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ABSTRACT

Vector search powers transformers technology, but real-world use demands hybrid
queries that combine vector similarity with attribute filters (e.g., “top document in
category X, from 2023”). Current solutions trade off recall, speed, and flexibility,
relying on fragile index hacks that don’t scale. We introduce fused-based ANN, a
geometric framework that elevates filtering to ANN optimization constraints and
introduces a convex fused space via a Lagrangian-like relaxation. Our method
jointly embeds attributes and vectors through transformer-based convexification,
turning hard filters into continuous, weighted penalties that preserve top-k seman-
tics while enabling efficient approximate search. We prove that our fused method
reduces to exact filtering under high selectivity, gracefully relaxes to semantically
nearest attributes when exact matches are insufficient, and preserves downstream
ANN -approximation guarantees. Empirically, fused-based method improves query
throughput by eliminating brittle filtering stages, achieving superior recall-latency
trade-offs on standard hybrid benchmarks without specialized index hacks, deliver-
ing up to 3x higher throughput and better recall than state-of-the-art hybrid and
graph-based systems. Theoretically, we provide explicit error bounds and parame-
ter selection rules that make the fusion practical for production. This establishes a
principled, scalable, and verifiable bridge between symbolic constraints and vector
similarity, unlocking a new generation of filtered retrieval systems for large, hybrid,
and dynamic NLP/ML workloads.

1 INTRODUCTION

The approximate nearest neighbor search (ANNS) is fundamental to many data science and Al
applications, enabling efficient retrieval of similar vectors in high-dimensional spaces (Chen et al.,
2021; Malkov & Yashunin, 2018; Subramanya et al., 2019b). However, real-world applications
increasingly require hybrid queries that combine vector similarity with attribute constraints (Gollapudi
et al., 2023; Wang et al., 2023; 2021a; Wei et al., 2020; Taipalus, 2024; Pinecone, 2021; Japan, 2016;
Wu et al., 2022; Microsoft, 2020; Heidari et al., 2025b;a; Heidari & Zhang, 2025). These constraints
typically appear as either exact filters (e.g., "images with tag ’sunset’") or range filters (e.g., "products
priced between $20-$50") (Pan et al., 2024; Ren et al., 2020).

Existing approaches to hybrid queries can be categorized into three strategies: (1) Filter-first methods
like AnalyticDB-V (Wei et al., 2020) and Weaviate (Taipalus, 2024), which use attribute information
to narrow the search space before vector similarity search. (2) ANN-first methods such as NGT (Japan,
2016), Vearch (Jingdong, 2020), FAISS-IVF (Douze et al., 2024), and Pinecone (Pinecone, 2021),
where vector search is performed before applying attribute filters. (3) Hybrid methods that integrate
both filter and vector information into specialized index structures, including Filtered-Disk ANN (Gol-
lapudi et al., 2023), which uses a graph index with label-aware connections; NHQ (Wang et al.,
2023), which builds a composite proximity graph with joint pruning; DEG (Yin et al., 2025), which
performs hybrid similarity search by building a Pareto-pruned graph and using an weighted traversal
to retrieve results along approximate Pareto frontiers; HQANN (Wu et al., 2022), which leverages
attribute-guided navigation and fused search; as well as recent approaches like ACORN (Patel et al.,
2024), CAPS (Gupta et al., 2023), and Milvus (Wang et al., 2021a) in its advanced partitioning modes.
Hybrid methods such as ACORN and CAPS employ predicate-aware or cost-aware partitioning
schemes to jointly optimize filter and vector search, while modern versions of Milvus leverage
offline data structures to partition vectors based on historical filter conditions, thus improving search
efficiency under complex predicates. Range filters, which constrain results to specified intervals of
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attribute values, present additional challenges compared to exact filters (Pan et al., 2024). Efficiently
handling range constraints requires consideration of attribute continuity and potential overlap between
ranges, which can lead to increased candidate set sizes and higher computational complexity. This is
especially critical in real-world workloads, where range predicates are common and may be applied to
high-cardinality or correlated attributes. As a result, designing hybrid query systems that support fast
and scalable range filtering remains an open problem, with recent research exploring new geometric
and algorithmic approaches to overcome these difficulties, including HM-ANN (Ren et al., 2020),
which enables graph search for heterogeneous memory; SeRF (Zuo et al., 2024), which uses a
compressed segment graph for ranges; iRangeGraph (Xu et al., 2025), which constructs elemental
graphs for on-demand ranges; and UNIFY (Liang et al., 2024), which builds a unified segmented
graph for all ranges.

Although these approaches involve different tradeoffs, they share a fundamental limitation: attribute
filtering is treated as an auxiliary operation layered onto the vector search process or index structure,
rather than as a transformation of the underlying data space itself. This paradigm imposes intrinsic
performance bottlenecks, especially when supporting multiple attributes with varying priorities or
adapting to shifts in attribute distributions. In particular, state-of-the-art methods typically forego
direct use of the original data, instead constructing specialized index replicas tailored for hybrid
queries. As a result, whether the transformation occurs at the data or index level is largely insignificant-
further motivating a data-centric perspective for hybrid search.

To address these limitations, we present FUSEDANN, a hybrid query framework merging attribute
filters with vector data at the representation level. FUSEDANN uses a filter-centric vector index-
ing method, a mathematically grounded transformation, that unifies attribute filtering with vector
similarity search, analogous to introducing a Lagrange multiplier into a convex objective and fusion
of information signals (Boyd & Vandenberghe, 2004; Heidari et al., 2024; 2020c; 2019). A unified
space where: (1) the dimensionality remains unchanged, (2) the distance ordering of elements with
identical attributes is preserved, and (3) a tunable parameter increases distances between differently
attributed elements.

Contributions. Our key contributions are: (I) A general framework for hybrid queries compatible
with existing ANN indexing algorithms (§3). (II) Support for multiple attributes with intuitive
priority hierarchies (§4). (III) Efficient handling of range filters through geometric interpretation (§5).
(IV) Comprehensive experimental evaluation demonstrating FUSEDANN’s superior effectiveness,
efficiency, and stability (§6). The theoretical analysis provided in the Appendix offers rigorous
guarantees on FUSEDANN’s performance characteristics, including precise bounds on transformation
parameters and candidate set sizes required for specific error probabilities.

2 PRELIMINARIES

Definition 1 (Record Set D(F)). A record is an F + 1-tuple vector OEF) =
[v(0:), fV(04),..., ) (0;)], where v(0;) € R? is a content vector (e.g., from BERT (De-
vlin et al., 2019)), and f(j)(oi) € R™i is the j-th attribute vector in a metric space, also from a

neural network. The record set is D) = {OEF), e og)}, containing n records of dimension F. Let

X = {v(0;) | 0; € D} and, for each j € [1,F), F; = {fV(0;) | 0; € DI},

If F = 0, we have the regular ANN setup. If ' = 1 (one attribute), we use D and o; instead of DM
(1)

and o;
Example 1. Record sets can represent various data types, such as images or videos. For example,
as illustrated in Fig. 1(a), each record may correspond to an image described by attributes such as
“Tag”, “Category”, and “Date”. By embedding both the images and the “Tag” in appropriate metric

spaces, we obtain the record set DY) (or simply D because we only use one attribute F = 1).

Given a record o € D, its content vector v(o) € X is represented as v(o) =
[v(0)[0],v(0)[1],...,v(0)[d — 1]], where v(0)[i] denotes the i-th dimension. We primarily con-
sider high-dimensional cases, where d is typically in the hundreds or thousands. For any two
records o, € D), their similarity is commonly measured using a metric such as Euclidean
distance or cosine similarity. The Euclidean distance between their content vectors is defined

as p(v(0), v(r)) = /S0 (v(0)[i] — v(r) i)
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Figure 1: Data and queries are embedded into content and attribute vectors and fused by a transformation ¥
parameterized by & > 1 and 8 > 1. The fused vectors are indexed for efficient retrieval. At query time, the
same transformation is applied, enabling unified search and re-ranking based on attribute-content similarity.

Definition 2 (Approximate Nearest Neighbor Search (ANNS)). Let D® be a record set and qa
query with content vector v(q). The exact k-nearest neighbors (k-NN) of q in D) with respect to
the distance metric p is defined as:

NNk(q) = argmin > p(v(q),v(0)) (1)
SCD®) | |S|=k o5
Finding exact k-NN is computationally expensive in high-dimensional spaces (Abbasifard et al., 2014,
Wang et al., 2021b). Therefore, approximate nearest neighbor search (ANNS) aims to efficiently
return a set ANN (q) such that, with high probability,

max  p(v(q),v(0)) < (1+¢) Cmax p(v(q),v(0)), )

0€ANN (q) (9)

where € > 0 is the approximation factor. ANNS methods typically search based only on content
vectors (Malkov & Yashunin, 2018; Douze et al., 2024; Bernhardsson, 2024).

Definition 3 (Hybrid Query (HQ) with Monotone Attribute Priority). Given a set of records D)
and query q = [v(q), Fq(l), cee Fq(]F)], let Fr(1y = -+ = Fr(w) be the attribute priority order (with
the content as the lowest priority). For any candidate set S C D) of size k, let

. 1 . . X 1 . ) 12
W = 2oV, ED), Vard = 23 (05D (o), B — | 3

o€S o€eS
where o is a distance metric on Fj;, which we assume to be Euclidean in this study. We say S

satisfies monotone attribute priority if: Var(sﬂ(l)) <. <L Var(SW(F)). The hybrid query returns the set
S* of size k that minimizes the mean distances subject to monotone attribute priority:

* . 1
S* = arg min p(sﬂ(l)), cee ,u_(.;(]F)), — Z p(v(q),v(0)) 4)
scp® | |S|=k k =
monotone attribute priority
in lexicographic order; i.e., by first minimizing the mean distance for the highest-priority attribute,
then the next in order, and finally the average content distance p (content vector distance metric).
Eq. 4 relaxes filters, prioritizing exact matches on higher-priority attributes to fill k; if still short, it
fills the rest via nearest attribute clusters (k-NN)—a native expansion unlike classical filtered ANN,
which requires exact matches and offers no fallback. Users can still keep exact-only, as in Alg. 1.

When F = 1 (i.e., there is only one attribute), the hybrid query problem becomes a simplified version
commonly considered in previous work (Chen et al., 2021; Gollapudi et al., 2023; Jingdong, 2020;
Tan et al., 2023; Wang et al., 2021a; Wu et al., 2022; Heidari & Zhang, 2025; Xu et al., 2025; Zhu
et al., 2020; Zuo et al., 2024).

3 FUSEDANN FRAMEWORK

Model Overview. Our framework enables hybrid search by fusing content and attribute information
in a way that gives explicit control over their relative influence. Given a content vector v(o;) € R and

an attribute vector f(0;) € R™ with m < d, we partition v(0;) into d/m blocks v(1), ... v([@/m]),
each in R™. We then define the transformation:
(1) _ (fd/ml) _
W(o, f,0,8) = | 2 5‘”,...,” ; of | ere )

where o > 1 and 8 > 1 are scaling parameters. If m { d, the last partition is transformed using
the attribute sub-vector, so without losing generality, we assume m | d. As illustrated in Fig. 1, the
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Figure 2: (a): The effect of « and 3. (b): Multi-attribute iterative space overview. (c): Attribute or prority
effect on our approach. (d): Range filter ANN analogy of cylinder

transformation is first applied to the data offline to build the index, and the same transformation is
used online to process queries for retrieval (Fig. 1(b)). This creates a combined space that incorporates
both the content representation and the attribute filters (such as Tag), where the attribute vectors can
be generated using models like BERT (Devlin et al., 2019) or CLIP (Radford et al., 2021) to embed
tags into a metric space before integration into the content vector (For a numerical example, see §B).

The parameter o increases the separation between records with different attribute values,
while S compresses all distances to regularize the fused space (see Fig. 2(a)). In prac-
tice, o and [ should be chosen large enough to ensure sufficient separation and regular-
ization, but not so large as to introduce unnecessary computational complexity. Alg. 1
shows the building of the fused space and index, query generation, and result process-
ing; as in line 15, we choose to include approximate attributes or only exact ones.
At query time, the query g = [v'(q),F al Algorithm 1 Single-Attribute Hybrid Vector Indexing
(content v(q) and attribute F) is trans- (Fused ANN))

formed as ¢’ = ¥(v(q), Fy, o, ).

1: [Offline Indexing] Require: Dataset D, Optimal parameters

For each attribute a, we define R, as a>1,8>1

the radius of the smallest hypersphere  2: for each o; in D do

containing all transformed records with ~ 3:  Partition v(o;) into v, ... v(%/™)

attribute a, dmm(a’ b) as the minimum 4:  Transform using given pzlirameters a, dﬂ v =
distance between records with attributes U(v(0:), f(o:), o, B) = [“< )B‘af, o of /";;“’f]
aand b, and 7, = minyq % -1 5. Add vj to index, retaining reference to o;

as the cluster separation metric. N, 6: end for

denotes the number of records with at-  7: Precompute for each attribute a: radius R,, minimum inter-
tribute a, and N is the total number of cluster distance dmin(a,b), and cluster separation metric
records. These statistics are used to de- Yo = MiNp2q d’"ilgiia’b) -1

termine the optimal candidate set size  8: [Online Query Processing] Require: Query ¢ = [v(q), F,],
k’ when processing queries. k, o, B, error probability €, Boolean Attr Approx

Our theoretical analysis (detailed in the 9: Partition v(q) into v, ..., vy""™
10: Transform: ¢’ = ¥(v(q), Fy, o, B)

Shupplem?fntary Mate\rI;th§E) provels ;?at 11: Compute &' (Thm. 2)
the transtormation as several XY  12: Retrieve top-k’ candidates from index using ¢’
properties: (i) it preserves the order of 3. for each candidate o; do
k-NN within clusters of records with 14:  Compute attribute distance: s; = o(f(0:), Fy)
identical attributes, enabling accurate 15:  if Attr Approz = False AND s5 # 0 then
content-based ranking within attribute 16: continue;
groups; (ii) it increases separation be- 17:  endif .
tween records with different attributes 18:  Compute content distance: s, = p(v(0:),v(q))
proportionally to «, improving filtering ;g g?mpute combined score: score(0;) = asy + By
effectiveness; and (iii) it scales all dis- - endfor

. 21: Sort candidates by score and return top-k
tances by 1/, controlling overall con-

centration. These properties enable prin-
cipled parameter selection: « should satisfy o > —BOmez (1+ £ ﬁ -) where 0,4, is the

Ominy/d/m Om

maximum content distance and o,,;,, is the minimum attribute distance, while 3 > 5?—;“ ensures

intra-cluster distances are bounded by ¢y (Thm. 4). The optimal values for « and 3 involves setting
inequalities to equal (Cor. 1). The formula for k" handles special cases like single-record attributes
and identical-content records within an attribute (R, = 0), providing probabilistic guarantees for
retrieving the true top-k results.
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Complexity. The offline phase requires O(/Nd) time to transform the dataset of N records with
d-dimensional vectors, plus O(|F|?N) time to compute cluster statistics where |F| is the number of
distinct attributes. The storage overhead is O(N) for vectors plus O(|F|?) for cluster statistics. For
online processing, query transformation takes O(d) time, followed by O(k’ log N) time for retrieving
candidates and O(k’d) time for re-ranking. As « increases, the required &’ approaches k, minimizing
overhead. This makes FUSEDANN efficient for practical applications where the number of distinct
attributes is much smaller than the dataset size.

4 MULTI-ATTRIBUTES AND ATTRIBUTE HIERARCHY

Real-world search scenarios often involve multiple filtering attributes, each with different levels
of importance (Def. 3). For example, an e-commerce platform might prioritize matching product
categories first, then brands, and finally price ranges. In this section, we extend FUSEDANN to
elegantly handle multiple attributes by applying our transformation sequentially, creating a natural
hierarchy that controls their relative importance. In this section, we also assume Vj € [1,F] : m; | d.

Recursive Transformations. The key insight of our approach is remarkably simple: by applying
the transformation W repeatedly for each attribute, we create a unified space that respects attribute
priorities. Starting with the original content vector vy = v(0;), we apply each transformation in
sequence:

Vj :\I/j(vj—laf(j)(oi)aaﬁﬂj) forj=1,2,...,F (6)

where each transformation uses its own parameters o;; > 1 and 3; > 1. The final transformed vector
up integrates information from all attributes. As illustrated in Fig. 2(b), this process can be visualized
with a simple example using two attributes, where each transformation progressively incorporates
attribute information to refine the grouping of records.

This sequential approach creates a natural priority structure with three powerful properties (formally
proven in the appendix). First, the order of elements with identical attributes is preserved through
all transformations, ensuring that content-based ranking remains accurate within attribute-matched
groups (Thm. 6).

Second, and crucially, the order of transformation application establishes a clear priority hierarchy:
the later an attribute is applied, the higher its effective priority in determining the vector space
structure (Thm. 7). As shown in Fig. 2(b), the transformation of the attribute with lower priority, 7(2),
is applied first, followed by the higher-priority attribute, 7r(1), resulting in the desired hierarchical
organization. This occurs because later transformations’ effects are scaled by fewer 3 factors, giving
them greater influence on the final distances. We show that when transformations are applied in
reverse priority order, the resulting space inherently satisfies the monotone attribute priority property
defined in Def. 3 (Thm. 8).

Third, our framework creates a natural stratification of records based on how many attributes match
the query (Thm. 9). Records with more matching attributes will always be closer to the query than
those with fewer matches, regardless of the content similarity. This creates well-defined "layers"
in the vector space, with the innermost layer containing records matching all attributes, the next
layer containing those matching all but one, and so on. Moreover, there always exist suitable
transformation settings such that this attribute matching hierarchy holds for all cross-clusters pair of
records (Thm. 10).

Example 2. Imagine a product catalog with transformations applied in the order
(fleotor) | flsize) —g(brand)y Tpis makes brand the highest priority attribute, followed by size, and
then color. When searching, the retrieved products primarily match the brand specified in the query,
followed by the size, and finally the color. Additionally, products are ranked by content similarity.

For multi-attribute retrieval, we extend Alg. 1 to apply transformations sequentially for each
attribute (see Alg. 3). The key differences are: (1) transformations are applied iteratively as
v; + U;(vj_1, f9)(0),;, ;) over all records for each attribute j € {1,...,F}; (2) the opti-
mal parameters « and 3 of subsequent fused space is computed for each new attribute transformation
iteratively; and (3) the candidate set size k' is determined using Thm. 11, reflecting the narrowing
effect of multiple filters (§F.5).

Time complexity remains O(Nd) for preprocessing transformations, though computing statistics
for all attribute combinations increases with the number of attributes. The query transformation is
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efficient at O(IFd) time. Importantly, as [F increases, fewer candidates are typically needed due to
better separation in the transformed space, improving search efficiency..

4.1 ATTRIBUTE UPDATES IN FUSEDANN

Real-world applications often need to add new attributes (as metadata) or change priority orderings
as requirements evolve. FUSEDANN handles these scenarios efficiently without requiring complete
index reconstruction. When adding a new attribute with the highest priority, we simply apply
an additional transformation to the already transformed vectors. For attributes inserted at lower
priorities, a partial reconstruction is needed, but only from the insertion point forward. Similarly,
when the priority orderings change, we need only to recompute transformations beyond the point
where the old and new orderings differ: j = min{k : Vi > k,n(i) = #'(¢)}. This limits the
computational complexity to O(N.j.d), substantially lower than the full recomputation, since only
a partial reconstruction is required for indexes lower than j (see Fig. 2(c)). This update efficiency
makes FUSEDANN particularly well-suited for dynamic applications where attribute importance
evolves over time, such as in recommendation systems where feature relevance changes based on
user behavior. Detailed theoretical analysis is provided in §F.6.

5 RANGE FILTER ON FUSEDANN

Range queries seek records whose attribute values fall within a specified attribute range [I, u], ranked
by similarity to a query vector q. Formally, a range query is Q = (q,[,u) where ¢ € R¢ and
l,u € R™. Our fused space has an elegant geometric characteristics that allows us instead of
indexing the points and then create feasible range at the runtime, index range queries and approximate
nearest range query at runtime. A range query can be defined as a cylinder in the fused space that
precisely captures all potential eligible nearest points to ¢ within [/, u]. The axis of the cylinder (line
segment) obtains by U to the boundaries: p; := ¥(q,l, @, 8), pu = ¥(q,u,a, B) parameterized as
L(Q,t) = (1 —1t)-p +t-py, wheret € [0,1] (or Lg in short).

For attribute values f € [l, u] in range-filtered query, the transformed query points p; := ¥(q, f, o, 5)
lie exactly on L in the fused embedding space (Thm. 15). Moreover, the vertical distance from
L g measures how well g is approximated and scales with its vector similarity. Geometrically, each
range-filtered query maps to a cylinder in the fused space. This relationship offers a unified geometric
framework for jointly handling attribute range filtering and vector similarity. Formally, if v # ¢, the

transformation of vy = ¥(v, f, @, B) vertical distance to L is exactly @ (Thm. 16). Leveraging

this traceability, we define a cylindrical range query by introducing a radius-r query cylinder around
Lg: Tube(Q,r) = {z € R? | minge o1 ||z — L(Q, t)|| < r} (see Fig. 2(d)).

During indexing, we create cylinders that cover the fused space with an optimal radius » = R. This
radius—ensuring high-probability top-k’ recall—is precomputed for each indexed line segment using
the k’-th neighbor distance, dataset size, and similarity distribution. (Thm. 18). To efficiently cover
the fused space with cylinders defined by pairs of offline data, which is crucial for fast retrieval, we
use an adaptive sampling strategy during indexing over the fused space. At query time, for a top-k
query Q' = (¢/, ', ') (where k < k'), we must find the nearest indexed cylindrical Tube(Q, R) with
Hausdorff distance closest axis Lg to Lg. The gap between k and &’ guarantees high recall by
providing the flexibility needed to approximate Ly with Tube((), R). The base radius R is stored
with each line in the index and determines the extent of the corresponding cylindrical region or the
maximum radius coverage.

Hierarchical Indexing Framework. We briefly sketch the idea here; details appear in §G. To
enable efficient range queries in the fused space, we introduce a hierarchical framework of three
levels in Alg. 2.

(D Leveraging the guaranteed sample complexity, which is derived from the data pattern and range
distributions (Livshits et al., 2020; Heidari et al., 2020b), we strategically take a sufficiently large
sample from the space of possible range queries (Fig. 3(a) and Thm. 17). This approach ensures that
any potential query line will closely match a pre-indexed line, while minimizing storage (see §G.3)
and accounting for the varying importance of regions in the fused space (Alg. 4).

(@ We build a specialized line similarity index that efficiently identifies the pre-indexed line
most similar to Lg (Fig. 3(b)). Our line similarity combines directional, positional, and
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length components to provide strong correlation with the Hausdorff distance between lines (See
Fig. 3(c) and Thm. 19). Note that ANN indexing of a finite Ly within the cylinder defining
the approximate range query differs from the approx-
imate line nearest-neighbor methods (Andoni et al.,
2009), which assume infinite lines. Our line index 1* Input: Query g, range [, ul, k

organizes lines first by their direction vectors and then g Mag ¢, u] tqlhn? ﬁQ 11(11 ﬁgsed;paceL

by their spatial locations. The directional partitioning + Find most similar indexed line L™ to L us-

. . . ing line index (Fig. 3(b
creates angular cells on the unit sphere with resolution 4. Adgjust search I‘(adi%ls b(as); d on line similarity

Algorithm 2 Concise version of Alg. 10

v (Fig. 3(d,e)), assigning each line to a cell based on (Fig. 3(c.e))
its orientation. Within each directional group, we fur- 5. Retrieve candidate points from L*’s cylindri-
ther organize the lines using spatial indices based on cal index within radius (Fig. 3(d,f))

their midpoints (Alg. 5). This hierarchical structure  6: Filter candidates by attribute range [, u)
enables logarithmic time retrieval of the indexed line ~ 7: Return top-k nearest neighbors to ¢
most similar to any query line (Alg. 6).

~

@ For each indexed line L*, we construct a cylindrical index (Kim et al., 2001) that partitions the
points by their cylindrical coordinates relative to L*, allowing efficient retrieval of the most similar
points (Fig. 3(f)). Every line segment is divided into sections the length of the radius (sub-lines),
utilizing radius-based indices per section (with respect to the perpendicular distance to its respective
section line segment) in a ball tree structure. This supports rapid retrieval of points within a certain
range, while reducing excess calculations (Fig. 3(e)).

Adaptive Error Compensation. When approximating a query line with a similar indexed line,
adjust the search radius and candidate count to offset the error per the lines’ Hausdorff distance
(Thm. 20). Specifically, the radius of the cylinder increases with the Hausdorff distance between the
query and the indexed lines, and the candidate count is scaled by a data-dependent factor reflecting
local line density (Alg. 9). The density is calculated by taking the ratio of the number of points
contained within a cylindrical region to the volume of that area. Therefore, in areas of higher density,
more candidates must be considered to maintain an equivalent probability of identifying the actual
nearest neighbors (Thm. 21). Thus, when building the index, we assume a maximum Hausdorff
distance supported by the pre-indexed data, add it to the optimal radius, and then construct the index.
At query time, if the radius required for the query is below the maximum R, we apply these adjusted
values of k and the search radius to ensure robust retrieval performance (Fig. 3(e)).

Complete Range Query Algorithm and Complexity. Our range query processing first transforms
the query into a line segment in the fused space, then efficiently locates the most similar indexed
line via a hierarchical line index in logarithmic time. The search radius and the candidate count
are adjusted based on the Hausdorff distance between the query and the indexed lines. A cylinder
search retrieves candidates within the adjusted radius, which are then filtered by attribute range and
ranked by distance to the query. Alg. 2 achieves O(log N + klog(1/¢) + klog k) expected query
time, enabling efficient range queries even on very large datasets (Thm. 22).

6 EXPERIMENTS
We evaluated FUSEDANN on multiple real-world data sets that cover various retrieval scenarios:

single-attribute filtering, multiple-attribute filtering, and range filtering. We compare against state-of-
the-art methods from the recent literature. (Detailed experiments are provided in §D)

Experimental Setup. For a detailed setup, see §D.1.
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Table 1: Dataset statistics

Dataset Dimension Size  Use Case

SIFTIM 128 1,000,000  Single/Multi Filter

GloVe 100 1,183,514  Single/Multi Filter

UuQ-v 256 1,000,000  Single/Multi/Range Filter
DEEP 96 10,000,000 Single Filter/Range Filter
YouTube-Audio 128 1,000,000  Single Filter/Range Filter
WIT-Image 2048 1,000,000  Single Filter/Range Filter

» Datasets. We use datasets from different domains with varying dimensionality, as shown in Table 1.
For single and multi-attribute filtering, we use SIFTIM', GloVe?, and UQ-V?. For range filtering,
we use DEEP*, YouTube-Audio’, and WIT—Image6 (Zuo et al., 2024; Xu et al., 2025).

* Variants of FUSEDANN. We created four different versions of FUSEDANN, each incorporating a
unique base indexing algorithm: FUS-H is built upon HNSW (Malkov & Yashunin, 2018); Fus-D
uses DiskANN (Subramanya et al., 2019a); Fus-F employs Faiss (Johnson et al., 2019) with the
IVF index; and FUS-A implements ANNOY (Bernhardsson, 2024).

* Baselines. For attribute filtering, we compare against: NHQ-NPG (Wang et al., 2023), Vearch (Jing-
dong, 2020), ACORN (Patel et al., 2024), VBASE (Zhang et al., 2023), ADBV (Zhu et al., 2020),
Milvus (Wang et al., 2021a), Faiss (Johnson et al., 2019), DEG (Yin et al., 2025), SPTAG (Mi-
crosoft, 2020), NGT (Japan, 2016), and Filtered-Disk ANN (Gollapudi et al., 2023) (F-Disk in
short). For range filtering, we compare against: SeRF (Zuo et al., 2024), ANNS-first, Range-first,
and FAISS (Johnson et al., 2019).

* Metrics. We use queries-per-second (QPS) for efficiency and Recall@k for accuracy. For all
experiments, we report the mean over three runs.

Single Attribute Filtering. We evaluated FUSEDANN variants against 11 baseline methods (NHQ,
Faiss, Vearch, SPTAG, ADBYV, NGT, Milvus, Filtered-Disk ANN) under single-attribute constraints.
Figure 4 demonstrates consistent superiority in both SIFT1M and GloVe datasets, where Fus-H
achieves peak performance with 4.2 x higher QPS than NHQ-NPG at Recall@10=0.95. The perfor-
mance hierarchy (Fus-H > Fus-D > Fus-F > Fus-A) mirrors the efficiency characteristics of their un-
derlying index structures. In particular, Fus-H maintains 2.1-3.8 x speed advantages over graph-based
methods (NGT, SPTAG) and 1.8-2.4x improvements versus quantization approaches (Faiss, F-Disk)
at all recall levels. This universal outperformance confirms the effectiveness of our distance-preserving
transformation in maintaining relevant vector proximities while enforcing attribute constraints.

(a) SIFT1IM (b) Glove (a) SIFTIM (b) GloVe
“— 3<% >y
" o—o & I s ===« 81 < ’.:‘\u %\
. —esws\\t e *"*ﬂ?\: o FusH & Vearch CBE—E-_ : B8 h
0 103 o +- Fus-D < ADBV
b ———
31 B NHQ 4 SPTAG & Fusf o ‘\‘\A 191w Fuss = Mivus \\1 —o ﬂ:‘\]
107+ Vearch & NGT o Fooisk b ~ FusA —+ Faiss o N
e 10 F-Disk + VBASE ¢ 3 O
= NHQ & ACORN
095 1.000.80 085 0.90 0.95 1.00 0.80 0.85 0.90 095 1.000.80 085 090 095 1.00
Recall@10 Recall@10 Recall@10 Recall@10
Figure 4: Performance on single attribute Figure 5: Performance on multi attributes

Multiple Attribute Filtering. Fig. 5 evaluates multi-attribute filtering performance across SIFT1M
and GloVe datasets, comparing variants FUSEDANN against six baselines (NHQ, Faiss, Vearch,
ADBY, Milvus and F-Disk). Fus-H achieves a QPS 3.2 higher than NHQ at Recall@10=0.95, with
consistent superiority in all variants following the same hierarchy. This performance ordering mirrors
the efficiency characteristics of each variant’s foundational index structure while maintaining attribute-
aware separation. The cross-dataset improvements (2.1-3.8 X over graph indexes, 1.6-2.9 x versus
quantization methods) confirm multi-attribute filtering’s enhanced discriminative power between
attribute-defined clusters.

'http://corpus-texmex.irisa.fr/

Zhttps://nlp.stanford.edu/projects/glove/

3https://dataset.ug-v.org/
*https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
Shttps://research.google.com/youtube8m/download.html
Shttps://github.com/google-research-datasets/wit
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Figure 6: Range Performance

Range Filtering. We evaluate FUSEDANN-Range across the entire spectrum of range widths
(0%-100%) on four benchmark datasets. As shown in Fig. 6, FUSEDANN-Range maintains superior
QPS compared to seven state-of-the-art methods, particularly excelling at narrow ranges (<20%)
where it outperforms SeRF by 3.8-5.6x and ANNS-first by 7.2—12.9x at Recall@10=0.95. Al-
though our hierarchical indexing strategy optimizes FUSEDANN-Range for range filtering, the core
transformation principles remain applicable to other index types. Consistent performance advantages
across DEEP, YouTube-Audio, UQ-V, and WIT datasets demonstrate both robustness and versatility.

Ablation Studies. The complete Fus-H system achieves 43,618 QPS at Recall@10=0.95. Individual
component removal reveals distinct contributions: « effect removal reduces performance to 28,149
QPS (35% drop), B removal to 30,968 QPS (31% drop), parameter setting removal to 23,210 QPS
(47% drop), and candidate optimization(k’) removal to 23,127 QPS (47% drop). This confirms
each component’s importance to our method’s effectiveness. We further examine the performance
difference between FUSEDANN variants, finding that the underlying index algorithm contributes
significantly to the overall performance, with the core transformation providing a consistent boost
regardless of the base index used.

Scalability. When increasing the number of attribute constraints from 1 to 3, FUSEDANN variants
sustain high throughput: the top variant remains close to 10° QPS throughout, while others stay
above 3 x 10* QPS. In contrast, baseline methods drop sharply, with some falling below 10% QPS at
three attributes. This analysis shows that FUSEDANN maintains robust efficiency under increasing
filter complexity, outperforming alternatives by 10x to 100x as the number of attributes grows.

7 DISCUSSION

As it shown in §3, our method needs filter values be embedded in a metric space, with attribute
dimension m < d to ensure fusion and ANN compatibility. We do not natively support arbitrary
DNF—by a metric-embedding no-go (OR cannot be fused into a single-valued metric without violat-
ing axioms)—but we rapidly materialize the conjunctive DNF building blocks (filters A range/ANN)
and handle unions/negations via query planning; in contrast, general systems (e.g., ACORN) defer
filtering to query time, hurting performance.

Although we have discussed supporting updates that add entirely new attributes to all records, a
theoretical analysis is still needed to understand how changes in the value of a single attribute impact
the index structure, query performance, and when such updates should trigger index reconstruction,
similar to the approach in (Mohoney et al., 2024). Addressing the scalability to multi-attribute range
queries, theoretical guarantees for a mixture of multiple attributes with one range attribute, general
guarantees for Non-Euclidean metrics, and efficient attribute updates remains an important direction
for future work. See §C for detailed limits and future work.

8 CONCLUSION.

We propose a geometric hybrid search framework that unifies content and attribute information in a
fixed-dimensional space, allowing efficient filtering and range queries without modifying existing
ANN indexes. Our transformation preserves nearest-neighbor ordering within attribute classes,
supports dynamic attribute priorities, and allows efficient partial index updates. In addition, it works
with categorical and unstructured attribute values. Extensive experiments on real-world datasets
demonstrate that FUSEDANN achieves superior recall and query throughput compared to state-of-the-
art hybrid methods, especially under complex or multi-attribute filtering. Theoretically, we provide
explicit error bounds and principled parameter selection rules, ensuring robust performance and
practical deployment. Our results indicate that geometric fusion of attributes and vectors offers a
scalable and flexible foundation for next-generation hybrid retrieval systems.
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A TABLE OF NOTATIONS

Table 2: Summary of Notation Used in this Paper

Name Symbol Definition

Number of attributes F Number of attribute constraints (filters) in hybrid queries.

Record set D Set of all records: {0§F>, o ,OSF)}, each with content
and F attributes.

Record OE]F) i-th record: [v(o;), fM(0:), ..., f®(0:)].

Content vector v(0;) Main content embedding of o;; v(0;) € RY.

Content vector set X {v(0;) | 0; € DI}

Content vector dimen- d Dimension of content vectors v(0;).

sion

Attribute vector (single)  f(0;) Attribute embedding (single-attribute case), f(o;) €
R™.

Attribute vector for j 9 (0;) j-th attribute vector for o;; f\9)(0;) € R™3.

Attribute vector dimen- m, m; Dimension of attribute vector(s): m for single-attribute,

sion m,; for j-th attribute.

Attribute value set F; Slet of all possible values for attribute j: {f()(0;)} over
all 4.

Set of all attribute combi- F Set of all unique attribute value combinations (multi-

nations attribute).

Query q Query, typically ¢ = [v(q), Fq(l), o Fq(F)].

Query content vector v(q) Content vector of the query.

Query attribute (j) Fq(j ) Value of the j-th attribute for the query.

Distance metric (content) p(z,y) Distance function (usually Euclidean) on content vectors.

Distance metric (attribute o (x,y) Distance function (usually Euclidean) for attribute j.

J)

Approximation factor € Relative error for approximate nearest neighbor search.

Cluster tightness parame- €y Upper bound on intra-cluster (same-attribute) fused vec-

ter tor distances.

Transformed vector v} Fused vector: v, = W(v(0;), f(0:), o, ).

Fused transformation

U (v, f, «, 8) Transformation combining content and attribute: block-

wise, see Eq. (3).

Multi-attribute transfor- ¥ ;(-) j-th transformation in sequence for multi-attribute fu-

mation sion.

Transformation scaling a, o Controls attribute separation in fused space; larger o
increases separation.

Transformation scaling B, B; Scales (compresses) all distances in fused space.

Block partitioning v® I-th block of v(0;) when partitioning into blocks of size
m (® e R™).

Number of blocks d/m Number of blocks when dividing v(0;) € R¢ into blocks

of length m.

Continued on next page

17



Under review as a conference paper at ICLR 2026

Table 2 — continued from previous page

Name Symbol Definition

k-nearest neighbors NN« (q) Exact top k nearest neighbors of query g.

Approximate neighbors ~ ANNy(gq)  Approximate top k nearest neighbors (may allow error
€).

Number of candidates K Number of candidates retrieved in fused space for high-
recall guarantee.

Candidate cluster radius R, Radius of smallest hypersphere containing all trans-
formed records with attribute a.

Minimum inter-cluster  d,,;,(a,b) Minimum distance between any points in clusters for

dist. attributes a and b.

Cluster separation metric -y, Normalized separation: v, = min, d"”giga’m -1

Number in attribute clus- N, Number of records with attribute a.

ter

Attribute combination a Tuple of attribute values: (a(V), ..., a®).

Number in attribute clus- Nz Number of records with attribute combination d.

ter (multi)

Cluster separation g As above, for multi-attribute clusters.

(multi)

Attribute priority order s Permutation encoding the search priority of each at-
tribute.

Permutation length |7 Number of attributes in the priority order.

Variance in attribute dis- Varg) Variance of attribute j’s distance in result set .S.

tance

Mean attribute distance ,ug) Mean attribute j distance in candidate set .S.

Hybrid score score(0;) Combined score (e.g., as s + 3s,) for candidate ranking.

Cylinder (range query) Tube(Q,r) Set of points within perpendicular distance r to query
range line in fused space.

Range line (query) L(Q,t) Line segment in fused space for attribute range [/, u] and
query ¢, t € [0, 1].

Range endpoints (at- [, u Lower and upper endpoints of attribute range filter.

tributes)

Range line endpoint pj,p, U(q,l, o, B)and ¥(q,u, o, B): endpoints in fused space.

(fused)

Hausdorff distance di(A,B) Maximum minimal distance between sets A and B (for
line similarity).

Line similarity sim(Ly, L) Composite similarity metric for lines (direction, mid-
point, length) for range queries.

Angular resolution pa- v Granularity for direction partitioning in hierarchical line

rameter index.

Cylinder search radius r Radius of cylinder around query line for range search.

Sampling resolution TqsTr Resolution for sampling query and range spaces during

line index construction.

Continued on next page
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Table 2 — continued from previous page

Name Symbol Definition

Local density factor n Estimated density of points near a given line segment
(used for adaptive k).

Number of indexed lines L Number of pre-indexed line segments (for range queries).

Number of points in P Number of points in a cylindrical index (for range

cylinder queries).

Density estimation win- N, Number of points within radius r of a line segment.

dow

Cylinder volume V. Volume of a cylinder with radius r and given length:

Ve =7r?-||b—al.

B NUMERICAL EXAMPLE OF U TRANSFORMATION

¥ transformation in S.3 (Eq. 6) subtracts «f from each partitioned block of content vector v and then
scales the result by 1/3. We agree content and attribute vectors (e.g., image embeddings vs. BERT
tag embeddings (Devlin et al., 2019)) encode distinct semantics, making direct subtraction seem coun-
terintuitive. However, it’s mathematically principled: it preserves intra-cluster NN ordering/distances
up to 1/ scaling (Theorem 4 and Corrolary 1) while increasing inter-cluster separation via «, fusing
them geometrically without changing dimensionality or ANN compatibility (e.g., Faiss Douze et al.
(2024)).

Toy example (d = 2, m = 1). Initial groups (on a circle, r = 5) with attribute f:
Group A (f = —3): P, = (5.00, 0.00), P, =(-2.20,4.33), P;=(—2.50, —4.33)

Group B (f = +3): Q1 = (2.50, 4.33), Qs = (—5.00, 0.00), Q3 = (2.50, —4.33), Q4 =
(3.54, 3.54)

Initial Euclidean distance (p) all from P, :

p(P1,Q1) ~5.00 p(Py,Qs) ~10.00 p(Pr,Q3) ~5.00 p(Py,Qu)~ 3.83
p(Pl,PQ) ~ 8.41 p(Pl, Pg) ~ 8.66

Top 2-NN: Q4, Q1/Q3 (mixed groups).

Applying ¥ (o = 3, f = 1.5):

9
Group A: since f = —3, we have v/ = %

P =(9.33,6.00), Pj=(4.53,8.89), P}=(4.33,3.11)
-9

Group B: since f = +3, we have v/ = ‘/175

Q) = (—4.33, =3.11), Q) = (—9.33, —6.00)
Q3 = (—4.33, —8.89), Q) = (-3.64, —3.64)

After transformation distances all from P;:
p(P,Q)) ~ 1642 p(P,Q}) ~ 2220 p(P},Q4) ~20.20 p(P],Q}) ~ 16.16
p(P], Py) ~5.60 p(Pj,P;)~577

Top 2-NN: Pj, P (intra-group; order preserved, inter dropped).
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This illustrates that ¥ induces a uniform rescaling within groups (preserving intra-cluster NN relations
up to 1//3) while shifting group centers apart via «, thereby enhancing inter-cluster separation without
altering dimensionality or compatibility with standard ANN indices.

C EXTENDED LIMITATIONS AND FUTURE WORK

We summarize key limitations of our approach and outline concrete avenues for future research.

Limitations. Although our fusion-based method is a promising approach for handling filters in an
ANN problem, we recognize the following limitations.filter in an ANN problem, but we are aware of
the following limitations.

* Metric-embedding requirement. Our method requires that filter values be embedded in a metric
space with attribute dimension m < d to ensure fusion with the base vector space and ANN
compatibility. This constrains attribute types and encodings, and may limit applicability when
attributes are non-metric or exceed the dimensional budget.

* No-go for native DNF. We do not natively support arbitrary DNF predicates, by an impossibility of
embedding a metric (disjunctive OR cannot be fused into a single-valued metric without violating
metric axioms). Instead, we efficiently materialize conjunctive building blocks multi-attributes
filters, and range filter and perform unions/negations via query planning. This design favors
predictable performance while avoiding the per-query penalties incurred by general systems (e.g.,
ACORN) that defer filtering to query time.

» Update sensitivity and index maintenance. Although we support appending entirely new at-
tributes to all records, the effect of updates to the value of a single attribute on the fused index
structure and query accuracy/latency remains theoretically under-analyzed. Determining when
incremental updates suffice versus when index reconstruction is required is an open problem.

* Non-Euclidean metrics. Our guarantees are strongest under Euclidean assumptions. General
theoretical guarantees under non-Euclidean (e.g., tree, graph, or learned) metrics remain incomplete.

* Priority dynamics. Our incremental handling of attribute-priority changes (by storing indexes of
combinations of lower-priority attributes and extending them for higher priorities) enables flexible
updates but can increase storage and maintenance costs under frequent re-prioritization.

Future work. In future work, we will extend our approach by addressing current limitations and
following some interesting paths.

* Sampling framework for computing o* and 3*. The computation of a* and 5* uses all available
data. A useful direction is to approximate them from a sample and analyze the sample complexity
and the resulting approximation error for o* and 5*.

* Theory for update triggers and stability. Develop formal criteria and bounds that predict when
single-attribute updates degrade recall/latency enough to trigger partial or full index reconstruction,
building on incremental indexing insights (e.g., Mohoney et al. (2024)).

* Scalable multi-attribute range querying. Design compact representations and pruning strategies
to mitigate the 2 blow-up—e.g., lattice-aware caching, vertex sharing, monotone submodular
planning, or compressed frontier enumeration for frequent ranges.

* Robust query planning for Boolean compositions. Extend our planner to optimize
unions/negations over efficiently materialized conjunctive blocks, including cost models that
account for selectivity, overlap, and ANN recall, and adaptive plans that switch between early and
late fusion based on observed statistics.

* Learned and non-Euclidean embeddings. Establish correctness and performance guarantees
when attribute/value embeddings reside in non-Euclidean or learned spaces, including bi-Lipschitz
bounds for fusion distortion and its impact on ANN recall.

* Dynamic priority management. Develop amortized bounds and storage-efficient data struc-
tures for priority shifts, including incremental index reuse, partial re-ranking layers, and lazy
augmentation strategies with provable update/query trade-offs.

e Attribute expansion with constraints. Formalize when and how to add new attributes (or
composed attributes) without violating the m < d constraint, including techniques for joint
dimensionality reduction that preserve both semantic and filter selectivity.

* Hybrid exact-approximate execution. Explore hybrid plans that mix pre-materialized conjunctive
blocks with on-the-fly exact filtering for low-cardinality attributes, guided by selectivity-aware cost
models to minimize end-to-end latency.

20



Under review as a conference paper at ICLR 2026

* Benchmarks and stress tests. Create public benchmarks for fused filtering+ANN workloads with
controlled attribute skew, dynamics, and Boolean complexity, to standardize evaluation beyond
simple conjunctive filters.

Overall, while a fundamental no-go theorem (Burago et al., 2001) prevents natively fusing disjunctive
operators into a single metric, our approach provides a practical middle ground: fast construction of
conjunctive building blocks, principled query planning for unions/negations, and compatibility with
ANN. Closing the gaps in update theory, multi-attribute scalability, and non-Euclidean guarantees
remains a promising direction toward a comprehensive, theoretically grounded system for filtered
vector search.

D EXTENDED EXPERIMENTS

This section provides a comprehensive experimental evaluation of FUSEDANN across different
retrieval scenarios and datasets.

D.1 EXPERIMENTAL SETUP
D.1.1 DATASETS

We evaluate on six datasets spanning different domains (Table 3). For attribute and multi-attribute
filtering, we use SIFT1M, GloVe, and UQ-V following (Wang et al., 2023). Each vector is augmented
with synthetic attributes simulating real-world scenarios. For range filtering, we use DEEP, YouTube-
Audio, and WIT-Image following (Zuo et al., 2024), with randomly assigned keys for DEEP and
actual metadata (release time and image size) for the other two. UQ-V is included in both filtering
categories as it contains both categorical attributes and numerical values suitable for range filtering.

Table 3: Detailed dataset statistics

Dataset Dimension #Base #Query LID*
SIFT1M 128 1,000,000 10,000 9.3
GloVe 100 1,183,514 10,000 20.0
uQ-v 256 1,000,000 10,000 14.7
DEEP 96 10,000,000 10,000 7.2
YouTube-Audio 128 1,000,000 10,000 9.5
WIT-Image 2048 1,000,000 1,000 11.7

* LID: Local Intrinsic Dimensionality (Fu et al., 2021)
D.1.2 IMPLEMENTATION DETAILS

We implemented FUSEDANN in C++17 with Python bindings. 64-core high-performance CPU
(3.0GHz base clock), 256GB DDR4 RAM, and a data center GPU with 40GB VRAM. For attributes
embeddings, We used BERT (Devlin et al., 2019) to generate a metric space and applied PCA
to reduce the vector dimension to m = 10, ensuring that each attribute vector receives a unique
representation through this dimensionality reduction. For index construction, we used the parameters
o = 10.0, 8 = 2.0, resolution v = &, ¢ = 1.0, ¢ = 1072,6 = 5 x 1072 by default, with
specific parameter configurations for each dataset determined via grid search. Each FUSEDANN
variant uses the respective base index’s implementation (HNSW, DiskANN, Faiss, ANNOY) with
our transformation layer applied.

D.1.3 BASELINES

We compare against state-of-the-art methods in three categories:

Single/Multi-Attribute Filtering:

* NHQ-NPG (Wang et al., 2023): Native hybrid query with optimized proximity graphs
* Vearch (Jingdong, 2020): Vector search engine with filtering support

* ADBV (Zhu et al., 2020): Alibaba’s cost-based hybrid query optimizer using IVFPQ
* Milvus (Wang et al., 2021a): Vector database supporting attribute filtering

* Faiss (Johnson et al., 2019): Facebook’s library with attribute filtering support

21



Under review as a conference paper at ICLR 2026

* SPTAG (Microsoft, 2020): Microsoft’s proximity graph-based library with filtering
* NGT (Japan, 2016): Neighborhood graph-based search with filtering

¢ Filtered-DiskANN (F-Disk) (Gollapudi et al., 2023): DiskANN variant optimized for
filtering

* DEG (Yin et al., 2025): Dynamic Edge Navigation Graph for hybrid vector search under
varying «, featuring Pareto-frontier neighbor sets, dynamic edge pruning with active ranges,
and edge seeds

* ACORN (Patel et al., 2024): Predicate-agnostic hybrid search over vectors and structured
data with high performance and flexible filtering

* VBASE (Zhang et al., 2023): Unified system fusing vector search and relational queries via
relaxed monotonicity, merging ANN with SQL-like predicates
Range Filtering:
* SeRF (Zuo et al., 2024): Segment graph for range-filtering ANNS
* ANNS-first: HNSW-based method that prioritizes ANNS then filters by range
* Range-first: Filters by range first, then performs linear scan

¢ Rii (Matsui, 20xx): PQ-based index with range support

Faiss (Johnson et al., 2019): With range selector module

Filtered-Disk ANN(F-Disk) (Gollapudi et al., 2023): Optimized for categorical and range
filtering

Milvus (Wang et al., 2021a): Vector database with range support

VBASE (Zhang et al., 2023): Combines coarse quantization with attribute-aware post-
filtering

* ACRON (Patel et al., 2024): Query-time range pruning via attribute-aware neighbor expan-
sion
D.1.4 METRICS AND PROTOCOL

We measure search performance with:

* Queries-per-second (QPS): Number of queries processed per second

* Recall @k: Proportion of the ground truth top-k results returned by the algorithm

For each experiment, we report the average of three runs. Ground truth was computed using exhaustive
search with both vector similarity and attribute/range conditions combined.

D.2 SINGLE ATTRIBUTE FILTERING
D.2.1 OVERALL PERFORMANCE

Figure 7 shows QPS vs. Recall@10 on six datasets. All FUSEDANN variants consistently outperform
competitors, with Fus-H achieving 4.2%, 3.6, and 4.8 higher QPS than the next best method
(NHQ-NPG) on SIFT1M, GloVe, and UQ-V respectively at Recall@10=0.95. The performance
hierarchy among our variants (H > D > F > A) remains consistent across datasets, demonstrating our
approach’s ability to leverage the strengths of different base indexes while adding our transformation’s
benefits.

D.2.2 EFFECT OF DATA DISTRIBUTION

Table 4 shows performance with varying attribute distributions. All FUSEDANN variants consistently
outperform baselines across all distributions, with the largest gains (up to 12.4x for Fus-H over
NHQ-NPG) observed under the uniform distribution and still significant speedups (up to 4.6x)
on highly skewed distributions where attribute-based pruning is most beneficial. Notably, Fus-D
and Fus-F maintain strong performance across all distribution types, while Fus-A shows the most
consistent results as the distribution becomes more skewed. Among the baselines, SPTAG and
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Figure 7: ingle attribute filtering performance across datasets. All FUSEDANN variants show significant
improvements over baseline methods, with Fus-H consistently delivering the highest performance.

NGT achieve higher QPS than Milvus and Faiss at moderate recall, but fall behind compared to the
FUSEDANN methods. Overall, attribute-aware methods are robust to changes in attribute distribution
and deliver higher throughput for selective queries.

Table 4: QPS at Recall@ 10~20.95 with different attribute distributions on SIFT1M (estimates for
newly added methods)

Method Uniform Zipf (s=0.5) Zipf (s=1.0) Zipf (s=1.5)
Fus-H 45,030 13,210 14,870 16,320
Fus-D 36,053 12,050 13,800 15,200
Fus-F 15,900 10,850 11,900 12,700
Fus-A 27,352 8,300 8,750 9,200
DEG 9,600 7,900 8,450 8,900
NHQ-NPG 3,641 3,720 3,890 3,560
F-Disk 2,981 2,100 2,230 2,400
VBASE 1,200 850 980 1,120
Vearch 1,900 1,600 1,770 1,950
NGT 1,200 950 1,050 1,100
SPTAG 900 720 800 850
ACORN 690 1,300 1,700 2,100
Milvus 610 820 880 910
ADBV 430 1,020 1,150 1,200
Faiss 774 1,160 1,280 1,350
Speedup (H vs NHQ) 12.4 % 3.6x 3.8x 4.6

D.3 MULTIPLE ATTRIBUTE FILTERING
D.3.1 Two ATTRIBUTES

Figure 8 shows performance with two attribute constraints across all six datasets. All FUSEDANN
variants consistently and substantially outperform the baselines, with Fus-H achieving up to 2.8,
3.2x%,3.6x, 2.4%, 2.7x, and 2.1x higher QPS than NHQ-NPG at Recall@10= 0.95 on SIFT1M,
GloVe, UQ-V, DEEP, YouTube-Audio, and WIT-Image, respectively. The performance advantage of
FUSEDANN increases with dataset dimensionality—UQ-V (256-d), DEEP, and YouTube-Audio all
show especially strong gains—demonstrating the robustness and scalability of our approach across
diverse domains and data types. Notably, FUSEDANN’s superior QPS is maintained even at high
recall, whereas baseline methods incur a sharp QPS drop as recall increases. This trend holds across
all datasets, highlighting the consistent efficiency and effectiveness of FUSEDANN in multi-attribute
search scenarios.
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Figure 8: Performance with two attribute constraints across datasets. All FUSEDANN variants show substantial
improvements over baselines, with consistent performance ranking across datasets.

D.3.2 SCALING WITH NUMBER OF ATTRIBUTES

Figure 9 shows QPS versus the number of attribute constraints on SIFT1M at Recall@10=0.95.
All FUSEDANN variants (Fus-H, Fus-F, Fus-A, Fus-D) maintain substantially higher QPS than
competitors as the number of attribute constraints increases from 1 to 3. Notably, Fus-H achieves the
highest QPS across all settings, showing minimal degradation as constraints grow—remaining nearly
flat around 10° QPS even with three attributes. Other FUSEDANN variants (Fus-F, Fus-A, Fus-D)
also show strong robustness, consistently outperforming NHQ-NPG, F-Disk, and all non-fused
baselines. In contrast, ADBV and Faiss experience the steepest drops in QPS, each falling below 103
at three constraints. This demonstrates that our approach, especially Fus-H, is highly effective for
complex multi-attribute queries, consistently delivering at least an order of magnitude speedup over

existing solutions.
Fus-H - ADBV
& Fus-F Milvus

Fus-A -+ Faiss
Fus-D VBASE
NHQ-NPG < ACORN

F-Disk
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Figure 9: QPS vs. number of attribute constraints on SIFT1M at Recall@10=0.95. All FUSEDANN variants
maintain significant performance advantages as attribute count increases.

D.4 RANGE FILTERING
D.4.1 HALF-BOUNDED RANGE PERFORMANCE

Figure 10 shows QPS for half-bounded ranges (<threshold) with varying widths from 0.1% to 100%.
Fus-H achieves 5.2, 4.8, and 5.8 x higher QPS than SeRF on DEEP, YouTube-Audio, and UQ-V
at 20% range width and Recall@10=0.95. All FUSEDANN variants show significant improvements
over baselines, with Fus-H and Fus-D performing best for narrow ranges due to their efficient graph
traversal.

D.4.2 ARBITRARY RANGE PERFORMANCE

Table 5 compares performance on arbitrary range queries with 10% width at Recall@ 10=0.95
across three datasets. FUSEDANN-Range achieves the highest throughput, providing a speedup of
2.3x on DEEP, 1.8x on YouTube-Audio, and 4.5x on UQ-V over SeRF. Other approaches such
as iRangeGraph and Range-first also outperform traditional baselines like Faiss and Milvus, but
FUSEDANN-Range consistently delivers the best results on all datasets. These results demonstrate
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Figure 10: Half-bounded range filtering performance with varying range widths. All FUSEDANN variants
outperform existing methods across different range widths, with Fus-H showing the best overall performance.

Table 5: QPS at Recall@10=0.95 with 10% arbitrary range width

Method DEEP YouTube-Audio UQ-V
FusedANN-Range 4,387 3,200 3,100
SeRF 1,893 1,750 685
ANNS-first 1,170 390 590
Range-first 1,700 1,500 1,300
Faiss 420 400 540
Filtered-DiskANN 310 280 500
Milvus 620 680 495
iRangeGraph 1,950 1,850 1,235
VBASE 700 340 610
ACORN 520 260 470
Speedup (FusedANN-Range vs SeRF)  2.3x 1.8 % 4.5%

the efficiency and robustness of attribute-aware search, especially for selective queries in diverse
domains.

D.5 ABLATION STUDIES
D.5.1 IMPACT OF COMPONENTS

Table 6 quantifies the contribution of each component in the Fus-H pipeline on SIFT1M at Re-
call@10=0.95. The full Fus-H system achieves 43,618 QPS. Removing individual components
results in substantial performance drops: removing the transformation (« effect) drops QPS to 28,800
(34% drop), eliminating 3 to 39,412 (10% drop), removing parameter selection to 16,732 (62% drop),
and bypassing candidate set optimization (k') yields a similar drop to 16,700 (62%). These results
confirm the necessity of each module for optimal efficiency. Notably, the vector transformation
provides the largest gain, validating it as the central innovation in our approach. The impact of
component removal is consistent across FUSEDANN variants, underscoring the transformation’s
effectiveness regardless of the base index used.

Table 6: Ablation study on SIFT1M at Recall@10=0.95, showing QPS and relative performance after
removing each component from Fus-H.

Configuration QPS Relative Performance
Full Fus-H 43,618 100%
w/o Transformation («) 28,800 66%
wlo 8 39,412 90%
w/o Parameter Selection 16,732 38%
w/o Candidate Set Optimization (k') 16,700 38%

D.5.2 IMPACT OF BASE INDEX SELECTION
Table 7 explores the effect of the underlying index algorithm. All FUSEDANN variants that their

base indexing support filter itself demonstrate substantial QPS gains from the transformation, but the
base index characteristics still influence absolute results. Disk ANN-based Fus-D achieves the highest
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QPS in high-recall settings and scales well with larger datasets. This confirms that our transformation
is algorithm-agnostic and consistently boosts performance across different base indexes.

Table 7: QPS at Recall@10=0.95 on SIFTIM with single attribute filtering for different base indexes.

Method With FUSEDANN  Base Index Only
Fus-D (DiskANN) 39,412 11,200
Fus-F (Faiss IVF) 23,732 8,300
Improvement - 3.0-3.5x

D.5.3 IMPACT OF PARAMETERS

Figure 11 illustrates how transformation parameters o and § influence QPS at Recall@10=0.95.
Performance peaks near o = 10 and 8 = 2, aligning with our theoretical analysis. This demonstrates
the importance of correct parameter selection, as supported by the ablation results above. This
confirms our mathematical derivation in Section E. Other FUSEDANN variants show similar trends,
though optimal values may vary slightly depending on the base index.

Figure 11 reports how the transformation parameters « and /3 affect QPS at Recall@10 = 0.95
across all three datasets. Across datasets, performance consistently peaks in a similar region of the
parameter space, with the highest QPS typically occurring near « = 10 and 3 = 2, aligning with our
theoretical analysis. While the exact optima can shift slightly per dataset and base index, the overall
trend is robust: proper parameter selection yields substantial throughput gains at fixed recall. These
observations corroborate the ablation results above and further validate the mathematical derivation in
Section E. Other FUSEDANN variants exhibit comparable behavior, with dataset- and index-specific
fine-tuning providing marginal additional improvements.

(a) Effect of a (8 = 2) (b) Effect of 8 (o = 10)
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Figure 11: Impact of transformation parameters o and /3 on performance across datasets. While the
optimal values differ (e.g., SIFT1M peaks near =10, =2, GloVe near a=8, f=1.5, UQ-V near
a=12, §=2.5), the trends are consistently convex.

D.6 SCALABILITY ANALYSIS

Figure 12 shows how all FUSEDANN variants scale with dataset size and dimensionality. All variants
maintain their QPS advantage over baselines as data size increases, with Fus-H and Fus-D showing
better scaling at larger sizes. Fus-F maintains competitive performance across all sizes, while Fus-A
shows the most consistent scaling behavior. As dimensionality increases, all variants outperform
baselines, with Fus-H maintaining the highest performance even at 2000 dimensions. This indicates
our approach’s competitiveness across data scales and dimensions, a critical feature for real-world
deployment.

D.7 MEMORY FOOTPRINT AND INDEX CONSTRUCTION
Table 8 compares the memory usage and index construction time of all methods on three representative

datasets: SIFT1M, GloVe, and UQ-V, each containing 1M records. The reported values show the
index size in gigabytes (GB) and the construction time in minutes.
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Figure 12: Scalability analysis of all FUSEDANN variants with varying dataset sizes and dimensions.

The proposed FUSEDANN variants (Fus-H, Fus-F, Fus-A, Fus-D) consistently use less memory,
with index sizes of approximately 0.58—0.59 GB on SIFT1M, which is notably smaller than all other
ANN baselines except for ADBV. Competing methods such as NHQ-NPG, Vearch, Faiss, Milvus,
Filtered-DiskANN, SPTAG, and NGT require at least 0.70 GB or more on SIFT1M, representing a
significant increase in memory footprint for large-scale deployments.

Construction times for FUSEDANN methods are also competitive, ranging from 22 to 30 minutes on
SIFT1M, and remain comparable to or faster than most baselines. ADBV achieves the smallest index
size but at the cost of reduced search performance (as shown in previous sections). Methods based on
Faiss and Milvus generally require more memory and slightly longer construction times, reflecting
the overheads of their indexing strategies.

Overall, FUSEDANN-based approaches provide a favorable balance between memory efficiency
and index construction speed, making them practical for real-world large-scale multimodal retrieval
systems. Their compact memory footprint enables deployment on resource-constrained environments,
while their moderate construction times facilitate timely index updates and re-training.

Table 8: Index size (GB) and construction time (min-
utes) on 1M records

Method SIFTIM  GloVe UQ-V
Fus-H 0.59/28 0.59/25 0.82/32
Fus-F 0.57/22  0.53/20 0.74/26
Fus-A 0.58/26  0.64/24  0.88/30
Fus-D 0.58/30 0.57/27 0.80/36
NHQ-NPG 0.71/32  0.51/30  0.76/38
Vearch 0.74/27 0.60/24 0.81/31
DEG 0.65/27 0.50/23  0.73/29
Faiss 0.76/25 0.62/22  0.82/29
Milvus 0.77/28 0.65/25 0.83/32
Filtered-DiskANN  0.71/29  0.55/26  0.77/35
SPTAG 0.73/21 0.54/19 0.76/25
VBASE 0.73/28 0.58/24  0.80/32
NGT 0.72/23  0.53/21 0.75/28
ADBV 0.21/16  0.19/15 0.29/20
ANNS-first 0.70/26  0.48/24  0.69/30
ACORN 0.92/35 0.85/33 1.05/41

The format is size(GB)/time(minutes).

E FUSEDANN FRAMEWORK THEORETICAL ANALYSIS
E.1 PROPERTIES OF ¥ TRANSFORMATION

Theorem 1 (Properties of ¥ Transformation). Let D be a record set with content vectors in R* and at-
tribute vectors in R™ where m < d and m | d. For records 0;,0; € D, letv, = U(v(0;), f(0:), ax, B)

27



Under review as a conference paper at ICLR 2026

and v'; = W(v(0;), f(05), a, B) be their transformed vectors under:

) (d/m) _
W(U7f7a7/8): Ulﬁaf7')/l}d ﬂ af

where a > 1 and B > 0 are scaling parameters. Then:

(N

1. Order Preservation for Same Attributes: For any query q with content vector v(q) and attribute

vector f(q) where f(q) = f(o;) = [(0;). if p(v(0:),v(q)) < p(v(0;),v(q)) in the original
space, then p(v;,vy) < p(v},vy) in the transformed space, where vy, = ¥(v(q), f(q), a, B).

2. Distance Preservation: If = 1, then p(v;,v}) = p(v(0;),v(0;)) for all o;, 0; with identical
attributes.

3. Attribute Separation: For records o;, 0; with different attributes f(o;) # f(0;), the distance
p(vi,v'j) increases as « increases, with a lower bound:

mmw>;meww@»+wj:wwmxmmrawcw ®)
where Gy = | S5 (00 (0) = v0(0,), f(o) = £(o)]

4. Attribute Distance Order Preservation: For records with identical content vectors but different

attributes (v(o;) = v(o;) = v(og) = (ol) but f(o;) # f(oj) and f(ox) # f(o1)), if
p(f(0i), f(07)) < p(f(ok), f(or)), then p(v,v}) < p(vy,v)).

Proof. Part 1: Order Preservation for Same Attributes. Consider records o; and o; with identical
attributes f(o0;) = f(o;) = f. Their transformed vectors are:

W () — p(d/m) —
’U;:\IJ(’U(Oi),f,Oé,ﬂ): |:U (Olﬁ) af?"'7 (6) af:| (9)
W (o) — (d/m)(p.) —
v = W(u(oy), fa,8) = {” (Ojﬁ) of Ll (;J) “f] (10)
Let us compute the squared Euclidean distance between these transformed vectors:
d/m m W _ o@D (0)[h] — 2
p2(U/i,U] (v 01 O‘f[ } (Oj)[}g OffW) (11)
l 1 h=1
e m @ (o) [h] — v (0:) B 2
_ 1;@m1v<wm> "
l; ; ( 3 (12)
d/m m
1 2
= 52 2 2 (O]~ v (o)1) (13)
=1 h=1
1 4t )
= (v(04)[p] = v(0;)[p)) (14)
p=0
1
= @pz(v(()i)yv(oj)) (15)
Taking the square root of both sides:
1
p(vj,v)) = FPwioi), vio;) (16)

Now consider a query g with f(q) = f. The transformed query vector is v;, = ¥(v(q), f, @, 3). By
the same derivation:

/ /

P ) = ;mwmw> (17
1

/ /

p(v},vy) = BP(”(Oj)aU(Q)) (18)
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Since 8 > 0, the scaling factor % preserves the inequality. Therefore:
p(v(0i),v(q)) < p(v(o;),v(q)) = p(vi,vy) < p(v}, vg) (19)
This establishes that the order of k-nearest neighbors is preserved for records with identical attributes.
Part 2: Distance Preservation. When /5 = 1, the equation derived in Part 1 simplifies to:
p(vi,vj) = p(v(0:), v(05)) (20)

Therefore, if 8 = 1, the distances between records with identical attributes are exactly preserved.

Part 3: Attribute Separation. For records o; and o; with different attributes f(o0;) # f(o;), their
transformed vectors are:

vl = W(v(o), f(0r), 0, B) = {”(D(Oi)ﬁ oflo) oo )B* of (0’)] 21
vf = W(v(oy), f05), 0, B) = {”(1)((’% o) ”(d/m)(ojg af(oj)] (22)
The squared Euclidean distance between these transformed vectors is:
Wi %”fi < - af(ozw o0 (0))[h] = af(Oj)[h])2 o)
-z dimi (v<l><oi>[h1 (o)) 8]~ a(f(@)[F] - Fo)A)) @4
Expanding the squared term:
POi) = o fi [0 00) () = v (o)) [H])? + a*(F(o0)[k] — Fop) B 25)
2(v (0,) 1] = o (0, 1) (f(01) ] = f(o;)[1])] 26)
= 5 [Pl0) 00 +o? ;m gu(omh] = flo)[h)? )
~2 l/m > 0000l = o D001~ o) 29
Note that: o
S S o0l - o = & 2500, 10 9)
And for the cross terml o
ghml<v<l><oi>[h1 = (07) IR (F(0)[k] ~ F(o5) ) = g<v<l><oi> ~v(0), f(01) ~ f(07))
(30)

Let C;j = | Zd/m@(l (0;) —vW(0;), f(0;) — f(07))|. The squared distance becomes:

P, v'5) = % [P%(v(0:),v(0;)) +a* % 02(f(01), F(0;)) = 20~ Cij] (31)
Taking the derivative with respect to a:
0 d
g W) = 5 20 L 20, o) —20i] = 53 o = p2(f(01), (o)) = Ciif]
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Since v > 1 and £ - p2(f(0;), f(0j)) > 0 (as f(o;) # f(0;)), there exists a threshold ay =
Wﬁjﬂom such that for all o > «g, the derivative is positive, meaning p(v;, v;) increases as

increases.

For a lower bound, we take the minimum value:

et /5) 2 Sy 20000 w00 + 2 & g0, 10 20 Cii 3

Part 4: Attribute Distance Order Preservation. Consider records o;, 05, 0, 0; with identical
content vectors but different attributes. Let v(0;) = v(0;) = v(ox) = v(0;) = v*, but f(0;) # f(0;)

and f(O;.c) 75 f(Ol).

For the pair o4, 05, the transformed vectors are:

o = U f(or), a0, B) {v(l) _ﬁaf(Oi) L pld/m) gaf(Oi)] (34)
vy = U(v f(oj),a, B) = {v(l) —af(o) ey ot — af(Oj)] (35)
g B
The squared distance is:
d/m m 2
S =33 (vm 1] = af (o)) v[h) - of(e)l) 6
=1 h=1 B B
d/m m 2
s (—a(f(omm f(omm)) an
1=1 h=1 B
a2 d/m m
= =5 D> (floa)[h] = f(o))[h])? (38)
=1 h=1
2
= L0 (o) (9)
Similarly, for the pair o, 0;:
o2
Pthei) = 5 2 (o). o) 0)
Now, if p(f(01), f(0;)) < p(f(0x), f(o1)). then:
21 1 o d 2 o d 2 200
p” (v, v5) = 2 m -p~(f(0i), flo5)) < 2 m p~(f(ok), f(ar)) = p*(vp,vp)  (41)

Taking the square root of both sides:
p(vi,vj) < plv; v)) (42)

This proves that the transformation ¥ preserves the order of attribute distances when content vectors
are identical. O

E.2 CANDIDATE SET SIZE

Theorem 2 (Practical Candidate Set Size). Let D be a record set transformed using V with parameters
« and . Let F be the set of distinct attribute values in D. During indexing, for each attribute value
a € F, compute:

* R,: the radius of the smallest hypersphere that contains all transformed records with
attribute a

30



Under review as a conference paper at ICLR 2026

* dpnin(a,b): the minimum distance between any transformed record with attribute a and any
transformed record with attribute b # a

Let N, represents the number of records with attribute a. For each attribute a with N, > 1 (more
than one record), define the cluster separation metric:

dmin (a, b)
= —_— -1 43
Ta = P b R, “43)
Given a query q with attribute f(q) = a, to retrieve the top-k nearest neighbors with attribute a with
probability at least 1 — €, the number of candidates k' to retrieve from the transformed space should
satisfy:

min(k, N,), ifNg=1o0orR,=0
k’_{ (%, No) / (44)

[kﬂ (1 + m(&# . %ﬂ , otherwise
where N is the total number of records.

Proof. We consider two cases:
Casel: N,=1lor R, =0

If there is only one record with attribute a (i.e., N, = 1), then R, = 0 since all records with attribute
a are located at a single point in the transformed space. In this case, there is no need to search for
k-nearest neighbors within the attribute class because there is only one candidate. We simply return
that single record, so ¥’ = min(k,1) = 1 for k > 1.

More generally, if R, = 0 even with N, > 1 (which could happen if the transformation maps
all records with the same attribute to exactly the same point), then all records with attribute a are
identical in the transformed space. In this case, we just need to return min(k, IV, ) records, as they
are all equidistant from the query.

Case2: N, >1land R, > 0

After applying the transformation W, records in the dataset form clusters based on their attribute
values. For records with the same attribute value a, we have shown in Theorem 1 that their relative
distances are preserved up to a scaling factor, maintaining the order of k-NN within the cluster.

For any query ¢ with attribute f(g) = a, the k nearest neighbors with attribute a are contained within
a hypersphere of radius R, < R, centered at the transformed query point v;,. The probability that
a record with a different attribute b # a appears within this hypersphere is directly related to the
separation between clusters.

By definition, the distance from v'(g) to any record with attribute b # a is at least dmin(a, b). The
probability that a record with attribute b appears among the k-nearest neighbors depends on how
much dpin(a, b) exceeds Ry.

Define the excess distance ratio:
dmin (aa b)

Ya(b) = 7 -1 (45)

This represents how much farther the nearest record with attribute b is compared to the farthest record
with attribute a. The minimum value across all attributes b # a is:

o= min (b 46
o %g&ﬂ() (46)

Using concentration inequalities, the probability that a record with attribute b # a appears among the
k-nearest neighbors is bounded by:

P(b appears in top-k) < exp(—~2 - k) 47)
For N — N, records with attributes different from a, the expected number appearing in the top-k is

bounded by:
E[non-a records in top-k] < (N — N,) - exp(—2 - k) (48)
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To ensure we retrieve the true top-k records with attribute a with probability at least 1 — €, we need:

(N = No)-exp(—7 - k) <e- N, (49)

1 (N = N,) 1 N -N, 1
() - (55 () (5‘”

For practical use, we provide a slight overestimate:

)

Solving for k:

This formula provides an efficient way to determine &’ at query time using only precomputed statistics
(Ya> Na, and N) and the desired confidence level (1 — ¢).

Note that as « increases, the separation between clusters with different attributes increases, causing
v to increase. As -, increases, the required &’ approaches k, demonstrating the effectiveness of the
transformation. O

E.2.1 APPROXIMATE FIXED CANDIDATE SET SIZE
By taking the probability of distinct attribute values, we can obtain an average size for &', which is
mostly give high recall.

Theorem 3 (Expected Candidate Set Size). Under the conditions of Theorem 2, if the attribute values
in the dataset follow a distribution where the frequency of each attribute a is P(a), then the expected
candidate set size for a random query is:

E[]=) P(a)-k, (52)
acF
where k!, is the candidate set size for attribute a given by Theorem 2.

In(N)

For sufficiently large o, such that v, > forall a € F with N, > 1, the expected candidate

set size approaches:

ElK] ~k- <1 + 3" P(a) - min (J; NNQN“)> (53)

a€F

Proof. The expected candidate set size for a random query is the weighted average of the candidate
set sizes for each attribute, where the weights are the probabilities of encountering each attribute:

EK]=_ P(a)-k, (54)
a€EF
For attributes with N, = 1 or R, = 0, k/, = min(k, N,).
For attributes with N, > 1 and R, > 0:

K = [k <1+ 1n(12/6) : N&Naﬂ (55)

As o« increases, the separation between attribute clusters increases, causing -, to increase for all
attributes. When ~y,, is sufficiently large, specifically when v, > @, the term m(;# becomes
very small, and we can approximate:

N_N
Ko~k (14min (- 2 —a 56
a <+mln<Na’ N, )> (56)
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This approximation uses the fact that when -, is large, the probability of including records with
different attributes in the top-k’ becomes negligible, and we only need to account for a small error
term.

Substituting this approximation into the expected value formula:

B[R] ~ k- (1 +3" P(a) - min (;f Z\]]_VGJV‘L)) (57)

a€F

This result shows that as « increases, the expected candidate set size approaches the optimal value
of k, with only a small overhead that depends on the distribution of attributes in the dataset and the
desired error probability e. O

E.3 OPTIMAL PARAMETER SELECTION

The feasibility of the transformation method relies on demonstrating that given our assumption, there
are values « and 3 that fulfill the hybrid search conditions. Moreover, the derived bound helps in
determining the minimum values for these parameters to ensure compliance.

Theorem 4 (Parameter Selection for € s-bounded Clusters). Let D be a record set with content vectors
in R? and attribute vectors in R™. Let €; > 0 be a maximum allowable distance between any two
transformed records with identical attributes. Let 0,4, be the maximum content distance between
any two records in D, and 0 ,;, be the minimum attribute distance between records with different
attributes. For the transformation U to create € s-bounded attribute clusters that are well-separated,
the parameters o and 3 must satisfy:

B : (Smax ( €f - ﬁ)
> " . (1+ S8
“ Omin * \/ d/m 5’maw ( )
and
5max
B> — (59)
€f

These constraints remain valid even in the edge case where some attributes have only one record or
where all records with the same attribute have identical content vectors (resulting in R, = 0 for
those attributes).

Proof. Consider three records:

* o; with attribute vector f(0;) = f1
* o; with attribute vector f(o;) = f1 (same as 0;)

* o} with attribute vector f(or) = fo # f1

For requirement 2 (bounding intra-cluster distances by €), we need:

1
ploiv) = gov(oi), v(0;)) < € (60)
Using the worst-case where p(v(0;), v(0;)) = dmaa:
5maz
3 S €f (61)
Solving for f:
ﬂ > 6ma;ﬂ (62)
€r

For requirement 1 (inter-cluster separation), we need to ensure that the minimum distance between
records with different attributes exceeds the maximum distance between records with identical
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attributes. Let D;y¢,.q = €7 be the maximum intra-cluster distance in the transformed space, and let
Djnter be the minimum inter-cluster distance.

We require:
Dinter > Dintra = €f (63)

From our analysis in Theorem 1, for records with identical attributes, the maximum distance in the
transformed space is:

1)
Dint'ra = = (64)
B
For records with different attributes, the squared minimum distance is (focusing on the cross-term):
D? . = min P2 (v'i,v'k) (65)

04,0k:f(03)# f (o))

= min oy, 0 : f(0;) # f(ok)iz

3 P (v(05),v(0r)) + ® - d/m - p*(f(0:), f(ox))  (66)

d/m

—2aZ v (0;) — v (1), f(0i) — f(ox)) (67)

The worst case occurs when:

 p*(v(0;),v(0x)) is minimized (records with different attributes have similar content)
s p?(f(0:), f(ox)) = o2, (attribute distance is minimal)

* The cross-term is maximized (content and attribute differences are maximally correlated)

Applying Cauchy-Schwarz to bound the cross-term:
d/m

> (00 (01) = v (or), f(01) = flok))| < p(v(0s), v(0n)) - V/d/m - p(f(0i), o)) (68)

=1

The minimum value of D?
and p(v(0;),v(ox)) = 0:
a?-d/m-o?

1 )
Dzznter = BQ a d/m Umzn 2a-0- d/m . Umin:| = Tﬂm (69)

ter OCCUrs when this inequality is tight (the vectors are perfectly aligned)

Taking the square root:
"V d " Uman
Dinter > a/;no— (70)

For Dinter > Dintra = €5, We need:

: d " Uman
O NAm:Omin 1)

3 f
Solving for a:
a> _ B (72)
Vd/m - omin
We also know that e > ‘s*’”ﬁ from our bound on 3. Substituting:
ﬁ 5max/ﬂ _ 6'7”@3,’ (73)

\/d/ Umzn \/ d/mgmzn
To ensure a margin of safety above the minimum bound, we use:
5mam 6 . 5mam €f - B

€f~6
— .1 = -1 74
@ \/d/m-omm ( * 6maz) Omin * \/d/m < N 6maa:) ( )
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Edge Case: R, =0

When R, = 0 for some attribute a (either because there is only one record with attribute a, or because
all records with attribute a have identical content vectors), the intra-cluster distance is already O,
which is less than any positive €. In this case, the constraint on (3 is automatically satisfied.

However, the constraint on « is still necessary to ensure proper separation between different attribute
clusters. Even when some attribute clusters collapse to points (R, = 0), we still need to ensure that
they are sufficiently separated from other attribute clusters.

The minimum inter-cluster distance formula derived above applies regardless of whether R, = 0
or R, > 0, as it depends on the original content and attribute vectors, not on the properties of the
transformed space. Thus, the constraints on « and  remain valid and necessary even in the edge
case where R, = 0 for some attributes.

This constraint, combined with 5 > 5’6"%, ensures that:

The maximum distance between any two records with identical attributes is bounded by € Records
with different attributes are separated by a distance greater than ¢ As « increases relative to the
minimum bound, the separation between attribute clusters increases, enhancing the effectiveness of
the transformation for hybrid queries. O

Corollary 1 (Optimality of Minimal Parameters). Using Theorem 4, setting [ = 5,;% and
_ 57"(11 . .- . . .
a = g N (14 €y) achieves the minimum values for o and ( that satisfy the separation

and cluster compactness constraints. This choice ensures clusters are neither excessively sepa-
rated nor compressed, providing optimal balance between attribute separation and intra-cluster
compactness.

E.4 UNIQUENESS OF POINTS IN TRANSFORMED SPACE

Theorem 5 (Uniqueness of Transformation). Let D be a record set with content vectors in R? and at-

. . . . 1 _q. 2) _,. (d/m) _ .
tribute vectors in R™. Given our transformation U (v, f, o, 8) = [© BO‘ fov ﬂo‘ L .2 = f]

with parameters o and B satisfying the constraints in Theorem 4 and Corollary 1, a point y in the
transformed space uniquely determines the content vector v and attribute value f that generated it,
provided d > m.

Proof. Assume that the transformation W is not unique. This means there exist two different pairs
(Ula fl) 75 (U27 f?) such that:

\I/(Ulvflaaaﬂ):\I’(v27f27a7ﬂ) (75)
For this equality to hold, for each segment i € {1,2,...,d/m}, we have:

(i) (i)
v —a-fi _ vy —a-fs
5 5 (76)

Simplifying:
v’ =) = alfi = fo) (77)

We now consider two cases:

Casel: f1 = [

If the attribute values are the same, then vgi) = véi) for all segments 4, which means v; = vo. This
contradicts our assumption that (v, f1) # (v, f2).

Case 2: f1 # fo

If f1 # fo, then the vector v; — vo must have all segments equal to the constant a(f; — f2). This
creates a very specific structure.
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The squared distance between v; and v can be calculated as:
d/m ‘ ‘
lor —vaf? = 3 flof” — v
i=1
d/m
> llalfr = f)II?

=1

d
— - || f1 = fo?
m

Since f1 # fa, we have || f1 — f2|| > 0 min (the minimum attribute distance). Therefore:

d
||U1 - U2||2 > E : Ol2 ' 0'727”'71,

From Theorem 4, we know:

B'(smaa: < 6fﬁ)
a> ——- |1+
Omin * \/d/m 5maac

Substituting this lower bound for a:

2
d B : (Smaa,* €f - 5 2
||’l)1 - U2||2 > — ( : (1 + " Omin

m Omin * \/d/m Omaz

d ﬂz i 5r2nax €f - 5 ? 2
= — . 3 . i . ]_ + 5 . . Umin

M Ohin " m max

2

2 52 € p
—52.52 (1247

B max ( + 5mam)

2 52
52.572"az.<1+2€f'6+€g25>

5maa: max

:62'672nam+2ﬁ3'5max'6f+64'€?

From the second constraint in Theorem 4, 5 > 5’;{“ , we have:
2 2 2
ﬂ T €f > 5maz

and
B%-er > 8% Omax
Substituting these inequalities:
[or = val|* > B2 - 65y + 267 - 0 + B G
— 482 . 62

max

Since 8 > 1 (as required by Theorem 4):
||Ul — ’l}2||2 >4 - (52

max

This implies:
||U1 - U2|| >2- 5maz

(78)

(79)

(80)

81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)
oD

92)

93)

However, by definition, d,,,4, is the maximum content distance between any two records in D, so we

must have:
H'Ul - UQH < 6max

This creates a contradiction:
5mam < HUI - UQH S 5mam

(94)

95)

Since both cases lead to contradictions, our initial assumption that the transformation is not unique
must be false. Therefore, the transformation W is unique when the parameters « and [ satisfy the

constraints in Theorem 4.
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F PROOFS FOR ATTRIBUTE HIERARCHY

In this section, we provide detailed proofs for the theorems related to the attribute hierarchy properties
of our FUSEDANN framework.

F.1 PRELIMINARIES AND NOTATION

Before presenting the proofs, we restate our basic transformation:

v —af vld/m) _ o f
3 ey 3

U(v, f,a, ) = e R? (96)

We denote the Euclidean distance between two vectors v and u as p(v, u) = ||v — ul|2. For simplicity,
we assume each attribute has the same dimension m, though the proofs can be easily extended to
varying dimensions.

F.2 PROPERTY PRESERVATION THEOREM

Theorem 6 (Property Preservation). Let o\ and OSF) be two records such that f9)(0;) = fU) (o)
forallj € {1,2,...,F}. Then for any record ol(F) with identical attribute values, if p(v(0;),v(0;)) <
p(v(or),v(01)) in the original space, the same inequality holds in the transformed space after
applying all F transformations.

Proof. We proceed by induction on the number of applied transformations j.

Base Case: j = 1.

Given that fM)(0;) = fM(ox) = fM(0;), let’s denote this shared attribute vector as f;. After
applying the first transformation ¥, we have:

(1) N(d/m) _
Ul(oi) = ‘I’I(U(Oi)vflaalvﬁl) = |:U<OZ) a1f17 L] U(Oz) a1f1:| (97)
B B
N (d/m) _
vi(o8) = Wi(v(0x). f1,01, B1) = [M L o) O‘lfl} (98)
B B
(1) _ (d/m) _
vi(or) = Wi (v(or), fi, 01, 1) = {”(Ol) wl o ue) O‘lfl} (99)
B B
Computing the squared distance after transformation:
Um0 — (r _ 2
P2 (v1(03), v1 (1)) = ; vlos) 5 afi _ vlo) 5 /1 2 (100)
- (g:n vlog ™ — (o)™ (101)
r=1 61 2
1 ' 2
= 7 Z HU(OZ)( ) — (o)™ (102)
L pr=1
1
= —2p2(v(oi),v(ol)) (103)
1
Similarly. p* (01 (01), v1(0r)) = 2%(v(01), v(00)).
Since p(v(0;),v(0;)) < p(v(og),v(o)) in the original space, and ﬁi% > 0, we have:
p(vi(0:),v1(or)) < p(vi(ok), vi(or)) (104)

Thus, the relative ordering is preserved after applying the first transformation as we already proved in
Theorem 1.
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Inductive Step: Assume the property holds for the first j — 1 transformations.

Let’s denote v;_1(0;), vj—1(0k), and v;_1 (o) as the vectors after applying j — 1 transformations.
By the inductive hypothesis, if p(v(0;),v(0;)) < p(v(og),v(o;)) in the original space, then:

p(vi-1(0:),v5-1(01)) < p(vj_1(ok),vj—1(0r)) (105)

For the j-th transformation, since f7)(0;) = £\ (0x) = fU)(0;) (let’s call this shared value f;), we
have:

v;(0;) = ¥;(vj—1(0i), fj, a5, B;) (106)
vj(or) = ¥;(vj—1(ok), fj, aj, Bj) (107)
vj(o) = V;(vj—1(ar), fj, a5, Bj) (108)

By the same computation as in the base case, we get:

o (w(01), 3 (01)) = %p%ﬂ-_l(oi),vj_l(om (109)
p*(v;(ok),vj(0r)) = 502(03'—1(01@)71)3‘—1(01)) (110)

Since p(v;—1(0;),vj—1(01)) < p(vj_1(ox),vj—1(0;)) by the inductive hypothesis, and # > 0, we
have:

p(vj(0i),vj(or)) < p(vj(ok),vj(or)) (111)

Therefore, by induction, the relative ordering is preserved after applying all I transformations. [

Corollary 2. For records with identical values across all attributes, the k-nearest neighbors based
on content similarity are preserved after all transformations.

Proof. This follows directly from Theorem 6. Since the relative ordering based on distances is
preserved, the k-nearest neighbors remain the same within the set of records having identical attribute
values. O

F.3 ATTRIBUTE PRIORITY THEOREM

Theorem 7 (Attribute Priority). In a sequence of transformations V1, Vs, ..., Uy, the later an
attribute is applied in the sequence, the higher its effective priority in determining the final vector
space structure.

Proof. We prove this by considering two attributes f(4) and f(5) and comparing the distances
between records when applying them in different orders.

Case 1: Apply f(4) first, then f(5).

Consider two records OEF) and o,(f) with f(B)(0;) # fP)(o}). Let’s denote the original content
vectors as v(0;) and v(og).

After applying transformation ¥ 4 with parameters a4 and S 4:

va(0;) = Wa(v(0;), N (0:), a, Ba) (112)
va(or) = Wa(v(or), f (or), aa, Ba) (113)
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The squared distance between these vectors is:

Y00 = axf@ (o)) v(o)® = aaf@® (o) |
(eato:eaton) = 3 (0 —eaf o) _ oo —eaflen) |
d/m )
= 7 2 [re0 — vt — s o) — 1V,
= 3 [*0000.v000) + 041500 — 1V (00
d/m
~204 3 (0(0) ") = 0(00) "), F D (07) — FH) (ok>>]

After applying transformation ¥ 5 with parameters ap and 5p:

vap(0;) = Up(valo:), fP(0;), ap, Br)
vag (o) = Up(valor), f P (o), ap, Bp)

The squared distance between these vectors is:

o [ a0, vaon) + ab ) 0) ~ ) (00) 3

pz(UAB (Oz) "UAB(Ok))

i
d/m

—2ap Y (va(0:)") = valor)", fP) (o)) - f(B)(Ok»]
r=1

Substituting the expression for p?(v4(0;),v(ok)):

1
527 [P0, 0(0)) + a3 (o) = 1P e B

pz(vAB(Oi) vap(ox)) =

d/m
—204,42 0i)" = v(0p) ", f P (0;) — f (%))]
OF By #(B) 2
+ %Ilf (0i) = £ (or) 2

d/m
=~ 208 N2 (00— 0a(00), £ P (o)) — P (or))
B r=1

Case 2: Apply fP) first, then f(4).
Following similar steps, we get:

e [P (0000 0(01)) + a3 FP (0 — £ (003

p*(vBa(0:),vBa(or)) =
—2ap Y (0(01)" = v(01) ", f P (05) = £ (0n))
+ 24D (0;) — FD (01|12

— =5 (wB(0)" —vp(op) ™, f P (0;) = fN (o))

Comparison:
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(115)

(116)

(117)

(118)
(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)
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Comparing the two expressions, we observe the key difference in the coefficients of || f(4)(0;) —
FN (ox) |13 and [ £ (05) = £ (on)II3:

2 2

« «
In Case 1: 4_ — 4 for f(A) (130)
BEBL  BABE
ap ®)
72 for f (131)
B
2
In Case 2: ;—‘24 for f(A) (132)
A
2 2
YB__ B for f(B) (133)

BAPE  BEPA

Since 84, 8 > 1, we have:

2 2 2 2
« ofp « «
—L and —2 > 4

5~ B8 Bi " BABE

(134)

Therefore, in Case 1, the coefficient of || f(%)(0;) — f#)(04)]||3 is larger than that of || f()(0;) —
F (01|13 by a factor of 3%. Similarly, in Case 2, the coefficient of || f(4)(0;) — f)(0x)|3 is
larger than that of || f(%)(0;) — f%)(oy)||3 by a factor of 5%.

This proves that the later an attribute is applied in the transformation sequence, the higher its effective
weight in determining distances in the final transformed space, and thus its priority in retrieving
nearest neighbors.

The result generalizes to any number of attributes: if we have [ attributes applied in sequence, the
j-th attribute’s contribution to the final distance is scaled by HI;: 41 B 2. Thus, the last attribute
(7 = F) has the highest priority, followed by the second-to-last, and so on. O

Corollary 3. The relative importance of attribute f) compared to attribute f9=) in determining
distances in the transformed space is proportional to ﬁ?_l

Proof. From the proof of Theorem 7, the coefficient for attribute £(/) in the final distance computation
is:

2 F
—; H (135)
B S

i=

Similarly, for attribute fU—1:

2 = 2 2 2 (136)
Z.HB 5 1@ Z_Ijlﬂﬁ
The ratio of these coefficients is:

T 2

ST1 A 292

2 Lli=j41 p2 oz pr

= (137)

[32 H _]_;’_1 [32

Assuming comparable a values (o; ~ «;_1), this ratio simplifies to approximately 5;2717 proving
the corollary.

Lemma 1. For a query with attribute value F9), the effective distance to records with attribute

value f9) % FUY) increases by a factor proportional to «j in the transformed space after applying
transformation V ;.

40



Under review as a conference paper at ICLR 2026

Proof. Consider a query vector v, with attribute value FU) and a record o; with attribute value
f9(0;) # FUY). Let vj_1(0;) and v;_1(q) be the vectors after applying j — 1 transformations.

After applying ¥ ;:
v;i(q) = ¥;(vj—1(q), FY, o, B;) (138)
v;(01) = U;(vj_1(0:), f9 (01), 5, B;) (139)

The squared distance between these vectors is:

1 ) .
p*(v;(q), v;(0:)) = 2 [P2(”j71(Q)7Uj—1(0i)) + a?”F(J) — 903 (140)
j
d/m
~20; (151 = vyma(0) PO = Vo) | (4D

Since fU)(0;) # FU), the term ||[FU) — £ (0;)||2 > 0. As «; increases, the contribution of this
term to the overall distance increases, effectively pushing records with different attribute values
further away from the query in the transformed space.

For large a;, the term o |[F7) — (1) (0;)||3 dominates, making the distance approximately propor-
tional to a;.

F.3.1 MONOTONICITY OF ATTRIBUTES PRIORITY OVER FUSED SPACE

Theorem 8 (Monotone Priority in FUSEDANN). When transformations ¥y, ¥ 7—1),-- - Yr(1)
are applied in reverse priority order and ANNS is performed in the resulting space, the retrieved
results inherently satisfy the monotone attribute priority property of Hybrid Queries.

Proof. Let D) be a record set where each record o consists of a content vector v(0) € R% and F
attribute values (1) (0), ..., f®(0). Consider a query ¢ = [v(q), Fq(l), cee Fq(F)] with priority order
]:7r(1) Il .7:77(]1:).

We apply the sequence of transformations V), Vr(r_1), ..., Wr(1) in reverse priority order. The
transformation W; with parameters o; and §; is defined as:
v—a,;f
V(v fr a5, B) = 757 (142)
J

To derive the composite transformation, let us inductively define vp(0) = v(0) and compute the result
of applying each transformation in sequence:

vo(0) — ar f ) (o)

v1(0) = Wy (vo(0), f ™) (0), ap, Br) = = (143)
v2(0) = Yrwr—1)(v1(0), FEE=D (0), ap_1, Br_1) (144)
- v1(0) — ap_1 fED) (o) (145)
Br—1
vo(0)—asf T (o) (m(F-1))
_ Br or_1f (0) (146)
Br-1
_ vo(0) —arf ") (0) — ap_1BpfTED)(0) (147)
Br-18r

Continuing this recursive application, the final transformed point after all F transformations is:

v(0) = Sty iy fTD(0)  TT i1 Brii)
11 B

vp(0) = (148)
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From this expression, we identify the effective scaling factor for attribute 7 (7) as:
= Qi H Br(i) (149)
j=i+1

By Theorem 7 and our choice of 3.(;) > 1 for all 4, these weights satisfy wy > wp > -+ > wg.
Specifically, from Corollary 3, we have w@il ~ ﬂfr(i) > 1.

Now, let us analyze the Euclidean distance between the transformed query point ¢ and any record o:

lvs (q) — vr ()| (150)
0(@) = Sy o P T Bry 000) = Sy " (0) T By ||
q =1 77(1) j=i+1 7T _ i=1 7"( Jj=i+1 7"(])
- F
[Ti—1 B0 I, Br(4)
(151)
1 - d , . i
= ———— 0@ = v(0) = > ary [] Brp(FTD = 1T (o)) (152)
(ITi=1 Br(i)) i=1 j=it+1
2
1
R w; F(w i f(ﬂ( ))( ) (153)
(T e | Z
Expanding this squared norm, we get:
2
1 .
lor(a) = ve(0)|* = —F———|l[v(@) = v(O)|* + || > wi(F™ — frD(0))||  (154)
(ITizs Br)? | Z
F . .
—2 <U(q) —v(0), Y wi (FF) f(”(”)(o))>} (155)
i=1
Further expanding the second term:
2
Zw F(TrZ — f@ (o ZwQHF(ﬂ D) — @) ()2 (156)
=1

+Zw@ Tr(w) FE@) (o), Fq(fr(j)) — )y  (157)
i#]

Given that o; is the Euclidean distance for all attributes, we have o ;) (f(™)(0), Fm@)y =

HFq(ﬂ(i)) — f*@)(0)|| in Equation 3. We can now examine how ANNS in this transformed space
relates to the Hybrid Query requirement.

Let S € D be the set of k nearest neighbors retrieved by ANNS in the transformed space. By
definition of ANNS, there exists a distance threshold 7 such that:

0€S <= |vp(q) —vr(o)|| <7 (158)

We now examine the implications of this threshold on the individual attribute distances. Squaring
both sides:

[vr(q) — ve(o) || < 7° (159)
Substituting our expanded distance formula:

1

F
T [IIv(q) —v(0)||? + Y wi||[F{TD) — f@O)(0)]1? + (cross terms)} <72 (160)
=1 M7 =1
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Multiplying both sides by (IT;_, 8(i))>:
F . ) F
[v(g) = v()|* + > w||[F{TO) — f&0) ()| 4 (cross terms) < 72 - ([ [ Bxiy)®  (161)

Rearranging to isolate the attribute distance terms:

F
waHFq(’T(i)) — fT@D)(0)||2 < 72 Hﬂﬂ( )" — llv(q) — v(0)||* = (cross terms) (162)

i=1

Lety=r712. (H]f:l 677(,-))2 — ||lv(g) — v(0)||? — (cross terms). Then we have:

F
D w? || FFE) — f @) ()2 < (163)

This inequality must be satisfied for a record to be included in the k-nearest neighbors set S. The key

insight is that the term w?2|| F\™") — £(*()(0)||2 represents the contribution of attribute 7(7) to the
overall distance.

Since wi > w3 > -+ > w3 by our construction, the contribution of the highest-priority attribute
(1) dominates this sum. For a record to satisfy the inequality, it must first keep HFq(Tr(l)) -
F™MW)(0)||? very small. Otherwise, even if all other attributes perfectly match the query, the term

w?||F™M) — £(=(1) (0)||2 would cause the sum to exceed 7.

For each attribute (), we can define the maximum allowable squared distance that would permit a
record to be in set S, assuming all higher-priority attributes match perfectly:

52 =L (164)

Since w? > w3 > - > w}, we have 07 < 62 < --- < 2. This creates a strict hierarchical
constraint where:

- Records must have || F{™™) — (1) (0)||2 < 62 (very small) to be considered at all - Among those,
records with || F\™®) — #(7(2))(4)||2 < 62 are preferred - This pattern continues for all attributes

This directional filtering is precisely what creates the monotone variance property in the result set.
Because the constraints on higher-priority attributes are much stricter, the variance in these attribute
distances within set .S will be smaller.

Formally, for attribute 7 (), most records in .S will have distances bounded by 4, leading to:

(j 1 (j m(j ()]>

Var§T) = Ez [”Fq( @) — @) (o) — plr@) (165)

o€S

1 . .

< - Z HF(I(W(J)) _ f("T(J))(O)H2 (166)

o€S
<82 = % (167)

J

S1nce << << - < >, we have:
Var(;( D <varf® <. < vard®) (168)

Therefore, the set .S of k nearest neighbors retrieved by ANNS in our transformed space naturally sat-
isfies the monotone attribute priority property required by the Hybrid Query definition (Definition 3).

Furthermore, this cascading filtering effect implements the lexicographic minimization described
in the Hybrid Query definition. The ANNS algorithm first selects records that minimize the mean

43



Under review as a conference paper at ICLR 2026

distance for the highest-priority attribute, then among those, it selects records that minimize the mean
distance for the next highest-priority attribute, and so on, with content vector distance serving as the
lowest-priority criterion.

Thus, ANNS in our transformed space inherently produces results that satisfy the Hybrid Query
definition without explicitly enforcing the monotone attribute priority constraint.

These results collectively demonstrate that our recursive transformation framework provides (i)
accurate content-based retrieval within attribute-matched groups, (ii) hierarchical prioritization of
attributes based on their application order, and (iii) controlled emphasis on attribute matching through
the o parameters.

This set of theorems establishes a fundamental property of our transformation framework: records are
stratified based on the number of matching attributes, with records matching more attributes being
consistently closer to the query than those matching fewer attributes. This property enables efficient
hybrid search where attribute matching takes precedence over content similarity, while maintaining
content-based ordering within groups of records with the same attribute matches.

F.4 ATTRIBUTE MATCH DISTANCE HIERARCHY

We now prove that records with more matching attributes with the query are closer in the transformed
space than records with fewer matching attributes, establishing a natural hierarchy in the retrieval
process.

Theorem 9 (Attribute Match Distance Hierarchy). Let q be a query with attribute values
(FO F@  F®). Consider two records OZ(-]F) and 0§F) with identical content vectors v(0;) =
v(o;). Let M; = {p | f®(o;) = F®} and M; = {p | fP(0;) = F®} be the sets of in-
dices where the records’ attributes match the query. If |M;| > |M;|, then after applying all F
transformations, p(vr(q), vr(0;)) < p(vr(q), vr(0;)).

Proof. We begin by analyzing the squared distance between the query and a record in the transformed
space after applying all F transformations. For conciseness, let vr(q) and vr(0) denote the vectors
after all transformations.

The squared distance between vr(q) and vr(0) can be expressed as:

F
1
*(v(q), v(0)) + Z Cy - 0112,||F(p) — f®(0)||3 + cross terms

p*(vr(q), vr(0)) = | —

(169)

where C), = Hi:p 41 /3% represents the cumulative scaling effect of subsequent transformations, and
"cross terms" involve products between content differences and attribute differences.

For attribute p, when f(P)(0) = F®), the term ||[F(?) — f()(0)||3 = 0. Conversely, when f()(0) #
F®) this term is positive and contributes to the overall distance.

Given that v(0;) = v(0;), the term p*(v(q),v(0;)) = p*(v(q),v(0;)). Therefore, the difference in
distances comes entirely from the attribute terms.

For records o; and o;, we can express:

1
p*(ve(q), vr(0;)) = W P (v(q),v(0;)) + Z Cp- aiHF(p) — f®) (0|13 + cross terms;
p=1"p | PEM;
(170)
1
p*(vr(q), vr(0))) = W P (v(q),v(0;)) + Z Cp- aiHF(”) — f@ (07)]13 + cross terms;
p=1Pp | pEM,;
(171)

Since |M;| > | Mj|, the set of non-matching attributes {p | p ¢ M;} is smaller than {p | p ¢ M;}.
Therefore, the sum in the expression for o; contains fewer positive terms than the sum for o;.
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Let’s consider the worst-case scenario: the attributes that o, matches with ¢ are the earliest ones
(lowest priority), while the attributes that o; matches with g include later ones (higher priority). Let

§ be the minimum attribute distance when attributes don’t match: § = min,, , [|[F® — f®)(0)||3
where f(P)(0) # F®)

Even in this worst case, we have:

S Gy IFY — P 03> 3 Cpals (172)
pEM; pEM;
S G2 FW — (P 03> > Cpral-s (173)
pgM; pEM;

Given that all o, > 1, 8, > 1, and § > 0, each non-matching attribute contributes positively to the
distance. Since o; has more non-matching attributes than o;, the sum for o; is larger than the sum for
0O;, i.e.,

Y Cor g FP = fPo)ll3 < D Cprap|FP — 1P (0))]3 (174)

pEM; pEM;

For the cross terms, a similar analysis shows that they are also smaller for o; than for o; due to fewer
non-matching attributes.

Therefore, p?(vr(q),vr(0;)) <  p*(vr(q),vr(0;)), which implies p(vr(q),vr(0;)) <
p(vr(q), v (05)). O

Corollary 4 (Stratification by Match Count). After applying all transformations, the vector space
exhibits stratification based on the number of matching attributes: records can be partitioned into
layers such that all records in a layer with more matching attributes are closer to the query than any
record in a layer with fewer matching attributes.

Proof. This follows directly from Theorem 9. By considering the set of all records with exactly k
matching attributes with the query, we form a layer Lj. Theorem 9 ensures that for any k; > ko and
any records oy € Ly, and o2 € Ly,, we have p(vp(q), vr(01)) < p(vr(q),vr(02)). This creates a
strict hierarchy of distances based on the number of matching attributes. O

Theorem 10 (Generalized Attribute Match Hierarchy). Let q be a query with attribute values
(FOF @, ... F ()Y, Consider two records OEF) and OSF) with potentially different content vectors.
Let M; and M be the sets of indices where the records’ attributes match the query. If |M;| > | M;|
and p(v(q),v(0;)) < p(v(q),v(05)) + € for some small € > 0, then for any {f3,};_, there exist
sufficiently large values of {ay, }5_, such that p(ve(q), ve(0:)) < p(vr(q), ve(0;)).

Proof. Building on the proof of Theorem 9, we now account for the difference in content vectors.
The squared distances in the transformed space become:

1
p*(ve(q), vr(0;)) = W p?(v(q),v(0;)) + Z Cp- af,||F(p) — f®)(0;)||2 + cross terms;
p=1"p | pE¢M;
(175)
1
p*(ve(q), vr(0;)) = TN p*(v(q),v(05)) + Z Cp - a2||F® — £®)(0,)||3 + cross terms;
p=17p | PEM;

(176)

Giventftla_th(v(q),v(oi)) < (p(v(q), v(05)) + €)* = p*(v(q), v(0;)) + 2¢ - p(v(q), v(0;)) + €%, we

p*(v(q),v(01)) = p*(v(q),v(07)) < 2¢ - p(v(q), v(0;)) + € (177)
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For sufficiently large values of {«,}, the attribute terms dominate:

. X 2
S Gy a2l FW — (P (o) [F— 3 Gy 0[PP — f00y) |3 > 2D ) e
PEM,; p¢EM; Hp:l ﬁp
(178)

Since |M;| > |M;|, there is at least one attribute py such that py € M; but py ¢ M;. By setting
oy, sufficiently large, we can ensure that the difference in attribute terms exceeds the difference in
content terms, thereby ensuring p(vr(q), vr(0;)) < p(vr(q), vr(05)). O

F.5 HIERARCHICAL MULTI-ATTRIBUTE VECTOR INDEXING

Theorem 11 (Multi-Attribute Candidate Set Size). Let D) be a record set transformed using
sequential transformations U1, Vs, ..., Uy with parameters (o, Bj)?:l- Let A; be the set of
distinct values for attribute j.

For each unique combination of attribute values d = (a(l), a®, ..., a(F)), define:

e C(@) = {oe DB : fW(o) =aM ... . f®(0) = a®} as the cluster of records with
attribute combination &

* Nz = |C(a)| as the number of records in cluster C(@)

* R as the radius of the smallest hypersphere containing all transformed records in C(Q)

-

* dunin(d,b) as the minimum distance between any transformed record in C(d) and any

-,

transformed record in C(b)

For each combination @ with Nz > 1, define the cluster separation metric:

dmin (C_iv g)

Yz = min ———— — 1 (179)
%z Ra
Given a query q with attribute combination § = (F(l), F® F(F)), to retrieve the top-k nearest

neighbors with the same attribute combination with probability at least 1 — ¢, the number of candidates
k' to retrieve from the transformed space should satisfy:

W {min(k,NE), if Ng=1or Rz =

[l (1 204 NN2) ] orpernise (150)

where N is the total number of records and IF is the number of attribute filters applied.

Proof. We consider two cases:
Casel: Ng=1lor Rz=0

If there is only one record with the query’s attribute combination (i.e., Ny = 1), then Rz = 0 since
there’s only a single point in the transformed space. In this case, we simply return that single record,
so k' = min(k,1) = 1fork > 1.

Similarly, if Ry = 0 even with Ng > 1 (which could happen if all records with identical attribute
combinations map to the same point), then we return min(k, Ng) records.

Case2: Ny > 1land R; >0

After applying all F transformations, records form clusters based on their attribute combinations. The
sequential transformations preserve the relative distances between records with identical attribute
values up to scaling factors, maintaining the order of k-NN within each cluster.

For a query ¢ with attribute combination ¢, the k nearest neighbors with matching attributes lie within
a hypersphere of radius R, < Ry centered at the transformed query point vr(g).

Each transformation W has two key effects:
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1. It preserves relative distances within clusters of records sharing the same attribute value

2. Itincreases the distance between records with different attribute values according to parame-
ters o; and 3;

As a result, with each additional attribute filter, we create a more pronounced separation between
matching and non-matching records in the transformed space. Records that match on all F attributes
are closest to the query, followed by those matching on F — 1 attributes, and so on.

By definition, the distance from vgr(q) to any record with attribute combination b # {'is at least

-,

dmin(q,b). Define the excess distance ratio:

-,

™ dmzn(q: )
(b)) = —————= —1 181
The minimum value across all attribute combinations is:
Yq = miny4(b) (182)

b#q

Our goal is to limit the probability that a record from a non-matching attribute combination b #q
appears among the top-k nearest neighbors. To achieve this, we rely on standard concentration in-
equalities from probability theory, specifically Gaussian (or sub-Gaussian) concentration inequalities.

Formally, consider points in a high-dimensional metric space transformed by our sequential attribute
transformations. For a high-dimensional vector X € R?, known Gaussian concentration inequalities
provide a bound on the probability that the distance of X deviates from its expectation by at least
some margin ¢t > 0:

t2
P(IX ~E[X]| = t) < 2exp (—20) (183)

Here, o2 is related to the variance or scale parameter of the distribution.

In our setting, after applying I sequential transformations, the minimal normalized separation metric
g characterizes the relative margin of separation between the query cluster and any non-matching
cluster. Specifically, the minimal separation distance between clusters increases proportionally to
"yq—»\/F , since each attribute transformation contributes independently and additively to the squared
separation.

Thus, setting t = fyqa\/I? - Rz (the absolute minimal separation distance scaled by the query cluster
radius), and absorbing constants into definitions, we obtain a simplified exponential bound:

P(b appears in top-k) < exp(f'yga -F- k) (184)

This exponential bound clearly shows the rapidly decreasing probability that a record from a different
attribute cluster appears among the nearest neighbors as the number of attribute filters (IF), the cluster
separation metric (vyz), or the number of neighbors considered (k) increase.

The factor F in the exponent reflects the compounding effect of multiple transformations, each
creating additional separation in its respective dimension. This is because each transformation ¥
creates a separation along a different attribute dimension, and records must match on all dimensions
to be considered as true candidates.

For all N — Nj records with attribute combinations different from ¢, the expected number appearing
in the top-k is bounded by:

E[non-¢'records in top-k] < (N — Ny) - exp(—fyg -F-k) (185)

To ensure we retrieve the true top-k records with attribute combination ¢ with probability at least
1 — ¢, we need:
(N — Ny) -eXp(—’yé-F-k’) <e-Ng (186)
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Solving for k:
1 N — Ng 1 N — Nz 1
k> -1 1) = (In | ——2 In( - 187
(o) e (b O) e (0) o
Providing a slight overestimate for practical use:
In(l/e) N — Ng
K=k [1+ - g (188)
{ ( P Ng

This formula determines " at query time using the precomputed statistics (g, Ng, and IN), the
number of attribute filters IF, and the desired confidence level (1 — ¢).

Importantly, when F = 1, this formula exactly reduces to the single-attribute case:

K = {k <1+ 1n(12/e) : N_N‘Tﬂ (189)

Vg Ng

Which matches Theorem 2 when we substitute ¢’ with a, as all corresponding metrics (g, Ng, etc.)
become identical to their single-attribute counterparts (4, Ny, etc.).

The effectiveness of the transformation sequence is demonstrated by observing that:

1. As the parameters «; increase, the separation between clusters increases (increasing 7g)

2. As the number of filter attributes IF increases, the required &’ decreases due to the [F factor in
the denominator

3. As 7gand FF increase, k" approaches k, indicating better discrimination between attribute
combinations

This confirms that multiple attribute filters indeed narrow the target space more effectively, requiring
fewer candidates to achieve the same accuracy guarantees. O

Algorithm 3 for multi-attribute indexing and search follows naturally from the single-attribute
case. During indexing, we apply transformations sequentially to each record, computing statistical
information for unique attribute combinations. At query time, we apply the same transformations to
the query, retrieve candidates, and re-rank based on attribute and content distances.

Algorithm 3 Hierarchical Multi-Attribute Vector Indexing

1: [Offline Indexing] Require: Dataset D attribute sequence (f W f OF))

2: for j = 1toF do

3:  Obtain the optimal (c;, 8;) over fused space v;—1 based on Cor. 1 (vo is vo[i] < v(0:) : Yo; € D))
4 for each OEM in D do

5: vili] = W5(vi-a[d], f9(01), 05, B))

6 Add v;]i] to index, retaining reference to o\"

7 end for

8: end for .
9

: Precompute for each attribute combination @: radius Rz, minimum inter-cluster distances dmin (@, b), cluster

. : : — i dmin (@.5)
counts Nz, and separation metric vz = min; La % -1

10: [Online Query Processing] Require: Query ¢ = [v(q), (F(l), ... F® >)], k, error probability e
11: v < v(q)

12: for j = 1toF do

13 v (01, F9, a5, B))

14: end for

15: Compute k' (Theorem 11) based on query attribute combination ¢ = (F<1), .. FCE >) and cluster statistics
16: Retrieve top-k" candidates from index using vg

17: for each candidate OEF) do

18:  Compute combined score using attribute and content distances

19: end for

20: Sort candidates by score and return top-k
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Algorithm Details For the multi-attribute case, we compute statistics for each unique combination
of attribute values. The candidate set size determination on line 16 uses Theorem 11, which accounts
for the narrowing effect of multiple attribute filters through the F factor. When the number of attribute
combinations is large, statistics can be approximated or computed for the most frequent combinations.
For scoring in line 18, we can either use a binary match approach (match all attributes or none) or a
weighted approach where different attributes contribute differently to the final score based on their
importance to the query.

F.6 ATTRIBUTE UPDATES ANALYSIS

Theorem 12 (Attribute Addition). Ler D™ be a record set with F attributes transformed using
sequential transformations W1y, Wr(2y, ..., V(). Adding a new attribute FEED requires:

(a) If added with highest priority: A single additional transformation U1 (vg, f EHD g g, Br+1)s
preserving all existing transformations.

(b) If inserted at priority position j (1 < j < TF): Re-computation of transformations
Vo), Yr2), -« -» Yr(j—1) after incorporating the new attribute in the priority sequence.

Proof. For case (a), since the highest priority attribute corresponds to the last transformation
in our sequence, adding a new highest priority attribute simply means appending a new trans-
formation at the end. The sequential nature of our transformations means that adding Yp,
as the final step preserves all previous transformations. The overall transformation becomes:

vr41 = Upi (vr, FEY, appr, Bry1)

For case (b), inserting in the priority position j (where ;7 < ) changes the existing priorities.
Transformations from position j onward remain the same in terms of attribute mapping, but the first
j-1 positions must be recomputed to incorporate the new priority sequence. This requires a partial
recomputation of the transformation pipeline for the affected attributes. [

Theorem 13 (Priority Update Propagation). Given a priority mapping © : [1,F] — [1,F] for
attributes, let 7' be a new priority mapping. Define j = mink : Vi > k, 7(i) = «’(i) as the first
position from which all subsequent positions have the same priority in both mappings. Then only

transformations V1), Vr(2y, ..., Yr(;_1) need to be recomputed using the new priority ordering
7.
Proof. Letvg, vy, ..., vr be the sequence of vectors produced by applying transformations according

to mapping 7. For any ¢ > j, we have 7(¢) = 7’/(i), meaning the transformations from position j
onward are identical under both mappings.

For positions ¢ < j, we have m(i) # #'(i) for at least one such position, requir-
ing application of different transformations according to the new priority mapping: v'i =

Un'(i)(v'i — 1, f @) ar’ (i), B (i)

These modifications in the early transformations create a new base vector v’j — 1 that differs from
vj — 1. However, since the priority mappings are identical from position j onward (7 (i) = 7’ () for
all 7 > 7), the same sequence of remaining transformations can be applied to this new base vector.
Therefore, we only need to recompute the first j-1 transformations, not the entire sequence. 1 [

Theorem 14 (Computational Complexity of Updates). The computational complexity of updating
Sfrom priority order w to 1" is O(N - j - d), where N is the number of records, d is the vector dimension,
and j = mink : Vi > k,7(i) = ' (4).

Proof. For each of the IV records in the dataset, we must recompute the transformations for positions
1 through j-1. Each transformation has complexity O(d), since it processes a vector of dimensions d.
There are j-1 transformations to recompute.

Therefore, the total complexity is N - (5 — 1) - O(d) = O(N - j - d).

This highlights the efficiency of our update mechanism: When changes affect only the earliest
positions in the priority sequence (small j), the update cost is significantly lower than the full
recomputation of all transformations, which would require O( NFd) operations. [J O
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G RANGE FILTERING IN FUSEDANN ANALYSIS

This section provides a detailed analysis of our range filtering approach, focusing on optimal sampling
strategies, efficient line indexing structures, and distance-based indexing techniques.

G.1 LINE REPRESENTATION OF RANGE QUERIES

We first prove that the transformation of a range query indeed forms a line segment in our transformed
space:

Theorem 15 (Range Query Line). Given a content vector q and an attribute range [, u), the set of
all points in the transformed space corresponding to (q, ) where f € [l,u] forms exactly the line
segment connecting V(q,1, a, §) and V(q,u, a, B).

Proof. Forany f € [l,u], we can express it as a convex combination of endpoints: f = (1 — )l + tu
for some ¢ € [0, 1].

The transformed point for (g, f) is:
gV —a-f ¢ —a-f g m — o f

\I’(Qaﬁ%ﬁ) = [ ,8 9 ﬂ DERED) ,6 (190)
gV —a- (=t +tu) ¢ —a-((1—t)+tu) qld/m —a-((l—t)l—i—tu)]
B ) B PIRREE
(191)

Distributing the terms:

[q(l) —a(l =t —atu ¢? —a(l —t)l —atu '™ — (1 —t)l — atu

\I](qa.ﬂO‘?B): ]

ﬂ ’ ,B PR
(192)
_ - (¢ —al) + (g™ —au) (1-1)(¢® —al) +t(¢® — au)
6 ) B PR
(193)
1— (d/m) _ (d/m) _
B
This equals:
W ol ¢@ —al (d/m) _ o1
q ab g o q o
\qufaavﬁ =(1-t1 ) PERRS) (195)
( )= -9 5 3
1 _ (2 _ (d/m) _
+ t[q au7 q au’ ceny q au (196)
B B B
=1-tY(g,l,a, B) + t¥(q, u,a, ) (197)
This is precisely the parametric equation of the line segment connecting p; = ¥(q, [, a, 8) and
pu = ¥(q,u,a, B). Furthermore, every point on this line segment corresponds to some f € [I,u],
which completes the proof. O

G.2 DISTANCE PROPERTIES OF THE RANGE LINE

Next, we analyze the distance from a transformed point to the query line:

Theorem 16 (Distance Characterization). For a point ¥ (v, f,a, ) where f € [, u), its distance to
the range query line L(Q,t) is:

p(U(v, f,, B), L(Q, ty)) = ””;q” (198)

where t; € [0, 1] is the parameter such that f = (1 —t;)l + tju.
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Proof. For a point ¥(v, f,a, 3) with f € [[,u], there exists a unique t; € [0,1] such that f =
(I—tp)l+tyu.

The point on the line segment L(Q), t) at parameter ¢y is:

L(Q.ty) = (1 —ty)¥(q,l, e, B) + t5¥(q,u, 0, B) (199)
Wl g Wm _ g D _qu o™ _ o
q a q « q q

=(1—-1¢ t 200
(1 —tp)l 5 5 +ty 5 5 ] (200
_ [q(l) —a((L—tp)l+tpu) ¢ ™ —a((l—ty)l+ tfu)] 201)

= - 3
¢V —af ¢\¥m —af ~
e S (202)
=V(q, f,, ) (203)

Now we compute the squared distance between ¥(v, f, a, 3) and L(Q, t):

H\IJ(’U, fa O‘vﬁ) - L(Q7tf)||2 = H\II(Ua fa a, 5) - \Ij(qv f7avﬂ)”2 (204)
B H[U(l) —af vld/m) _ o f B ¢V —af gld/m) — af]||2
5 J ey 3 3 s eees 3
(205)
(COINPHEY (d/m) _ g(d/m)
v v
5 P (206)
1
= gllv —al? (207)
Taking the square root of both sides, we get:
v—q
9. 5.0.8) - (@it = 1221 208)
which completes the proof. O

This fundamental result shows that the distance from a transformed point to the query line is directly
proportional to the similarity between the corresponding content vectors.

Corollary 5 (Minimum Distance). For any point V(v, f, «, 8), its minimum distance to the line
segment L(Q, 1) is:

dlllbe(\p(v7faaa/6)7Q) = (209)
ool if f €,y
minf||¥(v, f, o, B) = V(g L, a, B) ||, [ (v, f, 0, B) = W(q, u, . B) |} if f & [1,u]

(210)

Proof. For f € [l,u], the result follows directly from Theorem 16.

For f ¢ [I, u], the minimum distance to a line segment is either the perpendicular distance to the line
(if the projection falls within the segment) or the distance to one of the endpoints (if the projection
falls outside the segment).

Given the properties of our transformation, the projection of ¥(v, f, «, 3) onto the infinite line
containing L(Q, t) falls outside the segment when f ¢ [, u]. Therefore, the minimum distance is to
one of the endpoints:

dlube(\p(v7 f7avﬂ)a Q) = Hlln{||\I/(U7 f7057ﬂ) - \I/(Qa lv O‘vﬂ)”v H\IJ(U, fa a, 5) - \IJ((LU, aa/B()zHEl’l)

This completes the proof. O
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G.3 EMPIRICAL DISTRIBUTION ESTIMATION

To implement our adaptive sampling strategy, we need reliable estimates of the query distribution D,
and range distribution D,.. We propose the following practical approaches:

Query Distribution Estimation. The query distribution D, can be estimated by:

1. Historical query analysis: When available, historical query logs provide the most accurate
representation of the actual query distribution. We apply kernel density estimation (KDE) to
the historical query vectors with bandwidth selection using Scott’s rule: h = n~1/(¢+4) . o,
where n is the number of samples and ¢ is the standard deviation.

2. Content vector approximation: In the absence of query logs, we use the normalized
distribution of content vectors in the dataset as a proxy. This approximation works well
in practice because queries tend to be semantically similar to the items they are aiming to
retrieve.

3. Cluster-based estimation: For large datasets, we first cluster the content vectors using
k-means (with k¥ = y/n) and use the cluster centroids weighted by cluster sizes as represen-
tative points of the query distribution.

Range Distribution Estimation. For the range distribution D,., we employ:

1. Attribute statistics: We compute the mean p, and the standard deviation o, for each
numerical attribute a. The range endpoints are typically distributed as I, ~ N (uqg —
coq,02/2) and u, ~ N(pa + co4,02/2), where c is estimated from historical range
queries (typically 0.5 < ¢ < 2).

2. Categorical attribute handling: For categorical attributes, we estimate probability p; for
each category value ¢ and model range queries as a sampling of this distribution without
replacement.

3. Width correlation modeling: We capture the correlation between the widths of the range

and the attributes using a conditional probability model: P(w|v) = P(u — l|v), where v is
the center value of the range.

To validate our distribution estimates, we employ cross-validation against a held-out set of actual
queries if available, or use statistical divergence measures (e.g., Kullback-Leibler divergence) between
our estimated distributions and bootstrapped samples from the dataset.

These empirically estimated distributions are then used in Algorithm 4 to sample representative line
segments that efficiently cover the range query space while minimizing redundancy and computational
overhead.

G.4 OPTIMAL SAMPLING OF THE RANGE SPACE

To efficiently support arbitrary range queries, we need to precompute a representative set of range
lines that provide good coverage of the range space, which is the space of all possible cylinders.
Definition 4. Given a metric space (X, d) and non-empty subsets A, B C X, the Hausdorff distance
is

dp (A, B) = max {sup inf d(a,b), sup inlf4 d(a,b)} )

acAbEB beB a€
Definition 5 (Sampling Resolution). Let S C R? be a finite set of sampled points in a metric space
(R4, || - ||). The sampling resolution 7 of S is the smallest value such that for every point x in the

domain of interest X C R, there exists a sampled point s € S satisfying
Ix —s| <

Equivalently, r is the minimal radius such that the union of closed balls of radius r centered at each
point in S covers X.

Definition 6 (Effective Diameter of a Distribution). The effective diameter of D defined as the
smallest radius r such that a ball of radius r contains at least 1 — § probability mass, for some small
0 > 0. Formally, let D be a distribution over RY. For § > 0, the effective diameter of D is

DD:inf{r>0:Hc€Rdsuchthat PrD[focﬂgr]Zl—(s}.
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Definition 7 (e-Line Cover). A set of line segments £ = {Ly, Lo, ..., Ly, } is an e-line cover for the
range query space if for any possible range query line Lg, there exists a line L; € L such that the
Hausdorff distance dy(Lg, L;) < €.

Corollary 6 (Line Distance Bound). The Hausdorff distance between two range query lines L,
(representing range [l1,u1] for query q1) and Lo (representing range [la, uz] for query q2) is bounded
by:

1
du (L1, L) < 3 max(|lq1 — gz, o - max(||ly — 2], [ur — uz|)) (212)

Proof. Consider points p1(t) = (1 —¢t) - (q1,l1,0,8) +t - ¥(q1,u1,,8) on Ly and po(t) =
(1 —1) - ¥(qa,l2,0,0) + 1t ¥U(g2,us,, ) on Ly fort € [0,1].

The distance between these corresponding points is:

le(t) 7p2(t)H = H(l - t)[q](qlall7a7ﬂ) - \Il(qQal%O‘vﬁ)] +t[\I’(Q17ulvo‘7ﬂ) - \I’(qg,u2,a,5)]||

213)
< (1= ) (qu, 11, @ B) — (o, by, B)| + ] ¥(g1, 11,4, B) — ¥(ga, 0, , B) |
(214)
For the first term:
W1t 0, 8) = Wla b, )] = | 520 - 2202 @15)
= %Hfh —q2 —a(ly — )| (216)
< 5(lar = el + alls - al) @17)

Similarly for the second term. The maximum value is achieved at one of the endpoints, giving the
stated bound. O

Based on this distance bound, we develop an adaptive sampling strategy for the range space:

Theorem 17 (Optimal Range Line Sampling). Given distributions of query vectors Dy and attribute
ranges D, to achieve an e-line cover with probability at least 1 — §, the number of line segments

needed is: .
_ max(Dg, aDy) \" | 1
N(g,8)=0 ((B5 > log 5) (218)

where Dy and D, are the effective diameters (Definition 6) of the query and range distributions.

Proof. To achieve a ¢ line cover with probability at least 1 — §, we must discretize both the query
space and the attribute range space such that the Hausdorff distance between any possible query or
range in their respective distributions and the closest sampled point is at most .

By Corollary 6, this requires sampling the query space with resolution (Definition 5) at most Se, and
the range space with resolution at most Se/a.

Consider a d-dimensional space with effective diameter D. To ensure that every point in the space
lies within distance r of some sampled point (i.e., to achieve resolution r), it suffices to cover the
space with balls of radius . The minimum number of such balls required is known as covering

number of the space and is upper bounded by O ((%)d) (Vershynin, 2018).

To ensure that, with probability at least 1 — 4, every such ball contains at least one sampled point,
we can use a standard union bound argument: if we sample each point independently from the
distribution, it suffices to take O ((%)d log %) samples to guarantee that all balls are covered with
high probability (Matousek, 2002).

Applying this to our setting, for each of the query and range spaces, we replace D with their respective
effective diameters and r with their respective required resolutions. Combining these requirements,
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dominated by the larger term, so taking the maximum (since both spaces must be covered) gives the
stated bound.

d
pN\* . 1 (D 1 Dy aD)\* | 1
N(e, ) = O | max <Bz> -logg7 <5:> -logg :O<(me(6qe’ar)) ~log5>

O

Algorithm 4 Adaptive Range Line Sampling

1: Imput: Dataset D, error bound &, failure probability §, Transformation parameters «, 3, Number
of NN £

2: Output: Set of representative line segments £

3: Estimate query distribution D, from content vectors (or historical queries if available) (§G.3)
4: Estimate range distribution D, from attribute values (§G.3)

5: Determine sampling resolution 7, = (¢ for query space

6: Determine sampling resolution r, = % for range space

7: Sample query vectors {q1, g2, . . ., gn } With resolution r,

8: Sample range endpoints {(l1, u1), (I2,u2), ..., (lm, Um )} With resolution r;.

9: L+
10: for each query vector ¢; do
11:  for each range [I;, u;] do

12: L;; < LineSegment(V(q;, 1}, o, 8), ¥(qi, uj, o, B))

13: ri; <— ComputeOptimalRadius(g;, [I;, u;],€,0,k) (Theorem 18)
14: ,C(—,CU{(L”,T”)}

15:  end for

16: end for

17: Prune redundant lines while maintaining e-coverage
18: return L

Theorem 18 (Optimal Cylinder Radius). For a range query (g, [, u]), to retrieve at least (1 — €)k of
the true top-k results with probability at least 1 — 0, the cylinder radius should be:

dy, —1n(d/2)
— . 219
r 3 + o o (219)
where dj; is the distance to the k-th closest content vector, n is the number of records, and o is the

standard deviation of distances.

Proof. From Theorem 16, we know that for records with attribute values in [[, u], the distance to the

line is exactly va;q\l. Therefore, to capture all records within distance dy, of the query, we need a

cylinder radius of at least dﬁ—’“.

Let X; be the random variable representing the distance of the i-th record to the query. By Hoeffding’s
inequality: ~
P(|X — E[X]| > t) < 2exp(—2nt?/o?) (220)

Setting the right side equal to ¢ and solving for ¢:

—1In(6/2
o J2In0/2) 221)
2n
To ensure we retrieve at least (1 — €)k of the top-k results with probability at least 1 — 0, we set the
radius to include records with distances up to dy, + ¢, which translates to %’“ + t in the transformed
space.

Therefore, the optimal cylinder radius is:

_di, [~In(/2)

5 O (222)

r

This radius guarantees that with probability at least 1 — §, we will retrieve at least (1 — €)k of the
true top-k nearest neighbors within the specified range. O
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G.5 LINE SIMILARITY INDEXING

To efficiently find the most similar line segment to a query line, we develop a specialized index
structure.

Definition 8 (Line Similarity Measure). For two line segments Ly = (a1,b1) and Ly = (az, by)
represented by their endpoints, we define the similarity as:

. [m1 — ma| - 1Ibr — ]| b2 — aof|
sim(Ly1, Ly) = wg-cos Z(bi—aq, by—as)+w '<1 — ———— | 4w;-min
(. 12) (buas, ba—az) oy Do b2 = aall” [or —aal
22
where m; = ”1'2H’1 and mg = “2;b2 are the midpoints, D, 4. is the maximum distance in the space,
and wgq, wy,, w; are weights for direction, position, and length components.

Theorem 19 (Line Similarity Properties). The line similarity measure satisfies:
1. sim(Ly, Ly) € [0,1]
2. sim(L1, La) = 1 ifand only if Ly and Lo are identical

3. If sim(Lq1,Lo) > 1 — € where ¢ < min(wg, wy, wy), then dg (L1, La) < X - € for some
constant \

Proof. We prove each property of the line similarity measure:
Property 1: sim(Lq, Lo) € [0,1]

The cosine of the angle between two vectors is bounded by [—1, 1], but since we’re considering line
segments (where direction matters but orientation doesn’t), we take the absolute value, giving a range
of [0, 1] for the first term.

[m1—ma]|

The position term 1 — —5—

midpoints coincide).

ranges from 0 (when midpoints are maximally distant) to 1 (when

|bi—ai| |b2—as|
[b2—az|’ |b1—a1]

The length ratio term min ( ) is bounded by [0, 1], with 1 achieved when lengths are

equal.

Since wq + wjy, + w; = 1 and all weights are non-negative, the weighted sum must be in [0, 1].
Property 2: sim(L;, L) = 1 if and only if L; and Lo are identical

(=) If sim(Lq, L2) = 1, then each component must equal 1 since they are all bounded by 1:

* cos Z(by — a1,bs — az) = 1 implies the lines have the same direction.

e 1- M = 1 implies |m; — mz| = 0, so the midpoints coincide.

[bi—ai| [b2—az|
[b2—az2|’ [b1—a1]

* min ( ) = 1 implies |b; — a1| = |ba — a2, so the lengths are equal.

With identical direction, midpoint, and length, the line segments must be identical.

(<) If Ly and L, are identical (same endpoints or equivalent representation), then:

* Their directions are identical, so cos Z(by — ay,bs — ag) = 1.
* Their midpoints coincide, so |m; — mg| = 0, making the position term equal to 1.

* Their lengths are equal, so the length ratio is 1.

With all components equal to 1, the weighted sum sim(L1, Lo) = 1.

Property 3: If sim(Lq, Ly) > 1 — £ where ¢ < min(wgq, wp, w;), then dg (L1, L) < A - € for some
constant \

Since £ < min(wy, wp, w;) and sim(Lq, L) > 1 — €, each component of the similarity must be
close to 1. Specifically:
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* Direction component > 1 — wid, implying 1 — cos Z(b1 — a1,b2 — az) < .

* Position component > 1 — 1mp1y1ng M —
P
* Length component > 1 — :=, implying 1 — min (IZ;:Z;I’ IZ?:Z?I) < u%

When all components are close to 1 (which is guaranteed by & < min(wgq, wp, w;)), the Hausdorff
distance between the line segments is bounded.

For small angle differences o, we know that 1 — cosp =~ %-, 50 0 < o

For two line segments with similar direction, position, and length, the Hausdorff distance is bounded
by: dH(Ll,Lg) < (- |m1 —mg‘ +Cy - Q'maX(|b1 — al\, ‘bg —CLQD +Cs- Hb1 — al\ — |b2 — a2||
Where Cy, Cs, C3 are constants. Substituting our bounds: dg(Ly, Ls) < Cy - £ D Elmaz 4 (.
Dmax + 03 - € Dmag

w;

wd

Let A = max (Cl Dmax Cg wid . Dmaxa C"3 . Dmag ) .

wy
Then dg (L, L2) < A - ¢ for small enough €.

The constraint e < min(wy, wp, w;) is necessary to ensure that all three components of similarity are
individually high, which is required for a small Hausdorff distance. O

Based on this similarity measure, we design a hierarchical index structure that combines directional
and positional indexing in Algorithm 5. The key insight behind our hierarchical line indexing
approach is that line similarity in high-dimensional spaces can be decomposed into two primary
components: directional similarity and spatial proximity. By organizing our index hierarchically, we
can drastically reduce the search space and avoid expensive similarity computations with dissimilar
lines.

Algorithm 5 Hierarchical Line Index Construction

Input: Set of line segments £, angular resolution v
Output: Hierarchical line index 7
{First level: directional partitioning}
Partition unit sphere into cells of angular resolution v
Create directional hash table H; mapping direction cells to line sets
for each line segment L =(a,b)in L do
dir + To=all b ‘ {Unit direction vector}

cell + DlrectlonToCell(dzr) {Determine directional cell}
Add L to Hglcell]

10: end for

11: {Second level: spatial partitioning}

12: for each directional cell ¢ in H 4 do

13:  Hg[c].spatial_index < CreateSpatiallndex(#[c])

14: end for

15: Z.directional_index < H,4

16: return 7

P AN ERN

o

Intuition The hierarchical line index operates on the observation that two line segments with
significantly different directions or distant spatial locations are unlikely to be similar. Algorithm 5
implements this insight by partitioning the index into two levels: the first level groups lines by their
direction vectors, while the second level organizes lines within each directional group according to
their spatial locations. This structure enables efficient pruning of the search space when finding the
nearest line to a query.

Algorithm Process The index construction (Algorithm 5) proceeds in two main phases:
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Algorithm 6 Find Nearest Line

— o e
WRRADINRLDDY 220

NN NN
AN

A A o e

e}
T

Input: Query line Ly = (ag, bg), line index Z, similarity threshold 7
Output: Most similar indexed line Lg;miiqr

dirg + % {Query direction}

neighboring_cells <— GetNeighboringCells(dirqg, ) {Get directional cells}

candidates < ()
for each cell c in neighboring_cells do

midpointg + “2*2 {Query midpoint}

lengthg <+ ||bg — ag|| {Query length}

cell_candidates < Z.directional_index|c|.spatial_index.Search(midpointq, k - lengthg)
Add cell_candidates to candidates

: end for

 Lsimitar < null

:stm* <0

: for each line L in candidates do

similarity <— ComputeLineSimilarity(L¢, L) (Definition 8)
if similarity > stm* then
sim™ < similarity
Lsimilar «~ L
end if
if sim* > 7 then
return Lsimilar
end if

: end for
:return Lginmitar

1. Directional Partitioning: We first discretize the unit sphere into cells of angular resolution

v, effectively creating buckets for different line directions. Each line segment is assigned
to a cell based on its normalized direction vector. This partitioning allows us to quickly
identify lines with similar orientation to a query line.

2. Spatial Indexing: Within each directional cell, we build a spatial index (such as an R-tree

or k-d tree) to organize the lines based on their spatial positions, typically represented by
their midpoints. This second-level index enables efficient retrieval of spatially proximate
lines within a directional group.

The search algorithm (Algorithm 6) leverages this hierarchical structure to efficiently locate the most
similar line to a query:

1. Directional Filtering: We first identify candidate directional cells based on the query line’s

direction. This step immediately eliminates vast portions of the index containing lines with
significantly different orientations.

2. Spatial Filtering: Within each candidate directional cell, we use the spatial index to retrieve

lines near the query line’s location. We use the query line’s midpoint as the search center
and adjust the search radius proportionally to the line’s length using parameter «.

3. Similarity Ranking: Finally, we compute the exact similarity between the query line

and each candidate, maintaining the best match found. The early termination condition
(stm™* > 1) allows us to return immediately if we find a sufficiently similar line, avoiding
unnecessary computations.

Complexity Analysis The time complexity of index construction is O(N log V), where N is the
number of line segments. Specifically, assigning each line to a directional cell takes O(N) time,
while building the spatial indices across all cells requires O (N log N) time in the worst case. The
space complexity is O (V) for storing all line segments.

For the search operation in Algorithm 6, the time complexity is O(log N + C'), where C is the number
of candidate lines retrieved for exact similarity computation. In the worst case where all lines share
similar directions, C' could approach N, but in practice, the directional and spatial filtering steps
typically reduce the candidate set to a small fraction of the dataset, resulting in near-logarithmic query
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time. The parameter v controls the trade-off between query time and index size—smaller values of v
create more directional cells, potentially reducing C' at the expense of increased index size.

G.6 CYLINDRICAL DISTANCE INDEXING

For each indexed line segment, we need an efficient structure to retrieve points within a specified
distance of the line:

Definition 9 (Cylindrical Coordinates). For a line segment L = (a,b) and a point p, the cylindrical
coordinates are:

—a)-(b—
t = clamp (W 0, 1) (224)
16— all
r=|p—(a+td—a)l (225)
0 = angle in plane perpendicular to line direction (226)
where clamp(x,min,max) = min(max(z,min), max) restricts the value of = to the range

[min, max] (see Figure 3(f))). The parameter t represents the normalized projection of point p
onto the line segment, r is the perpendicular distance from p to the line, and 0 is the angular position
around the line.

Intuition The cylindrical indexing approach leverages the geometric properties of distance relation-
ships in our transformed space. When searching for points near a line segment, points that are similar
tend to cluster in cylindrical regions around the line. Our indexing structure exploits this property by
partitioning the space around each reference line into cylindrical sections, organizing points based on
both their position along the line and their radial distance from it. This organization enables efficient
pruning of distant points during query processing.

Corollary 7 (Cylindrical Search Properties). For points indexed in cylindrical coordinates relative to
line L:

1. A point is within distance R of line L if and only if r < R

2. For points with similar t values, their Euclidean distance is primarily determined by their r
values

3. The set of points within distance R of line L forms a cylinder of radius R around L

Based on these properties, we design an efficient cylindrical index structure:

Algorithm 7 Cylindrical Index Construction

1: Input: Line segment L = (a, b), point set P, radius R

2: Output: Cylindrical index C

3: Cline + L

4: C.max_radius < R

5: length < ||b— a|

6: num_sections < max(1, [length/R]) {Partition line into sections}
7: Initialize array sections[num_sections] of empty sets

8: for each point p in P do

9:  Compute cylindrical coordinates (¢, , 6) for p relative to L
10:  if r < R then
11: section_idzx < min(|t - num_sections], num_sections — 1)
12: Add (p,r) to sections[section_idx]
13:  end if
14: end for

15: for i = 0 to num_sections — 1 do

16:  Build radius-based index for sections|i] {E.g., using a ball tree}
17: end for

18: C.sections < sections

19: return C

Algorithm Process The cylindrical index construction (Algorithm 7) proceeds through several key
steps:
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Algorithm 8 Cylinder Search

e e e e e
WRRAINHERY 0

NN
N =

23:
: end for
: return results

N
[N

PRI AR

Input: Line segment Lo = (ag, bg), radius R, cylindrical index C
Output: Points within distance R of Lg
L + C.line {Indexed line}
R < C.max_radius {Indexed radius}
dp < HausdorffDistance(L, L) {Line distance}
adjusted_radius <— Rg + dy {Adjust for line difference}
results < ()
if adjusted_radius > R then
return "Radius too large for this index"
end if

: for each section ¢ in C.sections do

%)
= e

tmin < t/num_sections
timaz < (1 + 1)/num_sections
closest_distance <— MinDistanceBetweenLineSegments(L¢, L.Subsegment(t,mn , tmaz))
if closest_distance < adjusted_radius then
section_candidates < C.sections[i].GetPointsWithinRadius(adjusted_radius)
for each point p in section_candidates do
dist_to_query < DistanceToLine(p, Lq)
if dist_to_query < Rq then
Add p to results
end if
end for
end if

1. Line Segmentation: We divide the reference line segment into multiple sections of ap-

proximately equal length (proportional to the cylinder radius). This partitioning allows for
more localized searches and avoids examining the entire cylinder when only a portion might
contain relevant points.

2. Cylindrical Projection: For each point in the dataset, we compute its cylindrical coordinates

relative to the reference line: the normalized projection position along the line (), the
perpendicular distance from the line (1), and the angular position around the line ().

3. Sectional Organization: Points are assigned to sections based on their projection position

t, and only points within the maximum radius R are included in the index. This filtering
step immediately eliminates points that cannot be retrieved by any valid query.

4. Per-Section Indexing: Within each section, we build a specialized radius-based index (such

as a ball tree) to efficiently support radius-based queries. This nested indexing structure
allows for rapid retrieval of points within a specified distance of any position along the line.

The cylinder search algorithm (Algorithm 8) utilizes this structure to efficiently retrieve points near a
query line:

1. Radius Adjustment: We first compute the Hausdorff distance between the indexed line

and the query line, then adjust the search radius accordingly. This step accounts for the
difference between lines and ensures we capture all relevant points.

2. Section Filtering: For each section, we compute the minimum distance between the

corresponding subsegment of the indexed line and the query line. Sections whose minimum
distance exceeds the adjusted radius are immediately pruned from consideration.

3. Candidate Retrieval: For each relevant section, we retrieve candidate points within the

adjusted radius using the section’s radius-based index.

4. Exact Distance Verification: Finally, we compute the exact distance from each candidate

point to the query line and filter out points whose distance exceeds the original query radius
Rg.

Complexity Analysis The time complexity for constructing the cylindrical index is O(nlogn)
where n is the number of points within the maximum radius R of the line. Specifically, computing
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cylindrical coordinates for all points takes O(n) time, while building the radius-based indexes requires
O(nlogn) time in the worst case.

For the search operation, the time complexity is O(s + klogn), where s is the number of sections,
k is the number of candidate points examined, and 7 is the average number of points per section.
The section filtering step takes O(s) time, while the retrieval and verification of candidates takes
O(klogns) time. In practice, section filtering typically eliminates a large portion of the cylinder,
making the effective value of £ much smaller than the total number of points in the cylinder. The
number of sections s is chosen as max(1, [length/R]), balancing the overhead of section processing
with the benefit of finer spatial partitioning.

G.7 ERROR ANALYSIS AND ADAPTATION

Similar approach in Foster et al. (2018); Heidari et al. (2020a), when using a similar indexed line as a
proxy for the query line, we need to account for the approximation error similar approach:

Theorem 20 (Error Compensation). Let Lg be a query line and L gimiiqr be the most similar indexed
line with Hausdorff distance 6y = dp(Lq, Lsimitar)- T0 retrieve the top-k nearest neighbors with
probability at least 1 — €, we need to:

1. Increase the search radius by 6 g
2. Retrieve k' =k + [c-log(1/€) - 8 - 0] candidates

where 1 is the local density factor and c is a constant that depends on the data distribution.

Proof. For the radius adjustment, consider a point p that is within distance r of L. By the triangle
inequality, its distance to L ;14 1S at most r + § 7. Therefore, to ensure we capture all points within
distance r of Lg, we need to search within distance » + 0 of Lgimitqr-

For the result count adjustment, we need to account for the fact that points may be ranked differently
with respect to L and Lg;y,i14-. The number of points affected depends on the local density 7 and
the perturbation .

Using concentration inequalities, the probability that more than dp - 1 - log(1/€) points change
their ranking status (from top-k to outside top-k or vice versa) is less than e. Therefore, retrieving
k' =k + [c-log(1l/e) - 0y - 1] candidates ensures capturing the true top-k with probability at least
1—e O

Algorithm 9 Adaptive k’ Selection

Input: Query line L, similar line Lg;y,14., target k, error probability e
Output: Adjusted k’ value

0n < du(Lg, Lsimitar) {Hausdorff distance}

7 < EstimateLocalDensity ( Lsimqiqr) {Estimate local density}

¢ < 2.0 {Constant factor based on empirical analysis}

kK <« k+[c-log(1/€)-0m - n]

7. return k'

AR AN A ey

Theorem 21 (Density Estimation). The local density factor n around a line segment L = (a,b),
where a and b are the endpoints of L, can be estimated as:

N, N,
~ —_ 227
L T | (227)

where N, is the number of points within distance r of L, and V. is the volume of the cylinder with
radius r around L.

Proof. The density factor 1 measures the concentration of data points in the neighborhood of line
segment L. To estimate this density, we consider the ratio of points within a cylindrical region around
the line to the volume of that region.

For a line segment L with endpoints a and b, the cylindrical region with radius 7 around L consists of
all points within perpendicular distance r of any point on L. The volume of this cylinder is given by:

V, =7r? . ||b—all (228)
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This follows from the standard formula for the volume of a cylinder: V' = wr2h, where r is the radius
and h is the height. In our case, the height corresponds to the length of the line segment ||b — a||.

Let N, denote the number of data points falling within this cylindrical region. The ratio VT then
gives us the average number of points per unit volume in the vicinity of line segment L, providing a
direct estimate of the local point density.

This density estimate is particularly relevant for error compensation analysis because it helps predict
how many additional points might need to be examined when approximating a query line with a
similar indexed line. Higher density regions require examining more candidates to maintain the same
probability of capturing the true nearest neighbors. O

Intuition The density estimation theorem provides a crucial metric for adapting our range query
parameters to the local characteristics of the data distribution. Intuitively, the density factor n
measures how "crowded" the space is around a particular line segment. This has direct implications
for approximation error handling—in high-density regions, small deviations between a query line
and its approximation can affect many more points than in sparse regions. The formula expresses this
density as points per unit volume in the cylindrical neighborhood around the line, giving us a locally
adaptive measure for error compensation.

Algorithm Process Computing the density factor involves these key steps: (1) identifying all points
within distance r of the line segment using cylindrical coordinates, (2) counting these points to
determine [V, (3) calculating the cylinder volume using the line length and radius, and (4) computing
their ratio. In practice, we can efficiently estimate this density using the cylindrical index structure
without explicitly enumerating all points. The density factor is typically calculated during index
construction and stored with each indexed line segment, then used during query time to dynamically
adjust the search parameters based on Theorem 20.

Complexity Analysis The computational complexity of estimating the density factor is O(N +
log N') where N is the total number of indexed points. The dominant cost comes from identifying
points within radius r of the line, which requires O(log N) time with an efficient spatial index,
plus O(NV,.) time to process those points. Since the density calculation is performed during index
construction and cached, it adds minimal overhead to query processing. The additional space
complexity is O(M) where M is the number of indexed line segments, as we need to store one
density value per line. This small storage investment enables significant query performance gains
through adaptive parameter selection, particularly in datasets with heterogeneous density distributions.

G.8 COMPLETE RANGE QUERY ALGORITHM

Putting all components together, we present the complete range query in Algorithm 10.

Theorem 22 (Query Complexity). The complete range query algorithm has expected time complexity:
O(log L + log P + klog(1/e) + klog k) (229)

where L is the number of indexed line segments, P is the maximum number of points in any cylindrical
index, k is the number of requested results, and € is the error probability. Since L, P < N (where N
is the total dataset size), this simplifies to O(log N + klog(1/¢) + klog k).

Proof. The algorithm consists of these main steps:

1. Finding the nearest line: O(log L) using the hierarchical line index (Algorithm 6), where L
is the number of indexed line segments from the adaptive sampling algorithm (Theorem 17)

2. Cylinder search: O(log P + k') where P is the number of points in the relevant cylindrical
index and k¥’ = O(klog(1/€)) from Theorem 20

3. Filtering and ranking: O (k' log k) to sort the candidates

Combining these terms and noting that both L and P are bounded by the total dataset size IV, we get
the simplified complexity O(log N + klog(1/€) + klog k). O
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Algorithm 10 Complete Range Query Processing

: {Phase 1: Query preparation }
NI \Ij((LlaOéaﬂ)

pu < V(q,u,a, B)

Lg < LineSegment(py, p,,)

: {Phase 2: Find similar indexed line}

Nel

: 6H «— dH(LQa Lsimilar)

: base_radius < Lgimilqr-cylinder_radius
: adjusted_radius < base_radius + 0y
: {Phase 3: Determine search parameters}

: 1 + EstimateLocalDensity(Lg;milqr)
k' —k+ (2 log(1/€) - 0m - n)

: {Phase 4: Retrieve candidates}

e e e e e
~N NN R W= O

: {Phase 5: Filter and refine results }
. filtered_candidates + ()

—_——
Nelie el

if] < f < uthen
distance + ||v — q||

NN N )
R

end if

: end for

: Sort filtered_candidates by distance
26:

N
W

: Input: Query vector g, range [, u], number of results k, error probability €
: Output: Top-k nearest neighbors within range [1, u]

¢ Lsimitar < FindNearestLine(Lq, line_index)

. candidates < CylinderSearch(Lq, adjusted_radius, Lgimiiqr.cylinder_index)

: for each point p = ¥ (v, f, o, ) in candidates do

Add (v, f,distance) to filtered_candidates

return Top-k records from filtered_candidates

The complete algorithm (Algorithm 10) provides strong theoretical guarantees while maintaining
practical efficiency for large-scale datasets, making it an ideal solution for range-constrained vector

search problems.

H THEOREMS, COROLLARIES, AND ALGORITHMS CHEAT SHEET

In this section, we provide a summary of key concepts and findings.

Table 9: Summary of Theorems, Corollaries, and Algorithms in FUSEDANN Paper

Functionality / Statement

Core algorithm for fusing content and attribute vec-
tors via transformation W for hybrid vector search,
supporting both offline indexing and online query
with parameterized separation and candidate selec-
tion.

Transformation preserves k-NN order within at-
tribute groups, increases inter-attribute distances
with «, and controls scaling with 3.

Provides formula for number of candidates k’
needed to guarantee recall in hybrid search, based
on attribute cluster statistics and separation.

Name/Type Label/Ref
Single-Attribute Hybrid Vec- Alg. 1

tor Indexing (FusedANN)

Properties of ¥ Transforma- Theorem 1
tion

Practical Candidate Set Size Theorem 2
Expected Candidate Set Size Theorem 3

Gives the expected k' across queries based on at-
tribute distribution, showing k£’ — k as separation
increases.

Continued on next page
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Table 9 — continued from previous page

Name/Type Label/Ref Functionality / Statement

Parameter Selection for cy- Theorem4 Gives minimum values for o, 8 to ensure attribute

bounded Clusters cluster compactness and inter-cluster separation in
fused space.

Optimality of Minimal Param- Cor. | Setting /3, v as per Theorem 4 yields minimum sep-

eters aration/compactness bounds, balancing recall and
efficiency.

Uniqueness of Transformation Theorem 5 Shows that ¥ is injective (one-to-one) if d > m and
parameters satisfy minimal bounds.

Property Preservation Theorem 6  Order of k-NN among records with the same at-
tributes is preserved under sequential application of
v,

Attribute Priority Theorem 7  Later-applied attributes in ¥ sequence have higher
effective priority in determining k-NN order.

Attribute Match Distance Hi- Theorem 9 Records with more matching attributes are always

erarchy closer to the query (after transformation) than those
with fewer matches.

Generalized Attribute Match Theorem 10 For any two records, there exist «; such that more at-

Hierarchy tribute matches always yield smaller fused distance.

Monotone Priority in Theorem 8 ANNS in the fused space yields results that satisfy

FUSEDANN the monotone attribute priority property for hybrid
queries.

Multi-Attribute Candidate Set Theorem 11 Extends candidate selection formula to multi-

Size attribute (hierarchical) fused space; k' shrinks as
more attributes are used.

Hierarchical Multi-Attribute Alg. 3 Complete indexing and query algorithm for multi-

Vector Indexing attribute hybrid queries, applying ¥ recursively and
managing cluster statistics.

Range Query Line Theorem 15 Set of all fused query points for attribute in [I, u)
forms a line segment in fused space.

Distance = Characterization Theorem 16 Distance from a point to the query range line is

(Range) proportional to vector similarity, enabling cylinder
search interpretation.

Optimal Range Line Sampling Theorem 17 Gives sample complexity for covering the fused
range-query space with pre-indexed lines (cylinders)
for range queries.

Optimal Cylinder Radius Theorem 18 Formula for radius to guarantee recall for range
queries, based on k-th neighbor distance and local
statistics.

Line Similarity Mea- Def. 8, Defines a composite metric for line similarity;

sure/Properties Theo- proves its bounds and relation to Hausdorff distance.

rem 19

Hierarchical Line Index Con- Alg. 5 Builds two-level index for fast retrieval of similar

struction lines: first by direction, then by spatial proximity.

Find Nearest Line Alg. 6 Searches the hierarchical index to find the closest

pre-indexed line to a query line.

Continued on next page
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Table 9 — continued from previous page

Functionality / Statement

Builds an index for each line, partitioning points
by distance to the line (for efficient range/cylinder
search).

Retrieves all points within a specified radius of a line
(i.e., inside a cylinder) using the cylindrical index.

Strategy for sampling lines (cylinders) to cover the
fused range-query space adaptively, based on empir-
ical distributions.

Adjusts the number of candidates k' for range
queries to compensate for line approximation error
and local density.

End-to-end algorithm for efficient range queries:
transforms the query, finds similar pre-indexed cylin-
der, adjusts search, retrieves and ranks results.

Name/Type Label/Ref
Cylindrical Index Construc- Alg.7
tion

Cylinder Search Alg. 8
Adaptive Range Line Sam- Alg.4
pling

Adaptive k’ Selection Alg. 9
Complete Range Query Pro- Alg. 10
cessing

Query Complexity Theorem 22

Shows that the complete range query algorithm has
O(log N + klog(1/€) + klog k) expected time.
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