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Abstract
Stochastic partial observability poses a major
challenge for decentralized coordination in multi-
agent reinforcement learning but is largely ne-
glected in state-of-the-art research due to a strong
focus on state-based centralized training for de-
centralized execution (CTDE) and benchmarks
that lack sufficient stochasticity like StarCraft
Multi-Agent Challenge (SMAC). In this paper, we
propose Attention-based Embeddings of Recur-
rence In multi-Agent Learning (AERIAL) to ap-
proximate value functions under stochastic partial
observability. AERIAL replaces the true state
with a learned representation of multi-agent re-
currence, considering more accurate information
about decentralized agent decisions than state-
based CTDE. We then introduce MessySMAC, a
modified version of SMAC with stochastic ob-
servations and higher variance in initial states, to
provide a more general and configurable bench-
mark regarding stochastic partial observability.
We evaluate AERIAL in Dec-Tiger as well as in
a variety of SMAC and MessySMAC maps, and
compare the results with state-based CTDE. Fur-
thermore, we evaluate the robustness of AERIAL
and state-based CTDE against various stochastic-
ity configurations in MessySMAC.

1. Introduction
A wide range of real-world applications like fleet manage-
ment, industry 4.0, or communication networks can be for-
mulated as decentralized partially observable Markov de-
cision process (Dec-POMDP) representing a cooperative
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multi-agent system (MAS), where multiple agents have to
coordinate to achieve a common goal (Oliehoek & Amato,
2016). Stochastic partial observability poses a major chal-
lenge for decentralized coordination in Dec-POMDPs due to
noisy sensors and potentially high variance in initial states
which are common in the real world (Kaelbling et al., 1998;
Oliehoek & Amato, 2016).

Multi-agent reinforcement learning (MARL) is a general
approach to tackle Dec-POMDPs with remarkable progress
in recent years (Wang et al., 2021; Wen et al., 2022). State-
of-the-art MARL is based on centralized training for de-
centralized execution (CTDE), where training takes place
in a laboratory or a simulator with access to global informa-
tion (Lowe et al., 2017; Foerster et al., 2018). For example,
state-based CTDE exploits true state information to learn
a centralized value function in order to derive coordinated
policies for decentralized decision making (Rashid et al.,
2018; Yu et al., 2022). Due to its effectiveness in the Star-
Craft Multi-Agent Challenge (SMAC) as the current de facto
standard for MARL evaluation, state-based CTDE has be-
come very popular and is widely considered an adequate
approach to general Dec-POMDPs for more than half a
decade, leading to the development of many increasingly
complex algorithms (Lyu et al., 2021; 2022).

However, merely relying on state-based CTDE and SMAC
in MARL research can be a pitfall in practice as stochastic
partial observability is largely neglected – despite being an
important aspect in Dec-POMDPs (Lyu et al., 2022):

From an algorithm perspective, purely state-based value
functions are insufficient to evaluate and adapt multi-agent
behavior, since all agents make decisions on a completely
different basis, i.e., individual histories of noisy observa-
tions and actions. True Dec-POMDP value functions con-
sider more accurate closed-loop information about decen-
tralized agent decisions though (Oliehoek et al., 2008). Fur-
thermore, the optimal state-based value function represents
an upper-bound of the true optimal Dec-POMDP value func-
tion thus state-based CTDE can result in overly optimistic
behavior in general Dec-POMDPs (Lyu et al., 2022).

From a benchmark perspective, SMAC has very limited
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stochastic partial observability due to deterministic obser-
vations and low variance in initial states (Ellis et al., 2022).
Therefore, SMAC scenarios only represent simplified spe-
cial cases rather than general Dec-POMDP challenges, be-
ing insufficient for assessing practicability of MARL.

In this paper, we propose Attention-based Embeddings of Re-
currence In multi-Agent Learning (AERIAL) to approximate
value functions under agent-wise stochastic partial observ-
ability. AERIAL replaces the true state with a learned repre-
sentation of multi-agent recurrence, considering more accu-
rate closed-loop information about decentralized agent de-
cisions than state-based CTDE. We then introduce MessyS-
MAC, a modified version of SMAC with stochastic observa-
tions and higher variance in initial states, to provide a more
general and configurable Dec-POMDP benchmark for more
adequate evaluation. Our contributions are as follows:

• We formulate and discuss the concepts of AERIAL
w.r.t. stochastic partial observability in Dec-POMDPs.

• We introduce MessySMAC to enable systematic evalu-
ation under various stochasticity configurations.

• We evaluate AERIAL in Dec-Tiger, a small and tradi-
tional Dec-POMDP benchmark, as well as in a variety
of original SMAC and MessySMAC maps, and com-
pare the results with state-based CTDE. Our results
show that AERIAL achieves competitive performance
in original SMAC, and superior performance in Dec-
Tiger and MessySMAC. Furthermore, we evaluate the
robustness of AERIAL and state-based CTDE against
various stochasticity configurations in MessySMAC.

2. Background
2.1. Decentralized POMDPs

We formulate cooperative MAS problems as Dec-POMDP
M = 〈D,S,A, T ,R,Z,Ω, b0〉, whereD = {1, ..., N} is a
set of agents i, S is a set of (true) states st at time step t,A =
〈Ai〉i∈D is the set of joint actions at = 〈at,1, ..., at,N 〉 =
〈at,i〉i∈D, T (st+1|st,at) is the state transition probability,
rt = R(st,at) ∈ R is the shared reward, Z is a set of local
observations zt,i for each agent i ∈ D, Ω(zt+1|at, st+1) is
the probability of joint observation zt+1 = 〈zt+1,i〉i∈D ∈
ZN , and b0 is the probability distribution over initial states
s0 (Oliehoek & Amato, 2016). Each agent i maintains a
local history τt,i ∈ (Z × Ai)t and τ t = 〈τt,i〉i∈D is the
joint history. A belief state b(st|τ t) is a sufficient statistic
for joint history τ t and defines a probability distribution
over true states st, updatable by Bayes’ theorem (Kaelbling
et al., 1998). Joint quantities are written in bold face.

Stochastic partial observability inM is given by observation
and initialization stochasticity w.r.t. Ω and b0 respectively.

A joint policy π = 〈πi〉i∈D with decentralized or local poli-
cies πi defines a deterministic mapping from joint histories
to joint actions π(τ t) = 〈πi(τt,i)〉i∈D ∈ A. The return is
defined by Gt =

∑T−1
c=0 γ

crt+c, where T is the horizon and
γ ∈ [0, 1] is the discount factor. π can be evaluated with
a value function Qπ(τ t,at) = Eb0,T ,Ω[Gt|τ t,at,π]. The
goal is to find an optimal joint policy π∗ with optimal value
function Qπ∗

= Q∗ as defined in the next section.

2.2. Optimal Value Functions and Policies

Fully Observable MAS In MDP-like settings with a cen-
tralized controller, the optimal value function Q∗MDP is de-
fined by (Watkins & Dayan, 1992; Boutilier, 1996):

Q∗MDP(st,at) = rt + γ
∑

st+1∈S
X (1)

where X = T (st+1|st,at)maxat+1∈AQ
∗
MDP(st+1,at+1).

Due to full observability, Q∗MDP does not depend on τ t but
on st. Thus, decentralized observations zt,i and probabil-
ities according to Ω and b0 are not considered at all. An
optimal (joint) policy π∗MDP of the centralized controller sim-
ply maximizes Q∗MDP for all st (Watkins & Dayan, 1992):

π∗MDP = argmaxπMDP

∑
st∈S

Q∗MDP(st,πMDP(st)) (2)

Partially Observable MAS In general Dec-POMDPs,
where true states are not fully observable and only decentral-
ized controllers or agents exist, the optimal value function
Q∗ is defined by (Oliehoek et al., 2008):

Q∗(τ t,at) =
∑
st∈S

b(st|τ t)

rt + γ
∑

st+1∈S

∑
zt+1∈ZN

X


(3)

where X = T (st+1|st,at)Ω(zt+1|at, st+1)Q∗(τ t+1,
π∗(τ t+1)) with τ t+1 = 〈τ t,at, zt+1〉.

An optimal joint policy π∗ for decentralized execution maxi-
mizes the expectation ofQ∗ for all joint histories τ t (Emery-
Montemerlo et al., 2004; Oliehoek et al., 2008):

π∗ = argmaxπ

T−1∑
t=0

∑
τ t∈(ZN×A)t

Cπ(τ t)P
π(τ t|b0)Q∗(·)

(4)
where Q∗(·) = Q∗(τ t,π(τ t)), indicator Cπ(τ t) filters out
joint histories τ t that are inconsistent with π, and prob-
ability Pπ(τ t|b0) represents the recurrence of all agents
considering agent-wise stochastic partial observability w.r.t.

2



Attention-Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic Partial Observability

decentralization of π and τ t (Oliehoek et al., 2008):

Pπ(τ t|b0) = P(z0|b0)
∏t

c=1
P(zc|τ c−1,π)

= P(z0|b0)
∏t

c=1

∑
sc∈S

∑
sc−1∈S

T (·)Ω(·)
(5)

where T (·) = T (sc|sc−1,π(τ c−1)) and Ω(·) =
Ω(zc|π(τ c−1), sc).

Since all agents act according to their local history τt,i
without access to the complete joint history τ t, recurrence
Pπ(τ t|b0) depends on more accurate closed-loop informa-
tion than just true states st, i.e., all previous observations,
actions, and probabilities according to b0, T , and Ω.

Q∗MDP is proven to represent an upper bound of Q∗

(Oliehoek et al., 2008). Thus, naively deriving local policies
πi from Q∗MDP instead of Q∗ can result in overly optimistic
behavior as we will show in Section 4.1 and 6.

2.3. Multi-Agent Reinforcement Learning

Finding an optimal joint policy π∗ via exhaustive compu-
tation of Q∗ according to Eq. 3-5 is intractable in prac-
tice (Nair et al., 2003; Szer et al., 2005). MARL offers
a scalable way to learn Q∗ and π∗ via function approxi-
mation, e.g., using CTDE, where training takes place in
a laboratory or a simulator with access to global informa-
tion (Lowe et al., 2017; Foerster et al., 2018). We focus
on value-based MARL to learn a centralized value func-
tion Qtot ≈ Q∗, which can be factorized into local utility
functions 〈Qi〉i∈D for decentralized decision making via
πi(τt,i) = argmaxat,iQi(τt,i, at,i). For that, a factorization
operator Ψ is used (Phan et al., 2021):

Qtot(τ t,at) = Ψ(Q1(τt,1, at,1), ..., QN (τt,N , at,N )) (6)

In practice, Ψ is realized with deep neural networks, such
that 〈Qi〉i∈D can be learned end-to-end via backpropagation
by minimizing the mean squared temporal difference (TD)
error (Rashid et al., 2018; Sunehag et al., 2018). A factor-
ization operator Ψ is decentralizable when satisfying the
IGM (Individual-Global-Max) such that (Son et al., 2019):

argmaxat
Qtot(τ t,at) =

 argmaxat,1Q1(τt,1, at,1)
...

argmaxat,NQN (τt,N , at,N )


(7)

There exists a variety of factorization operators Ψ which
satisfy Eq. 7 using monotonicity like QMIX (Rashid et al.,
2018), nonlinear transformation like QPLEX (Wang et al.,
2021), or loss weighting like CW- and OW-QMIX (Rashid
et al., 2020). Most approaches use state-based CTDE to
learn Q∗MDP according to Eq. 1 instead of Q∗ (Eq. 3-5).

2.4. Recurrent Reinforcement Learning

In partially observable settings, the policy πi of agent i
conditions on the history τt,i of past observations and ac-
tions (Kaelbling et al., 1998; Oliehoek & Amato, 2016). In
practice, recurrent neural networks (RNNs) like LSTMs or
GRUs are used to learn a compact representation ht,i of
τt,i and πi known as hidden state or memory representa-
tion1, which implicitly encodes the individual recurrence
of agent i, i.e., the distribution Pπi

i over τt,i (Hochreiter &
Schmidhuber, 1997; Cho et al., 2014; Hu & Foerster, 2019):

Pπi
i (τt,i|b0) = Pi(z0,i|b0)

∏t

c=1
Pi(zc,i|τc−1,i, πi) (8)

RNNs are commonly used for partially observable problems
and have been empirically shown to be more effective than
using raw observations zt,i or histories τt,i (Hausknecht &
Stone, 2015; Samvelyan et al., 2019; Vinyals et al., 2019).

3. Related Work
Multi-Agent Reinforcement Learning In recent years,
MARL has achieved remarkable progress in challenging
domains (Gupta et al., 2017; Vinyals et al., 2019). State-of-
the-art MARL is based on CTDE to learn a centralized value
function Qtot for actor-critic learning (Lowe et al., 2017;
Foerster et al., 2018; Yu et al., 2022) or factorization (Rashid
et al., 2018; 2020; Wang et al., 2021). However, the majority
of works assumes a simplified Dec-POMDP setting, where
Ω is deterministic, and uses true states to approximateQ∗MDP
according to Eq. 1 instead of Q∗ (Eq. 3-5). Thus, state-
based CTDE is possibly less effective in more general Dec-
POMDP settings. Our approach addresses stochastic partial
observability with a learned representation of multi-agent
recurrence Pπ(τ t|b0) according to Eq. 5 instead of st.

Weaknesses of State-Based CTDE Recent works investi-
gated potential weaknesses of state-based CTDE for multi-
agent actor-critic methods regarding bias and variance (Lyu
et al., 2021; 2022). The experimental results show that
state-based CTDE can surprisingly fail in very simple Dec-
POMDP benchmarks that exhibit more stochasticity than
SMAC. While these studies can be considered an impor-
tant step towards general Dec-POMDPs, there is neither
an approach which adequately addresses stochastic partial
observability nor a benchmark to systematically evaluate
such an approach yet. In this work, we focus on value-based
MARL, where learning an accurate value function is impor-
tant for meaningful factorization, and propose an attention-
based recurrence approach to approximate value functions
under stochastic partial observability. We also introduce

1In this paper, we use the term memory representation to avoid
confusion with the state terminology of the (Dec-)POMDP litera-
ture (Kaelbling et al., 1998; Oliehoek & Amato, 2016).
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a modified SMAC benchmark, which enables systematic
evaluation under various stochasticity configurations.

Attention-Based CTDE Attention has been used in
CTDE to process information of potentially variable length
N , where joint observations zt, joint actions at, or local
utilities 〈Qi〉i∈D are weighted and aggregated to provide a
meaningful representation for value function approximation
(Iqbal & Sha, 2019; Wang et al., 2021; Iqbal et al., 2021;
Wen et al., 2022; Khan et al., 2022). Most works focus
on Markov games without observation stochasticity, which
are special cases of the Dec-POMDP setting. In this work,
we focus on stochastic partial observability and apply self-
attention to the memory representations ht,i of all agents’
RNNs instead of the raw observations zt,i to approximate
Q∗ for general Dec-POMDPs according to Eq. 3-5.

4. AERIAL
4.1. Limitation of State-Based CTDE

Most state-of-the-art works assume a simplified Dec-
POMDP setting, where Ω is deterministic, and approximate
Q∗MDP according to Eq. 1 instead of Q∗ (Eq. 3-5).

If there are only deterministic observations and initial states
s0 such that b0(s0) = 1 and b0(s′) = 0 if s′ 6= s0, then
multi-agent recurrence Pπ(τ t|b0) as defined in Eq. 5 would
only depend on state transition probabilities T (st+1|st,at)
which are purely state-based, ignoring decentralization of
agents and observations (Oliehoek et al., 2008). In such
scenarios, stochastic partial observability is very limited,
especially if all πi are deterministic. We hypothesize that
this is one reason for the empirical success of state-based
CTDE in original SMAC, whose scenarios seemingly have
these simplifying properties (Ellis et al., 2022).

In the following, we regard a small example, where state-
based CTDE can fail at finding an optimal joint policy π∗.

Example Dec-Tiger is a traditional and simple Dec-
POMDP benchmark with N = 2 agents facing two doors
(Nair et al., 2003). A tiger is randomly placed behind the
left (sL) or right door (sR) representing the true state. Both
agents are able to listen (li) and open the left (oL) or right
door (oR). The listening action li produces a noisy obser-
vation of either hearing the tiger to be left (zL) or right
(zR), which correctly indicates the tiger’s position with 85%
chance and a cost of −1 per listening agent. If both agents
open the same door, the episode terminates with a reward
of -50 if opening the tiger door and +20 otherwise. If both
agents open different doors, the episode ends with -100 re-
ward and, if only one agent opens a door while the other
agent is listening, the episode terminates with -101 if open-
ing the tiger door and +9 otherwise.

Given a horizon of T = 2, the tiger being behind the right
door (sR), and both agents having listened in the first step,
where agent 1 heard zL and agent 2 heard zR: Assuming
that both agents learned to perform the same actions, e.g.,
due to CTDE and parameter sharing (Tan, 1993; Gupta et al.,
2017), Q∗MDP and Q∗ would estimate the following values2:

Q∗MDP(sR, 〈li, li〉) = −2 Q∗(τ t, 〈li, li〉) = −2

Q∗MDP(sR, 〈oL, oL〉) = 20 Q∗(τ t, 〈oL, oL〉) = −15

Q∗MDP(sR, 〈oR, oR〉) = −50 Q∗(τ t, 〈oR, oR〉) = −15

Any policy π∗MDP or decentralizable joint policy π w.r.t.
IGM (Eq. 7) that maximizes Q∗MDP according to Eq. 2
would optimistically recommend 〈oL, oL〉 based on the true
state sR, regardless of what the agents observed. However,
any joint policy π∗ that maximizes the expectation of Q∗

according to Eq. 4 would consider agent-wise stochastic
partial observability and recommend 〈li, li〉, which corre-
sponds to the true optimal decision for T = 2 (Szer et al.,
2005).

4.2. Attention-Based Embeddings of Recurrence

Preliminaries We now introduce Attention-based Embed-
dings of Recurrence In multi-Agent Learning (AERIAL) to
approximate optimal Dec-POMDP value functions Q∗ ac-
cording to Eq. 3-5. Our setup uses a factorization operator
Ψ like QMIX or QPLEX according to Eq. 6-7. All agents
process their local histories τt,i via RNNs as motivated in
Section 2.4 and schematically shown in Fig. 1 (left).

Unlike Q∗MDP, the true optimal Dec-POMDP value func-
tion Q∗ considers more accurate closed-loop information
about decentralized agent decisions through multi-agent re-
currence Pπ(τ t|b0) according to Eq. 5. Simply replacing
st with τ t as suggested in (Lyu et al., 2022) is not sufficient
because the resulting value function would assume a central-
ized controller with access to the complete joint history τ t,
in contrast to decentralized agents i which can only access
their respective local history τt,i (Oliehoek et al., 2008).

Exploiting Multi-Agent Recurrence At first we propose
to naively exploit all individual recurrences by simply re-
placing the true state st in CTDE with the joint memory
representation ht = 〈ht,i〉i∈D of all agents’ RNNs. Each
memory representation ht,i implicitly encodes the individ-
ual recurrence Pπi

i (τt,i|b0) of agent i according to Eq. 8.
Therefore, ht provides more accurate closed-loop informa-
tion about decentralized agent decisions than st.

This approach, called AERIAL (no attention), can
already be considered a sufficient solution if all individual
recurrences Pπi

i (τt,i|b0) are statistically independent such
that Pπ(τ t|b0) =

∏N
i=1 P

πi
i (τt,i|b0).

2The exact calculation is provided in the Appendix B.
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Figure 1. Illustration of the AERIAL setup. Left: Recurrent agent network structure with memory representations ht−1,i and ht,i. Right:
Value function factorization via factorization operator Ψ using the joint memory representation ht = 〈ht,i〉i∈D of all agents’ RNNs
instead of true states st. All memory representations ht,i are detached from the computation graph to avoid additional differentiation
(indicated by the dashed gray arrows) and passed through a simplified transformer before being used by Ψ for value function factorization.

Attention-Based Recurrence While AERIAL (no
attention) offers a simple way to address agent-wise
stochastic partial observability, the independence assump-
tion of all individual recurrences Pπi

i (τt,i|b0) does not hold
in practice due to correlations in observations and actions
(Bernstein et al., 2005; Amato et al., 2007).

Given the Dec-Tiger example above, the individual re-
currences according to Eq. 8 are Pπ1

1 (τt,1|b0) =
Pπ2

2 (τt,2|b0) = 0.5 (Kaelbling et al., 1998). However,
the actual multi-agent recurrence according to Eq. 5 is
Pπ(τ t|b0) = 0.15 · 0.85 6= Pπ1

1 (τt,1|b0) · Pπ2
2 (τt,2|b0),

indicating that individual recurrences are not statistically
independent in general (Oliehoek & Amato, 2016).

Therefore, we process ht by a simplified transformer along
the agent axis to automatically consider the latent depen-
dencies of all memory representations ht,i ∈ ht through
self-attention. The resulting approach, called AERIAL, is
depicted in Fig. 1 and Algorithm 1 in Appendix C.

Our transformer does not use positional encoding or mask-
ing, since we assume no particular ordering among agents.
The joint memory representation ht is passed through a
single multi-head attention layer with the output of each
attention head c being defined by (Vaswani et al., 2017):

attc(ht) = softmax

(
W c
q (ht)W

c
k (ht)

>
√
datt

)
W c
v (ht) (9)

where W c
q , W c

k , and W c
v are multi-layer perceptrons (MLP)

with an output dimensionality of datt. All outputs attc(ht)
are summed and passed through a series of MLP layers be-
fore being fed into the factorization operator Ψ, effectively

replacing the true state st by a learned representation of
multi-agent recurrence Pπ(τ t|b0) according to Eq. 5.

To avoid additional differentation of ht through Ψ or Eq. 9,
we detach ht from the computation graph. Thus, we make
sure that ht is only learned through agent RNNs.

4.3. Discussion of AERIAL

The strong focus on state-based CTDE in the last few years
has led to the development of increasingly complex algo-
rithms that largely neglect stochastic partial observability
in general Dec-POMDPs (Lyu et al., 2021; 2022). In con-
trast, AERIAL offers a simple way to adjust factorization
approaches by replacing the true state st with a learned rep-
resentation of multi-agent recurrence Pπ(τ t|b0) to consider
more accurate closed-loop information about decentralized
agent decisions. The rest of the training scheme remains
unchanged, which eases adjustment of existing approaches.

Since the naive independence assumption of individual
memory representations ht,i does not hold in practice – de-
spite decentralization – we use a simplified transformer to
consider the latent dependencies of all ht,i ∈ ht along the
agent axis to learn an adequate representation of multi-agent
recurrence Pπ(τ t|b0) according to Eq. 5.

AERIAL does not depend on true states therefore requiring
less overall information than state-based CTDE, since we
assume ht to be available in all CTDE setups anyway (Fo-
erster et al., 2018; Rashid et al., 2020). Note that AERIAL
does not necessarily require RNNs to obtain ht as hidden
layers of MLPs or decision transformers can be used to
approximate ht as well (Son et al., 2019; Chen et al., 2021).
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Figure 2. Left: Screenshot of two SMAC maps. Middle: PCA visualization of the joint observations in original SMAC within the first 5
steps of 1,000 episodes using a random policy with K = 0 initial random steps. Right: Analogous PCA visualization for MessySMAC
with K = 10 initial random steps. For visual comparability, the observations are deterministic here.

5. MessySMAC
5.1. Limitation of SMAC as a Benchmark

StarCraft Multi-Agent Challenge (SMAC) provides a rich
set of micromanagement tasks, where a team of learning
agents has to fight against an enemy team, which acts ac-
cording to handcrafted heuristics of the built-in StarCraft
AI (Samvelyan et al., 2019). SMAC currently represents
the de facto standard for MARL evaluation (Rashid et al.,
2018; 2020; Wang et al., 2021). However, SMAC scenarios
exhibit very limited stochastic partial observability due to
deterministic observations and low variance in initial states
therefore only representing simplified special cases rather
than general Dec-POMDP challenges (Lyu et al., 2022; Ellis
et al., 2022). To assess practicability of MARL, we need
benchmarks with sufficient stochasticity as the real-world is
generally messy and only observable through noisy sensors.

5.2. SMAC with Stochastic Partial Observability

MessySMAC is a modified version of SMAC with obser-
vation stochasticity w.r.t. Ω, where all measured values of
observation zt,i are negated with a probability of φ ∈ [0, 1),
and initialization stochasticity w.r.t. b0, where K random
steps are initially performed before officially starting an
episode. During the initial phase, the agents can already
be ambushed by the built-in AI, which further increases
difficulty compared to the original SMAC maps if K > 0.
MessySMAC represents a more general Dec-POMDP chal-
lenge which enables systematic evaluation under various
stochasticity configurations according to φ and K.

Fig. 2 shows the PCA visualization of joint observations
in two maps of original SMAC (K = 0) and MessySMAC
(K = 10) within the first 5 steps of 1,000 episodes using a
random policy. In original SMAC, the initial observations
of s0 (dark purple) are very similar and can be easily distin-
guished from subsequent observations by merely regarding
time steps. Therefore, open-loop control might already be
sufficient to solve these scenarios satisfactorily as hypoth-
esized in (Ellis et al., 2022). However, the distinction of
observations by time steps is more tricky in MessySMAC
due to significantly higher entropy in b0, indicating higher
initialization stochasticity and a stronger requirement for
closed-loop control, where agents need to explicitly consider
their actual observations to make proper decisions.

5.3. Comparison with SMACv2

SMACv2 is an update to the original SMAC benchmark
featuring initialization stochasticity w.r.t. position and
unit types, as well as observation restrictions (Ellis et al.,
2022). SMACv2 addresses similar issues as MessySMAC
but MessySMAC additionally features observation stochas-
ticity w.r.t. Ω according to the general Dec-POMDP for-
mulation in Section 2.1. Unlike MessySMAC, SMACv2
does not support the original SMAC maps thus not enabling
direct comparability w.r.t. stochasticity configurations.

Therefore, SMACv2 can be viewed as entirely new StarCraft
II benchmark, while MessySMAC represents a SMAC exten-
sion, enabling systematic evaluation under various stochas-
ticity configurations for the original SMAC maps.
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Figure 3. Average learning progress w.r.t. the return of AERIAL
variants and state-of-the-art baselines in Dec-Tiger over 50 runs.
Shaded areas show the 95% confidence interval.

6. Experiments
We use the state-based CTDE implementations of QPLEX,
CW-QMIX, OW-QMIX, and QMIX from (Rashid et al., 2020)
as state-of-the-art baselines with their default hyperparame-
ters. We also integrate MAPPO from (Yu et al., 2022). For
all experiments, we report the average performance and the
95% confidence interval over at least 20 runs.

AERIAL is implemented3 using QMIX as factorization op-
erator Ψ according to Fig. 1. We also experimented with
QPLEX as alternative with no significant difference in per-
formance. Thus, we stick with QMIX for efficiency due to
fewer trainable parameters. The transformer of AERIAL
has 4 heads with W c

q , W c
k , and W c

v each having one hid-
den layer of datt = 64 units with ReLU activation. The
subsequent MLP layers have 64 units with ReLU activation.

For ablation study, we implement AERIAL (no
attention), which trains Ψ directly on ht without
self-attention as described in Section 4.2, and AERIAL
(raw history), which trains Ψ on the raw joint history
τ t concatenated with the true state st as originally proposed
for actor-critic methods (Lyu et al., 2022).

6.1. Dec-Tiger

Setting We use the Dec-Tiger problem described in Sec-
tion 4.1 and (Nair et al., 2003) as simple proof-of-concept
domain with T = 4 and γ = 1. We also provide the optimal
value of 4.8 computed with MAA* (Szer et al., 2005).

Results The results are shown in Fig. 3. AERIAL comes
closest to the optimum, achieving an average return of
about zero. AERIAL (no attention) performs sec-
ond best with an average return of about -8, while all other
approaches achieve an average return of about -15.

Discussion The results confirm the example from Section
4.1 and the findings of (Oliehoek et al., 2008; Lyu et al.,

3Code is available at https://github.com/
thomyphan/messy_smac. Further details are in Appendix D.

2022). All state-based CTDE approaches and AERIAL
(raw history) converge to a one-step policy, where
both agents optimistically open the same door regardless
of any agent observation. AERIAL (no attention)
converges to a local optimum most of the time, where both
agents only listen for all T = 4 time steps. AERIAL per-
forms best due to considering the latent dependencies of
all memory representations ht,i ∈ ht via self-attention to
learn an adequate representation of multi-agent recurrence
Pπ(τ t|b0) according to Eq. 5.

6.2. Original SMAC

Setting We evaluate AERIAL in original SMAC using
the maps 3s5z and 10m vs 11m, which are classified as
easy, as well as the hard maps 2c vs 64zg, 3s vs 5z,
and 5m vs 6m, and the super hard map 3s5z vs 3s6z
(Samvelyan et al., 2019).

Results The final average test win rates after 2 million
steps of training are shown in Table 1. AERIAL is competi-
tive to QPLEX and QMIX in the easy maps, while perform-
ing best in 3s vs 5z and 5m vs 6m. MAPPO performs
best in 2c vs 64zg and 3s5z vs 3s6z with AERIAL
being second best in the super hard map 3s5z vs 3s6z.

Discussion AERIAL is competitive to state-of-the-art
baselines in original SMAC, indicating that replacing the
true state st with the joint memory representation ht does
not notably harm performance. Despite outperforming most
baselines in some maps, we do not claim significant outper-
formance here, since we regard most SMAC maps as widely
solved by the community anyway (Ellis et al., 2022).

6.3. MessySMAC

Setting We evaluate AERIAL in MessySMAC using the
same maps as in Section 6.2. We set φ = 15% and K = 10.

Results The results are shown in Fig. 4. AERIAL per-
forms best in all maps with AERIAL (no attention)
being second best except in 2c vs 64zg. In
3s5z vs 3s6z, only AERIAL and AERIAL (no
attention) progress notably. AERIAL (raw
history) performs worst in all maps. MAPPO only
progresses notably in 2c vs 64zg.

Discussion Similar to the Dec-Tiger experiment, the re-
sults confirm the benefit of exploiting more accurate closed-
loop information in domains with stochastic partial observ-
ability. AERIAL consistently outperforms AERIAL (no
attention), indicating that self-attention can correct
for the naive independence assumption of all ht,i ∈ ht.
MAPPO performs especially poorly in MessySMAC due to
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Table 1. Average win rate of AERIAL and state-of-the-art baselines after 2 million time steps of training across 400 final test episodes for
the original SMAC maps with the 95% confidence interval. The best results per map are highlighted in boldface and blue.

AERIAL QPLEX CW-QMIX OW-QMIX QMIX MAPPO
3s5z 0.95± 0.01 0.94± 0.01 0.87± 0.02 0.91± 0.02 0.95± 0.01 68.7± 0.94
10m vs 11m 0.97± 0.01 0.90± 0.02 0.91± 0.02 0.96± 0.01 0.90± 0.02 77.3± 0.66
2c vs 64zg 0.52± 0.11 0.29± 0.1 0.38± 0.12 0.55± 0.13 0.59± 0.11 90.2± 0.24
3s vs 5z 0.96± 0.02 0.74± 0.11 0.18± 0.06 0.08± 0.04 0.81± 0.05 73.8± 0.44
5m vs 6m 0.77± 0.03 0.66± 0.04 0.41± 0.04 0.55± 0.06 0.67± 0.05 60.6± 1.13
3s5z vs 3s6z 0.18± 0.09 0.1± 0.03 0.0± 0.0 0.02± 0.01 0.02± 0.02 20.5± 2.91

(a) 3s5z (b) 10m vs 11m (c) 2c vs 64zg

(d) 3s vs 5z (e) 5m vs 6m (f) 3s5z vs 3s6z

Figure 4. Average learning progress w.r.t. the win rate of AERIAL variants and state-of-the-art baselines in MessySMAC for 2 million
steps over 20 runs. Shaded areas show the 95% confidence interval. The legend at the top applies across all plots.

its misleading dependence on true states without any credit
assignment, confirming the findings of (Ellis et al., 2022).

6.4. Robustness against Stochastic Partial Observability

Setting To evaluate the robustness of AERIAL and
AERIAL (no attention) against various stochastic-
ity configurations in MessySMAC, we manipulate Ω
through the observation negation probability φ and b0
through the number of initial random steps K as defined in
Section 5.2. We compare the results with QMIX and QPLEX
as the best performing state-of-the-art baselines in MessyS-
MAC according to the results in Section 6.3. We present
summarized plots, where the results are aggregated accross
all maps from Section 6.3. To avoid that easy maps dominate
the average win rate, since all approaches achieve high val-
ues there, we normalize the values by the maximum win rate

achieved in the respective map for all tested configurations
of φ and K. Thus, we ensure an equal weighting regardless
of the particular difficulty level. If not mentioned otherwise,
we set φ = 15% and K = 10 as default parameters based
on Section 6.3.

Results The results regarding observation stochasticity
w.r.t. Ω and φ are shown in Fig. 5. Fig. 5(a) shows that
the average win rates of all approaches decrease with in-
creasing φ with AERIAL consistently achieving the highest
average win rate in all configurations. Fig. 5(b) shows
that AERIAL performs best in most MessySMAC maps,
especially when φ ≥ 15%. AERIAL (no attention)
performs second best.

The results regarding initialization stochasticity w.r.t. b0
and K are shown in Fig. 6. Analogously to Fig. 5, Fig.
6(a) shows that the average (normalized) win rates of all ap-
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(a) normalized test win rate (b) # maps best out of 6

Figure 5. Evaluation of AERIAL, AERIAL (no attention),
and the best MessySMAC baselines for different observation nega-
tion probabilities φ affecting observation stochasticity w.r.t. Ω (20
runs per configuration). (a) The average normalized test win rate
accross all 6 MessySMAC maps from Section 6.3. (b) The number
of maps best out of 6. The legend at the top applies across all plots.

(a) normalized test win rate (b) # maps best out of 6

Figure 6. Evaluation of AERIAL, AERIAL (no attention),
and the best MessySMAC baselines for different initial random
steps K affecting initialization stochasticity w.r.t. b0 (20 runs per
configuration). (a) The average normalized test win rate accross all
6 MessySMAC maps from Section 6.3. (b) The number of maps
best out of 6. The legend at the top applies across all plots.

proaches decrease with increasing K with AERIAL consis-
tently achieving the highest average win rate in all configura-
tions. Fig. 6(b) shows that AERIAL performs best in most
MessySMAC maps, especially when K ≥ 10. AERIAL
(no attention) performs second best.

Discussion Our results systematically demonstrate the
robustness of AERIAL and AERIAL (no attention)
against various stochasticity configurations according to
Ω and b0. State-based CTDE is notably less effective in
settings, where observation and initialization stochasticity
is high. As AERIAL consistently performs best in all maps
when φ ≥ 15% or K ≥ 10, we conclude that providing an
adequate representation of Pπ(τ t|b0) according to Eq. 5
that is learned, e.g., through ht and self-attention, is more
beneficial for CTDE than merely relying on true states when
facing domains with high stochastic partial observability.

7. Conclusion and Future Work
To tackle general multi-agent problems, which are messy
and only observable through noisy sensors, we need ade-
quate algorithms and benchmarks that sufficiently consider
stochastic partial observability.

In this paper, we proposed AERIAL to approximate value
functions under stochastic partial observability with a
learned representation of multi-agent recurrence, consid-
ering more accurate closed-loop information about decen-
tralized agent decisions than state-based CTDE.

We then introduced MessySMAC, a modified version of
SMAC with stochastic observations and higher variance in
initial states, to provide a more general and configurable
Dec-POMDP benchmark regarding stochastic partial ob-
servability. We showed visually in Fig. 2 and experimen-
tally in Section 6 that MessySMAC scenarios pose a greater
challenge than their original SMAC counterparts due to
observation and initialization stochasticity.

Compared to state-based CTDE, AERIAL offers a simple
but effective approach to general Dec-POMDPs, being com-
petitive in original SMAC and superior in Dec-Tiger and
MessySMAC, which both exhibit observation and initializa-
tion stochasticity unlike original SMAC. Simply replacing
the true state with memory representations can already im-
prove performance in most scenarios, confirming the need
for more accurate closed-loop information about decentral-
ized agent decisions. Self-attention can correct for the naive
independence assumption of agent-wise recurrence to fur-
ther improve performance, especially when observation or
initialization stochasticity is high.

We plan to further evaluate AERIAL in SMACv2 and mixed
competitive-cooperative settings with multiple CTDE in-
stances (Lowe et al., 2017; Phan et al., 2020).

Acknowledgements
This work was partially funded by the Bavarian Ministry
for Economic Affairs, Regional Development and Energy
as part of a project to support the thematic development of
the Institute for Cognitive Systems.

References
Amato, C., Bernstein, D. S., and Zilberstein, S. Opti-

mizing Memory-Bounded Controllers for Decentralized
POMDPs. In Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence, pp. 1–8, 2007.

Bernstein, D. S., Hansen, E. A., and Zilberstein, S. Bounded
Policy Iteration for Decentralized POMDPs. In IJCAI,
pp. 52–57, 2005.

9



Attention-Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic Partial Observability

Boutilier, C. Planning, Learning and Coordination in Multia-
gent Decision Processes. In Proceedings of the 6th confer-
ence on Theoretical aspects of rationality and knowledge,
pp. 195–210. Morgan Kaufmann Publishers Inc., 1996.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I.
Decision Transformer: Reinforcement Learning via Se-
quence Modeling. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 34, pp. 15084–15097. Curran Associates, Inc., 2021.
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A. Limitations and Societal Impacts
A.1. Limitations

In easier domains without stochastic partial observability, AERIAL does not significantly outperform the state-of-the-art
baselines as indicated by the original SMAC results in Table 1. This implies that simplified Dec-POMDP settings might
benefit from more specialized algorithms. The dependence on joint memory representations ht = 〈ht,i〉i∈D might induce
some bias w.r.t. agent behavior policies which could limit performance in hard exploration domains therefore requiring
additional mechanisms beyond the scope of this work. The full version of AERIAL requires additional compute4 due to
the transformer component in Fig. 1, which can be compensated by using a more (parameter) efficient value function
factorization operator Ψ, e.g., QMIX instead of QPLEX.

A.2. Potential Negative Societal Impacts

The goal of our work is to realize autonomous systems to solve complex tasks under stochastic partial observability as
motivated in Section 1. We refer to (Whittlestone et al., 2021) for a general overview regarding societal implications of deep
RL and completely focus on cooperative MARL settings in the following.

AERIAL is based on a centralized training regime to learn decentralized policies with a common objective. That objective
might include bias of a central authority and could potentially harm opposing parties, e.g., via discrimination or misleading
information. Since training is conducted in a laboratory or a simulator, the resulting system might exhibit unsafe or
questionable behavior when being deployed in the real world due to poor generalization, e.g., leading to accidents or unfair
decisions. The transformer component in Fig. 1 might require a significant amount of additional compute for tuning and
training therefore increasing overall cost. The self-attention weights of Eq. 9 could be used to discriminate participating
individuals in an unethical way, e.g., discarding less relevant groups of individuals according to the softmax output.

Similar to original SMAC, MessySMAC is based on team battles, indicating that any MARL algorithm mastering that
challenge could be misused for real combat, e.g., in autonomous weapon systems to realize distributed and coordinated
strategies. Since MessySMAC covers the aspect of stochastic partial observability, successfully evaluated algorithms could
be potentially more effective and dangerous in real-world scenarios.

B. Dec-Tiger Example
Given the Dec-Tiger example from Section 4.1 with a horizon of T = 2, the tiger being behind the right door (sR), and
both agents having listened in the first step, where agent 1 heard zL and agent 2 heard zR: The final state-based values are
defined by Q∗MDP(st,at) = R(st,at).

Due to both agents perceiving different observations, i.e., zL and zR respectively, the probability of being in state sR is 50%
according to the belief state, i.e., b(sR|τ t) = b(sL|τ t) = 1

2 . Thus, the true optimal Dec-POMDP values for the final time
step are defined by:

Q∗(τ t,at) =
∑
st∈S

b(st|τ t)R(st,at)

=
1

2
(Q∗MDP(sL,at) +Q∗MDP(sR,at))

(10)

The values of Q∗MDP and Q∗ for the final time step t = 2 in the example are given in Table 2. Both agents can reduce the
expected penalty when always performing the same action. Therefore, it is likely for MARL to converge to a joint policy
that recommends the same actions for both agents, especially when synchronization techniques like parameter sharing are
used (Tan, 1993; Gupta et al., 2017; Yu et al., 2022).

C. Full Algorithm of AERIAL
The complete formulation of AERIAL is given in Algorithm 1. Note that AERIAL does not depend on true states st at all,
since the experience samples et used for training (Line 23) do not record any states.

4The additional amount regarding wall clock time was negligible in our experiments though.
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Table 2. The values of Q∗MDP and Q∗ for the final time step t = 2 in the Dec-Tiger example from Section 4.1.
at Q∗MDP(sL,at) Q∗MDP(sR,at) Q∗(τ t,at)
〈li, li〉 −2 −2 −2
〈li, oL〉 -101 +9 -46
〈li, oR〉 +9 -101 -46
〈oL, li〉 -101 +9 -46
〈oL,oL〉 −50 +20 −15
〈oL, oR〉 -100 -100 -100
〈oR, li〉 +9 -101 -46
〈oR, oL〉 -100 -100 -100
〈oR,oR〉 +20 −50 −15

Algorithm 1 Attention-based Embeddings of Recurrence In multi-Agent Learning (AERIAL)
1: Initialize parameters for 〈Qi〉i∈D and Ψ.
2: for episode m← 1, E do
3: Sample s0, z0, and τ0 via b0 and Ω.
4: for time step t← 0, T − 1 do
5: for agent i ∈ D do
6: at,i ← πi(τt,i) {Use argmaxat,iQi(τt,i, at,i)}
7: rand ∼ U(0, 1) {Sample from uniform distribution}
8: if rand ≤ ε then
9: Select random action at,i ∈ Ai. {Explore with ε-greedy}

10: end if
11: end for
12: at ← 〈at,i〉i∈D
13: Execute joint action at.
14: st+1 ∼ T (st+1|st,at)
15: zt+1 ∼ Ω(zt+1|at, st+1)
16: ht ← 〈ht,i〉i∈D {Query memory representations of all agents}
17: Detach ht from computation graph. {Avoid additional differentiation through Ψ or Eq. 9}
18: τ t+1 ← 〈τ t,at, zt+1〉 {Concatenate τ t, at, and zt+1}
19: for attention head c← 1, C do
20: attentionc ← attc(ht) {Process individual recurrences according to Eq. 9}
21: end for
22: rect ← MLP(

∑C
c=1 attentionc) {See Section 4.2}

23: et ← 〈τ t,at, rt, zt+1, rect〉
24: Store experience sample et.
25: end for
26: Train Ψ and 〈Qi〉i∈D using all et. {See Fig. 1}
27: end for
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D. Experiment Details
D.1. Computing infrastructure

All training and test runs were performed in parallel on a computing cluster of fifteen x86 64 GNU/Linux (Ubuntu 18.04.5
LTS) machines with i7-8700 @ 3.2GHz CPU (8 cores) and 64 GB RAM. We did not use any GPU in our experiments.

D.2. Hyperparameters and Neural Network Architectures

Our experiments are based on PyMARL and the code from (Rashid et al., 2020) under the Apache License 2.0. We use the
default setting from the paper without further hyperparameter tuning as well as the same neural network architectures for the
agent RNNs, i.e., gated recurrent units (GRU) of (Cho et al., 2014) with 64 units, and the respective factorization operators
Ψ as specified by default for each state-of-the-art baseline in Section 6. We set the loss weight α = 0.75 for CW-QMIX and
OW-QMIX.

For MAPPO, we use the hyperparameters suggested in (Yu et al., 2022) for SMAC, where we set the clipping parameter to
0.1 and use an epoch count of 5. The parameter λ for generalized advantage estimation is set to 1. The centralized critic has
two hidden layers of 128 units with ReLU activation, a single linear output, and conditions on agent-specific global states
which concatenate the true state st and the individual observation zt,i per agent i. The policy network of MAPPO has a
similar recurrent architecture like the local utility functions Qi and additionally applies softmax to the output layer.

AERIAL is implemented using QMIX as factorization operator Ψ according to Fig. 1. We also experimented with QPLEX as
alternative with no significant difference in performance. Thus, we stick with QMIX for computational efficiency due to
fewer trainable parameters. The transformer has C = 4 heads c ∈ {1, ..., C} with respective MLPs W c

q , W c
k , and W c

v , each
having one hidden layer of datt = 64 units with ReLU activation. The three subsequent MLP layers of Line 22 in Algorithm
1 have 64 units with ReLU activation.

All neural networks are trained using RMSProp with a learning rate of 0.0005.
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