

000 CONVEXIFIED FILTERED ANN VIA ATTRIBUTE- 001 002 VECTOR FUSION 003

004 **Anonymous authors**
005

006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 Vector search powers transformers technology, but real-world use demands hybrid
012 queries that combine vector similarity with attribute filters (e.g., “top document in
013 category X, from 2023”). Current solutions trade off recall, speed, and flexibility,
014 relying on fragile index hacks that don’t scale. We introduce fused-based ANN, a
015 geometric framework that elevates filtering to ANN optimization constraints and
016 introduces a convex fused space via a Lagrangian-like relaxation. Our method
017 jointly embeds attributes and vectors through transformer-based convexification,
018 turning hard filters into continuous, weighted penalties that preserve top-k seman-
019 tics while enabling efficient approximate search. We prove that our fused method
020 reduces to exact filtering under high selectivity, gracefully relaxes to semantically
021 nearest attributes when exact matches are insufficient, and preserves downstream
022 ANN -approximation guarantees. Empirically, fused-based method improves query
023 throughput by eliminating brittle filtering stages, achieving superior recall-latency
024 trade-offs on standard hybrid benchmarks without specialized index hacks, deliver-
025 ing up to 3 \times higher throughput and better recall than state-of-the-art hybrid and
026 graph-based systems. Theoretically, we provide explicit error bounds and parame-
027 ter selection rules that make the fusion practical for production. This establishes a
028 principled, scalable, and verifiable bridge between symbolic constraints and vector
029 similarity, unlocking a new generation of filtered retrieval systems for large, hybrid,
030 and dynamic NLP/ML workloads.

031 1 INTRODUCTION

032 The approximate nearest neighbor search (ANNS) is fundamental to many data science and AI
033 applications, enabling efficient retrieval of similar vectors in high-dimensional spaces (Chen et al.,
034 2021; Malkov & Yashunin, 2018; Subramanya et al., 2019b). However, real-world applications
035 increasingly require hybrid queries that combine vector similarity with attribute constraints (Gollapudi
036 et al., 2023; Wang et al., 2023; 2021a; Wei et al., 2020; Taipalus, 2024; Pinecone, 2021; Japan, 2016;
037 Wu et al., 2022; Microsoft, 2020; Heidari et al., 2025b;a; Heidari & Zhang, 2025). These constraints
038 typically appear as either exact filters (e.g., “images with tag ‘sunset’”) or range filters (e.g., “products
039 priced between \$20-\$50”) (Pan et al., 2024; Ren et al., 2020).

040 Existing approaches to hybrid queries can be categorized into three strategies: (1) Filter-first methods
041 like AnalyticDB-V (Wei et al., 2020) and Weaviate (Taipalus, 2024), which use attribute information
042 to narrow the search space before vector similarity search. (2) ANN-first methods such as NGT (Japan,
043 2016), Vearch (Jingdong, 2020), FAISS-IVF (Douze et al., 2024), and Pinecone (Pinecone, 2021),
044 where vector search is performed before applying attribute filters. (3) Hybrid methods that integrate
045 both filter and vector information into specialized index structures, including Filtered-DiskANN (Gol-
046 lapudi et al., 2023), which uses a graph index with label-aware connections; NHQ (Wang et al.,
047 2023), which builds a composite proximity graph with joint pruning; DEG (Yin et al., 2025), which
048 performs hybrid similarity search by building a Pareto-pruned graph and using an weighted traversal
049 to retrieve results along approximate Pareto frontiers; HQANN (Wu et al., 2022), which leverages
050 attribute-guided navigation and fused search; as well as recent approaches like ACORN (Patel et al.,
051 2024), NaviX (Sehgal & Salihoglu, 2025), CAPS (Gupta et al., 2023), and Milvus (Wang et al., 2021a)
052 in its advanced partitioning modes. Hybrid methods such as ACORN, NaviX, and CAPS employ
053 predicate-aware or cost-aware partitioning schemes to jointly optimize filter and vector search, while
modern versions of Milvus leverage offline data structures to partition vectors based on historical
filter conditions, thus improving search efficiency under complex predicates. Range filters, which

constrain results to specified intervals of attribute values, present additional challenges compared to exact filters (Pan et al., 2024). Efficiently handling range constraints requires consideration of attribute continuity and potential overlap between ranges, which can lead to increased candidate set sizes and higher computational complexity. This is especially critical in real-world workloads, where range predicates are common and may be applied to high-cardinality or correlated attributes. As a result, designing hybrid query systems that support fast and scalable range filtering remains an open problem, with recent research exploring new geometric and algorithmic approaches to overcome these difficulties, including HM-ANN (Ren et al., 2020), which enables graph search for heterogeneous memory; SeRF (Zuo et al., 2024), which uses a compressed segment graph for ranges; iRangeGraph (Xu et al., 2025), which constructs elemental graphs for on-demand ranges; and UNIFY (Liang et al., 2024), which builds a unified segmented graph for all ranges.

Although these approaches involve different tradeoffs, they share a fundamental limitation: attribute filtering is treated as an auxiliary operation layered onto the vector search process or index structure, rather than as a transformation of the underlying data space itself. This paradigm imposes intrinsic performance bottlenecks, especially when supporting multiple attributes with varying priorities or adapting to shifts in attribute distributions. In particular, state-of-the-art methods typically forego direct use of the original data, instead constructing specialized index replicas tailored for hybrid queries. As a result, whether the transformation occurs at the data or index level is largely insignificant—further motivating a data-centric perspective for hybrid search.

To address these limitations, we present FUSEDANN, a hybrid query framework merging attribute filters with vector data at the representation level. FUSEDANN uses a filter-centric vector indexing method, a mathematically grounded transformation, that unifies attribute filtering with vector similarity search, analogous to introducing a Lagrange multiplier into a convex objective and fusion of information signals (Boyd & Vandenberghe, 2004; Heidari et al., 2024; 2020c; 2019). A unified space where: (1) the dimensionality remains unchanged, (2) the distance ordering of elements with identical attributes is preserved, and (3) a tunable parameter increases distances between differently attributed elements.

Contributions. Our key contributions are: **(I)** A general framework for hybrid queries compatible with existing ANN indexing algorithms (§3). **(II)** Support for multiple attributes with intuitive priority hierarchies (§4). **(III)** Efficient handling of range filters through geometric interpretation (§5). **(IV)** Comprehensive experimental evaluation demonstrating FUSEDANN’s superior effectiveness, efficiency, and stability (§6). The theoretical analysis provided in the Appendix offers rigorous guarantees on FUSEDANN’s performance characteristics, including precise bounds on transformation parameters and candidate set sizes required for specific error probabilities.

2 PRELIMINARIES

In this section, we present preliminaries; the main notations are summarized in Table 2.

Definition 1 (Record Set $\mathcal{D}^{(\mathbb{F})}$). A record is an $\mathbb{F} + 1$ -tuple vector $o_i^{(\mathbb{F})} = [v(o_i), f^{(1)}(o_i), \dots, f^{(\mathbb{F})}(o_i)]$, where $v(o_i) \in \mathbb{R}^d$ is a content vector (e.g., from BERT (Devlin et al., 2019)), and $f^{(j)}(o_i) \in \mathbb{R}^{m_j}$ is the j -th attribute vector in a metric space, also from a neural network. The record set is $\mathcal{D}^{(\mathbb{F})} = \{o_1^{(\mathbb{F})}, \dots, o_n^{(\mathbb{F})}\}$, containing n records, each consisting of a content vector of dimension d and F attribute vectors of dimensions m_1, \dots, m_F . Let $\mathcal{X} = \{v(o_i) \mid o_i \in \mathcal{D}^{(\mathbb{F})}\}$ and, for each $j \in [1, \mathbb{F}]$, $\mathcal{F}_j = \{f^{(j)}(o_i) \mid o_i \in \mathcal{D}^{(\mathbb{F})}\}$.

If $\mathbb{F} = 0$, we have the regular ANN setup. If $\mathbb{F} = 1$ (one attribute), we use \mathcal{D} and o_i instead of $\mathcal{D}^{(1)}$ and $o_i^{(1)}$.

Example 1. Record sets can represent various data types, such as images or videos. For example, as illustrated in Fig. 1(a), each record may correspond to an image described by attributes such as “Tag”, “Category”, and “Date”. By embedding both the images and the “Tag” in appropriate metric spaces, we obtain the record set $\mathcal{D}^{(1)}$ (or simply \mathcal{D} because we only use one attribute $\mathbb{F} = 1$).

Given a record $o \in \mathcal{D}^{(\mathbb{F})}$, its content vector $v(o) \in \mathcal{X}$ is represented as $v(o) = [v(o)[0], v(o)[1], \dots, v(o)[d-1]]$, where $v(o)[i]$ denotes the i -th dimension. We primarily consider high-dimensional cases, where d is typically in the hundreds or thousands. For any two records $o, r \in \mathcal{D}^{(\mathbb{F})}$, their similarity is commonly measured using a metric such as Euclidean

Figure 1: Data and queries are embedded into content and attribute vectors and fused by a transformation Ψ parameterized by $\alpha > 1$ and $\beta > 1$. The fused vectors are indexed for efficient retrieval. At query time, the same transformation is applied, enabling unified search and re-ranking based on attribute-content similarity.

distance or cosine similarity. The Euclidean distance between their content vectors is defined as $\rho(v(o), v(r)) = \sqrt{\sum_{i=0}^{d-1} (v(o)[i] - v(r)[i])^2}$.

Definition 2 (Approximate Nearest Neighbor Search (ANNS)). Let $\mathcal{D}^{(\mathbb{F})}$ be a record set and q a query with content vector $v(q)$. The exact k -nearest neighbors (k -NN) of q in $\mathcal{D}^{(\mathbb{F})}$ with respect to the distance metric ρ is defined as:

$$\text{NN}_k(q) = \arg \min_{S \subseteq \mathcal{D}^{(\mathbb{F})}, |S|=k} \sum_{o \in S} \rho(v(q), v(o)) \quad (1)$$

Finding exact k -NN is computationally expensive in high-dimensional spaces (Abbasifard et al., 2014; Wang et al., 2021b). Therefore, approximate nearest neighbor search (ANNS) aims to efficiently return a set $\text{ANN}_k(q)$ such that, with high probability,

$$\max_{o \in \text{ANN}_k(q)} \rho(v(q), v(o)) \leq (1 + \epsilon) \max_{o \in \text{NN}_k(q)} \rho(v(q), v(o)), \quad (2)$$

where $\epsilon > 0$ is the approximation factor. ANNS methods typically search based only on content vectors (Malkov & Yashunin, 2018; Douze et al., 2024; Bernhardsson, 2024).

Definition 3 (Hybrid Query (HQ) with Monotone Attribute Priority). Given a set of records $\mathcal{D}^{(\mathbb{F})}$ and query $q = [v(q), F_q^{(1)}, \dots, F_q^{(\mathbb{F})}]$, let $\mathcal{F}_{\pi(1)} \succ \dots \succ \mathcal{F}_{\pi(\mathbb{F})}$ be the attribute priority order (with the content as the lowest priority). For any candidate set $S \subseteq \mathcal{D}^{(\mathbb{F})}$ of size k , let

$$\mu_S^{(j)} = \frac{1}{k} \sum_{o \in S} \sigma_j(f^{(j)}(o), F_q^{(j)}), \quad \text{Var}_S^{(j)} = \frac{1}{k} \sum_{o \in S} \left[\sigma_j(f^{(j)}(o), F_q^{(j)}) - \mu_S^{(j)} \right]^2 \quad (3)$$

where $\mu_S^{(j)}$ and $\text{Var}_S^{(j)}$ denote the mean and variance of an attribute distance, and σ_j is a distance metric on \mathcal{F}_j , which we assume to be Euclidean in this study. We say S satisfies monotone attribute priority if: $\text{Var}_S^{(\pi(1))} \leq \dots \leq \text{Var}_S^{(\pi(\mathbb{F}))}$. The hybrid query returns the set S^* of size k that minimizes the mean distances subject to monotone attribute priority.

$$S^* = \arg \min_{\substack{S \subseteq \mathcal{D}^{(\mathbb{F})}, |S|=k \\ \text{monotone attribute priority}}} \left(\mu_S^{(\pi(1))}, \dots, \mu_S^{(\pi(\mathbb{F}))}, \frac{1}{k} \sum_{o \in S} \rho(v(q), v(o)) \right) \quad (4)$$

in lexicographic order, i.e., by first minimizing the mean distance for the highest-priority attribute, then the next in order, and finally the average content distance ρ (content vector distance metric). Eq. 4 relaxes filters, prioritizing exact matches on higher-priority attributes to fill k ; if still short, it fills the rest via nearest attribute clusters (k -NN)—a native expansion unlike classical filtered ANN, which requires exact matches and offers no fallback. Users can still keep exact-only, as in Alg. 1.

When $\mathbb{F} = 1$ (i.e., there is only one attribute), the hybrid query problem becomes a simplified version commonly considered in previous work (Chen et al., 2021; Gollapudi et al., 2023; Jingdong, 2020; Tan et al., 2023; Wang et al., 2021a; Wu et al., 2022; Heidari & Zhang, 2025; Xu et al., 2025; Zhu et al., 2020; Zuo et al., 2024).

3 FUSEDANN FRAMEWORK

Model Overview. Our framework enables hybrid search by fusing content and attribute information in a way that gives explicit control over their relative influence. Given a content vector $v(o_i) \in \mathbb{R}^d$ and

Figure 2: (a): The effect of α and β . (b): Multi-attribute iterative space overview. (c): Attribute or priority effect on our approach. (d): Range filter ANN analogy of cylinder

an attribute vector $f(o_i) \in \mathbb{R}^m$ with $m < d$, we partition $v(o_i)$ into d/m blocks $v^{(1)}, \dots, v^{(\lceil d/m \rceil)}$, each in \mathbb{R}^m . We then define the transformation:

$$\Psi(v, f, \alpha, \beta) = \left[\frac{v^{(1)} - \alpha f}{\beta}, \dots, \frac{v^{(\lceil d/m \rceil)} - \alpha f}{\beta} \right] \in \mathbb{R}^d \quad (5)$$

where $\alpha > 1$ and $\beta > 1$ are scaling parameters. For exposition we assume $m \mid d$; otherwise, on the last block $v(\lceil d/m \rceil)$ we use the truncated attribute vector $f[:d - m\lfloor d/m \rfloor]$ to match dimensions. As illustrated in Fig. 1, the transformation is first applied to the data offline to build the index, and the same transformation is used online to process queries for retrieval (Fig. 1(b)). This creates a combined space that incorporates both the content representation and the attribute filters (such as Tag), where the attribute vectors can be generated using models like BERT (Devlin et al., 2019) or CLIP (Radford et al., 2021) to embed tags into a metric space before integration into the content vector (For a numerical example, see §B).

The parameter α increases the separation between records with different attribute values, while β compresses all distances to regularize the fused space (see Fig. 2(a)). In practice, α and β should be chosen large enough to ensure sufficient separation and regularization, but not so large as to introduce unnecessary computational complexity. Alg. 1 shows the building of the fused space and index, query generation, and result processing; as in line 15, we choose to include approximate attributes or only exact ones. At query time, the query $q = [v(q), F_q]$ (content $v(q)$ and attribute F_q) is transformed as $q' = \Psi(v(q), F_q, \alpha, \beta)$.

For each attribute a , we define R_a as the radius of the smallest hypersphere containing all transformed records with attribute a , $d_{min}(a, b)$ as the minimum distance between records with attributes a and b , and $\gamma_a = \min_{b \neq a} \frac{d_{min}(a, b)}{R_a} - 1$ as the cluster separation metric. N_a denotes the number of records with attribute a , and N is the total number of records. These statistics are used to determine the optimal candidate set size k' (line 11) when processing queries; we pick the smallest k' satisfying the candidate-size guarantee so the true top- k are covered in the fused-space region, with $k' \geq k$.

Our theoretical analysis (detailed in the Supplementary Material §E) proves that the transformation Ψ has several key properties: (i) it preserves the order of k-NN within clusters of records with identical attributes, enabling accurate content-based ranking within attribute groups; (ii) it increases separation between records with different attributes proportionally to α , improving filtering effectiveness; and (iii) it scales all distances by $1/\beta$, control-

Algorithm 1 Single-Attribute Hybrid Vector Indexing (FusedANN)

```

1: [Offline Indexing] Require: Dataset  $\mathcal{D}$ , Optimal parameters
    $\alpha > 1, \beta > 1$ 
2: for each  $o_i$  in  $\mathcal{D}$  do
3:   Partition  $v(o_i)$  into  $v^{(1)}, \dots, v^{(d/m)}$ 
4:   Transform using given parameters  $\alpha, \beta$ :  $v'_i = \Psi(v(o_i), f(o_i), \alpha, \beta) = \left[ \frac{v^{(1)} - \alpha f}{\beta}, \dots, \frac{v^{(d/m)} - \alpha f}{\beta} \right]$ 
5:   Add  $v'_i$  to index, retaining reference to  $o_i$ 
6: end for
7: Precompute for each attribute  $a$ : radius  $R_a$ , minimum inter-cluster distance  $d_{min}(a, b)$ , and cluster separation metric  $\gamma_a = \min_{b \neq a} \frac{d_{min}(a, b)}{R_a} - 1$ 
8: [Online Query Processing] Require: Query  $q = [v(q), F_q]$ ,  $k, \alpha, \beta$ , error probability  $\epsilon$ , Boolean  $AttrApprox$ 
9: Partition  $v(q)$  into  $v_q^{(1)}, \dots, v_q^{(d/m)}$ 
10: Transform:  $q' = \Psi(v(q), F_q, \alpha, \beta)$ 
11: Compute  $k'$  (Thm. 2)
12: Retrieve top- $k'$  candidates from index using  $q'$ 
13: for each candidate  $o_i$  do
14:   Compute attribute distance:  $s_f = \sigma(f(o_i), F_q)$ 
15:   if  $AttrApprox = \text{False}$  AND  $s_f \neq 0$  then
16:     continue;
17:   end if
18:   Compute content distance:  $s_v = \rho(v(o_i), v(q))$ 
19:   Compute combined score:  $\text{score}(o_i) = \alpha s_f + \beta s_v$ 
20: end for
21: Sort candidates by score and return top- $k$ 

```

216 ling overall concentration. These properties enable principled parameter selection: α should satisfy
 217 $\alpha > \frac{\beta \cdot \delta_{max}}{\sigma_{min} \cdot \sqrt{d/m}} \cdot (1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}})$ where δ_{max} is the maximum content distance and σ_{min} is the minimum
 218 attribute distance, while $\beta > \frac{\delta_{max}}{\epsilon_f}$ ensures intra-cluster distances are bounded by ϵ_f (Thm. 4). The
 219 optimal values for α and β involves setting inequalities to equal (Cor. 1). The formula for k' handles
 220 special cases like single-record attributes and identical-content records within an attribute ($R_a = 0$),
 221 providing probabilistic guarantees for retrieving the true top-k results.

222 **Complexity.** The offline phase requires $O(Nd)$ time to transform the dataset of N records with
 223 d -dimensional vectors, plus $O(|\mathcal{F}|^2 N)$ time to compute cluster statistics where $|\mathcal{F}|$ is the number
 224 of distinct attributes. The storage overhead is $O(N)$ for vectors plus $O(|\mathcal{F}|^2)$ for cluster statistics,
 225 and we do not duplicate base vectors: the index stores only the transformed vector and a pointer
 226 to the original record. For online processing, query transformation takes $O(d)$ time, followed
 227 by $O(k' \log N)$ time for retrieving candidates and $O(k'd)$ time for pointer-only re-ranking. As α
 228 increases, the required k' approaches k , so post-processing becomes akin to standard ANN re-ranking,
 229 minimizing overhead. This makes FUSEDANN efficient for practical applications where the number
 230 of distinct attributes is much smaller than the dataset size.

232 4 MULTI-ATTRIBUTES AND ATTRIBUTE HIERARCHY

233 Real-world search scenarios often involve multiple filtering attributes, each with different levels
 234 of importance (Def. 3). For example, an e-commerce platform might prioritize matching product
 235 categories first, then brands, and finally price ranges. In this section, we extend FUSEDANN to
 236 elegantly handle multiple attributes by applying our transformation sequentially, creating a natural
 237 hierarchy that controls their relative importance. In this section, we also assume $\forall j \in [1, \mathbb{F}] : m_j \mid d$.

238 **Recursive Transformations.** The key insight of our approach is remarkably simple: by applying
 239 the transformation Ψ repeatedly for each attribute, we create a unified space that respects attribute
 240 priorities. Starting with the original content vector $v_0 = v(o_i)$, we apply each transformation in
 241 sequence:

$$243 \quad v_j = \Psi_j(v_{j-1}, f^{(j)}(o_i), \alpha_j, \beta_j) \quad \text{for } j = 1, 2, \dots, \mathbb{F} \quad (6)$$

244 where each transformation uses its own parameters $\alpha_j > 1$ and $\beta_j > 1$. The final transformed vector
 245 $v_{\mathbb{F}}$ integrates information from all attributes. As illustrated in Fig. 2(b), this process can be visualized
 246 with a simple example using two attributes, where each transformation progressively incorporates
 247 attribute information to refine the grouping of records.

248 This sequential approach creates a natural priority structure with three powerful properties (formally
 249 proven in the appendix). First, the order of elements with identical attributes is preserved through
 250 all transformations, ensuring that content-based ranking remains accurate within attribute-matched
 251 groups (Thm. 6).

252 Second, and crucially, the order of transformation application establishes a clear priority hierarchy:
 253 the later an attribute is applied, the higher its effective priority in determining the vector space
 254 structure (Thm. 7). As shown in Fig. 2(b), the transformation of the attribute with lower priority, $\pi(2)$,
 255 is applied first, followed by the higher-priority attribute, $\pi(1)$, resulting in the desired hierarchical
 256 organization. This occurs because later transformations' effects are scaled by fewer β factors, giving
 257 them greater influence on the final distances. We show that when transformations are applied in
 258 reverse priority order, the resulting space inherently satisfies the monotone attribute priority property
 259 defined in Def. 3 (Thm. 8).

260 Third, our framework creates a natural stratification of records based on how many attributes match
 261 the query (Thm. 9). Records with more matching attributes will always be closer to the query than
 262 those with fewer matches, regardless of the content similarity. This creates well-defined "layers"
 263 in the vector space, with the innermost layer containing records matching all attributes, the next
 264 layer containing those matching all but one, and so on. Moreover, there always exist suitable
 265 transformation settings such that this attribute matching hierarchy holds for all cross-clusters pair of
 266 records (Thm. 10).

267 **Example 2.** *Imagine a product catalog with transformations applied in the order* $(f^{(color)}, f^{(size)}, f^{(brand)})$. *This makes brand the highest-priority attribute, followed by size, and then color. When searching, the retrieved products primarily match the brand specified in the query,*

270 then the size, and finally the color. Additionally, products are ranked by content similarity. For more
 271 intuition, see §F.2.

272

273

274 For multi-attribute retrieval, we extend Alg. 1 to apply transformations sequentially for each
 275 attribute (see Alg. 3). The key differences are: (1) transformations are applied iteratively as
 276 $v_j \leftarrow \Psi_j(v_{j-1}, f^{(j)}(o), \alpha_j, \beta_j)$ over all records for each attribute $j \in \{1, \dots, \mathbb{F}\}$; (2) the
 277 optimal parameters α and β of subsequent fused space is computed for each new attribute transformation
 278 iteratively; and (3) the candidate set size k' is determined using Thm. 11, reflecting the narrowing
 279 effect of multiple filters (§F.6).

280 Time complexity remains $O(Nd)$ for preprocessing transformations, though computing statistics
 281 for all attribute combinations increases with the number of attributes. The query transformation is
 282 efficient at $O(\mathbb{F}d)$ time. Importantly, as \mathbb{F} increases, fewer candidates are typically needed due to
 283 better separation in the transformed space, improving search efficiency..

284 4.1 ATTRIBUTE UPDATES IN FUSEDANN

285

286 Real-world applications often need to add new attributes (as metadata) or change priority orderings
 287 as requirements evolve. FUSEDANN handles these scenarios efficiently without requiring complete
 288 index reconstruction. When adding a new attribute with the highest priority, we simply apply
 289 an additional transformation to the already transformed vectors. For attributes inserted at lower
 290 priorities, a partial reconstruction is needed, but only from the insertion point forward. Similarly,
 291 when the priority orderings change, we need only to recompute transformations beyond the point
 292 where the old and new orderings differ: $j = \min\{k : \forall i \geq k, \pi(i) = \pi'(i)\}$. This limits the
 293 computational complexity to $O(N \cdot j \cdot d)$, substantially lower than the full recompilation, since only
 294 a partial reconstruction is required for indexes lower than j (see Fig. 2(c)). This update efficiency
 295 makes FUSEDANN particularly well-suited for dynamic applications where attribute importance
 296 evolves over time, such as in recommendation systems where feature relevance changes based on
 297 user behavior. Note that standard data updates (e.g., new attribute values) are handled via native ANN
 298 insertion; the reconstruction bound $O(N \cdot j \cdot d)$ applies only to infrequent global re-prioritizations or
 299 when a new attribute field is added to the filtered index. See §F.7 for analysis.

300

5 RANGE FILTER ON FUSEDANN

301 Range queries seek records whose attribute values fall within a specified attribute range $[l, u]$, ranked
 302 by similarity to a query vector q . Formally, a range query is $Q = (q, l, u)$ where $q \in \mathbb{R}^d$ and
 303 $l, u \in \mathbb{R}^m$. Our fused space has an elegant geometric characteristics that allows us instead of
 304 indexing the points and then create feasible range at the runtime, index range queries and approximate
 305 nearest range query at runtime. A range query can be defined as a cylinder in the fused space that
 306 precisely captures all potential eligible nearest points to q within $[l, u]$. The axis of the cylinder (*line*
 307 *segment*) obtains by Ψ to the boundaries: $p_l := \Psi(q, l, \alpha, \beta)$, $p_u := \Psi(q, u, \alpha, \beta)$ parameterized as
 308 $L(Q, t) = (1 - t) \cdot p_l + t \cdot p_u$, where $t \in [0, 1]$ (or L_Q in short).

309 For attribute values $f \in [l, u]$ in range-filtered query, the transformed query points $p_f := \Psi(q, f, \alpha, \beta)$
 310 lie exactly on L_Q in the fused embedding space (Thm. 15). Moreover, the vertical distance from
 311 L_Q measures how well q is approximated and scales with its vector similarity. Geometrically, each
 312 range-filtered query maps to a cylinder in the fused space. This relationship offers a unified geometric
 313 framework for jointly handling attribute range filtering and vector similarity. Formally, if $v \neq q$, the
 314 transformation of $v_f = \Psi(v, f, \alpha, \beta)$ vertical distance to L_Q is exactly $\frac{\|v - q\|}{\beta}$ (Thm. 16). Leveraging
 315 this traceability, we define a cylindrical range query by introducing a radius- r query cylinder around
 316 L_Q : $\text{Tube}(Q, r) = \{z \in \mathbb{R}^d \mid \min_{t \in [0, 1]} \|z - L(Q, t)\| \leq r\}$ (see Fig. 2(d)).

317 During indexing, we create cylinders that cover the fused space with an optimal radius $r = R$. This
 318 radius—ensuring high-probability top- k' recall—is precomputed for each indexed line segment using
 319 the k' -th neighbor distance, dataset size, and similarity distribution. (Thm. 18). To efficiently cover
 320 the fused space with cylinders defined by pairs of offline data, which is crucial for fast retrieval, we
 321 use an adaptive sampling strategy during indexing over the fused space. At query time, for a top- k
 322 query $Q' = (q', l', u')$ (where $k < k'$), we must find the nearest indexed cylindrical $\text{Tube}(Q, R)$ with
 323 Hausdorff distance closest axis L_Q to $L_{Q'}$. The gap between k and k' guarantees high recall by
 324 providing the flexibility needed to approximate $L_{Q'}$ with $\text{Tube}(Q, R)$. The base radius R is stored

Figure 3: Hierarchical Indexing Components

with each line in the index and determines the extent of the corresponding cylindrical region or the maximum radius coverage.

Hierarchical Indexing Framework. We briefly sketch the idea here; details appear in §G. To enable efficient range queries in the fused space, we introduce a hierarchical framework of three levels in Alg. 2.

① Leveraging the guaranteed sample complexity, which is derived from the data pattern and range distributions (Livshits et al., 2020; Heidari et al., 2020b), we strategically take a **sufficiently large sample** from the space of possible range queries (Fig. 3(a) and Thm. 17). This approach ensures that any potential query line will closely match a pre-indexed line, while minimizing storage (see §G.3) and accounting for the varying importance of regions in the fused space (Alg. 4).

② We build a specialized **line similarity index** that efficiently identifies the pre-indexed line most similar to L_Q (Fig. 3(b)). Our line similarity combines directional, positional, and length components to provide strong correlation with the Hausdorff distance between lines (See Fig. 3(c) and Thm. 19). Note that ANN indexing of a finite L_Q within the cylinder defining the approximate range query differs from the approximate line nearest-neighbor methods (Andoni et al., 2009), which assume infinite lines. Our line index organizes lines first by their direction vectors and then by their spatial locations. The directional partitioning creates angular cells on the *unit sphere with resolution* ν (Fig. 3(d,e)), assigning each line to a cell based on its orientation. Within each directional group, we further organize the lines using spatial indices based on their midpoints (Alg. 5). This hierarchical structure enables logarithmic time retrieval of the indexed line most similar to any query line (Alg. 6).

③ For each indexed line L^* , we construct a **cylindrical index** (Kim et al., 2001) that partitions the points by their cylindrical coordinates relative to L^* , allowing efficient retrieval of the most similar points (Fig. 3(f)). Every line segment is divided into sections the length of the radius (sub-lines), utilizing radius-based indices per section (with respect to the perpendicular distance to its respective section line segment) in a ball tree structure. This supports rapid retrieval of points within a certain range, while reducing excess calculations (Fig. 3(e)).

Adaptive Error Compensation. When approximating a query line with a similar indexed line, adjust the search radius and candidate count to offset the error per the lines’ Hausdorff distance (Thm. 20). Specifically, the radius of the cylinder increases with the Hausdorff distance between the query and the indexed lines, and the candidate count is scaled by a data-dependent factor reflecting local line density (Alg. 9). The density is calculated by taking the ratio of the number of points contained within a cylindrical region to the volume of that area. Therefore, in areas of higher density, more candidates must be considered to maintain an equivalent probability of identifying the actual nearest neighbors (Thm. 21). Thus, when building the index, we assume a maximum Hausdorff distance supported by the pre-indexed data, add it to the optimal radius, and then construct the index. At query time, if the radius required for the query is below the maximum R , we apply these adjusted values of k and the search radius to ensure robust retrieval performance (Fig. 3(e)).

Complete Range Query Algorithm and Complexity. Our range query processing first transforms the query into a line segment in the fused space, then efficiently locates the most similar indexed line via a hierarchical line index in logarithmic time. The search radius and the candidate count

Algorithm 2 Concise version of Alg. 10

```

1: Input: Query  $q$ , range  $[l, u]$ ,  $k$ 
2: Map  $q, [l, u]$  to line  $L_Q$  in fused space
3: Find most similar indexed line  $L^*$  to  $L_Q$  using line index (Fig. 3(b))
4: Adjust search radius based on line similarity (Fig. 3(c,e))
5: Retrieve candidate points from  $L^*$ ’s cylindrical index within radius (Fig. 3(d,f))
6: Filter candidates by attribute range  $[l, u]$ 
7: Return top- $k$  nearest neighbors to  $q$ 

```

378
379
380 Table 1: Dataset statistics
381
382
383
384
385
386

Dataset	Dimension	Size	Use Case
SIFT1M	128	1,000,000	Single/Multi Filter
GloVe	100	1,183,514	Single/Multi Filter
UQ-V	256	1,000,000	Single/Multi/Range Filter
DEEP	96	10,000,000	Single Filter/Range Filter
YouTube-Audio	128	1,000,000	Single Filter/Range Filter
WIT-Image	2048	1,000,000	Single Filter/Range Filter

387 are adjusted based on the Hausdorff distance between the query and the indexed lines. A cylinder
388 search retrieves candidates within the adjusted radius, which are then filtered by attribute range and
389 ranked by distance to the query. [Alg. 2](#) achieves $O(\log N + k \log(1/\epsilon) + k \log k)$ expected query
390 time, enabling efficient range queries even on very large datasets ([Thm. 22](#)).

391 6 EXPERIMENTS

393 We evaluated FUSEDANN on multiple real-world data sets that cover various retrieval scenarios:
394 single-attribute filtering, multiple-attribute filtering, and range filtering. We compare against state-of-
395 the-art methods from the recent literature. (Detailed experiments are provided in [§D](#))

397 **Experimental Setup.** For a detailed setup, see [§D.1](#).

- 399 • **Datasets.** We use datasets from different domains with varying dimensionality, as shown in Table 1.
400 For single and multi-attribute filtering, we use SIFT1M¹, GloVe², and UQ-V³. For range filtering,
401 we use DEEP⁴, YouTube-Audio⁵, and WIT-Image⁶ ([Zuo et al., 2024](#); [Xu et al., 2025](#)).
- 402 • **Variants of FUSEDANN.** We created four different versions of FUSEDANN, each incorporating a
403 unique base indexing algorithm: FUS-H is built upon HNSW ([Malkov & Yashunin, 2018](#)); FUS-D
404 uses DiskANN ([Subramanya et al., 2019a](#)); FUS-F employs Faiss ([Johnson et al., 2019](#)) with the
405 IVF index; and FUS-A implements ANNOY ([Bernhardsson, 2024](#)).
- 406 • **Baselines.** For attribute filtering, we compare against: NHQ-NPG ([Wang et al., 2023](#)), Vearch ([Jing-
407 dong, 2020](#)), ACORN ([Patel et al., 2024](#)), VBASE ([Zhang et al., 2023](#)), ADBV ([Zhu et al., 2020](#)),
408 Milvus ([Wang et al., 2021a](#)), Faiss ([Johnson et al., 2019](#)), DEG ([Yin et al., 2025](#)), SPTAG ([Mi-
409 crosoft, 2020](#)), NGT ([Japan, 2016](#)), and Filtered-DiskANN ([Gollapudi et al., 2023](#)) (F-Disk in
410 short). For range filtering, we compare against: SeRF ([Zuo et al., 2024](#)), ANNS-first, Range-first,
411 and FAISS ([Johnson et al., 2019](#)).
- 412 • **Metrics.** We use queries-per-second (QPS) for efficiency and Recall@k for accuracy. For all
413 experiments, we report the mean over three runs.

415 **Single Attribute Filtering.** We evaluated FUSEDANN variants against 11 baseline methods (NHQ,
416 Faiss, Vearch, SPTAG, ADBV, NGT, Milvus, Filtered-DiskANN) under single-attribute constraints.
417 Fig. 4I demonstrates consistent superiority in both SIFT1M and GloVe datasets, where Fus-H achieves
418 peak performance with $4.2 \times$ higher QPS than NHQ-NPG at Recall@10=0.95. The performance
419 hierarchy (Fus-H > Fus-D > Fus-F > Fus-A) mirrors the efficiency characteristics of their underlying
420 index structures. In particular, Fus-H maintains $2.1\text{--}3.8 \times$ speed advantages over graph-based methods
421 (NGT, SPTAG) and $1.8\text{--}2.4 \times$ improvements versus quantization approaches (Faiss, F-Disk) at all
422 recall levels. This universal outperformance confirms the effectiveness of our distance-preserving
423 transformation in maintaining relevant vector proximities while enforcing attribute constraints.

424 **Multiple Attribute Filtering.** Fig. 4II evaluates multi-attribute filtering performance across
425 SIFT1M and GloVe datasets, comparing variants FUSEDANN against six baselines (NHQ, Faiss,
426

427 ¹<http://corpus-texmex.irisa.fr/>

428 ²<https://nlp.stanford.edu/projects/glove/>

429 ³<https://dataset.uq-v.org/>

430 ⁴<https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search>

431 ⁵<https://research.google.com/youtube8m/download.html>

432 ⁶<https://github.com/google-research-datasets/wit>

Vearch, ADBV, Milvus and F-Disk). Fus-H achieves a QPS $3.2\times$ higher than NHQ at Recall@10=0.95, with consistent superiority in all variants following the same hierarchy. This performance ordering mirrors the efficiency characteristics of each variant's foundational index structure while maintaining attribute-aware separation. The cross-dataset improvements (2.1-3.8 \times over graph indexes, 1.6-2.9 \times versus quantization methods) confirm multi-attribute filtering's enhanced discriminative power between attribute-defined clusters.

Figure 5: Range Performance

Range Filtering. We evaluate FUSEDANN-Range across the entire spectrum of range widths (0%-100%) on four benchmark datasets. As shown in Fig. 5, FUSEDANN-Range maintains superior QPS compared to seven state-of-the-art methods, particularly excelling at narrow ranges (<20%) where it outperforms SeRF by 3.8-5.6 \times and ANNS-first by 7.2-12.9 \times at Recall@10=0.95. Although our hierarchical indexing strategy optimizes FUSEDANN-Range for range filtering, the core transformation principles remain applicable to other index types. Consistent performance advantages across DEEP, YouTube-Audio, UQ-V, and WIT datasets demonstrate both robustness and versatility. **At full width, FUSEDANN becomes content-only search (Thm. 16), matching raw index speed and avoiding graph filter traversal.** On the 2048-D WIT dataset, it embeds range constraints directly with little extra distance cost, while graph filters face high-dimensional pruning overhead.

Ablation Studies. The complete Fus-H system achieves 43,618 QPS at Recall@10=0.95. Individual component removal reveals distinct contributions: α effect removal reduces performance to 28,149 QPS (35% drop), β removal to 30,968 QPS (31% drop), parameter setting removal to 23,210 QPS (47% drop), and candidate optimization(k') removal to 23,127 QPS (47% drop). This confirms each component's importance to our method's effectiveness. We further examine the performance difference between FUSEDANN variants, finding that the underlying index algorithm contributes significantly to the overall performance, with the core transformation providing a consistent boost regardless of the base index used.

Scalability. When increasing the number of attribute constraints from 1 to 3, FUSEDANN variants sustain high throughput: the top variant remains close to 10^5 QPS throughout, while others stay above 3×10^4 QPS. In contrast, baseline methods drop sharply, with some falling below 10^3 QPS at three attributes. This analysis shows that FUSEDANN maintains robust efficiency under increasing filter complexity, outperforming alternatives by 10 \times to 100 \times as the number of attributes grows.

486 **7 DISCUSSION**

488 As it shown in §3, our method needs filter values be embedded in a metric space, with attribute
 489 dimension $m \leq d$ to ensure fusion and ANN compatibility; for scalar attributes we use $m = 1$
 490 . We do not natively support arbitrary DNF—by a metric-embedding no-go (OR cannot be fused
 491 into a single-valued metric without violating axioms)—but we rapidly materialize the conjunctive
 492 DNF building blocks (filters \wedge range/ANN) and handle unions/negations via query planning; We
 493 pre-materialize conjunctive blocks and use a light planner for OR/NOT, probing few shared blocks
 494 and merging $O(k')$ candidates with $O(k \log k)$ dedup; as α grows, $k' \rightarrow k$, so overhead stays near
 495 top- k . In contrast, general systems (e.g., ACORN and NaviX) defer filtering to query time, hurting
 496 performance. FusedANN functions as a specialized, predicate-aware index for high-value filtering
 497 paths, complementing the general-purpose base index.

498 Although we have discussed supporting updates that add entirely new attributes to all records, a
 499 theoretical analysis is still needed to understand how changes in the value of a single attribute impact
 500 the index structure, query performance, and when such updates should trigger index reconstruction,
 501 similar to the approach in (Mohoney et al., 2024). Addressing the scalability to multi-attribute range
 502 queries, theoretical guarantees for a mixture of multiple attributes with one range attribute, general
 503 guarantees for Non-Euclidean metrics, and efficient attribute updates remains an important direction
 504 for future work. See §C for detailed limits and future work.

505 **8 CONCLUSION**

506 We propose a geometric hybrid search framework that unifies content and attribute information in a
 507 fixed-dimensional space, allowing efficient filtering and range queries without modifying existing
 508 ANN indexing algorithms. Our transformation preserves nearest-neighbor ordering within attribute
 509 classes, supports dynamic attribute priorities, and allows efficient partial index updates. In addition, it
 510 works with categorical and unstructured attribute values. Extensive experiments on real-world datasets
 511 demonstrate that FUSEDANN achieves superior recall and query throughput compared to state-of-the-
 512 art hybrid methods, especially under complex or multi-attribute filtering. Theoretically, we provide
 513 explicit error bounds and principled parameter selection rules, ensuring robust performance and
 514 practical deployment. Our results indicate that geometric fusion of attributes and vectors offers a
 515 scalable and flexible foundation for next-generation hybrid retrieval systems.

516 **REFERENCES**

518 Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Madden, et al. The design
 519 and implementation of modern column-oriented database systems. *Foundations and Trends® in
 520 Databases*, 5(3):197–280, 2013.

521 Mohammad Reza Abbasifard, Bijan Ghahremani, and Hassan Naderi. A survey on nearest neighbor
 522 search methods. *International Journal of Computer Applications*, 95(25), 2014.

524 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
 525 in high dimensions. *Communications of the ACM*, 2008.

527 Alexandr Andoni, Piotr Indyk, Robert Krauthgamer, and Huy L. Nguyen. Approximate line nearest
 528 neighbor in high dimensions. In *Proceedings of the Twentieth Annual ACM-SIAM Symposium
 529 on Discrete Algorithms*, SODA '09, pp. 293–301, USA, 2009. Society for Industrial and Applied
 530 Mathematics.

531 Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. Dataset: Sift1m, 2024. URL
 532 <https://doi.org/10.57702/7dh21691>.

533 ArXiv.org. Arxiv.org titles and abstracts, 2024. URL <https://qdrant.tech>.

535 Martin Aumuller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A benchmarking
 536 tool for approximate nearest neighbor algorithms. *Information Systems*, 2020.

538 Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for billion-scale
 539 approximate nearest neighbors. In *Proceedings of the European Conference on Computer Vision
 (ECCV)*, pp. 202–216, 2018.

540 Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Communications of the ACM*, 1975.

541

542

543 Erik Bernhardsson. Annoy: Approximate nearest neighbors in c++/python, 2018. *Python package*
544 *version*, 1(0), 2024.

545

546 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

547

548 Dmitri Burago, Yuri Burago, Sergei Ivanov, et al. *A course in metric geometry*, volume 33. American
549 Mathematical Society Providence, 2001.

550

551 Chee-Yong Chan and Yannis E Ioannidis. Bitmap index design and evaluation. In *Proceedings of the 1998 ACM SIGMOD international conference on Management of data*, pp. 355–366, 1998.

552

553 Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, and
554 Jingdong Wang. Spann: Highly-efficient billion-scale approximate nearest neighbor search. In
555 *NeurIPS*, 2021.

556

557 Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J Franklin, Joseph E Gonzalez, and Ion Stoica.
558 Clipper: A {Low-Latency} online prediction serving system. In *14th USENIX Symposium on
559 Networked Systems Design and Implementation (NSDI 17)*, pp. 613–627, 2017.

560

561 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
562 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
563 the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

564

565 Matthijs Douze, Alexandre Guizhava, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-Emmanuel
566 Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. *arXiv preprint*
567 *arXiv:2401.08281*, 2024.

568

569 Dylan Foster, Karthik Sridharan, and Daniel Reichman. Inference in sparse graphs with pairwise
570 measurements and side information. In *International Conference on Artificial Intelligence and
Statistics*, pp. 1810–1818. PMLR, 2018.

571

572 Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
573 with the navigating spreading-out graph. *Proceedings of the VLDB Endowment (PVLDB)*, 2019a.

574

575 Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search with
576 the navigating spreading-out graph. *Proceedings of the VLDB Endowment*, 12(5):461–474, 2019b.

577

578 Cong Fu, Changxu Wang, and Deng Cai. High dimensional similarity search with satellite system
579 graph: Efficiency, scalability, and unindexed query compatibility. *IEEE Transactions on Pattern
Analysis and Machine Intelligence*, 44(8):4139–4150, 2021.

580

581 Tiezheng Ge, Kaiming He, Qifan Ke, and Jian Sun. Optimized product quantization. In *Proceedings
582 of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2013.

583

584 Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing.
585 In *Proceedings of the International Conference on Very Large Data Bases (VLDB)*, 1999.

586

587 Siddharth Gollapudi, Neel Karia, Varun Sivashankar, et al. Filtered-diskann: Graph algorithms for
588 approximate nearest neighbor search with filters. In *Proceedings of the ACM Web Conference 2023
(WWW '23)*, 2023.

589

590 Gaurav Gupta, Jonah Yi, Benjamin Coleman, Chen Luo, Vihan Lakshman, and Anshumali Shrivastava.
591 Caps: A practical partition index for filtered similarity search. *arXiv preprint arXiv:2308.15014*,
592 2023.

593 Ben Harwood and Tom Drummond. Fanng: Fast approximate nearest neighbour graphs. In *Proceedings
594 of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

594 Alireza Heidari and Wei Zhang. Filter-centric vector indexing: Geometric transformation for efficient
 595 filtered vector search. In *Proceedings of the Eighth International Workshop on Exploiting Artificial*
 596 *Intelligence Techniques for Data Management*, aiDM '25, New York, NY, USA, 2025. Association
 597 for Computing Machinery. ISBN 979-8-4007-1920-2/2025/06. doi: 10.1145/3735403.3735996.
 598 URL <https://doi.org/10.1145/3735403.3735996>.

599
 600 Alireza Heidari, Ihab F Ilyas, and Theodoros Rekatsinas. Approximate inference in structured
 601 instances with noisy categorical observations—supplementary material.

602 Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. Holodetect: Few-shot
 603 learning for error detection. In *Proceedings of the 2019 International Conference on Management*
 604 *of Data*, pp. 829–846, 2019.

605
 606 Alireza Heidari, Ihab F Ilyas, and Theodoros Rekatsinas. Approximate inference in structured
 607 instances with noisy categorical observations. In *Uncertainty in Artificial Intelligence*, pp. 412–
 608 421. PMLR, 2020a.

609 Alireza Heidari, Shrinu Kushagra, and Ihab F Ilyas. On sampling from data with duplicate records.
 610 *arXiv preprint arXiv:2008.10549*, 2020b.

611
 612 Alireza Heidari, George Michalopoulos, Shrinu Kushagra, Ihab F Ilyas, and Theodoros Rekatsinas. Record
 613 fusion: A learning approach. *arXiv preprint arXiv:2006.10208*, 2020c.

614
 615 Alireza Heidari, George Michalopoulos, Ihab F Ilyas, and Theodoros Rekatsinas. Record fusion via
 616 inference and data augmentation. *ACM/JMS Journal of Data Science*, 1(1):1–23, 2024.

617 Alireza Heidari, Amirhossein Ahmadi, and Wei Zhang. Uplif: An updatable self-tuning learned
 618 index framework. In Richard Chbeir, Sergio Ilarri, Yannis Manolopoulos, Peter Z. Revesz, Jorge
 619 Bernardino, and Carson K. Leung (eds.), *Database Engineered Applications*, pp. 345–362, Cham,
 620 2025a. Springer Nature Switzerland. ISBN 978-3-031-83472-1.

619
 620 Alireza Heidari, Amirhossein Ahmadi, and Wei Zhang. Doblix: A dual-objective learned index for
 621 log-structured merge trees. *Proc. VLDB Endow.*, 18(11):3965–3978, September 2025b. ISSN 2150-
 622 8097. doi: 10.14778/3749646.3749667. URL <https://doi.org/10.14778/3749646.3749667>.

623
 624 Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based on k-nearest neighbor
 625 graph for proximity search in high-dimensional data. *arXiv preprint arXiv:1810.07355*, 2018.

626
 627 Yahoo Japan. Nearest neighbor search with neighborhood graph and tree for high-dimensional data,
 628 2016. URL <https://github.com/yahoojapan/NGT>.

629
 630 Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
 631 Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
 632 *Advances in neural information processing Systems*, 32, 2019.

633
 634 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
 635 *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.

636
 637 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
 638 *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 2011.

639
 640 Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. Searching in one billion
 641 vectors: re-rank with source coding. In *2011 IEEE International Conference on Acoustics, Speech*
 642 *and Signal Processing (ICASSP)*, pp. 861–864. IEEE, 2011.

643
 644 Jingdong. A distributed system for embedding-based retrieval. <https://github.com/vearch/vearch>, 2020.

645
 646 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. *IEEE*
 647 *Transactions on Big Data*, 7(3):535–547, 2019.

648 Sang-Wook Kim, Charu C. Aggarwal, and Philip S. Yu. Effective nearest neighbor indexing with
 649 the euclidean metric. In *Proceedings of the Tenth International Conference on Information*
 650 *and Knowledge Management*, CIKM '01, pp. 9–16, New York, NY, USA, 2001. Association
 651 for Computing Machinery. ISBN 1581134363. doi: 10.1145/502585.502588. URL <https://doi.org/10.1145/502585.502588>.

653 Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. Improving approximate nearest
 654 neighbor search through learned adaptive early termination. In *SIGMOD*, 2020a.

655 Wei Li, Yuhui Zhang, Ye Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xiaoyong Lin. Approximate
 656 nearest neighbor search on high dimensional data—experiments, analyses, and improvement. *IEEE*
 657 *Transactions on Knowledge and Data Engineering (TKDE)*, 2020b.

659 Anqi Liang, Pengcheng Zhang, Bin Yao, Zhongpu Chen, Yitong Song, and Guangxu Cheng. Unify:
 660 Unified index for range filtered approximate nearest neighbors search. *arXiv preprint*, 2024.

661 Ester Livshits, Alireza Heidari, Ihab F Ilyas, and Benny Kimelfeld. Approximate denial constraints.
 662 *arXiv preprint arXiv:2005.08540*, 2020.

664 Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
 665 hierarchical navigable small world graphs. *IEEE transactions on pattern analysis and machine*
 666 *intelligence*, 42(4):824–836, 2018.

667 Jiří Matoušek. *Lectures on Discrete Geometry*. Springer, 2002.

668 Yusuke Matsui. Rii: Reconfigurable Inverted Index. <https://github.com/matsui528/rii>,
 669 20xx. Accessed [Date of Access].

670 Microsoft. Sptag: A library for fast approximate nearest neighbor search, 2020. URL <https://github.com/microsoft/SPTAG>.

671 Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Umar Farooq Minhas, Jeffery Pound,
 672 Cedric Renggli, Nima Reyhani, Ihab F Ilyas, Theodoros Rekatsinas, and Shivaram Venkataraman.
 673 Incremental ivf index maintenance for streaming vector search. *arXiv preprint arXiv:2411.00970*,
 674 2024.

675 Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high dimensional data.
 676 *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 2014.

677 Thomas Neumann. Efficiently compiling efficient query plans for modern hardware. *Proceedings of*
 678 *the VLDB Endowment*, 4(9):539–550, 2011.

679 Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
 680 Rajashekhar, Sukriti Ramesh, and Jordan Soye. Tensorflow-serving: Flexible, high-performance
 681 ml serving. *arXiv preprint arXiv:1712.06139*, 2017.

682 James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of vector database management systems. *The*
 683 *VLDB Journal*, 33(5):1591–1615, 2024.

684 Prashant Pandey, Alex Conway, Joe Durie, Michael A Bender, Martin Farach-Colton, and Rob John-
 685 son. Vector quotient filters: Overcoming the time/space trade-off in filter design. In *Proceedings*
 686 *of the 2021 International Conference on Management of Data*, pp. 1386–1399, 2021.

687 Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. Acorn: Performant and predicate-
 688 agnostic search over vector embeddings and structured data. *Proceedings of the ACM on Manage-*
 689 *ment of Data*, 2(3):1–27, 2024.

690 Pinecone. Pinecone: Vector database for machine learning applications., 2021. URL <https://www.pinecone.io>.

691 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 692 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 693 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

702 Jie Ren, Minjia Zhang, and Dong Li. Hm-ann: Efficient billion-point nearest neighbor search on
 703 heterogeneous memory. *Advances in Neural Information Processing Systems*, 33:10672–10684,
 704 2020.

705 Gaurav Sehgal and Semih Salihoğlu. Navix: A native vector index design for graph dbmss with
 706 robust predicate-agnostic search performance. *Proc. VLDB Endow.*, 18(11):4438–4450, July 2025.
 707 ISSN 2150-8097. doi: 10.14778/3749646.3749704. URL <https://doi.org/10.14778/3749646.3749704>.

710 Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko,
 711 Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamy, Gopal Srinivasa,
 712 Suhas Jayaram Subramanya, and Jingdong Wang. Results of the neurips’21 challenge on billion-
 713 scale approximate nearest neighbor search. In *NeurIPS*, 2021.

714 Sivic and Zisserman. Video google: A text retrieval approach to object matching in videos. In
 715 *Proceedings ninth IEEE international conference on computer vision*, pp. 1470–1477. IEEE, 2003.

716 Suhas J. Subramanya, F. Devvrit, Harsha Raghavan, Vardhan Simhadri, Ravishankar Krishnaswamy,
 717 and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single
 718 node. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019a.

719 Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, and
 720 Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
 721 In *NeurIPS*, 2019b.

722 Toni Taipalus. Vector database management systems: Fundamental concepts, use-cases, and current
 723 challenges. *Cognitive Systems Research*, 85:101216, 2 2024. doi: 10.1016/j.cogsys.2024.101216.
 724 URL <https://doi.org/10.1016/j.cogsys.2024.101216>.

725 Min Tan, Zhanxing Qin, Yanhui Wang, Lei Li, and Gang Qiu. Nhq: Neighbor-aware hierarchical
 726 queueing for fast hybrid queries in large-scale vector database. *Proceedings of the VLDB
 727 Endowment (PVLDB)*, 2023.

728 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*.
 729 Cambridge University Press, 2018.

730 Vespa.ai. Vespa: The open big data serving engine., 2021. URL <https://vespa.ai>.

731 Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xi-
 732 angzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data management
 733 system. In *Proceedings of the 2021 International Conference on Management of Data*, pp. 2614–
 734 2627, 2021a.

735 Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey and
 736 experimental comparison of graph-based approximate nearest neighbor search. *arXiv preprint
 737 arXiv:2101.12631*, 2021b.

738 Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni. An
 739 efficient and robust framework for approximate nearest neighbor search with attribute constraint.
 740 *Advances in Neural Information Processing Systems*, 36:15738–15751, 2023.

741 Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai.
 742 Analyticdb-v: A hybrid analytical engine towards query fusion for structured and unstructured
 743 data. *VLDB*, 13(12):3152–3165, 2020.

744 Wikipedia. Wikipedia simple text embeddings, 2024. URL <https://qdrant.tech>.

745 Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. Hqann: Efficient and robust
 746 similarity search for hybrid queries with structured and unstructured constraints. In *Proceed-
 747 ings of the 31st ACM International Conference on Information & Knowledge Management,
 748 CIKM ’22*, pp. 4580–4584, New York, NY, USA, 2022. Association for Computing Machinery.
 749 ISBN 9781450392365. doi: 10.1145/3511808.3557610. URL <https://doi.org/10.1145/3511808.3557610>.

756 Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen. irangeograph:
 757 Improvising range-dedicated graphs for range-filtering nearest neighbor search. In *Proceedings of*
 758 *the 2025 International Conference on Management of Data (SIGMOD '25)*, 2025.

759

760 Ziqi Yin, Jianyang Gao, Pasquale Balsebre, Gao Cong, and Cheng Long. Deg: Efficient hybrid vector
 761 search using the dynamic edge navigation graph. *Proc. ACM Manag. Data*, 3(1), February 2025.
 762 doi: 10.1145/3709679. URL <https://doi.org/10.1145/3709679>.

763

764 Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi Chen, Yinxuan
 765 He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. VBASE: Unifying online vector
 766 similarity search and relational queries via relaxed monotonicity. In *17th USENIX Symposium*
 767 *on Operating Systems Design and Implementation (OSDI 23)*, pp. 377–395, Boston, MA, July
 768 2023. USENIX Association. ISBN 978-1-939133-34-2. URL <https://www.usenix.org/conference/osdi23/presentation/zhang-qianxi>.

769

770 Jie Zhu, Ying Liu, Libin Liu, Qiang Cai, N. M. Haniyeh, and Yinglong Wu. Adbv: A hybrid
 771 framework for nearest neighbour search in large-scale databases. In *IEEE International Conference*
 772 *on Data Engineering (ICDE)*, 2020.

773

774 Tianyu Zhu and Jesse Clark. Marqo ecommerce embeddings - foundation model
 775 for product embeddings, 2024. URL <https://github.com/marqo-ai/marqo-ecommerce-embeddings/>.

776

777 Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. Serf: Segment graph for range-
 778 filtering approximate nearest neighbor search. *Proceedings of the ACM on Management of Data*,
 779 2024.

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810	APPENDIX CONTENTS	
811		
812		
813	A Table of Notations	18
814		
815	B Numerical Example of Ψ transformation	20
816		
817	C Extended Limitations and Future Work	21
818		
819		
820	D Extended Experiments	22
821	D.1 Experimental Setup	22
822	D.1.1 Datasets	22
823	D.1.2 Implementation Details	22
824	D.1.3 Baselines	23
825	D.1.4 Metrics and Protocol	23
826	D.2 Single Attribute Filtering	23
827	D.2.1 Overall Performance	23
828	D.2.2 Effect of Data Distribution	24
829	D.3 Multiple Attribute Filtering	25
830	D.3.1 Two Attributes	25
831	D.3.2 Scaling with Number of Attributes	25
832	D.4 Range Filtering	26
833	D.4.1 Half-Bounded Range Performance	26
834	D.4.2 Arbitrary Range Performance	26
835	D.5 Ablation Studies	26
836	D.5.1 Impact of Components	26
837	D.5.2 Impact of Base Index Selection	27
838	D.5.3 Impact of Parameters	27
839	D.6 Scalability Analysis	28
840	D.7 Memory Footprint and Index Construction	28
841		
842		
843		
844		
845		
846		
847		
848		
849	E FusedANN Framework Theoretical Analysis	28
850		
851	E.1 Properties of Ψ Transformation	28
852	E.2 Candidate Set Size	32
853	E.2.1 Approximate Fixed Candidate Set Size	34
854		
855	E.3 Optimal Parameter Selection	35
856	E.4 Uniqueness of Points in Transformed Space	37
857		
858	F Proofs for Attribute Hierarchy	38
859		
860	F.1 Preliminaries and Notation	39
861	F.2 Intuition behind Monotone Attribute Priority	39
862	F.3 Property Preservation Theorem	39
863	F.4 Attribute Priority Theorem	41

864	F.4.1	Monotonicity of Attributes Priority over Fused Space	43
865	F.5	Attribute Match Distance Hierarchy	46
866	F.6	Hierarchical Multi-Attribute Vector Indexing	48
867	F.7	Attribute Updates Analysis	51
868			
869			
870	G	Range Filtering in FUSEDANN Analysis	52
871	G.1	Line Representation of Range Queries	52
872	G.2	Distance Properties of the Range Line	53
873	G.3	Empirical Distribution Estimation	54
874	G.4	Optimal Sampling of the Range Space	55
875	G.5	Line Similarity Indexing	57
876	G.6	Cylindrical Distance Indexing	60
877	G.7	Error Analysis and Adaptation	62
878	G.8	Complete Range Query Algorithm	64
879			
880			
881	H	Theorems, Corollaries, and Algorithms Cheat Sheet	65
882			
883			
884			
885			
886			
887			
888			
889			
890			
891			
892			
893			
894			
895			
896			
897			
898			
899			
900			
901			
902			
903			
904			
905			
906			
907			
908			
909			
910			
911			
912			
913			
914			
915			
916			
917			

918 **A TABLE OF NOTATIONS**
919920
921 **Table 2: Summary of Notation Used in this Paper**
922

Name	Symbol	Definition
Number of attributes	\mathbb{F}	Number of attribute constraints (filters) in hybrid queries.
Record set	$\mathcal{D}^{(\mathbb{F})}$	Set of all records: $\{o_1^{(\mathbb{F})}, \dots, o_n^{(\mathbb{F})}\}$, each with content and \mathbb{F} attributes.
Record	$o_i^{(\mathbb{F})}$	i -th record: $[v(o_i), f^{(1)}(o_i), \dots, f^{(\mathbb{F})}(o_i)]$.
Content vector	$v(o_i)$	Main content embedding of o_i ; $v(o_i) \in \mathbb{R}^d$.
Content vector set	\mathcal{X}	$\{v(o_i) \mid o_i \in \mathcal{D}^{(\mathbb{F})}\}$.
Content vector dimension	d	Dimension of content vectors $v(o_i)$.
Attribute vector (single)	$f(o_i)$	Attribute embedding (single-attribute case), $f(o_i) \in \mathbb{R}^m$.
Attribute vector for j	$f^{(j)}(o_i)$	j -th attribute vector for o_i ; $f^{(j)}(o_i) \in \mathbb{R}^{m_j}$.
Attribute vector dimension	m, m_j	Dimension of attribute vector(s): m for single-attribute, m_j for j -th attribute.
Attribute value set	\mathcal{F}_j	Set of all possible values for attribute j : $\{f^{(j)}(o_i)\}$ over all i .
Set of all attribute combinations	\mathcal{F}	Set of all unique attribute value combinations (multi-attribute).
Query	q	Query, typically $q = [v(q), F_q^{(1)}, \dots, F_q^{(\mathbb{F})}]$.
Query content vector	$v(q)$	Content vector of the query.
Query attribute (j)	$F_q^{(j)}$	Value of the j -th attribute for the query.
Distance metric (content)	$\rho(x, y)$	Distance function (usually Euclidean) on content vectors.
Distance metric (attribute j)	$\sigma_j(x, y)$	Distance function (usually Euclidean) for attribute j .
Approximation factor	ϵ	Relative error for approximate nearest neighbor search.
Cluster tightness parameter	ϵ_f	Upper bound on intra-cluster (same-attribute) fused vector distances.
Transformed vector	v'_i	Fused vector: $v'_i = \Psi(v(o_i), f(o_i), \alpha, \beta)$.
Fused transformation	$\Psi(v, f, \alpha, \beta)$	Transformation combining content and attribute: block-wise, see Eq. (3).
Multi-attribute transformation	$\Psi_j(\cdot)$	j -th transformation in sequence for multi-attribute fusion.
Transformation scaling	α, α_j	Controls attribute separation in fused space; larger α increases separation.
Transformation scaling	β, β_j	Scales (compresses) all distances in fused space.
Block partitioning	$v^{(l)}$	l -th block of $v(o_i)$ when partitioning into blocks of size m ($v^{(l)} \in \mathbb{R}^m$).
Number of blocks	d/m	Number of blocks when dividing $v(o_i) \in \mathbb{R}^d$ into blocks of length m .

967
968
969
970
971 **Continued on next page**

972 **Table 2 – continued from previous page**
973

Name	Symbol	Definition
<i>k</i> -nearest neighbors	$\text{NN}_k(q)$	Exact top k nearest neighbors of query q .
Approximate neighbors	$\text{ANN}_k(q)$	Approximate top k nearest neighbors (may allow error ϵ).
Number of candidates	k'	Number of candidates retrieved in fused space for high-recall guarantee.
Candidate cluster radius	R_a	Radius of smallest hypersphere containing all transformed records with attribute a .
Minimum inter-cluster dist.	$d_{min}(a, b)$	Minimum distance between any points in clusters for attributes a and b .
Cluster separation metric	γ_a	Normalized separation: $\gamma_a = \min_{b \neq a} \frac{d_{min}(a, b)}{R_a} - 1$.
Number in attribute cluster	N_a	Number of records with attribute a .
Attribute combination	\vec{a}	Tuple of attribute values: $(a^{(1)}, \dots, a^{(F)})$.
Number in attribute cluster (multi)	$N_{\vec{a}}$	Number of records with attribute combination \vec{a} .
Cluster separation (multi)	$\gamma_{\vec{a}}$	As above, for multi-attribute clusters.
Attribute priority order	π	Permutation encoding the search priority of each attribute.
Permutation length	$ \pi $	Number of attributes in the priority order.
Variance in attribute distance	$\text{Var}_S^{(j)}$	Variance of attribute j 's distance in result set S .
Mean attribute distance	$\mu_S^{(j)}$	Mean attribute j distance in candidate set S .
Hybrid score	$\text{score}(o_i)$	Combined score (e.g., $\alpha s_f + \beta s_v$) for candidate ranking.
Cylinder (range query)	$\text{Tube}(Q, r)$	Set of points within perpendicular distance r to query range line in fused space.
Range line (query)	$L(Q, t)$	Line segment in fused space for attribute range $[l, u]$ and query $q, t \in [0, 1]$.
Range endpoints (attributes)	l, u	Lower and upper endpoints of attribute range filter.
Range line endpoint (fused)	p_l, p_u	$\Psi(q, l, \alpha, \beta)$ and $\Psi(q, u, \alpha, \beta)$: endpoints in fused space.
Hausdorff distance	$d_H(A, B)$	Maximum minimal distance between sets A and B (for line similarity).
Line similarity	$\text{sim}(L_1, L_2)$	Composite similarity metric for lines (direction, midpoint, length) for range queries.
Angular resolution parameter	ν	Granularity for direction partitioning in hierarchical line index.
Cylinder search radius	r	Radius of cylinder around query line for range search.
Sampling resolution	r_q, r_r	Resolution for sampling query and range spaces during line index construction.

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Continued on next page

1026

Table 2 – continued from previous page

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

Name	Symbol	Definition
Local density factor	η	Estimated density of points near a given line segment (used for adaptive k').
Number of indexed lines	L	Number of pre-indexed line segments (for range queries).
Number of points in cylinder	P	Number of points in a cylindrical index (for range queries).
Density estimation window	N_r	Number of points within radius r of a line segment.
Cylinder volume	V_r	Volume of a cylinder with radius r and given length: $V_r = \pi r^2 \cdot \ b - a\ $.

B NUMERICAL EXAMPLE OF Ψ TRANSFORMATION

Ψ transformation in S.3 (Eq. 6) subtracts αf from each partitioned block of content vector \mathbf{v} and then scales the result by $1/\beta$. We agree content and attribute vectors (e.g., image embeddings vs. BERT tag embeddings (Devlin et al., 2019)) encode distinct semantics, making direct subtraction seem counterintuitive. However, it’s mathematically principled: it preserves intra-cluster NN ordering/distances up to $1/\beta$ scaling (Theorem 4 and Corollary 1) while increasing inter-cluster separation via α , fusing them geometrically without changing dimensionality or ANN compatibility (e.g., Faiss Douze et al. (2024)).

Toy example ($d = 2, m = 1$). Initial groups (on a circle, $r = 5$) with attribute f :

Group A ($f = -3$): $P_1 = (5.00, 0.00)$, $P_2 = (-2.20, 4.33)$, $P_3 = (-2.50, -4.33)$

Group B ($f = +3$): $Q_1 = (2.50, 4.33)$, $Q_2 = (-5.00, 0.00)$, $Q_3 = (2.50, -4.33)$, $Q_4 = (3.54, 3.54)$

Initial Euclidean distance (ρ) all from P_1 :

$$\begin{aligned} \rho(P_1, Q_1) &\approx 5.00 & \rho(P_1, Q_2) &\approx 10.00 & \rho(P_1, Q_3) &\approx 5.00 & \rho(P_1, Q_4) &\approx 3.83 \\ \rho(P_1, P_2) &\approx 8.41 & \rho(P_1, P_3) &\approx 8.66 \end{aligned}$$

Top 2–NN: $Q_4, Q_1/Q_3$ (mixed groups).

Applying Ψ ($\alpha = 3, \beta = 1.5$):

$$\mathbf{v}' = \frac{\mathbf{v} - \alpha f}{\beta}$$

Group A: since $f = -3$, we have $\mathbf{v}' = \frac{\mathbf{v} + 9}{1.5}$.

$$P'_1 = (9.33, 6.00), \quad P'_2 = (4.53, 8.89), \quad P'_3 = (4.33, 3.11)$$

Group B: since $f = +3$, we have $\mathbf{v}' = \frac{\mathbf{v} - 9}{1.5}$.

$$\begin{aligned} Q'_1 &= (-4.33, -3.11), & Q'_2 &= (-9.33, -6.00) \\ Q'_3 &= (-4.33, -8.89), & Q'_4 &= (-3.64, -3.64) \end{aligned}$$

After transformation distances all from P'_1 :

$$\begin{aligned} \rho(P'_1, Q'_1) &\approx 16.42 & \rho(P'_1, Q'_2) &\approx 22.20 & \rho(P'_1, Q'_3) &\approx 20.20 & \rho(P'_1, Q'_4) &\approx 16.16 \\ \rho(P'_1, P'_2) &\approx 5.60 & \rho(P'_1, P'_3) &\approx 5.77 \end{aligned}$$

1080 Top 2–NN: P'_2, P'_3 (intra-group; order preserved, inter dropped).
 1081

1082
 1083 This illustrates that Ψ induces a uniform rescaling within groups (preserving intra-cluster NN relations
 1084 up to $1/\beta$) while shifting group centers apart via α , thereby enhancing inter-cluster separation without
 1085 altering dimensionality or compatibility with standard ANN indices.

1086 C EXTENDED LIMITATIONS AND FUTURE WORK

1087
 1088 We summarize key limitations of our approach and outline concrete avenues for future research.
 1089

1090
 1091 **Limitations.** Although our fusion-based method is a promising approach for handling filters in an
 1092 ANN problem, we recognize the following limitations.

- 1093 • **Metric-embedding requirement.** Our method requires that filter values be embedded in a metric
 1094 space with attribute dimension $m \leq d$ to ensure fusion with the base vector space and ANN
 1095 compatibility. This constrains attribute types and encodings, and may limit applicability when
 1096 attributes are non-metric or exceed the dimensional budget.
- 1097 • **No-go for native DNF.** We do not natively support arbitrary DNF predicates, by an impossibility of
 1098 embedding a metric (disjunctive OR cannot be fused into a single-valued metric without violating
 1099 metric axioms). Instead, we efficiently materialize conjunctive building blocks multi-attributes
 1100 filters, and range filter and perform unions/negations via query planning. This design favors
 1101 predictable performance while avoiding the per-query penalties incurred by general systems (e.g.,
 1102 ACORN) that defer filtering to query time.
- 1103 • **Update sensitivity and index maintenance.** Although we support appending entirely new at-
 1104 tributes to all records, the effect of updates to the value of a single attribute on the fused index
 1105 structure and query accuracy/latency remains theoretically under-analyzed. Determining when
 1106 incremental updates suffice versus when index reconstruction is required is an open problem.
- 1107 • **Non-Euclidean metrics.** Our guarantees are strongest under Euclidean assumptions. General
 1108 theoretical guarantees under non-Euclidean (e.g., tree, graph, or learned) metrics remain incomplete.
- 1109 • **Priority dynamics.** Our incremental handling of attribute-priority changes (by storing indexes of
 1110 combinations of lower-priority attributes and extending them for higher priorities) enables flexible
 1111 updates but can increase storage and maintenance costs under frequent re-prioritization.

1112
 1113 **Future work.** In future work, we will extend our approach by addressing current limitations and
 1114 following some interesting paths.

- 1115 • **Sampling framework for computing α^* and β^* .** The computation of α^* and β^* uses all available
 1116 data. A useful direction is to approximate them from a sample and analyze the sample complexity
 1117 and the resulting approximation error for α^* and β^* .
- 1118 • **Theory for update triggers and stability.** Develop formal criteria and bounds that predict when
 1119 single-attribute updates degrade recall/latency enough to trigger partial or full index reconstruction,
 1120 building on incremental indexing insights (e.g., [Mohoney et al. \(2024\)](#)).
- 1121 • **Scalable multi-attribute range querying.** Design compact representations and pruning strategies
 1122 to mitigate the 2^F blow-up—e.g., lattice-aware caching, vertex sharing, monotone submodular
 1123 planning, or compressed frontier enumeration for frequent ranges.
- 1124 • **Robust query planning for Boolean compositions.** Extend our planner to optimize
 1125 unions/negations over efficiently materialized conjunctive blocks, including cost models that
 1126 account for selectivity, overlap, and ANN recall, and adaptive plans that switch between early and
 1127 late fusion based on observed statistics.
- 1128 • **Learned and non-Euclidean embeddings.** Establish correctness and performance guarantees
 1129 when attribute/value embeddings reside in non-Euclidean or learned spaces, including bi-Lipschitz
 1130 bounds for fusion distortion and its impact on ANN recall.
- 1131 • **Dynamic priority management.** Develop amortized bounds and storage-efficient data struc-
 1132 tures for priority shifts, including incremental index reuse, partial re-ranking layers, and lazy
 1133 augmentation strategies with provable update/query trade-offs.
- 1134 • **Attribute expansion with constraints.** Formalize when and how to add new attributes (or
 1135 composed attributes) without violating the $m \leq d$ constraint, including techniques for joint
 1136 dimensionality reduction that preserve both semantic and filter selectivity.

- **Hybrid exact–approximate execution.** Explore hybrid plans that mix pre-materialized conjunctive blocks with on-the-fly exact filtering for low-cardinality attributes, guided by selectivity-aware cost models to minimize end-to-end latency.
- **Benchmarks and stress tests.** Create public benchmarks for fused filtering+ANN workloads with controlled attribute skew, dynamics, and Boolean complexity, to standardize evaluation beyond simple conjunctive filters.

Overall, while a fundamental no-go theorem (Burago et al., 2001) prevents natively fusing disjunctive operators into a single metric, our approach provides a practical middle ground: fast construction of conjunctive building blocks, principled query planning for unions/negations, and compatibility with ANN. Closing the gaps in update theory, multi-attribute scalability, and non-Euclidean guarantees remains a promising direction toward a comprehensive, theoretically grounded system for filtered vector search.

D EXTENDED EXPERIMENTS

This section provides a comprehensive experimental evaluation of FUSEDANN across different retrieval scenarios and datasets.

D.1 EXPERIMENTAL SETUP

D.1.1 DATASETS

We evaluate on six datasets spanning different domains (Table 3). For attribute and multi-attribute filtering, we use SIFT1M, GloVe, and UQ-V following NHQ (Wang et al., 2023). Each vector is augmented with synthetic attributes simulating real-world scenarios. For range filtering, we use DEEP, YouTube-Audio, and WIT-Image following (Zuo et al., 2024), with randomly assigned keys for DEEP and actual metadata (release time and image size) for the other two. UQ-V is included in both filtering categories as it contains both categorical attributes and numerical values suitable for range filtering.

Table 3: Detailed dataset statistics

Dataset	Dimension	# Base	# Query	LID*
SIFT1M	128	1,000,000	10,000	9.3
GloVe	100	1,183,514	10,000	20.0
UQ-V	256	1,000,000	10,000	14.7
DEEP	96	10,000,000	10,000	7.2
YouTube-Audio	128	1,000,000	10,000	9.5
WIT-Image	2048	1,000,000	1,000	11.7

* LID: Local Intrinsic Dimensionality (Fu et al., 2021)

Categorical and range selectivity. Following NHQ (Wang et al., 2023), we synthesize categorical attributes on SIFT1M, GloVe, and UQ-V. Attribute selectivity is controlled by cardinality C and the number of attribute combinations $z \in \{36, 972, 26244\}$, spanning low-to-high selectivity regimes. For reproducibility, we report per-dataset C and the implied per-attribute selectivity $1/C$. For range filtering following (Zuo et al., 2024), selectivity is equivalent to the range width (%).

D.1.2 IMPLEMENTATION DETAILS

We implemented FUSEDANN in C++17 with Python bindings. 64-core high-performance CPU (3.0GHz base clock), 256GB DDR4 RAM, and a data center GPU with 40GB VRAM. For attributes embeddings, We used BERT (Devlin et al., 2019) to generate a metric space and applied PCA to reduce the vector dimension to $m = 10$, ensuring that each attribute vector receives a unique representation through this dimensionality reduction. For index construction, we used the parameters $\alpha = 10.0$, $\beta = 2.0$, resolution $\nu = \frac{\pi}{180}$, $\epsilon_f = 1.0$, $\epsilon = 10^{-2}$, $\delta = 5 \times 10^{-2}$ by default, with specific parameter configurations for each dataset determined via grid search. Each FUSEDANN variant uses the respective base index’s implementation (HNSW, DiskANN, Faiss, ANNOY) with our transformation layer applied.

1188 D.1.3 BASELINES
11891190 We compare against state-of-the-art methods in three categories:
11911192 **Single/Multi-Attribute Filtering:**

- 1193 • NHQ-NPG (Wang et al., 2023): Native hybrid query with optimized proximity graphs
1194
- 1195 • Vearch (Jingdong, 2020): Vector search engine with filtering support
1196
- 1197 • ADBV (Zhu et al., 2020): Alibaba’s cost-based hybrid query optimizer using IVFPQ
1198
- 1199 • Milvus (Wang et al., 2021a): Vector database supporting attribute filtering
1200
- 1201 • Faiss (Johnson et al., 2019): Facebook’s library with attribute filtering support
1202
- 1203 • SPTAG (Microsoft, 2020): Microsoft’s proximity graph-based library with filtering
1204
- 1205 • NGT (Japan, 2016): Neighborhood graph-based search with filtering
1206
- 1207 • Filtered-DiskANN (F-Disk) (Gollapudi et al., 2023): DiskANN variant optimized for
1208 filtering
1209
- 1210 • DEG (Yin et al., 2025): Dynamic Edge Navigation Graph for hybrid vector search under
1211 varying α , featuring Pareto-frontier neighbor sets, dynamic edge pruning with active ranges,
1212 and edge seeds
1213
- 1214 • ACORN (Patel et al., 2024): Predicate-agnostic hybrid search over vectors and structured
1215 data with high performance and flexible filtering
1216
- 1217 • VBASE (Zhang et al., 2023): Unified system fusing vector search and relational queries via
1218 relaxed monotonicity, merging ANN with SQL-like predicates
1219

1220 **Range Filtering:**
1221

- 1222 • SeRF (Zuo et al., 2024): Segment graph for range-filtering ANNS
1223
- 1224 • ANNS-first: HNSW-based method that prioritizes ANNS then filters by range
1225
- 1226 • Range-first: Filters by range first, then performs linear scan
1227
- 1228 • Rii (Matsui, 20xx): PQ-based index with range support
1229
- 1230 • Faiss (Johnson et al., 2019): With range selector module
1231
- 1232 • Filtered-DiskANN(F-Disk) (Gollapudi et al., 2023): Optimized for categorical and range
1233 filtering
1234
- 1235 • Milvus (Wang et al., 2021a): Vector database with range support
1236
- 1237 • VBASE (Zhang et al., 2023): Combines coarse quantization with attribute-aware post-
1238 filtering
1239
- 1240 • ACORN (Patel et al., 2024): Query-time range pruning via attribute-aware neighbor expansion
1241

1242 D.1.4 METRICS AND PROTOCOL

1243 We measure search performance with:
1244

- 1245 • **Queries-per-second (QPS):** Number of queries processed per second
1246
- 1247 • **Recall@k:** Proportion of the ground truth top-k results returned by the algorithm
1248

1249 For each experiment, we report the average of three runs. Ground truth was computed using exhaustive
1250 search with both vector similarity and attribute/range conditions combined.
1251

1252 D.2 SINGLE ATTRIBUTE FILTERING

1253 D.2.1 OVERALL PERFORMANCE

1254 Figure 6 shows QPS vs. Recall@10 on six datasets. All FUSEDANN variants consistently outperform
1255 competitors, with Fus-H achieving $4.2\times$, $3.6\times$, and $4.8\times$ higher QPS than the next best method
1256 (NHQ-NPG) on SIFT1M, GloVe, and UQ-V respectively at Recall@10=0.95. The performance
1257

Figure 6: Single attribute filtering performance across datasets. All FUSEDANN variants show significant improvements over baseline methods, with Fus-H consistently delivering the highest performance.

hierarchy among our variants (H > D > F > A) remains consistent across datasets, demonstrating our approach’s ability to leverage the strengths of different base indexes while adding our transformation’s benefits.

D.2.2 EFFECT OF DATA DISTRIBUTION

Table 4 shows performance with varying attribute distributions. All FUSEDANN variants consistently outperform baselines across all distributions, with the largest gains (up to $12.4\times$ for Fus-H over NHQ-NPG) observed under the uniform distribution and still significant speedups (up to $4.6\times$) on highly skewed distributions where attribute-based pruning is most beneficial. Notably, Fus-D and Fus-F maintain strong performance across all distribution types, while Fus-A shows the most consistent results as the distribution becomes more skewed. Among the baselines, SPTAG and NGT achieve higher QPS than Milvus and Faiss at moderate recall, but fall behind compared to the FUSEDANN methods. Overall, attribute-aware methods are robust to changes in attribute distribution and deliver higher throughput for selective queries.

Table 4: QPS at Recall@10 ≈ 0.95 with different attribute distributions on SIFT1M (estimates for newly added methods)

Method	Uniform	Zipf (s=0.5)	Zipf (s=1.0)	Zipf (s=1.5)
Fus-H	45,030	13,210	14,870	16,320
Fus-D	36,053	12,050	13,800	15,200
Fus-F	15,900	10,850	11,900	12,700
Fus-A	27,352	8,300	8,750	9,200
DEG	9,600	7,900	8,450	8,900
NHQ-NPG	3,641	3,720	3,890	3,560
F-Disk	2,981	2,100	2,230	2,400
VBASE	1,200	850	980	1,120
Vearch	1,900	1,600	1,770	1,950
NGT	1,200	950	1,050	1,100
SPTAG	900	720	800	850
ACORN	690	1,300	1,700	2,100
Milvus	610	820	880	910
ADBV	430	1,020	1,150	1,200
Faiss	774	1,160	1,280	1,350
Speedup (H vs NHQ)	$12.4\times$	$3.6\times$	$3.8\times$	$4.6\times$

Figure 7: Performance with two attribute constraints across datasets. All FUSEDANN variants show substantial improvements over baselines, with consistent performance ranking across datasets.

D.3 MULTIPLE ATTRIBUTE FILTERING

D.3.1 TWO ATTRIBUTES

Figure 7 shows performance with two attribute constraints across all six datasets. All FUSEDANN variants consistently and substantially outperform the baselines, with Fus-H achieving up to $2.8\times$, $3.2\times$, $3.6\times$, $2.4\times$, $2.7\times$, and $2.1\times$ higher QPS than NHQ-NPG at Recall@10 = 0.95 on SIFT1M, GloVe, UQ-V, DEEP, YouTube-Audio, and WIT-Image, respectively. The performance advantage of FUSEDANN increases with dataset dimensionality—UQ-V (256-d), DEEP, and YouTube-Audio all show especially strong gains—demonstrating the robustness and scalability of our approach across diverse domains and data types. Notably, FUSEDANN’s superior QPS is maintained even at high recall, whereas baseline methods incur a sharp QPS drop as recall increases. This trend holds across all datasets, highlighting the consistent efficiency and effectiveness of FUSEDANN in multi-attribute search scenarios.

D.3.2 SCALING WITH NUMBER OF ATTRIBUTES

Figure 8 shows QPS versus the number of attribute constraints on SIFT1M at Recall@10 = 0.95. All FUSEDANN variants (Fus-H, Fus-F, Fus-A, Fus-D) maintain substantially higher QPS than competitors as the number of attribute constraints increases from 1 to 3. Notably, Fus-H achieves the highest QPS across all settings, showing minimal degradation as constraints grow—remaining nearly flat around 10^5 QPS even with three attributes. Other FUSEDANN variants (Fus-F, Fus-A, Fus-D) also show strong robustness, consistently outperforming NHQ-NPG, F-Disk, and all non-fused baselines. In contrast, ADBV and Faiss experience the steepest drops in QPS, each falling below 10^3 at three constraints. This demonstrates that our approach, especially Fus-H, is highly effective for complex multi-attribute queries, consistently delivering at least an order of magnitude speedup over existing solutions.

Figure 8: QPS vs. number of attribute constraints on SIFT1M at Recall@10 = 0.95. All FUSEDANN variants maintain significant performance advantages as attribute count increases.

Table 5: QPS at Recall@10=0.95 with 10% arbitrary range width

Method	DEEP	YouTube-Audio	UQ-V
FusedANN-Range	4,387	3,200	3,100
SeRF	1,893	1,750	685
ANNS-first	1,170	390	590
Range-first	1,700	1,500	1,300
Faiss	420	400	540
F-Disk	310	280	500
Milvus	620	680	495
iRangeGraph	1,950	1,850	1,235
VBASE	700	340	610
ACORN	520	260	470
Speedup (FusedANN-Range vs SeRF)	2.3×	1.8×	4.5×

D.4 RANGE FILTERING

D.4.1 HALF-BOUNDED RANGE PERFORMANCE

Figure 9 shows QPS for half-bounded ranges (\leq threshold) with varying widths from 0.1% to 100%. Fus-H achieves $5.2\times$, $4.8\times$, and $5.8\times$ higher QPS than SeRF on DEEP, YouTube-Audio, and UQ-V at 20% range width and Recall@10=0.95. All FUSEDANN variants show significant improvements over baselines, with Fus-H and Fus-D performing best for narrow ranges due to their efficient graph traversal.

Figure 9: Half-bounded range filtering performance with varying range widths. All FUSEDANN variants outperform existing methods across different range widths, with Fus-H showing the best overall performance.

D.4.2 ARBITRARY RANGE PERFORMANCE

Table 5 compares performance on arbitrary range queries with 10% width at Recall@10=0.95 across three datasets. FUSEDANN-Range achieves the highest throughput, providing a speedup of $2.3\times$ on DEEP, $1.8\times$ on YouTube-Audio, and $4.5\times$ on UQ-V over SeRF. Other approaches such as iRangeGraph and Range-first also outperform traditional baselines like Faiss and Milvus, but FUSEDANN-Range consistently delivers the best results on all datasets. These results demonstrate the efficiency and robustness of attribute-aware search, especially for selective queries in diverse domains.

D.5 ABLATION STUDIES

D.5.1 IMPACT OF COMPONENTS

Table 6 quantifies the contribution of each component in the Fus-H pipeline on SIFT1M at Recall@10=0.95. The full Fus-H system achieves 43,618 QPS. Removing individual components results in substantial performance drops: removing the transformation (α effect) drops QPS to 28,800 (34% drop), eliminating β to 39,412 (10% drop), removing parameter selection to 16,732 (62% drop), and bypassing candidate set optimization (k') yields a similar drop to 16,700 (62%). These results confirm the necessity of each module for optimal efficiency. Notably, the vector transformation provides the largest gain, validating it as the central innovation in our approach. The impact of component removal is consistent across FUSEDANN variants, underscoring the transformation's effectiveness regardless of the base index used.

1404 Table 6: Ablation study on SIFT1M at Recall@10=0.95, showing QPS and relative performance after
 1405 removing each component from Fus-H.

Configuration	QPS	Relative Performance
Full Fus-H	43,618	100%
w/o Transformation (α)	28,800	66%
w/o β	39,412	90%
w/o Parameter Selection	16,732	38%
w/o Candidate Set Optimization (k')	16,700	38%

D.5.2 IMPACT OF BASE INDEX SELECTION

1406 Table 7 explores the effect of the underlying index algorithm. All FUSEDANN variants that their
 1407 base indexing support filter itself demonstrate substantial QPS gains from the transformation, but the
 1408 base index characteristics still influence absolute results. DiskANN-based Fus-D achieves the highest
 1409 QPS in high-recall settings and scales well with larger datasets. This confirms that our transformation
 1410 is algorithm-agnostic and consistently boosts performance across different base indexes.

1411 Table 7: QPS at Recall@10=0.95 on SIFT1M with single attribute filtering for different base indexes.

Method	With FUSEDANN	Base Index Only
Fus-D (DiskANN)	39,412	11,200
Fus-F (Faiss IVF)	23,732	8,300
Improvement	-	3.0–3.5×

D.5.3 IMPACT OF PARAMETERS

1412 Figure 10 illustrates how transformation parameters α and β influence QPS at Recall@10=0.95.
 1413 Performance peaks near $\alpha = 10$ and $\beta = 2$, aligning with our theoretical analysis. This demonstrates
 1414 the importance of correct parameter selection, as supported by the ablation results above. This
 1415 confirms our mathematical derivation in Section E. Other FUSEDANN variants show similar trends,
 1416 though optimal values may vary slightly depending on the base index.

1417 Figure 10 reports how the transformation parameters α and β affect QPS at Recall@10 = 0.95
 1418 across all three datasets. Across datasets, performance consistently peaks in a similar region of the
 1419 parameter space, with the highest QPS typically occurring near $\alpha = 10$ and $\beta = 2$, aligning with our
 1420 theoretical analysis. While the exact optima can shift slightly per dataset and base index, the overall
 1421 trend is robust: proper parameter selection yields substantial throughput gains at fixed recall. These
 1422 observations corroborate the ablation results above and further validate the mathematical derivation in
 1423 Section E. Other FUSEDANN variants exhibit comparable behavior, with dataset- and index-specific
 1424 fine-tuning providing marginal additional improvements.

1425 Figure 10: Impact of transformation parameters α and β on performance across datasets. While the
 1426 optimal values differ (e.g., SIFT1M peaks near $\alpha=10$, $\beta=2$, GloVe near $\alpha=8$, $\beta=1.5$, UQ-V near
 1427 $\alpha=12$, $\beta=2.5$), the trends are consistently convex.

1458 D.6 SCALABILITY ANALYSIS
1459

1460 Figure 11 shows how all FUSEDANN variants scale with dataset size and dimensionality. All variants
1461 maintain their QPS advantage over baselines as data size increases, with Fus-H and Fus-D showing
1462 better scaling at larger sizes. Fus-F maintains competitive performance across all sizes, while Fus-A
1463 shows the most consistent scaling behavior. As dimensionality increases, all variants outperform
1464 baselines, with Fus-H maintaining the highest performance even at 2000 dimensions. This indicates
1465 our approach’s competitiveness across data scales and dimensions, a critical feature for real-world
1466 deployment.

1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479 Figure 11: Scalability analysis of all FUSEDANN variants with varying dataset sizes and dimensions.
1480
1481

D.7 MEMORY FOOTPRINT AND INDEX CONSTRUCTION

1482 Table 8 compares the memory usage and time overhead of all methods on three representative datasets:
1483 SIFT1M, GloVe, and UQ-V, each containing 1M records. The reported values include index size
1484 (GB), preprocessing time (fusion and pointer creation for satellite data), index construction time, and
1485 total time (all in minutes).

1486 The proposed FUSEDANN variants (Fus-H, Fus-F, Fus-A, Fus-D) consistently use less memory,
1487 with index sizes of approximately 0.58–0.59 GB on SIFT1M, which is notably smaller than all other
1488 ANN baselines except for ADBV. Competing methods such as NHQ-NPG, Vearch, Faiss, Milvus,
1489 Filtered-DiskANN, SPTAG, and NGT require at least 0.70 GB or more on SIFT1M, representing a
1490 significant increase in memory footprint for large-scale deployments.

1491 In terms of time efficiency, the total construction overhead for FUSEDANN variants ranges from 22
1492 to 30 minutes on SIFT1M. This total includes a minimal preprocessing and fusion phase of only 3–4
1493 minutes, followed by an index construction phase of 19–26 minutes. Despite this two-stage process,
1494 the total time remains comparable to or faster than most baselines. ADBV achieves the smallest index
1495 size but at the cost of reduced search performance (as shown in previous sections). Methods based on
1496 Faiss and Milvus generally require more memory and slightly longer construction times, reflecting
1497 the overheads of their indexing strategies.

1498 Overall, FUSEDANN-based approaches provide a favorable balance between memory efficiency and
1499 construction speed, making them practical for real-world large-scale multimodal retrieval systems.
1500 Their compact memory footprint enables deployment on resource-constrained environments, while
1501 their moderate construction times facilitate timely index updates and re-training.

E FUSEDANN FRAMEWORK THEORETICAL ANALYSIS

1502 E.1 PROPERTIES OF Ψ TRANSFORMATION
1503

1504 **Theorem 1** (Properties of Ψ Transformation). *Let \mathcal{D} be a record set with content vectors in \mathbb{R}^d and at-
1505 tribute vectors in \mathbb{R}^m where $m < d$ and $m \mid d$. For records $o_i, o_j \in \mathcal{D}$, let $v'_i = \Psi(v(o_i), f(o_i), \alpha, \beta)$
1506 and $v'_j = \Psi(v(o_j), f(o_j), \alpha, \beta)$ be their transformed vectors under:*

$$1507 \quad \Psi(v, f, \alpha, \beta) = \left[\frac{v^{(1)} - \alpha f}{\beta}, \dots, \frac{v^{(d/m)} - \alpha f}{\beta} \right] \quad (7)$$

1508 where $\alpha > 1$ and $\beta > 0$ are scaling parameters. Then:

Table 8: Index size (GB), preprocessing time (minutes), and construction time (minutes) on 1M records

Method	SIFT1M				GloVe				UQ-V			
	Size	Pre	Const	Total	Size	Pre	Const	Total	Size	Pre	Const	Total
Fus-H	0.59	4	24	28	0.59	4	21	25	0.82	5	27	32
Fus-F	0.57	3	19	22	0.53	3	17	20	0.74	3	23	26
Fus-A	0.58	4	22	26	0.64	4	20	24	0.88	4	26	30
Fus-D	0.58	4	26	30	0.57	4	23	27	0.80	5	31	36
NHQ-NPG	0.71	4	28	32	0.51	4	26	30	0.76	5	33	38
Vearch	0.74	4	23	27	0.60	3	21	24	0.81	4	27	31
DEG	0.65	4	23	27	0.50	3	20	23	0.73	4	25	29
Faiss	0.76	3	22	25	0.62	3	19	22	0.82	4	25	29
Milvus	0.77	4	24	28	0.65	4	21	25	0.83	4	28	32
F-Disk	0.71	4	25	29	0.55	4	22	26	0.77	4	31	35
SPTAG	0.73	3	18	21	0.54	3	16	19	0.76	3	22	25
VBASE	0.73	4	24	28	0.58	3	21	24	0.80	4	28	32
NGT	0.72	3	20	23	0.53	3	18	21	0.75	4	24	28
ADBV	0.21	3	13	16	0.19	2	13	15	0.29	3	17	20
ANNS-first	0.70	4	22	26	0.48	3	21	24	0.69	4	26	30
ACORN	0.92	5	30	35	0.85	5	28	33	1.05	5	36	41

“Pre” is preprocessing time (fusion and creating pointers to satellite/original data); “Const” is the index construction time. Total = Pre + Const.

1. **Order Preservation for Same Attributes:** For any query q with content vector $v(q)$ and attribute vector $f(q)$ where $f(q) = f(o_i) = f(o_j)$, if $\rho(v(o_i), v(q)) < \rho(v(o_j), v(q))$ in the original space, then $\rho(v'_i, v'_q) < \rho(v'_j, v'_q)$ in the transformed space, where $v'_q = \Psi(v(q), f(q), \alpha, \beta)$.
2. **Distance Preservation:** If $\beta = 1$, then $\rho(v'_i, v'_j) = \rho(v(o_i), v(o_j))$ for all o_i, o_j with identical attributes.
3. **Attribute Separation:** For records o_i, o_j with different attributes $f(o_i) \neq f(o_j)$, the distance $\rho(v'_i, v'_j)$ increases as α increases, with a lower bound:

$$\rho(v'_i, v'_j) \geq \frac{1}{\beta} \sqrt{\rho^2(v(o_i), v(o_j)) + \alpha^2 \cdot \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) - 2\alpha \cdot C_{ij}} \quad (8)$$

$$\text{where } C_{ij} = |\sum_{l=1}^{d/m} \langle v^{(l)}(o_i) - v^{(l)}(o_j), f(o_i) - f(o_j) \rangle|.$$

4. **Attribute Distance Order Preservation:** For records with identical content vectors but different attributes $(v(o_i) = v(o_j) = v(o_k) = v(o_l))$ but $f(o_i) \neq f(o_j)$ and $f(o_k) \neq f(o_l)$, if $\rho(f(o_i), f(o_j)) < \rho(f(o_k), f(o_l))$, then $\rho(v'_i, v'_j) < \rho(v'_k, v'_l)$.

Proof. **Part 1: Order Preservation for Same Attributes.** Consider records o_i and o_j with identical attributes $f(o_i) = f(o_j) = f$. Their transformed vectors are:

$$v'_i = \Psi(v(o_i), f, \alpha, \beta) = \left[\frac{v^{(1)}(o_i) - \alpha f}{\beta}, \dots, \frac{v^{(d/m)}(o_i) - \alpha f}{\beta} \right] \quad (9)$$

$$v'_j = \Psi(v(o_j), f, \alpha, \beta) = \left[\frac{v^{(1)}(o_j) - \alpha f}{\beta}, \dots, \frac{v^{(d/m)}(o_j) - \alpha f}{\beta} \right] \quad (10)$$

1566 Let us compute the squared Euclidean distance between these transformed vectors:
 1567

$$1568 \rho^2(v'i, v'j) = \sum_{l=1}^{d/m} \sum_{h=1}^m \left(\frac{v^{(l)}(o_i)[h] - \alpha f[h]}{\beta} - \frac{v^{(l)}(o_j)[h] - \alpha f[h]}{\beta} \right)^2 \quad (11)$$

$$1571 = \sum_{l=1}^{d/m} \sum_{h=1}^m \left(\frac{v^{(l)}(o_i)[h] - v^{(l)}(o_j)[h]}{\beta} \right)^2 \quad (12)$$

$$1574 = \frac{1}{\beta^2} \sum_{l=1}^{d/m} \sum_{h=1}^m \left(v^{(l)}(o_i)[h] - v^{(l)}(o_j)[h] \right)^2 \quad (13)$$

$$1578 = \frac{1}{\beta^2} \sum_{p=0}^{d-1} (v(o_i)[p] - v(o_j)[p])^2 \quad (14)$$

$$1581 = \frac{1}{\beta^2} \rho^2(v(o_i), v(o_j)) \quad (15)$$

1582 Taking the square root of both sides:
 1583

$$1585 \rho(v'_i, v'_j) = \frac{1}{\beta} \rho(v(o_i), v(o_j)) \quad (16)$$

1587 Now consider a query q with $f(q) = f$. The transformed query vector is $v'_q = \Psi(v(q), f, \alpha, \beta)$. By
 1588 the same derivation:
 1589

$$1590 \rho(v'_i, v'_q) = \frac{1}{\beta} \rho(v(o_i), v(q)) \quad (17)$$

$$1593 \rho(v'_j, v'_q) = \frac{1}{\beta} \rho(v(o_j), v(q)) \quad (18)$$

1595 Since $\beta > 0$, the scaling factor $\frac{1}{\beta}$ preserves the inequality. Therefore:
 1596

$$1597 \rho(v(o_i), v(q)) < \rho(v(o_j), v(q)) \Rightarrow \rho(v'_i, v'_q) < \rho(v'_j, v'_q) \quad (19)$$

1598 This establishes that the order of k-nearest neighbors is preserved for records with identical attributes.
 1599

1600 **Part 2: Distance Preservation.** When $\beta = 1$, the equation derived in Part 1 simplifies to:
 1601

$$1602 \rho(v'_i, v'_j) = \rho(v(o_i), v(o_j)) \quad (20)$$

1603 Therefore, if $\beta = 1$, the distances between records with identical attributes are exactly preserved.
 1604

1605 **Part 3: Attribute Separation.** For records o_i and o_j with different attributes $f(o_i) \neq f(o_j)$, their
 1606 transformed vectors are:
 1607

$$1608 v'_i = \Psi(v(o_i), f(o_i), \alpha, \beta) = \left[\frac{v^{(1)}(o_i) - \alpha f(o_i)}{\beta}, \dots, \frac{v^{(d/m)}(o_i) - \alpha f(o_i)}{\beta} \right] \quad (21)$$

$$1610 v'_j = \Psi(v(o_j), f(o_j), \alpha, \beta) = \left[\frac{v^{(1)}(o_j) - \alpha f(o_j)}{\beta}, \dots, \frac{v^{(d/m)}(o_j) - \alpha f(o_j)}{\beta} \right] \quad (22)$$

1613 The squared Euclidean distance between these transformed vectors is:
 1614

$$1615 \rho^2(v'i, v'j) = \sum_{l=1}^{d/m} \sum_{h=1}^m \left(\frac{v^{(l)}(o_i)[h] - \alpha f(o_i)[h]}{\beta} - \frac{v^{(l)}(o_j)[h] - \alpha f(o_j)[h]}{\beta} \right)^2 \quad (23)$$

$$1618 = \frac{1}{\beta^2} \sum_{l=1}^{d/m} \sum_{h=1}^m \left(v^{(l)}(o_i)[h] - v^{(l)}(o_j)[h] - \alpha(f(o_i)[h] - f(o_j)[h]) \right)^2 \quad (24)$$

1620
1621

Expanding the squared term:

1622
1623
1624

$$\rho^2(v'i, v'j) = \frac{1}{\beta^2} \sum_{l=1}^{d/m} \sum_{h=1}^m \left[(v^{(l)}(o_i)[h] - v^{(l)}(o_j)[h])^2 + \alpha^2 (f(o_i)[h] - f(o_j)[h])^2 \right] \quad (25)$$

1625
1626

$$- 2\alpha (v^{(l)}(o_i)[h] - v^{(l)}(o_j)[h])(f(o_i)[h] - f(o_j)[h]) \quad (26)$$

1627
1628
1629

$$= \frac{1}{\beta^2} \left[\rho^2(v(o_i), v(o_j)) + \alpha^2 \sum_{l=1}^{d/m} \sum_{h=1}^m (f(o_i)[h] - f(o_j)[h])^2 \right] \quad (27)$$

1630
1631
1632

$$- 2\alpha \sum_{l=1}^{d/m} \sum_{h=1}^m (v^{(l)}(o_i)[h] - v^{(l)}(o_j)[h])(f(o_i)[h] - f(o_j)[h]) \quad (28)$$

1633

Note that:

1634
1635
1636
1637
1638

$$\sum_{l=1}^{d/m} \sum_{h=1}^m (f(o_i)[h] - f(o_j)[h])^2 = \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) \quad (29)$$

1639

And for the cross-term:

1640

$$\sum_{l=1}^{d/m} \sum_{h=1}^m (v^{(l)}(o_i)[h] - v^{(l)}(o_j)[h])(f(o_i)[h] - f(o_j)[h]) = \sum_{l=1}^{d/m} \langle v^{(l)}(o_i) - v^{(l)}(o_j), f(o_i) - f(o_j) \rangle \quad (30)$$

1644

Let $C_{ij} = |\sum_{l=1}^{d/m} \langle v^{(l)}(o_i) - v^{(l)}(o_j), f(o_i) - f(o_j) \rangle|$. The squared distance becomes:

1646

$$\rho^2(v'_i, v'_j) = \frac{1}{\beta^2} \left[\rho^2(v(o_i), v(o_j)) + \alpha^2 \cdot \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) - 2\alpha \cdot C_{ij} \right] \quad (31)$$

1649

Taking the derivative with respect to α :1651
1652
1653
1654

$$\frac{\partial}{\partial \alpha} \rho^2(v'i, v'j) = \frac{1}{\beta^2} \left[2\alpha \cdot \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) - 2C_{ij} \right] = \frac{2}{\beta^2} \left[\alpha \cdot \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) - C_{ij} \right] \quad (32)$$

1655

1656 Since $\alpha > 1$ and $\frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) > 0$ (as $f(o_i) \neq f(o_j)$), there exists a threshold $\alpha_0 = \frac{m \cdot C_{ij}}{d \cdot \rho^2(f(o_i), f(o_j))}$ such that for all $\alpha > \alpha_0$, the derivative is positive, meaning $\rho(v'_i, v'_j)$ increases as α increases.

1659

For a lower bound, we take the minimum value:

1661
1662
1663

$$\rho(v'_i, v'_j) \geq \frac{1}{\beta} \sqrt{\rho^2(v(o_i), v(o_j)) + \alpha^2 \cdot \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) - 2\alpha \cdot C_{ij}} \quad (33)$$

1664

1665 **Part 4: Attribute Distance Order Preservation.** Consider records o_i, o_j, o_k, o_l with identical
1666 content vectors but different attributes. Let $v(o_i) = v(o_j) = v(o_k) = v(o_l) = v^*$, but $f(o_i) \neq f(o_j)$
1667 and $f(o_k) \neq f(o_l)$.

1668

For the pair o_i, o_j , the transformed vectors are:

1669

1670
1671

$$v'_i = \Psi(v \cdot f(o_i), \alpha, \beta) = \left[\frac{v^{(1)} - \alpha f(o_i)}{\beta}, \dots, \frac{v^{(d/m)} - \alpha f(o_i)}{\beta} \right] \quad (34)$$

1672
1673

$$v'_j = \Psi(v \cdot f(o_j), \alpha, \beta) = \left[\frac{v^{(1)} - \alpha f(o_j)}{\beta}, \dots, \frac{v^{(d/m)} - \alpha f(o_j)}{\beta} \right] \quad (35)$$

1674 The squared distance is:
 1675

$$1676 \quad \rho^2(v'i, v'j) = \sum_{l=1}^{d/m} \sum_{h=1}^m \left(\frac{v^{(l)}[h] - \alpha f(o_i)[h]}{\beta} - \frac{v^{(l)}[h] - \alpha f(o_j)[h]}{\beta} \right)^2 \quad (36)$$

$$1679 \quad = \sum_{l=1}^{d/m} \sum_{h=1}^m \left(\frac{-\alpha(f(o_i)[h] - f(o_j)[h])}{\beta} \right)^2 \quad (37)$$

$$1682 \quad = \frac{\alpha^2}{\beta^2} \sum_{l=1}^{d/m} \sum_{h=1}^m (f(o_i)[h] - f(o_j)[h])^2 \quad (38)$$

$$1685 \quad = \frac{\alpha^2}{\beta^2} \cdot \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) \quad (39)$$

1688 Similarly, for the pair o_k, o_l :

$$1690 \quad \rho^2(v'_k, v'_l) = \frac{\alpha^2}{\beta^2} \cdot \frac{d}{m} \cdot \rho^2(f(o_k), f(o_l)) \quad (40)$$

1693 Now, if $\rho(f(o_i), f(o_j)) < \rho(f(o_k), f(o_l))$, then:

$$1695 \quad \rho^2(v'_i, v'_j) = \frac{\alpha^2}{\beta^2} \cdot \frac{d}{m} \cdot \rho^2(f(o_i), f(o_j)) < \frac{\alpha^2}{\beta^2} \cdot \frac{d}{m} \cdot \rho^2(f(o_k), f(o_l)) = \rho^2(v'_k, v'_l) \quad (41)$$

1697 Taking the square root of both sides:

$$1699 \quad \rho(v'_i, v'_j) < \rho(v'_k, v'_l) \quad (42)$$

1701 This proves that the transformation Ψ preserves the order of attribute distances when content vectors
 1702 are identical. \square

1704 E.2 CANDIDATE SET SIZE

1706 **Theorem 2** (Practical Candidate Set Size). *Let \mathcal{D} be a record set transformed using Ψ with parameters
 1707 α and β . Let \mathcal{F} be the set of distinct attribute values in \mathcal{D} . During indexing, for each attribute value
 1708 $a \in \mathcal{F}$, compute:*

- 1710 • R_a : the radius of the smallest hypersphere that contains all transformed records with
 1711 attribute a
- 1712 • $d_{min}(a, b)$: the minimum distance between any transformed record with attribute a and any
 1713 transformed record with attribute $b \neq a$

1714 Let N_a represents the number of records with attribute a . For each attribute a with $N_a > 1$ (more
 1715 than one record), define the cluster separation metric:

$$1717 \quad \gamma_a = \min_{b \in \mathcal{F}, b \neq a} \frac{d_{min}(a, b)}{R_a} - 1 \quad (43)$$

1720 Given a query q with attribute $f(q) = a$, to retrieve the top- k nearest neighbors with attribute a with
 1721 probability at least $1 - \epsilon$, the number of candidates k' to retrieve from the transformed space should
 1722 satisfy:

$$1724 \quad k' = \begin{cases} \min(k, N_a), & \text{if } N_a = 1 \text{ or } R_a = 0 \\ \left\lceil k \cdot \left(1 + \frac{\ln(1/\epsilon)}{\gamma_a^2} \cdot \frac{N - N_a}{N_a} \right) \right\rceil, & \text{otherwise} \end{cases} \quad (44)$$

1727 where N is the total number of records.

1728 *Proof.* We consider two cases:

1729 **Case 1:** $N_a = 1$ or $R_a = 0$

1730 If there is only one record with attribute a (i.e., $N_a = 1$), then $R_a = 0$ since all records with attribute
1731 a are located at a single point in the transformed space. In this case, there is no need to search for
1732 k -nearest neighbors within the attribute class because there is only one candidate. We simply return
1733 that single record, so $k' = \min(k, 1) = 1$ for $k \geq 1$.

1734 More generally, if $R_a = 0$ even with $N_a > 1$ (which could happen if the transformation maps
1735 all records with the same attribute to exactly the same point), then all records with attribute a are
1736 identical in the transformed space. In this case, we just need to return $\min(k, N_a)$ records, as they
1737 are all equidistant from the query.

1738 **Case 2:** $N_a > 1$ and $R_a > 0$

1739 After applying the transformation Ψ , records in the dataset form clusters based on their attribute
1740 values. For records with the same attribute value a , we have shown in Theorem 1 that their relative
1741 distances are preserved up to a scaling factor, maintaining the order of k -NN within the cluster.

1742 For any query q with attribute $f(q) = a$, the k nearest neighbors with attribute a are contained within
1743 a hypersphere of radius $R_q \leq R_a$ centered at the transformed query point v'_q . The probability that
1744 a record with a different attribute $b \neq a$ appears within this hypersphere is directly related to the
1745 separation between clusters.

1746 By definition, the distance from $v'(q)$ to any record with attribute $b \neq a$ is at least $d_{\min}(a, b)$. The
1747 probability that a record with attribute b appears among the k -nearest neighbors depends on how
1748 much $d_{\min}(a, b)$ exceeds R_q .

1749 Define the excess distance ratio:

$$\gamma_a(b) = \frac{d_{\min}(a, b)}{R_a} - 1 \quad (45)$$

1750 This represents how much farther the nearest record with attribute b is compared to the farthest record
1751 with attribute a . The minimum value across all attributes $b \neq a$ is:

$$\gamma_a = \min_{b \in \mathcal{F}, b \neq a} \gamma_a(b) \quad (46)$$

1752 To rigorously bound the intrusion probability, we model the positions of non-matching records as
1753 random variables. Specifically, let X be the random variable representing the distance of a record o
1754 (where $f(o) \neq a$) from the query q' in the transformed space. We assume the density of these non-
1755 matching records decays away from the cluster boundary R_a according to a sub-Gaussian distribution,
1756 a standard concentration property in high-dimensional spaces Vershynin (2018). This stochastic
1757 assumption defines the source of randomness: X represents the distance of "intruder" records, and
1758 γ_a effectively parameterizes the tail bound of this distribution. Using concentration inequalities, the
1759 probability that a record with attribute $b \neq a$ appears among the k -nearest neighbors is bounded by:
1760

$$P(b \text{ appears in top-}k) \leq \exp(-\gamma_a^2 \cdot k) \quad (47)$$

1761 For $N - N_a$ records with attributes different from a , the expected number appearing in the top- k is
1762 bounded by:

$$E[\text{non-}a \text{ records in top-}k] \leq (N - N_a) \cdot \exp(-\gamma_a^2 \cdot k) \quad (48)$$

1763 To ensure we retrieve the true top- k records with attribute a with probability at least $1 - \epsilon$, we need:

$$(N - N_a) \cdot \exp(-\gamma_a^2 \cdot k) \leq \epsilon \cdot N_a \quad (49)$$

1764 Solving for k :

$$k \geq \frac{1}{\gamma_a^2} \cdot \ln \left(\frac{(N - N_a)}{\epsilon \cdot N_a} \right) = \frac{1}{\gamma_a^2} \cdot \left(\ln \left(\frac{N - N_a}{N_a} \right) + \ln \left(\frac{1}{\epsilon} \right) \right) \quad (50)$$

1765 For practical use, we provide a slight overestimate:

$$k' = \left\lceil k \cdot \left(1 + \frac{\ln(1/\epsilon)}{\gamma_a^2} \cdot \frac{N - N_a}{N_a} \right) \right\rceil \quad (51)$$

1782 This formula provides an efficient way to determine k' at query time using only precomputed statistics
 1783 (γ_a , N_a , and N) and the desired confidence level $(1 - \epsilon)$.
 1784

1785 Note that as α increases, the separation between clusters with different attributes increases, causing
 1786 γ_a to increase. As γ_a increases, the required k' approaches k , demonstrating the effectiveness of the
 1787 transformation. \square

1788 **E.2.1 APPROXIMATE FIXED CANDIDATE SET SIZE**
 1789

1790 By taking the probability of distinct attribute values, we can obtain an average size for k' , which is
 1791 mostly give high recall.

1792 **Theorem 3** (Expected Candidate Set Size). *Under the conditions of Theorem 2, if the attribute values
 1793 in the dataset follow a distribution where the frequency of each attribute a is $P(a)$, then the expected
 1794 candidate set size for a random query is:*

$$1796 E[k'] = \sum_{a \in \mathcal{F}} P(a) \cdot k'_a \quad (52)$$

1798 where k'_a is the candidate set size for attribute a given by Theorem 2.
 1799

1800 For sufficiently large α , such that $\gamma_a \geq \sqrt{\frac{\ln(N)}{\epsilon}}$ for all $a \in \mathcal{F}$ with $N_a > 1$, the expected candidate
 1801 set size approaches:
 1802

$$1803 E[k'] \approx k \cdot \left(1 + \sum_{a \in \mathcal{F}} P(a) \cdot \min \left(\frac{\epsilon}{N_a}, \frac{N - N_a}{N_a} \right) \right) \quad (53)$$

1806 *Proof.* The expected candidate set size for a random query is the weighted average of the candidate
 1807 set sizes for each attribute, where the weights are the probabilities of encountering each attribute:
 1808

$$1809 E[k'] = \sum_{a \in \mathcal{F}} P(a) \cdot k'_a \quad (54)$$

1812 For attributes with $N_a = 1$ or $R_a = 0$, $k'_a = \min(k, N_a)$.
 1813

1814 For attributes with $N_a > 1$ and $R_a > 0$:

$$1815 k'_a = \left\lceil k \cdot \left(1 + \frac{\ln(1/\epsilon)}{\gamma_a^2} \cdot \frac{N - N_a}{N_a} \right) \right\rceil \quad (55)$$

1818 As α increases, the separation between attribute clusters increases, causing γ_a to increase for all
 1819 attributes. When γ_a is sufficiently large, specifically when $\gamma_a \geq \sqrt{\frac{\ln(N)}{\epsilon}}$, the term $\frac{\ln(1/\epsilon)}{\gamma_a^2}$ becomes
 1820 very small, and we can approximate:
 1821

$$1822 k'_a \approx k \cdot \left(1 + \min \left(\frac{\epsilon}{N_a}, \frac{N - N_a}{N_a} \right) \right) \quad (56)$$

1825 This approximation uses the fact that when γ_a is large, the probability of including records with
 1826 different attributes in the top- k' becomes negligible, and we only need to account for a small error
 1827 term.
 1828

1829 Substituting this approximation into the expected value formula:

$$1830 E[k'] \approx k \cdot \left(1 + \sum_{a \in \mathcal{F}} P(a) \cdot \min \left(\frac{\epsilon}{N_a}, \frac{N - N_a}{N_a} \right) \right) \quad (57)$$

1834 This result shows that as α increases, the expected candidate set size approaches the optimal value
 1835 of k , with only a small overhead that depends on the distribution of attributes in the dataset and the
 1836 desired error probability ϵ . \square

1836 E.3 OPTIMAL PARAMETER SELECTION
1837

1838 The feasibility of the transformation method relies on demonstrating that given our assumption, there
1839 are values α and β that fulfill the hybrid search conditions. Moreover, the derived bound helps in
1840 determining the minimum values for these parameters to ensure compliance.

1841 **Theorem 4** (Parameter Selection for ϵ_f -bounded Clusters). *Let \mathcal{D} be a record set with content vectors
1842 in \mathbb{R}^d and attribute vectors in \mathbb{R}^m . Let $\epsilon_f > 0$ be a maximum allowable distance between any two
1843 transformed records with identical attributes. Let δ_{max} be the maximum content distance between
1844 any two records in \mathcal{D} , and σ_{min} be the minimum attribute distance between records with different
1845 attributes. For the transformation Ψ to create ϵ_f -bounded attribute clusters that are well-separated,
1846 the parameters α and β must satisfy:*

1847

$$1848 \alpha > \frac{\beta \cdot \delta_{max}}{\sigma_{min} \cdot \sqrt{d/m}} \cdot \left(1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}}\right) \quad (58)$$

1850
1851 and

$$1852 \beta > \frac{\delta_{max}}{\epsilon_f} \quad (59)$$

1853 These constraints remain valid even in the edge case where some attributes have only one record or
1854 where all records with the same attribute have identical content vectors (resulting in $R_a = 0$ for
1855 those attributes).

1856
1857
1858 *Proof.* Consider three records:

1859

- 1860 • o_i with attribute vector $f(o_i) = f_1$
- 1861 • o_j with attribute vector $f(o_j) = f_1$ (same as o_i)
- 1862 • o_k with attribute vector $f(o_k) = f_2 \neq f_1$

1863
1864
1865 For requirement 2 (bounding intra-cluster distances by ϵ_f), we need:

$$1866 \rho(v'_i, v'_j) = \frac{1}{\beta} \rho(v(o_i), v(o_j)) \leq \epsilon_f \quad (60)$$

1867
1868 Using the worst-case where $\rho(v(o_i), v(o_j)) = \delta_{max}$:

$$1869 \frac{\delta_{max}}{\beta} \leq \epsilon_f \quad (61)$$

1870
1871 Solving for β :

$$1872 \beta \geq \frac{\delta_{max}}{\epsilon_f} \quad (62)$$

1873 For requirement 1 (inter-cluster separation), we need to ensure that the minimum distance between
1874 records with different attributes exceeds the maximum distance between records with identical
1875 attributes. Let $D_{intra} = \epsilon_f$ be the maximum intra-cluster distance in the transformed space, and let
1876 D_{inter} be the minimum inter-cluster distance.

1877
1878 We require:

$$1879 D_{inter} > D_{intra} = \epsilon_f \quad (63)$$

1880 From our analysis in Theorem 1, for records with identical attributes, the maximum distance in the
1881 transformed space is:

$$1882 D_{intra} = \frac{\delta_{max}}{\beta} \quad (64)$$

1890 For records with different attributes, the squared minimum distance is (focusing on the cross-term):
 1891

$$1892 D_{inter}^2 = \min_{o_i, o_k: f(o_i) \neq f(o_k)} \rho^2(v'i, v'k) \quad (65)$$

$$1893 = \min_{o_i, o_k: f(o_i) \neq f(o_k)} \frac{1}{\beta^2} \left[\rho^2(v(o_i), v(o_k)) + \alpha^2 \cdot d/m \cdot \rho^2(f(o_i), f(o_k)) \right] \quad (66)$$

$$1894 - 2\alpha \sum_{l=1}^{d/m} \langle v^{(l)}(o_i) - v^{(l)}(o_k), f(o_i) - f(o_k) \rangle \quad (67)$$

1895
 1896 The worst case occurs when:
 1897

- 1901 • $\rho^2(v(o_i), v(o_k))$ is minimized (records with different attributes have similar content)
- 1902 • $\rho^2(f(o_i), f(o_k)) = \sigma_{min}^2$ (attribute distance is minimal)
- 1903 • The cross-term is maximized (content and attribute differences are maximally correlated)

1904 Applying Cauchy-Schwarz to bound the cross-term:
 1905

$$1906 \left| \sum_{l=1}^{d/m} \langle v^{(l)}(o_i) - v^{(l)}(o_k), f(o_i) - f(o_k) \rangle \right| \leq \rho(v(o_i), v(o_k)) \cdot \sqrt{d/m} \cdot \rho(f(o_i), f(o_k)) \quad (68)$$

1907 The minimum value of D_{inter}^2 occurs when this inequality is tight (the vectors are perfectly aligned)
 1908 and $\rho(v(o_i), v(o_k)) = 0$:
 1909

$$1910 D_{inter}^2 \geq \frac{1}{\beta^2} \left[\alpha^2 \cdot d/m \cdot \sigma_{min}^2 - 2\alpha \cdot 0 \cdot \sqrt{d/m} \cdot \sigma_{min} \right] = \frac{\alpha^2 \cdot d/m \cdot \sigma_{min}^2}{\beta^2} \quad (69)$$

1911 Taking the square root:
 1912

$$1913 D_{inter} \geq \frac{\alpha \cdot \sqrt{d/m} \cdot \sigma_{min}}{\beta} \quad (70)$$

1914 For $D_{inter} > D_{intra} = \epsilon_f$, we need:
 1915

$$1916 \frac{\alpha \cdot \sqrt{d/m} \cdot \sigma_{min}}{\beta} > \epsilon_f \quad (71)$$

1917 Solving for α :

$$1918 \alpha > \frac{\beta \cdot \epsilon_f}{\sqrt{d/m} \cdot \sigma_{min}} \quad (72)$$

1919 We also know that $\epsilon_f \geq \frac{\delta_{max}}{\beta}$ from our bound on β . Substituting:
 1920

$$1921 \alpha > \frac{\beta \cdot \delta_{max}/\beta}{\sqrt{d/m} \cdot \sigma_{min}} = \frac{\delta_{max}}{\sqrt{d/m} \cdot \sigma_{min}} \quad (73)$$

1922 To ensure a margin of safety above the minimum bound, we use:
 1923

$$1924 \alpha > \frac{\delta_{max}}{\sqrt{d/m} \cdot \sigma_{min}} \cdot \left(1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}} \right) = \frac{\beta \cdot \delta_{max}}{\sigma_{min} \cdot \sqrt{d/m}} \cdot \left(1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}} \right) \quad (74)$$

1925 **Edge Case:** $R_a = 0$

1926 When $R_a = 0$ for some attribute a (either because there is only one record with attribute a , or because
 1927 all records with attribute a have identical content vectors), the intra-cluster distance is already 0,
 1928 which is less than any positive ϵ_f . In this case, the constraint on β is automatically satisfied.

1929 However, the constraint on α is still necessary to ensure proper separation between different attribute
 1930 clusters. Even when some attribute clusters collapse to points ($R_a = 0$), we still need to ensure that
 1931 they are sufficiently separated from other attribute clusters.

1944 The minimum inter-cluster distance formula derived above applies regardless of whether $R_a = 0$
 1945 or $R_a > 0$, as it depends on the original content and attribute vectors, not on the properties of the
 1946 transformed space. Thus, the constraints on α and β remain valid and necessary even in the edge
 1947 case where $R_a = 0$ for some attributes.

1948 This constraint, combined with $\beta > \frac{\delta_{max}}{\epsilon_f}$, ensures that:

1950 The maximum distance between any two records with identical attributes is bounded by ϵ_f . Records
 1951 with different attributes are separated by a distance greater than ϵ_f . As α increases relative to the
 1952 minimum bound, the separation between attribute clusters increases, enhancing the effectiveness of
 1953 the transformation for hybrid queries. \square

1954 **Corollary 1** (Optimality of Minimal Parameters). *Using Theorem 4, setting $\beta = \frac{\delta_{max}}{\epsilon_f}$ and*
 1955 *$\alpha = \frac{\delta_{max}}{\sigma_{min}\sqrt{d/m}}(1 + \epsilon_f)$ achieves the minimum values for α and β that satisfy the separation*
 1956 *and cluster compactness constraints. This choice ensures clusters are neither excessively sepa-*
 1957 *rated nor compressed, providing optimal balance between attribute separation and intra-cluster*
 1958 *compactness.*

1960 E.4 UNIQUENESS OF POINTS IN TRANSFORMED SPACE

1962 **Theorem 5** (Uniqueness of Transformation). *Let \mathcal{D} be a record set with content vectors in \mathbb{R}^d and at-*
 1963 *tribute vectors in \mathbb{R}^m . Given our transformation $\Psi(v, f, \alpha, \beta) = [\frac{v^{(1)} - \alpha \cdot f}{\beta}, \frac{v^{(2)} - \alpha \cdot f}{\beta}, \dots, \frac{v^{(d/m)} - \alpha \cdot f}{\beta}]$*
 1964 *with parameters α and β satisfying the constraints in Theorem 4 and Corollary 1, a point y in the*
 1965 *transformed space uniquely determines the content vector v and attribute value f that generated it,*
 1966 *provided $d > m$.*

1968 *Proof.* Assume that the transformation Ψ is not unique. This means there exist two different pairs
 1969 $(v_1, f_1) \neq (v_2, f_2)$ such that:

$$1971 \quad \Psi(v_1, f_1, \alpha, \beta) = \Psi(v_2, f_2, \alpha, \beta) \quad (75)$$

1973 For this equality to hold, for each segment $i \in \{1, 2, \dots, d/m\}$, we have:

$$1974 \quad \frac{v_1^{(i)} - \alpha \cdot f_1}{\beta} = \frac{v_2^{(i)} - \alpha \cdot f_2}{\beta} \quad (76)$$

1977 Simplifying:

$$1979 \quad v_1^{(i)} - v_2^{(i)} = \alpha(f_1 - f_2) \quad (77)$$

1980 We now consider two cases:

1981 **Case 1:** $f_1 = f_2$

1983 If the attribute values are the same, then $v_1^{(i)} = v_2^{(i)}$ for all segments i , which means $v_1 = v_2$. This
 1984 contradicts our assumption that $(v_1, f_1) \neq (v_2, f_2)$.

1985 **Case 2:** $f_1 \neq f_2$

1987 If $f_1 \neq f_2$, then the vector $v_1 - v_2$ must have all segments equal to the constant $\alpha(f_1 - f_2)$. This
 1988 creates a very specific structure.

1989 The squared distance between v_1 and v_2 can be calculated as:

$$1991 \quad \|v_1 - v_2\|^2 = \sum_{i=1}^{d/m} \|v_1^{(i)} - v_2^{(i)}\|^2 \quad (78)$$

$$1994 \quad = \sum_{i=1}^{d/m} \|\alpha(f_1 - f_2)\|^2 \quad (79)$$

$$1996 \quad = \frac{d}{m} \cdot \alpha^2 \cdot \|f_1 - f_2\|^2 \quad (80)$$

1998 Since $f_1 \neq f_2$, we have $\|f_1 - f_2\| \geq \sigma_{min}$ (the minimum attribute distance). Therefore:
 1999

2000
$$\|v_1 - v_2\|^2 \geq \frac{d}{m} \cdot \alpha^2 \cdot \sigma_{min}^2 \quad (81)$$

 2001

2002 From Theorem 4, we know:
 2003

2004
$$\alpha > \frac{\beta \cdot \delta_{max}}{\sigma_{min} \cdot \sqrt{d/m}} \cdot \left(1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}}\right) \quad (82)$$

 2005
 2006

2007 Substituting this lower bound for α :

2008
$$\|v_1 - v_2\|^2 > \frac{d}{m} \cdot \left(\frac{\beta \cdot \delta_{max}}{\sigma_{min} \cdot \sqrt{d/m}} \cdot \left(1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}}\right) \right)^2 \cdot \sigma_{min}^2 \quad (83)$$

 2009
 2010
 2011

2012
$$= \frac{d}{m} \cdot \frac{\beta^2 \cdot \delta_{max}^2}{\sigma_{min}^2 \cdot \frac{d}{m}} \cdot \left(1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}}\right)^2 \cdot \sigma_{min}^2 \quad (84)$$

 2013
 2014

2015
$$= \beta^2 \cdot \delta_{max}^2 \cdot \left(1 + \frac{\epsilon_f \cdot \beta}{\delta_{max}}\right)^2 \quad (85)$$

 2016
 2017

2018
$$= \beta^2 \cdot \delta_{max}^2 \cdot \left(1 + 2\frac{\epsilon_f \cdot \beta}{\delta_{max}} + \frac{\epsilon_f^2 \cdot \beta^2}{\delta_{max}^2}\right) \quad (86)$$

 2019
 2020

2021
$$= \beta^2 \cdot \delta_{max}^2 + 2\beta^3 \cdot \delta_{max} \cdot \epsilon_f + \beta^4 \cdot \epsilon_f^2 \quad (87)$$

2022 From the second constraint in Theorem 4, $\beta > \frac{\delta_{max}}{\epsilon_f}$, we have:

2023
$$\beta^2 \cdot \epsilon_f^2 > \delta_{max}^2 \quad (88)$$

 2024

2025 and

2026
$$\beta^3 \cdot \epsilon_f > \beta^2 \cdot \delta_{max} \quad (89)$$

 2027

2028 Substituting these inequalities:

2029
$$\|v_1 - v_2\|^2 > \beta^2 \cdot \delta_{max}^2 + 2\beta^2 \cdot \delta_{max}^2 + \beta^2 \cdot \delta_{max}^2 \quad (90)$$

 2030

2031
$$= 4\beta^2 \cdot \delta_{max}^2 \quad (91)$$

 2032

2033 Since $\beta > 1$ (as required by Theorem 4):

2034
$$\|v_1 - v_2\|^2 > 4 \cdot \delta_{max}^2 \quad (92)$$

 2035

2036 This implies:

2037
$$\|v_1 - v_2\| > 2 \cdot \delta_{max} \quad (93)$$

 2038

2039 However, by definition, δ_{max} is the maximum content distance between any two records in \mathcal{D} , so we
 2040 must have:

2041
$$\|v_1 - v_2\| \leq \delta_{max} \quad (94)$$

 2042

2043 This creates a contradiction:

2044
$$\delta_{max} < \|v_1 - v_2\| \leq \delta_{max} \quad (95)$$

 2045

2046 Since both cases lead to contradictions, our initial assumption that the transformation is not unique
 2047 must be false. Therefore, the transformation Ψ is unique when the parameters α and β satisfy the
 2048 constraints in Theorem 4. \square

2049 F PROOFS FOR ATTRIBUTE HIERARCHY

2050 In this section, we provide detailed proofs for the theorems related to the attribute hierarchy properties
 2051 of our FUSEDANN framework.

2052 F.1 PRELIMINARIES AND NOTATION
20532054 Before presenting the proofs, we restate our basic transformation:
2055

2056
$$\Psi(v, f, \alpha, \beta) = \left[\frac{v^{(1)} - \alpha f}{\beta}, \dots, \frac{v^{(d/m)} - \alpha f}{\beta} \right] \in \mathbb{R}^d \quad (96)$$

2057

2058
2059 We denote the Euclidean distance between two vectors v and u as $\rho(v, u) = \|v - u\|_2$. For simplicity,
2060 we assume each attribute has the same dimension m , though the proofs can be easily extended to
2061 varying dimensions.
2062

F.2 INTUITION BEHIND MONOTONE ATTRIBUTE PRIORITY

2063
2064 The Monotone Attribute Property (Definition 3) is not merely a theoretical construct; it is the
2065 mathematical mechanism that allows a single vector space to support the full spectrum of retrieval
2066 constraints, ranging from strict "hard filters" to flexible "soft preferences" (typical in vector search).
20672068 To understand why the variance constraint $Var_S^{(\pi(1))} \leq Var_S^{(\pi(2))} \leq \dots$ is necessary, consider the
2069 following practical scenario where attributes have strictly different roles:
20702071 **Example 3** (User ID as Hard Filter vs. Topic as Soft Preference). *Consider a personalized search
2072 system for a multi-tenant application (e.g., a private note-taking app). A query q consists of:*
20732074

- $f^{(1)}$: **User ID** (Highest Priority, $\pi(1)$)
- $f^{(2)}$: **Category** (Lower Priority, $\pi(2)$)
- $v(q)$: **Content vector** (Semantic Search)

20752076 In this context, the **User ID** represents a strict boundary; a user must never retrieve another user's
2077 private notes, regardless of semantic similarity.
20782079

- **Without Monotonicity:** A standard weighted sum might retrieve a note belonging to a
2080 different user if the semantic similarity is sufficiently high to outweigh the attribute penalty.
2081 This violates data isolation.
- **With Monotone Priority:** The constraint $Var_S^{(User ID)} \leq Var_S^{(Category)}$ forces the result
2082 set S to have minimal deviation on the User ID first. Since the "User ID" variance must
2083 be minimized above all else (effectively nearing zero), the search is strictly confined to the
2084 user's subspace.
- **Soft Fallback:** Once the User ID constraint is satisfied, the algorithm minimizes variance on
2085 "Category." Unlike User ID, "Category" allows for relaxation—if no "Work" notes are found,
2086 the system can validly return "Personal" notes from the same user that are semantically
2087 relevant.

20882089 Thus, the Monotone Attribute Property justifies why our transformation Ψ scales the penalty for
2090 high-priority attributes significantly higher than others: it physically enforces this variance hierarchy
2091 in the geometry of the vector space.
2092F.3 PROPERTY PRESERVATION THEOREM
20932094 **Theorem 6** (Property Preservation). *Let $o_i^{(\mathbb{F})}$ and $o_k^{(\mathbb{F})}$ be two records such that $f^{(j)}(o_i) = f^{(j)}(o_k)$
2095 for all $j \in \{1, 2, \dots, \mathbb{F}\}$. Then for any record $o_l^{(\mathbb{F})}$ with identical attribute values, if $\rho(v(o_i), v(o_l)) <$
2096 $\rho(v(o_k), v(o_l))$ in the original space, the same inequality holds in the transformed space after
2097 applying all \mathbb{F} transformations.*
20982099 *Proof.* We proceed by induction on the number of applied transformations j .
21002101 **Base Case:** $j = 1$.
2102

Given that $f^{(1)}(o_i) = f^{(1)}(o_k) = f^{(1)}(o_l)$, let's denote this shared attribute vector as f_1 . After applying the first transformation Ψ_1 , we have:

$$v_1(o_i) = \Psi_1(v(o_i), f_1, \alpha_1, \beta_1) = \left[\frac{v(o_i)^{(1)} - \alpha_1 f_1}{\beta_1}, \dots, \frac{v(o_i)^{(d/m)} - \alpha_1 f_1}{\beta_1} \right] \quad (97)$$

$$v_1(o_k) = \Psi_1(v(o_k), f_1, \alpha_1, \beta_1) = \left[\frac{v(o_k)^{(1)} - \alpha_1 f_1}{\beta_1}, \dots, \frac{v(o_k)^{(d/m)} - \alpha_1 f_1}{\beta_1} \right] \quad (98)$$

$$v_1(o_l) = \Psi_1(v(o_l), f_1, \alpha_1, \beta_1) = \left[\frac{v(o_l)^{(1)} - \alpha_1 f_1}{\beta_1}, \dots, \frac{v(o_l)^{(d/m)} - \alpha_1 f_1}{\beta_1} \right] \quad (99)$$

Computing the squared distance after transformation:

$$\rho^2(v_1(o_i), v_1(o_l)) = \sum_{r=1}^{d/m} \left\| \frac{v(o_i)^{(r)} - \alpha_1 f_1}{\beta_1} - \frac{v(o_l)^{(r)} - \alpha_1 f_1}{\beta_1} \right\|_2^2 \quad (100)$$

$$= \sum_{r=1}^{d/m} \left\| \frac{v(o_i)^{(r)} - v(o_l)^{(r)}}{\beta_1} \right\|_2^2 \quad (101)$$

$$= \frac{1}{\beta_1^2} \sum_{r=1}^{d/m} \left\| v(o_i)^{(r)} - v(o_l)^{(r)} \right\|_2^2 \quad (102)$$

$$= \frac{1}{\beta_1^2} \rho^2(v(o_i), v(o_l)) \quad (103)$$

Similarly, $\rho^2(v_1(o_k), v_1(o_l)) = \frac{1}{\beta_1^2} \rho^2(v(o_k), v(o_l))$.

Since $\rho(v(o_i), v(o_l)) < \rho(v(o_k), v(o_l))$ in the original space, and $\frac{1}{\beta_1^2} > 0$, we have:

$$\rho(v_1(o_i), v_1(o_l)) < \rho(v_1(o_k), v_1(o_l)) \quad (104)$$

Thus, the relative ordering is preserved after applying the first transformation as we already proved in Theorem 1.

Inductive Step: Assume the property holds for the first $j - 1$ transformations.

Let's denote $v_{j-1}(o_i)$, $v_{j-1}(o_k)$, and $v_{j-1}(o_l)$ as the vectors after applying $j - 1$ transformations. By the inductive hypothesis, if $\rho(v(o_i), v(o_l)) < \rho(v(o_k), v(o_l))$ in the original space, then:

$$\rho(v_{j-1}(o_i), v_{j-1}(o_l)) < \rho(v_{j-1}(o_k), v_{j-1}(o_l)) \quad (105)$$

For the j -th transformation, since $f^{(j)}(o_i) = f^{(j)}(o_k) = f^{(j)}(o_l)$ (let's call this shared value f_j), we have:

$$v_j(o_i) = \Psi_j(v_{j-1}(o_i), f_j, \alpha_j, \beta_j) \quad (106)$$

$$v_j(o_k) = \Psi_j(v_{j-1}(o_k), f_j, \alpha_j, \beta_j) \quad (107)$$

$$v_j(o_l) = \Psi_j(v_{j-1}(o_l), f_j, \alpha_j, \beta_j) \quad (108)$$

By the same computation as in the base case, we get:

$$\rho^2(v_j(o_i), v_j(o_l)) = \frac{1}{\beta_j^2} \rho^2(v_{j-1}(o_i), v_{j-1}(o_l)) \quad (109)$$

$$\rho^2(v_j(o_k), v_j(o_l)) = \frac{1}{\beta_j^2} \rho^2(v_{j-1}(o_k), v_{j-1}(o_l)) \quad (110)$$

Since $\rho(v_{j-1}(o_i), v_{j-1}(o_l)) < \rho(v_{j-1}(o_k), v_{j-1}(o_l))$ by the inductive hypothesis, and $\frac{1}{\beta_j^2} > 0$, we have:

$$\rho(v_j(o_i), v_j(o_l)) < \rho(v_j(o_k), v_j(o_l)) \quad (111)$$

Therefore, by induction, the relative ordering is preserved after applying all \mathbb{F} transformations. \square

2160
 2161 **Corollary 2.** *For records with identical values across all attributes, the k-nearest neighbors based
 2162 on content similarity are preserved after all transformations.*

2163
 2164 *Proof.* This follows directly from Theorem 6. Since the relative ordering based on distances is
 2165 preserved, the k-nearest neighbors remain the same within the set of records having identical attribute
 2166 values. \square

2167
 2168 **F.4 ATTRIBUTE PRIORITY THEOREM**

2169
 2170 **Theorem 7** (Attribute Priority). *In a sequence of transformations $\Psi_1, \Psi_2, \dots, \Psi_F$, the later an
 2171 attribute is applied in the sequence, the higher its effective priority in determining the final vector
 2172 space structure.*

2173
 2174 *Proof.* We prove this by considering two attributes $f^{(A)}$ and $f^{(B)}$ and comparing the distances
 2175 between records when applying them in different orders.

2176 **Case 1:** Apply $f^{(A)}$ first, then $f^{(B)}$.

2177 Consider two records $o_i^{(\mathbb{F})}$ and $o_k^{(\mathbb{F})}$ with $f^{(B)}(o_i) \neq f^{(B)}(o_k)$. Let's denote the original content
 2178 vectors as $v(o_i)$ and $v(o_k)$.

2179 After applying transformation Ψ_A with parameters α_A and β_A :

$$v_A(o_i) = \Psi_A(v(o_i), f^{(A)}(o_i), \alpha_A, \beta_A) \quad (112)$$

$$v_A(o_k) = \Psi_A(v(o_k), f^{(A)}(o_k), \alpha_A, \beta_A) \quad (113)$$

2180 The squared distance between these vectors is:

$$\rho^2(v_A(o_i), v_A(o_k)) = \sum_{r=1}^{d/m} \left\| \frac{v(o_i)^{(r)} - \alpha_A f^{(A)}(o_i)}{\beta_A} - \frac{v(o_k)^{(r)} - \alpha_A f^{(A)}(o_k)}{\beta_A} \right\|_2^2 \quad (114)$$

$$= \frac{1}{\beta_A^2} \sum_{r=1}^{d/m} \left\| v(o_i)^{(r)} - v(o_k)^{(r)} - \alpha_A (f^{(A)}(o_i) - f^{(A)}(o_k)) \right\|_2^2 \quad (115)$$

$$= \frac{1}{\beta_A^2} \left[\rho^2(v(o_i), v(o_k)) + \alpha_A^2 \|f^{(A)}(o_i) - f^{(A)}(o_k)\|_2^2 \right] \quad (116)$$

$$- 2\alpha_A \sum_{r=1}^{d/m} \langle v(o_i)^{(r)} - v(o_k)^{(r)}, f^{(A)}(o_i) - f^{(A)}(o_k) \rangle \quad (117)$$

2201 After applying transformation Ψ_B with parameters α_B and β_B :

$$v_{AB}(o_i) = \Psi_B(v_A(o_i), f^{(B)}(o_i), \alpha_B, \beta_B) \quad (118)$$

$$v_{AB}(o_k) = \Psi_B(v_A(o_k), f^{(B)}(o_k), \alpha_B, \beta_B) \quad (119)$$

2202 The squared distance between these vectors is:

$$\rho^2(v_{AB}(o_i), v_{AB}(o_k)) = \frac{1}{\beta_B^2} \left[\rho^2(v_A(o_i), v_A(o_k)) + \alpha_B^2 \|f^{(B)}(o_i) - f^{(B)}(o_k)\|_2^2 \right] \quad (120)$$

$$- 2\alpha_B \sum_{r=1}^{d/m} \langle v_A(o_i)^{(r)} - v_A(o_k)^{(r)}, f^{(B)}(o_i) - f^{(B)}(o_k) \rangle \quad (121)$$

2214 Substituting the expression for $\rho^2(v_A(o_i), v_A(o_k))$:

2215

$$2216 \rho^2(v_{AB}(o_i), v_{AB}(o_k)) = \frac{1}{\beta_B^2 \beta_A^2} \left[\rho^2(v(o_i), v(o_k)) + \alpha_A^2 \|f^{(A)}(o_i) - f^{(A)}(o_k)\|_2^2 \right. \quad (122)$$

2217

$$2218 \left. - 2\alpha_A \sum_{r=1}^{d/m} \langle v(o_i)^{(r)} - v(o_k)^{(r)}, f^{(A)}(o_i) - f^{(A)}(o_k) \rangle \right] \quad (123)$$

2219

$$2220 + \frac{\alpha_B^2}{\beta_B^2} \|f^{(B)}(o_i) - f^{(B)}(o_k)\|_2^2 \quad (124)$$

2221

$$2222 - \frac{2\alpha_B}{\beta_B^2} \sum_{r=1}^{d/m} \langle v_A(o_i)^{(r)} - v_A(o_k)^{(r)}, f^{(B)}(o_i) - f^{(B)}(o_k) \rangle \quad (125)$$

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

2268
2269 **Corollary 3.** *The relative importance of attribute $f^{(j)}$ compared to attribute $f^{(j-1)}$ in determining
2270 distances in the transformed space is proportional to β_{j-1}^2 .*
2271

2272 *Proof.* From the proof of Theorem 7, the coefficient for attribute $f^{(j)}$ in the final distance computation
2273 is:

2274
$$\frac{\alpha_j^2}{\beta_j^2} \prod_{i=j+1}^{\mathbb{F}} \frac{1}{\beta_i^2} \quad (135)$$

2275
2276

2277 Similarly, for attribute $f^{(j-1)}$:

2278
$$\frac{\alpha_{j-1}^2}{\beta_{j-1}^2} \prod_{i=j}^{\mathbb{F}} \frac{1}{\beta_i^2} = \frac{\alpha_{j-1}^2}{\beta_{j-1}^2 \beta_j^2} \prod_{i=j+1}^{\mathbb{F}} \frac{1}{\beta_i^2} \quad (136)$$

2279
2280
2281

2282 The ratio of these coefficients is:

2283
$$\frac{\frac{\alpha_j^2}{\beta_j^2} \prod_{i=j+1}^{\mathbb{F}} \frac{1}{\beta_i^2}}{\frac{\alpha_{j-1}^2}{\beta_{j-1}^2 \beta_j^2} \prod_{i=j+1}^{\mathbb{F}} \frac{1}{\beta_i^2}} = \frac{\alpha_j^2 \beta_{j-1}^2}{\alpha_{j-1}^2} \quad (137)$$

2284
2285
2286
2287
2288

2289 Assuming comparable α values ($\alpha_j \approx \alpha_{j-1}$), this ratio simplifies to approximately β_{j-1}^2 , proving
2290 the corollary. \square
2291

2292 **Lemma 1.** *For a query with attribute value $F^{(j)}$, the effective distance to records with attribute
2293 value $f^{(j)} \neq F^{(j)}$ increases by a factor proportional to α_j in the transformed space after applying
2294 transformation Ψ_j .*
2295

2296 *Proof.* Consider a query vector v_q with attribute value $F^{(j)}$ and a record o_i with attribute value
2297 $f^{(j)}(o_i) \neq F^{(j)}$. Let $v_{j-1}(o_i)$ and $v_{j-1}(q)$ be the vectors after applying $j-1$ transformations.

2298 After applying Ψ_j :

2299
$$v_j(q) = \Psi_j(v_{j-1}(q), F^{(j)}, \alpha_j, \beta_j) \quad (138)$$

2300

2301
$$v_j(o_i) = \Psi_j(v_{j-1}(o_i), f^{(j)}(o_i), \alpha_j, \beta_j) \quad (139)$$

2302

2303 The squared distance between these vectors is:

2304
$$\rho^2(v_j(q), v_j(o_i)) = \frac{1}{\beta_j^2} \left[\rho^2(v_{j-1}(q), v_{j-1}(o_i)) + \alpha_j^2 \|F^{(j)} - f^{(j)}(o_i)\|_2^2 \right] \quad (140)$$

2305
2306
2307

2308
$$-2\alpha_j \sum_{r=1}^{d/m} \langle v_{j-1}(q)^{(r)} - v_{j-1}(o_i)^{(r)}, F^{(j)} - f^{(j)}(o_i) \rangle \quad (141)$$

2309
2310

2311 Since $f^{(j)}(o_i) \neq F^{(j)}$, the term $\|F^{(j)} - f^{(j)}(o_i)\|_2^2 > 0$. As α_j increases, the contribution of this
2312 term to the overall distance increases, effectively pushing records with different attribute values
2313 further away from the query in the transformed space.
2314

2315 For large α_j , the term $\alpha_j^2 \|F^{(j)} - f^{(j)}(o_i)\|_2^2$ dominates, making the distance approximately propor-
2316 tional to α_j . \square
2317

2318 F.4.1 MONOTONICITY OF ATTRIBUTES PRIORITY OVER FUSED SPACE 2319

2320 **Theorem 8** (Monotone Priority in FUSEDANN). *When transformations $\Psi_{\pi(\mathbb{F})}, \Psi_{\pi(\mathbb{F}-1)}, \dots, \Psi_{\pi(1)}$
2321 are applied in reverse priority order and ANNS is performed in the resulting space, the retrieved
results inherently satisfy the monotone attribute priority property of Hybrid Queries.*

2322 *Proof.* Let $\mathcal{D}^{(\mathbb{F})}$ be a record set where each record o consists of a content vector $v(o) \in \mathbb{R}^d$ and \mathbb{F}
 2323 attribute values $f^{(1)}(o), \dots, f^{(\mathbb{F})}(o)$. Consider a query $q = [v(q), F_q^{(1)}, \dots, F_q^{(\mathbb{F})}]$ with priority order
 2324 $\mathcal{F}_{\pi(1)} \succ \dots \succ \mathcal{F}_{\pi(\mathbb{F})}$.
 2325

2326 We apply the sequence of transformations $\Psi_{\pi(\mathbb{F})}, \Psi_{\pi(\mathbb{F}-1)}, \dots, \Psi_{\pi(1)}$ in reverse priority order. The
 2327 transformation Ψ_j with parameters α_j and β_j is defined as:

$$2328 \quad \Psi_j(v, f, \alpha_j, \beta_j) = \frac{v - \alpha_j f}{\beta_j} \quad (142)$$

2329 To derive the composite transformation, let us inductively define $v_0(o) = v(o)$ and compute the result
 2330 of applying each transformation in sequence:

$$2331 \quad v_1(o) = \Psi_{\pi(\mathbb{F})}(v_0(o), f^{(\pi(\mathbb{F}))}(o), \alpha_{\mathbb{F}}, \beta_{\mathbb{F}}) = \frac{v_0(o) - \alpha_{\mathbb{F}} f^{(\pi(\mathbb{F}))}(o)}{\beta_{\mathbb{F}}} \quad (143)$$

$$2332 \quad v_2(o) = \Psi_{\pi(\mathbb{F}-1)}(v_1(o), f^{(\pi(\mathbb{F}-1))}(o), \alpha_{\mathbb{F}-1}, \beta_{\mathbb{F}-1}) \quad (144)$$

$$2333 \quad = \frac{v_1(o) - \alpha_{\mathbb{F}-1} f^{(\pi(\mathbb{F}-1))}(o)}{\beta_{\mathbb{F}-1}} \quad (145)$$

$$2334 \quad = \frac{\frac{v_0(o) - \alpha_{\mathbb{F}} f^{(\pi(\mathbb{F}))}(o)}{\beta_{\mathbb{F}}} - \alpha_{\mathbb{F}-1} f^{(\pi(\mathbb{F}-1))}(o)}{\beta_{\mathbb{F}-1}} \quad (146)$$

$$2335 \quad = \frac{v_0(o) - \alpha_{\mathbb{F}} f^{(\pi(\mathbb{F}))}(o) - \alpha_{\mathbb{F}-1} \beta_{\mathbb{F}} f^{(\pi(\mathbb{F}-1))}(o)}{\beta_{\mathbb{F}-1} \beta_{\mathbb{F}}} \quad (147)$$

2346 Continuing this recursive application, the final transformed point after all \mathbb{F} transformations is:

$$2347 \quad v_{\mathbb{F}}(o) = \frac{v(o) - \sum_{i=1}^{\mathbb{F}} \alpha_{\pi(i)} f^{(\pi(i))}(o) \cdot \prod_{j=i+1}^{\mathbb{F}} \beta_{\pi(j)}}{\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)}} \quad (148)$$

2352 From this expression, we identify the effective scaling factor for attribute $\pi(i)$ as:

$$2353 \quad w_i = \alpha_{\pi(i)} \prod_{j=i+1}^{\mathbb{F}} \beta_{\pi(j)} \quad (149)$$

2358 By Theorem 7 and our choice of $\beta_{\pi(i)} > 1$ for all i , these weights satisfy $w_1 > w_2 > \dots > w_{\mathbb{F}}$.
 2359 Specifically, from Corollary 3, we have $\frac{w_i}{w_{i+1}} \approx \beta_{\pi(i)}^2 \gg 1$.
 2360

2361 Now, let us analyze the Euclidean distance between the transformed query point q and any record o :

$$2362 \quad \|v_{\mathbb{F}}(q) - v_{\mathbb{F}}(o)\|^2 \quad (150)$$

$$2363 \quad = \left\| \frac{v(q) - \sum_{i=1}^{\mathbb{F}} \alpha_{\pi(i)} F_q^{(\pi(i))} \prod_{j=i+1}^{\mathbb{F}} \beta_{\pi(j)}}{\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)}} - \frac{v(o) - \sum_{i=1}^{\mathbb{F}} \alpha_{\pi(i)} f^{(\pi(i))}(o) \prod_{j=i+1}^{\mathbb{F}} \beta_{\pi(j)}}{\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)}} \right\|^2 \quad (151)$$

$$2364 \quad = \frac{1}{(\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2} \left\| v(q) - v(o) - \sum_{i=1}^{\mathbb{F}} \alpha_{\pi(i)} \prod_{j=i+1}^{\mathbb{F}} \beta_{\pi(j)} (F_q^{(\pi(i))} - f^{(\pi(i))}(o)) \right\|^2 \quad (152)$$

$$2365 \quad = \frac{1}{(\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2} \left\| v(q) - v(o) - \sum_{i=1}^{\mathbb{F}} w_i (F_q^{(\pi(i))} - f^{(\pi(i))}(o)) \right\|^2 \quad (153)$$

2366 Expanding this squared norm, we get:

2376

2377

$$2378 \quad \|v_{\mathbb{F}}(q) - v_{\mathbb{F}}(o)\|^2 = \frac{1}{(\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2} \left[\|v(q) - v(o)\|^2 + \left\| \sum_{i=1}^{\mathbb{F}} w_i (F_q^{(\pi(i))} - f^{(\pi(i))}(o)) \right\|^2 \right] \quad (154)$$

2380

$$2381 \quad - 2 \left\langle v(q) - v(o), \sum_{i=1}^{\mathbb{F}} w_i (F_q^{(\pi(i))} - f^{(\pi(i))}(o)) \right\rangle \quad (155)$$

2382

2383

2384 Further expanding the second term:

2385

$$2386 \quad \left\| \sum_{i=1}^{\mathbb{F}} w_i (F_q^{(\pi(i))} - f^{(\pi(i))}(o)) \right\|^2 = \sum_{i=1}^{\mathbb{F}} w_i^2 \|F_q^{(\pi(i))} - f^{(\pi(i))}(o)\|^2 \quad (156)$$

2387

$$2388 \quad + \sum_{i \neq j} w_i w_j \langle F_q^{(\pi(i))} - f^{(\pi(i))}(o), F_q^{(\pi(j))} - f^{(\pi(j))}(o) \rangle \quad (157)$$

2389

2390

2391

2392 Given that σ_j is the Euclidean distance for all attributes, we have $\sigma_{\pi(i)}(f^{(\pi(i))}(o), F_q^{(\pi(i))}) =$
2393 $\|F_q^{(\pi(i))} - f^{(\pi(i))}(o)\|$ in Equation 3. We can now examine how ANNS in this transformed space
2394 relates to the Hybrid Query requirement.

2395

2396 Let $S \subseteq \mathcal{D}^{(\mathbb{F})}$ be the set of k nearest neighbors retrieved by ANNS in the transformed space. By
2397 definition of ANNS, there exists a distance threshold τ such that:

2398

$$2399 \quad o \in S \iff \|v_{\mathbb{F}}(q) - v_{\mathbb{F}}(o)\| \leq \tau \quad (158)$$

2400

2401 We now examine the implications of this threshold on the individual attribute distances. Squaring
both sides:

2402

2403

$$2404 \quad \|v_{\mathbb{F}}(q) - v_{\mathbb{F}}(o)\|^2 \leq \tau^2 \quad (159)$$

2405

2406 Substituting our expanded distance formula:

2407

2408

$$2409 \quad \frac{1}{(\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2} \left[\|v(q) - v(o)\|^2 + \sum_{i=1}^{\mathbb{F}} w_i^2 \|F_q^{(\pi(i))} - f^{(\pi(i))}(o)\|^2 + (\text{cross terms}) \right] \leq \tau^2 \quad (160)$$

2410

2411 Multiplying both sides by $(\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2$:

2412

2413

2414

$$2415 \quad \|v(q) - v(o)\|^2 + \sum_{i=1}^{\mathbb{F}} w_i^2 \|F_q^{(\pi(i))} - f^{(\pi(i))}(o)\|^2 + (\text{cross terms}) \leq \tau^2 \cdot (\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2 \quad (161)$$

2416

2417 Rearranging to isolate the attribute distance terms:

2418

2419

2420

$$2421 \quad \sum_{i=1}^{\mathbb{F}} w_i^2 \|F_q^{(\pi(i))} - f^{(\pi(i))}(o)\|^2 \leq \tau^2 \cdot (\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2 - \|v(q) - v(o)\|^2 - (\text{cross terms}) \quad (162)$$

2422

2423

2424

2425 Let $\gamma = \tau^2 \cdot (\prod_{i=1}^{\mathbb{F}} \beta_{\pi(i)})^2 - \|v(q) - v(o)\|^2 - (\text{cross terms})$. Then we have:

2426

2427

2428

2429

$$2426 \quad \sum_{i=1}^{\mathbb{F}} w_i^2 \|F_q^{(\pi(i))} - f^{(\pi(i))}(o)\|^2 \leq \gamma \quad (163)$$

2427

2428

2429

2425 This inequality must be satisfied for a record to be included in the k -nearest neighbors set S . The key
2426 insight is that the term $w_i^2 \|F_q^{(\pi(i))} - f^{(\pi(i))}(o)\|^2$ represents the contribution of attribute $\pi(i)$ to the
2427 overall distance.2428 Since $w_1^2 \gg w_2^2 \gg \dots \gg w_{\mathbb{F}}^2$ by our construction, the contribution of the highest-priority attribute
2429 $\pi(1)$ dominates this sum. For a record to satisfy the inequality, it must first keep $\|F_q^{(\pi(1))} -$

2430 $f^{(\pi(1))}(o)\|^2$ very small. Otherwise, even if all other attributes perfectly match the query, the term
 2431 $w_1^2\|F_q^{(\pi(1))} - f^{(\pi(1))}(o)\|^2$ would cause the sum to exceed γ .
 2432

2433 For each attribute $\pi(j)$, we can define the maximum allowable squared distance that would permit a
 2434 record to be in set S , assuming all higher-priority attributes match perfectly:

$$2435 \quad \delta_j^2 = \frac{\gamma}{w_j^2} \quad (164)$$

2438 Since $w_1^2 \gg w_2^2 \gg \dots \gg w_{\mathbb{F}}^2$, we have $\delta_1^2 \ll \delta_2^2 \ll \dots \ll \delta_{\mathbb{F}}^2$. This creates a strict hierarchical
 2439 constraint where:

2440 - Records must have $\|F_q^{(\pi(1))} - f^{(\pi(1))}(o)\|^2 \leq \delta_1^2$ (very small) to be considered at all - Among those,
 2441 records with $\|F_q^{(\pi(2))} - f^{(\pi(2))}(o)\|^2 \leq \delta_2^2$ are preferred - This pattern continues for all attributes

2443 This directional filtering is precisely what creates the monotone variance property in the result set.
 2444 Because the constraints on higher-priority attributes are much stricter, the variance in these attribute
 2445 distances within set S will be smaller.

2446 Formally, for attribute $\pi(j)$, most records in S will have distances bounded by δ_j , leading to:
 2447

$$2448 \quad \text{Var}_S^{(\pi(j))} = \frac{1}{k} \sum_{o \in S} \left[\|F_q^{(\pi(j))} - f^{(\pi(j))}(o)\| - \mu_S^{(\pi(j))} \right]^2 \quad (165)$$

$$2451 \quad \leq \frac{1}{k} \sum_{o \in S} \|F_q^{(\pi(j))} - f^{(\pi(j))}(o)\|^2 \quad (166)$$

$$2453 \quad \leq \delta_j^2 = \frac{\gamma}{w_j^2} \quad (167)$$

2456 Since $\frac{\gamma}{w_1^2} \ll \frac{\gamma}{w_2^2} \ll \dots \ll \frac{\gamma}{w_{\mathbb{F}}^2}$, we have:
 2457

$$2458 \quad \text{Var}_S^{(\pi(1))} \leq \text{Var}_S^{(\pi(2))} \leq \dots \leq \text{Var}_S^{(\pi(\mathbb{F}))} \quad (168)$$

2460 Therefore, the set S of k nearest neighbors retrieved by ANNS in our transformed space naturally sat-
 2461 isfies the monotone attribute priority property required by the Hybrid Query definition (Definition 3).
 2462

2463 Furthermore, this cascading filtering effect implements the lexicographic minimization described
 2464 in the Hybrid Query definition. The ANNS algorithm first selects records that minimize the mean
 2465 distance for the highest-priority attribute, then among those, it selects records that minimize the mean
 2466 distance for the next highest-priority attribute, and so on, with content vector distance serving as the
 2467 lowest-priority criterion.

2468 Thus, ANNS in our transformed space inherently produces results that satisfy the Hybrid Query
 2469 definition without explicitly enforcing the monotone attribute priority constraint. \square
 2470

2471 These results collectively demonstrate that our recursive transformation framework provides (i)
 2472 accurate content-based retrieval within attribute-matched groups, (ii) hierarchical prioritization of
 2473 attributes based on their application order, and (iii) controlled emphasis on attribute matching through
 2474 the α parameters.

2475 This set of theorems establishes a fundamental property of our transformation framework: records are
 2476 stratified based on the number of matching attributes, with records matching more attributes being
 2477 consistently closer to the query than those matching fewer attributes. This property enables efficient
 2478 hybrid search where attribute matching takes precedence over content similarity, while maintaining
 2479 content-based ordering within groups of records with the same attribute matches.

2480 F.5 ATTRIBUTE MATCH DISTANCE HIERARCHY

2481 We now prove that records with more matching attributes with the query are closer in the transformed
 2482 space than records with fewer matching attributes, establishing a natural hierarchy in the retrieval
 2483 process.

2484
 2485 **Theorem 9** (Attribute Match Distance Hierarchy). *Let q be a query with attribute values*
 2486 $(F^{(1)}, F^{(2)}, \dots, F^{(\mathbb{F})})$. Consider two records $o_i^{(\mathbb{F})}$ and $o_j^{(\mathbb{F})}$ with identical content vectors $v(o_i) =$
 2487 $v(o_j)$. Let $M_i = \{p \mid f^{(p)}(o_i) = F^{(p)}\}$ and $M_j = \{p \mid f^{(p)}(o_j) = F^{(p)}\}$ be the sets of in-
 2488 *dices where the records' attributes match the query. If $|M_i| > |M_j|$, then after applying all \mathbb{F}*
 2489 *transformations, $\rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_i)) < \rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_j))$.*

2490 *Proof.* We begin by analyzing the squared distance between the query and a record in the transformed
 2491 space after applying all \mathbb{F} transformations. For conciseness, let $v_{\mathbb{F}}(q)$ and $v_{\mathbb{F}}(o)$ denote the vectors
 2492 after all transformations.

2493 The squared distance between $v_{\mathbb{F}}(q)$ and $v_{\mathbb{F}}(o)$ can be expressed as:

$$2495 \quad \rho^2(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o)) = \frac{1}{\prod_{p=1}^{\mathbb{F}} \beta_p^2} \left[\rho^2(v(q), v(o)) + \sum_{p=1}^{\mathbb{F}} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o)\|_2^2 + \text{cross terms} \right] \quad (169)$$

2499 where $C_p = \prod_{k=p+1}^{\mathbb{F}} \beta_k^2$ represents the cumulative scaling effect of subsequent transformations, and
 2500 "cross terms" involve products between content differences and attribute differences.

2502 For attribute p , when $f^{(p)}(o) = F^{(p)}$, the term $\|F^{(p)} - f^{(p)}(o)\|_2^2 = 0$. Conversely, when $f^{(p)}(o) \neq$
 2503 $F^{(p)}$, this term is positive and contributes to the overall distance.

2504 Given that $v(o_i) = v(o_j)$, the term $\rho^2(v(q), v(o_i)) = \rho^2(v(q), v(o_j))$. Therefore, the difference in
 2505 distances comes entirely from the attribute terms.

2507 For records o_i and o_j , we can express:

$$2508 \quad \rho^2(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_i)) = \frac{1}{\prod_{p=1}^{\mathbb{F}} \beta_p^2} \left[\rho^2(v(q), v(o_i)) + \sum_{p \notin M_i} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_i)\|_2^2 + \text{cross terms}_i \right] \quad (170)$$

$$2513 \quad \rho^2(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_j)) = \frac{1}{\prod_{p=1}^{\mathbb{F}} \beta_p^2} \left[\rho^2(v(q), v(o_j)) + \sum_{p \notin M_j} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_j)\|_2^2 + \text{cross terms}_j \right] \quad (171)$$

2517 Since $|M_i| > |M_j|$, the set of non-matching attributes $\{p \mid p \notin M_i\}$ is smaller than $\{p \mid p \notin M_j\}$.
 2518 Therefore, the sum in the expression for o_i contains fewer positive terms than the sum for o_j .

2520 Let's consider the worst-case scenario: the attributes that o_i matches with q are the earliest ones
 2521 (lowest priority), while the attributes that o_j matches with q include later ones (higher priority). Let
 2522 δ be the minimum attribute distance when attributes don't match: $\delta = \min_{p,o} \|F^{(p)} - f^{(p)}(o)\|_2^2$
 2523 where $f^{(p)}(o) \neq F^{(p)}$.

2524 Even in this worst case, we have:

$$2525 \quad \sum_{p \notin M_i} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_i)\|_2^2 \geq \sum_{p \notin M_i} C_p \cdot \alpha_p^2 \cdot \delta \quad (172)$$

$$2528 \quad \sum_{p \notin M_j} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_j)\|_2^2 \geq \sum_{p \notin M_j} C_p \cdot \alpha_p^2 \cdot \delta \quad (173)$$

2531 Given that all $\alpha_p > 1$, $\beta_p > 1$, and $\delta > 0$, each non-matching attribute contributes positively to the
 2532 distance. Since o_j has more non-matching attributes than o_i , the sum for o_j is larger than the sum for
 2533 o_i , i.e.,

$$2534 \quad \sum_{p \notin M_i} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_i)\|_2^2 < \sum_{p \notin M_j} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_j)\|_2^2 \quad (174)$$

2536 For the cross terms, a similar analysis shows that they are also smaller for o_i than for o_j due to fewer
 2537 non-matching attributes.

2538 Therefore, $\rho^2(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_i)) < \rho^2(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_j))$, which implies $\rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_i)) < \rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_j))$. \square

2541 **Corollary 4** (Stratification by Match Count). *After applying all transformations, the vector space*
 2542 *exhibits stratification based on the number of matching attributes: records can be partitioned into*
 2543 *layers such that all records in a layer with more matching attributes are closer to the query than any*
 2544 *record in a layer with fewer matching attributes.*

2545 *Proof.* This follows directly from Theorem 9. By considering the set of all records with exactly k
 2546 matching attributes with the query, we form a layer L_k . Theorem 9 ensures that for any $k_1 > k_2$ and
 2547 any records $o_1 \in L_{k_1}$ and $o_2 \in L_{k_2}$, we have $\rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_1)) < \rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_2))$. This creates a
 2548 strict hierarchy of distances based on the number of matching attributes. \square

2550 **Theorem 10** (Generalized Attribute Match Hierarchy). *Let q be a query with attribute values*
 2551 $(F^{(1)}, F^{(2)}, \dots, F^{(\mathbb{F})})$. *Consider two records $o_i^{(\mathbb{F})}$ and $o_j^{(\mathbb{F})}$ with potentially different content vectors.*
 2552 *Let M_i and M_j be the sets of indices where the records' attributes match the query. If $|M_i| > |M_j|$*
 2553 *and $\rho(v(q), v(o_i)) \leq \rho(v(q), v(o_j)) + \epsilon$ for some small $\epsilon > 0$, then for any $\{\beta_p\}_{p=1}^{\mathbb{F}}$ there exist*
 2554 *sufficiently large values of $\{\alpha_p\}_{p=1}^{\mathbb{F}}$ such that $\rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_i)) < \rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_j))$.*

2556 *Proof.* Building on the proof of Theorem 9, we now account for the difference in content vectors.
 2557 The squared distances in the transformed space become:

$$2559 \rho^2(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_i)) = \frac{1}{\prod_{p=1}^{\mathbb{F}} \beta_p^2} \left[\rho^2(v(q), v(o_i)) + \sum_{p \notin M_i} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_i)\|_2^2 + \text{cross terms}_i \right] \quad (175)$$

$$2563 \rho^2(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_j)) = \frac{1}{\prod_{p=1}^{\mathbb{F}} \beta_p^2} \left[\rho^2(v(q), v(o_j)) + \sum_{p \notin M_j} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_j)\|_2^2 + \text{cross terms}_j \right] \quad (176)$$

2567 Given that $\rho^2(v(q), v(o_i)) \leq (\rho(v(q), v(o_j)) + \epsilon)^2 = \rho^2(v(q), v(o_j)) + 2\epsilon \cdot \rho(v(q), v(o_j)) + \epsilon^2$, we
 2568 can write:

$$2570 \rho^2(v(q), v(o_i)) - \rho^2(v(q), v(o_j)) \leq 2\epsilon \cdot \rho(v(q), v(o_j)) + \epsilon^2 \quad (177)$$

2572 For sufficiently large values of $\{\alpha_p\}$, the attribute terms dominate:

$$2574 \sum_{p \notin M_j} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_j)\|_2^2 - \sum_{p \notin M_i} C_p \cdot \alpha_p^2 \|F^{(p)} - f^{(p)}(o_i)\|_2^2 > \frac{2\epsilon \cdot \rho(v(q), v(o_j)) + \epsilon^2}{\prod_{p=1}^{\mathbb{F}} \beta_p^2} \quad (178)$$

2578 Since $|M_i| > |M_j|$, there is at least one attribute p_0 such that $p_0 \in M_i$ but $p_0 \notin M_j$. By setting
 2579 α_{p_0} sufficiently large, we can ensure that the difference in attribute terms exceeds the difference in
 2580 content terms, thereby ensuring $\rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_i)) < \rho(v_{\mathbb{F}}(q), v_{\mathbb{F}}(o_j))$. \square

2582 F.6 HIERARCHICAL MULTI-ATTRIBUTE VECTOR INDEXING

2584 **Theorem 11** (Multi-Attribute Candidate Set Size). *Let $\mathcal{D}^{(\mathbb{F})}$ be a record set transformed using*
 2585 *sequential transformations $\Psi_1, \Psi_2, \dots, \Psi_{\mathbb{F}}$ with parameters $(\alpha_j, \beta_j)_{j=1}^{\mathbb{F}}$. Let \mathcal{A}_j be the set of*
 2586 *distinct values for attribute j .*

2587 For each unique combination of attribute values $\vec{a} = (a^{(1)}, a^{(2)}, \dots, a^{(\mathbb{F})})$, define:

- 2589 • $C(\vec{a}) = \{o \in \mathcal{D}^{(\mathbb{F})} : f^{(1)}(o) = a^{(1)}, \dots, f^{(\mathbb{F})}(o) = a^{(\mathbb{F})}\}$ as the cluster of records with
 2590 attribute combination \vec{a}
- 2591 • $N_{\vec{a}} = |C(\vec{a})|$ as the number of records in cluster $C(\vec{a})$

- $R_{\vec{a}}$ as the radius of the smallest hypersphere containing all transformed records in $C(\vec{a})$
- $d_{min}(\vec{a}, \vec{b})$ as the minimum distance between any transformed record in $C(\vec{a})$ and any transformed record in $C(\vec{b})$

For each combination \vec{a} with $N_{\vec{a}} > 1$, define the cluster separation metric:

$$\gamma_{\vec{a}} = \min_{\vec{b} \neq \vec{a}} \frac{d_{min}(\vec{a}, \vec{b})}{R_{\vec{a}}} - 1 \quad (179)$$

Given a query q with attribute combination $\vec{q} = (F^{(1)}, F^{(2)}, \dots, F^{(\mathbb{F})})$, to retrieve the top- k nearest neighbors with the same attribute combination with probability at least $1 - \epsilon$, the number of candidates k' to retrieve from the transformed space should satisfy:

$$k' = \begin{cases} \min(k, N_{\vec{q}}), & \text{if } N_{\vec{q}} = 1 \text{ or } R_{\vec{q}} = 0 \\ \left\lceil k \cdot \left(1 + \frac{\ln(1/\epsilon)}{\gamma_{\vec{q}}^2 \cdot \mathbb{F}} \cdot \frac{N - N_{\vec{q}}}{N_{\vec{q}}} \right) \right\rceil, & \text{otherwise} \end{cases} \quad (180)$$

where N is the total number of records and \mathbb{F} is the number of attribute filters applied.

Proof. We consider two cases:

Case 1: $N_{\vec{q}} = 1$ or $R_{\vec{q}} = 0$

If there is only one record with the query's attribute combination (i.e., $N_{\vec{q}} = 1$), then $R_{\vec{q}} = 0$ since there's only a single point in the transformed space. In this case, we simply return that single record, so $k' = \min(k, 1) = 1$ for $k \geq 1$.

Similarly, if $R_{\vec{q}} = 0$ even with $N_{\vec{q}} > 1$ (which could happen if all records with identical attribute combinations map to the same point), then we return $\min(k, N_{\vec{q}})$ records.

Case 2: $N_{\vec{q}} > 1$ and $R_{\vec{q}} > 0$

After applying all \mathbb{F} transformations, records form clusters based on their attribute combinations. The sequential transformations preserve the relative distances between records with identical attribute values up to scaling factors, maintaining the order of k-NN within each cluster.

For a query q with attribute combination \vec{q} , the k nearest neighbors with matching attributes lie within a hypersphere of radius $R_q \leq R_{\vec{q}}$ centered at the transformed query point $v_{\mathbb{F}}(q)$.

Each transformation Ψ_j has two key effects:

1. It preserves relative distances within clusters of records sharing the same attribute value
2. It increases the distance between records with different attribute values according to parameters α_j and β_j

As a result, with each additional attribute filter, we create a more pronounced separation between matching and non-matching records in the transformed space. Records that match on all \mathbb{F} attributes are closest to the query, followed by those matching on $\mathbb{F} - 1$ attributes, and so on.

By definition, the distance from $v_{\mathbb{F}}(q)$ to any record with attribute combination $\vec{b} \neq \vec{q}$ is at least $d_{min}(\vec{q}, \vec{b})$. Define the excess distance ratio:

$$\gamma_{\vec{q}}(\vec{b}) = \frac{d_{min}(\vec{q}, \vec{b})}{R_{\vec{q}}} - 1 \quad (181)$$

The minimum value across all attribute combinations is:

$$\gamma_{\vec{q}} = \min_{\vec{b} \neq \vec{q}} \gamma_{\vec{q}}(\vec{b}) \quad (182)$$

Our goal is to limit the probability that a record from a non-matching attribute combination $\vec{b} \neq \vec{q}$ appears among the top- k nearest neighbors. To achieve this, we rely on standard concentration inequalities from probability theory, specifically Gaussian (or sub-Gaussian) concentration inequalities.

2646 Formally, consider points in a high-dimensional metric space transformed by our sequential attribute
 2647 transformations. For a high-dimensional vector $X \in \mathbb{R}^d$, known Gaussian concentration inequalities
 2648 provide a bound on the probability that the distance of X deviates from its expectation by at least
 2649 some margin $t > 0$:
 2650

$$2651 P(\|X - \mathbb{E}[X]\| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sigma^2}\right) \quad (183)$$

2654 Here, σ^2 is related to the variance or scale parameter of the distribution.

2655 In our setting, after applying \mathbb{F} sequential transformations, the minimal normalized separation metric
 2656 $\gamma_{\vec{q}}$ characterizes the relative margin of separation between the query cluster and any non-matching
 2657 cluster. Specifically, the minimal separation distance between clusters increases proportionally to
 2658 $\gamma_{\vec{q}}\sqrt{\mathbb{F}}$, since each attribute transformation contributes independently and additively to the squared
 2659 separation.

2660 Thus, setting $t = \gamma_{\vec{q}}\sqrt{\mathbb{F}} \cdot R_{\vec{q}}$ (the absolute minimal separation distance scaled by the query cluster
 2661 radius), and absorbing constants into definitions, we obtain a simplified exponential bound:
 2662

$$2663 P(\vec{b} \text{ appears in top-}k) \leq \exp(-\gamma_{\vec{q}}^2 \cdot \mathbb{F} \cdot k) \quad (184)$$

2664 This exponential bound clearly shows the rapidly decreasing probability that a record from a different
 2665 attribute cluster appears among the nearest neighbors as the number of attribute filters (\mathbb{F}), the cluster
 2666 separation metric ($\gamma_{\vec{q}}$), or the number of neighbors considered (k) increase.

2667 The factor \mathbb{F} in the exponent reflects the compounding effect of multiple transformations, each
 2668 creating additional separation in its respective dimension. This is because each transformation Ψ_j
 2669 creates a separation along a different attribute dimension, and records must match on all dimensions
 2670 to be considered as true candidates.

2671 For all $N - N_{\vec{q}}$ records with attribute combinations different from \vec{q} , the expected number appearing
 2672 in the top- k is bounded by:
 2673

$$2674 E[\text{non-} \vec{q} \text{ records in top-}k] \leq (N - N_{\vec{q}}) \cdot \exp(-\gamma_{\vec{q}}^2 \cdot \mathbb{F} \cdot k) \quad (185)$$

2675 To ensure we retrieve the true top- k records with attribute combination \vec{q} with probability at least
 2676 $1 - \epsilon$, we need:

$$2677 (N - N_{\vec{q}}) \cdot \exp(-\gamma_{\vec{q}}^2 \cdot \mathbb{F} \cdot k) \leq \epsilon \cdot N_{\vec{q}} \quad (186)$$

2678 Solving for k :

$$2679 k \geq \frac{1}{\gamma_{\vec{q}}^2 \cdot \mathbb{F}} \cdot \ln\left(\frac{N - N_{\vec{q}}}{\epsilon \cdot N_{\vec{q}}}\right) = \frac{1}{\gamma_{\vec{q}}^2 \cdot \mathbb{F}} \cdot \left(\ln\left(\frac{N - N_{\vec{q}}}{N_{\vec{q}}}\right) + \ln\left(\frac{1}{\epsilon}\right)\right) \quad (187)$$

2680 Providing a slight overestimate for practical use:

$$2681 k' = \left\lceil k \cdot \left(1 + \frac{\ln(1/\epsilon)}{\gamma_{\vec{q}}^2 \cdot \mathbb{F}} \cdot \frac{N - N_{\vec{q}}}{N_{\vec{q}}}\right)\right\rceil \quad (188)$$

2682 This formula determines k' at query time using the precomputed statistics ($\gamma_{\vec{q}}$, $N_{\vec{q}}$, and N), the
 2683 number of attribute filters \mathbb{F} , and the desired confidence level $(1 - \epsilon)$.

2684 Importantly, when $\mathbb{F} = 1$, this formula exactly reduces to the single-attribute case:

$$2685 k' = \left\lceil k \cdot \left(1 + \frac{\ln(1/\epsilon)}{\gamma_{\vec{q}}^2} \cdot \frac{N - N_{\vec{q}}}{N_{\vec{q}}}\right)\right\rceil \quad (189)$$

2686 Which matches Theorem 2 when we substitute \vec{q} with a , as all corresponding metrics ($\gamma_{\vec{q}}$, $N_{\vec{q}}$, etc.)
 2687 become identical to their single-attribute counterparts (γ_a , N_a , etc.).

2688 The effectiveness of the transformation sequence is demonstrated by observing that:

2700 1. As the parameters α_j increase, the separation between clusters increases (increasing $\gamma_{\vec{q}}$)
 2701 2. As the number of filter attributes \mathbb{F} increases, the required k' decreases due to the \mathbb{F} factor in
 2702 the denominator
 2703 3. As $\gamma_{\vec{q}}$ and \mathbb{F} increase, k' approaches k , indicating better discrimination between attribute
 2704 combinations
 2705

2706 This confirms that multiple attribute filters indeed narrow the target space more effectively, requiring
 2707 fewer candidates to achieve the same accuracy guarantees. \square
 2708

2710 Algorithm 3 for multi-attribute indexing and search follows naturally from the single-attribute
 2711 case. During indexing, we apply transformations sequentially to each record, computing statistical
 2712 information for unique attribute combinations. At query time, we apply the same transformations to
 2713 the query, retrieve candidates, and re-rank based on attribute and content distances.

2714 **Algorithm 3** Hierarchical Multi-Attribute Vector Indexing

2716 1: **[Offline Indexing] Require:** Dataset $\mathcal{D}^{(\mathbb{F})}$, attribute sequence $(f^{(1)}, \dots, f^{(\mathbb{F})})$
 2717 2: **for** $j = 1$ to \mathbb{F} **do**
 2718 3: Obtain the optimal (α_j, β_j) over fused space v_{j-1} based on Cor. 1 (v_0 is $v_0[i] \leftarrow v(o_i) : \forall o_i \in \mathcal{D}^{(\mathbb{F})}$)
 2719 4: **for** each $o_i^{(\mathbb{F})}$ in $\mathcal{D}^{(\mathbb{F})}$ **do**
 2720 5: $v_j[i] \leftarrow \Psi_j(v_{j-1}[i], f^{(j)}(o_i), \alpha_j, \beta_j)$
 2721 6: Add $v_j[i]$ to index, retaining reference to $o_i^{(\mathbb{F})}$
 2722 7: **end for**
 2723 8: **end for**
 2724 9: Precompute for each attribute combination \vec{a} : radius $R_{\vec{a}}$, minimum inter-cluster distances $d_{min}(\vec{a}, \vec{b})$, cluster
 2725 counts $N_{\vec{a}}$, and separation metric $\gamma_{\vec{a}} = \min_{\vec{b} \neq \vec{a}} \frac{d_{min}(\vec{a}, \vec{b})}{R_{\vec{a}}} - 1$
 2726 10: **[Online Query Processing] Require:** Query $q^{(\mathbb{F})} = [v(q), (F^{(1)}, \dots, F^{(\mathbb{F})})]$, k , error probability ϵ
 2727 11: $v_0 \leftarrow v(q)$
 2728 12: **for** $j = 1$ to \mathbb{F} **do**
 2729 13: $v_j \leftarrow \Psi_j(v_{j-1}, F^{(j)}, \alpha_j, \beta_j)$
 2730 14: **end for**
 2731 15: Compute k' (Theorem 11) based on query attribute combination $\vec{q} = (F^{(1)}, \dots, F^{(\mathbb{F})})$ and cluster statistics
 2732 16: Retrieve top- k' candidates from index using $v_{\mathbb{F}}$
 2733 17: **for** each candidate $o_i^{(\mathbb{F})}$ **do**
 2734 18: Compute combined score using attribute and content distances
 2735 19: **end for**
 20: Sort candidates by score and return top- k

2736 **Algorithm Details** For the multi-attribute case, we compute statistics for each unique combination
 2737 of attribute values. The candidate set size determination on line 16 uses Theorem 11, which accounts
 2738 for the narrowing effect of multiple attribute filters through the \mathbb{F} factor. When the number of attribute
 2739 combinations is large, statistics can be approximated or computed for the most frequent combinations.
 2740 For scoring in line 18, we can either use a binary match approach (match all attributes or none) or a
 2741 weighted approach where different attributes contribute differently to the final score based on their
 2742 importance to the query.

2743 F.7 ATTRIBUTE UPDATES ANALYSIS

2744 **Theorem 12** (Attribute Addition). *Let $\mathcal{D}^{(\mathbb{F})}$ be a record set with \mathbb{F} attributes transformed using
 2745 sequential transformations $\Psi_{\pi(1)}, \Psi_{\pi(2)}, \dots, \Psi_{\pi(\mathbb{F})}$. Adding a new attribute $f^{(\mathbb{F}+1)}$ requires:*

2746 (a) *If added with highest priority: A single additional transformation $\Psi_{\mathbb{F}+1}(v_{\mathbb{F}}, f^{(\mathbb{F}+1)}, \alpha_{\mathbb{F}+1}, \beta_{\mathbb{F}+1})$,
 2747 preserving all existing transformations.*
 2748 (b) *If inserted at priority position j ($1 \leq j < \mathbb{F}$): Re-computation of transformations
 2749 $\Psi_{\pi(1)}, \Psi_{\pi(2)}, \dots, \Psi_{\pi(j-1)}$ after incorporating the new attribute in the priority sequence.*

2750 *Proof.* For case (a), since the highest priority attribute corresponds to the last transformation
 2751 in our sequence, adding a new highest priority attribute simply means appending a new trans-

2754 formation at the end. The sequential nature of our transformations means that adding $\Psi_{\mathbb{F}+1}$
 2755 as the final step preserves all previous transformations. The overall transformation becomes:
 2756 $v_{\mathbb{F}+1} = \Psi_{\mathbb{F}+1}(v_{\mathbb{F}}, f^{(\mathbb{F}+1)}, \alpha_{\mathbb{F}+1}, \beta_{\mathbb{F}+1})$
 2757

2758 For case (b), inserting in the priority position j (where $j < \mathbb{F}$) changes the existing priorities.
 2759 Transformations from position j onward remain the same in terms of attribute mapping, but the first
 2760 $j-1$ positions must be recomputed to incorporate the new priority sequence. This requires a partial
 2761 recomputation of the transformation pipeline for the affected attributes. \square
 2762

2763 **Theorem 13** (Priority Update Propagation). *Given a priority mapping $\pi : [1, \mathbb{F}] \rightarrow [1, \mathbb{F}]$ for*
 2764 *attributes, let π' be a new priority mapping. Define $j = \min k : \forall i \geq k, \pi(i) = \pi'(i)$ as the first*
 2765 *position from which all subsequent positions have the same priority in both mappings. Then only*
 2766 *transformations $\Psi_{\pi(1)}, \Psi_{\pi(2)}, \dots, \Psi_{\pi(j-1)}$ need to be recomputed using the new priority ordering*
 2767 π' .

2768 *Proof.* Let $v_0, v_1, \dots, v_{\mathbb{F}}$ be the sequence of vectors produced by applying transformations according
 2769 to mapping π . For any $i \geq j$, we have $\pi(i) = \pi'(i)$, meaning the transformations from position j
 2770 onward are identical under both mappings.

2771 For positions $i < j$, we have $\pi(i) \neq \pi'(i)$ for at least one such position, requiring
 2772 application of different transformations according to the new priority mapping: $v'i =$
 2773 $\Psi\pi'(i)(v'i - 1, f^{(\pi'(i))}, \alpha\pi'(i), \beta\pi'(i))$

2774 These modifications in the early transformations create a new base vector $v'j - 1$ that differs from
 2775 $vj - 1$. However, since the priority mappings are identical from position j onward ($\pi(i) = \pi'(i)$ for
 2776 all $i \geq j$), the same sequence of remaining transformations can be applied to this new base vector.
 2777 Therefore, we only need to recompute the first $j-1$ transformations, not the entire sequence. \square \square
 2778

2779 **Theorem 14** (Computational Complexity of Updates). *The computational complexity of updating*
 2780 *from priority order π to π' is $O(N \cdot j \cdot d)$, where N is the number of records, d is the vector dimension,*
 2781 *and $j = \min k : \forall i \geq k, \pi(i) = \pi'(i)$.*

2782 *Proof.* For each of the N records in the dataset, we must recompute the transformations for positions
 2783 1 through $j-1$. Each transformation has complexity $O(d)$, since it processes a vector of dimensions d .
 2784 There are $j-1$ transformations to recompute.

2785 Therefore, the total complexity is $N \cdot (j-1) \cdot O(d) = O(N \cdot j \cdot d)$.

2786 This highlights the efficiency of our update mechanism: When changes affect only the earliest
 2787 positions in the priority sequence (small j), the update cost is significantly lower than the full
 2788 recomputation of all transformations, which would require $O(N\mathbb{F}d)$ operations. \square \square
 2789

2790 G RANGE FILTERING IN FUSEDANN ANALYSIS

2791 This section provides a detailed analysis of our range filtering approach, focusing on optimal sampling
 2792 strategies, efficient line indexing structures, and distance-based indexing techniques.

2793 G.1 LINE REPRESENTATION OF RANGE QUERIES

2794 We first prove that the transformation of a range query indeed forms a line segment in our transformed
 2795 space:

2796 **Theorem 15** (Range Query Line). *Given a content vector q and an attribute range $[l, u]$, the set of*
 2797 *all points in the transformed space corresponding to (q, f) where $f \in [l, u]$ forms exactly the line*
 2798 *segment connecting $\Psi(q, l, \alpha, \beta)$ and $\Psi(q, u, \alpha, \beta)$.*

2799 *Proof.* For any $f \in [l, u]$, we can express it as a convex combination of endpoints: $f = (1-t)l + tu$
 2800 for some $t \in [0, 1]$.

2808 The transformed point for (q, f) is:
 2809

$$2810 \quad \Psi(q, f, \alpha, \beta) = \left[\frac{q^{(1)} - \alpha \cdot f}{\beta}, \frac{q^{(2)} - \alpha \cdot f}{\beta}, \dots, \frac{q^{(d/m)} - \alpha \cdot f}{\beta} \right] \quad (190)$$

$$2811 \quad = \left[\frac{q^{(1)} - \alpha \cdot ((1-t)l + tu)}{\beta}, \frac{q^{(2)} - \alpha \cdot ((1-t)l + tu)}{\beta}, \dots, \frac{q^{(d/m)} - \alpha \cdot ((1-t)l + tu)}{\beta} \right] \quad (191)$$

2816 Distributing the terms:
 2817

$$2818 \quad \Psi(q, f, \alpha, \beta) = \left[\frac{q^{(1)} - \alpha(1-t)l - \alpha tu}{\beta}, \frac{q^{(2)} - \alpha(1-t)l - \alpha tu}{\beta}, \dots, \frac{q^{(d/m)} - \alpha(1-t)l - \alpha tu}{\beta} \right] \quad (192)$$

$$2821 \quad = \left[\frac{(1-t)(q^{(1)} - \alpha l) + t(q^{(1)} - \alpha u)}{\beta}, \frac{(1-t)(q^{(2)} - \alpha l) + t(q^{(2)} - \alpha u)}{\beta}, \dots, \right. \quad (193)$$

$$2824 \quad \left. \frac{(1-t)(q^{(d/m)} - \alpha l) + t(q^{(d/m)} - \alpha u)}{\beta} \right] \quad (194)$$

2827 This equals:
 2828

$$2829 \quad \Psi(q, f, \alpha, \beta) = (1-t) \left[\frac{q^{(1)} - \alpha l}{\beta}, \frac{q^{(2)} - \alpha l}{\beta}, \dots, \frac{q^{(d/m)} - \alpha l}{\beta} \right] \quad (195)$$

$$2832 \quad + t \left[\frac{q^{(1)} - \alpha u}{\beta}, \frac{q^{(2)} - \alpha u}{\beta}, \dots, \frac{q^{(d/m)} - \alpha u}{\beta} \right] \quad (196)$$

$$2834 \quad = (1-t)\Psi(q, l, \alpha, \beta) + t\Psi(q, u, \alpha, \beta) \quad (197)$$

2835 This is precisely the parametric equation of the line segment connecting $p_l = \Psi(q, l, \alpha, \beta)$ and
 2836 $p_u = \Psi(q, u, \alpha, \beta)$. Furthermore, every point on this line segment corresponds to some $f \in [l, u]$,
 2837 which completes the proof. \square
 2838

2839 G.2 DISTANCE PROPERTIES OF THE RANGE LINE 2840

2841 Next, we analyze the distance from a transformed point to the query line:

2842 **Theorem 16** (Distance Characterization). *For a point $\Psi(v, f, \alpha, \beta)$ where $f \in [l, u]$, its distance to
 2843 the range query line $L(Q, t)$ is:*

$$2845 \quad \rho(\Psi(v, f, \alpha, \beta), L(Q, t_f)) = \frac{\|v - q\|}{\beta} \quad (198)$$

2847 where $t_f \in [0, 1]$ is the parameter such that $f = (1-t_f)l + t_f u$.
 2848

2849 *Proof.* For a point $\Psi(v, f, \alpha, \beta)$ with $f \in [l, u]$, there exists a unique $t_f \in [0, 1]$ such that $f =$
 2850 $(1-t_f)l + t_f u$.

2852 The point on the line segment $L(Q, t)$ at parameter t_f is:

$$2853 \quad L(Q, t_f) = (1-t_f)\Psi(q, l, \alpha, \beta) + t_f\Psi(q, u, \alpha, \beta) \quad (199)$$

$$2854 \quad = (1-t_f) \left[\frac{q^{(1)} - \alpha l}{\beta}, \dots, \frac{q^{(d/m)} - \alpha l}{\beta} \right] + t_f \left[\frac{q^{(1)} - \alpha u}{\beta}, \dots, \frac{q^{(d/m)} - \alpha u}{\beta} \right] \quad (200)$$

$$2857 \quad = \left[\frac{q^{(1)} - \alpha((1-t_f)l + t_f u)}{\beta}, \dots, \frac{q^{(d/m)} - \alpha((1-t_f)l + t_f u)}{\beta} \right] \quad (201)$$

$$2859 \quad = \left[\frac{q^{(1)} - \alpha f}{\beta}, \dots, \frac{q^{(d/m)} - \alpha f}{\beta} \right] \quad (202)$$

$$2861 \quad = \Psi(q, f, \alpha, \beta) \quad (203)$$

Now we compute the squared distance between $\Psi(v, f, \alpha, \beta)$ and $L(Q, t_f)$:

$$\|\Psi(v, f, \alpha, \beta) - L(Q, t_f)\|^2 = \|\Psi(v, f, \alpha, \beta) - \Psi(q, f, \alpha, \beta)\|^2 \quad (204)$$

$$= \left\| \left[\frac{v^{(1)} - \alpha f}{\beta}, \dots, \frac{v^{(d/m)} - \alpha f}{\beta} \right] - \left[\frac{q^{(1)} - \alpha f}{\beta}, \dots, \frac{q^{(d/m)} - \alpha f}{\beta} \right] \right\|^2 \quad (205)$$

$$= \left\| \left[\frac{v^{(1)} - q^{(1)}}{\beta}, \dots, \frac{v^{(d/m)} - q^{(d/m)}}{\beta} \right] \right\|^2 \quad (206)$$

$$= \frac{1}{\beta^2} \|v - q\|^2 \quad (207)$$

Taking the square root of both sides, we get:

$$\|\Psi(v, f, \alpha, \beta) - L(Q, t_f)\| = \frac{\|v - q\|}{\beta} \quad (208)$$

which completes the proof. \square

This fundamental result shows that the distance from a transformed point to the query line is directly proportional to the similarity between the corresponding content vectors.

Corollary 5 (Minimum Distance). *For any point $\Psi(v, f, \alpha, \beta)$, its minimum distance to the line segment $L(Q, t)$ is:*

$$d_{\text{tube}}(\Psi(v, f, \alpha, \beta), Q) = \quad (209)$$

$$\begin{cases} \frac{\|v - q\|}{\beta} & \text{if } f \in [l, u] \\ \min\{\|\Psi(v, f, \alpha, \beta) - \Psi(q, l, \alpha, \beta)\|, \|\Psi(v, f, \alpha, \beta) - \Psi(q, u, \alpha, \beta)\|\} & \text{if } f \notin [l, u] \end{cases} \quad (210)$$

Proof. For $f \in [l, u]$, the result follows directly from Theorem 16.

For $f \notin [l, u]$, the minimum distance to a line segment is either the perpendicular distance to the line (if the projection falls within the segment) or the distance to one of the endpoints (if the projection falls outside the segment).

Given the properties of our transformation, the projection of $\Psi(v, f, \alpha, \beta)$ onto the infinite line containing $L(Q, t)$ falls outside the segment when $f \notin [l, u]$. Therefore, the minimum distance is to one of the endpoints:

$$d_{\text{tube}}(\Psi(v, f, \alpha, \beta), Q) = \min\{\|\Psi(v, f, \alpha, \beta) - \Psi(q, l, \alpha, \beta)\|, \|\Psi(v, f, \alpha, \beta) - \Psi(q, u, \alpha, \beta)\|\} \quad (211)$$

This completes the proof. \square

G.3 EMPIRICAL DISTRIBUTION ESTIMATION

To implement our adaptive sampling strategy, we need reliable estimates of the query distribution \mathcal{D}_q and range distribution \mathcal{D}_r . We propose the following practical approaches:

Query Distribution Estimation. The query distribution \mathcal{D}_q can be estimated by:

1. **Historical query analysis:** When available, historical query logs provide the most accurate representation of the actual query distribution. We apply kernel density estimation (KDE) to the historical query vectors with bandwidth selection using Scott's rule: $h = n^{-1/(d+4)} \cdot \sigma$, where n is the number of samples and σ is the standard deviation.
2. **Content vector approximation:** In the absence of query logs, we use the normalized distribution of content vectors in the dataset as a proxy. This approximation works well in practice because queries tend to be semantically similar to the items they are aiming to retrieve.
3. **Cluster-based estimation:** For large datasets, we first cluster the content vectors using k-means (with $k = \sqrt{n}$) and use the cluster centroids weighted by cluster sizes as representative points of the query distribution.

2916 **Range Distribution Estimation.** For the range distribution \mathcal{D}_r , we employ:
 2917

- 2918 **Attribute statistics:** We compute the mean μ_a and the standard deviation σ_a for each
 2919 numerical attribute a . The range endpoints are typically distributed as $l_a \sim \mathcal{N}(\mu_a -$
 2920 $c\sigma_a, \sigma_a^2/2)$ and $u_a \sim \mathcal{N}(\mu_a + c\sigma_a, \sigma_a^2/2)$, where c is estimated from historical range
 2921 queries (typically $0.5 \leq c \leq 2$).
- 2922 **Categorical attribute handling:** For categorical attributes, we estimate probability p_i for
 2923 each category value i and model range queries as a sampling of this distribution without
 2924 replacement.
- 2925 **Width correlation modeling:** We capture the correlation between the widths of the range
 2926 and the attributes using a conditional probability model: $P(w|v) = P(u - l|v)$, where v is
 2927 the center value of the range.

2928 To validate our distribution estimates, we employ cross-validation against a held-out set of actual
 2929 queries if available, or use statistical divergence measures (e.g., Kullback-Leibler divergence) between
 2930 our estimated distributions and bootstrapped samples from the dataset.

2931 These empirically estimated distributions are then used in Algorithm 4 to sample representative line
 2932 segments that efficiently cover the range query space while minimizing redundancy and computational
 2933 overhead.

2934 G.4 OPTIMAL SAMPLING OF THE RANGE SPACE

2935 To efficiently support arbitrary range queries, we need to precompute a representative set of range
 2936 lines that provide good coverage of the range space, which is the space of all possible cylinders.

2937 **Definition 4.** Given a metric space (X, d) and non-empty subsets $A, B \subseteq X$, the **Hausdorff distance**
 2938 is

$$2940 d_H(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b) \right\}.$$

2941 **Definition 5** (Sampling Resolution). Let $S \subset \mathbb{R}^d$ be a finite set of sampled points in a metric space
 2942 $(\mathbb{R}^d, \|\cdot\|)$. The sampling resolution r of S is the smallest value such that for every point \mathbf{x} in the
 2943 domain of interest $\mathcal{X} \subseteq \mathbb{R}^d$, there exists a sampled point $\mathbf{s} \in S$ satisfying

$$2944 \|\mathbf{x} - \mathbf{s}\| \leq r.$$

2945 Equivalently, r is the minimal radius such that the union of closed balls of radius r centered at each
 2946 point in S covers \mathcal{X} .

2947 **Definition 6** (Effective Diameter of a Distribution). The effective diameter of \mathcal{D} defined as the
 2948 smallest radius r such that a ball of radius r contains at least $1 - \delta$ probability mass, for some small
 2949 $\delta > 0$. Formally, let \mathcal{D} be a distribution over \mathbb{R}^d . For $\delta > 0$, the effective diameter of \mathcal{D} is

$$2950 D_{\mathcal{D}} = \inf \left\{ r > 0 : \exists \mathbf{c} \in \mathbb{R}^d \text{ such that } \Pr_{\mathbf{x} \sim \mathcal{D}} [\|\mathbf{x} - \mathbf{c}\| \leq r] \geq 1 - \delta \right\}.$$

2951 **Definition 7** (ϵ -Line Cover). A set of line segments $\mathcal{L} = \{L_1, L_2, \dots, L_m\}$ is an ϵ -line cover for the
 2952 range query space if for any possible range query line L_Q , there exists a line $L_i \in \mathcal{L}$ such that the
 2953 Hausdorff distance $d_H(L_Q, L_i) \leq \epsilon$.

2954 **Corollary 6** (Line Distance Bound). The Hausdorff distance between two range query lines L_1
 2955 (representing range $[l_1, u_1]$ for query q_1) and L_2 (representing range $[l_2, u_2]$ for query q_2) is bounded
 2956 by:

$$2957 d_H(L_1, L_2) \leq \frac{1}{\beta} \max(\|q_1 - q_2\|, \alpha \cdot \max(\|l_1 - l_2\|, \|u_1 - u_2\|)) \quad (212)$$

2958 *Proof.* Consider points $p_1(t) = (1 - t) \cdot \Psi(q_1, l_1, \alpha, \beta) + t \cdot \Psi(q_1, u_1, \alpha, \beta)$ on L_1 and $p_2(t) =$
 2959 $(1 - t) \cdot \Psi(q_2, l_2, \alpha, \beta) + t \cdot \Psi(q_2, u_2, \alpha, \beta)$ on L_2 for $t \in [0, 1]$.

2960 The distance between these corresponding points is:

$$2961 \|p_1(t) - p_2(t)\| = \|(1 - t)[\Psi(q_1, l_1, \alpha, \beta) - \Psi(q_2, l_2, \alpha, \beta)] + t[\Psi(q_1, u_1, \alpha, \beta) - \Psi(q_2, u_2, \alpha, \beta)]\| \quad (213)$$

$$2962 \leq (1 - t)\|\Psi(q_1, l_1, \alpha, \beta) - \Psi(q_2, l_2, \alpha, \beta)\| + t\|\Psi(q_1, u_1, \alpha, \beta) - \Psi(q_2, u_2, \alpha, \beta)\| \quad (214)$$

2970 For the first term:

2971

$$2972 \|\Psi(q_1, l_1, \alpha, \beta) - \Psi(q_2, l_2, \alpha, \beta)\| = \left\| \frac{q_1 - \alpha l_1}{\beta} - \frac{q_2 - \alpha l_2}{\beta} \right\| \quad (215)$$

2973

2974

$$= \frac{1}{\beta} \|q_1 - q_2 - \alpha(l_1 - l_2)\| \quad (216)$$

2975

2976

$$\leq \frac{1}{\beta} (\|q_1 - q_2\| + \alpha \|l_1 - l_2\|) \quad (217)$$

2977

2978 Similarly for the second term. The maximum value is achieved at one of the endpoints, giving the
2979 stated bound. \square

2980

2981 Based on this distance bound, we develop an adaptive sampling strategy for the range space:

2982

2983 **Theorem 17** (Optimal Range Line Sampling). *Given distributions of query vectors \mathcal{D}_q and attribute
2984 ranges \mathcal{D}_r , to achieve an ϵ -line cover with probability at least $1 - \delta$, the number of line segments
2985 needed is:*

2986

2987

$$N(\epsilon, \delta) = O \left(\left(\frac{\max(D_q, \alpha D_r)}{\beta \epsilon} \right)^d \cdot \log \frac{1}{\delta} \right) \quad (218)$$

2988

2989 where D_q and D_r are the effective diameters (Definition 6) of the query and range distributions.

2990

2991 *Proof.* To achieve a ϵ line cover with probability at least $1 - \delta$, we must discretize both the query
2992 space and the attribute range space such that the Hausdorff distance between any possible query or
2993 range in their respective distributions and the closest sampled point is at most ϵ .

2994

2995 By Corollary 6, this requires sampling the query space with resolution (Definition 5) at most $\beta \epsilon$, and
2996 the range space with resolution at most $\beta \epsilon / \alpha$.

2997

2998 Consider a d -dimensional space with effective diameter D . To ensure that every point in the space
2999 lies within distance r of some sampled point (i.e., to achieve resolution r), it suffices to cover the
3000 space with balls of radius r . The minimum number of such balls required is known as *covering
3001 number* of the space and is upper bounded by $O \left(\left(\frac{D}{r} \right)^d \right)$ (Vershynin, 2018).

3002

3003 To ensure that, with probability at least $1 - \delta$, every such ball contains at least one sampled point,
3004 we can use a standard union bound argument: if we sample each point independently from the
3005 distribution, it suffices to take $O \left(\left(\frac{D}{r} \right)^d \log \frac{1}{\delta} \right)$ samples to guarantee that all balls are covered with
3006 high probability (Matoušek, 2002).

3007

3008 Applying this to our setting, for each of the query and range spaces, we replace D with their respective
3009 effective diameters and r with their respective required resolutions. Combining these requirements,
3010 dominated by the larger term, so taking the maximum (since both spaces must be covered) gives the
3011 stated bound.

3012

3013

$$N(\epsilon, \delta) = O \left(\max \left[\left(\frac{D_q}{\beta \epsilon} \right)^d \cdot \log \frac{1}{\delta}, \left(\frac{D_r}{\frac{\beta \epsilon}{\alpha}} \right)^d \cdot \log \frac{1}{\delta} \right] \right) = O \left(\left(\frac{\max(D_q, \alpha D_r)}{\beta \epsilon} \right)^d \cdot \log \frac{1}{\delta} \right)$$

3014

\square

3015 **Theorem 18** (Optimal Cylinder Radius). *For a range query $(q, [l, u])$, to retrieve at least $(1 - \epsilon)k$ of
3016 the true top- k results with probability at least $1 - \delta$, the cylinder radius should be:*

3017

3018

$$r = \frac{d_k}{\beta} + \sqrt{\frac{-\ln(\delta/2)}{2n}} \cdot \sigma \quad (219)$$

3019

3020 where d_k is the distance to the k -th closest content vector, n is the number of records, and σ is the
3021 standard deviation of distances.

3022

3023 *Proof.* From Theorem 16, we know that for records with attribute values in $[l, u]$, the distance to the
3024 line is exactly $\frac{\|v - q\|}{\beta}$. Therefore, to capture all records within distance d_k of the query, we need a
3025 cylinder radius of at least $\frac{d_k}{\beta}$.

3024 **Algorithm 4** Adaptive Range Line Sampling

3025 1: **Input:** Dataset \mathcal{D} , error bound ε , failure probability δ , Transformation parameters α, β , Number
3026 of NN k
3027 2: **Output:** Set of representative line segments \mathcal{L}
3028 3: Estimate query distribution \mathcal{D}_q from content vectors (or historical queries if available) (§G.3)
3029 4: Estimate range distribution \mathcal{D}_r from attribute values (§G.3)
3030 5: Determine sampling resolution $r_q = \beta\varepsilon$ for query space
3031 6: Determine sampling resolution $r_r = \frac{\beta\varepsilon}{\alpha}$ for range space
3032 7: Sample query vectors $\{q_1, q_2, \dots, q_n\}$ with resolution r_q
3033 8: Sample range endpoints $\{(l_1, u_1), (l_2, u_2), \dots, (l_m, u_m)\}$ with resolution r_r
3034 9: $\mathcal{L} \leftarrow \emptyset$
3035 10: **for** each query vector q_i **do**
3036 11: **for** each range $[l_j, u_j]$ **do**
3037 12: $L_{ij} \leftarrow \text{LineSegment}(\Psi(q_i, l_j, \alpha, \beta), \Psi(q_i, u_j, \alpha, \beta))$
3038 13: $r_{ij} \leftarrow \text{ComputeOptimalRadius}(q_i, [l_j, u_j], \epsilon, \delta, k)$ (Theorem 18)
3039 14: $\mathcal{L} \leftarrow \mathcal{L} \cup \{(L_{ij}, r_{ij})\}$
3040 15: **end for**
3041 16: **end for**
3042 17: Prune redundant lines while maintaining ϵ -coverage
3043 18: **return** \mathcal{L}

3044 Let X_i be the random variable representing the distance of the i -th record to the query. By Hoeffding's
3045 inequality:

$$P(|\bar{X} - E[X]| > t) \leq 2 \exp(-2nt^2/\sigma^2) \quad (220)$$

3047 Setting the right side equal to δ and solving for t :

$$t = \sqrt{\frac{-\ln(\delta/2)}{2n}} \cdot \sigma \quad (221)$$

3052 To ensure we retrieve at least $(1 - \epsilon)k$ of the top- k results with probability at least $1 - \delta$, we set the
3053 radius to include records with distances up to $d_k + t$, which translates to $\frac{d_k}{\beta} + t$ in the transformed
3054 space.

3055 Therefore, the optimal cylinder radius is:

$$r = \frac{d_k}{\beta} + \sqrt{\frac{-\ln(\delta/2)}{2n}} \cdot \sigma \quad (222)$$

3060 This radius guarantees that with probability at least $1 - \delta$, we will retrieve at least $(1 - \epsilon)k$ of the
3061 true top- k nearest neighbors within the specified range. \square

3063 G.5 LINE SIMILARITY INDEXING

3064 To efficiently find the most similar line segment to a query line, we develop a specialized index
3065 structure.

3066 **Definition 8** (Line Similarity Measure). *For two line segments $L_1 = (a_1, b_1)$ and $L_2 = (a_2, b_2)$
3067 represented by their endpoints, we define the similarity as:*

$$\text{sim}(L_1, L_2) = w_d \cdot \cos \angle(b_1 - a_1, b_2 - a_2) + w_p \cdot \left(1 - \frac{\|m_1 - m_2\|}{D_{\max}}\right) + w_l \cdot \min \left(\frac{\|b_1 - a_1\|}{\|b_2 - a_2\|}, \frac{\|b_2 - a_2\|}{\|b_1 - a_1\|} \right) \quad (223)$$

3072 where $m_1 = \frac{a_1 + b_1}{2}$ and $m_2 = \frac{a_2 + b_2}{2}$ are the midpoints, D_{\max} is the maximum distance in the space,
3073 and w_d, w_p, w_l are weights for direction, position, and length components.

3074 **Theorem 19** (Line Similarity Properties). *The line similarity measure satisfies:*

- 3076 1. $\text{sim}(L_1, L_2) \in [0, 1]$
- 3077 2. $\text{sim}(L_1, L_2) = 1$ if and only if L_1 and L_2 are identical

3078 3. If $\text{sim}(L_1, L_2) > 1 - \varepsilon$ where $\varepsilon < \min(w_d, w_p, w_l)$, then $d_H(L_1, L_2) < \lambda \cdot \varepsilon$ for some
 3079 constant λ

3080

3081 *Proof.* We prove each property of the line similarity measure:

3082 **Property 1:** $\text{sim}(L_1, L_2) \in [0, 1]$

3084 The cosine of the angle between two vectors is bounded by $[-1, 1]$, but since we're considering line
 3085 segments (where direction matters but orientation doesn't), we take the absolute value, giving a range
 3086 of $[0, 1]$ for the first term.

3087 The position term $1 - \frac{|m_1 - m_2|}{D_{\max}}$ ranges from 0 (when midpoints are maximally distant) to 1 (when
 3088 midpoints coincide).

3090 The length ratio term $\min\left(\frac{|b_1 - a_1|}{|b_2 - a_2|}, \frac{|b_2 - a_2|}{|b_1 - a_1|}\right)$ is bounded by $[0, 1]$, with 1 achieved when lengths are
 3091 equal.

3092 Since $w_d + w_p + w_l = 1$ and all weights are non-negative, the weighted sum must be in $[0, 1]$.

3094 **Property 2:** $\text{sim}(L_1, L_2) = 1$ if and only if L_1 and L_2 are identical

3095 (\Rightarrow) If $\text{sim}(L_1, L_2) = 1$, then each component must equal 1 since they are all bounded by 1:

3097 • $\cos \angle(b_1 - a_1, b_2 - a_2) = 1$ implies the lines have the same direction.

3098 • $1 - \frac{|m_1 - m_2|}{D_{\max}} = 1$ implies $|m_1 - m_2| = 0$, so the midpoints coincide.

3100 • $\min\left(\frac{|b_1 - a_1|}{|b_2 - a_2|}, \frac{|b_2 - a_2|}{|b_1 - a_1|}\right) = 1$ implies $|b_1 - a_1| = |b_2 - a_2|$, so the lengths are equal.

3102 With identical direction, midpoint, and length, the line segments must be identical.

3104 (\Leftarrow) If L_1 and L_2 are identical (same endpoints or equivalent representation), then:

3106 • Their directions are identical, so $\cos \angle(b_1 - a_1, b_2 - a_2) = 1$.

3107 • Their midpoints coincide, so $|m_1 - m_2| = 0$, making the position term equal to 1.

3109 • Their lengths are equal, so the length ratio is 1.

3111 With all components equal to 1, the weighted sum $\text{sim}(L_1, L_2) = 1$.

3112 **Property 3:** If $\text{sim}(L_1, L_2) > 1 - \varepsilon$ where $\varepsilon < \min(w_d, w_p, w_l)$, then $d_H(L_1, L_2) < \lambda \cdot \varepsilon$ for some
 3113 constant λ

3114 Since $\varepsilon < \min(w_d, w_p, w_l)$ and $\text{sim}(L_1, L_2) > 1 - \varepsilon$, each component of the similarity must be
 3115 close to 1. Specifically:

3117 • Direction component $> 1 - \frac{\varepsilon}{w_d}$, implying $1 - \cos \angle(b_1 - a_1, b_2 - a_2) < \frac{\varepsilon}{w_d}$.

3119 • Position component $> 1 - \frac{\varepsilon}{w_p}$, implying $\frac{|m_1 - m_2|}{D_{\max}} < \frac{\varepsilon}{w_p}$.

3121 • Length component $> 1 - \frac{\varepsilon}{w_l}$, implying $1 - \min\left(\frac{|b_1 - a_1|}{|b_2 - a_2|}, \frac{|b_2 - a_2|}{|b_1 - a_1|}\right) < \frac{\varepsilon}{w_l}$.

3123 When all components are close to 1 (which is guaranteed by $\varepsilon < \min(w_d, w_p, w_l)$), the Hausdorff
 3124 distance between the line segments is bounded.

3126 For small angle differences ϱ , we know that $1 - \cos \varrho \approx \frac{\varrho^2}{2}$, so $\varrho < \sqrt{\frac{2\varepsilon}{w_d}}$.

3128 For two line segments with similar direction, position, and length, the Hausdorff distance is bounded
 3129 by: $d_H(L_1, L_2) \leq C_1 \cdot |m_1 - m_2| + C_2 \cdot \varrho \cdot \max(|b_1 - a_1|, |b_2 - a_2|) + C_3 \cdot ||b_1 - a_1| - |b_2 - a_2||$

3130 Where C_1, C_2, C_3 are constants. Substituting our bounds: $d_H(L_1, L_2) < C_1 \cdot \frac{\varepsilon \cdot D_{\max}}{w_p} + C_2 \cdot \sqrt{\frac{2\varepsilon}{w_d}} \cdot$
 3131 $D_{\max} + C_3 \cdot \frac{\varepsilon \cdot D_{\max}}{w_l}$

3132 Let $\lambda = \max \left(C_1 \cdot \frac{D_{max}}{w_p}, C_2 \cdot \sqrt{\frac{2}{w_d}} \cdot D_{max}, C_3 \cdot \frac{D_{max}}{w_l} \right)$.
 3133

3134 Then $d_H(L_1, L_2) < \lambda \cdot \varepsilon$ for small enough ε .

3135 The constraint $\varepsilon < \min(w_d, w_p, w_l)$ is necessary to ensure that all three components of similarity are
 3136 individually high, which is required for a small Hausdorff distance. \square
 3137

3138
 3139 Based on this similarity measure, we design a hierarchical index structure that combines directional
 3140 and positional indexing in Algorithm 5. The key insight behind our hierarchical line indexing
 3141 approach is that line similarity in high-dimensional spaces can be decomposed into two primary
 3142 components: directional similarity and spatial proximity. By organizing our index hierarchically, we
 3143 can drastically reduce the search space and avoid expensive similarity computations with dissimilar
 3144 lines.

3145 **Algorithm 5** Hierarchical Line Index Construction

1: **Input:** Set of line segments \mathcal{L} , angular resolution ν
 2: **Output:** Hierarchical line index \mathcal{I}
 3: {First level: directional partitioning}
 4: Partition unit sphere into cells of angular resolution ν
 5: Create directional hash table \mathcal{H}_d mapping direction cells to line sets
 6: **for** each line segment $L = (a, b)$ in \mathcal{L} **do**
 7: $dir \leftarrow \frac{b-a}{\|b-a\|}$ {Unit direction vector}
 8: $cell \leftarrow \text{DirectionToCell}(dir)$ {Determine directional cell}
 9: Add L to $\mathcal{H}_d[cell]$
 10: **end for**
 11: {Second level: spatial partitioning}
 12: **for** each directional cell c in \mathcal{H}_d **do**
 13: $\mathcal{H}_d[c].spatial_index \leftarrow \text{CreateSpatialIndex}(\mathcal{H}_d[c])$
 14: **end for**
 15: $\mathcal{I}.directional_index \leftarrow \mathcal{H}_d$
 16: **return** \mathcal{I}

3162 **Algorithm 6** Find Nearest Line

1: **Input:** Query line $L_Q = (a_Q, b_Q)$, line index \mathcal{I} , similarity threshold τ
 2: **Output:** Most similar indexed line $L_{similar}$
 3: $dir_Q \leftarrow \frac{b_Q-a_Q}{\|b_Q-a_Q\|}$ {Query direction}
 4: $neighboring_cells \leftarrow \text{GetNeighboringCells}(dir_Q, \nu)$ {Get directional cells}
 5: $candidates \leftarrow \emptyset$
 6: **for** each cell c in $neighboring_cells$ **do**
 7: $midpoint_Q \leftarrow \frac{a_Q+b_Q}{2}$ {Query midpoint}
 8: $length_Q \leftarrow \|b_Q-a_Q\|$ {Query length}
 9: $cell_candidates \leftarrow \mathcal{I}.directional_index[c].spatial_index.Search(midpoint_Q, \kappa \cdot length_Q)$
 10: Add $cell_candidates$ to $candidates$
 11: **end for**
 12: $L_{similar} \leftarrow \text{null}$
 13: $sim^* \leftarrow 0$
 14: **for** each line L in $candidates$ **do**
 15: $similarity \leftarrow \text{ComputeLineSimilarity}(L_Q, L)$ (Definition 8)
 16: **if** $similarity > sim^*$ **then**
 17: $sim^* \leftarrow similarity$
 18: $L_{similar} \leftarrow L$
 19: **end if**
 20: **if** $sim^* > \tau$ **then**
 21: **return** $L_{similar}$
 22: **end if**
 23: **end for**
 24: **return** $L_{similar}$

3186 **Intuition** The hierarchical line index operates on the observation that two line segments with
 3187 significantly different directions or distant spatial locations are unlikely to be similar. Algorithm 5
 3188 implements this insight by partitioning the index into two levels: the first level groups lines by their
 3189 direction vectors, while the second level organizes lines within each directional group according to
 3190 their spatial locations. This structure enables efficient pruning of the search space when finding the
 3191 nearest line to a query.

3192

3193 **Algorithm Process** The index construction (Algorithm 5) proceeds in two main phases:

3194

1. **Directional Partitioning:** We first discretize the unit sphere into cells of angular resolution ν , effectively creating buckets for different line directions. Each line segment is assigned to a cell based on its normalized direction vector. This partitioning allows us to quickly identify lines with similar orientation to a query line.
2. **Spatial Indexing:** Within each directional cell, we build a spatial index (such as an R-tree or k-d tree) to organize the lines based on their spatial positions, typically represented by their midpoints. This second-level index enables efficient retrieval of spatially proximate lines within a directional group.

3202

3203 The search algorithm (Algorithm 6) leverages this hierarchical structure to efficiently locate the most
 3204 similar line to a query:

3205

1. **Directional Filtering:** We first identify candidate directional cells based on the query line's direction. This step immediately eliminates vast portions of the index containing lines with significantly different orientations.
2. **Spatial Filtering:** Within each candidate directional cell, we use the spatial index to retrieve lines near the query line's location. We use the query line's midpoint as the search center and adjust the search radius proportionally to the line's length using parameter κ .
3. **Similarity Ranking:** Finally, we compute the exact similarity between the query line and each candidate, maintaining the best match found. The early termination condition ($sim^* > \tau$) allows us to return immediately if we find a sufficiently similar line, avoiding unnecessary computations.

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

Complexity Analysis The time complexity of index construction is $O(N \log N)$, where N is the number of line segments. Specifically, assigning each line to a directional cell takes $O(N)$ time, while building the spatial indices across all cells requires $O(N \log N)$ time in the worst case. The space complexity is $O(N)$ for storing all line segments.

3220

3221

3222

3223

3224

3225

3226

3227

For the search operation in Algorithm 6, the time complexity is $O(\log N + C)$, where C is the number of candidate lines retrieved for exact similarity computation. In the worst case where all lines share similar directions, C could approach N , but in practice, the directional and spatial filtering steps typically reduce the candidate set to a small fraction of the dataset, resulting in near-logarithmic query time. The parameter ν controls the trade-off between query time and index size—smaller values of ν create more directional cells, potentially reducing C at the expense of increased index size.

G.6 CYLINDRICAL DISTANCE INDEXING

3228

3229

For each indexed line segment, we need an efficient structure to retrieve points within a specified distance of the line:

3230

3231

Definition 9 (Cylindrical Coordinates). *For a line segment $L = (a, b)$ and a point p , the cylindrical coordinates are:*

3232

3233

3234

3235

3236

$$t = \text{clamp}\left(\frac{(p - a) \cdot (b - a)}{\|b - a\|^2}, 0, 1\right) \quad (224)$$

$$r = \|p - (a + t(b - a))\| \quad (225)$$

$$\theta = \text{angle in plane perpendicular to line direction} \quad (226)$$

3237

3238

3239

where $\text{clamp}(x, \min, \max) = \min(\max(x, \min), \max)$ restricts the value of x to the range $[\min, \max]$ (see Figure 3(f)). The parameter t represents the normalized projection of point p onto the line segment, r is the perpendicular distance from p to the line, and θ is the angular position around the line.

3240 **Intuition** The cylindrical indexing approach leverages the geometric properties of distance relationships in our transformed space. When searching for points near a line segment, points that are similar
 3241 tend to cluster in cylindrical regions around the line. Our indexing structure exploits this property by
 3242 partitioning the space around each reference line into cylindrical sections, organizing points based on
 3243 both their position along the line and their radial distance from it. This organization enables efficient
 3244 pruning of distant points during query processing.
 3245

3246 **Corollary 7** (Cylindrical Search Properties). *For points indexed in cylindrical coordinates relative to
 3247 line L :*

- 3249 1. *A point is within distance R of line L if and only if $r \leq R$*
- 3250 2. *For points with similar t values, their Euclidean distance is primarily determined by their r
 3251 values*
- 3253 3. *The set of points within distance R of line L forms a cylinder of radius R around L*

3254 Based on these properties, we design an efficient cylindrical index structure:

3256 **Algorithm 7** Cylindrical Index Construction

3257 1: **Input:** Line segment $L = (a, b)$, point set \mathcal{P} , radius R
 3258 2: **Output:** Cylindrical index \mathcal{C}
 3259 3: $\mathcal{C}.\text{line} \leftarrow L$
 3260 4: $\mathcal{C}.\text{max_radius} \leftarrow R$
 3261 5: $\text{length} \leftarrow \|b - a\|$
 3262 6: $\text{num_sections} \leftarrow \max(1, \lceil \text{length}/R \rceil)$ {Partition line into sections}
 3263 7: Initialize array $\text{sections}[\text{num_sections}]$ of empty sets
 3264 8: **for** each point p in \mathcal{P} **do**
 3265 9: Compute cylindrical coordinates (t, r, θ) for p relative to L
 3266 10: **if** $r \leq R$ **then**
 3267 11: $\text{section_idx} \leftarrow \min(\lfloor t \cdot \text{num_sections} \rfloor, \text{num_sections} - 1)$
 3268 12: Add (p, r) to $\text{sections}[\text{section_idx}]$
 3269 13: **end if**
 3270 14: **end for**
 3271 15: **for** $i = 0$ to $\text{num_sections} - 1$ **do**
 3272 16: Build radius-based index for $\text{sections}[i]$ {E.g., using a ball tree}
 3273 17: **end for**
 3274 18: $\mathcal{C}.\text{sections} \leftarrow \text{sections}$
 3275 19: **return** \mathcal{C}

3276 **Algorithm Process** The cylindrical index construction (Algorithm 7) proceeds through several key
 3277 steps:

- 3278 1. **Line Segmentation:** We divide the reference line segment into multiple sections of ap-
 3279 proximately equal length (proportional to the cylinder radius). This partitioning allows for
 3280 more localized searches and avoids examining the entire cylinder when only a portion might
 3281 contain relevant points.
- 3283 2. **Cylindrical Projection:** For each point in the dataset, we compute its cylindrical coordinates
 3284 relative to the reference line: the normalized projection position along the line (t), the
 3285 perpendicular distance from the line (r), and the angular position around the line (θ).
- 3286 3. **Sectional Organization:** Points are assigned to sections based on their projection position
 3287 t , and only points within the maximum radius R are included in the index. This filtering
 3288 step immediately eliminates points that cannot be retrieved by any valid query.
- 3289 4. **Per-Section Indexing:** Within each section, we build a specialized radius-based index (such
 3290 as a ball tree) to efficiently support radius-based queries. This nested indexing structure
 3291 allows for rapid retrieval of points within a specified distance of any position along the line.

3292 The cylinder search algorithm (Algorithm 8) utilizes this structure to efficiently retrieve points near a
 3293 query line:

3294

Algorithm 8 Cylinder Search

```

3295 1: Input: Line segment  $L_Q = (a_Q, b_Q)$ , radius  $R_Q$ , cylindrical index  $\mathcal{C}$ 
3296 2: Output: Points within distance  $R_Q$  of  $L_Q$ 
3297 3:  $L \leftarrow \mathcal{C}.\text{line}$  {Indexed line}
3298 4:  $R \leftarrow \mathcal{C}.\text{max\_radius}$  {Indexed radius}
3299 5:  $d_H \leftarrow \text{HausdorffDistance}(L, L_Q)$  {Line distance}
3300 6:  $\text{adjusted\_radius} \leftarrow R_Q + d_H$  {Adjust for line difference}
3301 7:  $\text{results} \leftarrow \emptyset$ 
3302 8: if  $\text{adjusted\_radius} > R$  then
3303 9:   return "Radius too large for this index"
3304 10: end if
3305 11: for each section  $i$  in  $\mathcal{C}.\text{sections}$  do
3306 12:    $t_{\min} \leftarrow i/\text{num\_sections}$ 
3307 13:    $t_{\max} \leftarrow (i + 1)/\text{num\_sections}$ 
3308 14:    $\text{closest\_distance} \leftarrow \text{MinDistanceBetweenLineSegments}(L_Q, L.\text{Subsegment}(t_{\min}, t_{\max}))$ 
3309 15:   if  $\text{closest\_distance} \leq \text{adjusted\_radius}$  then
3310 16:      $\text{section\_candidates} \leftarrow \mathcal{C}.\text{sections}[i].\text{GetPointsWithinRadius}(\text{adjusted\_radius})$ 
3311 17:     for each point  $p$  in  $\text{section\_candidates}$  do
3312 18:        $\text{dist\_to\_query} \leftarrow \text{DistanceToLine}(p, L_Q)$ 
3313 19:       if  $\text{dist\_to\_query} \leq R_Q$  then
3314 20:         Add  $p$  to  $\text{results}$ 
3315 21:       end if
3316 22:     end for
3317 23:   end if
3318 24: end for
3319 25: return  $\text{results}$ 

```

1. **Radius Adjustment:** We first compute the Hausdorff distance between the indexed line and the query line, then adjust the search radius accordingly. This step accounts for the difference between lines and ensures we capture all relevant points.
2. **Section Filtering:** For each section, we compute the minimum distance between the corresponding subsegment of the indexed line and the query line. Sections whose minimum distance exceeds the adjusted radius are immediately pruned from consideration.
3. **Candidate Retrieval:** For each relevant section, we retrieve candidate points within the adjusted radius using the section's radius-based index.
4. **Exact Distance Verification:** Finally, we compute the exact distance from each candidate point to the query line and filter out points whose distance exceeds the original query radius R_Q .

3330

Complexity Analysis The time complexity for constructing the cylindrical index is $O(n \log n)$ where n is the number of points within the maximum radius R of the line. Specifically, computing cylindrical coordinates for all points takes $O(n)$ time, while building the radius-based indexes requires $O(n \log n)$ time in the worst case.

3331

For the search operation, the time complexity is $O(s + k \log n_s)$, where s is the number of sections, k is the number of candidate points examined, and n_s is the average number of points per section. The section filtering step takes $O(s)$ time, while the retrieval and verification of candidates takes $O(k \log n_s)$ time. In practice, section filtering typically eliminates a large portion of the cylinder, making the effective value of k much smaller than the total number of points in the cylinder. The number of sections s is chosen as $\max(1, \lceil \text{length}/R \rceil)$, balancing the overhead of section processing with the benefit of finer spatial partitioning.

3342

G.7 ERROR ANALYSIS AND ADAPTATION

3343

Similar approach in [Foster et al. \(2018\)](#); [Heidari et al. \(2020a\)](#), when using a similar indexed line as a proxy for the query line, we need to account for the approximation error similar approach:

3344

3345

3346

3347

Theorem 20 (Error Compensation). *Let L_Q be a query line and L_{similar} be the most similar indexed line with Hausdorff distance $\delta_H = d_H(L_Q, L_{\text{similar}})$. To retrieve the top- k nearest neighbors with probability at least $1 - \epsilon$, we need to:*

3348 1. Increase the search radius by δ_H
 3349 2. Retrieve $k' = k + \lceil c \cdot \log(1/\epsilon) \cdot \delta_H \cdot \eta \rceil$ candidates
 3350
 3351 where η is the local density factor and c is a constant that depends on the data distribution.
 3352
 3353 *Proof.* For the radius adjustment, consider a point p that is within distance r of L_Q . By the triangle
 3354 inequality, its distance to $L_{similar}$ is at most $r + \delta_H$. Therefore, to ensure we capture all points within
 3355 distance r of L_Q , we need to search within distance $r + \delta_H$ of $L_{similar}$.
 3356 For the result count adjustment, we need to account for the fact that points may be ranked differently
 3357 with respect to L_Q and $L_{similar}$. The number of points affected depends on the local density η and
 3358 the perturbation δ_H .
 3359 Using concentration inequalities, the probability that more than $\delta_H \cdot \eta \cdot \log(1/\epsilon)$ points change
 3360 their ranking status (from top-k to outside top-k or vice versa) is less than ϵ . Therefore, retrieving
 3361 $k' = k + \lceil c \cdot \log(1/\epsilon) \cdot \delta_H \cdot \eta \rceil$ candidates ensures capturing the true top-k with probability at least
 3362 $1 - \epsilon$. \square
 3363

Algorithm 9 Adaptive k' Selection

3364 1: **Input:** Query line L_Q , similar line $L_{similar}$, target k , error probability ϵ
 3365 2: **Output:** Adjusted k' value
 3366 3: $\delta_H \leftarrow d_H(L_Q, L_{similar})$ {Hausdorff distance}
 3367 4: $\eta \leftarrow \text{EstimateLocalDensity}(L_{similar})$ {Estimate local density}
 3368 5: $c \leftarrow 2.0$ {Constant factor based on empirical analysis}
 3369 6: $k' \leftarrow k + \lceil c \cdot \log(1/\epsilon) \cdot \delta_H \cdot \eta \rceil$
 3370 7: **return** k'

3372 **Theorem 21** (Density Estimation). *The local density factor η around a line segment $L = (a, b)$,
 3373 where a and b are the endpoints of L , can be estimated as:*

$$\eta \approx \frac{N_r}{V_r} = \frac{N_r}{\pi r^2 \cdot \|b - a\|} \quad (227)$$

3374 where N_r is the number of points within distance r of L , and V_r is the volume of the cylinder with
 3375 radius r around L .
 3376

3377 *Proof.* The density factor η measures the concentration of data points in the neighborhood of line
 3378 segment L . To estimate this density, we consider the ratio of points within a cylindrical region around
 3379 the line to the volume of that region.

3380 For a line segment L with endpoints a and b , the cylindrical region with radius r around L consists of
 3381 all points within perpendicular distance r of any point on L . The volume of this cylinder is given by:
 3382

$$V_r = \pi r^2 \cdot \|b - a\| \quad (228)$$

3383 This follows from the standard formula for the volume of a cylinder: $V = \pi r^2 h$, where r is the radius
 3384 and h is the height. In our case, the height corresponds to the length of the line segment $\|b - a\|$.
 3385

3386 Let N_r denote the number of data points falling within this cylindrical region. The ratio $\frac{N_r}{V_r}$ then
 3387 gives us the average number of points per unit volume in the vicinity of line segment L , providing a
 3388 direct estimate of the local point density.
 3389

3390 This density estimate is particularly relevant for error compensation analysis because it helps predict
 3391 how many additional points might need to be examined when approximating a query line with a
 3392 similar indexed line. Higher density regions require examining more candidates to maintain the same
 3393 probability of capturing the true nearest neighbors. \square
 3394

3395 **Intuition** The density estimation theorem provides a crucial metric for adapting our range query
 3396 parameters to the local characteristics of the data distribution. Intuitively, the density factor η
 3397 measures how "crowded" the space is around a particular line segment. This has direct implications
 3398 for approximation error handling—in high-density regions, small deviations between a query line
 3399 and its approximation can affect many more points than in sparse regions. The formula expresses this
 3400 density as points per unit volume in the cylindrical neighborhood around the line, giving us a locally
 3401 adaptive measure for error compensation.

3402 **Algorithm Process** Computing the density factor involves these key steps: (1) identifying all points
 3403 within distance r of the line segment using cylindrical coordinates, (2) counting these points to
 3404 determine N_r , (3) calculating the cylinder volume using the line length and radius, and (4) computing
 3405 their ratio. In practice, we can efficiently estimate this density using the cylindrical index structure
 3406 without explicitly enumerating all points. The density factor is typically calculated during index
 3407 construction and stored with each indexed line segment, then used during query time to dynamically
 3408 adjust the search parameters based on Theorem 20.

3409 **Complexity Analysis** The computational complexity of estimating the density factor is $O(N +$
 3410 $\log N)$ where N is the total number of indexed points. The dominant cost comes from identifying
 3411 points within radius r of the line, which requires $O(\log N)$ time with an efficient spatial index,
 3412 plus $O(N_r)$ time to process those points. Since the density calculation is performed during index
 3413 construction and cached, it adds minimal overhead to query processing. The additional space
 3414 complexity is $O(M)$ where M is the number of indexed line segments, as we need to store one
 3415 density value per line. This small storage investment enables significant query performance gains
 3416 through adaptive parameter selection, particularly in datasets with heterogeneous density distributions.

3417 **Algorithm 10** Complete Range Query Processing

3419 1: **Input:** Query vector q , range $[l, u]$, number of results k , error probability ϵ
 3420 2: **Output:** Top- k nearest neighbors within range $[l, u]$
 3421 3: {Phase 1: Query preparation}
 3422 4: $p_l \leftarrow \Psi(q, l, \alpha, \beta)$
 3423 5: $p_u \leftarrow \Psi(q, u, \alpha, \beta)$
 3424 6: $L_Q \leftarrow \text{LineSegment}(p_l, p_u)$
 3425 7: {Phase 2: Find similar indexed line}
 3426 8: $L_{\text{similar}} \leftarrow \text{FindNearestLine}(L_Q, \text{line_index})$
 3427 9: $\delta_H \leftarrow d_H(L_Q, L_{\text{similar}})$
 3428 10: $\text{base_radius} \leftarrow L_{\text{similar}}.\text{cylinder_radius}$
 3429 11: $\text{adjusted_radius} \leftarrow \text{base_radius} + \delta_H$
 3430 12: {Phase 3: Determine search parameters}
 3431 13: $\eta \leftarrow \text{EstimateLocalDensity}(L_{\text{similar}})$
 3432 14: $k' \leftarrow k + \lceil 2 \cdot \log(1/\epsilon) \cdot \delta_H \cdot \eta \rceil$
 3433 15: {Phase 4: Retrieve candidates}
 3434 16: $\text{candidates} \leftarrow \text{CylinderSearch}(L_Q, \text{adjusted_radius}, L_{\text{similar}}.\text{cylinder_index})$
 3435 17: {Phase 5: Filter and refine results}
 3436 18: $\text{filtered_candidates} \leftarrow \emptyset$
 3437 19: **for** each point $p = \Psi(v, f, \alpha, \beta)$ in candidates **do**
 3438 20: **if** $l \leq f \leq u$ **then**
 3439 21: $\text{distance} \leftarrow \|v - q\|$
 3440 22: Add $(v, f, \text{distance})$ to $\text{filtered_candidates}$
 3441 23: **end if**
 3442 24: **end for**
 3443 25: Sort $\text{filtered_candidates}$ by distance
 3444 26: **return** Top- k records from $\text{filtered_candidates}$

3445 G.8 COMPLETE RANGE QUERY ALGORITHM

3446 Putting all components together, we present the complete range query in Algorithm 10.

3447 **Theorem 22** (Query Complexity). *The complete range query algorithm has expected time complexity:*

$$O(\log L + \log P + k \log(1/\epsilon) + k \log k) \quad (229)$$

3448 where L is the number of indexed line segments, P is the maximum number of points in any cylindrical
 3449 index, k is the number of requested results, and ϵ is the error probability. Since $L, P \leq N$ (where N
 3450 is the total dataset size), this simplifies to $O(\log N + k \log(1/\epsilon) + k \log k)$.

3451 *Proof.* The algorithm consists of these main steps:

3452 1. Finding the nearest line: $O(\log L)$ using the hierarchical line index (Algorithm 6), where L
 3453 is the number of indexed line segments from the adaptive sampling algorithm (Theorem 17)

3456 2. Cylinder search: $O(\log P + k')$ where P is the number of points in the relevant cylindrical
 3457 index and $k' = O(k \log(1/\epsilon))$ from Theorem 20
 3458
 3459 3. Filtering and ranking: $O(k' \log k)$ to sort the candidates

3460 Combining these terms and noting that both L and P are bounded by the total dataset size N , we get
 3461 the simplified complexity $O(\log N + k \log(1/\epsilon) + k \log k)$. \square
 3462

3463 The complete algorithm (Algorithm 10) provides strong theoretical guarantees while maintaining
 3464 practical efficiency for large-scale datasets, making it an ideal solution for range-constrained vector
 3465 search problems.

3466 H THEOREMS, COROLLARIES, AND ALGORITHMS CHEAT SHEET

3467 In this section, we provide a summary of key concepts and findings.

3470 Table 9: Summary of Theorems, Corollaries, and Algorithms in FUSEDANN Paper
 3471

Name/Type	Label/Ref	Functionality / Statement
Single-Attribute Hybrid Vector Indexing (FusedANN)	Alg. 1	Core algorithm for fusing content and attribute vectors via transformation Ψ for hybrid vector search, supporting both offline indexing and online query with parameterized separation and candidate selection.
Properties of Ψ Transformation	Theorem 1	Transformation preserves k-NN order within attribute groups, increases inter-attribute distances with α , and controls scaling with β .
Practical Candidate Set Size	Theorem 2	Provides formula for number of candidates k' needed to guarantee recall in hybrid search, based on attribute cluster statistics and separation.
Expected Candidate Set Size	Theorem 3	Gives the expected k' across queries based on attribute distribution, showing $k' \rightarrow k$ as separation increases.
Parameter Selection for ϵ_f-bounded Clusters	Theorem 4	Gives minimum values for α, β to ensure attribute cluster compactness and inter-cluster separation in fused space.
Optimality of Minimal Parameters	Cor. 1	Setting β, α as per Theorem 4 yields minimum separation/compactness bounds, balancing recall and efficiency.
Uniqueness of Transformation	Theorem 5	Shows that Ψ is injective (one-to-one) if $d > m$ and parameters satisfy minimal bounds.
Property Preservation	Theorem 6	Order of k-NN among records with the same attributes is preserved under sequential application of Ψ .
Attribute Priority	Theorem 7	Later-applied attributes in Ψ sequence have higher effective priority in determining k-NN order.
Attribute Match Distance Hierarchy	Theorem 9	Records with more matching attributes are always closer to the query (after transformation) than those with fewer matches.
Generalized Attribute Match Hierarchy	Theorem 10	For any two records, there exist α_j such that more attribute matches always yield smaller fused distance.

3508 3509 Continued on next page

3510 **Table 9 – continued from previous page**
3511

Name/Type	Label/Ref	Functionality / Statement
Monotone Priority FUSEDANN	in Theorem 8	ANNS in the fused space yields results that satisfy the monotone attribute priority property for hybrid queries.
Multi-Attribute Candidate Set Size	Theorem 11	Extends candidate selection formula to multi-attribute (hierarchical) fused space; k' shrinks as more attributes are used.
Hierarchical Multi-Attribute Vector Indexing	Alg. 3	Complete indexing and query algorithm for multi-attribute hybrid queries, applying Ψ recursively and managing cluster statistics.
Range Query Line	Theorem 15	Set of all fused query points for attribute in $[l, u]$ forms a line segment in fused space.
Distance Characterization (Range)	Theorem 16	Distance from a point to the query range line is proportional to vector similarity, enabling cylinder search interpretation.
Optimal Range Line Sampling	Theorem 17	Gives sample complexity for covering the fused range-query space with pre-indexed lines (cylinders) for range queries.
Optimal Cylinder Radius	Theorem 18	Formula for radius to guarantee recall for range queries, based on k -th neighbor distance and local statistics.
Line Similarity Measure/Properties	Def. 8, Theorem 19	Defines a composite metric for line similarity; proves its bounds and relation to Hausdorff distance.
Hierarchical Line Index Construction	Alg. 5	Builds two-level index for fast retrieval of similar lines: first by direction, then by spatial proximity.
Find Nearest Line	Alg. 6	Searches the hierarchical index to find the closest pre-indexed line to a query line.
Cylindrical Index Construction	Alg. 7	Builds an index for each line, partitioning points by distance to the line (for efficient range/cylinder search).
Cylinder Search	Alg. 8	Retrieves all points within a specified radius of a line (i.e., inside a cylinder) using the cylindrical index.
Adaptive Range Line Sampling	Alg. 4	Strategy for sampling lines (cylinders) to cover the fused range-query space adaptively, based on empirical distributions.
Adaptive k' Selection	Alg. 9	Adjusts the number of candidates k' for range queries to compensate for line approximation error and local density.
Complete Range Query Processing	Alg. 10	End-to-end algorithm for efficient range queries: transforms the query, finds similar pre-indexed cylinder, adjusts search, retrieves and ranks results.
Query Complexity	Theorem 22	Shows that the complete range query algorithm has $O(\log N + k \log(1/\epsilon) + k \log k)$ expected time.

3559
3560
3561
3562
3563