

leverages D¥ to compute the empirical estimates of
the expert’s support S and policy 7, denoted by Spir®
and 7 (lines 1-3), and it uses D° to compute the empirical
estimates of the behavioral policy support Z”’”b, and of
the transition model p, denoted by 2r7" and P (lines 5-9).
Finally, it returns the sub- and super-feasible sets computed

with the gstimated supports, expert’s policy, and transition
model: R" 5 AE and RV = 5 AE (line 12).

Computationally Efficient Implementation In Algo-
rithm 1, outputs the estimated feasible sets RY and
R obtained by computing the intersection and the union
of a continuous set of transition models (Definition 3.3). To
show the computational efficiency of , we provide in
Appendix G (Algorithm 2, box) a polynomial-time
membership checker that tests whether a candidate reward
function r€fR belongs to RY and/or R™. We apply ex-
tended value iteration (EVI, Auer et al., 2008) to compute
an upper bound Q* and a lower bound Q~ of the Q-function
induced by the candidate reward r and varying the transition
model in a set C. For the algorithm, C corresponds to
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the equivalence class of the empirical estimate p induced by
the empirical support zZrm e, [D]=_

zp,mb’

C={p'eP|V(s,a,h)e 27" i (s,0) =piu(ls,0) | (6)

The algorithm has a time complexity of order O(H S2A).

Sample Complexity Analysis We now show that the
algorithm is statistically efficient. The following theorem
provides a polynomial upper bound to its sample complexity.

Theorem 5.1. Let M be an MDP without reward and let
7 be the expert’s policy. Let D and D? be two datasets
of 7% and 1° trajectories collected with policies ©% and
7t in M, respectively. Under Assumption 2.1, is
(e,0)-PAC for d-IRL with a sample complexity at most:

~(H3ZP ™ Int /1 1
<O 2 (o smm )y 8
€2 1) In————~ —

1—p
~ Ini
Y] L S
In 1— B zpwE

=S|

min
Prin

Some comments are in order. First, we observe that the sam-
ple complexity for the expert’s dataset 7% is constant and
depends on the minimum non-zero value of the visitation

E e .
distribution pgm;z """ >0, but it does not depend on the

desired accuracy e. This accounts for the minimum number
of samples to have Spr” :S”’”E, with high probability.
Second, the sample complexity for the behavioral policy
dataset 7° displays a tight dependence on the desired accu-
racy € and a dependence of order H* on the horizon since in
the worst case, ZP o < SAH. Moreover, we notice the two-
regime behavior represented by In(1/8) + SP:™. (i.e., small
and large J) as in previous works (Kaufmann et al., 2021;
Metelli et al., 2023). This term is multiplied by an additional
In(1/6) term, which always appears in offline (forward) RL
(Xie et al., 2021) and it is needed to control the minimum
number of samples collected from every reachable state-
action pair. Finally, we observe a dependence analogous
to that of 77 on the minibmum non-zero value of the visita-
tion distribution ,o;;bifp’” >0, to ensure that ZP™ = ZPm"
Note that when 7° =7F, Assumption 2.1 is fulfilled, and
the sample complexity reduces to:

L[ H3SP™ Il /1 Int
TE<0<2 5 <1n+sg;;ff)+§ .
€ 6 1117
1 B zp,mE
P

min

Since Sp’”E < SH, the dependence on the number of ac-
tions is no longer present. An analogous result holds for d;.

Theorem 5.2. Under the conditions of Theorem 5.1,
is (€,0)-PAC for do-IRL with a sample complexity at most:

H4ln% ln%
1

~ 1 b
b ,
T <O<W<ln5+55§x> +1n>’
pmi;l € 1— b, zp,mb

min

and 7 is bounded as in Theorem 5.1.

b b
We note that, since 1/ pgif” > 2P Theorem 5.2 de-
livers a larger sample complexity w.r.t. Theorem 5.1. This
is expected because of the relation d(r,r") <2dy (r,r") be-
tween the two semimetrics (see Proposition 4.1).

6. Pessimistic Inverse Reinforcement Learning
for Offline data (PIRLO)

In this section, we present our main algorithm, PIRLO (Pes-
simistic Inverse Reinforcement Learning for Offline data).
Beyond statistical and computational efficiency, PIRLO
provides guarantees on the inclusion monotonicity of the
proposed feasible sets by embedding a form of pessimism.’

Before presenting the algorithm, we formally introduce the
notion of inclusion monotonicity and intuitively justify it.
Thanks to the PAC property (Theorem 5.1), in the limit of in-
finite samples T°,7F — +-c0, TRLO recovers exactly the sub-
R"— R;ﬂ ¢ and the super- RY — R;)m 5 feasible sets, and,

consequently, the property RO SRy B —RY holds. Be-
cause of the meaning of these sets, i.e., the tightest learnable
subset R;ﬂ 5 and superset R;’J p of the feasible set R, =,

it is desirable to ensure the property RN Rpre < RY (in
high probability) in the finite samples regime 7°,7F <+
too. The following definition formalizes the property.

Definition 6.1 (Inclusion Monotonic Algorithm). Let §€
(0,1). An algorithm 2 outputting the estimated sub- and
super-feasible sets R and R is 6-inclusion monotonic if:

P (ﬁ“ SRy e gﬁ“) >1-46.

(p,mE mb)

Clearly, one can always choose R" = {} and RY =% to
satisfy Definition 6.1. Thus, the inclusion monotonicity
property will always be employed in combination with the
PAC requirement (Definition 4.3). The importance of mono-
tonicity will arise from a practical viewpoint in Section 7.

Algorithm The pseudocode of PIRLO is shown in Algo-
rithm 1 (PIRLO box). The first part (lines 1-11) is analo-
gous to and the main difference lies in the presence

“We remark on the substantial difference between our use of
pessimism and that of Zhao et al. (2023). Indeed, we apply pes-
simism to feasible sets to ensure that the estimated set fulfills the
inclusion monotonicity property, while Zhao et al. (2023) apply
pessimism to ensure the entry-wise monotonicity of the reward
function, i.e., 7(s,a) <r(s,a), for all Fe R and re R.
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of the confidence set C(p,b) =P (line 13), containing the
transition models in P close in ¢;-norm to the empirical
estimate p, except the ones that are not compatible with
expert’s actions. Formally, C(p, b) is defined as:'

C(p,b)={p'eP|
V(s,h)egp’” s ¢8h+1 (8|5, 7F () =0 (7
v(&a’h)eépﬂf : ”ph('|s>a)_ﬁh("5>a)”1 Sgh(saa’)}’

where by, (s,a) is defined in Equation (18). The intuition is
that, with high probability, the true transition model p, and
its equivalence class [p];z . » wWill belong to C(p,b).

Drawing inspiration from pessimism in RL, PIRLO “penal-
izes” the estimates of the feasible set by removing from RO
the rewards for which we are nor confident enough of their
membership to R“ &> and by adding to RY the rewards for
which we are not conﬁdent enough of their non-membership
to R> 5, based on the confidence set C(p,b) on the transi-
tion model This translates into the following expressions:

[ Ry e U Ryze. ®

p'eC(pb) p'eC(p,b)

This way, if peC(p,b) and 7F = ¥ with high probability,
we have that, simultaneously, R" gR;ﬂE and R;’WE c

RY. This entails the inclusion monotonicity property (Defi-
nition 6.1) thanks to Definition 3.3.

Computationally Efficient Implementation Differently
from , computing the set operations of Equation (8)
cannot be directly carried out by EVL!! For this reason, we
propose a relaxation which achieves the double objective of:
(7) enabling a computationally efficient implementation of
PIRLO (Algorithm 2, PIRLO box); and (¢7) allowing for a
simpler statistical analysis, preserving both the PAC and the
inclusion monotonicity properties (details in Appendix G):

R —{TES‘ﬂVWE[AE]Eg 5. V(s,h)eSPT " YaeA:
. él(}%}}b)Qh (s,7n (s);p’ )/p/,gg;f;th(s sa;p”,r)},
Vi={reR|Vre[r E]E V(s,h)eSP™ ,Vae.A:

max Qf
p’eC(p,b)

SP
(5,7 (s ) )= min Qf(s,a;p”,r)},
p"€C(p,b)
where the universal/existential quantification over the tran-
sition model of Definition 3.3 has been relaxed by the two
max —min. In other words, we allow a choice of differ-
ent transition models for the two Q-functions appearing in

19Actually, this definition does not take into account a corner
case. See Appendix D.5 for details and a more precise definition.

"Membership testing can be here implemented with a bilinear
program, which is, in general, a difficult problem (Appendix G).

the two members of the inequality. Thus, ROCR" and
RYCRY, preserving the inclusion monotonicity. For the
membership checking of a candidate reward r € %R, similarly
to the case, we compute upper and lower bounds
Q™" and @~ to the Q-function by using EVI varying the
transition model in the confidence set C(p,b) defined in
Equation (7). Now, the confidence set is made of /1 con-
straints and the corresponding max and min programs can
be solved by using the approach of (Auer et al., 2008, Figure
2). The overall time complexity is of order O(H S? Alog S).

Sample Efficiency and Inclusion Monotonicity We now
show that PIRLO is statistically efficient, with the additional
guarantee (W.r.t. ) of the inclusion monotonicity.
Theorem 6.1. Let M be an MDP without reward and let
7E be the expert’s policy. Let DF and D® be two datasets
of TF and ° trajectories collected by executing policies ©F
and 7° in M. Under Assumption 2.1, PIRLO is (¢,0)-PAC
for d-IRL with a sample complexity at most:

~( H3ZP™ In L1
<O =28 (o4 snm
€2 ns

HbInl 1 Ini
bt (g spnt )+ ),
P ET 2 5 ln1 ey

xb Zp.

min -
Prin

and TF is bounded as in Theorem 5.1. Furthermore, PIRLO
is inclusion monotonic.

The price for the inclusion monotonicity is the additional
term in the sample complexity which grows with H% and

E
with 1/p7 pmm . The latter represents the minimum non-
zero visitation probability with which policy 7° covers
zp" je., the support of ,oWTE. Intuitively, since the ex-
pert’s policy is optimal, this additional term is due to a mis-
match between optimal Q-functions under the different tran-
sition models of C(p,b). Notice that, under Assumption 2.1,

b
B~ b 2P -2
p,T p,T ﬂ' T,
Z cZ , consequently, p in Z Pin . We

can provide an analogous result for d.
Theorem 6.2. Under the conditions of Theorem 6.1, PTRLO
is (€,0)-PAC for do-IRL with a sample complexity at most:

~ H%*Ini 1
sz (i)
b 2P 2 (S
€

min

HSInl 1 In+
B T B
= 79 [Iln=48P 46
+ pT{'b7Zp’7rE 62 < 5 + max) ln 1 bl

. b
min 1=l 2P
min

and 7 is bounded as in Theorem 5.1. Furthermore, PTIRLO
is inclusion monotonic.

Notice that both bounds in Theorem 6.1 and Theorem 6.2
also hold for the objectives defined in Equation (8).'?

"2In Appendix F.5, we provide a tighter bound for the superset
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7. Reward Sanity Check with PIRLO

In the literature, IRL algorithms (Ratliff et al., 2006; Ziebart
et al., 2008) provide criteria to select a specific reward func-
tion from the feasible set. Our algorithm, PIRLO, thanks
to the inclusion monotonicity property, provides a parti-
tion of the space of rewards ‘R i in three sets: (¢) rewards
contained in the sub-feasible set R" (i.e., feasible w.h.p.),
(%) rewards not contained in the super-feasible set R\R "
(i.e., not feasible w.h.p.), and (z¢7) rewarcAls thzit we cannot
discriminate with the given confidence (RY\R"). The sit-
uation is illustrated in Figure 1. Thus, PIRLO can be used
both as a sanity checker on the rewards outputted by a spe-
cific IRL algorithm and for defining the set of rewards from
which selecting one. To exemplify this application, we have
run PIRLO using highway driving data from Likmeta et al.
(2021) and some human-interpretable reward. We provide
the experimental details and the results in Appendix K.

8. A Bitter Lesson

Up to now, we assumed to have two datasets DE and Db
of trajectories collected by policies 7 and 7, respectively.
As already noted, this setting generalizes the most common
IRL scenario where the only dataset DF is collected by the
deterministic expert’s policy 7% and there is no possibility
of collecting further data. A natural question arises: Why not
directly considering the setting with D¥ only? The reason
lies in the following negative result showing that the reward
functions that can be learned from a single expert’s dataset
DF are not completely satisfactory.

Proposition 8.1. Let M be the usual MDP without reward
with A>2 and let TF be the deterministic expert’s policy.
Let DF be a dataset of trajectories collected by following
Ein M. Then, for any reward in TGR & it holds that:

V(s,h) eSP™ VYaeA: 1, (s,7F (s))=rn(s,a). (9)
Thus, if we have no information about the transition model
in non-expert’s actions (as when we have D¥ only), there
exists no reward function r that simultaneously: (¢) surely
belongs to the sub-feasible set (reR” &) and (i7) assigns
to a non-expert’s action a reward value greater than that
assigned to the expert’s action in the same (s, h) pair. This is
clearly a property that is undesirable as it significantly limits
the expressive power of the reward function, making IRL
closer to behavioral cloning and, consequently, inheriting its
limitations. As mentioned above, this issue can be overcome
with a behavioral policy 7 that explores enough.

Proposition 8.2. Under the conditions of Proposition 8.1,
assume that pp(-|s,a) is known, where a€ A is a non-

R" without using the relaxation. Moreover, in Appendix F.4, we
prove a larger sample complexity upper bound, when including an
additional useful requirement.

expert’s action in (s,h)eSp’”E. Then, if pn(-|s,a)##
pu(-|s,7E(s)), there exists a reward r€R, v such that:

rh(s,ﬂ'f(s)) <rp(s,a).

9. Conclusion

In this paper, we have introduced a novel notion of feasible
set and an innovative learning framework for managing the
intrinsic difficulties of the offfine IRL setting. Furthermore,
we have motivated the importance of inclusion monotonic-
ity, and we have devised an original form of pessimism to
achieve it. Then, we have presented two provably efficient
algorithms, and PIRLO. We have shown that the
latter provides guarantees of inclusion monotonicity and
that it can be employed as a reward sanity checker. Finally,
we have highlighted an intrinsic limitation of the offline
IRL setting when samples from the experts are the only
available.

Limitations and Future Works To understand whether
our algorithms are minimax optimal, future works should fo-
cus on the derivation of sample complexity lower bounds for
offline IRL. Moreover, it would be appealing to extend our
framework to more challenging (non-tabular) environments.
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Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms

A. Related Works

Related works can be distinguished in theoretical IRL works and works about Reinforcement Learning (RL) in the offline
setting. Since the former group of papers is more closely connected to the subjects of this work, we focus on it here, and we
refer to Appendix A for a presentation of the remaining literature.

The notion of feasible set has been introduced implicitly by Ng & Russell (2000). More recently, Metelli et al. (2021)
build upon previous works to define the feasible set explicitly. They propose two algorithms for the estimation of feasible
set in the online setting with generative model. Moreover, the authors analyze the sample complexity of the algorithms
and prove the first upper bound to the number of samples required for the estimation of the feasible set in the discounted
infinite-horizon setting. Such bound is in the order of O(%), where S and A denote, respectively, the cardinality of
the state and action spaces, v is the discount factor and € is the accuracy, measured as distance in max norm between the
induced Q-functions. Later, Lindner et al. (2022) proposes an algorithm, named AcelRL, to estimate the feasible set in the
online setting with forward model. The result is an upper bound of O ( i if A) to the number of trajectories required in the
episodic finite-horizon setting. The first lower bound to the sample complexity of IRL has been devised by Komanduru &
Honorio (2021). However, their setting concerns state-only rewards in tabular Markov Decision Processes (MDPs) with
only two actions, resulting in a lower bound in the order of 2(S1In S). Metelli et al. (2023) analyzes the online setting with
generative model by measuring the accuracy using the max norm directly between rewards. By adopting two different
constructions for the hard instances, it proves a lower bound, along with a matching upper bound, for the sample complexity
of estimating the feasible set. The number of samples is in the order of ) ( H ;S A (In % +S )) , where ¢ is the confidence. It is
worth mentioning the work of Zhao et al. (2023), which analyze the sample complexity of estimating the reward mapping, a
concept analogous to that of feasible set, in the context of offline IRL. They propose algorithms for solving the problem in
both the offline and online settings, and analyze the sample complexity, obtaining an upper bound of 9, ( H fi c* ) for the
offline setting, where C'* is a concentrability coefficient. However, Zhao et al. (2023) adopts a solution concept which is
intrinsically connected to the coverage of the state-action-stage space, which is a strong requirement in the offline context.
As a consequence, the entrywise reward-based pessimistic approach proposed by the authors is not able to recover the
solution concept exactly. We also mention (Yue et al., 2023) and (Zeng et al., 2023) as two additional IRL works that adopt
pessimism but with different settings than ours.

For a clear comparison of these works, see Table 1.

Additional Related Works It is worth mentioning also the works that focus on (forward) RL in the offline setting, because
they share with our topic some important concepts and technical tools. We provide a brief overview in this section.

The principle of optimism in the face of uncertainty is a well-established tool for favoring exploration in the context of
online bandits (Lattimore & Szepesvari, 2020) and online (forward) RL (Kearns & Singh, 2002; Brafman & Tennenholtz,
2003; Azar et al., 2017; Dann et al., 2017). However, in the offline setting, the learning agent is given a batch dataset and is
not allowed to interact with the environment, thus the adoption of optimism does not improve the performances. Moreover,
one of the biggest challenges of the offline RL setting is that the given dataset might suffer from an insufficient coverage
of the space (Levine et al., 2020). To improve the performances of algorithms for solving the offline policy optimization
problem, the commonly adopted mechanism is the pessimism principle: “Behave as though the world was plausibly worse
than you observed it to be” (Buckman et al., 2020). As opposed to the principle of optimism in the face of uncertainty
which favors exploration, the pessimism principle favors exploitation. This tool has been adopted in a variety of works
for devising algorithms to solve the offline policy optimization problem (Yu et al., 2020; Kumar et al., 2020; Liu et al.,
2020). From a theoretical perspective, Buckman et al. (2020) proposes a unified framework for the study of this kind of
algorithms, revealing the reasons why the pessimism principle can demonstrate good performance even when the dataset is
not informative of every policy. Moreover, Jin et al. (2021) proposes a pessimistic variant of the value iteration algorithm,
named PEVI, and it shows that the pessimism principle is not only provably efficient, but also minimax optimal. Another
line of research more closely related to the offline IRL setting is that introduced by Rashidinejad et al. (2021). They analyse
the offline policy optimization problem in the novel setting in which the composition of the batch dataset can be located at
any point in the range between expert data and uniform coverage data. Expert data means that the dataset has been collected
by an expert, and the problem reduces to the imitation learning problem (Osa et al., 2018), while uniform coverage data
refers to a dataset that guarantees a uniform coverage of the space, which is a common setting in which it is usually required
the existence of a uniformly bounded concentrability coefficient (Munos, 2007). Specifically, Rashidinejad et al. (2021)
proposes a new framework that smoothly interpolates between the two extremes of data composition, and analyses the
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information-theoretic limits of LCB, the algorithm they propose, in three different settings. Finally, Xie et al. (2021) builds
upon Rashidinejad et al. (2021) and devises policy finetuning, a framework that interpolates between online and offline
RL. Remarkably, Xie et al. (2021) designs a novel algorithm, PEVI-Adv, which achieves a sample complexity of at most
9, ( H® ESZC* ) episodes in the finite-horizon setting, where C* is the single-policy concentrability coefficient. Also notice that
the authors prove a matching lower bound.

B. A Framework for the “old” Feasible Set

In this section, we apply the framework we presented in Section 3 to the “old” notion of feasible set (Definition 3.1). In
addition, we present a rather negative result on the kind of reward functions contained in the subset of R, 5.

Let us begin by adapting Definition 3.3 to ﬁme. Recall that we use DF to estimate 7, and D to estimate p.

Definition B.1 (Subset and Superset of R, ). Let M ={(S, A,p, o, H) be an MDP without reward and let % be the
deterministic expert’s policy and w° the behavioral policy. Then, we define the subset ﬁ; < and the superset ﬁ; <& Of the
feasible set ﬁp’ﬂ-E as:

ﬁ;ﬂE = ﬂ ﬂ ﬁp’,‘n’y

/ _ ’ El_
pelpl=_ L, welrFl=_ o

ﬁ;ﬂ}s = U

/ _ ’ El_
pell= |, welrFl=_ g

(-
2
4

Clearly, since pe [p]EZp‘ﬂb and 7F e [ﬂ-E]Esp,wE , it holds that ﬁ;ﬂfs SRynb Eﬁ;ﬂfg. Also notice that when ZP™ =8 x

A x [H] (and so, because of Assumption 2.1, S =8 x [H]), then 7;7,{5 =Ry & :ﬁ;ﬂ.E. The intuition underlying
the definition is analogous to that for R;W £ and R;ﬂ -

The following theorem shows that R, . » and R, . are “well-defined”.
Theorem (Informal) B.1. Let M =(S, A,p, juo, H) be an MDP without reward and let D¥ and D" be two datasets of

trajectories collected by policies 7% and w°. Then, subset ﬁ; < and superset ﬁ;’ <& are the tightest learnable subset and
superset ofﬁp,ﬂ}z from D and D°.

In Appendix C, we enunciate this result formally and we provide a proof.

The following theorem shows a negative result on the kind of reward functions contained in ﬁ;’ & under reasonable
conditions. The intuition is that, since ﬁpﬂE requires the knowledge of the optimal (expert’s) action in the entire S x [H],
then if there are pairs (s,h) €S x [H] in which we cannot have this information, then we are forced to make all actions
optimal there (this is exactly what the intersection over policies makes in ﬁ;’ ). This imposes many constraints on the
structure of the rewards, resulting in the following theorem. It should be remarked that, if we had only dataset D® and if
Assumption 2.1 was violated, then we might not know the expert’s action in some (s,h)€e SWTE, and a similar result would
also hold for Rp_’ﬂ.E; however, that would be a non-realistic setting for IRL.

Theorem B.2. Let M be an MDP without reward and let TF be the expert’s policy and ©° be the behavioral policy. If
for any stage he [H| there is at least a state, say sp,, for which (sp,h) ¢S£’”b, then ﬁ;ﬂ.E is made of “almost-constant”

rewards. Formally: reﬁ; . If and only if there exists a sequence {ky}p, of H real numbers and a set {74} s with as many
real numbers as the cardinality of the support of po, such that, for any (s,a,h)eS x Ax [H]:

ru(s,a)=x(h,s) if(s,h)eS,f’”b Aa=7E(s)
ru(s,a)<z(h,s) if(s,h) eSﬁ’”b na#TE(s)
ru(s.a)=kn if (s,h)¢SP™

where x(h,s):=7s if h=1, and x(h, s) =k, otherwise.

This theorem states that, under reasonable conditions, i.e., if at every stage h there is at least one state not reached by the
. . b~ .. . . .
behavioral policy 7%, then all the rewards of the subset RWFE have a trivial form, which, i.a., does not depend on the specific
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.. . " b . . —
value of the transition model, but only on its “support” SP™ . In practice, this means that R; & does not represent an
interesting target for learning.

Proof of Theorem B.2. The theorem expresses a necessary and sufficient condition, thus two proofs are required. In the
b
following, recall that 8P 2877 because of Assumption 2.1, and so the existence of (s5,h)¢Sh™ for all he [H] entails

the existence of (sp, h) ¢S£’WE for all he [H]. Moreover, we consider the representation of R,, .= as provided in Eq. 13.
We begin with the proof of the sufficiency.

The proof of the sufficiency proceeds in four steps. First, we show that, outside 8P the definition of ﬁ; & enforces all
actions to be optimal. Then, we use this condition to show that, for any h > 2, irrespective of the transition model, all states
take on the same value function value {V},}1,, and that all the actions in (s, h) outside SP™" have the same reward value
{kn}n. The subsequent steps build upon these findings to show that expert’s actions take on constant reward value {ky, }, for
h =2, and that non-expert’s actions are smaller than the corresponding expert’s action.

b}
p,mE>s

Let us begin by showing that, outside S” 7 _all actions shall be optimal. By definition of we have:

Rpei= [ N Row

velpl= , me[rP]=
ZP,T SP,T

={rei)‘{\Vp’e[p];Z . ,VTF/E[T(E];S . V(s,h)eSx[H]: E Qz(s,a;p’,r)=maj<Q;"L(s,a’;p’7r)}
p,T P, U//E

a~7r;L(‘\s)

E

={reR|Vp'e[pl=_ , .V(s,h)eSx[H] Vr'e[x"]=_ . : ]EH)Qi(s,a;p’,r):ma}QZ(S,a’;p’w)}
P, T a~my (-]s a’e

(2{7“6% |Vp'e [p]EZp,Wb : (V(s,h)eSp’“E :QF (s, mE (s);p,7) :Il{lezfi(Qz(s,a;p’,r)A

V(s,h)eéSp’”E Y, (-]s)eA?:  E )Q;’;(s,a;p’,r) :ELI}?XQ?:(S»GI§P/7T))}

a~7} (-|s
E
= {reRvp'elpl=, ,:(Y(s,h)eSP™ Qi (s, ();p',r) =max Qi (s,a:p',m) A

V(s,h)géSp’”E :VaeA: Q5 (s,a;p',1) =mai<Q;':(s,a';p',r))},
a’e

where, at (1), we have partitioned S x [H] using SP" and we have applied the definition of =g, ..=. This shows that,
outside S”’”E, all actions must be optimal.

Now, we show that, for any reward r eﬁ; B, there exists a sequence of value functions'? {W}he[[z ] induced by r which
does not depend neither on the transition model nor on the state considered: V;*(s;p’,7) =V}, for any s€ S, he[2, H], and
for any p’ of [p]EZp’Wb . So, let r be a reward of ﬁ;ﬂ.E and let (s,h) be a pair not in P 287" for he [H —1]. Notice
that the existence of pair (s, h) is guaranteed by hypothesis. For what we have seen at the previous step, for any pair of
actions aj,as, for any p’e [p]Ezp.wb , it holds that Qj: (s,a1;p",7) = Qj (s,a2;p’,r). Through the Bellman’s equation, we
can write:

rh(s,a)+ B [V (8P ) =ra(siaz)+ B (ViR (80 ). (10)

s'~p}, (]s,a1) s'~p} (-|s,a2)

Let s1,52€S. By definition of =, .+, this condition must hold for any p}, (+|s,a1)€ AS and p}, (-|s,a2) € A®. In particular,
let us take two transition models p', p?e [p]EZP _, such that :

1 Jon(sils,an) =1
pt=1{"" :
pp,(s1]s,a2) =1
o [FGilsan =1
p7(s1]s,a2)=0

"3The value function of policy 7 at (s, h) under transition model p and reward 7 is defined as: V" (s;p, ) := Za~7‘rh(-|s) QF (s,a;p,1).
The optimal value function is defined as: V;*(s;p,r) :=max.ea QF (s,a;p,7).
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Inserting p! into Eq. 10, we get:
ra(s,a1) + Vit (suph,r) =ri(s,a2) + Vil (51,0, 1) = ra(s,a1) =7 (s, az).

Because a; and as are arbitrary, this holds for any action a€ A4 in (s,h)a_fSp’”b. Therefore, we have shown that (the
condition at H is trivial since Vi, (s;p',7)=0):

reRy we = 3kt nepu): V(s,h) $SP™ , Vae A: ry(s,a) = k.
Inserting p? into Eq. 10, we obtain:
ri(s,a1) + Vh*ﬂ(sl;pQ,r) =rp(s,a2)+ Vh*+1(82;p2,T) — Vh*H(sl;pQ,r) = Vh*H(SQ;pz,r),
since 7, (s,a1) =rp(s,az). Because p? (and so the next state s1) can be chosen arbitrarily in 4 + 1> 2, then we have proved

that:
reR, v = HVitnefo.my: V'€ [pl=_, .0, V(s ) €S x [H]: Vi (s:p/,7) =Vj.

. . b E
In a similar manner, we can prove the same result also for (s, h)eSP™ \SP™ .

The next step of the proof consists in showing that, for any he[2, H], for any seS}’f’”E, the reward value assigned to

expert’s action coincides with kj. Let (s,h) €SP with h>2. For any p’ € [p] , » it holds:

Ezpyﬂ_
Vi=Vi(sip'm) = Qi (s,a”ip r) =mu(s.a®) + B[V ()]
s'~pj, (-|s,a

=rp(s,a®)+ B [Vig] (11)

s'~pj, (|s,a®)

:rh(&aE) +Vh+1'

By hypothesis, there exists s’ ¢ Sﬁ’”b such that, for any a€ A:
Ve =V (s'sp', 1) = Q5 (8", asp,7) =i (s, a) + B )[Vh*H(S”;p'ﬂ“)]
s""~pl (-|s',a

bt E Vi (12)

s'~pj, (|s',a)

Comparing Eq. 11 and Eq. 12, we infer that 7, (s,a) = k.

With a similar reasoning, we can prove that the reward value of non-expert’s action shall be at most kj,. For simplicity, set

V41 =0. Let (s, h) be any pair in SP™" and let a be any non-expert’s action. Then, for any p’ € [p] .0+ We have:

Qn(s,asp’,r)=rn(s,a)+  E [V, (s'sp',7)]
s'~p, (:]s,a)
=7(s,a) + Vi1
<V (sip'yr)
=rn (5,77 (5)) + Vi1
=kn+Vht1

From which it follows that 7 (s,a) < k. This concludes the proof of the sufficiency.

With regards to the necessity, we have to show that any reward r that can be expressed as in the statement of the theorem
belongs to R, .= Itis easy to notice that, irrespective of the transition model p’, the optimal value function of any state

seS at stage h=>21s V*(s;p,r) = Zf{: , ki, and that it is achieved by playing the expert’s policy. At step h =1, since all
next states take on the same optimal value function, the result is immediate. O
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C. On the Learnability of the Feasible Set

In this section, we formalize the notion of (PAC-)learnability and we analyze the learnability properties of the various
objects that we introduced in Section 3 (and in Appendix B). Specifically, we show that both the definitions of feasible set
R, e and R, . are not learnable in the setting of Section 3 unless the behavioral policy covers the entire S x A x [H]
space. Next, we demonstrate that the framework we have introduced cannot be improved; simply put, we show that 7;’ E
and ﬁ; & are the tightest learnable bounds of ﬁp,ﬂE according to partial order <, and that R;,,E and R;WE are the
tightest learnable bounds of R, 5.

We give a definition of learnability in the context of the Probably Approximately Correct (PAC) framework since our main
focus is on PAC bounds to the sample complexity in this work. Let ¢ € ® be our target of learning, i.e., the quantity that
we aim to estimate, and let i be a certain distribution that provides us with /N independent samples X1, Xo,..., Xx ~ .
Intuitively, ¢ can be learned from p if there exists a procedure able to use the samples X7, Xo,..., Xy of u to create a
“good-enough” estimate of ¢, where the “goodness” is measured by a meaningful notion of distance. We formalize the
intuition in the following definition.

Definition C.1 (PAC-learnability). A quantity p€ ® is PAC-learnable from a distribution (i if there exists a semimetric d in
D, that satisfies a p-relaxed triangle inequality with finite p, and an algorithm 2 such that, for any €,0€ (0, 1), there exists a
finite N eN for which:

]P)H (d(¢7 QA5§ 6)) =1- 57
where <$ €D is the estimate of ¢ computed by 2 using at least N samples, and P, is the probability measure induced by .

Simply put, ¢ is PAC-learnable if the samples from p leak “enough” information about ¢. Notice that any metric satisfies a
p-relaxed triangle inequality with p=1. See Appendix I for an in-depth analysis of the semimetrics used in this work.

In the context of Section 3, we identify as quantity of interest ¢ the feasible set ﬁp’ﬂ-E (R, »=), and as distribution generating
samples14 p=1IP, ~». We have the following result of non-learnability of the feasible set in the offline setting.

Theorem C.1. Let M ={(S, A,p, jio, H) be an MDP without reward and let T be the deterministic expert policy. Assume to
know ¥ in all (s,h) €S x [H] and also to know 8P ie., there is no need to learn them. Let ZP™" denote the portion of
space covered by a behavioral distribution 7° in M. Ipr’”b #S x Ax [H], then ﬁme is not PAC-learnable from P, 1.

Moreover, if ZP™ £8 x A x [H] and for at least one (s,h) ¢SP™" there exists a policy we Tl such that Py x(sn=5)>0,
then not even R, .= is PAC-learnable from P, .».

Proof. Let us start with ﬁme. The idea is to construct two problem instances whose feasible sets lie at a fixed non-zero
distance and such that samples do not allow to discriminate between them.

We start with the construction of the two instances. Let 7F be the expert’s policy and let M ={(S, A,p", 1o, H) be an

MDP without reward in which policy 7° induces the distribution over trajectories P,1 ». By hypothesis, there exists
triple (s,a,h)eS x A x [H] not in 2P je., such that P,1 v (sn=5,an,=a)=0. Let us construct another problem
instance My ={(S, A, p?, po, H) such that p? =, ., p*. This is possible by simply setting, at triple (s,a,h), the condition
p},(|s,a) #p}(-|s,a), and equality elsewhere. Observe that, because of this choice, P o =P,2 ro. Let R .5 and

Rp> = denote, respectively, the feasible sets of instances My and M5 with expert’s policy k.

Now we show that R1 .z #R,2 ,&. To do so, we claim the existence a reward 7€ R & such that r¢ Rz 5.
W.Lo.g., assume a be a non-expert’s action'”. By definition of R =, at triple (s,a,h), it holds that Q7" (s,a;pt,r) <
QT (s,mF(s);p',r). Since p? coincides with p! everywhere except for triple (s,a,h), the constraint is equivalent
to QZE(s,a;pl,r) <Q7,;E (s,mE(s);p%, 7). Similarly, we have that reﬁpszs if QZE(s,a;pQ,r) <QZE (s,mE(s);p%,7).

'4Observe that, to avoid mentioning the creation of a mixture of distributions P, v and P, . 5 (because of the two datasets), we assume

that 7% and SP™ are given and need not to be learned. While this simplifies the learning problem, notice that even the estimation of the
transition model alone can end up in non-learnability issues.
5Otherwise, we can make the same construction with any non-expert’s action a’ € A, and we can show that the constraints of the feasible
E E . E
sets of M and M, have the same lower bounds QF  (s,a’;p*,7)=QF (s,a’;p?,r), but different upper bounds QF (s, 7f (s);p*,r) #

Qr” (5,78 (s);p%,7).
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Clearly, both the constraints have the same upper bound Q” (s,mE(s);p? r) and since Q;{il(s’ T (8);ptr) =

Zil(s’ T 1 (s');p?,r) for any s'€S, then p}(-|s,a) #p?(-|s,a) entails QF " (s,a;p, 1) # QT (s,a;p?,r). Therefore,

we can find T‘ERP & such that r¢’Rp B, thus Rp »E ;éRp rE.

We proceed by contradiction. Let us assume that the feasible set Rp & 1s PAC-learnable in both M and M. By definition
of learnability, there exists a semi-metric d and an algorithm 2l with certain properties. By definition of semi-metric,
since Rp1 & # R, &, then there exists a certain ¢>0 such that d(R 1 2, R 2 =)= c. Moreover, by p-relaxed triangle
inequality, we know that a set of rewards R such that d(R,Rp x8)<c/(2p) and d(R,ﬁpsz) <c¢/(2p) at the same time
does not exist, thus the two events {d(ﬁ,ﬁplﬂs) <c/(2p)} and {d(ﬁ,ﬁPQ,ﬂ.E) <c¢/(2p)} are disjoint. By the choices
e<c/(2p) and § <1/2, algorithm 2 must satisfy

P (AR Ry rr) < ;p)% AP (AR Ry ) < ;p)>1.

pl,m® p2,mb 2

By construction, we have ]P’plmb = IPJPQ_’ﬂ.b. In other words, samples do not allow to discriminate between instances M; and

M, and so between ﬁpl = and ﬁpz ~&. Therefore, when faced with M, independently on the number IV of samples,
algorithm 2A outputs R® such that:

c Ao — c
<{dR Ryt ) 2p}u{d(722‘,7zpz7,r1;)<2p}>

1 b
b,

- Pp (d(ﬁm,Rp17,rE)<2cp)+ P (d(ﬁm,szmE)<C>>l,

pt,m® pt,mb 2p
.

>1/2 >1/2

where we have used that the two events are disjoint. This is clearly a contradiction, thus the statement of the theorem holds
for the notion of feasible set in Definition 3.1.

With regards to the novel notion of feasible set R, =, the proof is analogous. The only difference is in how to show that
Ryt nE # Ry2 -2 when the triple (s,a,h) ¢ 2P s such that (s,h) ¢Sp”’b. Indeed, by Definition 3.2, in such (s, h) there is
no constraint on which action shall be optimal. However, by the hypothesis contained in the statement of the theorem, there
exists a policy that brings to (s, k), so since 7* does not reach (s, 1), then there exists another triple (s’,a’, h'), with b’ <h,
such that (s',a’, ') ¢ 2P and (s',h") €SP, Therefore, the same passages adopted to show that R ;1 .z #R 2 .= can
be used to show also that R 1 & #R 2 5. It should be remarked that the hypothesis ZPm 28 x Ax [H] alone is not
sufficient' for the non-learnability of Ry »=. This concludes the proof. O

The following theorem demonstrates that the solution concepts (subset and superset) that we propose in our framework are
the tightest learnable. Observe that Theorem C.2 entails Theorem C.1. However, since in the proof of Theorem C.2 we
make use of the construction introduced in the proof of Theorem C.1, we prefer to keep the two theorems separated.

Theorem C.2. Let M ={(S, A,p, o, H) be an MDP without reward and let T be the deterministic expert policy. Assume

to know 7 in all (s,h)€S x [H] and also to know SP” e, there is no need to learn them. Let SP™ | ZP™" denote the
i . )

portion of space covered by a behavioral distribution 7° in M. Then, R, re and R:’ <E are, respectively, the tightest subset

and superset of ﬁp’ﬂ—E that can be learned from P, .o. Moreover, R;,w 5 and R;,w 5 are, respectively, the tightest subset and

superset of R, .= that can be learned from P, v

Proof. The theorem states that the considered quantities are the tightest learnable. Thus, we split the proof in two parts.
First, we prove that such quantities are PAC-learnable, then we show that there is no other object that is at the same time
learnable and tighter.

Let us begin with R“ = and RUWE By Definition C.1, these quantities are PAC-learnable if we can find a semi-metric d
between sets of rewards and an algorlthm 2l such that, for any arbitrarily small choice of the accuracy € and confidence

"®Consider for instance the MDP without reward M in which Sx [[H]]\Sp’”b ={(5,1)} and SxAx [[H]]\Zp’”b =
{(3,a1,1),...,(5,a4,1)}, i.e., that w° covers the entire space except for a state 5 at stage h=1 (p10(5) =0). Clearly, such state

does not appear in the constraints defining the feasible set, and the feasible set R,, . = is learnable by P, s !
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0, we can always find a finite number of samples that algorithm 2l can use to compute a set of rewards e-close, according
to semi-metric d, to R’“ e (Orto RU ~p) w.h.p.. This is exactly what, for instance, Theorem 5.1 states: Algorithm 1
requires a finite number of samples to compute an e-correct estimate of R“ . (orof RUWE) w.h.p. according to any of the
semi-metrics presented in Definition 4.1 (for which we prove in Appendlx I that a p- relaxed triangle inequality holds). We
are not going to show that an analogous of Theorem 5.1 holds also for Rp <& and R F

Now we show that these quantities are the tightest learnable. Let us start with Rp &, and then we will move to R

Rp .5, and Rp LB

p,mE>

The idea is to construct by contradiction another concept ﬁ; & (non calligraphic) of subset of ﬁme which is tighter
than Rp B, and then show that we can construct a problem instance in which the newly defined concept ﬁ; & fails at
being a subset of ﬁpﬂrE Thus, by contradiction, let us assume that there exists a problem instance M =(S, A, p, Mo, H)
with expert’s policy 7% and distribution generating samples P, zv, in which there exists a PAC-learnable set R
from P, » such that R, » R, 5 CR,, 5. If ZP ™ —8 x A x [H], then R, oo =

which 2P =8 x A x [H]. Let 7 be a reward of R = which is not present in R,
?]

p,mE

RWTE, so we consider the case in
o b~

By definition of R,, 1, we

p,mE-

have that 7 ¢ﬁ; .z if and only if there exists p’e [p]EZp L, and we[m¥]= such that 7¢ R,y .. Therefore, similarly

=,
to the proof of Theorem C.1, we can construct a new problem instance M’ ={S, A,p’, uo, H) U {n’} such that, since

b =y .. . . .
ZPT S x Ax[H], Ry & # Ry 7. By definition of p’, we know that P, ;» =P, .+, thus any algorithm 2 estimating
the new concept of subset 12, . fails to distinguish instances M and M. This means that we can choose €, § so that if 2
returns in M a set containing 7, then with high probability it will return it also in M’. However, 7¢ R,/ ./, sO we get a
contradiction.

The proof for ﬁ; & 1s analogous. By contradiction, we claim the existence of a set RUW & such that ﬁp,ﬂE - R;, B C ﬁ; E-

The contradiction will be shown by considering a reward 7 of R oo which is not in R, and then constructing the

p,mE>

problem instance in which the feasible set contains exactly that reward, but set Rp’,r = does not (w.h.p.).

As far as R;ﬂE and R;WE are concerned, the proofs are analogous to those presented above. However, there is a detail

that has to be explained. Specifically, we have seen in the proof of Theorem C.1 that the condition 2P =8 x A x [H]
is not a sufficient condition for R 1 .= #R > »=. Therefore, in principle, the proof for R; B (R; ~E) cannot be adapted
directly to 7?,”7r B (Rp .£). However, we observe that R -8 C Ry -5 (respectively, R, .= CR;’7T ) holds strictly if
Zrm 28 x Ax [H] and for at least one (s, h) gSp’ there exrsts a policy weII such that P, . (s5 =s)>0. Otherwise, it
holds that R“ oE = =Rp = Rp 5, as explained in Section D.4. This is exactly the condition required in Theorem C.1 for

proving R 1 7rE # R, 5. Therefore, by using this observation, we can prove the statement of the theorem also for R
and RY

p,mE

D. Further considerations

In this appendix, we collect a variety of considerations and remarks about the learning framework introduced, about the
need of two datasets, alternative representations of the feasible set, and some others.

D.1. About the need of two datasets

We presented (and, subsequently, PIRLO) in the case two datasets Db and DF collected with 7° and 7, respectively,
are available. This scenario is common in previous IRL works (Boularias et al., 2011) but, although convenient for our
analysis, it is not strictly necessary to achieve a meaningful sample complexity. Indeed, we remark that the expert’s dataset is
employed for estimating the expert s support SP°7 " and policy . This task can be anyway achieved under Assumption 2.1

using just one dataset D = {(s>*,a?" o, sl}{ 1,al}j Lag’ 17sh’,i>}l-€[[fﬂ playing the behavioral policy * and keeping
track of the expert’s actions too. In such a case, we must require that every transition (s, 72 (s),s’) is exercised at least once

E Zp.ﬂ'E

in D. This leads to a sample complexity bound which is larger in the last constant term in which p] . is replaced with:

(s,h)es? ™",
s'€S:pn(s'|s,mE (5))>0

. TrE7Zp’"E . P, / E
min< pr .- , min pr™ (s,a)pn(s’|s,m, (s)) ¢-
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D.2. About the dependence on p.;,,

The majority of the results presented for the d,, semimetric in this paper are characterized by a dependence on the minimum

e . b gpwh . . . . . .
non-zero visitation probability p;rni’nz of the behavioral policy 7. This is expected since we are targeting as solution
concept the tightest learnable subset and supersets of the feasible set. Clearly, one can further relax this requirement,
accepting to target non-tightest learnable sets with a benefit in the sample complexity. Consider a minimum-visitation

threshold p, we define Zﬁp’ﬂb ={(s,a,h): pﬁ’ﬂh (s,a)>p} as the set of triples (s, a, h) that are visited by at least p probability
b
(notice that zZpr = Z{™). We can use this set to employ suitable equivalence = pnb relations over transition models to

group together those that differ in triples (s, a, h) visited with probability smaller til)lan p. This allows to redefine the sub-
and super-feasible sets as follows:

Ia) . v N
Ropesi= [ Rpyarr Ripez= |J  Rypar

p'eElpl= p'eElpl=
zbm zb
P Iz

Obviously, by the definition of the equivalence relation, we have that R"' SR pand RY 5 SR> 5 _. Under the
PP b, P, PP

. b
assumption that p<p}'™ (s, mE(s)) for every (s,h), these sets are clearly learnable, but lose the property of being the
tightest ones. The advantage of targeting these feasible sets is that we can reproduce the same proofs done for the original

b
RQWE and R;’JE obtaining a smaller sample complexity that scales with p instead of p?7 .

D.3. Equivalent definitions of the feasible sets

In both Definition 3.1 and Theorem 3.1, we represent the set of constraints defining the (old) feasible set using the Q-function
of policy 7% or of some policy Te [WE];SP - However, it is possible to provide an alternative equivalent representation

based on the optimal Q-function @*. It is easy to notice that the old feasible set ﬁme can be rewritten as:
ﬁp,‘n’E = {reiﬁ | V(S7 h) €S x [[H]],VGE.AZ QZ(S,?TE(S);]),T) = QZ(s,a;p,r)}. (13)
Moreover, thanks to Lemma E.1, the new feasible set R, = can be rewritten as:
Ry -z ={reR|V¥(s,h) eSP™ YaeA: Qi (s,mF (s);p,7) = Q5 (s,a;p,7)}.
We prefer to work with the representations presented in the main paper because the relaxations (see Section 6) of those
representations are “better” (See Appendix G) than the relaxations of the representations just introduced.

As a direct consequence of Theorem 3.1, we have the following corollary (see Appendix E for the proof).

Corollary D.1. In the setting of Definition 3.2 the feasible reward set R, »= satisfies:

Roze= |  Row

relrPle

This corollary provides the explicit relationship between the old ﬁerE and new R, = definitions of feasible set. Clearly

ﬁp,ﬂ}z SR, »e. By using Corollary D.1, we can rewrite R;JE as R;WE = ﬂp,e[p]E - U”/e[“E]ESP Ryt ,x. Observe
o ZP,T , T
that in general R;ﬂ B 7# Uﬁ,e[ﬂ B_ ﬂp,e[pP Ry .=, because the union of the intersection is different from the
’ “sprB “zpwb '

intersection of the union. Furthermore, because of the different definitions of ﬁpmg and RWTE , we have that, in general,
R;WE $ﬁp’ﬂE i.e., the subset for the new notion of feasible set is not a subset of ﬁpmg. Differently, with regard to the

superset, it holds that R;j_ﬂ E Qﬁme.
It should be remarked that Corollary D.1 and Theorem 3.1 are not in contradiction. Indeed, looking at the union over policies

in Corollary D.1, one might expect an existential quantifier inside Theorem 3.1, but we find a universal quantifier. By using
Corollary D.1 and Eq. 13, we can “transform” the union into an existential quantifier to obtain:

R

P

E ={refRHﬁe[7rE];$pwE :V(s,h)eS x [H],Vae A: Q5 (s,7h(s);p,m) = QJ (s,a;p,7)},
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i.e., we are representing the feasible set R,, .= as the set of all the rewards that induce an optimal policy in [7F]

From Theorem 3.1, we have:

SspnB”

R, e ={reR|Vre [WE]ESPJE ,V(s,h) eSP™" Vae A: Qr(s,mF (s);p,7) = Q7 (s,a;p,7)},

i.e., we are representing the feasible set R,, .= as the set of all the rewards for which playing the expert’s action in SP T s

the optimal strategy irrespective of the optimal action outside S To put it simple, Corollary D.1 uses the existential
quantifier because it says that a certain policy in [7¥]= is optimal, while Theorem 3.1 uses the universal quantifier

-
7]

because it does not care about which policy in [ = a5 is optimal, but only that the expert’s action is played in spr”

The 3 gives the optimal policy, while the V says that one of the policies in [77]
Clearly, there is no contradiction.

= .5 is optimal, without telling which.
Sp,™

D.4. A remark about non reachable states

The strict condition Z7™ =S x A x [H] alone is not a sufficient condition to have R;TrE #Rp e # R;’ &~ Indeed, if

the portion of S x A x [H] not contained into zZp" is made only of (s,h)€S x [H] for which there is no 7w€II such
that (s, h) e SP'™ for the given pe P, then neither the policy nor the transition model in (s, h) appears in the constraints of

;ﬂE s Rp nm, OF R;WE (when viewed using Theorem 3.1). In practice, the values of the rewards r of R;,,E (and R, =,

and’ R p)insuch (s,a,h)¢ ZP " can be chosen arbitrarily, irrespective of the reward in any other (s’,a’,h')eS x A x [H],

and therefore we have R;W =Ry 2=R’

p,mE"

D.5. An annoying corner case

To cope with the bitter lesson of Section 8, we work with two datasets. As aforementioned, we use DE to estimate SP o
and 77, and we use D" to estimate p. However, it might happen the following situation. Let (s,h)e Spr” (where Spr”
is the estimate of SP'™ computed from D), and let §Zf1E = {5}, i.e., dataset D¥ tells us that the support of the expert’s
policy at h+ 1 is made of state 5 only. Let a” := 7?,];3 (s). By using dataset D°, we might come up with the estimate of the

transition model at (s,a”,h):

)

pn(s']s,a)>0

{ﬁh(s|s,aE)>O

p
h+1 >

does not provide us with this information. This fact provides a contradiction between p and 8P To avoid issues in the
implementation of PIRLO, we define the confidence set C(p,b) (see Eq. 7) by allowing the support of the transition model
of expert’s actions to be compatible with the estimate provided by D?, i.e., we set:

D,

A~ E
where s’ €8 is some other state not in S bl - Clearly, this means that '€ S however, due to finite data, dataset DF

~ = ﬂ—b ~
C(p.b)= {1/ eP [W(s.0.0)€ 207" ¢ [ph(15.0) i (Js.) | <bu(s.0) A
V(s,h) e8P s ¢ (SPTL Usupp i (-ls 7 () ph ('), 7 () =0}
Observe that the union over the support of py,(|s,a”) solves the potential issue created by the corner case described in
this section. It should be remarked that, under good event £ (see Appendix F), it holds that SWTE =8P o , and therefore
~, 7_{_E ~ ~ ~, 71'E ’7‘_E
Syl wsupp Prl-|s, 7 (s)) =8Pl =Sl
D.6. Distances d and d., control the distance between value functions
We provide the proof of the proposition reported in Section 4.
Proposition 4.2. For any r,v’' €R, it holds that:
2d(r,7)

5.
b Zp.™
Prin

d$ s (r,7) <2dop (7, 7) <
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Proof. The proof is similar to that of Theorem 4.1 of (Metelli et al., 2023). For any s, h and policy 7* optimal in some 7,
we can write:

ViE(sim) = Vi (sim) = Vi (sim) = Vil (s57) £ Vi (57)
= (Vh*(s;r) —Vf*(s;?)) + (Vhﬁ* (s;7) —Vhﬁ* (s;r))

~k

< (Vi) = Vi (7)) + (Vi (s:7) = Vi (s57)

:Z Z Ppx(si=5",a1=a'|sp, =s)(ri(s',a’) = Ti(s',a"))

I=h(s",a’)eSx.A

H
+Z Z Py aux(si=5" a1=ad'|sp=s)(ri(s',a") =7 (s',a"))
I=h (s',a’)eSx A

H
<2 re—7tloos
I=h

where at (1) we have used that 7* is optimal under 7.

Multiplying both sides by 1/M (r,7) concludes the proof, and noticing that pp’”b permits to bound d, by d, we get the
result. O

E. Proofs of Section 3 and Section 4

In this section, we provide the missing proofs of Section 3 and Section 4.

To prove Theorem 3.1, it is useful to introduce the following lemma.

Lemma E.1. In the setting of Definition 3.2, the feasible reward set R, .= satisfies:
Rpyne= {re%W(s,h)eS”’”E,VaeA: QF (s, 7F (s);p,r) = Q5 (s,a;p,7)}.
Proof. The statement of the theorem is equivalent to the necessary and sufficient condition:
(7" o, p,r) = max J (7; 1o, p,7) <= ¥(s, ) e8P Q (s,mf ()ip.) =max Qp (s,a;p,7).

We split the proof in two parts. First we show the sufficiency, then the necessity.

Let us start with the sufficiency. Let r be any reward in R and p any transition model in P. By contradiction, suppose
that there exists a policy 7’ eargmax_ .y J (7; pto, p, ) for which there exists a (s’, h’) in the union of the supports of the
he[H] distributions ph’”/ (-) in which Q5 (8", 7, (s');p,7) <maxaea Q3 (s',a’;p,r) (the notation refers to a deterministic
7’ but it can be taken stochastic by computing the expected value). Let 7* eargmax . V7 (s;p,7) V(s,h) €S x [H] be an
auxiliary optimal policy whose existence is a widely-known result in RL (see Puterman, 1994). By hypothesis, it holds that:

J(7';s o, p,r) =max.J (; 10, p,7) =J(7*; o, p,7).

From the performance difference lemma (Kakade & Langford, 2002), by denoting the advantage function by A7 (s,a;p,r) =
Q7 (s,a;p,m) — V7 (s;p,7), we can write:

71'*
J('s 1o, ) = T (7%; o, p,r) = E  [A% (s,a5p,7)]
he[H] (5:a)~Pp ™ ()
) po e
C b ()AL (5" mhe (8)ip,m)

2
<0

)
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where at (1) we have used that in all (s,h)€S x [H]\{(s’,h")} the policy 7’ prescribes the action greedy w.r.t. @*, and thus
the advantage is 0, and (2) holds by (contradiction) hypothesis. However, by hypothesis, we know that J(7*; pg,p,r) —
J(7'; po,p,m) =0, thus we have obtained a contradiction, so the sufficiency holds.

As far as the necessity is concerned, let us consider again an auxiliary optimal policy 7* and a policy 7’ such that
QF, (8", m,(8");p,r) =maxyea QF (s',a'; p,7) in the support of the he [H] distributions p}"™ (-). By applying the perfor-
mance difference lemma, we can write:

71.*
J(7'spo,p,r) = I (7% p0,pyr) = Y, B [AR (s,a3p,7)]
he[H]S~Pn" ()

71'/ 7\'*
= Z Z P]}Z’ (Sva)Ah (S,a;p,r)
’ E/_J
helH] (s,a)e8x A:pP™ (5,a)>0 =0
=0,
where we have simply used the hypothesis.
By setting 7 =7', we get the result. O

Now, we are ready to prove Theorem 3.1:

Theorem 3.1. In the setting of Definition 3.2, the feasible reward set R, »= satisfies:

Ryme={reR|vre[r?]e_ , ¥(s,h)eS"™  Vae A:
Qh (s,7f (s);p,7) 2 Qh (s,a5p,7)}. )

Proof. Thanks to Lemma E.1, to prove the statement of the theorem we have to show the equivalence of the constraints:

V(s,h) ESP”TENCLEA: Q¥ (s,mF (8);p,r) = QF (s,a5p,7) (14)
<
V(s,h)es ™ MaeAvre[rPle | i Qi(sh (s)ipr) > Qf(s,aip,m), (15)

where we have exchanged the order of the quantifiers (because they all are of the same type). Observe that Eq. 14 can be
rewritten as:

V(s h)eS™™ Yae A: QF (s.m (s)ip.r) > QF (s,a:p.7),
because of the existence of some optimal policy 7* (see Puterman, 1994). Now, by induction over he [H], it is easy to
show that Eq. 14 entails the existence of an optimal policy 7* € [ﬂE];sp - Therefore, we can rewrite the constraint as:
D P Pt E ¥
V(s,h)eSP™ NaeA: Qf (s,m,(s);p,m)=Q% (s,a;p,7),

since playing 7* from spm” brings again into sp” By definition of 7*, we have:

* —
Q;Lr (Sa a;p,r) = QZ(S,a;p,T) = T?%QZ(Saa;paT) = QZ(&G;PW),

for all 7€ [WE]ESP.WE' Since * € [TFE]ESP 5 » then we have shown that the two conditions in Eq. 14 and Eq. 15 are

equivalent. O

As a direct consequence of Theorem 3.1, we have the following corollary.

Corollary D.1. In the setting of Definition 3.2 the feasible reward set R,, . & satisfies:

Ryppi = U Ry

’ El_
w'e[n ]:sp-,er
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Proof. Let (s,a,h)eS x A x [H] and let p be a transition model in P. Define:
R, ={reR|Qx(s,a;p,T) =mai<Q,";(s,a’;p7r)},
a’e

i.e., the set of rewards satisfying the constraint on the optimality of action a in a single (s, k) pair. It is well known (see
Puterman, 1994) that, given a reward function and a transition model, there always exists an optimal policy whose Q-function
coincides, by definition, with the optimal Q-function. In other words, for any pe P and any r € R, the optimal Q-function is
“well-defined”. Therefore, it holds that:

U f~RCL = mv

acA

because we are making the union of the rewards that induce action a to be optimal in (s,h) for any a€ A. To put it simple,
if we add the constraint that at pair (s,h)€S x [H] there exists an optimal action, we are not actually adding a constraint.
Notice that we can do the same with policies w1l instead of actions a€.A. Thanks to Lemma E.1 and the property just
highlighted, we can write:

Ryt = {refRW(s,h)eSp’”E : Q;"L(S,Wf(s);p,r) =mz§i(Q,”;(s,a;p,r)}
ae
={r€iﬂ|37r’€[7rE]Es s V(s,h)eSx[H]: QZ(S,W;L(S);p,r)=maﬁ<QZ(s,a;p,r)}
p,T ae

- U R

’ El_
w'e[m ]zsp,ﬂE

In this way, the constraints are defined only for (s,h) €SP L O

With regards to Section 4, we provide the following proposition.
Proposition 4.1. For any r,r' €%R, it holds that:
2

b
7.rh72;n,1r
min

d(r,r") <2dy (r,r") < d(r,r").

Proof. The first inequality is straightforward. For the second, observe that:

doo (1,7) M Z max |rp(s,a) —7p(s,a)]

(s a)eSxA

1 ~

=— Z max{ max |rh(s a)—7h(s,a)], max |rn(s,a)—7n(s,a)|}
he[ ] (s.)ezp ™ (s.)¢ 2™
P, ~ b zpmb ~

BT M > max{ max  p7o? Jra(s,0) = a(s.,)|, peZ max  |ry(s,a) = Tn(s,a)l}

S helt] (s.0)e 2] (s,0)¢ 20"
o 1 1 - . ~
S— i 2 max{ max P (s,a)|rn(s,a) —7p(s,a)|, max \ Ir(s,a) —7n(s,a)|}

Prmin he[H] (s,a)eZl™ (s,a)¢Z0™
©) 1 ~
<o S Y e Y AT sl Rl max [rls,a) (s}

min he[H] (s, a)eZ? b (S,a)¢Zf:’

1 o~ ~

= M Z max{ E |rr(s,a) —Tr(s,a)|, max \ |rh(5,a)77’h(s,a)|}

pmln hG[H] (s a)NPh ( ) (s,a)¢2’}7i’7T
3 ~
<o M > E  |ra(s,a)=u(s,a)|+ max |ru(s,a) —Fa(s,a)|

Prmin he[H] Ns:a)~pp™ () (s,a)gZP™"

1 ~

=:Wd(7“77“>7

min

p,T Pvﬂ'b
where at (1) we have upper bounded p;bif < o (s a) for (s,a)e Z}’Z’”b, and p;bi’nz <1, and at (2) and (3) we have
used that max{a,b} <a+b for a,b>0. O
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F. Sample Complexity Analysis

In this section, we present our results on the sample complexity of (Algorithm 1 - box) and PIRLO (Algorithm
1 - PIRLO box) with both distances d and d.

The section is organized into various subsections. We begin with Section F.1, in which we present the concentration results
that will be used in all the sample complexity proofs. Section F.2 contains the proofs of sample complexity of W.LL.
distances d and d,. Analogously, Section F.3 contains the proofs of sample complexity of PIRLO w.r.t. distances d and d;.
In Section F.4, we present additional sample complexity results for PIRLO w.r.t. d,d,, under additional requirements. We
conclude with Section E.5, in which we present a result of sample complexity on the estimation problem of the superset only,
as defined in Equation (8).

F.1. Concentration Lemmas

We define good event £ as the intersection of four events £1,&5,E3,E4. Events £; and &, allow to obtain exact estimates of

b ., E . . .. .
ZP7™ and SP™ w.h.p., while events £5 and &, allow to concentrate the estimates of the transition models around their
means.

Lemma F.1 (Coverage Events). Let M be an MDP without reward and let 7P be the expert’s policy. Let D=
{<SZ’1, al;b’l)he[[H]] Vie[rop and DE = {<sf” , af’J Jhe[H] ) je[r]F be datasets of T and TF trajectories collected by executing
policies 7° and 7 in M. Denote with N} (s,a) the visitation count of triple (s,a,h)e zpr computed using D°, and by
NF(s,a) the analogous for DF. For any §€(0,1), define events £,,E> as:

il
b p,? b In =
E1={ Ny(s,a)=1,Y(s,a,h)€ZP™  whenTt 201171 ,
1 nb,zpﬂrb
17pmin

1
u 1 nE zp,™
—pT

min

E
In 1827 |
52:={N}?(s,a)zl,V(s,a,h)eZp’”E W/’lenTEZCglnia ,
T E 2o.nE

where ¢1 and co are universal constants. Then, event £ N Ey holds with probability at least 1 —§/2.

b
Proof. Let us begin with event £;. We observe that N7 (s,a) ~Bin(7%, p}"™ (s,a)). In an analogous manner as Lemma E.5
of Metelli et al. (2023), we can write:

P (€= P (3(s,a,h)eZP™ : Nb(s,a)=0)

p,m? p,m®

< Y P (isa)=0)

b
T
(s,a,h)eZP7b P

= Y AT (sa)

(s,a,h)eZP "

(@) b zpm b
< Z (1= phin )"
(s,a,h)eZP7®

b

b

b ,7rb
=|2P7 |-’ <

min

] o

b
iy
min

where at (1) we used a union bound, and at (2) the definition of p
we get:

b
=i st Py (s,a). Solving w.r.t. 7°

4]z7 |
b In ==5
e

In b, zp,mh
1=Pmin

from which the bound for event £; holds for some uninteresting constant ¢;.
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Observe that, by following a similar reasoning, we can prove the bound for event &, by recalling that, by hypothesis, the

expert’s policy is deterministic, so | ZP s |= |Sp”TE |. The statement of the theorem follows by an application of the union
bound. O

Before presenting the next lemma, we introduce the symbols:

[ 2B(Np(s,a),0)
by (s,a) _\/W (16)

and

B(n,8):=In(427"" /5)+ (SP:". —1)In(e(1+n/(SET. —1))), (17)

max max

b
with ZP™" = |Zp7”b\ and Sg;gi =MaXpe[H] |SP™|. The corresponding counterparts with the estimated quantities are
given as follows:

R \/ 2B(N} (s,a),8) (18)

b =g T L
h(sa) max{N}(s,a),1}’
and

B(n,8):=In(4Z7" /5)+(SP:™ —1)In(e(1+n/(SET. —1))), (19)

max max

. ~ 3 ~ b ~ b A~ b . L.
with ZP™ .= | ZP™ | and SBT = maxpeppy |S;" |. Clearly, under the good event £; N &, the two versions coincide.

Lemma F.2 (Concentration). Let M be an MDP without reward and let ¥ be the expert’s policy. Let D=
{<si’z, al;l’z>he[[H]] Yie[rv) and DF = {<sf” , af” he[H]}je[]= be datasets of T" and TF trajectories collected by executing

policies ° and ¥ in M. Denote with py,(+|s,a) the empirical transition model of triple (s,a,h)e zZpr computed using
Db, For any §€(0,1), define events £s,E4 as:

E3:= {le(S,a)KL(ﬁh(’|s,a)”ph('Saa)) <ﬂ(N£(s,a),6), VTbEN, v(s’a,h)ezp,ﬂ'b}’

1 In

|zp’|
Eyi= <cy ]
{N};(s,a)vl Tb,ofl’”b(s,a)

, V(s,a,h)eZ”’”b},

where cy4 is a universal constant. Then, event E3 N E4 holds with probability at least 1 — 0 /2.

Proof. We show that both events &3, £4 hold with probability at least 1 — g. The thesis follows through the application of a
union bound.

Let us begin with event £5. Similarly to the proof of Lemma 10 in Kaufmann et al. (2021), we apply Lemma J.2 and a union
bound to get:

P (&)= P (H(S,a,h)ezp’”b,HTbeN:N}:(s,a)KL(ﬁh(-|s,a)||ph(-s,a))>B(N;bL(s,a),5)>

p,m? p,m?
< X B (3N M KL s a)lonCls,0) > SN 5.0).0)
(s,a,h)eZp:° P
0 0
< _° __°
(s a.h)ZEZPv”b 4|Zp’7rb‘ 4

It should be remarked that, in the definition of 5 (Equation 17), we have used \S}’d“b

ax

| instead of S because it better represents
the support of the transition model in triples (s,a,h)€ zp’,
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As far as event &, is concerned, consider an arbitrary triple (s,a,h) e 2P Observe that the visitation count N, (s,a)
b

is binomially distributed, i.e., N?(s,a) ~Bin(7,p}"" (s,a)). Therefore, similarly to Lemma B.1 of (Xie et al., 2021), by

applying Lemma J.1 with confidence 6/ (4|Zp*7rb |), we can concentrate the binomial as:

p, 0 4\Zp‘"b\
" (s,a) <81nf

Np(s,a)v1 T ’
from which we get:
1 81n4'2” ' 5
P (< < >1-—
pro NNy (s,a) v 1 " (s,a) 4|zpm|

. b
We can perform a union bound over (s,a,h)e ZP"™ to get:

b
1 Slp 422" | b
P (H(S,a,h)ezp’”b. - Sl S P
pymt Ny(s,a) vl 7ph™ (s a)/ 4
By choosing c4 appropriately, we get the result. O

Since £ :=E1 N Ey N E3 N &y, then, by combining Lemma F.1 with Lemma F.2 through a union bound, we get that £ holds
w.p. 1-9.
F.2. Proof of Theorem 5.1 and Theorem 5.2

The next lemmas show that, for any reward in R;,,E (R;’WE), it is possible to find a “similar” reward in the estimate R;T}E
(R;ﬁﬁ £ )- Notice that, under events £; and £ we have that, respectively, zp’ = zpm" and ng"E = SWTE. For the sake of
simplicity, we provide here the (recursive) definitions of p™, pMe [p]= b for any refR:

Zpom

P (|s,a)=pu(|s,a),  V(s,a,h)e 2P

pM = M aM o M H )
Diy ('|s,a)=]l{.=argrr‘1$axvh+1(s iptr, otherwise
s'e b (20)
. ppt(-s,a) =pn(:|s,a), V(s,a,h)e ZPT
po= p,’:’(~|s,a):1{.=argn;inV,ff1(5’;pm,r}, otherwise ’
s'e
where we have used the following (recursive) policy definitions 7 7 e [WE];SNE :
v [T = (s), i (s, esP
TT A Cl9) =1 =argmax Q7 (s.a:pM )L (s, )¢ SPTT
aceA . Q1)
o [T =T )it (s myesr
T = 7 (s) =1{- =argmaxQ} " (s,a;p™, 1)}, if (s,h)qéSp’“E
acA
Thanks to these definitions, we can rewrite R;WE and R;,,E as:
{re®R|¥(s,h)eSP™" Yae A\{a}: Q" (s,a%;p,r) = QF (s,a;p™
pﬂ'E_ ) 9 Y h ) vpar)/Qh (Sva,p ,7’)}, (22)

p,'n'E ={TES‘HV(S,h)ESp’”E,VaeA\{aE}:QZE (s,aE;p,T) Zsz(s,a;pm,r)}.

We will denote by pM ,p™,7M 2™ the transition models and policies defined as in Eq. 20 and Eq. 21 but for transition

model p.
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Lemma F.3 (Reward Choice Subset). Let 72”7T p be the subset of the feasible set R,, .= estimated through R ~p outputted
by Algorithm 1. Under event &, for any TER” &> the reward 7 constructed as:

~ M ~ ~M NS~ b
Tn(s,a)=rn(s,a)+ 3 pr(s'ls, @)V (ssp™Mor) = 35 Du(s'[s,@) Vi (850, 7),  ¥(s,a,h)e ZPT
s'eS s'eS

Th(s,a)=rp(s,a), V(s,a,h) ¢Zp’”b

belongs to Rgﬁ &. Moreover, for any reward 7€ Rgﬁ B, We can construct in the same manner a reward r that belongs to

&)
Rp,frE

Proof. The idea of the proof is to show that Q7r (s a;pM,r)= QZFM (s,a;p™,7) for all (s,a,h)eS x A x [H]. Indeed, in
this way, since r e R;WE, then it holds that:

V(s,h) €SP Vae A\{a®}:QF (s,a%5,7) —QF (s,a:5M,7) =QF (s,a”:p,1) = QF " (s,a;p™ ) 0.

Let us begin with any (s,a,h)€ zp’ By definition of 7 and by rearranging the terms, we obtain:

~ ~ FM A A~ M
Th(s,a)+ 2 Pr(8']s,a) Vi1 (8'spM, ) =7h(s,a) + Z pu(s'|s,a) Vi (s'sp™M ) r)
s’'eS s’'eS
AM
= Qi (s.ap™.P)=Qf (s,a:p™ 1), (23)
In particular, observe that, by Assumption 2.1, it holds zpm" < ZP™"; moreover, by definition of p* and pM, playing an
expert’s action from SWFE brings again into S’””E, therefore, for (s, a¥, h)e ZWTE, this means:

E ~ A E
Qr (s,a":p,7)=QF (s,a”;p,7).

Now, we show by induction that, for any (s,a,h)¢ ZP>”b, it holds that:
~AM IRV DN M
QZ (S,a;pM,T) :Qh (S7a;pM7T‘).
As case base, consider stage H. Clearly, for any (s,a)¢ fob, we have:

~M

Q‘IIT{ (870/;2/’)\]»177/:) Z?H(‘%G/)

=rg(s,a)

M
=@ (s,a;p™.r),

where we have used the definition of 7. Make the inductive hypothesis that, at stage h+ 1, for any (s,a) ¢ Zh v1» it holds
that Qh+1(3 a;pM . 7) = Qhﬂ(s a;pM ), and consider stage h:

~M ~ A~ A~ A~
Qi (.M P =Fu(s,0) + X Prl(s'|s,a) Vit (/5™ 7)
s'eS
Z i’ (s']s.a Vh+1( LML)
s’'eS

2) M M~
:Th(s,a)+n/1&XV;Zr+1( 7pJV )

~AM ~ PR ~M ~, ~
=7r,(s,a) + max{ max Vh+1( s oM7), mabe;fH(s’;pM,r)}

p,T 14 QP T
s ESh_H s'¢S

3) y AM ~ ~
(=rh(s,a)+max{ max Vh+1( s'spM ), mabe,fH(s';pM,r)}

gsESSJ:rl s'¢SPT

4 M
D (s,0) +max{ max Vil (s5p™ ), max Vi (s'ip™ )

3
5655:1 s'¢SPT
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=rp(s,a)+ maXV}ZZﬁ (s";p™,7)
s'eS
—Q7 (s.asp™, ),
where at (1) we use the definition of 7 outside Zp’”b, at (2) we use the definition of p™, at (3) we use Eq. 23, and at (4) we
use the inductive hypothesis.

Notice that the same passages can be carried out if we exchanged p and p. This concludes the proof. [

Notice that the reward function chosen in Lemma F.3 can be interpreted, in an analogous manner as in the proof of Theorem
3.1 of Metelli et al. (2021), as the reward that provides, in transition model p, the same Q-function provided by the given
reward in p.

We can prove an analogous result for the superset RA B
Lemma F.4 (Reward Choice Superset). Let R; B be the subset of the feasible set R, = estimated through R;%E outputted

by Algorithm 1. Under event &, for any reRp &> the reward T constructed as:

?h(saa):'rh(sva)"" Z ph(s’\s,a)Vh”:;(s’;pm,r)— Z ﬁh(5'|57a)vﬂ1( Lpm A) v(s’a’h)ezpﬁfb
s’'eS s’'eS

Tn(s,a)=rp(s,a), V(s,a,h) ¢Z”’“b

belongs to RY . . Moreover, for any reward reRY . , we can construct in the same manner a reward r that belongs to
P, PRt
v
p,mE*

Proof. The idea of the proof is analogous to that of Lemma F.3, and is reported here for completeness. We aim to show that
ng (s,a;p™,r)= Q;{m (s,a;p™,7) for all (s,a,h)eS x A x [H]. Indeed, in this way, since reR; &, then it holds that:
V(s,h) ES”’”E,VaeA\{aE} : QZE (s,a”:p,7) = Q7" (s,a;p™,7) = Qh (s,a”:p,r) = Q7" (s,a;p™,7) 0.

Let us begin with any (s,a,h)e zpr By definition of 7* and by rearranging the terms, we obtain:

Z pn(s'|s,a) V;;:Ll( L) =rp(s,a) Z p(s'|s, a)Vthl( s'sp™r)
S'eS s'eS

= Q7" (s,a;p™,7)=Q} " (s,a;p™,7). (24)

In particular, observe that, by Assumption 2.1, it holds zZrmt c Zp'“b; moreover, by definition of p" and p™, playing an
expert’s action from sp” brings again into SW'E, therefore, for (s,a”,h)e Z”’”E, this means:

Q;{E( 7p7 ) Qh (s,aE;p,r).

Now, we show by induction that, for any (s,a,h)¢ Zp’”b, it holds that:
QZ (s ap ) Qh (s,a;pm,r)‘

b
As case base, consider stage H. Clearly, for any (s,a)¢ Z;" , we have:
Qf (5,05™,7)=Fn(s,a)
=rn(s,a)

:Qh (S a;pm,r),

where we have used the definition of 7. Make the inductive hypothesis that, at stage h + 1, for any (s,a)¢ Zh /1 » it holds
that Q7" (s,a;p™,7) = Q7+ (s,a;p™,7), and consider stage h:

QF" (3,055 ) = Fu(s,0) + 3 i (s'ls. ) Vi ('35, 7)
s'eS
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th |3th+1( ip™,T)
s'eS

Q. (s,a) +min Vi (s 7)
s'eS
=rp(s,a) +min{ min Vh%:i(sl;ﬁ”,?), min Vh”:i(sl;ﬁm,?)}
sesr T S¢SPT

h+1

® ) m R
r1(s,a) +min{ min Vh+1( p™r), min Vi (s5™,7)}

S ES;’ZQ S'ESP
(€] V /.M : ‘/7rm !/, .m
_T}L(S a)+mln{ min h+1( ERYY ar)v min b h+1(8 Y ,7‘)}
s E‘Sﬁfl S'ESP

=rp(s,a) +maxVh+1(s ;™)
s’'eS
=Qr" (s,a;p™,7),

where at (1) we use the definition of 7 outside Zp7”b, at (2) we use the definition of p™, at (3) we use Eq. 24, and at (4) we
use the inductive hypothesis.

Notice that the same passages can be carried out if we exchanged p and p. This concludes the proof. O

From the proofs of Lemma F.3 and Lemma F.4, we notice that proving the result for the superset is “easier”, because we
simply have to consider a single transition model; instead, for the subset, we have to consider all the transition models in the
equivalence class. Luckily, we can single out a “worst” transition model from this class and provide the proof only for it.
We will see in the proofs of the results with pessimism how to cope with the trickier problem in which there exist many
“worst” transition models, and thus the recursion cannot be applied directly.

Thanks to Lemma F.3 and Lemma F.4, we can upper bound the distance between sets of rewards by a term that depends on
the distance between the transition models. We do not have error for the policy because, under good event £, we have that
7 =nF in §pm" = gp”

Lemma F.5 (Performance Decomposition Subset and Superset). Let RN = Rgﬁ e and RY = T\’,;;ﬁ r be the output of IRLO
(Algorithm 1). Under the good event &, it holds that:

Hd(R;ﬂ_E,ﬁﬁ)gH Z E b bh(S,Cl),
hEﬂH]] (Sra)"’pﬁﬂr ()
and:
Ha(Ry o, RY)<H E  bu(s,a).

hEﬂH]] (Sra)"’pﬁﬂr ()

Proof. By Definition 4.2, we can write:

H(RD ﬁﬂ)::max{ sup  inf d(r,7), sup _inf d(r,7)}

P A FeRA ~ 5 TER
reRp,ﬂE TeER PERO prE

@
<max{ sup d(r,7), sup d(7*,7)}

7‘672(\Y E 7’“\67’?\,(\

@max{ sup % Z < E ’rh(s,a)—F}L(s,a)’—k max ‘rh(s,a)—ﬁll(s,a)o,

reRY o M i) Nsa)~ol ™ () (s,a)gzp ™
=0
1 ~ " ~
sup — Z ( E \ |7‘h(s,a)—r,2l(s,a)‘+ max b|rh(s,a)—7§%(s,a)|)}
FER™ T he[H] Ns:a)~pp ™ () (s,0)¢ 20"

=0
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6) L

—max{ sup 7 2 E \Z (pn(s'|s,a) —pn(s']s, a))Vh+1( M),
reR” g he[H] (s,a)~ph'™ ( ‘) s’eS

1 ~ 7/1\,1\4 ~ ~

s BB Y Gl -l V)
TER" he[H] (S,G)NPﬁ" () s’eS

() 1 ~ oM

émax{ sup Vi Z E . Z ‘(ph(5'|57‘1)*ph(5'|57a))vh+1(5/§pM»7")|a
TER;YWE he[[H]](Sva)NPI;;'7r () s’es

1 N~
wwp = S E Y |Bul 1) - pa(s s ) V(. >|}
FERN T pe[H] (5:0)~pp" () ses

(5) ~
gmax{ sip Y E Y |u(s]s,0)~pulsls,a)H],

r€R] B he[H] ($:0)~p0™ () s’es

Sup Z E Z|ph "Is,a) —pn(s']s,a) H‘}
?eRﬁhEHHH(SG)NPh ( )5 eS

=2 B Dol -l

he[H] (5:a)~pp " () s’eS
= > E Hplls,a)-mlls0),
he[H] (s:a)~pp ™ (+57)
(6) —
< E . H\2KL(pi(]s.0)n(]s.a)
re[H] (s:a)~pp ™ (57)
©) NP s
< Z E \ H Qw
he[H] (s:a)~p ™ (-17) Ny (s,a)

=H Z E bn(s,a),
he[H] (s:a)~pp™ (+5°)

where at (1) we have applied Lemma F.3, denoting by 7 1eR" and 72 ER“ .= the choices of rewards, and used that
infyex f(x) < f(Z) for any Te X'; at (2) we have used the deﬁmtlon of dlstance d at (3) we have inserted the definitions of
71 and 72 as provided by Lemma F.3, in particular using that Q7 (s, a;pMr)=QF (s a;pM,7), at (4) we have applied
triangle inequality, to bring the absolute value inside the summation, at (5) we upper bound V;" +1( oM r) < H|r|o and
Vh+1( s pM 7)< and since M :=1/max{||r||c0, |7] 0}, we obtain H|r| /M < H and H||r\|oo/M<H at (6) we

have applied Pinsker’s 1nequa11ty, and at (7) we have applied the bound of £3 2& noticing that N? 1 (s,a)>1 because of event
&1 2¢E.

A similar procedure can be carried out also for the supersets, using Lemma F.4 instead of Lemma F.3. O

Finally, we have all the tools we need to prove Theorem 5.1.

Theorem 5.1. Let M be an MDP without reward and let T be the expert’s policy. Let D¥ and D be two datasets of 7
and 7° trajectories collected with policies T and 7° in M, respectively. Under Assumption 2.1, is (€,0)-PAC for
d-IRL with a sample complexity at most:

~(H3ZP"Ink /1 Int
L0 i i P Iy S
P TLT () e )

1_p7rbﬁzp,7r
~ In
E
<O [T —
n o E zp,wE
1—p” .

=l

min
min

Proof. First, observe that, thanks to Lemma F.1 and Lemma F.2, we have that good event £ holds w.p. 1 —§ with a number
of trajectories 7 and 7° upper bounded as in events £; and £. Now, under good event &, the idea of the proof is to compute
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the number of trajectories 7 needed to have a distance between sets of rewards smaller than €. Then, we combine it with the
number of trajectories required by event £ through max{a,b} <a+b for a,b>0.

Let us begin with the subset. Thanks to Lemma F.5, we can write:

Hd(R;ﬂE,ﬁ”)gH Z E bn(s,a)
hG[[H]] (Sva)wpz}im (7)

o 1
O 3T e s
b L\

b
“ B(rb,8)In E2 b b
<¢6H >zt Y A e

’ helH] (s,a)eZﬁ’Wb
b L)1 \Z" =
—05\//6(7 H Z A/ | Zp’ﬁb
he[H]

b
5) b §)n Z27
<C5\//B(T)?5H‘ [H|ZP7" | <e,
T

where at (1) we have used that 7° > NP (s, a) for all (s,a,h)e 2P and that function B(-,0) is monotonically increasing;
at (2) we have applied the result in Lemma F.2 for event &4, at (3) we define constant c5 :=+/2c4, and at (4) and (5) we have
applied the Cauchy-Schwarz’s inequality.

To compute an upper bound to the number of trajectories required to have Hd( nE ,7%“) <¢, we compute the smallest 7°
that satisfies:

b
ﬁ(Tbvé) In lz% | b
TR0 gy H|zem | <
C5\/ b | | €

By using the definition of 3(7°,4) from Eq. 17 and rearranging the terms, this is equivalent to finding the smallest 7° such
that:

b g 2P I L2 (1 2 (1S~ 1) (e + /(1S5 — 1)
=C 62 Pl
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where cg:= 2. If we define:

H3|2p7r‘1 \1 4|ZZ7'|
= 62 ,
| ze | 25 (Isﬁi’ax\ 1)
b:=cg 2 ,
€
_ e
sk -1
d:=e,

then we can rewrite the previous expression as:
™ >a+bln(crb + d).

To solve it, we can notice that a, b, c,d >0 and 2bc > e, thus we can apply Lemma J.3'7 to obtain:

7°>2a+ 3bIn(2bc) +d/c.
Replacing a, b, ¢, d with their values, we get:
H3|Zrm" |In 12 '1 az7m|
220, 2R s T (IS -1)

b
H 20 n 25 (gt - ) H? 20 I E

+3cs In{ 2¢cge 5

€2 €

[ H312zp7"|1n L 1
<0<|2|n§(1n |3§{ax|)
€ 1)

Now, observe that an upper bound to the number of trajectories needed to have Hq(RY o E RU) < € can be obtained with an
identical derivation, and, thus, it is of the same order. The statement of the theorem follows by the considerations at the
beginning of the proof. O

We provide here the proof of Theorem 5.2. The proof is analogous to that of Theorem 5.1.

Theorem 5.2. Under the conditions of Theorem 5.1, is (€,0)-PAC for dy-IRL with a sample complexity at most:
~( H*@Ini 1 b Ini
b
T <0< o 2<1n6+sg;;;>+ln 8 ;
pmi7n € 1— ""k_'vzp’ﬂ'b

and TF is bounded as in Theorem 5.1.

Sketch of proof. The proof is exactly the same as that of Theorem 5.1. First, observe that it is possible to prove a lemma
analogous to Lemma E.5, so that:

Ho(R))

RO < max  bp(s,a).

p,mE> pob
he[[H]] (s,a)€Zy

Next, when applying Lemma J.1, we simply notice that, for all he [H]:

1 1
max b\/ p, P S b Zp,mb
,T ? T, T
(sa)ezp™ \ pp" (s,a) T\ pl

We can do the same also for the superset. Following the derivation in the proof of Theorem 5.1, the result can be obtained. [

1Tt should be remarked that the adoption of Lemma 15 of (Kaufmann et al., 2021) provides the same asymptotical dependence on the
quantities of interest. However, Lemma J.3 is more concise.
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F.3. Proof of Theorem 6.1 and Theorem 6.2

We will denote by a? :=7F(s) for all (s,h) €SP | the expert’s action. Given any reward e, it is useful to define
(recursively) the transition models 7™ and p™ as:

PM(|s,a)= arg max E  VEL(s5PM,n)} if (s,a,h)e 207
P[0, (1s,0) =B (-]5,0) [ <bn (s,a) &' ~Ph ([5:2)
~M .__ E
= AVs ¢Sh+1 ph(a |s,a)=0 3
P (]s,0) = 1{-=argmax V;7. (s/spM 1)}, if (s,a,h) ¢ 2P
s'eS
o ) b (25)
op(ls,a)= argmln E Vi (ssp™, )}, if (s,a,h) e ZPT
. p':|p), (-|s,a)— p; ‘|s,a)[1<bp (s,a) S '~p}, (+]s,a)
p = AVs' ¢Sh+1 ph( |s,a)—0 5
P (cls,a) = 1{ —argmin V', (', ™, 1)}, if (s,a,h) ¢ 27
\ s'eS
where we have used the following (recursive) policy definitions ¥, 7™ e [¥ ]Esp B
~ 7TE
A @) =aE () if (s, e )
TOT AN Cls) =1 =argmaxQf (s, a;pM 7)), if (s, h) g ST 0
aceA i (26)
) =) it (s, h)yesPT )
= 7 (-|s) =1{ :argmaXsz(s,a;ﬁm,r)},if (s,h)¢gSP™
aeA
Thanks to these definitions, we can rewrite R and RY as:
= {reR|V(s, ) eSP™ Vac A\{a"}:QF (5,a":0" ) > @F (5,0:0™,1)), o)

:{T‘GgﬂV(S,h)espyﬂE’VaeA\{aE}:QZE(S,GE;]B«M,T)ZQZH (S aﬁm )}

Both Theorem 6.1 and Theorem 6.2 uses d, instead of d use the same reward choice lemmas, but differ for the performance
decomposition lemmas.

Lemma F.6 (Reward Choice Subset). For any re R;W &, the reward T constructed as:

~ E B =R E
Pn(s,a®)=rp(s,a®)+ X ph(s’|s,aE)V}f+1(s’;p,r)— > ]3}?(3’|s,aE)V}f+1(s’;ﬁm,r), V(s,a¥ h)eZpm
s'eS

s'eS
Th(s,a)=rp(s,a)+ >, pﬁ/[(s’|s,a)V,fﬁ(s';pM,7‘)— > ﬁhM(s’|s,a)Vh’~’f1( 1 pM.7), otherwise, ’
s'eS s'eS
belongs to RO.
Proof. Consider any ( )EZWr By definition of 7, by rearranging the terms, we have that:
Pu(s,af)+ 3 BE(s']s,aP) Vi (8™, P =ra(s,aP) + Y pa(s']s,a®) Vil (sp.7)
s'eS s'eS
E
= Q7 (s,a" 57 P) = QF (s,0"5p,7). (28)

Now, consider any other triple (s,a,h)¢ zpr”, Similarly, by rearranging the terms, we obtain:

~M

Q" (s, P ) =QF (s,asp™.r). (29)
By hypothesis, re R; & therefore:

V(s,h)eSP™ Yae A\{a®}:QT (s,aZip,r)= QT (s,a;p™,7),
from which it follows that:

Y(s,h) eSp’”E,VaeA\{aE} : QZE (s,af:p™,7) = Q’;{M (s,a;™M 7).
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For the superset, we have an analogous result.

Lemma F.7 (Reward Choice Superset). For any 7€ RY, the reward r constructed as:

~ ~ E E
ra(s,a”)=Fn(s,a”) + ZSPQI(S’IS»GE)VJH( ML F) - Zsph(s |s,a®) Vi1 (s'spor),  V(s,a” h)e ZPT
s'e s’'e

r(5,0) =7 (s,0) - 3 P!, @) VT (/3P ) — 3w (s']s, a)ViTrs (™, r),  otherwise,
s'eS s'eS

belongs to RZ‘:W B

Proof. Consider any (s,a”,h)e zpm”, By definition of r, by rearranging the terms, we have that:

~, A E
Th S, Cl Z ph |8 CL Vh+1( /7pJW ) Th(saaE)+ Z ph(S/|S,aE)Vh7r+1(Sl;pﬂ")
s'eS s'eS

= QF (s,a”p".P) = QF (s,0"p,7). (30)
Now, consider any other triple (s,a,h)¢ zZpm” Similarly, by rearranging the terms, we obtain:
Q" (s,a:™ ) =QF " (s,a:p™, 7). (31)
By hypothesis, 7€ R, therefore:
V(s,h)e espm” Vae A\{a”}: Qh (s,a®;pM ) = QF " (5,a; ™, 7),
from which it follows that:
V(s,h)eSp”TE,VaeA\{aE}:QZE(s,aE;p,r)>Q2m(s,a;pm,r).

Since p™€[pl=_, , and 7™ is the worst policy in [7F]

b

= b for p™, then we have reRp B O

F.3.1. LEMMAS FOR THEOREM 6.1

Lemma F.8 (Performance Decomposition Subset). Under good event &, it holds that:

Hd(R;ﬂ.E77€m)<2H Z E bn(s,a)+8H®  max _ bn(s,a).
he ] (5~ ™ (1) (s.a,h)ezm

Proof. Observe that:

Ha(RD 5, R"):=max{ sup inf d(r,7), sup _inf d(r,7)}

P RO FERN ~ 5 TER
TERD g TE FeRA B

—~
=

= sup inf d(r,7)

re€R" L TERN
p,T

1
= sup inf — Z E |rh(s,a)—7’h(s,a)|+ max |rh(s,a)—7~“h(s,a)|)
la) o7 1) p,mb p, b
TER] B TER he[H] (5:@)~p5™ (1) (s,0)¢ZP
2 ~
< sup — Z ( E L ’rh s,a) —Th(s, a)’—l— max ‘rh(s,a)—rh(s,a)‘), (32)
TER] op he[[H]] (s,:0)~p7 ™ (+,") (s,a)¢ZP

where at (1) we have used that, under event £, we have RO C R;WE, and at (2) we have applied Lemma F.6, denoting with

7 the reward chosen from R".

Now, we consider the various triples (s,a,h)eS x A x [H] differently according to the definition of 7 in Lemma F.6. Let us
begin with any (s,a”,h)€ ZP™" . Thanks to Eq. 28, we know that, for any (s,h)€SP™" , it holds that Q;{E (s,af;p,r)=
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Q;{E (s,a”;p™,7). Since any expert’s action when played from sp” brings to spr” (even under p", by definition) , then

we can write:

}Th (s,a") =7n(s,a” ’*|2ph Is,a )Vh+1 "p,r th |s,a” Vh+1( /227"7?)‘
s'eS s'eS
/ E nF / ~m ( ./ E nF I.xmo oy
=| > pu(ls, )WV (e = Y BR(s |s.aP) Vi (55D )|
s’eSp.mF slespr
1 E E
Q3 s )L (Spr) = Y (s s, Vi ()]
s’eSp.mF s’eSp.mE
E
—|Z Ph(s |3 a” —Pn' (s ‘3 a ))Vhﬂﬂ(s/;l):r)}
s'eS
(2)
Z!ph '|s,a®) —pi(s ’\s,aE))HM|
s'eS

<HM|pn([5,0) = pn(1s,a®)|, + HM 3 (1s,a®) — pn( |s,a")]

3)
<2M Hby,(s,a”), (33)

where at (1) we use Eq. 28, at (2) we use triangle inequality and we upper bound the value function by H times the maximum
reward, and at (3) we use the event in Lemma F.2 twice.

Now, let us consider any triple (s, a,h) EZP”TB\ZWTE. Thanks to Lemma F.6, we can write:

|7"h(5 a)—7n(s,a |—‘th |5 a Vh+1 th |5 a Vh+1( aﬁM A)’
s'eS s'eS
(1) ~M A
| (s, @) Vi (8'sp™ ) = D Bl (8], a) Vil (/35 7)
s'eS s'eS
+ th Is, G)Vh+1( MR
s'eS
21 (ou(s1s,0) P (/| s ) Vi (/597 )|
s'eS
M ) 5M A~
+] D7 on(|s,0) (Vi (8'5p™ 1) = Vi1 (8759, 9)) |
s'eS
~M AT~
<2Mth (s,a) +‘2ph "Is, a)(VhH( s'spM 1) — Vhﬂﬂ(s';pM,r))‘
s'eS
) E B M A
<2MHby,(s,a)+| Z h(s’|s,a)(QZH(S’,aE;p,T)—QZH(S’,aE;pM,r)H
SESII-:;&E
M =N
12 pu(lsa) (max Q7 (5. a'sp™ r) —max QR (5. a”ip 7))
'¢Sh+1
5) E E ~, ~
<2MHby(s,a)+| Z ph(s/|s,a)(Qgﬂ(s’,aE;p,r)—QZH(S’,QE;pM,T)H
S’GS}’L”IIE
M
+ > ph(sl|57a)(??}QZ-&J(S/’QIQPM, r)— H}?ﬁ@h-&-l(s a”;p™.r))|
SESET, 5
E E ~ ~
<2Mth(8aa')+ Z h(8/|8,a)LQZ+1(S/,(1E;]),T)—QZ+1(S/,0¢E;])M,T)}7
s 585-:1}2 =:Xpny1(s")

where at (1) we have used that, since (s,a,h)€ ZP™ | then pM(-|s,a) =pn(-|s,a), at (2) we have applied triangle inequality,
at (3) we upper bound the value function by H times the maximum reward and we use the event in Lemma F.2 twice, at (4)
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we use triangle inequality and the Bellman’s equation and that the expert’s action a” is played by both 7! and 7 in any
(s,h) €SP at (5) we apply Eq. 29.

Now, having defined terms X, (s) for all (s,h)€SP™" as above, we recursively bound term X, 1 (s').

E ~, A
Xns1(s') = |Qf1(s',a%;pr) = Q7L (8,055 )|

@ ’Th+1 S aaE) —Th+1(8/aaE)’

E ~ ~, A
D I R CU R ( CL RO B SR v CUEN | A CLT )]

sresrry s"esry
1 _ENy/T 1 BNyl oo sMooy
<2Mth+1 8 a/ Z ph+1 |S , 4 )Vh+2 ap7 Z ph+1 |5 ,Q ) ( P ))
wresprE wresy7E
1 BNty P o Moo
2 ph 1(8"]8",a™) Vil o (s"P ,T)‘
s"eSP T

h+2

®) ~ ~M
<S2MHb (50" + Y [(pra(s”ls',a®) =Pk (5715, a™)) Vi (5739 7))
SeStTy

E ~ A~
Y praa(s")s ) Vi (s pr) = Vims (870 7)|

" p,T
s ESh+2

©) 5 "
<AMHbpia(s,a”)+ Y prra(s”ls',a") [QF Lo(s",a";p,r) - Qh+2<5 a®:pM 7)),

B
" p,T
s"eSp, ::Xh+2(s”)

where at (6) we use the definition of Q function, and we apply triangle inequality; at (7) we use again triangle inequality and
Eq. 33, at (8) we apply triangle inequality, and at (9) we use again the event in Lemma F.2 twice. The recursion on the X
terms tells us that:

Xn(s)<4MHb(s,a®)+ E  Xp(5). (34)

s'~pp(+|s,a®)

Therefore, we can upper bound the difference between rewards in (s,a,h)€ Zp’“b\Zp’”E as:

Irn(s,a) —7h(s,a)| <2M Hby(s,a) + AMH Z pr(s'|s,a) Z JE b (5", a). 35)
sesfflE nelh+1,H]s"~Pp" Clsni1=s")

Now, the only missing triples to consider are those (s,a,h)¢ zp’ Similarly to the triples just considered, we can write:

[ra(s,0) = (s,a)| =| Y. T (], a) Vi (' )= Y B (S|, a) Vi (s )|
s'eS s'eS
)] M % ~M
= (s/'pM,T)—H}aXV;ZT+1( vaM )|
2 M VIR
<maX|Vh+1 ;pM,T) (/’pM >|

(©)) ~M A
=max{ max |Vh+1( /31777")_Vh7r+1< M, )|

SGS,’zfl
~M YN
max |Vh+1( /§PM77”)*VJ+1( M, )’}
/$Sh+l -
= max |Qh+1(8 Cl yp,T ) Qh+1(8 a 7pM A)|
5ES£I1
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= max Xpi1(s)

s’ESﬁfl
)]
<AMH max_ <bh+1(s’,aE)+ 3 E bh/(s”,aE)), (36)
s'eSpT Welh+2,H] " ~ry" (Clsnt1=s)

where at (1) we have used that (s,a,h)¢ 277" and the definitions of p™ and pM, at (2) we have used that for any pair
of real-valued functions f, g it holds that | max, f(x) —max, g(z)| <max, | f(x) —g(z)|, at (3) we use Eq. 29 to realize

that in (s, k) outside Sﬁfl we have an equality of Q-functions, and thus the difference is 0, at (4) we have unfolded the
recursion on the X terms by using Eq. 34.

By combining Eq. 32 with Eq. 33, Eq. 35, and Eq. 36, we get:

~ b
Ha(RD 2, RO)< ) S ™ (s,a)2Hby(s,a)
he[H] (s,a)EZ}z'"E
+ Z pi’wb (s,a) (2th(s, a)

(s,a)eZl ™ \Z

+4H Z pr(s'|s,a) 2 E bh/(s”,aE))

~E
B n'elh+1,H]8"~0" Clsnt1=5")
s’eS}’Z+1 [ I h!
+ max 4H max Z E b (s”,a)
(sa)gzp™  sesyry gl =)
$a)E&y S'€SL 41 RWe[h+1,H]S ~Py Sh4+1=8

< Z ( Z pi’”b(s,a)2th(s,a)

he[[H]] (S,a)EZ}ZZ’ﬂ-E

bY AT (ER e s ()

o nE
by oy o E (s’,a¥ h)eZrm
(5,0,)62,’}‘:‘7r \Z}‘:’7r

+ max 4H? max bh/(s',aE))

(sa)gzp™ (s, h)ezrm?

< Z ( Z pg’”b(s,a)Zth(s,a)

helH] (s,a)EZ;’:'"E

n Z pz’”b(s,a)Qth(s,a)+8H2 max bh'(slaaE))

E
L (s',a h)eZrom
(s,u,)er:’7r \Z};’7r

<2H Z E bu(s,a)+8H®  max  by(s,a).
hel] s~k ™ () (s:a;m)eZr?

Lemma F.9 (Performance Decomposition Superset). Under good event &, it holds that:

Hd(R;ﬂEﬁu)<2H Z E bu(s,a)+8H?  max Ebh(s,a).
hEﬂH]] (S»a)"’p}?ﬂr () (S,a,h)EZp‘"

Proof. Observe that:

Ha(RY 5, RY):=max{ sup inf d(r,7), sup inf d(r,7)}
P reRY . FeRY pefo TERY o
porE TeER p,m
D sup inf d(r,7)

[
TERY ERp,wE

38



Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms

=t sup re’/lznf — Z ( E . Ira(s,a) = (s, a)| + ma)iﬂb|7“h(s,a)—7~“h(s,a)|)
TERY B hEﬂHﬂ (5 a)NP; (7) (57a)¢2h
2 1
< sup — Z ( E , |rh (s,a)—Th(s,a ‘—i— max }rh(s,a)—Fh(s,a)D, (37)
FERY T pe[H] (s:@)~pp ™ (1) (s,a)g 2l

where at (1) we have used that, under event £, we have R;WE c 7%“, and at (2) we have applied Lemma F.7, denoting with
r the reward chosen from R;’_w B

Now, we consider the various triples (s,a,h)eS x A x [H] differently according to the definition of 7 in Lemma F.7. Let
us begin with any (s,a”,h)e 2P We can write:

|Th s aE)_rh S CL {_‘Z ph ‘8 a )Vh+1 7p7 Z ph |S a’ Vh+1( /7ﬁM A)
s'eS s'eS
E ~ B ~, A~
= Y (s, d )WV (o) = Y D ( s, a®) Vi (DM P)]
s ES,’ZIIE s ESIIZJQE
E ~ E
= > o ls, )WV () = Y B (s ]s,aP) VT (s r))| (38)
sesnE seshyy
<|lpn( (-|s,a®) =DM (-|s,a” H MH

< th('|s7aE) *ph('|saa’ Hl‘Z\II_I+ Hﬁh(|57aE) 7%%("5aaE)H1MH
<2M Hby,(s,a”).

Now, let us consider any triple (s, a,h) GZ”’”b\Z”’”E. Thanks to Lemma F.7, we can write:

|7"h(570)—?h(3aa)|:|2 ph |5 a)Vh+1 Z ph ‘3 a Vh+1( /§]3m,?)|
s'eS s’'eS
(1) ~
|Z pr(s'ls, a)Vh+1 ™ Z Py (s']s,a Vh+1( s p™,7)
s'eS s’'eS
£ pal(s]s,a) Vi (/597 7)|
s’'eS
(2) A
<| Y (on(s'|s,@) = B3 (|3, @) Vil (/37 7))
s'eS
+] D7 (s s,a) (Vi1 (8/5p™ 1) = Vi L (8159, 9)) |
s'eS
(3) m ~me A
<2MHby(s,a)+| Y p(s']s,a) (Vi1 (8597 r) = Vi1 (8397, 7)) |
s'eS
(€] E E .
<2M Hby(s,a) +| Z p(s'|s,a) (@1 (s a”p,r) = QF 41 (8,07 D7, 7))|
sresp’
+’ 2 (8/|sva’)(rar}eai(Qerl(slval;pmv ) H,}?ﬁQthl( ! a”;ﬁ’m7?))’
sgspr”

(5) E E .
gzMth(Sva)+| Z h(8/|57a)(QZJ’_l(S/,aE;p,T)7QZ+1(S/,CLE;W7T))‘
s’eSP =

i1
]2 pu(s]s.0) (max QR (s, ap" r) — max Q7 (s',a"ip™ 1)) |
SESPT, 2
<2MHby(s,a) + Z h(s’\s,a)‘QZil(s',aE;p,r)fQZf_l(s',aE;ﬁm,?)L
sespr” =Yii1(s')
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. b
where at (1) we have used that, since (s,a,h)€ZP™,

then p}* (-|s,a) = pn(:|s,a), at (2) we have applied triangle inequality,

at (3) we upper bound the value function by H times the maximum reward and we use the event in Lemma F.2 twice,

at (4) we use triangle inequality and the Bellman optimality equation and that the expert’s action a

(s,h) eSP™ at (5) we apply Eq. 31.

Now, having defined terms {Y},(s)}, for all se SP:™

that (s',h+1)eSP™"

Yis1(s

:|7‘h+1 S 7GE)—7‘h+1(8lyaE)|

+| Z Prri(s”

s D,
eSh+2

/|S/7aE)VhTr+2
< 2M Hbyp, (s a

Z ph+1

" P,
s 68h+2

th1

S”ES‘D B

®)
<2MHbp 1 (s’,aE) + Z { (ph+1 (5”|5/7GE) _IN’ZL

E

// P,
s"eSpT,

+ Z Pha(

S”ESP’WE

<4Mth+1 s’ a

Z Phi1(s

" P,T
s €Sh+2

~m

E
|Qh+1 S a p,T ) QZJrl(S/’aE;p

s’ a)|Virlo (5"

F is optimal in any

" as above, we recursively bound term Y}, 1 (s). It should be remarked

7))
7p7 Z ]3’;:11 |S/ a )Vh+2( ’p ))|
”eS,ffz

Z Ph+1( //‘5 a )Vh+2( ip" ))

B
" P,
s"€S), 1y

E
|S/,aE)V;ZT+2(S//;p’

s"ls',a )Vh+2( "7

1(5"]8,a™)) Vi ("3 7))

;P7) Vh+2( /’ﬁm%\”

E E ~
|SlaaE) ‘QZ+2(SH, U,E;p,'f) - QZ-Q—Q(S”a aE;i)/’nvr)|7

=Yhy2(s”)

where at (6) we use the definition of Q function, and we apply triangle inequality; at (7) we use again triangle inequality and
Eq. 38, at (8) we apply triangle inequality, and at (9) we use again the event in Lemma F.2 twice. The recursion on the Y’

terms tells us that:

Yi(s) <4M Hby,(s,a”) + E E)Yhﬂ(s/). (39)
s'~pn(-]s,a
Therefore, we can upper bound the difference between rewards in (s,a,h)€ Zp”’b\Zp*’TE as:
rn(s,a) —Th(s,a)| <2M Hby(s,a) +4MH Z pn(s']s,a) Z JE b (s”,a%) 4
sespE nelh+1,H]5"~Py" (lsni1=s') (40)

Now, the only missing triples to consider are those (s,a,h)¢ zpr

|rh(s,a) —?h(s,a)} = | Z i (
s'eS

( /

@

©)

P,
s ESh+1

s'ls,a Vh+1
..om
p,

.om
<maX|Vh+1 sp™,

h+1

. Similarly to the triples just considered, we can write:

) X s )i (')
s'eS

~m
"

r)—min Vil (s 7)|

r) = Vi (s ™ 7))

E ~
:max{ max |Vh+1( /;p,T)—Vhﬂ+1($/;ﬁn,7’)|,
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ma [Vl (/s r) = Vil (' 7)| }

s’$$ﬁ’f1

~~
=0

E E ~
= max_[QFr. (s a%ip.r) — QR (s, a”: P

4
<AMH max_(bpaa(sa®)+ Y E b (s",07)), 1)

oo E
s'eSpy welh+2,H] 5" ~Pp" (Clsni1=s')

where at (1) we have used that (s,a,h)é¢ 2P and the definitions of p™ and p™, at (2) we have used that for any pair of

real-valued functions f, g it holds that | min, f(x)—min, g(z)| <max, |f(z)—g(z)|, at (3) we use Eq. 31 to realize that
E

in (s, h) outside Sﬁfl we have an equality of Q-functions, and thus the difference is 0, and that in 5P the optimal action

is always the expert’s action, at (4) we have unfolded the recursion on the Y terms by using Eq. 39.

By combining Eq. 37 with Eq. 38, Eq. 40, and Eq. 41, we get:

~ b
Ha( ;wE7RU)< Z Z PZJ (s,a)Qth(s,a)
he[H] (s,a)er’”E
+ Z pi’”b (s,a) (2th(s, a)

7b nE
(s,a)eZ) ™ \Z}

waH Y palslsa) Y E b (s",a))

0o Pl o
SIES}]ZIIE h'e[h+1,H] 8" ~Py1 (lsh+1=5")
+ max 4H max Z EE bh/(S//’aE)>
(S,G)¢Z}1‘l”” slesﬁfl h/Eﬂh+17H]] SNNPQ"” ('lsh/+1=sl)

< Z ( Z pg’ﬂb(s,a)Qth(s,a)

helH] (s,a)eZﬁ""E

+ Z pZ’Wb(s,a) (2th(s,a) +4H? max bh/(s’,aE))

E
b ) (s’,a¥ h)eZrm
(s,a)EZ}}:’ \Z}‘Z’

+ max 4H? max bh/(s',aE))

b E
(s,u,)¢Z}’;’7r (s’,a¥,h")eZP.m

< Z( N b (s,a)2Hby(s,a)

helH] (s,a)eZﬁ”rE

+ Z pZ’”b(s,a)2th(s,a)—|—8H2 max bh/(s’,aE)>

E
b <E (s",aF,n)ezp~
(s,a)eZﬁ \Zﬁ’

<2H ) E  bu(s,a)+8H®  max by(s,a).
he[H] (s,a)~p2 ™ (") (s,a,h)ezZp:™

F.3.2. LEMMAS FOR THEOREM 6.2

Lemma F.10 (Performance Decomposition Subset). Under good event &, it holds that:

Hoo ;ﬂE,ﬁ“)<2H2 max  bp(s,a)+4H®  max  by(s,a).
’ (s,a,h)eZPwb (s,a,h)eZp ¥
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Proof. Observe that:

Hw(RgﬂE,ﬁ“):zmaX{ sup inf do(r,7), sup 7iznﬁf do (1, 7)}

la) fo? ~_ 5~ TE
TERp,TrE TERN FeRN porE

1 . ~
@ sup inf dy(r,7)
TGR; g TERD

=: sup inf S Z max  |rp(s,a) —7,(s,a)]

reR? reo M heli] (s,a)eSx.A
< ) (s, @) =7 (s,0)] “2)
< sup — max |Tp(s,a)—"r(s,a)l,
P M (s,a)eSx A h "

he[H]
where at (1) we have used that, under event £, we have ROC R;WE, and at (2) we have applied Lemma F.6, denoting with
7 the reward chosen from R".
By combining Eq. 42 with Eq. 33, Eq. 35, and Eq. 36, we get:
Hoo ;JTEJ%“) < Z max{ max 2Hbp(s,a),
he[H]

E
(s,a)ezZl™

max 2Hby (s,a) +4H Z pr(s']s,a) Z JE b (s”,a”),
(‘S’C")E‘?’vﬁY7r \Zﬁyw q/eSp*’TE h'e[h+1,H] SI,NPZ}W (Ish+1=5")
© h+1
max 4H max Z E b (s”,a") }
(s,0)¢Z S'€SPT) welh+1,H] S ~Ph" (lsny1=s")

< Z max{ max E2th(s,a),
he[H] (s,a)eZl™

max 2Hby,(s,a) +4H? max b (s',a”),

b E E
(s,a)eZl™\ZDT (s',a¥ 0 )eZrm

max 4H? max bh/(s’7aE)}
(S,a)¢2}z:,ﬂb (s',aB h)eZp~E

< Z max{ max 2Hby(s,a), max 2Hby,(s,a) +4H? max bh/(s',aE)}
he[H]

E b E E
(s,a)ezP™ (s,a)eZl ™ \2P" (s",a%,h)ezr~

< Z max b2th(s,a)+ 2 4H? max Ebh/(s/,aE)}
he[H] (s:0)€Z0T he[H] (s",a® h)eZPm

<2H?  max  by(s,a)+4H®  max  by(s,a).
(s,a,h)eZpm® (s,a,h)eZpmE

Lemma F.11 (Performance Decomposition Superset). Under good event &, it holds that:

”HOO(R;WEﬁU)<2H2 max  by(s,a)+4H®  max  by(s,a).

(s,a,h)eZPmb (s,a,h)eZzp~F
Proof. Observe that:

Hoo( ;J,WE,ﬁU)::maX{ sup  inf dy(r,7), sup inf dy(r,7)}

TeRY TERY FeRVTER, 1B
1 . ~
@ sup inf dy(r,7)
Feﬁu TGR;D,WE
=:sup inf = Z max |rh(s,a) —?h(s,a)|
5 TERY M (s,a)eSxA

reRY p,wE he[H]
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2 1
< sup — Z max |rh(s,a)—7~“h(s,a)|, (43)
FeRRu hel[H] (s,a)eSx.A

where at (1) we have used that, under event £, we have R;WE c ﬁ“, and at (2) we have applied Lemma F.7, denoting with
r the reward chosen from R;’WE.
By combining Eq. 43 with Eq. 38, Eq. 40, and Eq. 41, we get:
Ho(R, 1o JRY)< Z max{ max 2Hby(s,a),
he[H]

E
(s,a)ezZl™

max E2th(8,a)+4H Z pr(s']s,a) Z JE b (s”,a”),
(s,@)eZP™\ZDT gesr relh+1,H] 8" ~Pp" (lsht1=5")
b h+1
max 4H max Z E b (5", a") }
(s,a)¢Z}" s'eSPT h'e[h+1,H] 8" ~pP" " (|shy1=5")

< Z max{ max 2Hbp(s,a),
he[H] (

s,a)€Z)T
max 2Hby,(s,a) +4H? max b (s',a”),
b E E
(s,a)eZl™\ZDT (s’,a¥ 0 )eZrm

max 4H> max by (s, aE)}

(s,a)¢2f:’”b (s',aB h)eZp~E

< Z max{ max 2Hby(s,a), max 2Hby,(s,a) +4H? max bh/(s',aE)}
he[H]

(57G)EZ;€’WE (s,a)eZ{L””b\Zg’"E (s',aF h)eZr.m”
< Z max b2th(s,a)+ 2 4H2 max Ebh’(s/,aE)}
he[H] (s,a)ezZp™ he[H] (s',a® h)eZP™

<2H?  max  by(s,a)+4H®  max  by(s,a).
(s,a,h)eZpm® (s,a,h)eZpmE

F.3.3. PROOFS OF THE MAIN THEOREMS

Thanks to Lemma F.8 and Lemma F.9, we can conclude the proof of Theorem 6.1.

Theorem 6.1. Let M be an MDP without reward and let T be the expert’s policy. Let D¥ and D be two datasets of TF
and ° trajectories collected by executing policies 7% and 7 in M. Under Assumption 2.1, PIRLO is (¢,6)-PAC for d-IRL
with a sample complexity at most:

- 3 r7p,m? 1
wa(ffzmé(lnusp,wb)

€2 5 max
HInl 1 Ini
+W§(ln5+5§{§:>+l‘f ;
p:rni;l €2 n 1— b, zp,mP

min

and T is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic.

Proof. The proof for the subset and superset is completely analogous. Under good event &£, the performance decomposition
lemma for the subset (Lemma FE.8) tells us that:

Ha(R) . R7)<2H ) E  bu(s,a)+8H® max by(s,a)<e
hEﬂHﬂ (Sva)“'piﬂr (1) (S,a,h)ezl”"f
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We upper bound both the terms of the sum by ¢/2. The bound of the first term is analogous to the bound of the term provided
in the proof of Theorem 5.1, so we will not rewrite it here; with regards to the other term, we have:

(A0

8H? max bn(s,a (1)8H3 max
(s,a® h)ezr.~E ( )) (s,a® h)ezr. E N;I,)
C8vaHs\[B(r0,6)  ma
x T, max
(s,aB h)eZpmE Nb (s, aE

NER
3) .
<8V2H3,/B(7°,6) max 047r7‘s
(s.a® hyezrn® \ 7bpp ™ (s, al)

\Zp"\

B(7°,6)In

@
H3
Tb ﬂ-b’zp B
min

<e¢/2,

where at (1) we have used the definition of the b terms, at (2) we have upper bounded (N} (5,a%),6) < (7, 6) for all
— P, =B

(5,h) eSPm™" at (3) we use event &y, at (4) we define ¢5 :=8+/2c4 and we use the definition of pgmz .

Similarly to the proof of Theorem 5.1, we apply Lemma J.3 to (cg :=4c3?):

1)),

b
|ZPm ] b
n-=—s— = 4|ZP7| b
—(1 (IS8 =D (e +7"/(Shi |-

b HS1
T Cg (
= b Zp B 9 5 max
min
to obtain:
~ HfIni 1
b 5
<O —2— .
< ( et (g sz
min
O

We can do the same for the superset through Lemma F.9. By combining the various bounds, we get the result

Thanks to Lemma F.10 and Lemma F.11, we can conclude the proof of Theorem 6.2
Theorem 6.2. Under the conditions of Theorem 6.1, PIRLO is (¢€,0)-PAC for do-IRL with a sample complexity at most

~ H%Ini
b o P,
T <(/)<pﬂ.b Zp,wb 62( 5 Smax)
HbIni < 1 b Ini
0 ln+Sp’7r>+‘S
<E max 1 )
;bi;xzp €2 0 In b, zp,mP

min

is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic

and 7F
Proof Sketch. The proof is analogous to that of Theorem 6.1. The only difference is that we use Lemma F.10 and Lemma

F.10, and that we follow the proof of Theorem 5.2 instead of that of Theorem 5.1 to bound the first term of

bu(s,a) +4H®  max  by(s,a)<e.

2H%?  max
(s,a,h)eZzpE
O

(s,a,h)eZP7°

F.4. Sample complexity for PTRL.O with additional requirements
In the proofs of Theorem 6.1 and Theorem 6.2, we have used reward choice lemmas that set 7, (s, a) #7p(s,a) in (s,a,h) ¢
ZP™  However, it might be interesting to relate directly the error in the estimation of the transition model with the difference

44



Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms

in the reward functions, so that where we do not have samples we have zero error. We would like to have 7, (s,a) =7(s,a)
in (s,a,h)¢ 2P Notice that this property is satisfied in the proofs of Theorem 5.1 and Theorem 5.2. Moreover, for a

notion of distance other than d or dy, the condition 7, (s,a) =1, (s,a) in (s,a,h) ¢ ZP'™ might even be needed. Therefore,
in this section, we provide reward choice lemmas that satisfy this property, and we show that this selection ends up in a H®
dependence in the sample complexity instead of HS.

Lemma F.12 (Reward Choice Subset). Under good event £, for any rGR;W &, the reward 7 constructed (recursively) as:

~ " B A
Th(S,aE):Th(S,aE)-F Z ph(s"s,aE)V];:Ll(s/;p’r)_ Z %n($/|8,aE)szr+1(S/;ﬁm7r)
s’eS oS
Fmax VL (59 F) — max Vil (5 r), (s h)espT
7 b
Th(s,a)=rp(s,a), V(s,a,h)¢ZP™

~ ) M ~ ~M M A .
Ph(s,a)=ryp(s,a)+ > ph ('], @)V (s"spM r) = X0 Pl (s |s,a) Vi, (s59™M,7),  otherwise
s’'eS s’'eS

belongs to RO.

Proof. By definition of R", the reward 7 belongs to R" if and only if:
V(s,h)eSP™ Vae A\{a"}:Q] (s,d": ™ P =Qf (s,a;p™ 7).

By hypothesis, re R;JE , therefore:

M

V(s,h) €SP Vae A\{aP}:QF (s,a%p,1)=QF (s,a;p™ 1),

thus, if we show that V(s, h) espm”, Yae A\{a®}, it holds that:

~M

E ~ AT E M
Q;Lr (S7aE;ﬁJmaT>_Q;‘L’ (SaQQPMaT)>QZ (S7aE;p7T)_QZ (S,G;pM,’/’),
then we are done.

Let us begin with triples (s,a, h)¢ 2P such that (s,h)e spr” By rearranging the terms in the definition of 7, we observe
that:

~ ) ~ )
Pu(s,a®)+ X P (']s,a® )iy (/s F) =ra(s,07) + D pu(s'[s,a®) Vi (5sp,m)

s'eS s'eS
~M M~ M
+max Vi (s59M,7) —max Vi (s p™ )
s'eS s'eS
E ~ E ~M M~ M M ~
= Q1 (5,05 P = QF (5,0%5p,r) + max Vi (/59 7) — max Vi1 (550" 1) 47 5,0)
D ~xF E.~xm o _ on? E. N M 1 sM o ™o M
A Qh (570’ D aT) _Qh (s,a 7paT) +rh(57a) +g}g§(vh+l(5 D 7T) - (Th(saa) +I§}2§(Vh+l(s P aT))
E . E ~M AL~ M
= Qf (s,a":p"F)=QF (s,a"p,r)+Qf (5,0, F) = QF (s,a;™ 1)
E E ~ ~M M A~ E E M M
:QZ (57(1 af)’mar)_QZ (S7a;p 7T)>QZ (S,(l apyr)_QZ (S,(I;p ar)a
where at (1) we have used that 7, (s,a) =7p(s,a) by definition.
Now, consider any other triple (s,a,h)e Zp*”b\Z”’”E such that (s, h) €SP™" | By rearranging the terms, we obtain:
~M YN M
Qn (s,ap™7)=QF (s,a;p™,r), (44)
therefore, it suffices to show that
E ~ E
Qn (s,a%5™, 7 =QF (s,a”;p,r).
By using again the definition of 7 for (s,a,h)€e 2P we know that:

E E - E E ~M M A M M
Q" (5,075 ) =QF (5,07 p,7) + max Viiss (55" 7) — max Virds (50" ), 45)
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therefore, if we show that

~M M

Q oMoy T ., M
max Vy  (ssp™,7) =max V)" (s"sp™ 1),
s’'eS s’'eS

then we are done. We do it by induction. At stage H — 1, we have that:

maxVj (s ;pM,F)=max E  7y(s,d)
s'eS s'€S a/~FM (-|s")

i

Pnax  E ry(s’,a’)

s'eS a’wﬂ%(-'s’)

M
s /. VI
=max V7 (s;p%,7),
s'eS

where at (1) we have used the definition of 7 at stage H, and the definitions of 7 and 7. We make the inductive
hypothesis that, at stage h + 1, it holds that maxcgs Vhﬁvz( ;M 7) > maxges Vi +2( ’:pM 1), and we consider stage h:

maxVhH( M, ?)()max{ max Qthl(S af:pM %), max mathH(s a';pM )}

E
P, s a'e
s ES}Jrl S'ESPT

@)
>max{ max Qh+1(3 a?;p™,7), max H/laXQh+1(S a';pM A)}

sesr Tl sgsprl @eA
+

(©)] B
Zmax{ maXEQZH(SQaE;p,r)7 max maXQhH(s a;pM )}

E
s'eSPT sgspr @€

E
E
:max{ max Qhii(s',a”;p,r),

p,
s'eSy

max max{ max Q;fl(s a;pM.7), max Qifl(s’,a’;ﬁMﬁ)}}

S'ESET a’€A:(s,a/ ,h+1)eZp:7° a’€A:(s',a! h+1)¢g ZpmP

“4) E
:max{ max Qh+1(8 a”;p,r),

s 652:1
Mo M
max _max{ max Qhi1(s,a 5™, r),
s ¢Sh+1 a/eA:(s’,a’,h-Fl)EZPv"b
1My
max rh+1(s a)+maXVh+2( iD )}}

a’e.A:(s’,0/,h+1)¢zp’7r
5) E
T 1 B,
>max{ maXEQhH(S,a D7),
s'eSph

max max{ max Q’;:fl (s',a/sp™,r),

s ¢Sh+1 a’€A:(s,a’ ,h+1)eZp P

i My M
max b?“h+1(s7a)+ngafof+2(s P ,r)}
a’eA:(s’,a’ ,h+1)¢ZpPT s"eS

:max{ max Qh+1(8 a;p,r r),

s'esP
h+1
™M M Moo M
max max{ max thH(s,a,p NOR max thH(s,a,p )}
s'¢SpT a’€A:(s',a’ ,h+1)€ZP:T a’eA:(s’,a/ h+1)¢gZp:m

:max{ max Qh+1(5 a®;p,r), max math+1(s a';pM )}

E
sesrr sgsprl @A

T 1. M
:maxVhH(s ipt T,
s'eS

where at (1) we use the definition of 7, at (2) we use the definition of 7™ and p™, at (3) we use the inductive hypothesis

along with Eq. 45, at (4) we use Eq. 44 and the definition of Q-function, at (5) we use the definition of 7 and the inductive
hypothesis.

46



Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms

This concludes the proof. O

Lemma F.13 (Reward Choice Superset). Under good event &, for any 7€ RY, the reward r constructed (recursively) as:

ri(s,af)=u(s,a®)+ X PA(s']s,a® Vi) (59 7) — 3 pu(s'ls.aP) Vi, (ssp.m)
s'eS s’'eS
. m . ~m A E
+min Vi, (s5p™,r) —min Vit (s5p™,7), V(s h)eSPT
r(s,a)=7p(s,a), V(s,a h)¢Zp’”b

r(s,0)=Fu(s,a)+ 3 PP |, ) Vi (/5™ 7) — X pir(s/]s,a) Vil (s/sp™, 1), otherwise
s'eS s'eS

belongs to R;’Tr 5
Proof. By definition of R ., a sufficient condition for having the reward r belong to R j is:
b, D,

V(s,h) esp™ Vae A\{a®}: QZE (s,a%:p,r) = Q7" (s,a;p™,r).
By hypothesis, e RY , therefore:
V(s ) eSP™ Yae A\{a”}:QF (s,”pM P> QR (5,05 P),
thus, if we show that V(s, h) espm”, Yae A\{a¥}, it holds that:

E m E ~ PR A~
QZ (S7G,E;p77’)_QZ (S,G;pm7r)>QZ (s7aE;pM7{r)_ ;zr (s,a;f)”",r%
then we are done.

Let us begin with triples (s,a, h)¢ 2P such that (s,h) espm” By rearranging the terms in the definition of r, we observe
that:

~M A E
)+ 2 B (s s, P Wi (555 7) = v (s,aP) + Y i )5, )V (575 p.)
s'eS s'eS
+glith"+m1(S’;z3””f)—meigVJfl(S';pm,r)
QTK‘ ( E' ]V[ ~ E, . Vﬁ'm roamosy s V7rm /..m +
n (S,a ) Qh ( 7par)+?,1€12 h+1(57p 7T) 151/1‘51‘191 h+1(5 P ,T)_T},(S,d)

(1) E ~

AN 2 ~ . T P . m
<=>Qh (s,a ;pM,r)=QZ (S,GE;p,T)+Th(S,a)+II/11th+1(S/;]3m,T)—(Th(s,a)+£péglv;f+1(s/;pm7r>)

E M~ E ~m
= QF (s, pM . 7)=QF (s,a";p,r)+ Q) (5,0;0™,7)—QF" (s,a;p™,7)
:>QZE(Saa/E;ﬁMa?)_ng(sva;ﬁm7?)>Qz (8761/ 7par)_Q7};: (S7a;pm7r)7
where at (1) we have used that 1, (s,a) =71(s,a) by definition.

Now, consider any other triple (s,a,h)e Zp*”b\Z”’”E such that (s, h) €SP™" | By rearranging the terms, we obtain:

Qi (s,a;p™,7)=QF (s, a;p™,7), (46)

therefore, it suffices to show that
Qh (s,a”sp,r)=Qf (s,a7:p 7).

By using again the definition of 7 for (s,a,h)€e 2P we know that:

2 ~ AN E ""Wl
Q. (5,07 =QF (s,a”sp,r) +min Vi, (835", 7) — gllthH( s'sp™,r), (47)
therefore, if we show that

I_~m ~ . ™. m
HllIth+1( P ,r)<m1th+1(s,p ,7’),
s'eS s'eS
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then we are done. We do it by induction. At stage H — 1, we have that:

~m
min V75 (s';p™,7) =min E s'a
ses 1 (s59™,7) = S'ES al~FT (\sf) ra(sa)
=min E  ry(s,ad)
s'€S a/~m(+|s")

=min V5" (s';p™,7),
s’'eS

where at (1) we have used the definition of 7 at stage H, and also the definitions of 7 and 7. We make the inductive
hypothesis that, at stage h+ 1, it holds that minyes Vi, 5 (s'; 7™, 7) <minges Vi 5 (s';p™, 1), and we consider stage h:

.
min V7, (5557, 7) Cmin{ min Q7 (', 5"F), min | maxQF (s a7 |
eesgfl S'ESPT, a’eA

o) o R
<min{ min Qhﬂ(s a®:p™.7), min max Q1 (s ! a/;;ﬁm,r)}
Sesp-/r ,¢Sp7rELLEA

h+1 h+1

G . N
gmln{ min Qh+1<5 (1 D, T )a min InaXC?h-ﬁ-l('S avp )}

=~E
. s a’c A
965h+1 ¢Sh+1

:min{ min Qh+1(5 a”;p,r),

s eSf:fl
: Mol foamoa T ol mo 2y
min max{ max thJrl(s ya 5P vr)v max b Qh+1(s Y 7T)}}
/¢$h+1 a’eA:(s',a’ ,h+1)eZP:™ a’eA:(s’,a’ ,h+1)¢gZP:™

4) . E E
—mln{ mlnEQZH(S/,a D),

s eS{:fl
min 1, max{ max ) inl (5'7 asp™, ",
S'EST a’eA:(s',a’ ,h+1)eZP:™
max 7"h+1(3 a)+m11§Vh+2( s ™, )}}

a/e.A:(s’,a’,h+1)¢21"~7r

)
gmln{ min Qh+l(s a 3P, T )a

s ES,IZ_:l

min max{ max QZL (¢',a";p™ 1),

/¢Sh+1 a’eA:(s',a’ \h+1)eZP:°

1o moen,..m
max ,The(s’a’) +max Vil o (s7;p" ,7‘)}}
a’€A:(s',a’ ,h+1)¢ZP:™ s"eS

:min{ min Q,H_l(s a¥ip.r 7),

P,
965h+1

: T !’ m ™ ror,m
m1nEmax{ max thH(s,a,p NOR max thH(s,a,p ,7")}}
S'ESHT a’eA:(s’,a’ ,h+1)eZP:™ a’€A:(s',a’ ,h+1)¢ZP:™

s esgjfl sigspr @ 'eA

=min V" ,(s";p™,r
JeS h+1( 2 )a

where at (1) we use the definition of ™, at (2) we use the definition of p" and p™, at (3) we use the inductive hypothesis
along with Eq. 47, at (4) we use Eq. 46 and the Bellman’s equation, at (5) we use the definition of  and the inductive
hypothesis.

This concludes the proof. O

F.4.1. LEMMAS FOR THEOREM F.18

We can exploit Lemma F.12 to bound the error for the subset.
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Lemma F.14 (Performance Decomposition Subset). Under good event &, it holds that:

Ha(R) . R)<2H ) E  bu(s,a)+4H*  max by(s,a”).
he[H] (sa)~f™ ) (s.h)esrm

Proof. We can write:

Hy(RD 5, R"):=max{ sup inf d(r,7), sup inf d(r,7)}

P, A FeRA ~ S5~ TER
reRTmrE TER FERO porE

—

D sup inf d(r,7)

reR” 5 TER"N
p, T

=: sup inf 1 Z ( E \ |rh(s,a)—1’h(s,a)|+ max |rh(s,a)—Fh(s,a)|)
he[H] M

~ S b
TR TERD s,a)~pp™ () (s.a)¢ 2"

(43)

@ 1 . ~
< sup — 2 ( E , ‘rh(s,a)—rh(s,a)‘—k max h’rh(s,a)—rh(s,a)’)
TERD B he[H] M)~ () (s,a)¢ 20"

=0
1 ~
= sup o Z E \ |rh(s,a)—rh(s,a)|
r€RY B he[H] (s:0)~o0 T ()

where at (1) we have used that, under good event &, R R;WE, and at (2) we apply Lemma F.12, by denoting with 7 the
chosen reward from R".

In the following, it is useful to denote, for any he [H]:
~M A~ oM
Xy =max| Vi, (559, 7) = Vil (™)

Let us consider any (s, h) €SP The difference between the rewards of expert’s action can be bounded by:

1)

|Th(S,aE)7rh(S7aE)|<|S,~p}(“s aE)Vhﬂ"'l(Sl;p’r)7s’~17m1(5|s aE)Vhﬂ+1(S/;ﬁm’r)’
v ) h ’
FM M Moo,
+ g}ggvhw-&-l(slvp 7T)—ISI}2§(VhW+I(S/,p 7T)|
@) E E E
< Vi (s p, ) — E V(™) + E Vi (s, 7
Sl B P = B o VI (STDE B ony Vi (5870

~M ~ ~ M
+max| Vi (555 ) = Vi (s/5p™ )|

(3) E E =R
<MHth(~|s,aE)—]5';7(-|s,aE)H1+ E ‘Vhﬂﬂ(s’;p,r)—V{+1(s’;ﬁ’”7r)‘+Xh

s'~pn(-|s,a¥)

“) ~
<M Hby(s,a®)+ B Q741 (sa"5p,r) = Qs (8, a5 5 F)| + X,

s'~pn(:|s,a®)

QoMH,(s,a®)+ E
s'~pn(]s,aP)
<2MHby(s,a®)+  E  [Xpi1]+Xn

s'~pn(-|s,a®)

M ~M y
T ", M * ".o~M o~
IST/}?‘)S(V}L+2(S D 7r)_£r,}2‘§vh+2(s D 7T)|+Xh

QoM Hb(s,a5)+ Xp+ Xns1,

where at (1) we use the definition of 7 in Lemma F.12 and triangle inequality, at (2) we use that, for any pair f, g of real-
valued functions, it holds that | max,, f(x) —max, g(x)| <max, |f(z)—g(x)|, at (3) we apply triangle inequality twice, we
recognize the definition of X}, we upper bound the value function by M H, and we recognize the definition of #; norm, at (4)

we first use triangle inequality [[ps(-|s,a”) —pj (‘[s,a”) |1 <[pa(|s,a”) =D (-]s,a®) |1 + 7 ([s,a”) = Pn(|s,a”) |1,
then we use Pinsker’s inequality, event £3 from Lemma F.2, and the definition of by, (s,a”); at (5) we use the definition of 7
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in Lemma F.12 in the form of Eq. 45, by noticing that the support of py, (-|s,a”) is contained in SPm" and at (6) we realize
that X, 1 depends only on h and not on s’.

In order to upper bound the term X, we write:

~M A~ M
X, = g}g§|Vh”+1(S’;pM7r) — Vi (sspM )

(1) M M
_max{ max (s a;pM 7 — glg}é‘(QZH(s’,a’;p ,7)

/¢SP B

p,
€68h+1

max ‘Qh-}—l S CL ap ) Qh+1(5 (l b, T )‘}

2
<max{ max max’QhJrl (s',a;pM 7)) — Qh+1(s a;pM.r)|,
/¢S£;1Ea€

E A
max \Qhﬂ (/50755 7) = Q75 (5 a1 )+QZ+1(8’,GE;23"‘J)‘}

s'eSy; ¥

3

(=)max{ max max{ max Qhﬂ(s a;pM 7)) — Qhﬂ(s a;pM )|,
s'¢SP wE a’€A:(s’,a’ }h+1)eZp:°

h+1 -0

QI (a5 )~ Qi (s a'sp™ )|},

max
a’eA:(s’,a’,h+1)¢ZP="

SESP‘"

AN~ M
max Q7 (/0”55 7) = QI (/a5 5, 7) + max VLo ("5 7) - rsr,;ggvh12<s';p”~’m>\}

4)
< max{ max max
s'¢SET e A:(s! ol \h4+1)g 2P0

N ~M A M
rh+1(8/7 a/) _rh+1(8/a a/> +H,}a‘XVhﬂ+2(S”;pMaT) - maXVfZT+2(SH;pM7T) )
s"eS s"eS

=0

max ‘Qh+1 s’ a ap ) Qh+1(5 af D )‘Jth,-H}

s'esPm

h+1
5) B, , E
~N[ A~ /R s
<ma’X{Xh+1, max ( ar Vhﬂ+2( Y )7 . E e V}ZT+2(S ’ﬁnv'lf')“i’X}%'_l)
Slesﬁfl S//~ph+1(.‘s/7aE) s ~ph;¢—1("s ,a )

=X 4 VﬂE( 1", ~M A)_ E VﬂE( I, ~m A)+ E Vﬂ'E( ", ~M A)
= Ah+1 maX E h+2 §5p T "osm /! 2 E h+2 S5p LT T " ozm P o} h+2 P

s EST) 7T s’ ~ph+1( |s",a®) s NP;LJrl('lS ,a®) s ~ph+1(-‘s ,at)
@X MH ~M ! FE ~m / E E Vﬂ'E ", ~M o~ Vﬂ'E "N, smo oy
SAp+1+ max PryaCls’sa™) =pily  Clsha™) | + R WV (870N T) = Vile (875 0™, T)

s ESIP-:l 1 s ~p}LJrl('|5 ,af)

) /B
<Xpi1+ max 2M Hby,1(s",a™)

SESP7T

h+1
+ VIS B )
~ 3 3 )
i (10l Clsra?) T B Cls7a)
X;H_l—!—QMH max Z EE b (5", a®)
s esh+1 helh+1,H—1] 3"”/’, T Clshpr=5")
©
<2MH Z max Z E b (s”,a®)

o ) sm o E
Welh, H-1] 5 €S0, hre[h/ +1,H—1]8"~ppn " (lsp11=5")
<2MH?  max by (s,a”),
(s',h)esP P

where at (1) we apply the Bellman’s equation and the definition of ¥ and 7, at (2) we use that |max, f(z)—
max, g(x)| <max, |f(z) —g(z)|, at (3) we use the definition of 7 in the form of Eq. 44 and Eq.45, at (4) we apply
the Bellman’s equation and the definition of 7 to recognize that 7, .1 (s’,a’) —rp+1(s’,a’) =0; moreover, we apply triangle
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inequality along with the usual bound |max, f(z) —max, ¢g(z)| <max,|f(z)—g(x)|, and we recognize the definition of
Xpt1- At (5) we proceed similarly as (4) and we use the Bellman optimality equation, and we observe that X} ; does not
depend on ¢'; at (6) we upper bound the value function by H M and recognize the £1-norm, at (7) we use the concentration
bound of event & in Lemma E.2 (both p™ and p™ lie at a “distance” of b from p). At (8) we have unfolded the recursion to
bound the difference of value functions between transition models p™ and 5™, at (9) we have unfolded the recursion on the
X terms.

Thanks to this expression, we can upper bound the difference of rewards in expert’s action as:

[Pn(s,a”) —rp(s,a”)|<2MHby(s,a”) +4MH?  max  by(s',a”).

(s',n")eSPmE
With regards to visited (s,a,h)€ Zp’”b\Zp’”E, we can write:
~ M M o oM M
Fu(s,a)=ru(s,a)|=| E  ViIi(shp" 7))~ E - Vi(shpr)
s'~ppl (+]s,a) s'~pn(:|s,a)

<2MHbp(s,a)+ E
s'~Pi! (-]s.a)

~ M M~ M
Vhﬂl(s/;pMﬂ’)—V;le(S’;pM,r))
FM o p M Mo M
<2Mth(s,a)+ma§<‘Vh+1(s;p )=V (ssp 7r)‘
s'e

=2MHbp(s,a)+ Xn

<2M Hby(s,a)+2MH?  max by (s',a”)
(s',h')esSp:mE

<2MHby(s,a) +4MH?  max by (s, a”).
CROE
Obviously, for (s,a,h)¢ 2P we have:
[P (s,a) —rn(s,a)[=0.
Therefore, by Eq. 48, we can write:

1

Hal ;ﬂr&ﬁﬁ)g sup Z E \ |7“h(s,a)—?h(s,a)|
TERD 5 he[H] (5:@)~Pp ™ (1)
< Z E <2th(s,a)+4H3 max bh/(s',aE)>
7\'b ! !’ 7(E
he[H] (s:a)~pp™ () (s",h)esP:
=2H Z Ep,,b bn(s,a)+4H? 2 ]Ewh , max b (s',a®)
hE[[H]] (Saa)“’p}; (a) hE[[H]] (S,a)~ph” (‘7')(5 sh )ES :
=2H Z Ewb bn(s,a)+4H? 2 max b (s',a")
he[H] (s:a)~pp ™ (-17) he[H] (8 h)ES™
=2H Z E br(s,a)+4H*  max by (s',a”).
7\'b ’ 7 ‘I\'E
he[H] (5:0)~pp ™ () (s7,h1)es":
This concludes the proof w.r.t. the subset. O

Now we can exploit Lemma F.13 to bound the error for the superset.

Lemma F.15 (Performance Decomposition Superset). Under good event £, it holds that:

Ha(Ry 5. RY)<2H ) E  bu(s,a)+4H"  max by(s,a”).
he[H] (5:)~o1 ™ () (s:n)esPm

51



Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms

Proof. We can write:
Hal ;ﬂEﬂ%u):: max{ sup inf d(r,7), sup inf d(r,7)}
’ TGR:WE TeERY FeR Y TER:,WE
L sup  inf d(r,7)
FeRY TER;,ﬂE

=:sup _inf = Z( E Irn(s,a) = 7x(s,a)|+ max |rh(s7a)—7’h(s,a)|)
he[H] M

oo TERY 5 M 5,a)~p2 ™ (1) (s,a)gz> ™" (49)
2 1 ~ ~
< sup — Z < E , }Th(s,a)—rh(s,aﬂ—l- max b|rh(s,a)—rh(s,a)|>
rere My S \Ga)~pl ™ () ()20
=0
1 ~
= sup — Z E rh(s,a) =7 (s,a)]

rere M i) (sa)~pl ™ ()

where at (1) we have used that, under good event &, R;’WE cRY, and at (2) we apply Lemma F.13, by denoting with r the

chosen reward from R;’ﬂ B
In the following, it is useful to denote, for any he [H]:

Vi ma Vi (5457 F) — Vi (/39|

Let us consider any (s, h) €SP The difference between the rewards of expert’s action can be bounded by:

1)

~ E E ~ A~
|rh(5,aE)7rh(s,aE)|< v (‘SQE)VhﬂH(s/;p,r)—s, ~M]’(ElS aE)Vhﬂ-s-l(S/%PM’r)‘
~pr(:ls, ~pp(]s,
+ |min Vi (8557, 7) —min Vi (s 9™, )|
?) - VSN VPN 7 M
< S/~ph("s7aE)Vh+1(8 7p,T)_s/Nﬁﬁf]]Els,aE)Vh+l(S P 7T)is/~ph(.lsyaE)Vh+l(S P 7T)|

+ I??g\vfﬂ (s'sp™ ) = Vi (shsp™, )|

3) N E <F AT~

M|l Cssa®) =P Clssa®)| 4B V) VR4
~Pr"[S,

(©) E 12 M A

<2M Hby,(s,a”) + E ‘QZH(sl,aE;pm)—QZJrl(s’,aE;pM,T)‘—l—Yh

s'~pn(:|s,a®)

. ™ M, m : T N ~m
min Vi o (s"5p™,r) = min Vil ("3, F) |+ Y
S

[Yii1]+Ya

QoM Hby(s,a®) + Jgﬂ

s'~pp(-|s,aF)

<2M Hby(s,a®) + I(E

s'~pn(:|s,a®)

QoM Hby(s,a%) +Yh + Yii1,

where at (1) we use the definition of r in Lemma F.13 and triangle inequality, at (2) we use that, for any pair f, g of real-
valued functions, it holds that | min, f(z) —min, g(x)| <max, | f(z) — g(x)|, at (3) we apply triangle inequality twice, we
recognize the definition of X,, we upper bound the value function by M H, and we recognize the definition of ¢; norm, at (4)
we first use triangle inequality [[ps (-|s,a”) =Py’ (-[s,a”) |1 < |pa(:|s,a”) = pn(-[s,a®) |1 + [PY! (-]5,a") = Pu(-[s,a") |1,
then we use Pinsker’s inequality, event £3 from Lemma F.2, and the definition of by, (s,a”); at (5) we use the definition of 7
in Lemma F.13 in the form of Eq. 47, by noticing that the support of py, (-|s,a”) is contained in 8P and at (6) we realize
that Y31 depends only on & and not on s’.

In order to upper bound the term Y}, we write:
Yy = max| Vi (557, 7) = Vil (0™ )|
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) {
=max max
/¢8p ™

o max QP (s',a's 7™, 7) —max Q7L (,asp™, 1)

max ’Qhﬂ s’ a” M) — Qh+1(5 a” p,T )‘}

P,
s eS}L+1

2)
gmax{ maXEmaX‘QhH s a'sp™, 7)) — Qh_H(S a';p™, )|,
sestry A

E ~ AN
max ’Qh+1 S a’ 7p ) Qh+1(8 Cl yp, T )+QZ+1(S/7aE;pM7T)‘}

S E‘Sﬁ:l

(©)]

Zmax{ max max max Qh+1(s a';p™ 7)) — Qh+1(s a';p™,r)|,
s'¢SET a’eA:(s',a/ \h+1)eZP:°

=0

max
a’E.A:(s’,a’,h+1)6?21’”r

Qh+1(8 asp™ ,T)— Qh+1(3 a’sp™ )‘}

~m

max ’Qh-&-l s, B F) — Qp e (8,0 M 7) + min Vo (s ") — mlthH( ’;pm,r)‘}

P g/
§ E$h+1

“4) ~ . ~m
Smax4 max max 7’h+1(5/7a/)*Th+1(5/7a/)+manhﬂ+2(5”;15ma ) — manh+2( s"sp™, )],
s'¢SP Y a’eA:(s a’ h+1)g 2P s"€S s"eS
h+1 -0
~moooy
max ’Qh+1 (s',a”;pM,7) - Qh+1( Pip 7")‘+Yh+1}
s GS;"fl
5) E E
T 1", M =~ T I, ~m 2y
<max{Yh+17 maXE< L wE Vita(s";p™ 1) — , L E Vira(s™;p ,r)’—i—YhH)}
S'ESﬁfI s Nph+1('ls s ) S Np} 1('|S ya )
_Y VTrE ", ~M =~ E VTrE I, ~m o + ]E VTrE ", ~M o~
=Yp41+ max . . h+2( D T) — . . h+2(s ;p7LT) & o . h+2( ;DT
s'eSp s Py (870 ") s"~Pyy 1 (]s",aF) s"~py 1 (]s"a®)

(6)
Yo+ max (Mﬂ\phﬂ 15.aB) s (1! aP)| +

SesPﬂ' 1 s"~pp, (+]saf)

V) - Vi) )

D /B
<Ypi1+ max | 2MHbp1(s,a”)

S eSﬁLE
E E
T ", ~M = T M, ~m o
nz YA ) ~M Vh ( 7p ) " mE n o E Vh+3( 7p )‘>
s~ppt (1870 s~ o (o870 F) s"~pRt 5 (|87 ,a”)
Yo +2MH max ) E b (s",a”)

=B
S€3h+1 helh+1,H-1] 5”~P T (Jshgp1=5")
) n _E
<2MH ), max > E b (s”,a”)
~E pm B
welh, H—1]5'€S0 01 hre[h/+1,H—=1]8"~Ppn " (Clspri1=5")

<2MH?  max by (s,a”),
(s',n")esPmE

where at (1) we apply the Bellman’s equation and the definition of 7™ and 7™, at (2) we use that | min,, f(z) —min, g(z)| <
max, | f(z) — g(x)], at (3) we use the definition of 7 in the form of Eq. 46 and Eq.47, at (4) we apply the Bellman’s equation
and the definition of r to recognize that rj,1(s’,a’) — 711 (', a’) = 0; moreover, we apply triangle inequality along with the
usual bound | min,, f(z)—min, g(x)| <max, |f(z) — g(x)|, and we recognize the definition of X}, 1. At (5) we proceed
similarly as (4) and we use the Bellman’s equation, and we observe that Y}, 1 does not depend on s’; at (6) we upper bound
the value function by H M and recognize the ¢;-norm, at (7) we use the concentration bound of event £ in Lemma F.2
(both p™ and p™ lie at a “distance” of b from p). At (8) we have unfolded the recursion to bound the difference of value
functions between transition models p™ and p™, at (9) we have unfolded the recursion on the Y terms.
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Thanks to this expression, we can upper bound the difference of rewards in expert’s action as:

[Ph(s,a®) —rp(s,a®)|<2M Hby(s,a”) +4MH®  max  by(s',a”).

(s',n")eSp =¥
With regards to visited (s,a,h)€ Zp*”b\Zp’”E, we can write:
[Fr(s,a)—rn(s,a)| =], Vi (8507 — B VI (she™,r)|
s/ ~pp (+]s,0) s'~pn(-s,a)

<2MHbp(s,a)+ E

'~pp(]s,a)

Vi) = Vi (5™ )|
<2M Hby(s,a) +ma§<‘Vh%ﬂ(s’;]3m,?) —Vf:i(s';pm,r)’
s'e

=2Mth(s,a)+Yh

<2MHby,(s,a) +2MH®  max by (s',a”)
(s',n" e8P ¥

<2MHby(s,a) +4MH?  max by (s',a”).
(s',h/)eSP-m

Obviously, for (s,a,h)¢ZP™, we have:

|?h(s,a) — rh(s,a)‘ =0.

Therefore, by Eq. 49, we can write:

~ 1 A~
Ha( ;ﬂE,RU)é sup i Z E,,b |7“h(s,a)—7“h(s,a)|
FERY T pe[H] (5:0)~pp " ()
< Z E <2th(s,a)+4H3 max Ebh/(s’,aE)>
he[[H]](Sva)NPﬁ’W (1) (s’,h’)eSP:™
=2H Z E bn(s,a) +4H? Z E max Ebhf(s’,aE)
he[H] (5:a)~pi ™ () he[H] (s,:a)~p ™ () (8, h)esSP ™
=2H Z E bn(s,a) +4H? Z max Ebh/(sl,aE)
he[H] ($:0)~pp ™ (1) he[H] (8'h)ESPT
=2H Z E bu(s,a) +4H*  max Ebhr(s’,aE).
he[H] (s:a)~p}™ () (s",hN)esP
This concludes the proof w.r.t. the superset. O

F.4.2. LEMMAS FOR THEOREM F.19

Lemma F.16 (Performance Decomposition Subset). Under good event &, it holds that:

Hw(R;ﬁE,ﬁ“)<2H2 max  by(s,a)+4H* max  by(s,a”).
’ (s,a,h)eZPmb (s,h)esP:mE

Proof Sketch. The proof is analogous to that of Lemma F.14. We can reuse the bounds for the difference between rewards
proved in there and insert them into H, to get the result. O

Lemma F.17 (Performance Decomposition Superset). Under good event E, it holds that:

Hw(R;ﬁE,ﬁ“)<2H2 max  bp(s,a)+4H* max  by(s,a”).
’ (s,a,h)eZPmb (s,h)esPE

Proof Sketch. The proof is analogous to that of Lemma F.15. We can reuse the bounds for the difference between rewards
proved in there and insert them into H, to get the result. O
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F.4.3. PROOFS OF THE MAIN THEOREMS

Thanks to Lemma F.14 and Lemma F.15, we can conclude the proof of the main theorem for d.
Theorem F.18. Under the conditions of Theorem 6.1, PTRLO is (€,0)-PAC for d-IRL with a sample complexity at most:

- 3op,ml1, 1
#g@(HE?hW(m1+ymv

€2 5 max

Heni 1 b In
i Z D, e
+ 71-57ZP>"E 62 (lné* +Smax> + ln% )

min 1— 7l ZPT
Prin

and T is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic.

Proof Sketch. The proof for the subset and superset is completely analogous. Thanks to Lemma F.14 and Lemma F.15, we
realize that we have to bound the sum of two terms, which are completely analogous to those in the proof of Theorem 6.1,
with the only difference of H* instead of H?3. By proceeding similarly, we get the result. O

Thanks to Lemma F.16 and Lemma F.17, we can conclude the proof of the main theorem for d.
Theorem F.19. Under the conditions of Theorem 6.1, PIRLO is (€,8)-PAC for do,-IRL with a sample complexity at most:

~( H'Wmi / 1
#go(bf‘(m+ymj
o, ZP T o
P €

5 max
min

H8Ini 1 b In
T e - p,T e
+ pTrb7ZP,7rE 2 (hl § +SmaX> + In—1 )’

s b zp,m
min 10

and T is bounded as in Theorem 5.1. Furthermore, PIRLO is inclusion monotonic.

Proof Sketch. The proof for the subset and superset is completely analogous. Thanks to Lemma F.16 and Lemma F.17, we
realize that we have to bound the sum of two terms, which are completely analogous to those in the proof of Theorem 6.2,
with the only difference of H* instead of H?>. By proceeding similarly, we get the result. O

F.5. A note on the superset without relaxation

In this section, we show that, if we use the superset definition ’ﬁu of Eq. 8, i.e., the definition without relaxation, then we
are able to obtain the same performance decomposition result (see Lemma F.5) that we had for the case without pessimism,
and, thus, we end up with the same sample complexity result, which is much smaller than those computed for the relaxations.
Observe that we are not able to have an analogous result for the subset definition R™ of Eq. 8. Indeed, differently from
the relaxations defined in Eq. 9, the subset and the superset definitions of Eq. 8 are not exactly simmetric. While re’ R"
entails, by definition, the existence of (at least) one transition model in C(p,b) in which r induces an optimal policy
n*e[n? ]Esp _ i » this is not true for reR". Indeed, potentially, there might exist a (worst)'® transition model for every

(s,a,h)eS x A x [H]. Therefore, intuitively, in the reward choice lemma, we cannot make a choice of a single (worst)
transition model, but we have to choose many of them. This fact “breaks” the recursion and it does not allow us to perform
£1-norm bounds. Insteag, since the superset is of different nature, we can. It should be remarked that a membership checker
algorithm for superset R“ is inefficient to implement in practice because it requires to solve a bilinear optimization problem
(see Appendix G).

We will denote by RY the superset definition of Eq. 8.

Lemma F.20 (Reward Choice). Under good event E, for any 7€ 7%“, the reward r constructed as:

rh(s,a) =Tn(s,a)+ X5 (Pu(8'|s,a) —pu(s'|s,a)) Vi (s's5,7), V(S,a,h)eZ”’“b

s'eS

~ b
rn(s,a)="n(s,a), V(s,a,h)¢ZP"
8Worst because there is a universal quantifier ¥ over transition models in the definition of R".
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V)

where P is some transition model in C(p,b), belongs to Ry e

Proof. By definition of RY, we have that 7e RV if and only if there exists a transition model peC(p,b) such that 7e R .
Let us construct r by choosing p=p. To show that re R;’w &, We are going to show that the transition model p defined as:

)

Pu([s,a)=pn(-]s,a), V(s,a,h)eZPv’Tb
Dr(-|s,a) =pn(:|s,a), V(s,a,h)¢ZP™

belongs to [p];zp _, and is such that, for all (s, h) €SP for all ac A\{a”}:

Qf (s,a;p,m) < Qi (s,a"; 7).
Then, by Lemma E.1, we can conclude that re R;’ﬁ B

Trivially, notice that p= , .» p. We proceed by induction to show that, for all (s,a,h)€S x A x [H], the following identity
holds:

@ (s,a;p,7) = Q} (s, a;D,7).

Then, since e R, for all (s,h) €SP and for all ac A\{a¥}, the inequality QF (s,a;p,7) < Q7 (s,a”;p,7) (Lemma E.1)
entails QF (s,a;p,7) < QF (s,a”;p,r), and the thesis follows.
As case base, consider stage H. For any (s,a)€S x A, thanks to the definition of r, we can write:
Q?—I(Saa;ﬁar) = TH(Saa)
= ?H(S7 Cl)
=Q%(s,a;p,7).
Now, make the inductive hypothesis that for all (s’,a’)eS x A, it holds that @} (s',a’;p,7) =Qf ,,(s',a’;p,7), and

b
consider stage h. For any (s,a)€ Z}"™ , we can write:

~ (D) ~ ~
Q7 (s,a;0,r) =ra(s,a)+ Y Pu(s'|s,a) max Qi1 (s',a';p,7)
a’e A

s'eS
2 ~ .
=Th(8,(l) + Z ph(8/|51a) g}gﬁ(QZH(s’,a’;p,r)
s'eS

S7n(s,0)+ 3, (Bn(s'|s,0) = pn(s|s,0) max Qf 4 (s, a's.7) + 3 Pn(s'ls,a) max Q1 (.0 p.7)

s'eS s'eS
4) A~ _ _ o~
SPn(s,a)+ Y, pi(sls;a) max Q1 (s',a’sp,7)
s'eS e
) _
=Q5(s,a;p,7),

where at (1) we have applied the Bellman’s optimality equation, at (2) we have used the inductive hypothesis, at (3) we have

inserted the definition of 7, (s,a) along with the fact that (s,a,h)€e 2Zp7" gt (4) we have noticed that p=p (by choice) and
that py, (+|s,a) =pn(:|s,a) (by definition); finally, at (5), we have applied again the Bellman’s optimality equation.

b
On the other side, for any (s,a)¢ Z}"" , we can write:

Qi (s,a:p,r) =rn(s,a)+ Y Pu(s's,a) max Q1 (s,a’sp,r)

s'eS
= ’I“h(87a> + Z ﬁh(s/|57a’) zl,llgi(Qlﬂ;Jrl(S/va/;ﬁa 7/;)
s'eS

Dfn(s,0)+ Y, ouls'ls,0) max Q. (5, 5.7)

s'eS
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:Q;:(Sya;?»?)v
where at (1) we have used both the definition of (s, a) and that P, (+|s,a) = pn (-|s, a), for (s,a,h) ¢ ZP™ .

This concludes the proof. O

Thanks to the reward choice lemma just presented, we obtain the following sample complexity result.

Theorem F.21. Let M be an MDP without reward and let ™7 be the expert’s policy. Let D¥ and D° be two datasets of
7 and 7'Ab trajectories collected with policies ©% and ©° in M, respectively. Under Assumption 2.1, any algorithm 2 that
outputs R" (defined as in Eq. 8) is such that, for any ¢,5€(0,1):

P b)({Hc(RU RY)<e} A{RY e SRV} =14,

- p,mE>
(p,mE,m

with a sample complexity at most:

~(H3ZP" Ink / 1 , In i
b 9 K )

€

In

1— B zp, )

<0
In

if c=d, and a sample complexity at most:

~( H*nl 1 Inl
Tbg(’)<7rb - "f (1n5+S§1’§:) +71 ‘13 ,
2P 2 n—-— b
O, ZP>

min 1—

=[Sl =

if‘C:dgo.

Proof Sketch. Observe that, thanks to Lemma F.20, we are able to obtain a performance decomposition lemma analogous to
Lemma F.5 for distance d (or analogous for distance d,). Next, following the steps in the proof of Theorem 5.1 (Theorem
5.2), we obtain the result. O

G. Implementation

In this appendix, we provide some comments on the implementation of membership checker algorithms for , PIRLO,
and some comments about the subset and superset defined in Eq. 8. In Section G.1, we present the pseudocode of the
membership checker algorithms. In Section G.2, we provide more details on the definitions of the relaxations R™ and R".
In Section G.3 we show that the implementation of a membership checker algorithm for the subset and superset defined in
Eq. 8 is inefficient. Finally, in Section G.4, we give the intuition that a straightforward relaxation of the representation of the
sets provided by Lemma E.1 is worse than that obtained by relaxing the representation in Theorem 3.1.

G.1. Algorithm

The pseudocode of the membership checker algorithms for and PIRLO is provided in Algorithm 2.
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Algorithm 2 Membership checker for IRLO and PIRLO.

Input :Datasets DF = {(sr",ar ">, }i, D* = {(s%",al" )1 }i, candidate reward function e 9%t
Output : True if re (RY,R")
Run lines 1-11 of Algorithm 1
Define C as in Eq. (6) for IRLO and as in Eq. (7) for PIRLO
Extended value iteration:
An(s)«— if (s,h)eSP™ then {7 (s)} else A,V (s,h)eS x [H]
Q1 (5,0), Qi (5,0) — 7 (s5,0) ¥(s,0,h) €S x A x [H]
forh=H —1to1do
for (s a)eS x Ado
QF (5,8) —ra(s5,0)+max X ph(<'ls,0)  max Q7 (s',a)

p'eC ges a’€Ap41(s)
Qy, (s,a) < rn(s,a)+min 3 pr(s']s,a) max  Qp.,(s',a")
p'eCgcs a'€Ap41(s)
end
end
Membership test:
inY <« True, in" « True
for (s,h)egp’“E do
for ae A\{7%(s)} do
] (5.7 () < 0] (s.0) then (=]
in” < False
end

if Q;, (5,71 (s)) <Qj, (s,) then
| in” « False
end

Q) (5,7 (5)) < @y (5,0) then | P1rio |

in” < False
else if Q,, (5,77 (5)) <Q} (s,a) then
| in” < False
end

en
end
return (in“, in")

The idea is to find the worst (resp. best) transition model for the subset (resp. superset) among all those feasible. In practice,
what we do is to exploit the representation provided in Eq. 22 for IRLO and the representation provided in Eq. 27 for
PIRILO.

Observe that, inside the support (s, h) €SP we use the estimated expert’s action 77 (s), while outside the support we
always play the action that maximizes the Q-function (both @ and Q7). Concerning the transition model, notice that,
for Q*, we consider the p’ €C that maximizes the expected Q*, while for Q~ we consider the p’€C that minimizes the
expected Q~. Observe also that, for TRL.O, because of the definition of C, inside the support 2P we use p'=p, and
outside the support we consider p’ =argmax,, s for Q@ and p’ =argming g for Q~

Finally, we check the Bellman optimality conditions to assess the membership of the candidate reward r in the estimated
sets R* (boolean variable in“~) and R" (boolean variable in") (line 2).

G.2. A better understanding of the relaxations

To get a better understanding of why R Ry eand Ry o< R, under the hypothesis (good event) that the true transition
model peC(p,b) and that 72 = 72 in all S, observe that, for the subset:

ROe2 () Rp.e
p'€C(p,b)

—{reR|Vp' eC(p,b),Vre[rPl= . V(s,h)eSP™ NaecA: QT (s,xE(s);p/,r)=>Qf (s,a;p,7)}

sp,m
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1 E E _
(_D){TE%WTTE[WE]ESP.WE,V(s,h)€$p’” ,Yae A: min QF (s,wf(s);p',r)} max)QZ(s,a;p',r)}

p'eC(p,b) p'eC(p;b
:{rei)%W(s,h)eSp’”E,VaeA: __min ( ‘min QZE(S,WE(S);]?/,T)— ‘max QZ(&a;p/,r)) >0}
we[m ]Esp 5 \P'EC(D;D) p'€C(p,b)

DreR|V(s,h)eSP™ VacA: min QF (s,7P(s)p/,r)>  max max Q7 (s,a;p’,r)}
PeChh) relrtle o peC(nb)

>18)
=R ,

where at (1) we have exchanged the order of the quantifiers, and we can do so because they all are of the same type, and
then we have observed that min, (f(x) — g(x)) > min, f(z) —max, g(x), and at (2) we recognize that the first term does
not depend on 7. W.r.t. the superset, in an analogous manner, observe that:

Ryec | Ry
p'€C(p,b)

={reR|3Ip'eC(p,b),Vre[r¥]=

sp.m

Eav(sah)esmevvaeA: max QZE(S,’]TE(S);]Q/,T)E mlf} QZ(&GQPIW)}
p’eC(p,b) p'eC(p,b)

—{reR|Y(s,h)eSP™ VaeA: min ( max QF (s, wZ(s);p/,r)— min QZ(s,a;p’,r))ZO}
relnPl=_ p \WeC(hi) PeC(pb)

= ,V(s,h)eSp’”E,VaeA: QZE(S,Wf(s);p’,T)>QZ(s,a;p',T)}

Sirem|vre[r]

@{rei)‘ﬂV(s,h)eS”’”E,VaeA: max QZE(S,TK'E(S);])/,T)Z max min Q7 (s,a;p',r)}
PeC(sb) relnPle o peC(hb)

=: ﬁu7
where at (1) we have relaxed and at (2) we recognize that the first term does not depend on 7.

G.3. Testing the membership without relaxations

We show that the problem of testing the membership to the subset and superset defined as in Eq. 8 is equivalent to solving
a bilinear optimization problem, which is in general hard. We will denote the expert’s action by a” and we use the
representation provided by Lemma E. 1.

Let us begin with the subset RO A given reward r belongs to R" if and only if:
Vp'eC(p,b),Y(s,h) eSpm” Nae A\{a®}: QF(s,a;p',r)<Qf(s,a;p 1),

where C(p,b) is defined in Eq. 7. By applying the Bellman optimality equation, changing the order of the quantifiers, and
considering the worst possible transition model, we obtain:

V(s,h) eSrm” Vae A\{a"}:

r(s,a) <rn(s,a®) + min ( P ACIER S ARICHNOED Y p/h(5/|57a)vh*+1(Sl§p/7T))'
’ s'eS s'eS

It should be remarked that, differently from and PIRLO, to check whether a given reward r belongs to 7%“, we cannot

optimize the value function, but we have to optimize the advantage function. Therefore, for all (S, i_L) egp’”E , and for all
ae A\{a”}, we have to solve the optimization problem:

min Y (25 (5[5.05) =9} (515, ) ) Vi, (/59',7)

v s'eS

s.t. [P (-|s,a) = (-|s,a) |1 <bn(s,a)  V(s,a,h)e 2P
Ph(ls,a)eAS  V(s,a,h)eS x Ax[H]

P (s']s,a)=0  V(s,a,h)eZPT As'¢ (§,€I1E Usupp pr(+|s,a”)).
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Observe that, while the set of constraints define a convex set, the objective involves the product of optimization variables.
We can introduce H variables {V;}c[s] to replace Vh*+1( §';p',r) by adding suitable constraints that keep into account
also the presence of the maximum operator inside V* (because of the Bellman’s optimality equation). In this way, due to
the product between variables p’ and V', we can conclude that this is a bilinear optimization problem, which is in general

difficult to solve.

W.r.t. the superset, we have that a reward r belongs to RY if and only if:

39 €C(pb), V(s,h) e8P Vae A\[a”}: Qi (s,a:p',r) < Qi (s,a":p/ 1),
This time, we cannot bring the transition model inside because we have different quantifiers. We can formulate the problem
as a feasibility problem by adding constraints because of the presence of V(s,h) e8P Vae A\{a®}. In practice, the

presence of the product between “optimization” variables is now in the constraints, so the problem is again a bilinear
problem.

G.4. Relaxing the representation provided by Lemma E.1

We have seen that we can represent the feasible set by using Theorem 3.1 or Lemma E.1. While the two representations are
equivalent, observe that a straightforward relaxation of the constraints present in Lemma E.1 provides a different relaxation
of the subset and superset w.r.t. R™ and R* (which are obtained by relaxing the representation in Theorem 3.1). Indeed, by
relaxing the representation with the Q* (Lemma E.1), we would obtain constraints of the form (ex. subset):

min  QF (s, wF (s);p/,r)= Inax Qi (s,a;p',7)
p'eC(p,b) €C(p,b)
— min math(s 7rh( );p',7) > max math(s a;p’,r). (50)
p’eC(p,b) mell p’eC(p,b) mell
Clearly, this is different from ﬁ“ whose constraints can be written as:

E / - ,

min Q7 (s,77(s);p’,r)> max max QT (s,a:p 7).

pecpn) " S )/;D’EC(@b)Tre[ﬂ'E]z . n(sa:0m)
S

p,T

Indeed, R puts the additional constraint that the Q* is achieved by a policy in [7¥]

B which is not present in Eq. 50.

An analogous reasoning can be carried out also for the superset.

H. Proofs of Section 8

In this section, we provide the missing proofs of Section 8.

Proposition 8.1. Let M be the usual MDP without reward with A>2 and let TF be the deterministic expert’s policy. Let
DF be a dataset of trajectories collected by following 7% in M. Then, for any reward in TER & it holds that:

V(s,h)ESp’” NYaeA: (s, mE (s))=rn(s,a). )

Proof. Letr be an arbitrary reward function of R . Consider a certain (s,h)€S»™ ", with expert’s action mE(s)=aF,

and let a € A be a non-expert’s action. By Lemma E.1, we know that, for any p’€ [p];zp.wE , it must hold:

ru(s,a) <rp(s,a®) + E Vit (sl or) — E Vit (shsp',r)
s'~pj, (-]s,a¥) s'~p} (+]s,a)

=rp(s,a”)+ E Vi (s sp,r) — E Vs (s r),
s'~pp(+|s,a®) s~} (-|s,a)

where we have used the definition of [p]EZple . Since (s,a,h)¢ 2" then the constraint must hold vp,(-|s,a)e AS. In
particular, it must hold for the transition model such that:

ra(s,a)<rp(s,a®)+ B VL (shipr) —max Vi (shp ),
s'~pp(+|s,a®) s'eS

<0

from which the thesis follows. O
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Proposition 8.2. Under the conditions of Proposition 8.1, assume that py,(+|s,a) is known, where a€ A is a non-expert’s
action in (s,h)€SP™ . Then, if py,(-|s,a) #pn(:|s, 7 (s)), there exists a reward reRy p such that:

rh(s,ﬂf(s)) <rp(s,a).

Proof. Let a¥ :=m}(s). Similarly to the proof of Proposition 8.1, we can write: py,(-|s,a):
T“h(87a)<7“h(8aaE)+ Vh+1( i) — E Vh*+1(5/§P/,7“)
s'~pj, ( |s,a®) s'~pj, (:|s,a)
:Th(S,CLE) + E Vh+1( D, T ) E Vh*+1(sl;p/,7‘),
s'~pn(:|s,a®) s'~pn(:|s,a)

where we have used that we have access to samples about py,(-|s,a). By hypothesis, py,(-|s,a) # pn (+|s,a”), therefore, by
taking r such that By ., (.(s.02) Vi (830,7) > By ep, (1s,a) Vi1 (87307,7), we can obtain a reward 7 in R & such that

rh(s,ﬂf(s)) <rp(s,a).

O

I. A relaxed triangle inequality

In this section, we show that both our notions of distance d, d,, defined in Section 4, are semimetrics, and that they satisfy a
p-relaxed triangle inequality (see Fagin & Stockmeyer, 1998) with finite p> 1 for any pair of rewards r,7’ € 3. Furthermore,
we show that the Hausdorff distance H, when applied to the sets of rewards considered in this work, inherits the relaxed
triangle inequality property. It should be remarked that we need the p-relaxed triangle inequality property with finite p just
for the learnability proofs of Appendix C. Moreover, notice that we do not care about a tight value of p, but only that it is
finite. Instead, if we wanted to compute a minimax lower bound, then we would need a tight value of p in order to obtain a
tight lower bound.

L.1. d and d, satisfy a relaxed triangle inequality

In the following, for the sake of simplicity, we denote reward functions by vectors z,, z, ...€R¥. Moreover, for any pair
z,yeR*, we will consider distance d for some distribution g€ Al*] as:

z[[:]] il i —yil
e[k
d(z,y)=—— ;
max{ ||, [ylleo }
and distance d, as:
r—y
do(2,y) = H |

max{ |2, [y}

First of all, let us see that neither d nor d, are metrics:

Proposition 1.1. Both the functions d and d, do not satisfy the triangle inequality.

Proof. To show that the triangle inequality property is not satisfied, we simply provide some counterexamples. For the sake
of simplicity, let k=2.

W.r.t. distance d, let the vectors x,y, z€ R? be defined as:

z=[1,0]
y=[-1,-1]" ,
z=[-2,—1]"

and observe that, for any ge Al such that ¢, > 0:

d(z,y) =2q1 + g2 <d(x,2) +d(y,2) =3/2q1 + q2/2+ q1/2 = 2q1 + q2/2
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— <0

If g2 =0, we can take the second component of z to be arbitrary large so that the inequality is not verified.

As far as d., is concerned, let x,y, ze R? be the vectors defined as:

[0,2]7

[2.2]7
=[1,3]7

SIS
Il

‘We have:

2 ?
dgo(sr:,y)=§=1<doo(ac7z)+doc(y,z)=1/3+l/3=2/3

— 1<2/3,

which is clearly false.

Notice that it is possible to generate counterexamples for higher dimensions k > 2 by using a simple script of code. O

Having verified that distances d,d, do not satisfy the triangle inequality, we can conclude that they are semimetrics, as it is
easy to check the other three properties of positivity, simmetry, and that the distance between two points is zero if and only
if the two points coincide. We are interested in verifying whether they satisfy a relaxed form of triangle inequality (Fagin
& Stockmeyer, 1998). Specifically, for any finite pe R with p> 1, we say that a function d satisfies the p-relaxed triangle
inequality if, for any z,7, € R¥:

d(z,y) <p(d(z,2)+d(y,z)).

We aim to show that both d and d, satisfy the p-relaxed triangle inequality for some p. Let us begin with a useful lemma.

Lemma L2. Let dy :R* x R¥ — R be the function that, for any pair x,y€RF, it returns:

|z =yl

do(2,y) = ——
(% 9) = (el [915)

Then, ds is a metric.

Proof. Tt is easy to observe that dy(x,y) =0 if and only if x =y. Moreover, notice that do(z,y) =0 for all z,yeR¥, and
also that ds (z,y) =da(y, x).

It remains to prove that ds satisfies the triangle inequality property, i.e., for any z,y, € R¥, it satisfies:
dz(l',y) < d2(!L‘7Z) + dg(y,Z)

We distinguish two cases, one in which max{|z|2, |yll2, [ 2]2} # || z|l2 and the other in which max{||z|z, |y]2,|z]2} =22

Let us begin with the former case. W.1.0.g., assume that arg max{||x||2, |y|2, |22} =y- Then, we can write:

|z —yl2

max{]z|2, |y/2}
_ |z —yl2

max{||z(2, [yl2, |2]2}
O |z —z]2 ly—=l2
~max{flafa, [yl |22} T max{]z]z, [yl2, ]2}
® |z =z ly—=l2

max{[z|2, [yl2, 2]z} = max{[yl, |z]2}
R L P ly — 2|l

" max{fzfa, ][22} max{lylz, |22}

do(z,y) =
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::d2($,2)+d2(y,2)7
where at (1) we apply triangle inequality of the |- |2 norm, at (2) we use that max{| x|, |y]2, |z]2} =max{|y|2, ||z]2} =
lyll2, at (3) we use that, since max{||z|2, [yll2, | ]2} = [¢ll2, then max{|z]s, [y]2, ] 2]2} = max{|z]s, |2]2}-

Now, w.l.o.g., consider the case in which |z]2 < |y|l2 <||z|2. Since the normed vector space R* with |- | is an inner
product space, then the Ptolemy’s inequality (Steele, 2004) holds:

|z —yl2l2]2 <[z —zl2llyl2 + Iy — z[2]=]2
<[z —z]20yl2+ |y — zll2]ll2
=yl2(lz—zl2+ [y —z]2).

By dividing both sides of the inequality by |z||2 and ||y|2, we can write:

lz=yla _lz—=z]2  [y—=l2
~
lyll2 22 22
|z =yl2 |z =z ly =22
< :
max{|z]a, |yl2} ~ max{|z]z ]2} max{]ylz,[=]2}

This concludes the proof. O

It should be remarked that the Ptolemy’s inequality holds in inner product spaces only, and that the unique p-normed vector
space to be an inner product space is that with p= 2. This is why our proof of Lemma 1.2 works for function d,, defined as:

|z =ylp

dp(,y) = ——F——
P max{||z|p, |y[p}

if and only if p=2. Thanks to Lemma 1.2, we are able to prove the main theorem of this section.

Theorem L.3. Let ge AIFL such that ¢; >0 for all ie [k], and denote quin :=mineiy gi. Then, both the semimetrics d and
doo satisfy the p-relaxed triangle inequality with p upper bounded, respectively, by k/q2.. and k.

Proof. First, we prove the statement of the theorem for d,, and then we use it to prove the statement for d.

Observe that, for any zeR”:
|] oo < 1] 2 < VE| %] o- (51)

Let us consider any three vectors x,y, ze R, If argmax{| 2w, |y/lw, | 2] } # 2, then we can proceed as in the first part
of the proof of Lemma 1.2 to show that do, (2, y) <dw (2, 2) + doo (y, 2). Therefore, w.l.0.g., we consider the case in which
arg max{||z|c, |¥] oo, |2] 0} = 2. We can write:

|7 =y o0
max{|z||, [y]o}
O |z —yl2

max{|z|w, [y}
& VEe—yls
— max{||z]2, [y[2}

= \/Edg(l';y)
2 Vkds (. 2) + Vida (. 2)

doo (2,y) =

B |z — 22 |y — zll2
max{|z], | 2]2} max{[ylla, 2] 2}

Qi lz—2le ly— 22
max{ ||, 2]} max{ [y, 2]}
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©) lz— 2] ly =2l
max{|z|e, 2]} max{|y|e, 2]}
=k‘(doo<.'1772’) +d00(y7z))7

where at (1) and at (2) we use Eq. 51, at (3) we use the result in Lemma 1.2, and at (4) and at (5) we use again Eq. 51.

Now, we move to prove the statement concerning d. In a similar way as in the proof of Proposition 4.1, we have that, for any
k
z,yeR":

v
i) <ol
ek o — |
~ max{|z]o, [y}
max al|m; — i
 max{|z ], [y}
> Gilzi—yil
i€[k]
 Guin max{][z]oo, |y}
_d@y)
Gmin

By using this relation in place of that in Eq. 51, we can carry out the same derivation made for d, using ds for the
semimetric d using do. O

It should be remarked that we are not claiming here that the values of p provided in Theorem 1.3 are tight'°.

I.2. The Hausdorff distance inherits the relaxed triangle inequality property

First, we show that, thanks to the definitions of d and d,, if we apply the Hausdorff distance to closed sets, then the (relaxed)
triangle inequality property is satisfied. Next, we show that the sets of rewards we work with are closed.

Let us begin with the following proposition.

Proposition 1.4. Let H; and H, be defined as in Section 4. The closedness of the sets to which these distances are applied
is a sufficient condition for the (relaxed) triangle inequality property to hold.

Proof Sketch. We will not provide an exhaustive proof, since it is completely analogous to the proof that shows that
compactness is a sufficient condition for the Hausdorff distance with inner metric to satisfy triangle inequality. Instead, we
simply give an idea of why for d and d,, closedness (instead of compactness) suffices.

In practice, the compactness requirement is just needed to guarantee that the infimum is actually a minimum over the sets in
input to the Hausdorff distance. For a generic notion of inner distance, closedness is not sufficient because the infimum
might be at co and, thus, the minimum would not exist. However, observe that both d and d,, contain the normalization
term 1/M (see Section 4), therefore, for any finite vector x€R¥, getting to infinity lim, o |2 —y|ls,/M =1 worsens the
distance to x w.r.t. any other finite z in the set containing y. This shows that boundedness is not required anymore, but
closedness suffices. This concludes the proof. O

In this work we consider unbounded sets of rewards, so clearly compactness does not hold. The following proposition shows
the closedness of some sets of rewards.

Proposition 1.5. The following sets are closed:

m v Nﬁ NU
Ry, Rpre, RO 6, RS o, RO, R

p,mE

Indeed, we do not believe so. By using a script to generate a large number of vectors, and using the intuition that the diagonal of the
unit square (||- [|oo) is +/2 the radius of the unit circle (|| - |2), we conjecture that a tighter value of p for do is p = 2, irrespective of the
dimension.
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Proof. From Theorem 3 of Ng & Russell (2000), we observe that the old feasible set ﬁme is closed because it is defined
by linear less than or equal to < inequalities.

The new feasible set R, = can be expressed, from Corollary D.1, as an arbitrary union of closed sets R, .r =

Uﬂ,e[ﬁEP R,.. However, observe that the feasible sets R, . with stochastic 7’ are contained in the feasible
= pnP

sets of some deterministic policies. Since there is a finite number of deterministic policies, then R, = can be expressed as
a finite union of closed sets, so it is closed.

The subset R;,,E is an arbitrary intersection of R, . », i.e., closed sets, thus it is closed.

The superset R;’ﬂ ¢ 1 an arbitrary union of R, .=, so, potentially, it might not be non-closed. However, thanks to the
definitions of p”* and 7™ in Eq. 20 and Eq. 21, we know that the arbitrary union representing R;’ﬂ » coincides with the
feasible set R,m =, which is closed, thus R;FE is closed.

In an analogous manner, by using Eq. 25 and Eq. 26, we observe that the relaxations R and RY can be expressed by a
finite number of linear less than or equal fo < constraints, thus they are closed. O

J. Technical Lemmas

In this section, we report some technical lemmas that are useful in the analysis of the sample complexity of and
PIRLO (see Appendix F). Lemma J.1 and Lemma J.2 are taken from other works, while Lemma J.3 takes inspiration from
Lemma B.9 of Metelli et al. (2021).

Lemma J.1 (Lemma A.1 of (Xie et al., 2021)). Suppose that N ~ Bin(n,p) is a binomially distributed random variable,
withn>=1 and pe[0,1]. Then, with probability at least 1 — §, we have that:

D <81n%
Nv1l™ n

Lemma J.2 (Lemma 8 of (Kaufmann et al., 2021)). Let X1, Xs,..., X,,... be i.i.d. samples from a distribution supported
over [m], of probabilities given by pe AU, We denote by p,, the empirical vector of probabilities, i.e., for all ke [m]:

n

1
Pnr=—» I{X;=k}.
Pk nz {Xi=k}

=1

For all pe Al for all 5€[0,1]:
P(HneN;o, nKL(py|p)>In(1/6) + (m—1)In(e(1+n/(m— 1)))) <.

Lemma J.3. Let a,b,c,d>0 such that 2bc>e. Then, the inequality x>a+blu(cx+d) is satisfied by all x>2a+
3bln(2bc) +d/c.

Proof. Observe that, since function 2 grows faster than function a + bIn(cx + d), then there exists Z such that, for all 2> Z,
the inequality is satisfied. Our goal here is to show that such Z can be upper bounded by 2a + 3b1n(2bc) + d/c.

Let us consider any x > 2a + d/c. We can write:

rzza+bln(czx+d) <« x;a>ln(c(xia)+d)
— €7 zc(r—a)+cat+d
L 5 =>2c(r—a)
a—T a—=z 1
e, L I
- % 2be o

where at (1) we have used that, since x> 2a + d/c, then ¢(z — a) = ca + d, and thus we have replaced the constraint with a
stronger one.
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Hypothesis 2bc > e entails that — %bc > f%, thus we can apply the Lambert function, which provides as solution to inequality
I all the z such that:

a—1x 1 a—x 1
<Woi(—o- >Wo (- ),
b 1< 2bc) oy 0( 2bc>
where I is the principal component of the Lambert W function. Consider the first inequality. We can write:
=a—bW. !
rza—bW_q| ——
“ "\ 2be

)
<a+b+by/2In(2bc) —2+bIn(2bc) — b

<a+3bln(2bc),

where at (1) we have applied the inequality W_; (—e~%"1) > —1 —+/2u — u from (Chatzigeorgiou, 2013).

To obtain the result, we use that max{a,b} <a+b for any a,b >0 to upper bound:

max{2a+d/c,a+3bln(2bc)} = a+max{a+d/c,3bIn(2bc) } <2a+ 3bIn(2bc) + d/c.

K. Illustrative Experiment

We have applied PIRLO to the highway driving application domain. To this aim, we have used the data®® gathered by
Likmeta et al. (2021).

Data Description The dataset consists of trajectories of H =400 stages collected by 10 different human experts driving in
a simulator. The highway has 3 lanes. The goal of each expert is to change lane in order to drive safely and to minimize the
trip time. The action space A is made of 3 actions: Turn left, turn right, continue forward. The state space S is continue, and
it is represented by 25 features, keeping into account the speed and position of the car, and the speed and position of the
surrounding cars.

Data Preprocessing We have to transform the data to obtain a tabular MDP. To this aim, we construct 5 discrete features
from the 25 present in the original data: We use three binary features, free left, free right, free forward, that say whether
there is a vehicle on the left, on the right, or in front of our car; next, we use a binary feature that says whether the car is
changing lane, and a discrete feature with 5 possible values for the speed of the vehicle. In this way, we obtain a tabular
MDP with S§'=80.

Experiments Design As mentioned by Likmeta et al. (2021), this lane-change scenario represents a multi-objective task,
because humans consider several objectives while driving. We manually design some reward functions coherent with the
most common driving objectives and we use PIRLO to verify whether they are compatible w.h.p. with the demonstrations
of behavior provided by the 10 experts in the dataset. First, we construct a single behavioral dataset D® by joining the
trajectories of all the 10 experts, and then we consider one expert at a time to construct D¥. Next, we design the reward
functions and we give them in input to the membership checker implementation of PIRLO.

Experiments Results We design 3 kinds of reward functions:

» reward rpc, i.€., the “behavioral cloning” reward, which is the reward that assigns positive values to actions played by
the expert’s policy;

e reward r, which is coherent with the observations provided in Section 5.3 of Likmeta et al. (2021). In words, it assigns
negative reward when (¢) the right lane is not free, (i¢) there is a car in front of us (and so it decreases our speed), (¢4%)
we change lane;

®The data is publicly available at https://github.com/amarildolikmeta/irl_real_life/tree/main/
datasets/highway.
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Alice | Bob | Carol | Chuck | Craig | Dan | Erin | Eve | Grace | Judy
rgec || V.Y | Y)Y | VY Y.Y YY | YY | YYY | ,YY | YY | XY

S

Table 2. The output of PIRLO when fed with the rewards designed for the highway driving task. The first letter refers to the superset,
while the second letter refers to the subset. “N”” means that the reward does not belong to the set, while “Y”” means that it belongs to the
set.

e reward 7, which is —r, i.e., it assigns positive reward to all the bad actions;

We provide the output of PIRLO in Table 2. Some comments are in order. First, our reduction to a smaller state space has
caused the policies of the agents to be (more) stochastic. Moreover, this reduction has increased the number of times that the
corner case described in Appendix D.5 takes place. Since this corner case is outside the good event, we have removed such
data from D?; in this way, we improve the performances of PIRLO.

Observe that the behavioral cloning reward rg¢ belongs to the subset and superset for all the experts. This is reasonable
since it assigns positive reward only to expert’s actions in the support of the expert’s policy. However, it should be remarked
that if we had not removed the “corner-case” samples, then rgc would not belong to the subsets.

The reward r compatible with the analysis provided in Likmeta et al. (2021) belongs to the superset of some experts only.
Specifically, for the experts Alice, Eve, Grace, and Craig, that belong to the clusters 1 and 3 of Table 1 of Likmeta et al.
(2021), the reward r is not in the superset. However, it should be remarked that reward r is not exactly the same as the
reward described by Likmeta et al. (2021), and also that we are working with a more aggregated state space.

Notice that, as expected, reward 7= —r, which rewards “bad” actions, does not belong neither to the subset nor to the
superset of any expert.
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