
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONVEXIFIED FILTERED ANN VIA ATTRIBUTE-
VECTOR FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vector search powers transformers technology, but real-world use demands hybrid
queries that combine vector similarity with attribute filters (e.g., “top document in
category X, from 2023”). Current solutions trade off recall, speed, and flexibility,
relying on fragile index hacks that don’t scale. We introduce fused-based ANN, a
geometric framework that elevates filtering to ANN optimization constraints and
introduces a convex fused space via a Lagrangian-like relaxation. Our method
jointly embeds attributes and vectors through transformer-based convexification,
turning hard filters into continuous, weighted penalties that preserve top-k seman-
tics while enabling efficient approximate search. We prove that our fused method
reduces to exact filtering under high selectivity, gracefully relaxes to semantically
nearest attributes when exact matches are insufficient, and preserves downstream
ANN -approximation guarantees. Empirically, fused-based method improves query
throughput by eliminating brittle filtering stages, achieving superior recall–latency
trade-offs on standard hybrid benchmarks without specialized index hacks, deliver-
ing up to 3× higher throughput and better recall than state-of-the-art hybrid and
graph-based systems. Theoretically, we provide explicit error bounds and parame-
ter selection rules that make the fusion practical for production. This establishes a
principled, scalable, and verifiable bridge between symbolic constraints and vector
similarity, unlocking a new generation of filtered retrieval systems for large, hybrid,
and dynamic NLP/ML workloads.

1 INTRODUCTION

The approximate nearest neighbor search (ANNS) is fundamental to many data science and AI
applications, enabling efficient retrieval of similar vectors in high-dimensional spaces (Chen et al.,
2021; Malkov & Yashunin, 2018; Subramanya et al., 2019b). However, real-world applications
increasingly require hybrid queries that combine vector similarity with attribute constraints (Gollapudi
et al., 2023; Wang et al., 2023; 2021a; Wei et al., 2020; Taipalus, 2024; Pinecone, 2021; Japan, 2016;
Wu et al., 2022; Microsoft, 2020; Heidari et al., 2025b;a; Heidari & Zhang, 2025). These constraints
typically appear as either exact filters (e.g., "images with tag ’sunset’") or range filters (e.g., "products
priced between $20-$50") (Pan et al., 2024; Ren et al., 2020).

Existing approaches to hybrid queries can be categorized into three strategies: (1) Filter-first methods
like AnalyticDB-V (Wei et al., 2020) and Weaviate (Taipalus, 2024), which use attribute information
to narrow the search space before vector similarity search. (2) ANN-first methods such as NGT (Japan,
2016), Vearch (Jingdong, 2020), FAISS-IVF (Douze et al., 2024), and Pinecone (Pinecone, 2021),
where vector search is performed before applying attribute filters. (3) Hybrid methods that integrate
both filter and vector information into specialized index structures, including Filtered-DiskANN (Gol-
lapudi et al., 2023), which uses a graph index with label-aware connections; NHQ (Wang et al.,
2023), which builds a composite proximity graph with joint pruning; DEG (Yin et al., 2025), which
performs hybrid similarity search by building a Pareto-pruned graph and using an weighted traversal
to retrieve results along approximate Pareto frontiers; HQANN (Wu et al., 2022), which leverages
attribute-guided navigation and fused search; as well as recent approaches like ACORN (Patel et al.,
2024), NaviX (Sehgal & Salihoğlu, 2025), CAPS (Gupta et al., 2023), and Milvus (Wang et al., 2021a)
in its advanced partitioning modes. Hybrid methods such as ACORN, NaviX, and CAPS employ
predicate-aware or cost-aware partitioning schemes to jointly optimize filter and vector search, while
modern versions of Milvus leverage offline data structures to partition vectors based on historical
filter conditions, thus improving search efficiency under complex predicates. Range filters, which

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

constrain results to specified intervals of attribute values, present additional challenges compared
to exact filters (Pan et al., 2024). Efficiently handling range constraints requires consideration of
attribute continuity and potential overlap between ranges, which can lead to increased candidate
set sizes and higher computational complexity. This is especially critical in real-world workloads,
where range predicates are common and may be applied to high-cardinality or correlated attributes.
As a result, designing hybrid query systems that support fast and scalable range filtering remains
an open problem, with recent research exploring new geometric and algorithmic approaches to
overcome these difficulties, including HM-ANN (Ren et al., 2020), which enables graph search
for heterogeneous memory; SeRF (Zuo et al., 2024), which uses a compressed segment graph for
ranges; iRangeGraph (Xu et al., 2025), which constructs elemental graphs for on-demand ranges; and
UNIFY (Liang et al., 2024), which builds a unified segmented graph for all ranges.

Although these approaches involve different tradeoffs, they share a fundamental limitation: attribute
filtering is treated as an auxiliary operation layered onto the vector search process or index structure,
rather than as a transformation of the underlying data space itself. This paradigm imposes intrinsic
performance bottlenecks, especially when supporting multiple attributes with varying priorities or
adapting to shifts in attribute distributions. In particular, state-of-the-art methods typically forego
direct use of the original data, instead constructing specialized index replicas tailored for hybrid
queries. As a result, whether the transformation occurs at the data or index level is largely insignificant-
further motivating a data-centric perspective for hybrid search.

To address these limitations, we present FUSEDANN, a hybrid query framework merging attribute
filters with vector data at the representation level. FUSEDANN uses a filter-centric vector index-
ing method, a mathematically grounded transformation, that unifies attribute filtering with vector
similarity search, analogous to introducing a Lagrange multiplier into a convex objective and fusion
of information signals (Boyd & Vandenberghe, 2004; Heidari et al., 2024; 2020c; 2019). A unified
space where: (1) the dimensionality remains unchanged, (2) the distance ordering of elements with
identical attributes is preserved, and (3) a tunable parameter increases distances between differently
attributed elements.

Contributions. Our key contributions are: (I) A general framework for hybrid queries compatible
with existing ANN indexing algorithms (§3). (II) Support for multiple attributes with intuitive
priority hierarchies (§4). (III) Efficient handling of range filters through geometric interpretation (§5).
(IV) Comprehensive experimental evaluation demonstrating FUSEDANN’s superior effectiveness,
efficiency, and stability (§6). The theoretical analysis provided in the Appendix offers rigorous
guarantees on FUSEDANN’s performance characteristics, including precise bounds on transformation
parameters and candidate set sizes required for specific error probabilities.

2 PRELIMINARIES

In this section, we present preliminaries; the main notations are summarized in Table 2.

Definition 1 (Record Set D(F)). A record is an F + 1-tuple vector o
(F)
i =

[v(oi), f
(1)(oi), . . . , f

(F)(oi)], where v(oi) ∈ Rd is a content vector (e.g., from BERT (De-
vlin et al., 2019)), and f (j)(oi) ∈ Rmj is the j-th attribute vector in a metric space, also from a
neural network. The record set is D(F) = {o(F)1 , . . . , o

(F)
n }, containing n records, each consisting

of a content vector of dimension d and F attribute vectors of dimensions m1, . . . ,mF . Let
X = {v(oi) | oi ∈ D(F)} and, for each j ∈ [1,F], Fj = {f (j)(oi) | oi ∈ D(F)}.

If F = 0, we have the regular ANN setup. If F = 1 (one attribute), we use D and oi instead of D(1)

and o
(1)
i .

Example 1. Record sets can represent various data types, such as images or videos. For example,
as illustrated in Fig. 1(a), each record may correspond to an image described by attributes such as

“Tag”, “Category”, and “Date”. By embedding both the images and the “Tag” in appropriate metric
spaces, we obtain the record set D(1) (or simply D because we only use one attribute F = 1).

Given a record o ∈ D(F), its content vector v(o) ∈ X is represented as v(o) =
[v(o)[0], v(o)[1], . . . , v(o)[d − 1]], where v(o)[i] denotes the i-th dimension. We primarily con-
sider high-dimensional cases, where d is typically in the hundreds or thousands. For any two
records o, r ∈ D(F), their similarity is commonly measured using a metric such as Euclidean

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Raw Data (Images with Tags) <latexit sha1_base64="7JvSLGwSCavSKzOtSRBBgRVgviU=">AAADInicbVJNaxsxEJU3/Ujdr6Q99rLUFHoIZp1CmlsD7aGnkkKdBGwTJO3srrC0EtKotVn8M3JNLv01vZWcCv0x1do+VI4HhEZvRmjee2JGCodZ9qeT7Ny7/+Dh7qPu4ydPnz3f239x5rS3HIZcS20vGHUgRQ1DFCjhwligikk4Z9OPbf38O1gndP0N5wYmipa1KASnGKDRWFGsOJXNp8XlXi/rZ8tI7yaDddL7cPtuGaeX+0lnnGvuFdTIJXVudGxw0lCLgktYdMfegaF8SksYhbSmCtykWY68SN8EJE8LbcOqMV2i/99oqHJurljobEd0m7UW3FYbeSyOJ42ojUeo+eqhwssUddryT3NhgaOch4RyK8KsKa+opRyDStErTOspUuYiJs1sRSDCSktNJfgsRpWXKKz+EaPOM05NK/5iK6cIDM6xYJSKxbReQn7QOu5qrxhYyIPsstSBTqUOY+kbrCyEg8XAZcOWxpSFkRrd1lEO1ha0O8IM4ybGwlTd8GkGm1/kbnJ22B8c9Y++Zr2TL2QVu+QVeU3ekgF5T07IZ3JKhoQTTa7INblJfia/kt/J7ao16azvvCRRJH//AaBYDSU=</latexit>

DMeta-Record Set

Vector Embedding
(Normalized)

Meta Embedding
(Normalized)

<latexit sha1_base64="+hs/Q1DCDAfXdKyg1dubPyy1/FY=">AAADgXicbVJbb9MwFHYbLqNc1sEjL1ErJkBdlUZiTONlMB7gbUjrNqmpKttxE6u+RPYJtIran8g7/4NXEE4bEOl6JMvH33dsn8tHMsEtBMGPRtO7c/fe/b0HrYePHj/Zbx88vbI6N5QNqRba3BBsmeCKDYGDYDeZYVgSwa7J7Lzkr78yY7lWl7DI2FjiRPEppxgcNGmnEWEJVwUWPFGvl63DqIii1uFqtbrEiT31Ox8EprNOrwLPMbBEm4Uj3isusbD/qI+OOvXDIHxzFIRHgzBatiKm4r8vT9rdoB+szb/tDCqniyq7mBw0G1GsaS6ZAiqwtaOTDMYFNsCpYO7x3LLM5YYTNnKuwpLZcbHuyNJ/4ZDYn2rjlgJ/jf5/o8DS2oUkLlJiSO02V4K7uFEO05NxwVWWA1N089E0Fz5ov2yvH3PDKIiFczA13OXq0xQbTMENofYL0XoGmNhaJcV8U0ANSwzOUk7ndVTmArjR3+qozQnFWTnb5c6aaqATBnE6kPVmmlywuFcKyqpcEmZY7Nou3Ng5pDKst76A1DB3MOBq2RpLkSXTTGiwO1PpVSMod2BzqAcR4rJqOdEMtiVy27kK+4Pj/vGXsHv2uZLPHnqOOuglGqC36Ax9QhdoiCj6jn6iX+i353mvvMALN6HNRnXnGaqZ9+4PKZcnZQ==</latexit>

{
Tags : ”Black”,

Category : ”Animals”,

Date : 2025� 02� 12}

FCVI  Transformation
<latexit sha1_base64="4t4jFqP4TsZwWhHZ6MwV2O0JrdM=">AAADG3icbVJNbxMxEHWWrxK+WjhyWVEhcShRUonSYxEXTqhITVspiSrbO7trxV+yx5Bolb/AFS6c+ClwQlw58G/wJjngNCOt9vnNWJ43b5iVwmO//7eT3bh56/adnbvde/cfPHy0u/f43JvgOAy5kcZdMupBCg1DFCjh0jqgikm4YNO3bf7iIzgvjD7DuYWJopUWpeAUW2psvbja3e/3+svIr4PBGuyfvPz55tVZ+H56tZd1xoXhQYFGLqn3o2OLk4Y6FFzCojsOHizlU1rBKEJNFfhJs+x1kT+PTJGXxsVPY75k/7/RUOX9XLFYqSjWfjPXkttyo4Dl8aQR2gYEzVcPlUHmaPJWeF4IBxzlPALKnYi95rymjnKM40leYcZMkTKfKGlmKwEJVzlqa8FnKauCROHMp5T1gXFq26kvtmpKyGgZiw6pdJguSCgOWqu9DoqBgyKOXVYmyqnVYTr6BmsH8eAwatmwpbFVaaVBv7WVg7UF7R9hhmkRY7GrblyaweaKXAfnh73BUe/oQ9ye92QVO+QpeUZekAF5TU7IO3JKhoSTmnwmX8jX7Fv2I/uV/V6VZp31nSckiezPPwDACuQ=</latexit>

 

<latexit sha1_base64="4t4jFqP4TsZwWhHZ6MwV2O0JrdM=">AAADG3icbVJNbxMxEHWWrxK+WjhyWVEhcShRUonSYxEXTqhITVspiSrbO7trxV+yx5Bolb/AFS6c+ClwQlw58G/wJjngNCOt9vnNWJ43b5iVwmO//7eT3bh56/adnbvde/cfPHy0u/f43JvgOAy5kcZdMupBCg1DFCjh0jqgikm4YNO3bf7iIzgvjD7DuYWJopUWpeAUW2psvbja3e/3+svIr4PBGuyfvPz55tVZ+H56tZd1xoXhQYFGLqn3o2OLk4Y6FFzCojsOHizlU1rBKEJNFfhJs+x1kT+PTJGXxsVPY75k/7/RUOX9XLFYqSjWfjPXkttyo4Dl8aQR2gYEzVcPlUHmaPJWeF4IBxzlPALKnYi95rymjnKM40leYcZMkTKfKGlmKwEJVzlqa8FnKauCROHMp5T1gXFq26kvtmpKyGgZiw6pdJguSCgOWqu9DoqBgyKOXVYmyqnVYTr6BmsH8eAwatmwpbFVaaVBv7WVg7UF7R9hhmkRY7GrblyaweaKXAfnh73BUe/oQ9ye92QVO+QpeUZekAF5TU7IO3JKhoSTmnwmX8jX7Fv2I/uV/V6VZp31nSckiezPPwDACuQ=</latexit>

 
<latexit sha1_base64="4t4jFqP4TsZwWhHZ6MwV2O0JrdM=">AAADG3icbVJNbxMxEHWWrxK+WjhyWVEhcShRUonSYxEXTqhITVspiSrbO7trxV+yx5Bolb/AFS6c+ClwQlw58G/wJjngNCOt9vnNWJ43b5iVwmO//7eT3bh56/adnbvde/cfPHy0u/f43JvgOAy5kcZdMupBCg1DFCjh0jqgikm4YNO3bf7iIzgvjD7DuYWJopUWpeAUW2psvbja3e/3+svIr4PBGuyfvPz55tVZ+H56tZd1xoXhQYFGLqn3o2OLk4Y6FFzCojsOHizlU1rBKEJNFfhJs+x1kT+PTJGXxsVPY75k/7/RUOX9XLFYqSjWfjPXkttyo4Dl8aQR2gYEzVcPlUHmaPJWeF4IBxzlPALKnYi95rymjnKM40leYcZMkTKfKGlmKwEJVzlqa8FnKauCROHMp5T1gXFq26kvtmpKyGgZiw6pdJguSCgOWqu9DoqBgyKOXVYmyqnVYTr6BmsH8eAwatmwpbFVaaVBv7WVg7UF7R9hhmkRY7GrblyaweaKXAfnh73BUe/oQ9ye92QVO+QpeUZekAF5TU7IO3JKhoSTmnwmX8jX7Fv2I/uV/V6VZp31nSckiezPPwDACuQ=</latexit>

 

<latexit sha1_base64="6IKOzW2XWFHWyrbvPNs0jnVws8M=">AAADKHicbVJNaxsxEJW3X6n7Eac99rLUFHoIxg4lDYVCoJeeSgp1ErCNkbSzu8LSSkij1mbxL+m1vfTX9FZy7S+p1t5D5Xhg2ac3IzTz3jAjhcPh8KaT3Ll77/6Dg4fdR4+fPD3sHT27dNpbDmOupbbXjDqQooIxCpRwbSxQxSRcscWHJn/1FawTuvqCKwMzRYtK5IJTDNS8d/gun4v3djrtbgCb9/rDwXAT6W0wakGftHExP0o600xzr6BCLqlzkzODs5paFFzCujv1DgzlC1rAJMCKKnCzetP4On0VmCzNtQ1fhemG/f9GTZVzK8VCpaJYut1cQ+7LTTzmZ7NaVMYjVHz7UO5lijptVEgzYYGjXAVAuRWh15SX1FKOQavoFab1Ailz0ST1cjtAxBWWmlLwZcwqL1FY/S1mnWecmsaC9d6ZIjL4x4JdKhbTegnZceO7q7xiYCELsstCh3FKdRJLX2NpIRwshll2bKlNkRup0e1t5bi1oPkjLDEuYix01Q1LM9pdkdvg8mQwOh2cfn7TP//Urs8BeUFektdkRN6Sc/KRXJAx4cST7+QH+Zn8Sn4nf5KbbWnSae88J1Ekf/8BTTELrA==</latexit>

: fi = r

: fi = b

Index Building
(HNSW, IVF,…)

Vector Index

Original Fused

<latexit sha1_base64="l8kQ+5cLNGXZ9LwupO4qbhcqh3Q=">AAADwnicbVJtb9MwEHYbXkZ46+ALEhKKqBgFVVUbUCmTJk0aH+DbkNZtUlMq23FSU9sJtjNapeFH8O/4J3zk0hZEup4U5fzcnX333ENSwY3tdn/V6s6Nm7du791x7967/+BhY//RuUkyTdmQJiLRlwQbJrhiQ8utYJepZlgSwS7I7KSMX1wxbXiizuwiZWOJY8UjTrEFaNL4GRAWc5VjwWP1unAPThJlmbKHXpCpkGmiMWX5qNvx/Xa3M/DbQZhYA64/Lib58mrCl0dhEQTuwRmOD3+Utl35FrK77/8V9t+sKqMJ/5K3eq+K5ZEs3ICp8G8Pk0YTClbmXXd6G6eJNnY62a8/gctpJqFvKrAxo0FqxznWllPB4PLMsBTTGY7ZCFyFJTPjfMVd4b0AJPSiRMOnrLdC/6/IsTRmIQlkSmynZjtWgrtio8xGg3HOVZoBn3T9UJQJzyZeuQgv5JpRKxbgYKo59OrRKQbSLKyr8gpJkpnFxFQmyefrASpYrHE65XReRWUmLNfJ9ypqMkJxWqqg2DlTBQQJEVCMrJKpM8HCdik9ozJJmGYh0C7iBMaZSr9KfW6nmsFBW5hlay15GkepAH3sbKW9WUH5t2xuq0mEVLvKgVi7sFjMCtcFLfW2lXPdOfc7vX6n/9lvHn/aqGoPPUXPUQv10Dt0jD6iUzREFP2uPau9rLWcD85X55tj1qn12qbmMaqYs/wDci5APg==</latexit>

Content : [0.22, 0.82, . . . , 0.2]| {z }
|vi|=d

Tag : [0.4, 0.09, . . . , 0.63]| {z }
|f(1)

i |=m

User

Intent: Red Panda Eating

Raw Input

<latexit sha1_base64="k0ZTSrX+7cMis/m8nc8OAeHtdEI=">AAADPHicbVJNbxMxEHWXrxA+2sIFicuKCqmHKkp6CFVPlZAQ3Apq2kpJqGzv7K4Ve72yxyWr1f4Grlzhh/ATuHPnhrhyxpvkgNOMtNrnN2N55r1hpRQW+/2fW9Gt23fu3uvc7z54+Ojx9s7uk3OrneEw4lpqc8moBSkKGKFACZelAaqYhAs2e93mL67BWKGLM6xKmCqaFSIVnKKnPp7R7DieWFrVHyBprnb2+r3+IuKbYLACeyf7P4afO2/i06vd6Nkk0dwpKJBLau34qMRpTQ0KLqHpTpyFkvIZzWDsYUEV2Gm96LqJX3omiVNt/FdgvGD/v1FTZW2lmK9UFHO7nmvJTbmxw/RoWouidAgFXz6UOhmjjlsJ4kQY4CgrDyg3wvca85waytELFbzCtJ4hZTaYpJ4vBwi4zNAyF3wesspJFEZ/ClnrGKdlq3+zcaaA9OYx75UKxTROQnLQmm4LpxgYSLzsMtN+nFwdhtLXmBvwB4N+ljVb6jJLS6nRbmzlYGVB+0eYY1jEWNhV7YXFCqmcNd2u36XB+ubcBOeHvcGwN3zvl+odWUaHPCcvyD4ZkFfkhLwlp2REODHkC/lKvkXfo1/R7+jPsjTaWt15SoKI/v4DdNoX/A==</latexit>

Tag : “Red00
Attribute

Constraint   

Vector Embedding
(Normalized)

Meta Embedding
(Normalized)

Transformation
<latexit sha1_base64="4t4jFqP4TsZwWhHZ6MwV2O0JrdM=">AAADG3icbVJNbxMxEHWWrxK+WjhyWVEhcShRUonSYxEXTqhITVspiSrbO7trxV+yx5Bolb/AFS6c+ClwQlw58G/wJjngNCOt9vnNWJ43b5iVwmO//7eT3bh56/adnbvde/cfPHy0u/f43JvgOAy5kcZdMupBCg1DFCjh0jqgikm4YNO3bf7iIzgvjD7DuYWJopUWpeAUW2psvbja3e/3+svIr4PBGuyfvPz55tVZ+H56tZd1xoXhQYFGLqn3o2OLk4Y6FFzCojsOHizlU1rBKEJNFfhJs+x1kT+PTJGXxsVPY75k/7/RUOX9XLFYqSjWfjPXkttyo4Dl8aQR2gYEzVcPlUHmaPJWeF4IBxzlPALKnYi95rymjnKM40leYcZMkTKfKGlmKwEJVzlqa8FnKauCROHMp5T1gXFq26kvtmpKyGgZiw6pdJguSCgOWqu9DoqBgyKOXVYmyqnVYTr6BmsH8eAwatmwpbFVaaVBv7WVg7UF7R9hhmkRY7GrblyaweaKXAfnh73BUe/oQ9ye92QVO+QpeUZekAF5TU7IO3JKhoSTmnwmX8jX7Fv2I/uV/V6VZp31nSckiezPPwDACuQ=</latexit>

 

Vector Index

Result
 Nearest Neighbor to     in Original space  <latexit sha1_base64="vZ4S+BU5fKZJ04wkfSKa+uIj5lo=">AAADL3icbVJNaxsxEFW2X677lbSXQi9LQyGHYOwc3BwDgZDeEqiTgGOCpJ3dFZZWijRqbBb/ghxyaX9I/0ivpZfSa/9FtbYPleOBZUdvRmjee8OMFA673V8byYOHjx4/aT1tP3v+4uWrza3XZ057y2HAtdT2glEHUlQwQIESLowFqpiEczY+bOrnX8A6oavPODUwUrSoRC44xQCdXl9tbnc73Xmk95PeMtk+2PnRv2sdpSdXW8nby0xzr6BCLqlzw32Do5paFFzCrH3pHRjKx7SAYUgrqsCN6vmgs/RDQLI01zZ8FaZz9P8bNVXOTRULnYpi6VZrDbiuNvSY749qURmPUPHFQ7mXKeq0YZ1mwgJHOQ0J5VaEWVNeUks5Bm2iV5jWY6TMRUzqyYJAhBWWmlLwSYwqL1FYfROjzjNOTSP5bC2nCAx+sWCPisW0XkK22/jsKq8YWMiC7LLQgU6p9mLpaywthIPFwGXFltoUuZEa3dpRdpcWNH+ECcZNjMVT1UFYnCKV41m7HXapt7o595OzvU6v3+mfhqX6RBbRIu/Ie7JDeuQjOSDH5IQMCCdAbslX8i35nvxMfid/Fq3JxvLOGxJF8vcfHMoSuQ==</latexit>q

 Nearest Neighbor to      in Kernelized space 
<latexit sha1_base64="h7loE7gZ0iRyJCQgWByD9onheeI=">AAADMHicbVJNbxMxEHWXj4bw1cIFicuqFaKHKkp6SHushITgVhBpK6VRZXtnd63Ya2OP20Sr/AMkTvBD+CGc4YS48ivwJjnUaUZa7fjNWJ733jAjhcNu9/dGcufuvfubrQfth48eP3m6tf3s1GlvOQy4ltqeM+pAigoGKFDCubFAFZNwxsZvmvrZFVgndPUJpwZGihaVyAWnGKCPn19fbu12O915pLeT3jLZPd772f/aepueXG4nLy4yzb2CCrmkzg2PDI5qalFwCbP2hXdgKB/TAoYhragCN6rnk87SVwHJ0lzb8FWYztGbN2qqnJsqFjoVxdKt1hpwXW3oMT8a1aIyHqHii4dyL1PUaUM7zYQFjnIaEsqtCLOmvKSWcgziRK8wrcdImYuY1JMFgQgrLDWl4JMYVV6isPo6Rp1nnJpG89laThEYDGPBHxWLab2EbL8x2lVeMbCQBdlloQOdUh3E0tdYWggHi4HLii21KXIjNbq1o+wvLWj+CBOMmxiLp6qDsDhFKsezdjvsUm91c24npwedXr/T/xCW6j1ZRIu8JDtkj/TIITkm78gJGRBOcvKFfCPfkx/Jr+RP8nfRmmws7zwnUST//gOwUxLq</latexit>

q0

<latexit sha1_base64="4Y70tGoXuWlSDhwNOu2ejB260TU=">AAADkXicbVJLbxMxEHazPMryaEovSFxWiagQSqPNCkrpKVAOIC4FNW2lbBTZXmdjxY+VPQuJVsnf4zfwI7jCFW8SEJtmJMvjb8b2zDcfyQS3EIY/dmrerdt37u7e8+8/ePhor77/+NLq3FDWo1poc02wZYIr1gMOgl1nhmFJBLsik7MyfvWVGcu1uoBZxgYSp4qPOMXgoGEdx4SlXBVY8FS9mPuHcbFYXODUngaNLyxptOLYP1wsFmcYWKrNzMFvFZdY2H+h9y50GkRh9OoofHkUdeK5HzOV/H1yWG+G7XBpwU2ns3aaaG3nw/3akzjRNJdMARXY2v5JBoMCG+BUMPd4blmG6QSnrO9chSWzg2JJxTx45pAkGGnjloJgif5/o8DS2pkkLlNiGNvNWAlui/VzGJ0MCq6yHJiiq49GuQhAByWvQcINoyBmzsHUcFdrQMfYYAqO/covROsJYGIrnRTTVQMVLDU4G3M6raIyF8CN/lZFbU4ozsqhzrf2VAGdIogTgKySaXLBklapJKtySZhhiaNduLFzGMuoSn0BY8PcwYDrZWMsRZaOMqHBbi2ltR5BuQObQjWJkGpVhSMWZoDFZO77TkudTeXcdC6jdue4ffw5anY/rlW1i56iBnqOOug16qIP6Bz1EEXf0U/0C/32Drw3Xtd7t0qt7azvHKCKeZ/+AJ1FLtI=</latexit>

{ Tags : ”Red”,

Category : ”Animals”,

Date : 2025� 04� 21}

<latexit sha1_base64="5MmpL5Fnu2Mz5eji507x0bJtqlc=">AAADS3icbVLNbhMxEHa3FEr4aQoXpF5WVEhFqqKkh9IblbhwTCXSFiVRZHtnd63Y65U9hqxWe+BpuMIb8AI8AM/BDXHAm+SA04y02vE3Y3m+7xtWSmGx3/+1E+3e27v/YP9h59HjJ08PuofPrq12hsOIa6nNLaMWpChghAIl3JYGqGISbtj8XVu/+QTGCl18wKqEqaJZIVLBKXpo1j2aICywPmGv4ysHpoqHRnOwVhRZM+se93v9ZcR3k8E6Ob58+4O0MZwdRi8mieZOQYFcUmvHFyVOa2pQcAlNZ+IslJTPaQZjnxZUgZ3WSxJN/MojSZxq478C4yX6/42aKmsrxXynopjbzVoLbquNHaYX01oUpUMo+Oqh1MkYddwqEifCAEdZ+YRyI/ysMc+poRy9bsErTOs5UmYDJvViRSDAMkPLXPBFiConURj9OUStY5yWrR3NVk4B6L1k3joVimmchOS03QFbOMXAQOJll5n2dHJ1FkpfY27AHwx6Lhu21GWWllKj3TrK6dqC9t+uTdjEWDhV7YXFCqmcN52O36XB5ubcTa7PeoPz3vmVX6qPZBX75Ii8JCdkQN6QS/KeDMmIcPKFfCXfyPfoZ/Q7+hP9XbVGO+s7z0kQu3v/AH0EG6M=</latexit>

(b) Query Processing
<latexit sha1_base64="Z9ZAW9YyEec3imaQPiSDPL7FgNc=">AAADS3icbVLNbtNAEN66FEr4S+GC1ItFhVSkKkp6KL21Ehc4USTSFiVRtLseO6vsn3bHNJHlA0/DFd6AF+ABeA5uiAPrJAc2zUiWx9/Meuf7vmFWCo/d7q+tZPvOzt17u/dbDx4+evykvff00pvScehzI427ZtSDFBr6KFDCtXVAFZNwxaZvmvrVZ3BeGP0R5xZGihZa5IJTDNC4vT9EmGF1SF+l7/O8+Uv6TmcwE7qox+2Dbqe7iPR20lslB+dnP0gTF+O95PkwM7xUoJFL6v3g1OKoog4Fl1C3hqUHS/mUFjAIqaYK/KhakKjTlwHJ0ty48GhMF+j/JyqqvJ8rFjoVxYlfrzXgptqgxPx0VAltSwTNlxflpUzRpI0iaSYccJTzkFDuRJg15RPqKMegW3QLM2aKlPmISTVbEoiwwlE7EXwWo6qUKJy5iVFfMk5tY0e9kVMEBi9ZsE7FYrpSQnbUuOd1qRg4yILssjCBzkQdx9JXOHEQPhwGLmu2VLbIrTToN45ytLKgeTdrEzcxFk9VBWFxjlRO61Yr7FJvfXNuJ5fHnd5J5+RDWKpPZBm7ZJ+8IIekR16Tc/KWXJA+4eQL+Uq+ke/Jz+R38if5u2xNtlZnnpEotnf+AdZHG2g=</latexit>

(a) O✏ine Indexing

<latexit sha1_base64="Nofjz1VpOQiKb44/K64rqi8mz3U=">AAADL3icbVLNbhMxEHaWvzb8tXBB4sBChcShijY9lB4jceGYSqStlEaV7Z3dtWKvXXsMiVZ5Aq70CfoEPA3igrjyFvUmPeA0I6387Tdjeb5vhhkpHGbZ705y7/6Dh4+2truPnzx99nxn98WJ095yGHEttT1j1IEUNYxQoIQzY4EqJuGUTT+1+dOvYJ3Q9RecG5goWtaiEJxioI4vL3b2sl62jPQu6N+CvUH25rrztsqGF7vJq/Ncc6+gRi6pc+Mjg5OGWhRcwqJ77h0Yyqe0hHGANVXgJs2y0UX6PjB5WmgbvhrTJfv/jYYq5+aKhUpFsXLruZbclBt7LI4mjaiNR6j56qHCyxR12qpOc2GBo5wHQLkVodeUV9RSjsGb6BWm9RQpc5GSZrYSEHGlpaYSfBazyksUVn+LWecZp6a1fLFRU0SGebEwHhWbab2EfL+ds6u9YmAhD7bLUgc5lTqIrW+wshB+LAYta2NpTFkYqdFtbGX/dgTtiTDDuIixuKsmGItzpHK66HbDLvXXN+cuODno9Q97h8dhqYYDsowt8pq8Ix9In3wkA/KZDMmIcALkO/lBrpKfya/kT/J3VZp0Vid5SaJI/t0A6L4Sgw==</latexit>q

<latexit sha1_base64="pUDdKyMEq2AMVb7FhPV77mPDjLc=">AAADMHicbVLNbhMxEHaWvxL+WrggcWChQnCook0PpcdIXHoMiLSV0qiyvbO7Vuy1sceQaJU34Aov0DfgadoT4spT4E16wGlGWvnbb8byfN8MM1I4zLKrTnLr9p2797budx88fPT4yfbO02OnveUw4lpqe8qoAylqGKFACafGAlVMwgmbfmjzJ1/BOqHrzzg3MFG0rEUhOMVAffry9nx7N+tly0hvgv412B1kLy86r6pseL6TPD/LNfcKauSSOjc+NDhpqEXBJSy6Z96BoXxKSxgHWFMFbtIsO12kbwKTp4W24asxXbL/32iocm6uWKhUFCu3nmvJTbmxx+Jw0ojaeISarx4qvExRp63sNBcWOMp5AJRbEXpNeUUt5RjMiV5hWk+RMhcpaWYrARFXWmoqwWcxq7xEYfW3mHWecWpazxcbNUVkGBgL81GxmdZLyPfaQbvaKwYW8mC7LHWQU6n92PoGKwvhx2LQsjaWxpSFkRrdxlb2rkfQnggzjIsYi7tqgrE4Ryqni2437FJ/fXNuguP9Xv+gd/AxLNVwQJaxRV6Q1+Qd6ZP3ZECOyJCMCCcF+U5+kJ/Jr+Qy+Z38WZUmndVJnpEokr//AHxWErQ=</latexit>

q0

<latexit sha1_base64="KiaE44+T+lZQxz2J/HRlDpW2xFU=">AAADqHicbVJRi9NAEN5eTj2jd/b0RfAlWDzkKCWpei33VBDExwr2etKUsruZpks3m9zuRFtC/J+++FvctFVMrwshk2++7Mx887FMCoO+/6tx5Bw/ePjo5LH75Onp2bPm+fMbk+aaw4inMtW3jBqQQsEIBUq4zTTQhEkYs+XHKj/+DtqIVH3FdQbThMZKzAWnaKFZcxUyiIUqqBSxuizdi7vrn16Yqwg005RDMfE73Xdtv9N73w6jFI0Nu/1pOSuiMgzdi0+zu+t9fq/ifwj+8YOg4ielG4KK/laaNVt+x98c734Q7IIW2Z3h7Pzopb2Q5wko5JIaM+lnOC2oRsEl2MtzAxnlSxrDxIaKJmCmxUah0ntjkcibp9o+Cr0N+v8fBU2MWSfMMhOKC7Ofq8BDuUmO8/60ECrLERTfFprn0sPUq+T2IqGBo1zbgHItbK8eX1CrFNql1KqwNF0iZaY2SbHaDlDDYk2zheCrOprkEoVOf9RRkzNOs2rX5cGZaqA1CrO+SOpi6lxC1K4MZlSeMNAQWdllnNpxFkm3Ln2BCw32Q6OdZW8tRRbPM2k9cbCV9m4F1RthhXUSY/WuCissrpHKZem61kvBvnPuBzfdTnDVufrSbQ2Gg62rTsgr8pq8JQHpkQH5TIZkRDj53ThunDbOnEtn6Iydb1vqUWPnxBekdhz2B6hqNNE=</latexit>

q : [0.23, 0.74, . . . , 0.28]| {z }
d

Fq : [0.73, 0.51, . . . , 0.11]| {z }
m

<latexit sha1_base64="XnikKCqfjqfhCiJQZhsg8Hjm3ew=">AAADJHicbVJNj9MwEHXD11K+duHIJaJCWqSqalZo2WMlLhyLRHdX6obKdiaJVTv22uOlVdTfwRUu/BpuiAMXfgtO2wPpdiTLL28m8sx7w4wUDofDP53ozt179x8cPOw+evzk6bPDo+fnTnvLYcK11PaSUQdSVDBBgRIujQWqmIQLNn/f5C9uwDqhq0+4NJAqWlQiF5xioNKbmejnM/G5Pk7erGaHveFguI74Nki2oEe2MZ4dRZ2rTHOvoEIuqXPTM4NpTS0KLmHVvfIODOVzWsA0wIoqcGm9bnoVvw5MFufahlNhvGb//6OmyrmlYqFSUSzdbq4h9+WmHvOztBaV8QgV3zyUexmjjhsF4kxY4CiXAVBuReg15iW1lGPQqfUK03qOlLnWJPViM0CLKyw1peCLNqu8RGH1lzbrPOPUNPKv9s7UIoN3LFil2mJaLyHrN567yisGFrIguyx0GKdUJ23paywthA+LYZYdW2pT5EZqdHtb6W8taG6EBbaLGAtddcPSJLsrchucnwyS08Hpx7e90Xi0WZ8D8pK8IsckIe/IiHwgYzIhnFyTr+Qb+R79iH5Gv6Lfm9Kos125F6QV0d9/QxoLOQ==</latexit>

vi, f
(1)
i

<latexit sha1_base64="woV7y/dLxaLvtiqB0RVZVMY1XBQ=">AAADIHicbVJNbxMxEHWWrxK+WjhyWREhFamKkqoqPUbqhWOQSFuUhsj2zu5asdeWPS6JVvkVvcKFX8MNcYRfgzfJAacZyfLbN7PyvHnDjBQOe70/reTe/QcPH+09bj95+uz5i/2DlxdOe8thxLXU9opRB1JUMEKBEq6MBaqYhEs2O2/ylzdgndDVJ1wYmChaVCIXnGKgPt98qQ/775ZTMd3v9Lq9VaR3QX8DOmQTw+lB0rrONPcKKuSSOjc+MzipqUXBJSzb196BoXxGCxgHWFEFblKvGl6mbwOTpbm24VSYrtj//6ipcm6hWKhUFEu3nWvIXbmxx/xsUovKeISKrx/KvUxRp436NBMWOMpFAJRbEXpNeUkt5RhmFL3CtJ4hZS5SUs/XAiKusNSUgs9jVnmJwuqvMes849Q0o1/u1BSRwTcWbFLxMK2XkB01frvKKwYWsjB2Weggp1TH8ehrLC2ED4tBy5YttSlyIzW6na0cbSxoboQ5xkWMha7aYWn62ytyF1wcd/un3dOPJ53BcLBenz3ymrwhh6RP3pMB+UCGZEQ4UeSWfCPfkx/Jz+RX8ntdmrQ2K/eKRJH8/QfzKAm3</latexit>

v(1)i

<latexit sha1_base64="pUDdKyMEq2AMVb7FhPV77mPDjLc=">AAADMHicbVLNbhMxEHaWvxL+WrggcWChQnCook0PpcdIXHoMiLSV0qiyvbO7Vuy1sceQaJU34Aov0DfgadoT4spT4E16wGlGWvnbb8byfN8MM1I4zLKrTnLr9p2797budx88fPT4yfbO02OnveUw4lpqe8qoAylqGKFACafGAlVMwgmbfmjzJ1/BOqHrzzg3MFG0rEUhOMVAffry9nx7N+tly0hvgv412B1kLy86r6pseL6TPD/LNfcKauSSOjc+NDhpqEXBJSy6Z96BoXxKSxgHWFMFbtIsO12kbwKTp4W24asxXbL/32iocm6uWKhUFCu3nmvJTbmxx+Jw0ojaeISarx4qvExRp63sNBcWOMp5AJRbEXpNeUUt5RjMiV5hWk+RMhcpaWYrARFXWmoqwWcxq7xEYfW3mHWecWpazxcbNUVkGBgL81GxmdZLyPfaQbvaKwYW8mC7LHWQU6n92PoGKwvhx2LQsjaWxpSFkRrdxlb2rkfQnggzjIsYi7tqgrE4Ryqni2437FJ/fXNuguP9Xv+gd/AxLNVwQJaxRV6Q1+Qd6ZP3ZECOyJCMCCcF+U5+kJ/Jr+Qy+Z38WZUmndVJnpEokr//AHxWErQ=</latexit>

q0

Figure 1: Data and queries are embedded into content and attribute vectors and fused by a transformation Ψ
parameterized by α > 1 and β > 1. The fused vectors are indexed for efficient retrieval. At query time, the
same transformation is applied, enabling unified search and re-ranking based on attribute-content similarity.

distance or cosine similarity. The Euclidean distance between their content vectors is defined

as ρ(v(o), v(r)) =
√∑d−1

i=0 (v(o)[i]− v(r)[i])2.

Definition 2 (Approximate Nearest Neighbor Search (ANNS)). Let D(F) be a record set and q a
query with content vector v(q). The exact k-nearest neighbors (k-NN) of q in D(F) with respect to
the distance metric ρ is defined as:

NNk(q) = argmin
S⊆D(F), |S|=k

∑
o∈S

ρ
(
v(q), v(o)

)
(1)

Finding exact k-NN is computationally expensive in high-dimensional spaces (Abbasifard et al., 2014;
Wang et al., 2021b). Therefore, approximate nearest neighbor search (ANNS) aims to efficiently
return a set ANNk(q) such that, with high probability,

max
o∈ANNk(q)

ρ
(
v(q), v(o)

)
≤ (1 + ϵ) max

o∈NNk(q)
ρ
(
v(q), v(o)

)
, (2)

where ϵ > 0 is the approximation factor. ANNS methods typically search based only on content
vectors (Malkov & Yashunin, 2018; Douze et al., 2024; Bernhardsson, 2024).

Definition 3 (Hybrid Query (HQ) with Monotone Attribute Priority). Given a set of records D(F)

and query q = [v(q), F
(1)
q , . . . , F

(F)
q ], let Fπ(1) ≻ · · · ≻ Fπ(F) be the attribute priority order (with

the content as the lowest priority). For any candidate set S ⊆ D(F) of size k, let

µ
(j)
S =

1

k

∑
o∈S

σj(f
(j)(o), F (j)

q ), Var
(j)
S =

1

k

∑
o∈S

[
σj(f

(j)(o), F (j)
q )− µ

(j)
S

]2
(3)

where µ
(j)
S and Var

(j)
S denote the mean and variance of an attribute distance, and σj is a distance

metric on Fj , which we assume to be Euclidean in this study. We say S satisfies monotone attribute
priority if: Var(π(1))S ≤ · · · ≤ Var

(π(F))
S . The hybrid query returns the set S∗ of size k that minimizes

the mean distances subject to monotone attribute priority:

S∗ = arg min
S⊆D(F), |S|=k

monotone attribute priority

(
µ
(π(1))
S , . . . , µ

(π(F))
S ,

1

k

∑
o∈S

ρ(v(q), v(o))

)
(4)

in lexicographic order, i.e., by first minimizing the mean distance for the highest-priority attribute,
then the next in order, and finally the average content distance ρ (content vector distance metric).
Eq. 4 relaxes filters, prioritizing exact matches on higher-priority attributes to fill k; if still short, it
fills the rest via nearest attribute clusters (k-NN)—a native expansion unlike classical filtered ANN,
which requires exact matches and offers no fallback. Users can still keep exact-only, as in Alg. 1.

When F = 1 (i.e., there is only one attribute), the hybrid query problem becomes a simplified version
commonly considered in previous work (Chen et al., 2021; Gollapudi et al., 2023; Jingdong, 2020;
Tan et al., 2023; Wang et al., 2021a; Wu et al., 2022; Heidari & Zhang, 2025; Xu et al., 2025; Zhu
et al., 2020; Zuo et al., 2024).

3 FUSEDANN FRAMEWORK

Model Overview. Our framework enables hybrid search by fusing content and attribute information
in a way that gives explicit control over their relative influence. Given a content vector v(oi) ∈ Rd and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

<latexit sha1_base64="LCphu0jeVGMtACm96SgQ7tTl+GI=">AAADHXicbVJNbxMxEHW2fJTw1ZYjlxUREocqSirU9lgJDhyLRNJKSVTZ3tldE3tt2eOSaJX/wBUu/BpuiCvi3+BN9oDTjLTa5zdjed68YUYKh4PB306yd+/+g4f7j7qPnzx99vzg8GjstLccRlxLba8ZdSBFBSMUKOHaWKCKSbhi83dN/uoWrBO6+oRLAzNFi0rkglMM1HhKpSnpzUFv0B+sI70Lhi3okTYubw6TzjTT3CuokEvq3OTc4KymFgWXsOpOvQND+ZwWMAmwogrcrF53u0pfByZLc23DV2G6Zv+/UVPl3FKxUKkolm4715C7chOP+fmsFpXxCBXfPJR7maJOG+lpJixwlMsAKLci9JryklrKMQwoeoVpPUfKXKSkXmwERFxhqSkFX8Ss8hKF1V9i1nnGqWnmvtqpKSKDaSx4pOJhWi8hO27MdpVXDCxkYeyy0EFOqU7i0ddYWggHi0HLli21KXIjNbqdrRy3FjR/hAXGRYyFrrphaYbbK3IXjE/6w9P+6ce3vYv37frsk5fkFXlDhuSMXJAP5JKMCCefyVfyjXxPfiQ/k1/J701p0mnvvCBRJH/+AXzWCJk=</latexit>↵

<latexit sha1_base64="Hqu7bm+87QVNDpKgLnp1YGmGHGw=">AAADHHicbVJNaxsxEJU3bZO6X0l67GWpKfQQjB1CmmMgPeSYQp0EbBMk7eyusLQS0qi1Wfwbem0v+TW9lV4L/TfV2nuoHA8s+/RmhObNG2akcDgY/O0kO48eP9nde9p99vzFy1f7B4fXTnvLYcS11PaWUQdSVDBCgRJujQWqmIQbNrto8jdfwDqhq8+4MDBVtKhELjjFQI0mDJDe7fcG/cEq0odg2IIeaePq7iDpTDLNvYIKuaTOjc8MTmtqUXAJy+7EOzCUz2gB4wArqsBN61Wzy/RdYLI01zZ8FaYr9v8bNVXOLRQLlYpi6TZzDbktN/aYn01rURmPUPH1Q7mXKeq0UZ5mwgJHuQiAcitCrykvqaUcw3yiV5jWM6TMRUrq+VpAxBWWmlLwecwqL1FY/TVmnWecmmbsy62aIjJ4xoJFKh6m9RKyo8ZrV3nFwEIWxi4LHeSU6jgefY2lhXCwGLRs2FKbIjdSo9vaylFrQfNHmGNcxFjoqhuWZri5Ig/B9XF/eNo//XTSO//Yrs8eeUPekvdkSD6Qc3JJrsiIcCLIN/Kd/Ejuk5/Jr+T3ujTptHdekyiSP/8ANhsIJQ==</latexit>

�
<latexit sha1_base64="OloCZPsHVa65HwZWl3qr4WwSos0=">AAADHnicbVJNbxMxEHWWrxK+WjhyWREhIVRFSVWVHiuVA8cikaZSEirbO7trxV5b9pgmWuVHcIULv4Yb4gr/Bm+yB5xmpNU+vxnL8+YNM1I4HAz+dpI7d+/df7D3sPvo8ZOnz/YPnl867S2HEddS2ytGHUhRwQgFSrgyFqhiEsZsft7kx1/AOqGrT7g0MFO0qEQuOMVAjacMkH5+e73fG/QH60hvg2ELeqSNi+uDpDPNNPcKKuSSOjc5NTirqUXBJay6U+/AUD6nBUwCrKgCN6vX7a7S14HJ0lzb8FWYrtn/b9RUObdULFQqiqXbzjXkrtzEY346q0VlPELFNw/lXqao00Z7mgkLHOUyAMqtCL2mvKSWcgwTil5hWs+RMhcpqRcbARFXWGpKwRcxq7xEYfVNzDrPODXN4Fc7NUVkcI0Fk1Q8TOslZIeN267yioGFLIxdFjrIKdVRPPoaSwvhYDFo2bKlNkVupEa3s5XD1oLmj7DAuIix0FU3LM1we0Vug8uj/vCkf/LxuHf2vl2fPfKSvCJvyJC8I2fkA7kgI8LJnHwl38j35EfyM/mV/N6UJp32zgsSRfLnH/ZSCME=</latexit>

�⇤

<latexit sha1_base64="2kBF3TX8OvSsH6cXJDRrTlvJCxE=">AAADH3icbVJNbxMxEHWWrxK+WjhyWREhIVRFSVWVHiuVA8cikTZSEirbO7trxV5b9pgmWuVPcIULv4Yb4tp/gzfZA04z0mqf34zlefOGGSkcDga3neTe/QcPH+097j55+uz5i/2Dl5dOe8thxLXUdsyoAykqGKFACWNjgSom4YrNz5v81TewTujqCy4NzBQtKpELTjFQ4ymVpqRf31/v9wb9wTrSu2DYgh5p4+L6IOlMM829ggq5pM5NTg3OampRcAmr7tQ7MJTPaQGTACuqwM3qdb+r9G1gsjTXNnwVpmv2/xs1Vc4tFQuVimLptnMNuSs38ZifzmpRGY9Q8c1DuZcp6rQRn2bCAke5DIByK0KvKS+ppRzDiKJXmNZzpMxFSurFRkDEFZaaUvBFzCovUVh9E7POM05NM/nVTk0RGWxjwSUVD9N6CdlhY7ervGJgIQtjl4UOckp1FI++xtJCOFgMWrZsqU2RG6nR7WzlsLWg+SMsMC5iLHTVDUsz3F6Ru+DyqD886Z98Pu6dfWzXZ4+8Jm/IOzIkH8gZ+UQuyIhwIsl38oP8TH4lv5M/yd9NadJp77wiUSS3/wA99Ak1</latexit>

↵⇤

ScaledFa
rth

er

Original Space 

<latexit sha1_base64="tVF+Lg/8g0e6dRpoQ2e4mUVwXWg=">AAADFHicbVJNbxMxEHWWj5bw1XJFQisiJA5VtOmhzY1KXDi2EmkrpVFle2d3rdhryx5DolWOPXGFC7+kJ8SNK1d+A38Cb5IDTjOS5ec3Y3neGzMjhcMs+9NJ7t1/8HBn91H38ZOnz57vdffPnfaWw4hrqe0low6kqGGEAiVcGgtUMQkXbPq+zV98AuuErj/i3MBE0bIWheAUA3WWXe/1sn62jPQuGKxB792P27O/N69uT6/3k85VrrlXUCOX1Lnx0OCkoRYFl7DoXnkHhvIpLWEcYE0VuEmzbHSRvglMnhbahlVjumT/v9FQ5dxcsVCpKFZuM9eS23Jjj8Vw0ojaeISarx4qvExRp63qNBcWOMp5AJRbEXpNeUUt5Ri8iV5hWk+RMhcpaWYrARFXWmoqwWcxq7xEYfXnmHWecWpayxdbNUVkmBcL41GxmdZLyA/aObvaKwYW8mC7LHWQU6nD2PoGKwvhYDFo2RhLY8rCSI1uaysH6xG0O8IM4yLGQlfd8GkGm1/kLjg/7A+O+ke9kyFZxS55SV6Tt2RAjskJ+UBOyYhwAuQL+Uq+Jd+Tn8mvVWHSWd94QaJIfv8DOgQJGg==</latexit>

0
<latexit sha1_base64="0PkCl2Jz+0ds1Qv9yadifUy/TwQ=">AAADK3icbVJNbxMxEHWWrxK+0sINCa2okIoURbs9lFwqVeIAxyKRtlISRbZ3NmvFXlv2LCSs8le4wgX+DCcQFw78D7xJDjjNSKt9fjOWZ94bZqRwmCQ/W9GNm7du39m72753/8HDR539gwunK8thwLXU9opRB1KUMECBEq6MBaqYhEs2e93kLz+AdUKX73FhYKzotBS54BQ9NekcHI0YID1NuyMqTUFPk5eTzmHSS1YRXwfpBhyePfv05833J/X5ZD9qjTLNKwUlckmdG/YNjmtqUXAJy/aocmAon9EpDD0sqQI3rle9L+MXnsniXFv/lRiv2P9v1FQ5t1DMVyqKhdvONeSu3LDCvD+uRWkqhJKvH8orGaOOGyHiTFjgKBceUG6F7zXmBbWUo5creIVpPUPKXDBJPV8PEHBTS00h+DxkVSVRWP0xZF3FODWNC8udMwWkt5B5x1Qopq0kZN3GeldWioGFzMsup9qPU6jjUPoaCwv+YNHPsmVLbaa5kRrdzla6GwuaP8IcwyLGfFdtvzTp9opcBxfHvfSkd/LOb0+frGOPPCXPyRFJyStyRt6SczIgnMzJZ/KFfI2+RT+iX9HvdWnU2tx5TIKI/v4DM4UPvw==</latexit>

(� = 1,↵ = 0)

<latexit sha1_base64="gN6U8Qc+UfXxY/UCrkywHQ1MsWM=">AAADGHicbVI9b9swEKWVfqTuV5KOXYQaBToEhhwEacYAXTomQJ0EcIyApE4SYVIkyGNrQ/Av6Nou+TXZiq7d+m9K2RpKxwcIenx3BO/dO2akcJhlf3vJzqPHT57uPus/f/Hy1eu9/YNLp73lMOZaanvNqAMpahijQAnXxgJVTMIVm31q81dfwTqh6y+4MDBVtKxFITjFQF3Y271BNsxWkT4Eow4MSBfnt/tJ7ybX3CuokUvq3OTU4LShFgWXsOzfeAeG8hktYRJgTRW4abNqdJm+D0yeFtqGr8Z0xf5/o6HKuYVioVJRrNxmriW35SYei9NpI2rjEWq+fqjwMkWdtqrTXFjgKBcBUG5F6DXlFbWUY5hN9ArTeoaUuUhJM18LiLjSUlMJPo9Z5SUKq7/FrPOMU9OOfLlVU0QGv1iwR8XDtF5Cftj67GqvGFjIw9hlqYOcSh3Fo2+wshAOFoOWDVsaUxZGanRbWznsLGj/CHOMixgLXfXD0ow2V+QhuDwajk6GJxfHg7OsW59d8pa8Ix/IiHwkZ+QzOSdjwgmQ7+QH+ZncJffJr+T3ujTpdXfekCiSP/8AdWQGYw==</latexit>r

<latexit sha1_base64="gN6U8Qc+UfXxY/UCrkywHQ1MsWM=">AAADGHicbVI9b9swEKWVfqTuV5KOXYQaBToEhhwEacYAXTomQJ0EcIyApE4SYVIkyGNrQ/Av6Nou+TXZiq7d+m9K2RpKxwcIenx3BO/dO2akcJhlf3vJzqPHT57uPus/f/Hy1eu9/YNLp73lMOZaanvNqAMpahijQAnXxgJVTMIVm31q81dfwTqh6y+4MDBVtKxFITjFQF3Y271BNsxWkT4Eow4MSBfnt/tJ7ybX3CuokUvq3OTU4LShFgWXsOzfeAeG8hktYRJgTRW4abNqdJm+D0yeFtqGr8Z0xf5/o6HKuYVioVJRrNxmriW35SYei9NpI2rjEWq+fqjwMkWdtqrTXFjgKBcBUG5F6DXlFbWUY5hN9ArTeoaUuUhJM18LiLjSUlMJPo9Z5SUKq7/FrPOMU9OOfLlVU0QGv1iwR8XDtF5Cftj67GqvGFjIw9hlqYOcSh3Fo2+wshAOFoOWDVsaUxZGanRbWznsLGj/CHOMixgLXfXD0ow2V+QhuDwajk6GJxfHg7OsW59d8pa8Ix/IiHwkZ+QzOSdjwgmQ7+QH+ZncJffJr+T3ujTpdXfekCiSP/8AdWQGYw==</latexit>r

<latexit sha1_base64="6+16q39dy/5cRQCV1vrgFKDGKh0=">AAADHnicbVJNbxMxEHWWj5bw1cKRy4oIqUhRlFSo9FiJCwcOrUSaSmlU2d7ZXSv22rLHNNEqP4IrXPg13BBX+Dd4kz3gNCOt9vnNWJ43b5iRwuFw+LeT3Lv/4OHe/qPu4ydPnz0/OHxx6bS3HMZcS22vGHUgRQVjFCjhyligikmYsPmHJj/5AtYJXX3GpYGZokUlcsEpBmry6eiin+Lbm4PecDBcR3oXjFrQI22c3xwmnetMc6+gQi6pc9NTg7OaWhRcwqp77R0Yyue0gGmAFVXgZvW63VX6JjBZmmsbvgrTNfv/jZoq55aKhUpFsXTbuYbclZt6zE9ntaiMR6j45qHcyxR12mhPM2GBo1wGQLkVodeUl9RSjmFC0StM6zlS5iIl9WIjIOIKS00p+CJmlZcorL6NWecZp6YZ/GqnpogMrrFgkoqHab2ErN+47SqvGFjIwthloYOcUh3Ho6+xtBAOFoOWLVtqU+RGanQ7W+m3FjR/hAXGRYyFrrphaUbbK3IXXB4PRieDk4t3vbNhuz775BV5TY7IiLwnZ+QjOSdjwsmcfCXfyPfkR/Iz+ZX83pQmnfbOSxJF8ucftXIH2w==</latexit>

L(Q, t)

<latexit sha1_base64="G94LGOosRpqQEkUHWHmMLxaz7EI=">AAADGnicbVJNbxMxEHWWj5bw1cKRy4oIiUMVbaqq9FipF45FkLZSGkW2d3bXir227DEkWuUncIULv4Yb4sqFf4M32QNOM9Jqn9+M5XnzhhkpHGbZ315y7/6Dh3v7j/qPnzx99vzg8MWV095yGHMttb1h1IEUNYxRoIQbY4EqJuGazS/a/PVnsE7o+hMuDUwVLWtRCE4xUB/NTM4OBtkwW0d6F4w6MCBdXM4Ok95trrlXUCOX1LnJmcFpQy0KLmHVv/UODOVzWsIkwJoqcNNm3eoqfROYPC20DV+N6Zr9/0ZDlXNLxUKloli57VxL7spNPBZn00bUxiPUfPNQ4WWKOm11p7mwwFEuA6DcitBryitqKccwnegVpvUcKXORkmaxERBxpaWmEnwRs8pLFFZ/iVnnGaemHfpqp6aIDI6xYJCKh2m9hPyoddrVXjGwkIexy1IHOZU6jkffYGUhHCwGLVu2NKYsjNTodrZy1FnQ/hEWGBcxFrrqh6UZba/IXXB1PBydDk8/nAzOs2599skr8pq8JSPyjpyT9+SSjAknJflKvpHvyY/kZ/Ir+b0pTXrdnZckiuTPP+I/B0A=</latexit>pl

<latexit sha1_base64="6tfqlrBqnYtA6Fm89R1wOaEeDWI=">AAADGnicbVJNbxMxEHWWj5bw1cKRy4oIiUMVbaqq9FipF45FkLZSGkW2d3bXir227DEkWuUncIULv4Yb4sqFf4M32QNOM9Jqn9+M5XnzhhkpHGbZ315y7/6Dh3v7j/qPnzx99vzg8MWV095yGHMttb1h1IEUNYxRoIQbY4EqJuGazS/a/PVnsE7o+hMuDUwVLWtRCE4xUB/NzM8OBtkwW0d6F4w6MCBdXM4Ok95trrlXUCOX1LnJmcFpQy0KLmHVv/UODOVzWsIkwJoqcNNm3eoqfROYPC20DV+N6Zr9/0ZDlXNLxUKloli57VxL7spNPBZn00bUxiPUfPNQ4WWKOm11p7mwwFEuA6DcitBryitqKccwnegVpvUcKXORkmaxERBxpaWmEnwRs8pLFFZ/iVnnGaemHfpqp6aIDI6xYJCKh2m9hPyoddrVXjGwkIexy1IHOZU6jkffYGUhHCwGLVu2NKYsjNTodrZy1FnQ/hEWGBcxFrrqh6UZba/IXXB1PBydDk8/nAzOs2599skr8pq8JSPyjpyT9+SSjAknJflKvpHvyY/kZ/Ir+b0pTXrdnZckiuTPP/qTB0k=</latexit>pu

<latexit sha1_base64="6hUFhRPBhsklDdq6/29FMRU98js=">AAADKnicbVJNaxsxEJW3X6n7ZbfHXpaaQgrG2CGkOQZ66TGBOAnYxkja2V1haSWkUWOz+Kfkml76a3oLvfaHVGvvoet4YNmnNyM0894wI4XD4fChFT15+uz5i4OX7Vev37x91+m+v3LaWw5jrqW2N4w6kKKAMQqUcGMsUMUkXLPFtyp//QOsE7q4xJWBmaJZIVLBKQZq3ulOEZZYXnoG68OLfmy/zDu94WC4ifgxGNWgR+o4n3ej1jTR3CsokEvq3OTU4KykFgWXsG5PvQND+YJmMAmwoArcrNy0vo4/ByaJU23DV2C8Yf+/UVLl3EqxUKko5m43V5H7chOP6emsFIXxCAXfPpR6GaOOKx3iRFjgKFcBUG5F6DXmObWUY1Cr8QrTeoGUucYk5XI7QIPLLDW54Msmq7xEYfVtk3WecWoqE9Z7Z2qQwUEWDFNNMa2XkPQr513hFQMLSZBdZjqMk6ujpvQl5hbCwWKYZceW0mSpkRrd3lb6tQXVv1qWZhFjoat2WJrR7oo8BldHg9HJ4OTiuHc2rNfngHwkn8ghGZGv5Ix8J+dkTDi5JXfknvyMfkW/o4foz7Y0atV3PpBGRH//AcfcDMs=</latexit>

Tube(Q, r)

<latexit sha1_base64="Y7kw3Np3R87NA3ximD0lsobKHdc=">AAADXnicbVLBbhMxEHWyUEqgNIULEheLqlIrVVG2hzbHSgjEsUikrZSNItvrzVqx15Y9hkSr/Ql+g3/gC7hwBA7wFZzxJkFi04xkeebNWJ43b6iRwkG//73Vju7d33mw+7Dz6PHek/3uwdNrp71lfMi01PaWEselKPgQBEh+aywnikp+Q2ev6vzNB26d0MV7WBg+VmRaiEwwAgGadF8nikDOiCzfVJMyMeI4Pqlw4jxjOGGpBvcv2KxbApSG+KSadA/7vf7S8F0nXjuHl0efvv75cvHranLQbiWpZl7xApgkzo0GBsYlsSCY5FUn8Y4bwmZkykfBLYjiblwu6Vb4KCApzrQNpwC8RP9/URLl3ELRUFn36DZzNbgtN/KQDcalKIwHXrDVR5mXGDSuZ4dTYTkDuQgOYVaEXjHLiSUMwoQbv1CtZ0CoazAp5ysCDWxqickFmzdR5SUIqz82UecpI6YWrtrKqQEG1WkQWTWHab3k6Wm9La7winLL0zB2OdWBTq7OmqMvIbc8BBYClw1ZSjPNjAz7sbWV07UE9Q18Ds0iSkNXnbA08eaK3HWuz3rxee/8XdieAVrZLnqBXqJjFKMLdIneois0RAx9Rt/QD/Sz/Tvaifai/VVpu7V+8ww1LHr+F6edI0c=</latexit>

F⇡(1) � · · · � F⇡(F)
<latexit sha1_base64="jv3jlDItD1fDfOvSRdkmjA7rm0o=">AAADYHicbVLNahsxEJa9beO6P7HbW3tZGkITCMabQ+JjIND2mEKdBLzGSFrtWlhaCWnU2iz7EnmPvkKfoLeeCi2FPkTP1doudG0PLDv6ZoTm++YjWnAL/f73RjO4d//BXuth+9HjJ0/3O91n11Y5Q9mQKqHMLcGWCZ6zIXAQ7FYbhiUR7IbMLqv6zUdmLFf5B1hoNpY4y3nKKQYPTTpvY4lhSrEo3pSTItb89VF0XIaxdZSGMU0U2H+HrcYlQogHjstJ56Df6y8j3E6idXJwcXj39c+X819Xk26zESeKOslyoAJbOxpoGBfYAKeCle3YWaYxneGMjXyaY8nsuFgSLsNDjyRhqoz/cgiX6P83CiytXUjiO6sZ7WatAnfVRg7SwbjguXbAcrp6KHUiBBVW6oUJN4yCWPgEU8P9rCGdYoMpeI1rrxClZoCJrTEp5isCNSwzWE85nddR6QRwoz7VUesIxbpaXbmTUw30eyd+zbIupnGCJSeVX2zuJGGGJV52kSlPZypP69IXMDXMHwx4LhtrKXSWauENsnOUk/UKqj+wOdSbCPFTtb1pok2LbCfXp73orHf23rtngFbRQi/RK3SEInSOLtA7dIWGiKLP6Bv6gX42fwetYD/orlqbjfWd56gWwYu/7cYjqQ==</latexit>

F⇡0(1) � · · · � F⇡0(F)

Original 
Space

Original 
Space

Change
Point 

<latexit sha1_base64="GxKejGFzeOm93PCAwNpyHJb3SJc=">AAADKHicbVJNbxMxEHWWrxI+msKRy4qqUpFKlO2hzbFSLxyDRNpKSRTZ3tmsib227HFJtMqf6JUrXPgR/AIO3FBPSPwIzniTHNg0I632+c1YnnlvmJHCYadz24ju3X/w8NHO4+aTp8+e77b2Xlw47S2HPtdS2ytGHUhRQB8FSrgyFqhiEi7Z9LzKX16DdUIXH3BuYKTopBCZ4BQDNW7tDntOjMuhEYcf3yZvFuPWfqfdWUZ8FyRrsH92cPPj7/fT373xXtQYppp7BQVySZ0bdA2OSmpRcAmL5tA7MJRP6QQGARZUgRuVy8YX8UFg0jjTNnwFxkv2/xslVc7NFQuVimLuNnMVuS038Jh1R6UojEco+OqhzMsYdVypEKfCAkc5D4ByK0KvMc+ppRyDVrVXmNZTpMzVJilnqwFq3MRSkws+q7PKSxRWf6qzzjNOTWXBYutMNTL4x4Jdqi6m9RLSo8p3V3jFwEIaZJcTHcbJ1XFd+hJzC+FgMcyyYUtpJpmRGt3WVo7WFlR/hBnWixgLXTXD0iSbK3IXXBy3k5P2yfuwPV2yih3yirwmhyQhp+SMvCM90iecePKZfCFfo2/Rz+hXdLsqjRrrOy9JLaI//wCfXhBs</latexit>

 ⇡(j�1)

<latexit sha1_base64="oP4fEaokOf5nOMuViMJbNStIy0M=">AAADKXicbVJNbxMxEHWWrxK+UjhyWVFVFKlE2R7aHCv1wjFIpK2URJHtnc2a2GvLni2JVvkTnHuFC/+BX8CFG3DhwH/gjDfJAacZabXPb8byzHvDjBQOO52fjejW7Tt37+3cbz54+Ojxk9bu03OnS8uhz7XU9pJRB1IU0EeBEi6NBaqYhAs2PavzF1dgndDFO5wbGCk6KUQmOEVPjVutYc+JcTU04uXB+9fJq8W4tddpd5YR3wTJGuyd7n/89vfrye/eeDdqDFPNSwUFckmdG3QNjipqUXAJi+awdGAon9IJDDwsqAI3qpadL+J9z6Rxpq3/CoyX7P83KqqcmyvmKxXF3G3manJbblBi1h1VojAlQsFXD2WljFHHtQxxKixwlHMPKLfC9xrznFrK0YsVvMK0niJlLpikmq0GCLiJpSYXfBayqpQorP4Qsq5knJrag8XWmQLSG8i8XyoU05YS0sPaeFeUioGF1MsuJ9qPk6ujUPoKcwv+YNHPsmFLZSaZkRrd1lYO1xbUf4QZhkWM+a6afmmSzRW5Cc6P2slx+/it354uWcUOeU5ekAOSkBNySt6QHukTTq7INflEPkdfou/Rj+jXqjRqrO88I0FEf/4BM6kQnQ==</latexit>

 ⇡0(j�1)

Reconstruction     

Preserved

<latexit sha1_base64="Bu9z+qS03XfIGtDhvOqLBRIKj5g=">AAADL3icbVLNbhMxEHaWvxJ+moLEhcuKqlKRqijpoc2xEhLiGCTSVspGke317lqx15Y9pom2+xI8Ale48AI8AXfEBbjyApzxJjngNCOtdvzNWJ7v+4ZowS30ej9a0a3bd+7e27nffvDw0ePdzt6Tc6ucoWxElVDmkmDLBC/ZCDgIdqkNw5IIdkFmr5r6xXtmLFflO1hoNpE4L3nGKQYPTTvPkqHl0yrR/DCRGApCqtf1y3ra2e91e8uIbyb9dbJ/dvDh29+vp7+G072olaSKOslKoAJbOx5omFTYAKeC1e3EWaYxneGcjX1aYsnspFrOX8cHHknjTBn/lRAv0f9vVFhau5DEdzYz2s1aA26rjR1kg0nFS+2AlXT1UOZEDCpuxIhTbhgFsfAJpob7WWNaYIMpeMmCV4hSM8DEBkyq+YpAgOUG64LTeYhKJ4AbdRWi1hGKdeNEvZVTAHobiXdNhmIaJ1h61NhvSycJMyz1sotceTqFPA6lr6AwzB8MeC4btlQ6z7RQYLeOcrS2oPkDm0PYRIifqu2Xpr+5IjeT8+Nu/6R78tZvzwCtYgc9Ry/QIeqjU3SG3qAhGiGKrtFH9Al9jr5E36Of0e9Va9Ra33mKgoj+/AOm9BPy</latexit>

 ⇡(F)
<latexit sha1_base64="kq39zSMBQwh/rMVaqNHp2EIQ3pY=">AAADMHicbVLNbhMxEHaWvxJ+msKBA5cVVUWRqijpoc2xEhLiGCTSVspGke317lqx15Y9polW+xJ9Ba5w4QF4Ah4AThVXHoAz3iQHnGak1X7+ZizPN98QLbiFXu9XK7pz9979BzsP248eP3m629l7dm6VM5SNqBLKXBJsmeAlGwEHwS61YVgSwS7I7G2Tv/jEjOWq/AgLzSYS5yXPOMXgqWnnRTK0fFolmr8+TCSGgpDqXf2mnnb2e93eMuLboL8G+2cH1z/+fj+9GU73olaSKuokK4EKbO14oGFSYQOcCla3E2eZxnSGczb2sMSS2Um1FFDHB55J40wZ/5UQL9n/b1RYWruQxFc2PdrNXENuy40dZINJxUvtgJV09VDmRAwqbqYRp9wwCmLhAaaG+15jWmCDKfiZBa8QpWaAiQ2UVPOVgIDLDdYFp/OQlU4AN+oqZK0jFOvGinqrpoD0PhJvmwyHaZxg6VHjvy2dJMyw1I9d5MrLKeRxOPoKCsP8wYDXsmFLpfNMCwV2aytHawuaP7A5hEWE+K7afmn6mytyG5wfd/sn3ZMPfnsGaBU76CV6hQ5RH52iM/QeDdEIUVSjz+gL+hp9i35GN9HvVWnUWt95joKI/vwDPF4UIw==</latexit>

 ⇡0(F)

<latexit sha1_base64="NCNHR3Vj7aeoCGOcp0Y0c8EPqhU=">AAADJXicbVJNbxMxEHWWrxI+2sKRy4qqokhVlPTQ5liJC8cgkbZSEiLbO7sxsdeWPYZEq/wJTlzhwr/gF8ANIXHqv+CMN8kBpxlptc9vxvLMe8OMFA7b7T+N5NbtO3fv7dxvPnj46PHu3v6TC6e95dDnWmp7xagDKUroo0AJV8YCVUzCJZu+qvOXH8A6ocu3ODcwUrQoRS44xUC9G/acGFdDI14cvX+5GO8dtFvtZaQ3QWcNDs4PP/34+/3sujfeTxrDTHOvoEQuqXODrsFRRS0KLmHRHHoHhvIpLWAQYEkVuFG17HqRHgYmS3Ntw1diumT/v1FR5dxcsVCpKE7cZq4mt+UGHvPuqBKl8QglXz2Ue5miTmsJ0kxY4CjnAVBuReg15RNqKccgVPQK03qKlLlokmq2GiDiCkvNRPBZzCovUVj9MWadZ5yaWv/F1pkiMpjHglcqFtN6CdlxbborvWJgIQuyy0KHcSbqJJa+womFcLAYZtmwpTJFbqRGt7WV47UF9R9hhnERY6GrZliazuaK3AQXJ63Oaev0TdieLlnFDnlGnpMj0iFn5Jy8Jj3SJ5xY8pl8IV+Tb8nP5Ffye1WaNNZ3npIokut/QugP+g==</latexit>

 ⇡0(j)
<latexit sha1_base64="9KJl2lXm+W/yi0AxV49aliM+LYo=">AAADJHicbVJNbxMxEHWWrxK+WjhyWVFVKlIVJT20OVbqhWOQSFspWUW2d3bXxF4be0wTrfInuHCFCz+DX9Ab4sAF/gVnvEkObJqRVvv8ZizPvDfMSOGw2/3Viu7cvXf/wc7D9qPHT54+2917fuG0txyGXEttrxh1IEUJQxQo4cpYoIpJuGTT8zp/+RGsE7p8h3MDiaJ5KTLBKQYqGQ+cmFRjIw7fv15Mdve7ne4y4tugtwb7Zwefbv5+P/0zmOxFrXGquVdQIpfUuVHfYFJRi4JLWLTH3oGhfEpzGAVYUgUuqZZNL+KDwKRxpm34SoyX7P83KqqcmysWKhXFwm3manJbbuQx6yeVKI1HKPnqoczLGHVcKxCnwgJHOQ+AcitCrzEvqKUcg06NV5jWU6TMNSapZqsBGlxuqSkEnzVZ5SUKq6+brPOMU1PLv9g6U4MM3rFglWqKab2E9Kj23JVeMbCQBtllrsM4hTpuSl9hYSEcLIZZNmypTJ4ZqdFtbeVobUH9R5hhs4ix0FU7LE1vc0Vug4vjTu+kc/I2bE+frGKHvCSvyCHpkVNyRt6QARkSTj6Qz+QL+Rp9i26iH9HPVWnUWt95QRoR/f4Hrw4PyQ==</latexit>

 ⇡(j)

<latexit sha1_base64="oP4fEaokOf5nOMuViMJbNStIy0M=">AAADKXicbVJNbxMxEHWWrxK+UjhyWVFVFKlE2R7aHCv1wjFIpK2URJHtnc2a2GvLni2JVvkTnHuFC/+BX8CFG3DhwH/gjDfJAacZabXPb8byzHvDjBQOO52fjejW7Tt37+3cbz54+Ojxk9bu03OnS8uhz7XU9pJRB1IU0EeBEi6NBaqYhAs2PavzF1dgndDFO5wbGCk6KUQmOEVPjVutYc+JcTU04uXB+9fJq8W4tddpd5YR3wTJGuyd7n/89vfrye/eeDdqDFPNSwUFckmdG3QNjipqUXAJi+awdGAon9IJDDwsqAI3qpadL+J9z6Rxpq3/CoyX7P83KqqcmyvmKxXF3G3manJbblBi1h1VojAlQsFXD2WljFHHtQxxKixwlHMPKLfC9xrznFrK0YsVvMK0niJlLpikmq0GCLiJpSYXfBayqpQorP4Qsq5knJrag8XWmQLSG8i8XyoU05YS0sPaeFeUioGF1MsuJ9qPk6ujUPoKcwv+YNHPsmFLZSaZkRrd1lYO1xbUf4QZhkWM+a6afmmSzRW5Cc6P2slx+/it354uWcUOeU5ekAOSkBNySt6QHukTTq7INflEPkdfou/Rj+jXqjRqrO88I0FEf/4BM6kQnQ==</latexit>

 ⇡0(j�1)

Highest
Priority 

Transformed
 Space

<latexit sha1_base64="oKnuDPIxvdRdm8DI7RLQb3g3jM4=">AAADJHicbVJNbxMxEHWWrxK+WjhyWVFVKlIVJTm0OVbiwjFIpK2UrCLbO7trxV679iwkWuVPcOEKF34Gv6A3xIEL/AvOeJMccJqRVvv8ZizPvDfMSOGw2/3Viu7cvXf/wd7D9qPHT54+2z94fuF0ZTmMuJbaXjHqQIoSRihQwpWxQBWTcMlmb5r85QewTujyPS4MJIrmpcgEp+ipZDJ0YlpPjDjuv15O9w+7ne4q4tugtwGH50efbv5+P/sznB5ErUmqeaWgRC6pc+OBwaSmFgWXsGxPKgeG8hnNYexhSRW4pF41vYyPPJPGmbb+KzFesf/fqKlybqGYr1QUC7eda8hduXGF2SCpRWkqhJKvH8oqGaOOGwXiVFjgKBceUG6F7zXmBbWUo9cpeIVpPUPKXDBJPV8PEHC5paYQfB6yqpIorP4Ysq5inJpG/uXOmQLSe8e8VSoU01YS0pPGc1dWioGF1Msuc+3HKVQ/lL7GwoI/WPSzbNlSmzwzUqPb2crJxoLmjzDHsIgx31XbL01ve0Vug4t+p3faOX3nt2dA1rFHXpJX5Jj0yBk5J2/JkIwIJ9fkM/lCvkbfopvoR/RzXRq1NndekCCi3/8AFz4PkQ==</latexit>

 ⇡(2)

<latexit sha1_base64="hC30UHi5Nesop4PRsTY+JHaZEb0=">AAADOnicbVLPixMxFE7HX2v91dWjl9EidGEpbZG1CMKCF48r2N2FTi1JJjMTmkxC8rLbMvTsX+NVL/4jXr2JV/8AM+0cTLcPhvnyvRfyvvc9ogW3MBj8bEW3bt+5e+/gfvvBw0ePn3QOn55b5QxlE6qEMpcEWyZ4ySbAQbBLbRiWRLALsnhf5y+umLFclZ9gpdlM4rzkGacYPDXvvHibfa56iea90dHR+p1JknbIkHmnO+gPNhHfBMMGdFETZ/PDqJWkijrJSqACWzsda5hV2ACngq3bibNMY7rAOZt6WGLJ7KzaSFnHrzyTxpky/ish3rD/36iwtHYlia+UGAq7m6vJfbmpg2w8q3ipHbCSbh/KnIhBxfVc4pQbRkGsPMDUcN9rTAtsMAU/veAVotQCMLGBkmq5FRBwucG64HQZstIJ4EZdh6x1hGJdm7LeqykgvaPEGyjDYRonWHpcb4ItnSTMsNSPXeTKyynkKBx9BYVh/mDAa9mxpdJ5poUCu7eV48aC+g9sCWERIb6rtl+a4e6K3ATno/7wpH/y8XX3dNyszwF6jl6iHhqiN+gUfUBnaIIo+oK+om/oe/Qj+hX9jv5sS6NWc+cZCiL6+w98CRF4</latexit>

: f (⇡(2)) = r

: f (⇡(2)) = b

<latexit sha1_base64="8uCaZpufUloOt6s6ZY4sljNBSF0=">AAADHXicbVJNbxMxEHWWrxK+WuCGhFZUSEWqomwPJcdKHOBYJJJWSqPI9s5uTOy1scclYZX/wBUu/AP+BTfEFXHkn+BNcsBpRlrt85uxPG/eMCOFw273Tyu5dv3GzVs7t9t37t67/2B37+HAaW859LmW2p4z6kCKCvooUMK5sUAVk3DGpq+a/NklWCd09Q7nBkaKlpUoBKcYqMHlODv48GK8u9/tdJeRXgXZGuyfPP309/X3x/XpeC9pXeSaewUVckmdG/YMjmpqUXAJi/aFd2Aon9IShgFWVIEb1ctuF+nzwORpoW34KkyX7P83aqqcmysWKhXFidvMNeS23NBj0RvVojIeoeKrhwovU9RpIz3NhQWOch4A5VaEXlM+oZZyDAOKXmFaT5EyFympZysBEVdaaiaCz2JWeYnC6o8x6zzj1DRzX2zVFJHBNBY8UvEwrZeQHzZmu8orBhbyMHZZ6iBnoo7i0dc4sRAOFoOWDVtqUxZGanRbWzlcW9D8EWYYFzEWumqHpck2V+QqGBx1suPO8duwPT2yih3yhDwjByQjL8kJeUNOSZ9w8p58Jl/I1+Rb8iP5mfxalSat9Z1HJIrk9z8KrQss</latexit>

v1(q)

<latexit sha1_base64="R15ywLlmS5i+yMsnQDMchJJcx3Q=">AAADIXicbVLLbhMxFHWGVwmvFJZsBiqkIlXRpIuSTaVK3bBBKhJpK9Iosj2eGSt+1b4OiUb5C7aw4WvYoe4Qf8EX4EmywGmuNJrjc6/le+65xAjuIMt+t5I7d+/df7DzsP3o8ZOnzzq7z8+d9payAdVC20uCHRNcsQFwEOzSWIYlEeyCTE6b/MWUWce1+gRzw0YSl4oXnGII1OfpONu/fns8HV+PO3tZN1tGehv01mDv5FXVIR9u/p6Nd5PWVa6pl0wBFdi5Yd/AqMYWOBVs0b7yjhlMJ7hkwwAVlsyN6mXHi/RNYPK00DZ8CtIl+/+NGkvn5pKESomhcpu5htyWG3oo+qOaK+OBKbp6qPAiBZ028tOcW0ZBzAPA1PLQa0orbDGFMKToFaL1BDBxkZJ6thIQcaXFpuJ0FrPSC+BWf4lZ5wnFppn9YqumiAzGkeCTjIdpvWD5QWO4U14SZlkexi5KHeRU8jAefQ2VZeFgIWjZsKU2ZWGEBre1lYO1Bc0f2AziIkJCV+2wNL3NFbkNzg+7vaPu0cewPX20ih30Er1G+6iH3qET9B6doQGiSKGv6Bv6nvxIfia/kptVadJa33mBokj+/APifAzl</latexit>

v0(q) = vq

<latexit sha1_base64="4X0R5dzFP0n/qj7B6bjusVdrcUM=">AAADYnicbZLNbhoxEMcN9COlH4H22B5WjSKBhBDLIeFSKVIv7Y1KJYkEFNlmlrWw15Y9S0ErXqIv0jfoE/TaQy/Npc/Qc71AP5ZgabUzvxnL858ZZqRw2Ol8L5Urd+7eu3/0oPrw0eMnx7X600unU8thwLXU9ppRB1IkMECBEq6NBaqYhCs2f53HrxZgndDJe1wZGCs6S0QkOEWPJrW3i0n4atR3YpKNjGh0m+vGoqGbrSD6kDW2xKMcjKg0Mf2b5gED/Oc3J7WTTruzOcFtI9wZJxenn77++nJ+05/Uy6XRVPNUQYJcUueGPYPjjFoUXMK6OkodGMrndAZDbyZUgRtnG8nr4NSTaRBp678Egw39/0ZGlXMrxXymohi7/VgOD8WGKUa9cSYSkyIkfPtQlMoAdZD3L5gKCxzlyhuUW+FrDXhMLeXou1x4hWk9R8pcQUm23AoosJmlJhZ8WaQqlSis/likLmWcmnx464OaCtBPnvlBq2IzbSph2so3xiWpYmBh6tsuZ9rLiVW32PoMYwvesei17I0lM7PISI3uYCmt3QjyP8ISi0mM+aqqfmnC/RW5bVx22+FZ++yd354e2Z4j8py8JA0SknNyQd6QPhkQTj6Tb+QHuSn/rFQr9cqzbWq5tLuz8/+cyovf9GkgyQ==</latexit>

v1 =  ⇡(2)(v(o), f
(⇡(2))(o),↵⇡(2),�⇡(2))

<latexit sha1_base64="DDL3pgmUQx1lxQ3zrMPDiVZNoho=">AAADJHicbVI9b9swEKXVr9T9Stqxi9AgQAoEhp0h8RggS0cXqJMAtmCQ1EkiTIoMeWxtCP4TWbq2S39Gf0G2okOX9l90LmV7qBwfIOjx3RG8e++YkcJht/urFd27/+Dho53H7SdPnz1/sbv38sJpbzkMuZbaXjHqQIoShihQwpWxQBWTcMmm53X+8iNYJ3T5AecGEkXzUmSCUwxUMh44ManGRhz23i4mu/vdTncZ8V3QW4P9s4Ob27/fT/8MJntRa5xq7hWUyCV1btQ3mFTUouASFu2xd2Aon9IcRgGWVIFLqmXTi/ggMGmcaRu+EuMl+/+Niirn5oqFSkWxcJu5mtyWG3nM+kklSuMRSr56KPMyRh3XCsSpsMBRzgOg3IrQa8wLainHoFPjFab1FClzjUmq2WqABpdbagrBZ01WeYnC6k9N1nnGqanlX2ydqUEG71iwSjXFtF5CelR77kqvGFhIg+wy12GcQh03pa+wsBAOFsMsG7ZUJs+M1Oi2tnK0tqD+I8ywWcRY6Kodlqa3uSJ3wcVxp3fSOXkftqdPVrFDXpM35JD0yCk5I+/IgAwJJ9fkM/lCvkbfotvoR/RzVRq11ndekUZEv/8BFIgPkA==</latexit>

 ⇡(1)

<latexit sha1_base64="qW/DYJ7NSE5VEEPgo2zvcvsFCfw=">AAADgnicdVJNbxMxEHWyBUr4SuHIZUWElKIqygbURgikSlw4Fom0lbIhsr2zGyv22rJn20Sr/EbO/BCugDfJgU3TkSw/v5mR5+MxI4XDfv9XoxkcPHj46PBx68nTZ89ftI9eXjpdWA4jrqW214w6kCKHEQqUcG0sUMUkXLH5l8p/dQPWCZ1/x6WBiaJZLlLBKXpq2hYf0x9lNzaiO4hvIckgjI6PV59tFset/S52v8su789aTtudfq+/tvAuiLagQ7Z2MT1qNuJE80JBjlxS58ZDg5OSWhRcwqoVFw4M5XOawdjDnCpwk3I9klX41jNJmGrrT47hmv0/o6TKuaViPlJRnLldX0Xu840LTIeTUuSmQMj55qO0kCHqsJpvmAgLHOXSA8qt8LWGfEYt5ei3UPuFaT1Hylytk3KxaaDGZZaameCLOqsKicLq2zrrCsapqZa72ttTjfTKYF4Iqj5MW0hITipFubxQDCwkfuwy076dmRrUR1/izIJ/WPS97KylNFlqpEa3t5ST7QqqG2GB9SDGfFUtL5poVyJ3weWgF532Tr996JwPt/I5JK/JG9IlETkj5+QruSAjwslP8pv8IX+Dg+BdEAXvN6HNxjbnFalZ8OkfaEUmwQ==</latexit>

: f (⇡(2^1)) = rg

: f (⇡(2^1)) = bg

: f (⇡(2^1)) = ry

: f (⇡(2^1)) = by

<latexit sha1_base64="8uCaZpufUloOt6s6ZY4sljNBSF0=">AAADHXicbVJNbxMxEHWWrxK+WuCGhFZUSEWqomwPJcdKHOBYJJJWSqPI9s5uTOy1scclYZX/wBUu/AP+BTfEFXHkn+BNcsBpRlrt85uxPG/eMCOFw273Tyu5dv3GzVs7t9t37t67/2B37+HAaW859LmW2p4z6kCKCvooUMK5sUAVk3DGpq+a/NklWCd09Q7nBkaKlpUoBKcYqMHlODv48GK8u9/tdJeRXgXZGuyfPP309/X3x/XpeC9pXeSaewUVckmdG/YMjmpqUXAJi/aFd2Aon9IShgFWVIEb1ctuF+nzwORpoW34KkyX7P83aqqcmysWKhXFidvMNeS23NBj0RvVojIeoeKrhwovU9RpIz3NhQWOch4A5VaEXlM+oZZyDAOKXmFaT5EyFympZysBEVdaaiaCz2JWeYnC6o8x6zzj1DRzX2zVFJHBNBY8UvEwrZeQHzZmu8orBhbyMHZZ6iBnoo7i0dc4sRAOFoOWDVtqUxZGanRbWzlcW9D8EWYYFzEWumqHpck2V+QqGBx1suPO8duwPT2yih3yhDwjByQjL8kJeUNOSZ9w8p58Jl/I1+Rb8iP5mfxalSat9Z1HJIrk9z8KrQss</latexit>

v1(q)
<latexit sha1_base64="J34UaX1+KXu90RvOxJU2kEKGBFU=">AAADHXicbVJNbxMxEHWWrxK+WuCGhFZUSEWqoiSHkmMlDnAsEkkrpVFke2c3Jvba2OM26Sr/gStc+Af8C26IK+LIP8Gb5IDTjLTa5zdjed68YUYKh+32n0Zy4+at23d27jbv3X/w8NHu3uOB095y6HMttT1j1IEUJfRRoIQzY4EqJuGUTd/U+dMLsE7o8gPODYwULUqRC04xUIOLcffg06vx7n671V5Geh101mD/+PnV37ffn1Yn472kcZ5p7hWUyCV1btgzOKqoRcElLJrn3oGhfEoLGAZYUgVuVC27XaQvA5OlubbhKzFdsv/fqKhybq5YqFQUJ24zV5PbckOPeW9UidJ4hJKvHsq9TFGntfQ0ExY4ynkAlFsRek35hFrKMQwoeoVpPUXKXKSkmq0ERFxhqZkIPotZ5SUKqy9j1nnGqannvtiqKSKDaSx4pOJhWi8hO6zNdqVXDCxkYeyy0EHORHXj0Vc4sRAOFoOWDVsqU+RGanRbWzlcW1D/EWYYFzEWumqGpelsrsh1MOi2Oketo/dhe3pkFTvkGXlBDkiHvCbH5B05IX3CyUfymXwhX5NvyY/kZ/JrVZo01neekCiS3/8ADWQLLQ==</latexit>

v2(q)

<latexit sha1_base64="R15ywLlmS5i+yMsnQDMchJJcx3Q=">AAADIXicbVLLbhMxFHWGVwmvFJZsBiqkIlXRpIuSTaVK3bBBKhJpK9Iosj2eGSt+1b4OiUb5C7aw4WvYoe4Qf8EX4EmywGmuNJrjc6/le+65xAjuIMt+t5I7d+/df7DzsP3o8ZOnzzq7z8+d9payAdVC20uCHRNcsQFwEOzSWIYlEeyCTE6b/MWUWce1+gRzw0YSl4oXnGII1OfpONu/fns8HV+PO3tZN1tGehv01mDv5FXVIR9u/p6Nd5PWVa6pl0wBFdi5Yd/AqMYWOBVs0b7yjhlMJ7hkwwAVlsyN6mXHi/RNYPK00DZ8CtIl+/+NGkvn5pKESomhcpu5htyWG3oo+qOaK+OBKbp6qPAiBZ028tOcW0ZBzAPA1PLQa0orbDGFMKToFaL1BDBxkZJ6thIQcaXFpuJ0FrPSC+BWf4lZ5wnFppn9YqumiAzGkeCTjIdpvWD5QWO4U14SZlkexi5KHeRU8jAefQ2VZeFgIWjZsKU2ZWGEBre1lYO1Bc0f2AziIkJCV+2wNL3NFbkNzg+7vaPu0cewPX20ih30Er1G+6iH3qET9B6doQGiSKGv6Bv6nvxIfia/kptVadJa33mBokj+/APifAzl</latexit>

v0(q) = vq

<latexit sha1_base64="3FHmtDM9EF92rf85ZW91r7t5ajs=">AAADYnicbZLNbhoxEMcN9COlH4H22B5WjSKBhBDLIeFSKVIv7Y1KJYkEFNlmlrWw15Y9S0ErXqIv0jfoE/TaQy/Npc/Qc71AP5ZgabUzvxnL858ZZqRw2Ol8L5Urd+7eu3/0oPrw0eMnx7X600unU8thwLXU9ppRB1IkMECBEq6NBaqYhCs2f53HrxZgndDJe1wZGCs6S0QkOEWPJrW3i0n31ajvxCQbGdEIm+vGoqGbrSD6kDW2xKMcjKg0Mf2b5gED/Oc3J7WTTruzOcFtI9wZJxenn77++nJ+05/Uy6XRVPNUQYJcUueGPYPjjFoUXMK6OkodGMrndAZDbyZUgRtnG8nr4NSTaRBp678Egw39/0ZGlXMrxXymohi7/VgOD8WGKUa9cSYSkyIkfPtQlMoAdZD3L5gKCxzlyhuUW+FrDXhMLeXou1x4hWk9R8pcQUm23AoosJmlJhZ8WaQqlSis/likLmWcmnx464OaCtBPnvlBq2IzbSph2so3xiWpYmBh6tsuZ9rLiVW32PoMYwvesei17I0lM7PISI3uYCmt3QjyP8ISi0mM+aqqfmnC/RW5bVx22+FZ++yd354e2Z4j8py8JA0SknNyQd6QPhkQTj6Tb+QHuSn/rFQr9cqzbWq5tLuz8/+cyovf7Bsgxg==</latexit>

v2 =  ⇡(1)(v(o), f
(⇡(1))(o),↵⇡(1),�⇡(1))

<latexit sha1_base64="SM81B1mQQ39nACCIa2R/mbO47bc=">AAADV3icbVLfjxIxEC6gJ+KPA330werFeCaEsDycxARziYm5x7tEuEsASdst0NBul3Z6stlwf41/ja/6cv+H79pliXE5Jmk68800nW++obEUFtrt21K5cu/+wYPqw9qjx0+eHtYbzwZWO8N4n2mpzRUllksR8T4IkPwqNpwoKvklXXzK8pfX3Fihoy+QxHysyCwSU8EIeGhS/zgCvoL0LKFGhPjCcZN8uFkvcQ8PryfLJv78NT0O3q0ny96Ntzzu/IvHk/pRu9XeGL7rBFvn6PRtbyB/v3x1PmmUS6NQM6d4BEwSa4fdGMYpMSCY5OvayFkeE7YgMz70bkQUt+N0w3ON33gkxFNt/IkAb9D/X6REWZso6isVgbndzWXgvtzQwbQ7TkUUO+ARyz+aOolB42xoOBSGM5CJdwgzwveK2ZwYwsCPtvAL1XoBhNoCk3SVEyhgM0PiuWCrIqqcBGH0tyJqHWUkzhRb7+VUAL3c1KurisM0TvKwma2JjZyi3PDQj13OtKczV53i6FOYG+4DA57LjixpPJvGUoPd20pzK0F2Z5tVLKLUd1XzSxPsrshdZ9BpBSetkwu/PV2UWxW9QK/RMQrQe3SKztA56iOGvqMf6Cf6Vb4t/6kcVKp5abm0ffMcFazS+AsP8x5Z</latexit>

Hybrid Query: q = [vq, F
(1)
q = , F (2)

q = ]

<latexit sha1_base64="UwEb5M+zC+8ybU5LFQXg6n6CxuI=">AAADb3icbVJNaxsxEJXtfqTuR5z2kEOhiCaFBILxGpr6GCiEHhOonYDXNZKs3RWWVos029qI/Wftuddee+21vfQfVGv7UDkWLDvzZoTmvXm0kMJCr/ez0Wzdu//g4d6j9uMnT5/tdw6ej6wuDeNDpqU2t5RYLkXOhyBA8tvCcKKo5Dd0/r6u33zmxgqdf4RlwSeKpLlIBCPgoWlnFCsCGSPSXVZTF1U4tiVjOED7VWxEmgExRn+JgS/AXQpjAR8nn9xJ/7Q6PsOQ8XydRz6vpp2jXre3OvhuEG2Co4vDH2+/XXe/X00Pmo14plmpeA5MEmvHgwImjhgQTPKqHZeWF4TNScrHPsyJ4nbiVvwr/MYjM5xo478c8Ar9/4Yjytqlor6z5mW3azW4qzYuIRlMnMiLEnjO1g8lpcSgcS0mngnDGcilDwgzws+KWUYMYeAlD16hWs+BUBswcYs1gQBLDSkywRYhqkoJwssforakjBT1JqudnALQ24D6ratQTFNKPjur7WPzUlFu+MzLLlPt6WSqH0rvIDPcJwY8l621uCJNCqnB7hzlbLOC+l87KGyi1E/V9qaJti1yNxj1u9F59/zau2eA1mcPvUSv0QmK0Dt0gT6gKzREDH1Fv9Bv9Kf5t3XYetXC69ZmY3PnBQpO6/Qf7FcoLA==</latexit>

F1 � F2 ! First f (2), then f (1)

(a) (b) (c) (d)

Figure 2: (a): The effect of α and β. (b): Multi-attribute iterative space overview. (c): Attribute or prority
effect on our approach. (d): Range filter ANN analogy of cylinder

an attribute vector f(oi) ∈ Rm with m < d, we partition v(oi) into d/m blocks v(1), . . . , v(⌈d/m⌉),
each in Rm. We then define the transformation:

Ψ(v, f, α, β) =

[
v(1) − αf

β
, . . . ,

v(⌈d/m⌉) − αf

β

]
∈ Rd (5)

where α > 1 and β > 1 are scaling parameters. For exposition we assume m | d; otherwise, on the
last block v(⌈d/m⌉) we use the truncated attribute vector f [: d −m⌊d/m⌋] to match dimensions.
As illustrated in Fig. 1, the transformation is first applied to the data offline to build the index, and
the same transformation is used online to process queries for retrieval (Fig. 1(b)). This creates a
combined space that incorporates both the content representation and the attribute filters (such as
Tag), where the attribute vectors can be generated using models like BERT (Devlin et al., 2019) or
CLIP (Radford et al., 2021) to embed tags into a metric space before integration into the content
vector (For a numerical example, see §B).

The parameter α increases the separation between records with different attribute values,
while β compresses all distances to regularize the fused space (see Fig. 2(a)). In prac-
tice, α and β should be chosen large enough to ensure sufficient separation and regular-
ization, but not so large as to introduce unnecessary computational complexity. Alg. 1
shows the building of the fused space and index, query generation, and result process-
ing; as in line 15, we choose to include approximate attributes or only exact ones.

Algorithm 1 Single-Attribute Hybrid Vector Indexing
(FusedANN)
1: [Offline Indexing] Require: DatasetD, Optimal parameters

α > 1, β > 1
2: for each oi in D do
3: Partition v(oi) into v(1), . . . , v(d/m)

4: Transform using given parameters α, β: v′i =

Ψ(v(oi), f(oi), α, β) =
[
v(1)−αf

β
, . . . , v(d/m)−αf

β

]
5: Add v′i to index, retaining reference to oi
6: end for
7: Precompute for each attribute a: radius Ra, minimum inter-

cluster distance dmin(a, b), and cluster separation metric
γa = minb̸=a

dmin(a,b)
Ra

− 1

8: [Online Query Processing] Require: Query q = [v(q), Fq],
k, α, β, error probability ϵ, Boolean AttrApprox

9: Partition v(q) into v
(1)
q , . . . , v

(d/m)
q

10: Transform: q′ = Ψ(v(q), Fq, α, β)
11: Compute k′ (Thm. 2)
12: Retrieve top-k′ candidates from index using q′

13: for each candidate oi do
14: Compute attribute distance: sf = σ(f(oi), Fq)
15: if AttrApprox = False AND sf ̸= 0 then
16: continue;
17: end if
18: Compute content distance: sv = ρ(v(oi), v(q))
19: Compute combined score: score(oi) = αsf + βsv
20: end for
21: Sort candidates by score and return top-k

At query time, the query q = [v(q), Fq]
(content v(q) and attribute Fq) is trans-
formed as q′ = Ψ(v(q), Fq, α, β).

For each attribute a, we define Ra as
the radius of the smallest hypersphere
containing all transformed records with
attribute a, dmin(a, b) as the minimum
distance between records with attributes
a and b, and γa = minb̸=a

dmin(a,b)
Ra

−1
as the cluster separation metric. Na

denotes the number of records with at-
tribute a, and N is the total number of
records. These statistics are used to de-
termine the optimal candidate set size
k′(line 11) when processing queries;
we pick the smallest k′ satisfying the
candidate-size guarantee so the true top-
k are covered in the fused-space region,
with k′ ≥ k.

Our theoretical analysis (detailed in the
Supplementary Material §E) proves that
the transformation Ψ has several key
properties: (i) it preserves the order of
k-NN within clusters of records with
identical attributes, enabling accurate
content-based ranking within attribute
groups; (ii) it increases separation be-
tween records with different attributes
proportionally to α, improving filtering effectiveness; and (iii) it scales all distances by 1/β, control-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ling overall concentration. These properties enable principled parameter selection: α should satisfy
α > β·δmax

σmin·
√

d/m
·(1+ ϵf ·β

δmax
) where δmax is the maximum content distance and σmin is the minimum

attribute distance, while β > δmax

ϵf
ensures intra-cluster distances are bounded by ϵf (Thm. 4). The

optimal values for α and β involves setting inequalities to equal (Cor. 1). The formula for k′ handles
special cases like single-record attributes and identical-content records within an attribute (Ra = 0),
providing probabilistic guarantees for retrieving the true top-k results.

Complexity. The offline phase requires O(Nd) time to transform the dataset of N records with
d-dimensional vectors, plus O(|F|2N) time to compute cluster statistics where |F| is the number
of distinct attributes. The storage overhead is O(N) for vectors plus O(|F|2) for cluster statistics,
and we do not duplicate base vectors: the index stores only the transformed vector and a pointer
to the original record. For online processing, query transformation takes O(d) time, followed
by O(k′ logN) time for retrieving candidates and O(k′d) time for pointer-only re-ranking. As α
increases, the required k′ approaches k, so post-processing becomes akin to standard ANN re-ranking,
minimizing overhead. This makes FUSEDANN efficient for practical applications where the number
of distinct attributes is much smaller than the dataset size.

4 MULTI-ATTRIBUTES AND ATTRIBUTE HIERARCHY

Real-world search scenarios often involve multiple filtering attributes, each with different levels
of importance (Def. 3). For example, an e-commerce platform might prioritize matching product
categories first, then brands, and finally price ranges. In this section, we extend FUSEDANN to
elegantly handle multiple attributes by applying our transformation sequentially, creating a natural
hierarchy that controls their relative importance. In this section, we also assume ∀j ∈ [1,F] : mj | d.

Recursive Transformations. The key insight of our approach is remarkably simple: by applying
the transformation Ψ repeatedly for each attribute, we create a unified space that respects attribute
priorities. Starting with the original content vector v0 = v(oi), we apply each transformation in
sequence:

vj = Ψj(vj−1, f
(j)(oi), αj , βj) for j = 1, 2, . . . ,F (6)

where each transformation uses its own parameters αj > 1 and βj > 1. The final transformed vector
vF integrates information from all attributes. As illustrated in Fig. 2(b), this process can be visualized
with a simple example using two attributes, where each transformation progressively incorporates
attribute information to refine the grouping of records.

This sequential approach creates a natural priority structure with three powerful properties (formally
proven in the appendix). First, the order of elements with identical attributes is preserved through
all transformations, ensuring that content-based ranking remains accurate within attribute-matched
groups (Thm. 6).

Second, and crucially, the order of transformation application establishes a clear priority hierarchy:
the later an attribute is applied, the higher its effective priority in determining the vector space
structure (Thm. 7). As shown in Fig. 2(b), the transformation of the attribute with lower priority, π(2),
is applied first, followed by the higher-priority attribute, π(1), resulting in the desired hierarchical
organization. This occurs because later transformations’ effects are scaled by fewer β factors, giving
them greater influence on the final distances. We show that when transformations are applied in
reverse priority order, the resulting space inherently satisfies the monotone attribute priority property
defined in Def. 3 (Thm. 8).

Third, our framework creates a natural stratification of records based on how many attributes match
the query (Thm. 9). Records with more matching attributes will always be closer to the query than
those with fewer matches, regardless of the content similarity. This creates well-defined "layers"
in the vector space, with the innermost layer containing records matching all attributes, the next
layer containing those matching all but one, and so on. Moreover, there always exist suitable
transformation settings such that this attribute matching hierarchy holds for all cross-clusters pair of
records (Thm. 10).

Example 2. Imagine a product catalog with transformations applied in the order
(f (color), f (size), f (brand)). This makes brand the highest-priority attribute, followed by size, and
then color. When searching, the retrieved products primarily match the brand specified in the query,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

then the size, and finally the color. Additionally, products are ranked by content similarity. For more
intuition, see §F.2.

For multi-attribute retrieval, we extend Alg. 1 to apply transformations sequentially for each
attribute (see Alg. 3). The key differences are: (1) transformations are applied iteratively as
vj ← Ψj(vj−1, f

(j)(o), αj , βj) over all records for each attribute j ∈ {1, . . . ,F}; (2) the opti-
mal parameters α and β of subsequent fused space is computed for each new attribute transformation
iteratively; and (3) the candidate set size k′ is determined using Thm. 11, reflecting the narrowing
effect of multiple filters (§F.6).

Time complexity remains O(Nd) for preprocessing transformations, though computing statistics
for all attribute combinations increases with the number of attributes. The query transformation is
efficient at O(Fd) time. Importantly, as F increases, fewer candidates are typically needed due to
better separation in the transformed space, improving search efficiency..

4.1 ATTRIBUTE UPDATES IN FUSEDANN

Real-world applications often need to add new attributes (as metadata) or change priority orderings
as requirements evolve. FUSEDANN handles these scenarios efficiently without requiring complete
index reconstruction. When adding a new attribute with the highest priority, we simply apply
an additional transformation to the already transformed vectors. For attributes inserted at lower
priorities, a partial reconstruction is needed, but only from the insertion point forward. Similarly,
when the priority orderings change, we need only to recompute transformations beyond the point
where the old and new orderings differ: j = min{k : ∀i ≥ k, π(i) = π′(i)}. This limits the
computational complexity to O(N.j.d), substantially lower than the full recomputation, since only
a partial reconstruction is required for indexes lower than j (see Fig. 2(c)). This update efficiency
makes FUSEDANN particularly well-suited for dynamic applications where attribute importance
evolves over time, such as in recommendation systems where feature relevance changes based on
user behavior. Note that standard data updates (e.g., new attribute values) are handled via native ANN
insertion; the reconstruction bound O(N · j · d) applies only to infrequent global re-prioritizations or
when a new attribute field is added to the filtered index. See §F.7 for analysis.

5 RANGE FILTER ON FUSEDANN

Range queries seek records whose attribute values fall within a specified attribute range [l, u], ranked
by similarity to a query vector q. Formally, a range query is Q = (q, l, u) where q ∈ Rd and
l, u ∈ Rm. Our fused space has an elegant geometric characteristics that allows us instead of
indexing the points and then create feasible range at the runtime, index range queries and approximate
nearest range query at runtime. A range query can be defined as a cylinder in the fused space that
precisely captures all potential eligible nearest points to q within [l, u]. The axis of the cylinder (line
segment) obtains by Ψ to the boundaries: pl := Ψ(q, l, α, β), pu := Ψ(q, u, α, β) parameterized as
L(Q, t) = (1− t) · pl + t · pu, where t ∈ [0, 1] (or LQ in short).

For attribute values f ∈ [l, u] in range-filtered query, the transformed query points pf := Ψ(q, f, α, β)
lie exactly on LQ in the fused embedding space (Thm. 15). Moreover, the vertical distance from
LQ measures how well q is approximated and scales with its vector similarity. Geometrically, each
range-filtered query maps to a cylinder in the fused space. This relationship offers a unified geometric
framework for jointly handling attribute range filtering and vector similarity. Formally, if v ̸= q, the
transformation of vf = Ψ(v, f, α, β) vertical distance to LQ is exactly ∥v−q∥

β (Thm. 16). Leveraging
this traceability, we define a cylindrical range query by introducing a radius-r query cylinder around
LQ: Tube(Q, r) = {z ∈ Rd | mint∈[0,1] ∥z − L(Q, t)∥ ≤ r} (see Fig. 2(d)).

During indexing, we create cylinders that cover the fused space with an optimal radius r = R. This
radius—ensuring high-probability top-k′ recall—is precomputed for each indexed line segment using
the k′-th neighbor distance, dataset size, and similarity distribution. (Thm. 18). To efficiently cover
the fused space with cylinders defined by pairs of offline data, which is crucial for fast retrieval, we
use an adaptive sampling strategy during indexing over the fused space. At query time, for a top-k
query Q′ = (q′, l′, u′) (where k < k′), we must find the nearest indexed cylindrical Tube(Q,R) with
Hausdorff distance closest axis LQ to LQ′ . The gap between k and k′ guarantees high recall by
providing the flexibility needed to approximate LQ′ with Tube(Q,R). The base radius R is stored

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Query Segment Line
Nearest CylinderStrategically Sampling

<latexit sha1_base64="3H9UhtJKku2n2HoB7KdVOg5FrB4=">AAADGnicbVJNbxMxEHW2fJTw1ZYjlxUREocqSqqq9NiKCwcOrSBtpTSKbO/srhV7bdljmmgViT/AFS78Gm6Iay/9N3iTHHCakSy/fTMrz5s3zEjhsNe7ayVbDx4+erz9pP302fMXL3d29y6c9pbDgGup7RWjDqSoYIACJVwZC1QxCZds8qHJX34F64SuvuDMwEjRohK54BQD9fnT+Hy80+l1e4tI74P+CnTIKs7Gu0nrOtPcK6iQS+rc8NjgqKYWBZcwb197B4byCS1gGGBFFbhRvWh1nr4NTJbm2oZTYbpg//+jpsq5mWKhUlEs3XquITflhh7z41EtKuMRKr58KPcyRZ02utNMWOAoZwFQbkXoNeUltZRjmE70CtN6gpS5SEk9XQqIuMJSUwo+jVnlJQqrb2LWecapaYY+36gpIoNjLBik4mFaLyHbb5x2lVcMLGRh7LLQQU6pDuLR11haCB8Wg5Y1W2pT5EZqdBtb2V9Z0NwIU4yLGAtdtcPS9NdX5D64OOj2j7pH54edk9Nvy/XZJq/JG/KO9Ml7ckI+kjMyIJwU5Dv5QX4mv5LfyZ/k77I0aa1W7hWJIrn9B2LIB5I=</latexit>

LQ

<latexit sha1_base64="KBRxmiXOYUf2pBsYvXCqEV54TZo=">AAADGnicbVJNbxMxEHWWrxK+WjhyWREhIVRFSYVKj0VcOHAogrSV0lDZ3tldK/6SPYZEq0j8Aa5w4ddwQ1y58G/wJjngNCNZfvtmVp43b5iVwuNg8LeTXbt+4+atndvdO3fv3X+wu/fw1JvgOIy4kcadM+pBCg0jFCjh3Dqgikk4Y9PXbf7sEzgvjP6AcwsTRSstSsEpRur924/PL3d7g/5gGflVMFyDHlnHyeVe1rkoDA8KNHJJvR8fWZw01KHgEhbdi+DBUj6lFYwj1FSBnzTLVhf508gUeWlcPBrzJfv/Hw1V3s8Vi5WKYu03cy25LTcOWB5NGqFtQNB89VAZZI4mb3XnhXDAUc4joNyJ2GvOa+ooxzid5BVmzBQp84mSZrYSkHCVo7YWfJayKkgUznxOWR8Yp7Yd+mKrpoSMjrFokEqH6YKEYr912uugGDgo4thlZaKcWh2ko2+wdhA/HEYtG7Y0tiqtNOi3trK/tqC9EWaYFjEWu+rGpRlurshVcHrQHx72D9+96B2/+rJanx3ymDwhz8iQvCTH5A05ISPCSUW+km/ke/Yj+5n9yn6vSrPOeuUekSSyP/8A9pgHag==</latexit>

L⇤

Fused Space

Build Hierarchical 
Indexing 

(a)
(b) Hausdorff distance

(c)

Angular Cells 
with Resolution 

<latexit sha1_base64="PgLqmNl8pcMkOxN0vglgDyIHjGA=">AAADGnicbVJNbxMxEHWWrxK+WjhyWREhcaiipKpKj5WQEMciSFspiSrbO7trxV+yx5BoFYk/wBUu/BpuiCsX/g3eJAecZiTLb9/MyvPmDbNSeBwM/nayW7fv3L23d7/74OGjx0/2D55eeBMchxE30rgrRj1IoWGEAiVcWQdUMQmXbPamzV9+AueF0R9xYWGqaKVFKTjFSH2Y6HC93xv0B6vIb4LhBvTIJs6vD7LOpDA8KNDIJfV+fGpx2lCHgktYdifBg6V8RisYR6ipAj9tVq0u85eRKfLSuHg05iv2/z8aqrxfKBYrFcXab+daclduHLA8nTZC24Cg+fqhMsgcTd7qzgvhgKNcREC5E7HXnNfUUY5xOskrzJgZUuYTJc18LSDhKkdtLfg8ZVWQKJz5nLI+ME5tO/TlTk0JGR1j0SCVDtMFCcVh67TXQTFwUMSxy8pEObU6SkffYO0gfjiMWrZsaWxVWmnQ72zlcGNBeyPMMS1iLHbVjUsz3F6Rm+DiqD886Z+8P+6dvf2yXp898py8IK/IkLwmZ+QdOScjwklFvpJv5Hv2I/uZ/cp+r0uzzmblnpEksj//ABmjB9o=</latexit>⌫(d)

Base Rdius 

Adjustmented Radius

Max Radius

Section

(e)

<latexit sha1_base64="rjUUqoTn/1URBGIXs01qqrYlEq0=">AAADGHicbVJNbxMxEHWWj5bw1cKRy4oIiUMVJRUqPVZCQhxbRNpKaVTZ3tldK/6SPaaJVpG4c4ULv4Yb4sqNf4M3yQGnGcny2zez8rx5w6wUHgeDv53szt1793d2H3QfPnr85One/rNzb4LjMOJGGnfJqAcpNIxQoIRL64AqJuGCTd+1+YvP4Lww+hPOLUwUrbQoBacYqbOP13u9QX+wjPw2GK5Bj6zj9Ho/61wVhgcFGrmk3o+PLU4a6lBwCYvuVfBgKZ/SCsYRaqrAT5plo4v8VWSKvDQuHo35kv3/j4Yq7+eKxUpFsfabuZbclhsHLI8njdA2IGi+eqgMMkeTt6rzQjjgKOcRUO5E7DXnNXWUY5xN8gozZoqU+URJM1sJSLjKUVsLPktZFSQKZ25S1gfGqW1HvtiqKSGjXyzao9JhuiChOGh99jooBg6KOHZZmSinVofp6BusHcQPh1HLhi2NrUorDfqtrRysLWhvhBmmRYzFrrpxaYabK3IbnB/2h0f9o7M3vZP3X1brs0tekJfkNRmSt+SEfCCnZEQ4AfKVfCPfsx/Zz+xX9ntVmnXWK/ecJJH9+QdLggbZ</latexit>

R

Section
Section

Midpoint

Sub-Line

Se
ct

io
n

<latexit sha1_base64="HYTynveUT+cG5gLu7PXGOAwdiuk=">AAADNXicbVLNjtMwEHbD31L+unCEQ8QKiUNUpYvULbcVSMBxQXR3pTaqbMdJrNqxZU+gVRQJ8Qq8BFe48CwcuCGuvAJOugfc7UiWx99MMvPNfEQLbiGOf/aCK1evXb+xd7N/6/adu/cG+/dPraoMZVOqhDLnBFsmeMmmwEGwc20YlkSwM7J82cbPPjBjuSrfw1qzROK85BmnGBy0GDyaA1tB95/Zu9cvknp09DwaT6K4qU2zGBzEw7iz8LIzunAOjqMvz1o7WewHvXmqaCVZCVRga2cTDUmNDXAqWNOfV5ZpTJc4ZzPnllgym9Rd9SZ84pA0zJRxp4SwQ///osbS2rUkLlNiKOx2rAV3xWYVZJOk5qWugJV0UyirRAgqbEcSptwwCmLtHEwNd72GtMAGU3CD86oQpZaAifWY1KsNAQ/LDdYFpysflZUAbtRHH7UVoVi3+2h2cvJAt0zidif9YZpKsDRqRWDLShJmWOrGLnLl6BTy0B99DYVh7mHAcdlaS63zTAsFdmcr0cUK2rvVjZ9EiOuq70Qz2pbIZef0cDgaD8dvnXpefUKd7aGH6DF6ikboCB2jN+gETRFFn9FX9A19D34Ev4LfwZ9NatDb3OgB8iz4+w8nWhOM</latexit>r
<latexit sha1_base64="vRAMrjy/am6lyqxaSKCGEbagHRw=">AAADPHicbVJNb9NAEN2YrxK+WjhysaiQOFhRHEjJsSoScCyItJUSq9pdj+1Vdr3W7pgmsixx5cwP4QoX/gd3bogrZ9ZODzjNSNaO34y9M+89VkhhcTj82fOuXb9x89bO7f6du/fuP9jde3hidWk4TLmW2pwxakGKHKYoUMJZYYAqJuGULV419dOPYKzQ+QdcFRApmuYiEZyig8539+cIS2z/M3v/5iiqRuNxEI5fBKNJXc0xA6S16xoOhm34V5PwMtk/DL48b+L4fM/rzWPNSwU5ckmtnU0KjCpqUHAJdX9eWigoX9AUZi7NqQIbVe0Qtf/UIbGfaOOeHP0W/f+LiiprV4q5TkUxs5u1BtxWm5WYTKJK5EWJkPP1RUkpfdR+w4wfCwMc5collBvhZvV5Rg3l6Pjr3MK0XiBltrNJtVwv0MFSQ4tM8GUXVaVEYfRFF7Ul47RoZKm37tQBnabMSai6ZJpSQhw0XrB5qRgYiB3tMtVunUyNutRXmBlwLwbdLhuyVEWaFFKj3TpKcClBczb26TYx5qbqO9OEmxa5mpyMBuHB4OCdc8/rT6SNHfKYPCHPSEhekkPylhyTKeHkM/lKvpHv3g/vl/fb+7Nu9XrrkzwinfD+/gPqkBYz</latexit>

✓

<latexit sha1_base64="K8WUdF+VYwN6gUxmZst/cojWmFc=">AAADN3icbVLNjtMwEHbD31L+unBEQhErJA5R1ZTdZY8rkIDjgujuSm1U2Y6TWLXjyB5DqygSB96At+AKFx6FEzfElTfASfeAux3J8vibSWa+mY9UghsYjX72gitXr12/sXOzf+v2nbv3Brv3T42ymrIJVULpc4INE7xkE+Ag2HmlGZZEsDOyeNnGzz4wbbgq38OqYonEeckzTjE4aD54NAO2hO4/03evXyR1HEfx/n40Pjhoamjmg73RcNRZeNmJL5y94+jLs9ZO5rtBb5YqaiUrgQpszPSogqTGGjgVrOnPrGEVpgucs6lzSyyZSequfhM+cUgaZkq7U0LYof9/UWNpzEoSlykxFGYz1oLbYlML2VFS87KywEq6LpRZEYIK26GEKdeMglg5B1PNXa8hLbDGFNzovCpEqQVgYjwm9XJNwMNyjauC06WPSiuAa/XRR40lFFftRpqtnDzQrZO47Ul/mNoKlkatDExpJWGapW7sIleOTiHH/uhrKDRzDw2Oy8Za6irPKqHAbG0lulhBe7fK8ZMIcV31nWjiTYlcdk7Hw/hwePjWqefVJ9TZDnqIHqOnKEbP0TF6g07QBFH0GX1F39D34EfwK/gd/FmnBr31jR4gz4K//wB4YxP6</latexit>

t

Cylinderical Indexing 

Index over  <latexit sha1_base64="RaeztvOrsUi++puikcdeZP5UgD0=">AAADGHicbVJNaxsxEJW3H0ndr6Q99rLUFHoIZp1DklsDgdJjAnUScEyQtLO7wtJKSKPWZjH03mt76a/prRTaS2/9N9Wuc6gcDwg9vRmheW/EjBQOs+xvL7lz9979re0H/YePHj95urP77NxpbzmMuZbaXjLqQIoaxihQwqWxQBWTcMFmJ23+4gNYJ3T9HhcGpoqWtSgEpxioM3u9M8iGWRfpbTC6AYM3v7r4fXq9m/Sucs29ghq5pM5NjgxOG2pRcAnL/pV3YCif0RImAdZUgZs2XaPL9FVg8rTQNqwa0479/0ZDlXMLxUKloli59VxLbspNPBZH00bUxiPUfPVQ4WWKOm1Vp7mwwFEuAqDcitBryitqKcfgTfQK03qGlLlISTNfCYi40lJTCT6PWeUlCqs/xqzzjFPTWr7cqCkiw7xYGI+KzbReQr7XztnVXjGwkAfbZamDnErtx9Y3WFkIB4tBy9pYGlMWRmp0G1vZuxlBuyPMMS5iLHTVD59mtP5FboPz/eHoYHhwlg2O334iXWyTF+QleU1G5JAck3fklIwJJ0A+ky/ka/It+Z78SH6uSpPeaifPSRTJn39jPAzJ</latexit>r(f)

Directional
Partitioning

Direction
Vectors (DV)

DV Index

<latexit sha1_base64="KBRxmiXOYUf2pBsYvXCqEV54TZo=">AAADGnicbVJNbxMxEHWWrxK+WjhyWREhIVRFSYVKj0VcOHAogrSV0lDZ3tldK/6SPYZEq0j8Aa5w4ddwQ1y58G/wJjngNCNZfvtmVp43b5iVwuNg8LeTXbt+4+atndvdO3fv3X+wu/fw1JvgOIy4kcadM+pBCg0jFCjh3Dqgikk4Y9PXbf7sEzgvjP6AcwsTRSstSsEpRur924/PL3d7g/5gGflVMFyDHlnHyeVe1rkoDA8KNHJJvR8fWZw01KHgEhbdi+DBUj6lFYwj1FSBnzTLVhf508gUeWlcPBrzJfv/Hw1V3s8Vi5WKYu03cy25LTcOWB5NGqFtQNB89VAZZI4mb3XnhXDAUc4joNyJ2GvOa+ooxzid5BVmzBQp84mSZrYSkHCVo7YWfJayKkgUznxOWR8Yp7Yd+mKrpoSMjrFokEqH6YKEYr912uugGDgo4thlZaKcWh2ko2+wdhA/HEYtG7Y0tiqtNOi3trK/tqC9EWaYFjEWu+rGpRlurshVcHrQHx72D9+96B2/+rJanx3ymDwhz8iQvCTH5A05ISPCSUW+km/ke/Yj+5n9yn6vSrPOeuUekSSyP/8A9pgHag==</latexit>

L⇤

<latexit sha1_base64="KBRxmiXOYUf2pBsYvXCqEV54TZo=">AAADGnicbVJNbxMxEHWWrxK+WjhyWREhIVRFSYVKj0VcOHAogrSV0lDZ3tldK/6SPYZEq0j8Aa5w4ddwQ1y58G/wJjngNCNZfvtmVp43b5iVwuNg8LeTXbt+4+atndvdO3fv3X+wu/fw1JvgOIy4kcadM+pBCg0jFCjh3Dqgikk4Y9PXbf7sEzgvjP6AcwsTRSstSsEpRur924/PL3d7g/5gGflVMFyDHlnHyeVe1rkoDA8KNHJJvR8fWZw01KHgEhbdi+DBUj6lFYwj1FSBnzTLVhf508gUeWlcPBrzJfv/Hw1V3s8Vi5WKYu03cy25LTcOWB5NGqFtQNB89VAZZI4mb3XnhXDAUc4joNyJ2GvOa+ooxzid5BVmzBQp84mSZrYSkHCVo7YWfJayKkgUznxOWR8Yp7Yd+mKrpoSMjrFokEqH6YKEYr912uugGDgo4thlZaKcWh2ko2+wdhA/HEYtG7Y0tiqtNOi3trK/tqC9EWaYFjEWu+rGpRlurshVcHrQHx72D9+96B2/+rJanx3ymDwhz8iQvCTH5A05ISPCSUW+km/ke/Yj+5n9yn6vSrPOeuUekSSyP/8A9pgHag==</latexit>

L⇤

     Most Similar 
Indexed Line

<latexit sha1_base64="zR5TEPsjIxTjCOJg3ZmF/cDaQ7I=">AAADGnicbVJNbxMxEHUWCiV89IMjl4UKwaGKkh5Kj5WQqh4LJW2lNIps7+yuFXtt2eM20SoSRy69woVfww1x5YL4M3iTHnCakVZ++2Ysz3szzEjhsNv900ru3V978HD9Ufvxk6fPNja3ts+c9pZDn2up7QWjDqSooI8CJVwYC1QxCeds/L7Jn1+BdUJXn3BqYKhoUYlccIqBOv04oqPNnW6nO4/0Lujdgp3Dl6dvvvxd8yejraR1mWnuFVTIJXVucGBwWFOLgkuYtS+9A0P5mBYwCLCiCtywnrc6S18HJktzbcNXYTpn/79RU+XcVLFQqSiWbjnXkKtyA4/5wbAWlfEIFV88lHuZok4b3WkmLHCU0wAotyL0mvKSWsoxuBO9wrQeI2UuUlJPFgIirrDUlIJPYlZ5icLq65h1nnFqGtNnKzVFZJgYCwNSsZnWS8h2m0m7yisGFrJguyx0kFOqvdj6GksL4cdi0LI0ltoUuZEa3cpWdm9H0JwIE4yLGAtdtcPS9JZX5C442+v09jv7H8L2HH0m81gnL8gr8pb0yDtySI7JCekTTgpyQ76Sb8n35EfyM/m1KE1ai5M8J1Ekv/8BgKIKYQ==</latexit>

Ra

<latexit sha1_base64="nIv4U8VT0uX/Cj/+nOb2l5rdBD0=">AAADGnicbVJNbxMxEHUWCiV89IMjl4UKwaGKkh5Kj5WQqh4LJW2lNIps7+yuFXtt2eM20SoSRy69woVfww1x5YL4M3iTHnCakVZ++2Ysz3szzEjhsNv900ru3V978HD9Ufvxk6fPNja3ts+c9pZDn2up7QWjDqSooI8CJVwYC1QxCeds/L7Jn1+BdUJXn3BqYKhoUYlccIqBOv04YqPNnW6nO4/0Lujdgp3Dl6dvvvxd8yejraR1mWnuFVTIJXVucGBwWFOLgkuYtS+9A0P5mBYwCLCiCtywnrc6S18HJktzbcNXYTpn/79RU+XcVLFQqSiWbjnXkKtyA4/5wbAWlfEIFV88lHuZok4b3WkmLHCU0wAotyL0mvKSWsoxuBO9wrQeI2UuUlJPFgIirrDUlIJPYlZ5icLq65h1nnFqGtNnKzVFZJgYCwNSsZnWS8h2m0m7yisGFrJguyx0kFOqvdj6GksL4cdi0LI0ltoUuZEa3cpWdm9H0JwIE4yLGAtdtcPS9JZX5C442+v09jv7H8L2HH0m81gnL8gr8pb0yDtySI7JCekTTgpyQ76Sb8n35EfyM/m1KE1ai5M8J1Ekv/8Bg1YKYg==</latexit>

Rb

<latexit sha1_base64="pqgBqD+sYOrQzq0hVF+8BszFZak=">AAADGnicbVJNbxMxEHUWCiV89IMjl4UKwaGKkh5Kj5WQqh4LJW2lNIps7+yuFXtt2eM20SoSRy69woVfww1x5YL4M3iTHnCakVZ++2Ysz3szzEjhsNv900ru3V978HD9Ufvxk6fPNja3ts+c9pZDn2up7QWjDqSooI8CJVwYC1QxCeds/L7Jn1+BdUJXn3BqYKhoUYlccIqBOv044qPNnW6nO4/0Lujdgp3Dl6dvvvxd8yejraR1mWnuFVTIJXVucGBwWFOLgkuYtS+9A0P5mBYwCLCiCtywnrc6S18HJktzbcNXYTpn/79RU+XcVLFQqSiWbjnXkKtyA4/5wbAWlfEIFV88lHuZok4b3WkmLHCU0wAotyL0mvKSWsoxuBO9wrQeI2UuUlJPFgIirrDUlIJPYlZ5icLq65h1nnFqGtNnKzVFZJgYCwNSsZnWS8h2m0m7yisGFrJguyx0kFOqvdj6GksL4cdi0LI0ltoUuZEa3cpWdm9H0JwIE4yLGAtdtcPS9JZX5C442+v09jv7H8L2HH0m81gnL8gr8pb0yDtySI7JCekTTgpyQ76Sb8n35EfyM/m1KE1ai5M8J1Ekv/8BhgoKYw==</latexit>

Rc

Figure 3: Hierarchical Indexing Components

with each line in the index and determines the extent of the corresponding cylindrical region or the
maximum radius coverage.

Hierarchical Indexing Framework. We briefly sketch the idea here; details appear in §G. To
enable efficient range queries in the fused space, we introduce a hierarchical framework of three
levels in Alg. 2.

1 Leveraging the guaranteed sample complexity, which is derived from the data pattern and range
distributions (Livshits et al., 2020; Heidari et al., 2020b), we strategically take a sufficiently large
sample from the space of possible range queries (Fig. 3(a) and Thm. 17). This approach ensures that
any potential query line will closely match a pre-indexed line, while minimizing storage (see §G.3)
and accounting for the varying importance of regions in the fused space (Alg. 4).

2 We build a specialized line similarity index that efficiently identifies the pre-indexed line
most similar to LQ (Fig. 3(b)). Our line similarity combines directional, positional, and
length components to provide strong correlation with the Hausdorff distance between lines (See
Fig. 3(c) and Thm. 19). Note that ANN indexing of a finite LQ within the cylinder defining

Algorithm 2 Concise version of Alg. 10

1: Input: Query q, range [l, u], k
2: Map q, [l, u] to line LQ in fused space
3: Find most similar indexed line L∗ to LQ us-

ing line index (Fig. 3(b))
4: Adjust search radius based on line similarity

(Fig. 3(c,e))
5: Retrieve candidate points from L∗’s cylindri-

cal index within radius (Fig. 3(d,f))
6: Filter candidates by attribute range [l, u]
7: Return top-k nearest neighbors to q

the approximate range query differs from the approx-
imate line nearest-neighbor methods (Andoni et al.,
2009), which assume infinite lines. Our line index
organizes lines first by their direction vectors and then
by their spatial locations. The directional partitioning
creates angular cells on the unit sphere with resolution
ν (Fig. 3(d,e)), assigning each line to a cell based on
its orientation. Within each directional group, we fur-
ther organize the lines using spatial indices based on
their midpoints (Alg. 5). This hierarchical structure
enables logarithmic time retrieval of the indexed line
most similar to any query line (Alg. 6).

3 For each indexed line L∗, we construct a cylindrical index (Kim et al., 2001) that partitions the
points by their cylindrical coordinates relative to L∗, allowing efficient retrieval of the most similar
points (Fig. 3(f)). Every line segment is divided into sections the length of the radius (sub-lines),
utilizing radius-based indices per section (with respect to the perpendicular distance to its respective
section line segment) in a ball tree structure. This supports rapid retrieval of points within a certain
range, while reducing excess calculations (Fig. 3(e)).

Adaptive Error Compensation. When approximating a query line with a similar indexed line,
adjust the search radius and candidate count to offset the error per the lines’ Hausdorff distance
(Thm. 20). Specifically, the radius of the cylinder increases with the Hausdorff distance between the
query and the indexed lines, and the candidate count is scaled by a data-dependent factor reflecting
local line density (Alg. 9). The density is calculated by taking the ratio of the number of points
contained within a cylindrical region to the volume of that area. Therefore, in areas of higher density,
more candidates must be considered to maintain an equivalent probability of identifying the actual
nearest neighbors (Thm. 21). Thus, when building the index, we assume a maximum Hausdorff
distance supported by the pre-indexed data, add it to the optimal radius, and then construct the index.
At query time, if the radius required for the query is below the maximum R, we apply these adjusted
values of k and the search radius to ensure robust retrieval performance (Fig. 3(e)).

Complete Range Query Algorithm and Complexity. Our range query processing first transforms
the query into a line segment in the fused space, then efficiently locates the most similar indexed
line via a hierarchical line index in logarithmic time. The search radius and the candidate count

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Dataset statistics

Dataset Dimension Size Use Case

SIFT1M 128 1,000,000 Single/Multi Filter
GloVe 100 1,183,514 Single/Multi Filter
UQ-V 256 1,000,000 Single/Multi/Range Filter
DEEP 96 10,000,000 Single Filter/Range Filter
YouTube-Audio 128 1,000,000 Single Filter/Range Filter
WIT-Image 2048 1,000,000 Single Filter/Range Filter

are adjusted based on the Hausdorff distance between the query and the indexed lines. A cylinder
search retrieves candidates within the adjusted radius, which are then filtered by attribute range and
ranked by distance to the query. Alg. 2 achieves O(logN + k log(1/ϵ) + k log k) expected query
time, enabling efficient range queries even on very large datasets (Thm. 22).

6 EXPERIMENTS

We evaluated FUSEDANN on multiple real-world data sets that cover various retrieval scenarios:
single-attribute filtering, multiple-attribute filtering, and range filtering. We compare against state-of-
the-art methods from the recent literature. (Detailed experiments are provided in §D)

Experimental Setup. For a detailed setup, see §D.1.

• Datasets. We use datasets from different domains with varying dimensionality, as shown in Table 1.
For single and multi-attribute filtering, we use SIFT1M1, GloVe2, and UQ-V3. For range filtering,
we use DEEP4, YouTube-Audio5, and WIT-Image6 (Zuo et al., 2024; Xu et al., 2025).

• Variants of FUSEDANN. We created four different versions of FUSEDANN, each incorporating a
unique base indexing algorithm: FUS-H is built upon HNSW (Malkov & Yashunin, 2018); FUS-D
uses DiskANN (Subramanya et al., 2019a); FUS-F employs Faiss (Johnson et al., 2019) with the
IVF index; and FUS-A implements ANNOY (Bernhardsson, 2024).

• Baselines. For attribute filtering, we compare against: NHQ-NPG (Wang et al., 2023), Vearch (Jing-
dong, 2020), ACORN (Patel et al., 2024), VBASE (Zhang et al., 2023), ADBV (Zhu et al., 2020),
Milvus (Wang et al., 2021a), Faiss (Johnson et al., 2019), DEG (Yin et al., 2025), SPTAG (Mi-
crosoft, 2020), NGT (Japan, 2016), and Filtered-DiskANN (Gollapudi et al., 2023) (F-Disk in
short). For range filtering, we compare against: SeRF (Zuo et al., 2024), ANNS-first, Range-first,
and FAISS (Johnson et al., 2019).

• Metrics. We use queries-per-second (QPS) for efficiency and Recall@k for accuracy. For all
experiments, we report the mean over three runs.

Single Attribute Filtering. We evaluated FUSEDANN variants against 11 baseline methods (NHQ,
Faiss, Vearch, SPTAG, ADBV, NGT, Milvus, Filtered-DiskANN) under single-attribute constraints.
Fig. 4I demonstrates consistent superiority in both SIFT1M and GloVe datasets, where Fus-H achieves
peak performance with 4.2× higher QPS than NHQ-NPG at Recall@10=0.95. The performance
hierarchy (Fus-H > Fus-D > Fus-F > Fus-A) mirrors the efficiency characteristics of their underlying
index structures. In particular, Fus-H maintains 2.1-3.8× speed advantages over graph-based methods
(NGT, SPTAG) and 1.8-2.4× improvements versus quantization approaches (Faiss, F-Disk) at all
recall levels. This universal outperformance confirms the effectiveness of our distance-preserving
transformation in maintaining relevant vector proximities while enforcing attribute constraints.

Multiple Attribute Filtering. Fig. 4II evaluates multi-attribute filtering performance across
SIFT1M and GloVe datasets, comparing variants FUSEDANN against six baselines (NHQ, Faiss,

1http://corpus-texmex.irisa.fr/
2https://nlp.stanford.edu/projects/glove/
3https://dataset.uq-v.org/
4https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
5https://research.google.com/youtube8m/download.html
6https://github.com/google-research-datasets/wit

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

104

QP
S

(a) SIFT1M

NHQ
Vearch
ADBV
Milvus
Faiss

SPTAG
NGT
Fus-H
Fus-A
Fus-D

Fus-F
F-Disk
DEG
VBASE
ACORN

0.80 0.85 0.90 0.95 1.00
Recall@10

(b) GloVe

(I) Performance on single attribute

0.80 0.85 0.90 0.95 1.00
Recall@10

102

103

104

QP
S

(a) SIFT1M

Fus-H
Fus-D
Fus-F
Fus-A
F-Disk
NHQ

Vearch
ADBV
Milvus
Faiss
VBASE
ACORN

0.80 0.85 0.90 0.95 1.00
Recall@10

(b) GloVe

(II) Performance on multi attributes
Vearch, ADBV, Milvus and F-Disk). Fus-H achieves a QPS 3.2× higher than NHQ at Re-
call@10=0.95, with consistent superiority in all variants following the same hierarchy. This perfor-
mance ordering mirrors the efficiency characteristics of each variant’s foundational index structure
while maintaining attribute-aware separation. The cross-dataset improvements (2.1-3.8× over graph
indexes, 1.6-2.9× versus quantization methods) confirm multi-attribute filtering’s enhanced discrimi-
native power between attribute-defined clusters.

0 20 40 60 80 100
Range width (%)

102

103

104

QP
S 

at
 R

ec
al

l@
10

=0
.9

5

(a) DEEP

0 20 40 60 80 100
Range width (%)

(b) YouTube-Audio

0 20 40 60 80 100
Range width (%)

(c) UQ-V

0 20 40 60 80 100
Range width (%)

(d) WIT

FusedANN-Range SeRF ANNS-first Range-first Faiss Filtered-DiskANN Milvus iRangeGraph VBASE ACORN

Figure 5: Range Performance

Range Filtering. We evaluate FUSEDANN-Range across the entire spectrum of range widths (0%–
100%) on four benchmark datasets. As shown in Fig. 5, FUSEDANN-Range maintains superior QPS
compared to seven state-of-the-art methods, particularly excelling at narrow ranges (<20%) where it
outperforms SeRF by 3.8–5.6× and ANNS-first by 7.2–12.9× at Recall@10=0.95. Although our
hierarchical indexing strategy optimizes FUSEDANN-Range for range filtering, the core transforma-
tion principles remain applicable to other index types. Consistent performance advantages across
DEEP, YouTube-Audio, UQ-V, and WIT datasets demonstrate both robustness and versatility. At full
width, FUSEDANN becomes content-only search (Thm. 16), matching raw index speed and avoiding
graph filter traversal. On the 2048-D WIT dataset, it embeds range constraints directly with little
extra distance cost, while graph filters face high-dimensional pruning overhead.
Ablation Studies. The complete Fus-H system achieves 43,618 QPS at Recall@10=0.95. Individual
component removal reveals distinct contributions: α effect removal reduces performance to 28,149
QPS (35% drop), β removal to 30,968 QPS (31% drop), parameter setting removal to 23,210 QPS
(47% drop), and candidate optimization(k′) removal to 23,127 QPS (47% drop). This confirms
each component’s importance to our method’s effectiveness. We further examine the performance
difference between FUSEDANN variants, finding that the underlying index algorithm contributes
significantly to the overall performance, with the core transformation providing a consistent boost
regardless of the base index used.
Scalability. When increasing the number of attribute constraints from 1 to 3, FUSEDANN variants
sustain high throughput: the top variant remains close to 105 QPS throughout, while others stay
above 3× 104 QPS. In contrast, baseline methods drop sharply, with some falling below 103 QPS at
three attributes. This analysis shows that FUSEDANN maintains robust efficiency under increasing
filter complexity, outperforming alternatives by 10× to 100× as the number of attributes grows.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 DISCUSSION

As it shown in §3, our method needs filter values be embedded in a metric space, with attribute
dimension m ≤ d to ensure fusion and ANN compatibility; for scalar attributes we use m = 1
. We do not natively support arbitrary DNF—by a metric-embedding no-go (OR cannot be fused
into a single-valued metric without violating axioms)—but we rapidly materialize the conjunctive
DNF building blocks (filters ∧ range/ANN) and handle unions/negations via query planning; We
pre-materialize conjunctive blocks and use a light planner for OR/NOT, probing few shared blocks
and merging O(k′) candidates with O(k log k) dedup; as α grows, k′→k, so overhead stays near
top-k. In contrast, general systems (e.g., ACORN and NaviX) defer filtering to query time, hurting
performance. FusedANN functions as a specialized, predicate-aware index for high-value filtering
paths, complementing the general-purpose base index.

Although we have discussed supporting updates that add entirely new attributes to all records, a
theoretical analysis is still needed to understand how changes in the value of a single attribute impact
the index structure, query performance, and when such updates should trigger index reconstruction,
similar to the approach in (Mohoney et al., 2024). Addressing the scalability to multi-attribute range
queries, theoretical guarantees for a mixture of multiple attributes with one range attribute, general
guarantees for Non-Euclidean metrics, and efficient attribute updates remains an important direction
for future work. See §C for detailed limits and future work.

8 CONCLUSION

We propose a geometric hybrid search framework that unifies content and attribute information in a
fixed-dimensional space, allowing efficient filtering and range queries without modifying existing
ANN indexing algorithms. Our transformation preserves nearest-neighbor ordering within attribute
classes, supports dynamic attribute priorities, and allows efficient partial index updates. In addition, it
works with categorical and unstructured attribute values. Extensive experiments on real-world datasets
demonstrate that FUSEDANN achieves superior recall and query throughput compared to state-of-the-
art hybrid methods, especially under complex or multi-attribute filtering. Theoretically, we provide
explicit error bounds and principled parameter selection rules, ensuring robust performance and
practical deployment. Our results indicate that geometric fusion of attributes and vectors offers a
scalable and flexible foundation for next-generation hybrid retrieval systems.

REFERENCES

Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Madden, et al. The design
and implementation of modern column-oriented database systems. Foundations and Trends® in
Databases, 5(3):197–280, 2013.

Mohammad Reza Abbasifard, Bijan Ghahremani, and Hassan Naderi. A survey on nearest neighbor
search methods. International Journal of Computer Applications, 95(25), 2014.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Communications of the ACM, 2008.

Alexandr Andoni, Piotr Indyk, Robert Krauthgamer, and Huy L. Nguyen. Approximate line nearest
neighbor in high dimensions. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’09, pp. 293–301, USA, 2009. Society for Industrial and Applied
Mathematics.

Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. Dataset: Sift1m, 2024. URL
https://doi.org/10.57702/7dh2l69l.

ArXiv.org. Arxiv.org titles and abstracts, 2024. URL https://qdrant.tech.

Martin Aumuller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems, 2020.

Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for billion-scale
approximate nearest neighbors. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 202–216, 2018.

10

https://doi.org/10.57702/7dh2l69l
https://qdrant.tech


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communica-
tions of the ACM, 1975.

Erik Bernhardsson. Annoy: Approximate nearest neighbors in c++/python, 2018. Python package
version, 1(0), 2024.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Dmitri Burago, Yuri Burago, Sergei Ivanov, et al. A course in metric geometry, volume 33. American
Mathematical Society Providence, 2001.

Chee-Yong Chan and Yannis E Ioannidis. Bitmap index design and evaluation. In Proceedings of the
1998 ACM SIGMOD international conference on Management of data, pp. 355–366, 1998.

Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, and
Jingdong Wang. Spann: Highly-efficient billion-scale approximate nearest neighbor search. In
NeurIPS, 2021.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez, and Ion Stoica.
Clipper: A {Low-Latency} online prediction serving system. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pp. 613–627, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Dylan Foster, Karthik Sridharan, and Daniel Reichman. Inference in sparse graphs with pairwise
measurements and side information. In International Conference on Artificial Intelligence and
Statistics, pp. 1810–1818. PMLR, 2018.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. Proceedings of the VLDB Endowment (PVLDB), 2019a.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search with
the navigating spreading-out graph. Proceedings of the VLDB Endowment, 12(5):461–474, 2019b.

Cong Fu, Changxu Wang, and Deng Cai. High dimensional similarity search with satellite system
graph: Efficiency, scalability, and unindexed query compatibility. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4139–4150, 2021.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), 1999.

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, et al. Filtered-diskann: Graph algorithms for
approximate nearest neighbor search with filters. In Proceedings of the ACM Web Conference 2023
(WWW ’23), 2023.

Gaurav Gupta, Jonah Yi, Benjamin Coleman, Chen Luo, Vihan Lakshman, and Anshumali Shrivastava.
Caps: A practical partition index for filtered similarity search. arXiv preprint arXiv:2308.15014,
2023.

Ben Harwood and Tom Drummond. Fanng: Fast approximate nearest neighbour graphs. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alireza Heidari and Wei Zhang. Filter-centric vector indexing: Geometric transformation for efficient
filtered vector search. In Proceedings of the Eighth International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, aiDM ’25, New York, NY, USA, 2025. Association
for Computing Machinery. ISBN 979-8-4007-1920-2/2025/06. doi: 10.1145/3735403.3735996.
URL https://doi.org/10.1145/3735403.3735996.

Alireza Heidari, Ihab F Ilyas, and Theodoros Rekatsinas. Approximate inference in structured
instances with noisy categorical observations–supplementary material.

Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. Holodetect: Few-shot
learning for error detection. In Proceedings of the 2019 International Conference on Management
of Data, pp. 829–846, 2019.

Alireza Heidari, Ihab F Ilyas, and Theodoros Rekatsinas. Approximate inference in structured
instances with noisy categorical observations. In Uncertainty in Artificial Intelligence, pp. 412–
421. PMLR, 2020a.

Alireza Heidari, Shrinu Kushagra, and Ihab F Ilyas. On sampling from data with duplicate records.
arXiv preprint arXiv:2008.10549, 2020b.

Alireza Heidari, George Michalopoulos, Shrinu Kushagra, Ihab F Ilyas, and Theodoros Rekatsinas.
Record fusion: A learning approach. arXiv preprint arXiv:2006.10208, 2020c.

Alireza Heidari, George Michalopoulos, Ihab F Ilyas, and Theodoros Rekatsinas. Record fusion via
inference and data augmentation. ACM/JMS Journal of Data Science, 1(1):1–23, 2024.

Alireza Heidari, Amirhossein Ahmadi, and Wei Zhang. Uplif: An updatable self-tuning learned
index framework. In Richard Chbeir, Sergio Ilarri, Yannis Manolopoulos, Peter Z. Revesz, Jorge
Bernardino, and Carson K. Leung (eds.), Database Engineered Applications, pp. 345–362, Cham,
2025a. Springer Nature Switzerland. ISBN 978-3-031-83472-1.

Alireza Heidari, Amirhossein Ahmadi, and Wei Zhang. Doblix: A dual-objective learned index for
log-structured merge trees. Proc. VLDB Endow., 18(11):3965–3978, September 2025b. ISSN 2150-
8097. doi: 10.14778/3749646.3749667. URL https://doi.org/10.14778/3749646.
3749667.

Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based on k-nearest neighbor
graph for proximity search in high-dimensional data. arXiv preprint arXiv:1810.07355, 2018.

Yahoo Japan. Nearest neighbor search with neighborhood graph and tree for high-dimensional data,
2016. URL https://github.com/yahoojapan/NGT.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
Advances in neural information processing Systems, 32, 2019.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2011.

Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. Searching in one billion
vectors: re-rank with source coding. In 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 861–864. IEEE, 2011.

Jingdong. A distributed system for embedding-based retrieval. https://github.com/
vearch/vearch, 2020.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

12

https://doi.org/10.1145/3735403.3735996
https://doi.org/10.14778/3749646.3749667
https://doi.org/10.14778/3749646.3749667
https://github.com/yahoojapan/NGT
https://github.com/vearch/vearch
https://github.com/vearch/vearch


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sang-Wook Kim, Charu C. Aggarwal, and Philip S. Yu. Effective nearest neighbor indexing with
the euclidean metric. In Proceedings of the Tenth International Conference on Information
and Knowledge Management, CIKM ’01, pp. 9–16, New York, NY, USA, 2001. Association
for Computing Machinery. ISBN 1581134363. doi: 10.1145/502585.502588. URL https:
//doi.org/10.1145/502585.502588.

Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. Improving approximate nearest
neighbor search through learned adaptive early termination. In SIGMOD, 2020a.

Wei Li, Yuhui Zhang, Ye Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xiaoyong Lin. Approximate
nearest neighbor search on high dimensional data—experiments, analyses, and improvement. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 2020b.

Anqi Liang, Pengcheng Zhang, Bin Yao, Zhongpu Chen, Yitong Song, and Guangxu Cheng. Unify:
Unified index for range filtered approximate nearest neighbors search. arXiv preprint, 2024.

Ester Livshits, Alireza Heidari, Ihab F Ilyas, and Benny Kimelfeld. Approximate denial constraints.
arXiv preprint arXiv:2005.08540, 2020.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine
intelligence, 42(4):824–836, 2018.

Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002.

Yusuke Matsui. Rii: Reconfigurable Inverted Index. https://github.com/matsui528/rii,
20xx. Accessed [Date of Access].

Microsoft. Sptag: A library for fast approximate nearest neighbor search, 2020. URL https:
//github.com/microsoft/SPTAG.

Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Umar Farooq Minhas, Jeffery Pound,
Cedric Renggli, Nima Reyhani, Ihab F Ilyas, Theodoros Rekatsinas, and Shivaram Venkataraman.
Incremental ivf index maintenance for streaming vector search. arXiv preprint arXiv:2411.00970,
2024.

Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2014.

Thomas Neumann. Efficiently compiling efficient query plans for modern hardware. Proceedings of
the VLDB Endowment, 4(9):539–550, 2011.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke. Tensorflow-serving: Flexible, high-performance
ml serving. arXiv preprint arXiv:1712.06139, 2017.

James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of vector database management systems. The
VLDB Journal, 33(5):1591–1615, 2024.

Prashant Pandey, Alex Conway, Joe Durie, Michael A Bender, Martin Farach-Colton, and Rob John-
son. Vector quotient filters: Overcoming the time/space trade-off in filter design. In Proceedings
of the 2021 International Conference on Management of Data, pp. 1386–1399, 2021.

Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. Acorn: Performant and predicate-
agnostic search over vector embeddings and structured data. Proceedings of the ACM on Manage-
ment of Data, 2(3):1–27, 2024.

Pinecone. Pinecone: Vector database for machine learning applications., 2021. URL https:
//www.pinecone.io.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

13

https://doi.org/10.1145/502585.502588
https://doi.org/10.1145/502585.502588
https://github.com/matsui528/rii
https://github.com/microsoft/SPTAG
https://github.com/microsoft/SPTAG
https://www.pinecone.io
https://www.pinecone.io
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jie Ren, Minjia Zhang, and Dong Li. Hm-ann: Efficient billion-point nearest neighbor search on
heterogeneous memory. Advances in Neural Information Processing Systems, 33:10672–10684,
2020.

Gaurav Sehgal and Semih Salihoğlu. Navix: A native vector index design for graph dbmss with
robust predicate-agnostic search performance. Proc. VLDB Endow., 18(11):4438–4450, July 2025.
ISSN 2150-8097. doi: 10.14778/3749646.3749704. URL https://doi.org/10.14778/
3749646.3749704.

Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko,
Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamy, Gopal Srinivasa,
Suhas Jayaram Subramanya, and Jingdong Wang. Results of the neurips’21 challenge on billion-
scale approximate nearest neighbor search. In NeurIPS, 2021.

Sivic and Zisserman. Video google: A text retrieval approach to object matching in videos. In
Proceedings ninth IEEE international conference on computer vision, pp. 1470–1477. IEEE, 2003.

Suhas J. Subramanya, F. Devvrit, Harsha Raghavan, Vardhan Simhadri, Ravishankar Krishnaswamy,
and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single
node. In Advances in Neural Information Processing Systems (NeurIPS), 2019a.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
In NeurIPS, 2019b.

Toni Taipalus. Vector database management systems: Fundamental concepts, use-cases, and current
challenges. Cognitive Systems Research, 85:101216, 2 2024. doi: 10.1016/j.cogsys.2024.101216.
URL https://doi.org/10.1016/j.cogsys.2024.101216.

Min Tan, Zhanxing Qin, Yanhui Wang, Lei Li, and Gang Qiu. Nhq: Neighbor-aware hierarchi-
cal queueing for fast hybrid queries in large-scale vector database. Proceedings of the VLDB
Endowment (PVLDB), 2023.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge University Press, 2018.

Vespa.ai. Vespa: The open big data serving engine., 2021. URL https://vespa.ai.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xi-
angzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data management
system. In Proceedings of the 2021 International Conference on Management of Data, pp. 2614–
2627, 2021a.

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor search. arXiv preprint
arXiv:2101.12631, 2021b.

Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni. An
efficient and robust framework for approximate nearest neighbor search with attribute constraint.
Advances in Neural Information Processing Systems, 36:15738–15751, 2023.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai.
Analyticdb-v: A hybrid analytical engine towards query fusion for structured and unstructured
data. VLDB, 13(12):3152–3165, 2020.

Wikipedia. Wikipedia simple text embeddings, 2024. URL https://qdrant.tech.

Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. Hqann: Efficient and robust
similarity search for hybrid queries with structured and unstructured constraints. In Proceed-
ings of the 31st ACM International Conference on Information & Knowledge Management,
CIKM ’22, pp. 4580–4584, New York, NY, USA, 2022. Association for Computing Machin-
ery. ISBN 9781450392365. doi: 10.1145/3511808.3557610. URL https://doi.org/10.
1145/3511808.3557610.

14

https://doi.org/10.14778/3749646.3749704
https://doi.org/10.14778/3749646.3749704
https://doi.org/10.1016/j.cogsys.2024.101216
https://vespa.ai
https://qdrant.tech
https://doi.org/10.1145/3511808.3557610
https://doi.org/10.1145/3511808.3557610


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen. irangegraph:
Improvising range-dedicated graphs for range-filtering nearest neighbor search. In Proceedings of
the 2025 International Conference on Management of Data (SIGMOD ’25), 2025.

Ziqi Yin, Jianyang Gao, Pasquale Balsebre, Gao Cong, and Cheng Long. Deg: Efficient hybrid vector
search using the dynamic edge navigation graph. Proc. ACM Manag. Data, 3(1), February 2025.
doi: 10.1145/3709679. URL https://doi.org/10.1145/3709679.

Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi Chen, Yinxuan
He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. VBASE: Unifying online vector
similarity search and relational queries via relaxed monotonicity. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), pp. 377–395, Boston, MA, July
2023. USENIX Association. ISBN 978-1-939133-34-2. URL https://www.usenix.org/
conference/osdi23/presentation/zhang-qianxi.

Jie Zhu, Ying Liu, Libin Liu, Qiang Cai, N. M. Haniyeh, and Yinglong Wu. Adbv: A hybrid
framework for nearest neighbour search in large-scale databases. In IEEE International Conference
on Data Engineering (ICDE), 2020.

Tianyu Zhu and Jesse Clark. Marqo ecommerce embeddings - foundation model
for product embeddings, 2024. URL https://github.com/marqo-ai/
marqo-ecommerce-embeddings/.

Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. Serf: Segment graph for range-
filtering approximate nearest neighbor search. Proceedings of the ACM on Management of Data,
2024.

15

https://doi.org/10.1145/3709679
https://www.usenix.org/conference/osdi23/presentation/zhang-qianxi
https://www.usenix.org/conference/osdi23/presentation/zhang-qianxi
https://github.com/marqo-ai/marqo-ecommerce-embeddings/
https://github.com/marqo-ai/marqo-ecommerce-embeddings/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Table of Notations 18

B Numerical Example of Ψ transformation 20

C Extended Limitations and Future Work 21

D Extended Experiments 22
D.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.1.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.1.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.1.4 Metrics and Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.2 Single Attribute Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.2.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.2.2 Effect of Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D.3 Multiple Attribute Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.3.1 Two Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.3.2 Scaling with Number of Attributes . . . . . . . . . . . . . . . . . . . . . . 25

D.4 Range Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.4.1 Half-Bounded Range Performance . . . . . . . . . . . . . . . . . . . . . . 26

D.4.2 Arbitrary Range Performance . . . . . . . . . . . . . . . . . . . . . . . . 26

D.5 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.5.1 Impact of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.5.2 Impact of Base Index Selection . . . . . . . . . . . . . . . . . . . . . . . 27

D.5.3 Impact of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.6 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.7 Memory Footprint and Index Construction . . . . . . . . . . . . . . . . . . . . . . 28

E FusedANN Framework Theoretical Analysis 28
E.1 Properties of Ψ Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

E.2 Candidate Set Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.2.1 Approximate Fixed Candidate Set Size . . . . . . . . . . . . . . . . . . . 34

E.3 Optimal Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

E.4 Uniqueness of Points in Transformed Space . . . . . . . . . . . . . . . . . . . . . 37

F Proofs for Attribute Hierarchy 38
F.1 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

F.2 Intuition behind Monotone Attribute Priority . . . . . . . . . . . . . . . . . . . . . 39

F.3 Property Preservation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

F.4 Attribute Priority Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F.4.1 Monotonicity of Attributes Priority over Fused Space . . . . . . . . . . . . 43

F.5 Attribute Match Distance Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 46

F.6 Hierarchical Multi-Attribute Vector Indexing . . . . . . . . . . . . . . . . . . . . 48

F.7 Attribute Updates Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

G Range Filtering in FUSEDANN Analysis 52
G.1 Line Representation of Range Queries . . . . . . . . . . . . . . . . . . . . . . . . 52

G.2 Distance Properties of the Range Line . . . . . . . . . . . . . . . . . . . . . . . . 53

G.3 Empirical Distribution Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

G.4 Optimal Sampling of the Range Space . . . . . . . . . . . . . . . . . . . . . . . . 55

G.5 Line Similarity Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

G.6 Cylindrical Distance Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

G.7 Error Analysis and Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

G.8 Complete Range Query Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64

H Theorems, Corollaries, and Algorithms Cheat Sheet 65

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A TABLE OF NOTATIONS

Table 2: Summary of Notation Used in this Paper

Name Symbol Definition
Number of attributes F Number of attribute constraints (filters) in hybrid queries.

Record set D(F) Set of all records: {o(F)1 , . . . , o
(F)
n }, each with content

and F attributes.

Record o
(F)
i i-th record: [v(oi), f (1)(oi), . . . , f

(F)(oi)].

Content vector v(oi) Main content embedding of oi; v(oi) ∈ Rd.

Content vector set X {v(oi) | oi ∈ D(F)}.
Content vector dimen-
sion

d Dimension of content vectors v(oi).

Attribute vector (single) f(oi) Attribute embedding (single-attribute case), f(oi) ∈
Rm.

Attribute vector for j f (j)(oi) j-th attribute vector for oi; f (j)(oi) ∈ Rmj .

Attribute vector dimen-
sion

m, mj Dimension of attribute vector(s): m for single-attribute,
mj for j-th attribute.

Attribute value set Fj Set of all possible values for attribute j: {f (j)(oi)} over
all i.

Set of all attribute combi-
nations

F Set of all unique attribute value combinations (multi-
attribute).

Query q Query, typically q = [v(q), F
(1)
q , ..., F

(F)
q ].

Query content vector v(q) Content vector of the query.

Query attribute (j) F
(j)
q Value of the j-th attribute for the query.

Distance metric (content) ρ(x, y) Distance function (usually Euclidean) on content vectors.

Distance metric (attribute
j)

σj(x, y) Distance function (usually Euclidean) for attribute j.

Approximation factor ϵ Relative error for approximate nearest neighbor search.

Cluster tightness parame-
ter

ϵf Upper bound on intra-cluster (same-attribute) fused vec-
tor distances.

Transformed vector v′i Fused vector: v′i = Ψ(v(oi), f(oi), α, β).

Fused transformation Ψ(v, f, α, β) Transformation combining content and attribute: block-
wise, see Eq. (3).

Multi-attribute transfor-
mation

Ψj(·) j-th transformation in sequence for multi-attribute fu-
sion.

Transformation scaling α, αj Controls attribute separation in fused space; larger α
increases separation.

Transformation scaling β, βj Scales (compresses) all distances in fused space.

Block partitioning v(l) l-th block of v(oi) when partitioning into blocks of size
m (v(l) ∈ Rm).

Number of blocks d/m Number of blocks when dividing v(oi) ∈ Rd into blocks
of length m.

Continued on next page

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2 – continued from previous page
Name Symbol Definition

k-nearest neighbors NNk(q) Exact top k nearest neighbors of query q.

Approximate neighbors ANNk(q) Approximate top k nearest neighbors (may allow error
ϵ).

Number of candidates k′ Number of candidates retrieved in fused space for high-
recall guarantee.

Candidate cluster radius Ra Radius of smallest hypersphere containing all trans-
formed records with attribute a.

Minimum inter-cluster
dist.

dmin(a, b) Minimum distance between any points in clusters for
attributes a and b.

Cluster separation metric γa Normalized separation: γa = minb̸=a
dmin(a,b)

Ra
− 1.

Number in attribute clus-
ter

Na Number of records with attribute a.

Attribute combination a⃗ Tuple of attribute values: (a(1), ..., a(F)).

Number in attribute clus-
ter (multi)

Na⃗ Number of records with attribute combination a⃗.

Cluster separation
(multi)

γa⃗ As above, for multi-attribute clusters.

Attribute priority order π Permutation encoding the search priority of each at-
tribute.

Permutation length |π| Number of attributes in the priority order.

Variance in attribute dis-
tance

Var
(j)
S Variance of attribute j’s distance in result set S.

Mean attribute distance µ
(j)
S Mean attribute j distance in candidate set S.

Hybrid score score(oi) Combined score (e.g., αsf +βsv) for candidate ranking.

Cylinder (range query) Tube(Q, r) Set of points within perpendicular distance r to query
range line in fused space.

Range line (query) L(Q, t) Line segment in fused space for attribute range [l, u] and
query q, t ∈ [0, 1].

Range endpoints (at-
tributes)

l, u Lower and upper endpoints of attribute range filter.

Range line endpoint
(fused)

pl, pu Ψ(q, l, α, β) and Ψ(q, u, α, β): endpoints in fused space.

Hausdorff distance dH(A,B) Maximum minimal distance between sets A and B (for
line similarity).

Line similarity sim(L1, L2) Composite similarity metric for lines (direction, mid-
point, length) for range queries.

Angular resolution pa-
rameter

ν Granularity for direction partitioning in hierarchical line
index.

Cylinder search radius r Radius of cylinder around query line for range search.

Sampling resolution rq, rr Resolution for sampling query and range spaces during
line index construction.

Continued on next page

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 2 – continued from previous page
Name Symbol Definition

Local density factor η Estimated density of points near a given line segment
(used for adaptive k′).

Number of indexed lines L Number of pre-indexed line segments (for range queries).

Number of points in
cylinder

P Number of points in a cylindrical index (for range
queries).

Density estimation win-
dow

Nr Number of points within radius r of a line segment.

Cylinder volume Vr Volume of a cylinder with radius r and given length:
Vr = πr2 · ∥b− a∥.

B NUMERICAL EXAMPLE OF Ψ TRANSFORMATION

Ψ transformation in S.3 (Eq. 6) subtracts αf from each partitioned block of content vector v and then
scales the result by 1/β. We agree content and attribute vectors (e.g., image embeddings vs. BERT
tag embeddings (Devlin et al., 2019)) encode distinct semantics, making direct subtraction seem coun-
terintuitive. However, it’s mathematically principled: it preserves intra-cluster NN ordering/distances
up to 1/β scaling (Theorem 4 and Corrolary 1) while increasing inter-cluster separation via α, fusing
them geometrically without changing dimensionality or ANN compatibility (e.g., Faiss Douze et al.
(2024)).

Toy example (d = 2, m = 1). Initial groups (on a circle, r = 5) with attribute f :

Group A (f = −3): P1 = (5.00, 0.00), P2 = (−2.20, 4.33), P3 = (−2.50, −4.33)
Group B (f = +3): Q1 = (2.50, 4.33), Q2 = (−5.00, 0.00), Q3 = (2.50, −4.33), Q4 =

(3.54, 3.54)

Initial Euclidean distance (ρ) all from P1:

ρ(P1, Q1) ≈ 5.00 ρ(P1, Q2) ≈ 10.00 ρ(P1, Q3) ≈ 5.00 ρ(P1, Q4) ≈ 3.83

ρ(P1, P2) ≈ 8.41 ρ(P1, P3) ≈ 8.66

Top 2–NN: Q4, Q1/Q3 (mixed groups).

Applying Ψ (α = 3, β = 1.5):

v′ =
v − αf

β

Group A: since f = −3, we have v′ =
v + 9

1.5
.

P ′
1 = (9.33, 6.00), P ′

2 = (4.53, 8.89), P ′
3 = (4.33, 3.11)

Group B: since f = +3, we have v′ =
v − 9

1.5
.

Q′
1 = (−4.33, −3.11), Q′

2 = (−9.33, −6.00)
Q′

3 = (−4.33, −8.89), Q′
4 = (−3.64, −3.64)

After transformation distances all from P ′
1:

ρ(P ′
1, Q

′
1) ≈ 16.42 ρ(P ′

1, Q
′
2) ≈ 22.20 ρ(P ′

1, Q
′
3) ≈ 20.20 ρ(P ′

1, Q
′
4) ≈ 16.16

ρ(P ′
1, P

′
2) ≈ 5.60 ρ(P ′

1, P
′
3) ≈ 5.77

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Top 2–NN: P ′
2, P ′

3 (intra-group; order preserved, inter dropped).

This illustrates that Ψ induces a uniform rescaling within groups (preserving intra-cluster NN relations
up to 1/β) while shifting group centers apart via α, thereby enhancing inter-cluster separation without
altering dimensionality or compatibility with standard ANN indices.

C EXTENDED LIMITATIONS AND FUTURE WORK

We summarize key limitations of our approach and outline concrete avenues for future research.

Limitations. Although our fusion-based method is a promising approach for handling filters in an
ANN problem, we recognize the following limitations.

• Metric-embedding requirement. Our method requires that filter values be embedded in a metric
space with attribute dimension m ≤ d to ensure fusion with the base vector space and ANN
compatibility. This constrains attribute types and encodings, and may limit applicability when
attributes are non-metric or exceed the dimensional budget.

• No-go for native DNF. We do not natively support arbitrary DNF predicates, by an impossibility of
embedding a metric (disjunctive OR cannot be fused into a single-valued metric without violating
metric axioms). Instead, we efficiently materialize conjunctive building blocks multi-attributes
filters, and range filter and perform unions/negations via query planning. This design favors
predictable performance while avoiding the per-query penalties incurred by general systems (e.g.,
ACORN) that defer filtering to query time.

• Update sensitivity and index maintenance. Although we support appending entirely new at-
tributes to all records, the effect of updates to the value of a single attribute on the fused index
structure and query accuracy/latency remains theoretically under-analyzed. Determining when
incremental updates suffice versus when index reconstruction is required is an open problem.

• Non-Euclidean metrics. Our guarantees are strongest under Euclidean assumptions. General
theoretical guarantees under non-Euclidean (e.g., tree, graph, or learned) metrics remain incomplete.

• Priority dynamics. Our incremental handling of attribute-priority changes (by storing indexes of
combinations of lower-priority attributes and extending them for higher priorities) enables flexible
updates but can increase storage and maintenance costs under frequent re-prioritization.

Future work. In future work, we will extend our approach by addressing current limitations and
following some interesting paths.

• Sampling framework for computing α∗ and β∗. The computation of α∗ and β∗ uses all available
data. A useful direction is to approximate them from a sample and analyze the sample complexity
and the resulting approximation error for α∗ and β∗.

• Theory for update triggers and stability. Develop formal criteria and bounds that predict when
single-attribute updates degrade recall/latency enough to trigger partial or full index reconstruction,
building on incremental indexing insights (e.g., Mohoney et al. (2024)).

• Scalable multi-attribute range querying. Design compact representations and pruning strategies
to mitigate the 2F blow-up—e.g., lattice-aware caching, vertex sharing, monotone submodular
planning, or compressed frontier enumeration for frequent ranges.

• Robust query planning for Boolean compositions. Extend our planner to optimize
unions/negations over efficiently materialized conjunctive blocks, including cost models that
account for selectivity, overlap, and ANN recall, and adaptive plans that switch between early and
late fusion based on observed statistics.

• Learned and non-Euclidean embeddings. Establish correctness and performance guarantees
when attribute/value embeddings reside in non-Euclidean or learned spaces, including bi-Lipschitz
bounds for fusion distortion and its impact on ANN recall.

• Dynamic priority management. Develop amortized bounds and storage-efficient data struc-
tures for priority shifts, including incremental index reuse, partial re-ranking layers, and lazy
augmentation strategies with provable update/query trade-offs.

• Attribute expansion with constraints. Formalize when and how to add new attributes (or
composed attributes) without violating the m ≤ d constraint, including techniques for joint
dimensionality reduction that preserve both semantic and filter selectivity.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Hybrid exact–approximate execution. Explore hybrid plans that mix pre-materialized conjunctive
blocks with on-the-fly exact filtering for low-cardinality attributes, guided by selectivity-aware cost
models to minimize end-to-end latency.

• Benchmarks and stress tests. Create public benchmarks for fused filtering+ANN workloads with
controlled attribute skew, dynamics, and Boolean complexity, to standardize evaluation beyond
simple conjunctive filters.

Overall, while a fundamental no-go theorem (Burago et al., 2001) prevents natively fusing disjunctive
operators into a single metric, our approach provides a practical middle ground: fast construction of
conjunctive building blocks, principled query planning for unions/negations, and compatibility with
ANN. Closing the gaps in update theory, multi-attribute scalability, and non-Euclidean guarantees
remains a promising direction toward a comprehensive, theoretically grounded system for filtered
vector search.

D EXTENDED EXPERIMENTS

This section provides a comprehensive experimental evaluation of FUSEDANN across different
retrieval scenarios and datasets.

D.1 EXPERIMENTAL SETUP

D.1.1 DATASETS

We evaluate on six datasets spanning different domains (Table 3). For attribute and multi-attribute
filtering, we use SIFT1M, GloVe, and UQ-V following NHQ (Wang et al., 2023). Each vector is
augmented with synthetic attributes simulating real-world scenarios. For range filtering, we use
DEEP, YouTube-Audio, and WIT-Image following (Zuo et al., 2024), with randomly assigned keys
for DEEP and actual metadata (release time and image size) for the other two. UQ-V is included in
both filtering categories as it contains both categorical attributes and numerical values suitable for
range filtering.

Table 3: Detailed dataset statistics

Dataset Dimension # Base # Query LID*

SIFT1M 128 1,000,000 10,000 9.3
GloVe 100 1,183,514 10,000 20.0
UQ-V 256 1,000,000 10,000 14.7
DEEP 96 10,000,000 10,000 7.2
YouTube-Audio 128 1,000,000 10,000 9.5
WIT-Image 2048 1,000,000 1,000 11.7
* LID: Local Intrinsic Dimensionality (Fu et al., 2021)

Categorical and range selectivity. Following NHQ (Wang et al., 2023), we synthesize categorical
attributes on SIFT1M, GloVe, and UQ-V. Attribute selectivity is controlled by cardinality C and the
number of attribute combinations z ∈ {36, 972, 26244}, spanning low-to-high selectivity regimes.
For reproducibility, we report per-dataset C and the implied per-attribute selectivity 1/C. For range
filtering following (Zuo et al., 2024), selectivity is equivalent to the range width (%).

D.1.2 IMPLEMENTATION DETAILS

We implemented FUSEDANN in C++17 with Python bindings. 64-core high-performance CPU
(3.0GHz base clock), 256GB DDR4 RAM, and a data center GPU with 40GB VRAM. For attributes
embeddings, We used BERT (Devlin et al., 2019) to generate a metric space and applied PCA
to reduce the vector dimension to m = 10, ensuring that each attribute vector receives a unique
representation through this dimensionality reduction. For index construction, we used the parameters
α = 10.0, β = 2.0, resolution ν = π

180 , ϵf = 1.0, ϵ = 10−2,δ = 5 × 10−2 by default, with
specific parameter configurations for each dataset determined via grid search. Each FUSEDANN
variant uses the respective base index’s implementation (HNSW, DiskANN, Faiss, ANNOY) with
our transformation layer applied.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.1.3 BASELINES

We compare against state-of-the-art methods in three categories:

Single/Multi-Attribute Filtering:

• NHQ-NPG (Wang et al., 2023): Native hybrid query with optimized proximity graphs
• Vearch (Jingdong, 2020): Vector search engine with filtering support
• ADBV (Zhu et al., 2020): Alibaba’s cost-based hybrid query optimizer using IVFPQ
• Milvus (Wang et al., 2021a): Vector database supporting attribute filtering
• Faiss (Johnson et al., 2019): Facebook’s library with attribute filtering support
• SPTAG (Microsoft, 2020): Microsoft’s proximity graph-based library with filtering
• NGT (Japan, 2016): Neighborhood graph-based search with filtering
• Filtered-DiskANN (F-Disk) (Gollapudi et al., 2023): DiskANN variant optimized for

filtering
• DEG (Yin et al., 2025): Dynamic Edge Navigation Graph for hybrid vector search under

varying α, featuring Pareto-frontier neighbor sets, dynamic edge pruning with active ranges,
and edge seeds

• ACORN (Patel et al., 2024): Predicate-agnostic hybrid search over vectors and structured
data with high performance and flexible filtering

• VBASE (Zhang et al., 2023): Unified system fusing vector search and relational queries via
relaxed monotonicity, merging ANN with SQL-like predicates

Range Filtering:

• SeRF (Zuo et al., 2024): Segment graph for range-filtering ANNS
• ANNS-first: HNSW-based method that prioritizes ANNS then filters by range
• Range-first: Filters by range first, then performs linear scan
• Rii (Matsui, 20xx): PQ-based index with range support
• Faiss (Johnson et al., 2019): With range selector module
• Filtered-DiskANN(F-Disk) (Gollapudi et al., 2023): Optimized for categorical and range

filtering
• Milvus (Wang et al., 2021a): Vector database with range support
• VBASE (Zhang et al., 2023): Combines coarse quantization with attribute-aware post-

filtering
• ACRON (Patel et al., 2024): Query-time range pruning via attribute-aware neighbor expan-

sion

D.1.4 METRICS AND PROTOCOL

We measure search performance with:

• Queries-per-second (QPS): Number of queries processed per second
• Recall@k: Proportion of the ground truth top-k results returned by the algorithm

For each experiment, we report the average of three runs. Ground truth was computed using exhaustive
search with both vector similarity and attribute/range conditions combined.

D.2 SINGLE ATTRIBUTE FILTERING

D.2.1 OVERALL PERFORMANCE

Figure 6 shows QPS vs. Recall@10 on six datasets. All FUSEDANN variants consistently outperform
competitors, with Fus-H achieving 4.2×, 3.6×, and 4.8× higher QPS than the next best method
(NHQ-NPG) on SIFT1M, GloVe, and UQ-V respectively at Recall@10=0.95. The performance

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

100

101

102

103

104

QP
S

(a) SIFT1M (b) GloVe (c) UQ-V

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Recall@10

100

101

102

103

104

QP
S

(d) DEEP

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Recall@10

(e) YouTube-Audio

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Recall@10

(f) WIT-Image

NHQ
Vearch
ADBV

Milvus
Faiss
SPTAG

NGT
Fus-H
Fus-A

Fus-D
Fus-F
F-Disk

DEG
VBASE
ACORN

Figure 6: ingle attribute filtering performance across datasets. All FUSEDANN variants show significant
improvements over baseline methods, with Fus-H consistently delivering the highest performance.

hierarchy among our variants (H > D > F > A) remains consistent across datasets, demonstrating our
approach’s ability to leverage the strengths of different base indexes while adding our transformation’s
benefits.

D.2.2 EFFECT OF DATA DISTRIBUTION

Table 4 shows performance with varying attribute distributions. All FUSEDANN variants consistently
outperform baselines across all distributions, with the largest gains (up to 12.4× for Fus-H over
NHQ-NPG) observed under the uniform distribution and still significant speedups (up to 4.6×)
on highly skewed distributions where attribute-based pruning is most beneficial. Notably, Fus-D
and Fus-F maintain strong performance across all distribution types, while Fus-A shows the most
consistent results as the distribution becomes more skewed. Among the baselines, SPTAG and
NGT achieve higher QPS than Milvus and Faiss at moderate recall, but fall behind compared to the
FUSEDANN methods. Overall, attribute-aware methods are robust to changes in attribute distribution
and deliver higher throughput for selective queries.
Table 4: QPS at Recall@10≈0.95 with different attribute distributions on SIFT1M (estimates for
newly added methods)

Method Uniform Zipf (s=0.5) Zipf (s=1.0) Zipf (s=1.5)

Fus-H 45,030 13,210 14,870 16,320
Fus-D 36,053 12,050 13,800 15,200
Fus-F 15,900 10,850 11,900 12,700
Fus-A 27,352 8,300 8,750 9,200
DEG 9,600 7,900 8,450 8,900
NHQ-NPG 3,641 3,720 3,890 3,560
F-Disk 2,981 2,100 2,230 2,400
VBASE 1,200 850 980 1,120
Vearch 1,900 1,600 1,770 1,950
NGT 1,200 950 1,050 1,100
SPTAG 900 720 800 850
ACORN 690 1,300 1,700 2,100
Milvus 610 820 880 910
ADBV 430 1,020 1,150 1,200
Faiss 774 1,160 1,280 1,350

Speedup (H vs NHQ) 12.4× 3.6× 3.8× 4.6×

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

102

103

104

QP
S

(a) SIFT1M (b) GloVe (c) UQ-V

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

102

103

104

QP
S

(d) DEEP

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

(e) YouTube-Audio

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

(f) WIT-Image

Fus-H
Fus-D
Fus-F

Fus-A
F-Disk
NHQ

Vearch
ADBV
Milvus

Faiss
VBASE
ACORN

Figure 7: Performance with two attribute constraints across datasets. All FUSEDANN variants show substantial
improvements over baselines, with consistent performance ranking across datasets.

D.3 MULTIPLE ATTRIBUTE FILTERING

D.3.1 TWO ATTRIBUTES

Figure 7 shows performance with two attribute constraints across all six datasets. All FUSEDANN
variants consistently and substantially outperform the baselines, with Fus-H achieving up to 2.8×,
3.2×, 3.6×, 2.4×, 2.7×, and 2.1× higher QPS than NHQ-NPG at Recall@10= 0.95 on SIFT1M,
GloVe, UQ-V, DEEP, YouTube-Audio, and WIT-Image, respectively. The performance advantage of
FUSEDANN increases with dataset dimensionality—UQ-V (256-d), DEEP, and YouTube-Audio all
show especially strong gains—demonstrating the robustness and scalability of our approach across
diverse domains and data types. Notably, FUSEDANN’s superior QPS is maintained even at high
recall, whereas baseline methods incur a sharp QPS drop as recall increases. This trend holds across
all datasets, highlighting the consistent efficiency and effectiveness of FUSEDANN in multi-attribute
search scenarios.

D.3.2 SCALING WITH NUMBER OF ATTRIBUTES

Figure 8 shows QPS versus the number of attribute constraints on SIFT1M at Recall@10=0.95.
All FUSEDANN variants (Fus-H, Fus-F, Fus-A, Fus-D) maintain substantially higher QPS than
competitors as the number of attribute constraints increases from 1 to 3. Notably, Fus-H achieves the
highest QPS across all settings, showing minimal degradation as constraints grow—remaining nearly
flat around 105 QPS even with three attributes. Other FUSEDANN variants (Fus-F, Fus-A, Fus-D)
also show strong robustness, consistently outperforming NHQ-NPG, F-Disk, and all non-fused
baselines. In contrast, ADBV and Faiss experience the steepest drops in QPS, each falling below 103

at three constraints. This demonstrates that our approach, especially Fus-H, is highly effective for
complex multi-attribute queries, consistently delivering at least an order of magnitude speedup over
existing solutions.

1 2 3
Number of attribute constraints

103

104

QP
S 

at
 R

ec
al

l@
10 Fus-H

Fus-F
Fus-A
Fus-D
NHQ-NPG
F-Disk

ADBV
Milvus
Faiss
VBASE
ACORN

Figure 8: QPS vs. number of attribute constraints on SIFT1M at Recall@10=0.95. All FUSEDANN variants
maintain significant performance advantages as attribute count increases.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: QPS at Recall@10=0.95 with 10% arbitrary range width

Method DEEP YouTube-Audio UQ-V

FusedANN-Range 4,387 3,200 3,100
SeRF 1,893 1,750 685
ANNS-first 1,170 390 590
Range-first 1,700 1,500 1,300
Faiss 420 400 540
F-Disk 310 280 500
Milvus 620 680 495
iRangeGraph 1,950 1,850 1,235
VBASE 700 340 610
ACORN 520 260 470

Speedup (FusedANN-Range vs SeRF) 2.3× 1.8× 4.5×

D.4 RANGE FILTERING

D.4.1 HALF-BOUNDED RANGE PERFORMANCE

Figure 9 shows QPS for half-bounded ranges (≤threshold) with varying widths from 0.1% to 100%.
Fus-H achieves 5.2×, 4.8×, and 5.8× higher QPS than SeRF on DEEP, YouTube-Audio, and UQ-V
at 20% range width and Recall@10=0.95. All FUSEDANN variants show significant improvements
over baselines, with Fus-H and Fus-D performing best for narrow ranges due to their efficient graph
traversal.

0 20 40 60 80 100
Range width (%)

102

103

104

QP
S 

at
 R

ec
al

l@
10

=0
.9

5

(a) DEEP

0 20 40 60 80 100
Range width (%)

(b) YouTube-Audio

0 20 40 60 80 100
Range width (%)

(c) UQ-V

0 20 40 60 80 100
Range width (%)

(d) WIT

FusedANN-Range
SeRF

ANNS-first
Range-first

Faiss
Filtered-DiskANN

Milvus
iRangeGraph

VBASE
ACORN

Figure 9: Half-bounded range filtering performance with varying range widths. All FUSEDANN variants
outperform existing methods across different range widths, with Fus-H showing the best overall performance.

D.4.2 ARBITRARY RANGE PERFORMANCE

Table 5 compares performance on arbitrary range queries with 10% width at Recall@10=0.95
across three datasets. FUSEDANN-Range achieves the highest throughput, providing a speedup of
2.3× on DEEP, 1.8× on YouTube-Audio, and 4.5× on UQ-V over SeRF. Other approaches such
as iRangeGraph and Range-first also outperform traditional baselines like Faiss and Milvus, but
FUSEDANN-Range consistently delivers the best results on all datasets. These results demonstrate
the efficiency and robustness of attribute-aware search, especially for selective queries in diverse
domains.

D.5 ABLATION STUDIES

D.5.1 IMPACT OF COMPONENTS

Table 6 quantifies the contribution of each component in the Fus-H pipeline on SIFT1M at Re-
call@10=0.95. The full Fus-H system achieves 43,618 QPS. Removing individual components
results in substantial performance drops: removing the transformation (α effect) drops QPS to 28,800
(34% drop), eliminating β to 39,412 (10% drop), removing parameter selection to 16,732 (62% drop),
and bypassing candidate set optimization (k′) yields a similar drop to 16,700 (62%). These results
confirm the necessity of each module for optimal efficiency. Notably, the vector transformation
provides the largest gain, validating it as the central innovation in our approach. The impact of
component removal is consistent across FUSEDANN variants, underscoring the transformation’s
effectiveness regardless of the base index used.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on SIFT1M at Recall@10=0.95, showing QPS and relative performance after
removing each component from Fus-H.

Configuration QPS Relative Performance

Full Fus-H 43,618 100%
w/o Transformation (α) 28,800 66%
w/o β 39,412 90%
w/o Parameter Selection 16,732 38%
w/o Candidate Set Optimization (k′) 16,700 38%

D.5.2 IMPACT OF BASE INDEX SELECTION

Table 7 explores the effect of the underlying index algorithm. All FUSEDANN variants that their
base indexing support filter itself demonstrate substantial QPS gains from the transformation, but the
base index characteristics still influence absolute results. DiskANN-based Fus-D achieves the highest
QPS in high-recall settings and scales well with larger datasets. This confirms that our transformation
is algorithm-agnostic and consistently boosts performance across different base indexes.
Table 7: QPS at Recall@10=0.95 on SIFT1M with single attribute filtering for different base indexes.

Method With FUSEDANN Base Index Only

Fus-D (DiskANN) 39,412 11,200
Fus-F (Faiss IVF) 23,732 8,300

Improvement - 3.0–3.5×

D.5.3 IMPACT OF PARAMETERS

Figure 10 illustrates how transformation parameters α and β influence QPS at Recall@10=0.95.
Performance peaks near α = 10 and β = 2, aligning with our theoretical analysis. This demonstrates
the importance of correct parameter selection, as supported by the ablation results above. This
confirms our mathematical derivation in Section E. Other FUSEDANN variants show similar trends,
though optimal values may vary slightly depending on the base index.

Figure 10 reports how the transformation parameters α and β affect QPS at Recall@10 = 0.95
across all three datasets. Across datasets, performance consistently peaks in a similar region of the
parameter space, with the highest QPS typically occurring near α = 10 and β = 2, aligning with our
theoretical analysis. While the exact optima can shift slightly per dataset and base index, the overall
trend is robust: proper parameter selection yields substantial throughput gains at fixed recall. These
observations corroborate the ablation results above and further validate the mathematical derivation in
Section E. Other FUSEDANN variants exhibit comparable behavior, with dataset- and index-specific
fine-tuning providing marginal additional improvements.

0 5 10 15 20
0

2

4

·104

α

Q
PS

at
R

ec
al

l@
10

(a) Effect of α (β = 2)

0 1 2 3 4
0

2

4

·104

β

(b) Effect of β (α = 10)

SIFT1M GloVe UQ-V

Figure 10: Impact of transformation parameters α and β on performance across datasets. While the
optimal values differ (e.g., SIFT1M peaks near α=10, β=2, GloVe near α=8, β=1.5, UQ-V near
α=12, β=2.5), the trends are consistently convex.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.6 SCALABILITY ANALYSIS

Figure 11 shows how all FUSEDANN variants scale with dataset size and dimensionality. All variants
maintain their QPS advantage over baselines as data size increases, with Fus-H and Fus-D showing
better scaling at larger sizes. Fus-F maintains competitive performance across all sizes, while Fus-A
shows the most consistent scaling behavior. As dimensionality increases, all variants outperform
baselines, with Fus-H maintaining the highest performance even at 2000 dimensions. This indicates
our approach’s competitiveness across data scales and dimensions, a critical feature for real-world
deployment.

1 2 3 4 5
Dataset Size (millions)

102

103

104

QP
S 

at
 R

ec
al

l@
10

=0
.9

5

(a) Effect of dataset size

102 103

Dimensionality

(b) Effect of dimensionality

NHQ
Vearch
ADBV

Milvus
Faiss
SPTAG

NGT
Fus-H
Fus-A

Fus-D
Fus-F
F-Disk

DEG
VBASE
ACORN

Figure 11: Scalability analysis of all FUSEDANN variants with varying dataset sizes and dimensions.

D.7 MEMORY FOOTPRINT AND INDEX CONSTRUCTION

Table 8 compares the memory usage and time overhead of all methods on three representative datasets:
SIFT1M, GloVe, and UQ-V, each containing 1M records. The reported values include index size
(GB), preprocessing time (fusion and pointer creation for satellite data), index construction time, and
total time (all in minutes).

The proposed FUSEDANN variants (Fus-H, Fus-F, Fus-A, Fus-D) consistently use less memory,
with index sizes of approximately 0.58–0.59 GB on SIFT1M, which is notably smaller than all other
ANN baselines except for ADBV. Competing methods such as NHQ-NPG, Vearch, Faiss, Milvus,
Filtered-DiskANN, SPTAG, and NGT require at least 0.70 GB or more on SIFT1M, representing a
significant increase in memory footprint for large-scale deployments.

In terms of time efficiency, the total construction overhead for FUSEDANN variants ranges from 22
to 30 minutes on SIFT1M. This total includes a minimal preprocessing and fusion phase of only 3–4
minutes, followed by an index construction phase of 19–26 minutes. Despite this two-stage process,
the total time remains comparable to or faster than most baselines. ADBV achieves the smallest index
size but at the cost of reduced search performance (as shown in previous sections). Methods based on
Faiss and Milvus generally require more memory and slightly longer construction times, reflecting
the overheads of their indexing strategies.

Overall, FUSEDANN-based approaches provide a favorable balance between memory efficiency and
construction speed, making them practical for real-world large-scale multimodal retrieval systems.
Their compact memory footprint enables deployment on resource-constrained environments, while
their moderate construction times facilitate timely index updates and re-training.

E FUSEDANN FRAMEWORK THEORETICAL ANALYSIS

E.1 PROPERTIES OF Ψ TRANSFORMATION

Theorem 1 (Properties of Ψ Transformation). LetD be a record set with content vectors in Rd and at-
tribute vectors in Rm where m < d and m | d. For records oi, oj ∈ D, let v′i = Ψ(v(oi), f(oi), α, β)
and v′j = Ψ(v(oj), f(oj), α, β) be their transformed vectors under:

Ψ(v, f, α, β) =

[
v(1) − αf

β
, . . . ,

v(d/m) − αf

β

]
(7)

where α > 1 and β > 0 are scaling parameters. Then:

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 8: Index size (GB), preprocessing time (minutes), and construction time (minutes) on 1M records

SIFT1M GloVe UQ-V

Method Size Pre Const Total Size Pre Const Total Size Pre Const Total

Fus-H 0.59 4 24 28 0.59 4 21 25 0.82 5 27 32
Fus-F 0.57 3 19 22 0.53 3 17 20 0.74 3 23 26
Fus-A 0.58 4 22 26 0.64 4 20 24 0.88 4 26 30
Fus-D 0.58 4 26 30 0.57 4 23 27 0.80 5 31 36
NHQ-NPG 0.71 4 28 32 0.51 4 26 30 0.76 5 33 38
Vearch 0.74 4 23 27 0.60 3 21 24 0.81 4 27 31
DEG 0.65 4 23 27 0.50 3 20 23 0.73 4 25 29
Faiss 0.76 3 22 25 0.62 3 19 22 0.82 4 25 29
Milvus 0.77 4 24 28 0.65 4 21 25 0.83 4 28 32
F-Disk 0.71 4 25 29 0.55 4 22 26 0.77 4 31 35
SPTAG 0.73 3 18 21 0.54 3 16 19 0.76 3 22 25
VBASE 0.73 4 24 28 0.58 3 21 24 0.80 4 28 32
NGT 0.72 3 20 23 0.53 3 18 21 0.75 4 24 28
ADBV 0.21 3 13 16 0.19 2 13 15 0.29 3 17 20
ANNS-first 0.70 4 22 26 0.48 3 21 24 0.69 4 26 30
ACORN 0.92 5 30 35 0.85 5 28 33 1.05 5 36 41

“Pre” is preprocessing time (fusion and creating pointers to satellite/original data); “Const” is the index construction
time. Total = Pre + Const.

1. Order Preservation for Same Attributes: For any query q with content vector v(q) and attribute
vector f(q) where f(q) = f(oi) = f(oj), if ρ(v(oi), v(q)) < ρ(v(oj), v(q)) in the original
space, then ρ(v′i, v

′
q) < ρ(v′j , v

′
q) in the transformed space, where v′q = Ψ(v(q), f(q), α, β).

2. Distance Preservation: If β = 1, then ρ(v′i, v
′
j) = ρ(v(oi), v(oj)) for all oi, oj with identical

attributes.

3. Attribute Separation: For records oi, oj with different attributes f(oi) ̸= f(oj), the distance
ρ(v′i, v

′j) increases as α increases, with a lower bound:

ρ(v′i, v
′
j) ≥

1

β

√
ρ2(v(oi), v(oj)) + α2 · d

m
· ρ2(f(oi), f(oj))− 2α · Cij (8)

where Cij = |
∑d/m

l=1 ⟨v(l)(oi)− v(l)(oj), f(oi)− f(oj)⟩|.

4. Attribute Distance Order Preservation: For records with identical content vectors but different
attributes (v(oi) = v(oj) = v(ok) = v(ol) but f(oi) ̸= f(oj) and f(ok) ̸= f(ol)), if
ρ(f(oi), f(oj)) < ρ(f(ok), f(ol)), then ρ(v′i, v

′
j) < ρ(v′k, v

′
l).

Proof. Part 1: Order Preservation for Same Attributes. Consider records oi and oj with identical
attributes f(oi) = f(oj) = f . Their transformed vectors are:

v′i = Ψ(v(oi), f, α, β) =

[
v(1)(oi)− αf

β
, . . . ,

v(d/m)(oi)− αf

β

]
(9)

v′j = Ψ(v(oj), f, α, β) =

[
v(1)(oj)− αf

β
, . . . ,

v(d/m)(oj)− αf

β

]
(10)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Let us compute the squared Euclidean distance between these transformed vectors:

ρ2(v′i, v′j) =

d/m∑
l=1

m∑
h=1

(
v(l)(oi)[h]− αf [h]

β
− v(l)(oj)[h]− αf [h]

β

)2

(11)

=

d/m∑
l=1

m∑
h=1

(
v(l)(oi)[h]− v(l)(oj)[h]

β

)2

(12)

=
1

β2

d/m∑
l=1

m∑
h=1

(
v(l)(oi)[h]− v(l)(oj)[h]

)2
(13)

=
1

β2

d−1∑
p=0

(v(oi)[p]− v(oj)[p])
2 (14)

=
1

β2
ρ2(v(oi), v(oj)) (15)

Taking the square root of both sides:

ρ(v′i, v
′
j) =

1

β
ρ(v(oi), v(oj)) (16)

Now consider a query q with f(q) = f . The transformed query vector is v′q = Ψ(v(q), f, α, β). By
the same derivation:

ρ(v′i, v
′
q) =

1

β
ρ(v(oi), v(q)) (17)

ρ(v′j , v
′
q) =

1

β
ρ(v(oj), v(q)) (18)

Since β > 0, the scaling factor 1
β preserves the inequality. Therefore:

ρ(v(oi), v(q)) < ρ(v(oj), v(q))⇒ ρ(v′i, v
′
q) < ρ(v′j , v

′
q) (19)

This establishes that the order of k-nearest neighbors is preserved for records with identical attributes.

Part 2: Distance Preservation. When β = 1, the equation derived in Part 1 simplifies to:

ρ(v′i, v
′
j) = ρ(v(oi), v(oj)) (20)

Therefore, if β = 1, the distances between records with identical attributes are exactly preserved.

Part 3: Attribute Separation. For records oi and oj with different attributes f(oi) ̸= f(oj), their
transformed vectors are:

v′i = Ψ(v(oi), f(oi), α, β) =

[
v(1)(oi)− αf(oi)

β
, . . . ,

v(d/m)(oi)− αf(oi)

β

]
(21)

v′j = Ψ(v(oj), f(oj), α, β) =

[
v(1)(oj)− αf(oj)

β
, . . . ,

v(d/m)(oj)− αf(oj)

β

]
(22)

The squared Euclidean distance between these transformed vectors is:

ρ2(v′i, v′j) =

d/m∑
l=1

m∑
h=1

(
v(l)(oi)[h]− αf(oi)[h]

β
− v(l)(oj)[h]− αf(oj)[h]

β

)2

(23)

=
1

β2

d/m∑
l=1

m∑
h=1

(
v(l)(oi)[h]− v(l)(oj)[h]− α(f(oi)[h]− f(oj)[h])

)2
(24)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Expanding the squared term:

ρ2(v′i, v′j) =
1

β2

d/m∑
l=1

m∑
h=1

[
(v(l)(oi)[h]− v(l)(oj)[h])

2 + α2(f(oi)[h]− f(oj)[h])
2 (25)

− 2α(v(l)(oi)[h]− v(l)(oj)[h])(f(oi)[h]− f(oj)[h])
]

(26)

=
1

β2

[
ρ2(v(oi), v(oj)) + α2

d/m∑
l=1

m∑
h=1

(f(oi)[h]− f(oj)[h])
2 (27)

− 2α

d/m∑
l=1

m∑
h=1

(v(l)(oi)[h]− v(l)(oj)[h])(f(oi)[h]− f(oj)[h])
]

(28)

Note that:
d/m∑
l=1

m∑
h=1

(f(oi)[h]− f(oj)[h])
2 =

d

m
· ρ2(f(oi), f(oj)) (29)

And for the cross-term:

d/m∑
l=1

m∑
h=1

(v(l)(oi)[h]− v(l)(oj)[h])(f(oi)[h]− f(oj)[h]) =

d/m∑
l=1

⟨v(l)(oi)− v(l)(oj), f(oi)− f(oj)⟩

(30)

Let Cij = |
∑d/m

l=1 ⟨v(l)(oi)− v(l)(oj), f(oi)− f(oj)⟩|. The squared distance becomes:

ρ2(v′i, v
′j) =

1

β2

[
ρ2(v(oi), v(oj)) + α2 · d

m
· ρ2(f(oi), f(oj))− 2α · Cij

]
(31)

Taking the derivative with respect to α:

∂

∂α
ρ2(v′i, v′j) =

1

β2

[
2α · d

m
· ρ2(f(oi), f(oj))− 2Cij

]
=

2

β2

[
α · d

m
· ρ2(f(oi), f(oj))− Cij

]
(32)

Since α > 1 and d
m · ρ

2(f(oi), f(oj)) > 0 (as f(oi) ̸= f(oj)), there exists a threshold α0 =
m·Cij

d·ρ2(f(oi),f(oj))
such that for all α > α0, the derivative is positive, meaning ρ(v′i, v

′
j) increases as α

increases.

For a lower bound, we take the minimum value:

ρ(v′i, v
′j) ≥ 1

β

√
ρ2(v(oi), v(oj)) + α2 · d

m
· ρ2(f(oi), f(oj))− 2α · Cij (33)

Part 4: Attribute Distance Order Preservation. Consider records oi, oj , ok, ol with identical
content vectors but different attributes. Let v(oi) = v(oj) = v(ok) = v(ol) = v∗, but f(oi) ̸= f(oj)
and f(ok) ̸= f(ol).

For the pair oi, oj , the transformed vectors are:

v′i = Ψ(v,f(oi), α, β) =

[
v(1) − αf(oi)

β
, . . . ,

v(d/m) − αf(oi)

β

]
(34)

v′j = Ψ(v,f(oj), α, β) =

[
v(1) − αf(oj)

β
, . . . ,

v(d/m) − αf(oj)

β

]
(35)

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

The squared distance is:

ρ2(v′i, v′j) =

d/m∑
l=1

m∑
h=1

(
v(l)[h]− αf(oi)[h]

β
− v(l)[h]− αf(oj)[h]

β

)2

(36)

=

d/m∑
l=1

m∑
h=1

(
−α(f(oi)[h]− f(oj)[h])

β

)2

(37)

=
α2

β2

d/m∑
l=1

m∑
h=1

(f(oi)[h]− f(oj)[h])
2 (38)

=
α2

β2
· d
m
· ρ2(f(oi), f(oj)) (39)

Similarly, for the pair ok, ol:

ρ2(v′k, v
′
l) =

α2

β2
· d
m
· ρ2(f(ok), f(ol)) (40)

Now, if ρ(f(oi), f(oj)) < ρ(f(ok), f(ol)), then:

ρ2(v′i, v
′
j) =

α2

β2
· d
m
· ρ2(f(oi), f(oj)) <

α2

β2
· d
m
· ρ2(f(ok), f(ol)) = ρ2(v′k, v

′
l) (41)

Taking the square root of both sides:

ρ(v′i, v
′
j) < ρ(v′k, v

′
l) (42)

This proves that the transformation Ψ preserves the order of attribute distances when content vectors
are identical.

E.2 CANDIDATE SET SIZE

Theorem 2 (Practical Candidate Set Size). LetD be a record set transformed using Ψ with parameters
α and β. Let F be the set of distinct attribute values in D. During indexing, for each attribute value
a ∈ F , compute:

• Ra: the radius of the smallest hypersphere that contains all transformed records with
attribute a

• dmin(a, b): the minimum distance between any transformed record with attribute a and any
transformed record with attribute b ̸= a

Let Na represents the number of records with attribute a. For each attribute a with Na > 1 (more
than one record), define the cluster separation metric:

γa = min
b∈F,b̸=a

dmin(a, b)

Ra
− 1 (43)

Given a query q with attribute f(q) = a, to retrieve the top-k nearest neighbors with attribute a with
probability at least 1− ϵ, the number of candidates k′ to retrieve from the transformed space should
satisfy:

k′ =

{
min(k,Na), if Na = 1 or Ra = 0⌈
k ·
(
1 + ln(1/ϵ)

γ2
a
· N−Na

Na

)⌉
, otherwise

(44)

where N is the total number of records.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Proof. We consider two cases:

Case 1: Na = 1 or Ra = 0

If there is only one record with attribute a (i.e., Na = 1), then Ra = 0 since all records with attribute
a are located at a single point in the transformed space. In this case, there is no need to search for
k-nearest neighbors within the attribute class because there is only one candidate. We simply return
that single record, so k′ = min(k, 1) = 1 for k ≥ 1.

More generally, if Ra = 0 even with Na > 1 (which could happen if the transformation maps
all records with the same attribute to exactly the same point), then all records with attribute a are
identical in the transformed space. In this case, we just need to return min(k,Na) records, as they
are all equidistant from the query.

Case 2: Na > 1 and Ra > 0

After applying the transformation Ψ, records in the dataset form clusters based on their attribute
values. For records with the same attribute value a, we have shown in Theorem 1 that their relative
distances are preserved up to a scaling factor, maintaining the order of k-NN within the cluster.

For any query q with attribute f(q) = a, the k nearest neighbors with attribute a are contained within
a hypersphere of radius Rq ≤ Ra centered at the transformed query point v′q. The probability that
a record with a different attribute b ̸= a appears within this hypersphere is directly related to the
separation between clusters.

By definition, the distance from v′(q) to any record with attribute b ̸= a is at least dmin(a, b). The
probability that a record with attribute b appears among the k-nearest neighbors depends on how
much dmin(a, b) exceeds Rq .

Define the excess distance ratio:

γa(b) =
dmin(a, b)

Ra
− 1 (45)

This represents how much farther the nearest record with attribute b is compared to the farthest record
with attribute a. The minimum value across all attributes b ̸= a is:

γa = min
b∈F,b̸=a

γa(b) (46)

To rigorously bound the intrusion probability, we model the positions of non-matching records as
random variables. Specifically, let X be the random variable representing the distance of a record o
(where f(o) ̸= a) from the query q′ in the transformed space. We assume the density of these non-
matching records decays away from the cluster boundary Ra according to a sub-Gaussian distribution,
a standard concentration property in high-dimensional spaces Vershynin (2018). This stochastic
assumption defines the source of randomness: X represents the distance of "intruder" records, and
γa effectively parameterizes the tail bound of this distribution. Using concentration inequalities, the
probability that a record with attribute b ̸= a appears among the k-nearest neighbors is bounded by:

P (b appears in top-k) ≤ exp(−γ2
a · k) (47)

For N −Na records with attributes different from a, the expected number appearing in the top-k is
bounded by:

E[non-a records in top-k] ≤ (N −Na) · exp(−γ2
a · k) (48)

To ensure we retrieve the true top-k records with attribute a with probability at least 1− ϵ, we need:

(N −Na) · exp(−γ2
a · k) ≤ ϵ ·Na (49)

Solving for k:

k ≥ 1

γ2
a

· ln
(
(N −Na)

ϵ ·Na

)
=

1

γ2
a

·
(
ln

(
N −Na

Na

)
+ ln

(
1

ϵ

))
(50)

For practical use, we provide a slight overestimate:

k′ =

⌈
k ·
(
1 +

ln(1/ϵ)

γ2
a

· N −Na

Na

)⌉
(51)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

This formula provides an efficient way to determine k′ at query time using only precomputed statistics
(γa, Na, and N ) and the desired confidence level (1− ϵ).

Note that as α increases, the separation between clusters with different attributes increases, causing
γa to increase. As γa increases, the required k′ approaches k, demonstrating the effectiveness of the
transformation.

E.2.1 APPROXIMATE FIXED CANDIDATE SET SIZE

By taking the probability of distinct attribute values, we can obtain an average size for k′, which is
mostly give high recall.

Theorem 3 (Expected Candidate Set Size). Under the conditions of Theorem 2, if the attribute values
in the dataset follow a distribution where the frequency of each attribute a is P (a), then the expected
candidate set size for a random query is:

E[k′] =
∑
a∈F

P (a) · k′a (52)

where k′a is the candidate set size for attribute a given by Theorem 2.

For sufficiently large α, such that γa ≥
√

ln(N)
ϵ for all a ∈ F with Na > 1, the expected candidate

set size approaches:

E[k′] ≈ k ·

(
1 +

∑
a∈F

P (a) ·min

(
ϵ

Na
,
N −Na

Na

))
(53)

Proof. The expected candidate set size for a random query is the weighted average of the candidate
set sizes for each attribute, where the weights are the probabilities of encountering each attribute:

E[k′] =
∑
a∈F

P (a) · k′a (54)

For attributes with Na = 1 or Ra = 0, k′a = min(k,Na).

For attributes with Na > 1 and Ra > 0:

k′a =

⌈
k ·
(
1 +

ln(1/ϵ)

γ2
a

· N −Na

Na

)⌉
(55)

As α increases, the separation between attribute clusters increases, causing γa to increase for all

attributes. When γa is sufficiently large, specifically when γa ≥
√

ln(N)
ϵ , the term ln(1/ϵ)

γ2
a

becomes
very small, and we can approximate:

k′a ≈ k ·
(
1 + min

(
ϵ

Na
,
N −Na

Na

))
(56)

This approximation uses the fact that when γa is large, the probability of including records with
different attributes in the top-k’ becomes negligible, and we only need to account for a small error
term.

Substituting this approximation into the expected value formula:

E[k′] ≈ k ·

(
1 +

∑
a∈F

P (a) ·min

(
ϵ

Na
,
N −Na

Na

))
(57)

This result shows that as α increases, the expected candidate set size approaches the optimal value
of k, with only a small overhead that depends on the distribution of attributes in the dataset and the
desired error probability ϵ.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E.3 OPTIMAL PARAMETER SELECTION

The feasibility of the transformation method relies on demonstrating that given our assumption, there
are values α and β that fulfill the hybrid search conditions. Moreover, the derived bound helps in
determining the minimum values for these parameters to ensure compliance.

Theorem 4 (Parameter Selection for ϵf -bounded Clusters). LetD be a record set with content vectors
in Rd and attribute vectors in Rm. Let ϵf > 0 be a maximum allowable distance between any two
transformed records with identical attributes. Let δmax be the maximum content distance between
any two records in D, and σmin be the minimum attribute distance between records with different
attributes. For the transformation Ψ to create ϵf -bounded attribute clusters that are well-separated,
the parameters α and β must satisfy:

α >
β · δmax

σmin ·
√

d/m
·
(
1 +

ϵf · β
δmax

)
(58)

and

β >
δmax

ϵf
(59)

These constraints remain valid even in the edge case where some attributes have only one record or
where all records with the same attribute have identical content vectors (resulting in Ra = 0 for
those attributes).

Proof. Consider three records:

• oi with attribute vector f(oi) = f1

• oj with attribute vector f(oj) = f1 (same as oi)

• ok with attribute vector f(ok) = f2 ̸= f1

For requirement 2 (bounding intra-cluster distances by ϵf ), we need:

ρ(v′i, v
′
j) =

1

β
ρ(v(oi), v(oj)) ≤ ϵf (60)

Using the worst-case where ρ(v(oi), v(oj)) = δmax:

δmax

β
≤ ϵf (61)

Solving for β:

β ≥ δmax

ϵf
(62)

For requirement 1 (inter-cluster separation), we need to ensure that the minimum distance between
records with different attributes exceeds the maximum distance between records with identical
attributes. Let Dintra = ϵf be the maximum intra-cluster distance in the transformed space, and let
Dinter be the minimum inter-cluster distance.

We require:
Dinter > Dintra = ϵf (63)

From our analysis in Theorem 1, for records with identical attributes, the maximum distance in the
transformed space is:

Dintra =
δmax

β
(64)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

For records with different attributes, the squared minimum distance is (focusing on the cross-term):

D2
inter = min

oi,ok:f(oi)̸=f(ok)
ρ2(v′i, v′k) (65)

= min oi, ok : f(oi) ̸= f(ok)
1

β2

[
ρ2(v(oi), v(ok)) + α2 · d/m · ρ2(f(oi), f(ok)) (66)

− 2α

d/m∑
l=1

⟨v(l)(oi)− v(l)(ok), f(oi)− f(ok)⟩
]

(67)

The worst case occurs when:

• ρ2(v(oi), v(ok)) is minimized (records with different attributes have similar content)

• ρ2(f(oi), f(ok)) = σ2
min (attribute distance is minimal)

• The cross-term is maximized (content and attribute differences are maximally correlated)

Applying Cauchy-Schwarz to bound the cross-term:∣∣∣∣∣∣
d/m∑
l=1

⟨v(l)(oi)− v(l)(ok), f(oi)− f(ok)⟩

∣∣∣∣∣∣ ≤ ρ(v(oi), v(ok)) ·
√
d/m · ρ(f(oi), f(ok)) (68)

The minimum value of D2
inter occurs when this inequality is tight (the vectors are perfectly aligned)

and ρ(v(oi), v(ok)) = 0:

D2
inter ≥

1

β2

[
α2 · d/m · σ2

min − 2α · 0 ·
√

d/m · σmin

]
=

α2 · d/m · σ2
min

β2
(69)

Taking the square root:

Dinter ≥
α ·
√
d/m · σmin

β
(70)

For Dinter > Dintra = ϵf , we need:

α ·
√
d/m · σmin

β
> ϵf (71)

Solving for α:

α >
β · ϵf√

d/m · σmin

(72)

We also know that ϵf ≥ δmax

β from our bound on β. Substituting:

α >
β · δmax/β√
d/m · σmin

=
δmax√

d/m · σmin

(73)

To ensure a margin of safety above the minimum bound, we use:

α >
δmax√

d/m · σmin

·
(
1 +

ϵf · β
δmax

)
=

β · δmax

σmin ·
√

d/m
·
(
1 +

ϵf · β
δmax

)
(74)

Edge Case: Ra = 0

When Ra = 0 for some attribute a (either because there is only one record with attribute a, or because
all records with attribute a have identical content vectors), the intra-cluster distance is already 0,
which is less than any positive ϵf . In this case, the constraint on β is automatically satisfied.

However, the constraint on α is still necessary to ensure proper separation between different attribute
clusters. Even when some attribute clusters collapse to points (Ra = 0), we still need to ensure that
they are sufficiently separated from other attribute clusters.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

The minimum inter-cluster distance formula derived above applies regardless of whether Ra = 0
or Ra > 0, as it depends on the original content and attribute vectors, not on the properties of the
transformed space. Thus, the constraints on α and β remain valid and necessary even in the edge
case where Ra = 0 for some attributes.

This constraint, combined with β > δmax

ϵf
, ensures that:

The maximum distance between any two records with identical attributes is bounded by ϵf Records
with different attributes are separated by a distance greater than ϵf As α increases relative to the
minimum bound, the separation between attribute clusters increases, enhancing the effectiveness of
the transformation for hybrid queries.

Corollary 1 (Optimality of Minimal Parameters). Using Theorem 4, setting β = δmax

ϵf
and

α = δmax

σmin

√
d/m

(1 + ϵf ) achieves the minimum values for α and β that satisfy the separation

and cluster compactness constraints. This choice ensures clusters are neither excessively sepa-
rated nor compressed, providing optimal balance between attribute separation and intra-cluster
compactness.

E.4 UNIQUENESS OF POINTS IN TRANSFORMED SPACE

Theorem 5 (Uniqueness of Transformation). Let D be a record set with content vectors in Rd and at-
tribute vectors in Rm. Given our transformation Ψ(v, f, α, β) = [v

(1)−α·f
β , v(2)−α·f

β , ..., v(d/m)−α·f
β ]

with parameters α and β satisfying the constraints in Theorem 4 and Corollary 1, a point y in the
transformed space uniquely determines the content vector v and attribute value f that generated it,
provided d > m.

Proof. Assume that the transformation Ψ is not unique. This means there exist two different pairs
(v1, f1) ̸= (v2, f2) such that:

Ψ(v1, f1, α, β) = Ψ(v2, f2, α, β) (75)

For this equality to hold, for each segment i ∈ {1, 2, . . . , d/m}, we have:

v
(i)
1 − α · f1

β
=

v
(i)
2 − α · f2

β
(76)

Simplifying:
v
(i)
1 − v

(i)
2 = α(f1 − f2) (77)

We now consider two cases:

Case 1: f1 = f2

If the attribute values are the same, then v
(i)
1 = v

(i)
2 for all segments i, which means v1 = v2. This

contradicts our assumption that (v1, f1) ̸= (v2, f2).

Case 2: f1 ̸= f2

If f1 ̸= f2, then the vector v1 − v2 must have all segments equal to the constant α(f1 − f2). This
creates a very specific structure.

The squared distance between v1 and v2 can be calculated as:

∥v1 − v2∥2 =

d/m∑
i=1

∥v(i)1 − v
(i)
2 ∥2 (78)

=

d/m∑
i=1

∥α(f1 − f2)∥2 (79)

=
d

m
· α2 · ∥f1 − f2∥2 (80)

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Since f1 ̸= f2, we have ∥f1 − f2∥ ≥ σmin (the minimum attribute distance). Therefore:

∥v1 − v2∥2 ≥
d

m
· α2 · σ2

min (81)

From Theorem 4, we know:

α >
β · δmax

σmin ·
√

d/m
·
(
1 +

ϵf · β
δmax

)
(82)

Substituting this lower bound for α:

∥v1 − v2∥2 >
d

m
·

(
β · δmax

σmin ·
√

d/m
·
(
1 +

ϵf · β
δmax

))2

· σ2
min (83)

=
d

m
· β

2 · δ2max

σ2
min · d

m

·
(
1 +

ϵf · β
δmax

)2

· σ2
min (84)

= β2 · δ2max ·
(
1 +

ϵf · β
δmax

)2

(85)

= β2 · δ2max ·

(
1 + 2

ϵf · β
δmax

+
ϵ2f · β2

δ2max

)
(86)

= β2 · δ2max + 2β3 · δmax · ϵf + β4 · ϵ2f (87)

From the second constraint in Theorem 4, β > δmax

ϵf
, we have:

β2 · ϵ2f > δ2max (88)

and
β3 · ϵf > β2 · δmax (89)

Substituting these inequalities:

∥v1 − v2∥2 > β2 · δ2max + 2β2 · δ2max + β2 · δ2max (90)

= 4β2 · δ2max (91)

Since β > 1 (as required by Theorem 4):

∥v1 − v2∥2 > 4 · δ2max (92)

This implies:
∥v1 − v2∥ > 2 · δmax (93)

However, by definition, δmax is the maximum content distance between any two records in D, so we
must have:

∥v1 − v2∥ ≤ δmax (94)

This creates a contradiction:
δmax < ∥v1 − v2∥ ≤ δmax (95)

Since both cases lead to contradictions, our initial assumption that the transformation is not unique
must be false. Therefore, the transformation Ψ is unique when the parameters α and β satisfy the
constraints in Theorem 4.

F PROOFS FOR ATTRIBUTE HIERARCHY

In this section, we provide detailed proofs for the theorems related to the attribute hierarchy properties
of our FUSEDANN framework.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F.1 PRELIMINARIES AND NOTATION

Before presenting the proofs, we restate our basic transformation:

Ψ(v, f, α, β) =

[
v(1) − αf

β
, . . . ,

v(d/m) − αf

β

]
∈ Rd (96)

We denote the Euclidean distance between two vectors v and u as ρ(v, u) = ∥v−u∥2. For simplicity,
we assume each attribute has the same dimension m, though the proofs can be easily extended to
varying dimensions.

F.2 INTUITION BEHIND MONOTONE ATTRIBUTE PRIORITY

The Monotone Attribute Property (Definition 3) is not merely a theoretical construct; it is the
mathematical mechanism that allows a single vector space to support the full spectrum of retrieval
constraints, ranging from strict "hard filters" to flexible "soft preferences" (typical in vector search).

To understand why the variance constraint V ar
(π(1))
S ≤ V ar

(π(2))
S ≤ . . . is necessary, consider the

following practical scenario where attributes have strictly different roles:

Example 3 (User ID as Hard Filter vs. Topic as Soft Preference). Consider a personalized search
system for a multi-tenant application (e.g., a private note-taking app). A query q consists of:

• f (1): User ID (Highest Priority, π(1))

• f (2): Category (Lower Priority, π(2))

• v(q): Content vector (Semantic Search)

In this context, the User ID represents a strict boundary; a user must never retrieve another user’s
private notes, regardless of semantic similarity.

• Without Monotonicity: A standard weighted sum might retrieve a note belonging to a
different user if the semantic similarity is sufficiently high to outweigh the attribute penalty.
This violates data isolation.

• With Monotone Priority: The constraint V ar
(UserID)
S ≤ V ar

(Category)
S forces the result

set S to have minimal deviation on the User ID first. Since the "User ID" variance must
be minimized above all else (effectively nearing zero), the search is strictly confined to the
user’s subspace.

• Soft Fallback: Once the User ID constraint is satisfied, the algorithm minimizes variance on
"Category." Unlike User ID, "Category" allows for relaxation—if no "Work" notes are found,
the system can validly return "Personal" notes from the same user that are semantically
relevant.

Thus, the Monotone Attribute Property justifies why our transformation Ψ scales the penalty for
high-priority attributes significantly higher than others: it physically enforces this variance hierarchy
in the geometry of the vector space.

F.3 PROPERTY PRESERVATION THEOREM

Theorem 6 (Property Preservation). Let o(F)i and o
(F)
k be two records such that f (j)(oi) = f (j)(ok)

for all j ∈ {1, 2, . . . ,F}. Then for any record o
(F)
l with identical attribute values, if ρ(v(oi), v(ol)) <

ρ(v(ok), v(ol)) in the original space, the same inequality holds in the transformed space after
applying all F transformations.

Proof. We proceed by induction on the number of applied transformations j.

Base Case: j = 1.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Given that f (1)(oi) = f (1)(ok) = f (1)(ol), let’s denote this shared attribute vector as f1. After
applying the first transformation Ψ1, we have:

v1(oi) = Ψ1(v(oi), f1, α1, β1) =

[
v(oi)

(1) − α1f1
β1

, . . . ,
v(oi)

(d/m) − α1f1
β1

]
(97)

v1(ok) = Ψ1(v(ok), f1, α1, β1) =

[
v(ok)

(1) − α1f1
β1

, . . . ,
v(ok)

(d/m) − α1f1
β1

]
(98)

v1(ol) = Ψ1(v(ol), f1, α1, β1) =

[
v(ol)

(1) − α1f1
β1

, . . . ,
v(ol)

(d/m) − α1f1
β1

]
(99)

Computing the squared distance after transformation:

ρ2(v1(oi), v1(ol)) =

d/m∑
r=1

∥∥∥∥v(oi)(r) − α1f1
β1

− v(ol)
(r) − α1f1
β1

∥∥∥∥2
2

(100)

=

d/m∑
r=1

∥∥∥∥v(oi)(r) − v(ol)
(r)

β1

∥∥∥∥2
2

(101)

=
1

β2
1

d/m∑
r=1

∥∥∥v(oi)(r) − v(ol)
(r)
∥∥∥2
2

(102)

=
1

β2
1

ρ2(v(oi), v(ol)) (103)

Similarly, ρ2(v1(ok), v1(ol)) = 1
β2
1
ρ2(v(ok), v(ol)).

Since ρ(v(oi), v(ol)) < ρ(v(ok), v(ol)) in the original space, and 1
β2
1
> 0, we have:

ρ(v1(oi), v1(ol)) < ρ(v1(ok), v1(ol)) (104)

Thus, the relative ordering is preserved after applying the first transformation as we already proved in
Theorem 1.

Inductive Step: Assume the property holds for the first j − 1 transformations.

Let’s denote vj−1(oi), vj−1(ok), and vj−1(ol) as the vectors after applying j − 1 transformations.
By the inductive hypothesis, if ρ(v(oi), v(ol)) < ρ(v(ok), v(ol)) in the original space, then:

ρ(vj−1(oi), vj−1(ol)) < ρ(vj−1(ok), vj−1(ol)) (105)

For the j-th transformation, since f (j)(oi) = f (j)(ok) = f (j)(ol) (let’s call this shared value fj), we
have:

vj(oi) = Ψj(vj−1(oi), fj , αj , βj) (106)
vj(ok) = Ψj(vj−1(ok), fj , αj , βj) (107)
vj(ol) = Ψj(vj−1(ol), fj , αj , βj) (108)

By the same computation as in the base case, we get:

ρ2(vj(oi), vj(ol)) =
1

β2
j

ρ2(vj−1(oi), vj−1(ol)) (109)

ρ2(vj(ok), vj(ol)) =
1

β2
j

ρ2(vj−1(ok), vj−1(ol)) (110)

Since ρ(vj−1(oi), vj−1(ol)) < ρ(vj−1(ok), vj−1(ol)) by the inductive hypothesis, and 1
β2
j
> 0, we

have:

ρ(vj(oi), vj(ol)) < ρ(vj(ok), vj(ol)) (111)

Therefore, by induction, the relative ordering is preserved after applying all F transformations.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Corollary 2. For records with identical values across all attributes, the k-nearest neighbors based
on content similarity are preserved after all transformations.

Proof. This follows directly from Theorem 6. Since the relative ordering based on distances is
preserved, the k-nearest neighbors remain the same within the set of records having identical attribute
values.

F.4 ATTRIBUTE PRIORITY THEOREM

Theorem 7 (Attribute Priority). In a sequence of transformations Ψ1,Ψ2, . . . ,ΨF, the later an
attribute is applied in the sequence, the higher its effective priority in determining the final vector
space structure.

Proof. We prove this by considering two attributes f (A) and f (B) and comparing the distances
between records when applying them in different orders.

Case 1: Apply f (A) first, then f (B).

Consider two records o
(F)
i and o

(F)
k with f (B)(oi) ̸= f (B)(ok). Let’s denote the original content

vectors as v(oi) and v(ok).

After applying transformation ΨA with parameters αA and βA:

vA(oi) = ΨA(v(oi), f
(A)(oi), αA, βA) (112)

vA(ok) = ΨA(v(ok), f
(A)(ok), αA, βA) (113)

The squared distance between these vectors is:

ρ2(vA(oi), vA(ok)) =

d/m∑
r=1

∥∥∥∥v(oi)(r) − αAf
(A)(oi)

βA
− v(ok)

(r) − αAf
(A)(ok)

βA

∥∥∥∥2
2

(114)

=
1

β2
A

d/m∑
r=1

∥∥∥v(oi)(r) − v(ok)
(r) − αA(f

(A)(oi)− f (A)(ok))
∥∥∥2
2

(115)

=
1

β2
A

[
ρ2(v(oi), v(ok)) + α2

A∥f (A)(oi)− f (A)(ok)∥22 (116)

−2αA

d/m∑
r=1

⟨v(oi)(r) − v(ok)
(r), f (A)(oi)− f (A)(ok)⟩

 (117)

After applying transformation ΨB with parameters αB and βB :

vAB(oi) = ΨB(vA(oi), f
(B)(oi), αB , βB) (118)

vAB(ok) = ΨB(vA(ok), f
(B)(ok), αB , βB) (119)

The squared distance between these vectors is:

ρ2(vAB(oi), vAB(ok)) =
1

β2
B

[
ρ2(vA(oi), vA(ok)) + α2

B∥f (B)(oi)− f (B)(ok)∥22 (120)

−2αB

d/m∑
r=1

⟨vA(oi)(r) − vA(ok)
(r), f (B)(oi)− f (B)(ok)⟩

 (121)

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Substituting the expression for ρ2(vA(oi), vA(ok)):

ρ2(vAB(oi), vAB(ok)) =
1

β2
Bβ

2
A

[
ρ2(v(oi), v(ok)) + α2

A∥f (A)(oi)− f (A)(ok)∥22 (122)

−2αA

d/m∑
r=1

⟨v(oi)(r) − v(ok)
(r), f (A)(oi)− f (A)(ok)⟩

 (123)

+
α2
B

β2
B

∥f (B)(oi)− f (B)(ok)∥22 (124)

− 2αB

β2
B

d/m∑
r=1

⟨vA(oi)(r) − vA(ok)
(r), f (B)(oi)− f (B)(ok)⟩ (125)

Case 2: Apply f (B) first, then f (A).

Following similar steps, we get:

ρ2(vBA(oi), vBA(ok)) =
1

β2
Aβ

2
B

[
ρ2(v(oi), v(ok)) + α2

B∥f (B)(oi)− f (B)(ok)∥22 (126)

−2αB

d/m∑
r=1

⟨v(oi)(r) − v(ok)
(r), f (B)(oi)− f (B)(ok)⟩

 (127)

+
α2
A

β2
A

∥f (A)(oi)− f (A)(ok)∥22 (128)

− 2αA

β2
A

d/m∑
r=1

⟨vB(oi)(r) − vB(ok)
(r), f (A)(oi)− f (A)(ok)⟩ (129)

Comparison:
Comparing the two expressions, we observe the key difference in the coefficients of ∥f (A)(oi) −
f (A)(ok)∥22 and ∥f (B)(oi)− f (B)(ok)∥22:

In Case 1:
α2
A

β2
Bβ

2
A

=
α2
A

β2
Aβ

2
B

for f (A) (130)

α2
B

β2
B

for f (B) (131)

In Case 2:
α2
A

β2
A

for f (A) (132)

α2
B

β2
Aβ

2
B

=
α2
B

β2
Bβ

2
A

for f (B) (133)

Since βA, βB > 1, we have:
α2
B

β2
B

>
α2
B

β2
Bβ

2
A

and
α2
A

β2
A

>
α2
A

β2
Aβ

2
B

(134)

Therefore, in Case 1, the coefficient of ∥f (B)(oi) − f (B)(ok)∥22 is larger than that of ∥f (A)(oi) −
f (A)(ok)∥22 by a factor of β2

A. Similarly, in Case 2, the coefficient of ∥f (A)(oi) − f (A)(ok)∥22 is
larger than that of ∥f (B)(oi)− f (B)(ok)∥22 by a factor of β2

B .

This proves that the later an attribute is applied in the transformation sequence, the higher its effective
weight in determining distances in the final transformed space, and thus its priority in retrieving
nearest neighbors.

The result generalizes to any number of attributes: if we have F attributes applied in sequence, the
j-th attribute’s contribution to the final distance is scaled by

∏F
i=j+1 β

−2
i . Thus, the last attribute

(j = F) has the highest priority, followed by the second-to-last, and so on.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Corollary 3. The relative importance of attribute f (j) compared to attribute f (j−1) in determining
distances in the transformed space is proportional to β2

j−1.

Proof. From the proof of Theorem 7, the coefficient for attribute f (j) in the final distance computation
is:

α2
j

β2
j

F∏
i=j+1

1

β2
i

(135)

Similarly, for attribute f (j−1):

α2
j−1

β2
j−1

F∏
i=j

1

β2
i

=
α2
j−1

β2
j−1β

2
j

F∏
i=j+1

1

β2
i

(136)

The ratio of these coefficients is:

α2
j

β2
j

∏F
i=j+1

1
β2
i

α2
j−1

β2
j−1β

2
j

∏F
i=j+1

1
β2
i

=
α2
jβ

2
j−1

α2
j−1

(137)

Assuming comparable α values (αj ≈ αj−1), this ratio simplifies to approximately β2
j−1, proving

the corollary.

Lemma 1. For a query with attribute value F (j), the effective distance to records with attribute
value f (j) ̸= F (j) increases by a factor proportional to αj in the transformed space after applying
transformation Ψj .

Proof. Consider a query vector vq with attribute value F (j) and a record oi with attribute value
f (j)(oi) ̸= F (j). Let vj−1(oi) and vj−1(q) be the vectors after applying j − 1 transformations.

After applying Ψj :

vj(q) = Ψj(vj−1(q), F
(j), αj , βj) (138)

vj(oi) = Ψj(vj−1(oi), f
(j)(oi), αj , βj) (139)

The squared distance between these vectors is:

ρ2(vj(q), vj(oi)) =
1

β2
j

[
ρ2(vj−1(q), vj−1(oi)) + α2

j∥F (j) − f (j)(oi)∥22 (140)

−2αj

d/m∑
r=1

⟨vj−1(q)
(r) − vj−1(oi)

(r), F (j) − f (j)(oi)⟩

 (141)

Since f (j)(oi) ̸= F (j), the term ∥F (j) − f (j)(oi)∥22 > 0. As αj increases, the contribution of this
term to the overall distance increases, effectively pushing records with different attribute values
further away from the query in the transformed space.

For large αj , the term α2
j∥F (j) − f (j)(oi)∥22 dominates, making the distance approximately propor-

tional to αj .

F.4.1 MONOTONICITY OF ATTRIBUTES PRIORITY OVER FUSED SPACE

Theorem 8 (Monotone Priority in FUSEDANN). When transformations Ψπ(F),Ψπ(F−1), . . . ,Ψπ(1)

are applied in reverse priority order and ANNS is performed in the resulting space, the retrieved
results inherently satisfy the monotone attribute priority property of Hybrid Queries.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Proof. Let D(F) be a record set where each record o consists of a content vector v(o) ∈ Rd and F
attribute values f (1)(o), . . . , f (F)(o). Consider a query q = [v(q), F

(1)
q , . . . , F

(F)
q ] with priority order

Fπ(1) ≻ · · · ≻ Fπ(F).

We apply the sequence of transformations Ψπ(F),Ψπ(F−1), . . . ,Ψπ(1) in reverse priority order. The
transformation Ψj with parameters αj and βj is defined as:

Ψj(v, f, αj , βj) =
v − αjf

βj
(142)

To derive the composite transformation, let us inductively define v0(o) = v(o) and compute the result
of applying each transformation in sequence:

v1(o) = Ψπ(F)(v0(o), f
(π(F))(o), αF, βF) =

v0(o)− αFf
(π(F))(o)

βF
(143)

v2(o) = Ψπ(F−1)(v1(o), f
(π(F−1))(o), αF−1, βF−1) (144)

=
v1(o)− αF−1f

(π(F−1))(o)

βF−1
(145)

=

v0(o)−αFf
(π(F))(o)

βF
− αF−1f

(π(F−1))(o)

βF−1
(146)

=
v0(o)− αFf

(π(F))(o)− αF−1βFf
(π(F−1))(o)

βF−1βF
(147)

Continuing this recursive application, the final transformed point after all F transformations is:

vF(o) =
v(o)−

∑F
i=1 απ(i)f

(π(i))(o) ·
∏F

j=i+1 βπ(j)∏F
i=1 βπ(i)

(148)

From this expression, we identify the effective scaling factor for attribute π(i) as:

wi = απ(i)

F∏
j=i+1

βπ(j) (149)

By Theorem 7 and our choice of βπ(i) > 1 for all i, these weights satisfy w1 > w2 > · · · > wF.
Specifically, from Corollary 3, we have wi

wi+1
≈ β2

π(i) ≫ 1.

Now, let us analyze the Euclidean distance between the transformed query point q and any record o:

∥vF(q)− vF(o)∥2 (150)

=

∥∥∥∥∥v(q)−
∑F

i=1 απ(i)F
(π(i))
q

∏F
j=i+1 βπ(j)∏F

i=1 βπ(i)

−
v(o)−

∑F
i=1 απ(i)f

(π(i))(o)
∏F

j=i+1 βπ(j)∏F
i=1 βπ(i)

∥∥∥∥∥
2

(151)

=
1

(
∏F

i=1 βπ(i))2

∥∥∥∥∥∥v(q)− v(o)−
F∑

i=1

απ(i)

F∏
j=i+1

βπ(j)(F
(π(i))
q − f (π(i))(o))

∥∥∥∥∥∥
2

(152)

=
1

(
∏F

i=1 βπ(i))2

∥∥∥∥∥v(q)− v(o)−
F∑

i=1

wi(F
(π(i))
q − f (π(i))(o))

∥∥∥∥∥
2

(153)

Expanding this squared norm, we get:

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

∥vF(q)− vF(o)∥2 =
1

(
∏F

i=1 βπ(i))2

[
∥v(q)− v(o)∥2 +

∥∥∥∥∥
F∑

i=1

wi(F
(π(i))
q − f (π(i))(o))

∥∥∥∥∥
2

(154)

− 2

〈
v(q)− v(o),

F∑
i=1

wi(F
(π(i))
q − f (π(i))(o))

〉]
(155)

Further expanding the second term:∥∥∥∥∥
F∑

i=1

wi(F
(π(i))
q − f (π(i))(o))

∥∥∥∥∥
2

=

F∑
i=1

w2
i ∥F (π(i))

q − f (π(i))(o)∥2 (156)

+
∑
i̸=j

wiwj⟨F (π(i))
q − f (π(i))(o), F (π(j))

q − f (π(j))(o)⟩ (157)

Given that σj is the Euclidean distance for all attributes, we have σπ(i)(f
(π(i))(o), F

(π(i))
q ) =

∥F (π(i))
q − f (π(i))(o)∥ in Equation 3. We can now examine how ANNS in this transformed space

relates to the Hybrid Query requirement.

Let S ⊆ D(F) be the set of k nearest neighbors retrieved by ANNS in the transformed space. By
definition of ANNS, there exists a distance threshold τ such that:

o ∈ S ⇐⇒ ∥vF(q)− vF(o)∥ ≤ τ (158)

We now examine the implications of this threshold on the individual attribute distances. Squaring
both sides:

∥vF(q)− vF(o)∥2 ≤ τ2 (159)

Substituting our expanded distance formula:

1

(
∏F

i=1 βπ(i))2

[
∥v(q)− v(o)∥2 +

F∑
i=1

w2
i ∥F (π(i))

q − f (π(i))(o)∥2 + (cross terms)
]
≤ τ2 (160)

Multiplying both sides by (
∏F

i=1 βπ(i))
2:

∥v(q)− v(o)∥2 +
F∑

i=1

w2
i ∥F (π(i))

q − f (π(i))(o)∥2 + (cross terms) ≤ τ2 · (
F∏

i=1

βπ(i))
2 (161)

Rearranging to isolate the attribute distance terms:

F∑
i=1

w2
i ∥F (π(i))

q − f (π(i))(o)∥2 ≤ τ2 · (
F∏

i=1

βπ(i))
2 − ∥v(q)− v(o)∥2 − (cross terms) (162)

Let γ = τ2 · (
∏F

i=1 βπ(i))
2 − ∥v(q)− v(o)∥2 − (cross terms). Then we have:

F∑
i=1

w2
i ∥F (π(i))

q − f (π(i))(o)∥2 ≤ γ (163)

This inequality must be satisfied for a record to be included in the k-nearest neighbors set S. The key
insight is that the term w2

i ∥F
(π(i))
q − f (π(i))(o)∥2 represents the contribution of attribute π(i) to the

overall distance.

Since w2
1 ≫ w2

2 ≫ · · · ≫ w2
F by our construction, the contribution of the highest-priority attribute

π(1) dominates this sum. For a record to satisfy the inequality, it must first keep ∥F (π(1))
q −

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

f (π(1))(o)∥2 very small. Otherwise, even if all other attributes perfectly match the query, the term
w2

1∥F
(π(1))
q − f (π(1))(o)∥2 would cause the sum to exceed γ.

For each attribute π(j), we can define the maximum allowable squared distance that would permit a
record to be in set S, assuming all higher-priority attributes match perfectly:

δ2j =
γ

w2
j

(164)

Since w2
1 ≫ w2

2 ≫ · · · ≫ w2
F, we have δ21 ≪ δ22 ≪ · · · ≪ δ2F. This creates a strict hierarchical

constraint where:

- Records must have ∥F (π(1))
q − f (π(1))(o)∥2 ≤ δ21 (very small) to be considered at all - Among those,

records with ∥F (π(2))
q − f (π(2))(o)∥2 ≤ δ22 are preferred - This pattern continues for all attributes

This directional filtering is precisely what creates the monotone variance property in the result set.
Because the constraints on higher-priority attributes are much stricter, the variance in these attribute
distances within set S will be smaller.

Formally, for attribute π(j), most records in S will have distances bounded by δj , leading to:

Var
(π(j))
S =

1

k

∑
o∈S

[
∥F (π(j))

q − f (π(j))(o)∥ − µ
(π(j))
S

]2
(165)

≤ 1

k

∑
o∈S

∥F (π(j))
q − f (π(j))(o)∥2 (166)

≤ δ2j =
γ

w2
j

(167)

Since γ
w2

1
≪ γ

w2
2
≪ · · · ≪ γ

w2
F

, we have:

Var
(π(1))
S ≤ Var

(π(2))
S ≤ · · · ≤ Var

(π(F))
S (168)

Therefore, the set S of k nearest neighbors retrieved by ANNS in our transformed space naturally sat-
isfies the monotone attribute priority property required by the Hybrid Query definition (Definition 3).

Furthermore, this cascading filtering effect implements the lexicographic minimization described
in the Hybrid Query definition. The ANNS algorithm first selects records that minimize the mean
distance for the highest-priority attribute, then among those, it selects records that minimize the mean
distance for the next highest-priority attribute, and so on, with content vector distance serving as the
lowest-priority criterion.

Thus, ANNS in our transformed space inherently produces results that satisfy the Hybrid Query
definition without explicitly enforcing the monotone attribute priority constraint.

These results collectively demonstrate that our recursive transformation framework provides (i)
accurate content-based retrieval within attribute-matched groups, (ii) hierarchical prioritization of
attributes based on their application order, and (iii) controlled emphasis on attribute matching through
the α parameters.

This set of theorems establishes a fundamental property of our transformation framework: records are
stratified based on the number of matching attributes, with records matching more attributes being
consistently closer to the query than those matching fewer attributes. This property enables efficient
hybrid search where attribute matching takes precedence over content similarity, while maintaining
content-based ordering within groups of records with the same attribute matches.

F.5 ATTRIBUTE MATCH DISTANCE HIERARCHY

We now prove that records with more matching attributes with the query are closer in the transformed
space than records with fewer matching attributes, establishing a natural hierarchy in the retrieval
process.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Theorem 9 (Attribute Match Distance Hierarchy). Let q be a query with attribute values
(F (1), F (2), . . . , F (F)). Consider two records o(F)i and o

(F)
j with identical content vectors v(oi) =

v(oj). Let Mi = {p | f (p)(oi) = F (p)} and Mj = {p | f (p)(oj) = F (p)} be the sets of in-
dices where the records’ attributes match the query. If |Mi| > |Mj |, then after applying all F
transformations, ρ(vF(q), vF(oi)) < ρ(vF(q), vF(oj)).

Proof. We begin by analyzing the squared distance between the query and a record in the transformed
space after applying all F transformations. For conciseness, let vF(q) and vF(o) denote the vectors
after all transformations.

The squared distance between vF(q) and vF(o) can be expressed as:

ρ2(vF(q), vF(o)) =
1∏F

p=1 β
2
p

[
ρ2(v(q), v(o)) +

F∑
p=1

Cp · α2
p∥F (p) − f (p)(o)∥22 + cross terms

]
(169)

where Cp =
∏F

k=p+1 β
2
k represents the cumulative scaling effect of subsequent transformations, and

"cross terms" involve products between content differences and attribute differences.

For attribute p, when f (p)(o) = F (p), the term ∥F (p) − f (p)(o)∥22 = 0. Conversely, when f (p)(o) ̸=
F (p), this term is positive and contributes to the overall distance.

Given that v(oi) = v(oj), the term ρ2(v(q), v(oi)) = ρ2(v(q), v(oj)). Therefore, the difference in
distances comes entirely from the attribute terms.

For records oi and oj , we can express:

ρ2(vF(q), vF(oi)) =
1∏F

p=1 β
2
p

ρ2(v(q), v(oi)) + ∑
p/∈Mi

Cp · α2
p∥F (p) − f (p)(oi)∥22 + cross termsi


(170)

ρ2(vF(q), vF(oj)) =
1∏F

p=1 β
2
p

ρ2(v(q), v(oj)) + ∑
p/∈Mj

Cp · α2
p∥F (p) − f (p)(oj)∥22 + cross termsj


(171)

Since |Mi| > |Mj |, the set of non-matching attributes {p | p /∈ Mi} is smaller than {p | p /∈ Mj}.
Therefore, the sum in the expression for oi contains fewer positive terms than the sum for oj .

Let’s consider the worst-case scenario: the attributes that oi matches with q are the earliest ones
(lowest priority), while the attributes that oj matches with q include later ones (higher priority). Let
δ be the minimum attribute distance when attributes don’t match: δ = minp,o ∥F (p) − f (p)(o)∥22
where f (p)(o) ̸= F (p).

Even in this worst case, we have:∑
p/∈Mi

Cp · α2
p∥F (p) − f (p)(oi)∥22 ≥

∑
p/∈Mi

Cp · α2
p · δ (172)

∑
p/∈Mj

Cp · α2
p∥F (p) − f (p)(oj)∥22 ≥

∑
p/∈Mj

Cp · α2
p · δ (173)

Given that all αp > 1, βp > 1, and δ > 0, each non-matching attribute contributes positively to the
distance. Since oj has more non-matching attributes than oi, the sum for oj is larger than the sum for
oi, i.e., ∑

p/∈Mi

Cp · α2
p∥F (p) − f (p)(oi)∥22 <

∑
p/∈Mj

Cp · α2
p∥F (p) − f (p)(oj)∥22 (174)

For the cross terms, a similar analysis shows that they are also smaller for oi than for oj due to fewer
non-matching attributes.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Therefore, ρ2(vF(q), vF(oi)) < ρ2(vF(q), vF(oj)), which implies ρ(vF(q), vF(oi)) <
ρ(vF(q), vF(oj)).

Corollary 4 (Stratification by Match Count). After applying all transformations, the vector space
exhibits stratification based on the number of matching attributes: records can be partitioned into
layers such that all records in a layer with more matching attributes are closer to the query than any
record in a layer with fewer matching attributes.

Proof. This follows directly from Theorem 9. By considering the set of all records with exactly k
matching attributes with the query, we form a layer Lk. Theorem 9 ensures that for any k1 > k2 and
any records o1 ∈ Lk1

and o2 ∈ Lk2
, we have ρ(vF(q), vF(o1)) < ρ(vF(q), vF(o2)). This creates a

strict hierarchy of distances based on the number of matching attributes.

Theorem 10 (Generalized Attribute Match Hierarchy). Let q be a query with attribute values
(F (1), F (2), . . . , F (F)). Consider two records o(F)i and o

(F)
j with potentially different content vectors.

Let Mi and Mj be the sets of indices where the records’ attributes match the query. If |Mi| > |Mj |
and ρ(v(q), v(oi)) ≤ ρ(v(q), v(oj)) + ϵ for some small ϵ > 0, then for any {βp}Fp=1 there exist
sufficiently large values of {αp}Fp=1 such that ρ(vF(q), vF(oi)) < ρ(vF(q), vF(oj)).

Proof. Building on the proof of Theorem 9, we now account for the difference in content vectors.
The squared distances in the transformed space become:

ρ2(vF(q), vF(oi)) =
1∏F

p=1 β
2
p

ρ2(v(q), v(oi)) + ∑
p/∈Mi

Cp · α2
p∥F (p) − f (p)(oi)∥22 + cross termsi


(175)

ρ2(vF(q), vF(oj)) =
1∏F

p=1 β
2
p

ρ2(v(q), v(oj)) + ∑
p/∈Mj

Cp · α2
p∥F (p) − f (p)(oj)∥22 + cross termsj


(176)

Given that ρ2(v(q), v(oi)) ≤ (ρ(v(q), v(oj)) + ϵ)2 = ρ2(v(q), v(oj)) + 2ϵ · ρ(v(q), v(oj)) + ϵ2, we
can write:

ρ2(v(q), v(oi))− ρ2(v(q), v(oj)) ≤ 2ϵ · ρ(v(q), v(oj)) + ϵ2 (177)

For sufficiently large values of {αp}, the attribute terms dominate:∑
p/∈Mj

Cp · α2
p∥F (p) − f (p)(oj)∥22 −

∑
p/∈Mi

Cp · α2
p∥F (p) − f (p)(oi)∥22 >

2ϵ · ρ(v(q), v(oj)) + ϵ2∏F
p=1 β

2
p

(178)

Since |Mi| > |Mj |, there is at least one attribute p0 such that p0 ∈ Mi but p0 /∈ Mj . By setting
αp0 sufficiently large, we can ensure that the difference in attribute terms exceeds the difference in
content terms, thereby ensuring ρ(vF(q), vF(oi)) < ρ(vF(q), vF(oj)).

F.6 HIERARCHICAL MULTI-ATTRIBUTE VECTOR INDEXING

Theorem 11 (Multi-Attribute Candidate Set Size). Let D(F) be a record set transformed using
sequential transformations Ψ1,Ψ2, . . . ,ΨF with parameters (αj , βj)

F
j=1. Let Aj be the set of

distinct values for attribute j.

For each unique combination of attribute values a⃗ = (a(1), a(2), . . . , a(F)), define:

• C (⃗a) = {o ∈ D(F) : f (1)(o) = a(1), . . . , f (F)(o) = a(F)} as the cluster of records with
attribute combination a⃗

• Na⃗ = |C (⃗a)| as the number of records in cluster C (⃗a)

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

• Ra⃗ as the radius of the smallest hypersphere containing all transformed records in C (⃗a)

• dmin(⃗a, b⃗) as the minimum distance between any transformed record in C (⃗a) and any
transformed record in C (⃗b)

For each combination a⃗ with Na⃗ > 1, define the cluster separation metric:

γa⃗ = min
b̸⃗=a⃗

dmin(⃗a, b⃗)

Ra⃗
− 1 (179)

Given a query q with attribute combination q⃗ = (F (1), F (2), . . . , F (F)), to retrieve the top-k nearest
neighbors with the same attribute combination with probability at least 1−ϵ, the number of candidates
k′ to retrieve from the transformed space should satisfy:

k′ =

{
min(k,Nq⃗), if Nq⃗ = 1 or Rq⃗ = 0⌈
k ·
(
1 + ln(1/ϵ)

γ2
q⃗
·F ·

N−Nq⃗

Nq⃗

)⌉
, otherwise

(180)

where N is the total number of records and F is the number of attribute filters applied.

Proof. We consider two cases:

Case 1: Nq⃗ = 1 or Rq⃗ = 0

If there is only one record with the query’s attribute combination (i.e., Nq⃗ = 1), then Rq⃗ = 0 since
there’s only a single point in the transformed space. In this case, we simply return that single record,
so k′ = min(k, 1) = 1 for k ≥ 1.

Similarly, if Rq⃗ = 0 even with Nq⃗ > 1 (which could happen if all records with identical attribute
combinations map to the same point), then we return min(k,Nq⃗) records.

Case 2: Nq⃗ > 1 and Rq⃗ > 0

After applying all F transformations, records form clusters based on their attribute combinations. The
sequential transformations preserve the relative distances between records with identical attribute
values up to scaling factors, maintaining the order of k-NN within each cluster.

For a query q with attribute combination q⃗, the k nearest neighbors with matching attributes lie within
a hypersphere of radius Rq ≤ Rq⃗ centered at the transformed query point vF(q).

Each transformation Ψj has two key effects:

1. It preserves relative distances within clusters of records sharing the same attribute value

2. It increases the distance between records with different attribute values according to parame-
ters αj and βj

As a result, with each additional attribute filter, we create a more pronounced separation between
matching and non-matching records in the transformed space. Records that match on all F attributes
are closest to the query, followed by those matching on F− 1 attributes, and so on.

By definition, the distance from vF(q) to any record with attribute combination b⃗ ̸= q⃗ is at least
dmin(q⃗, b⃗). Define the excess distance ratio:

γq⃗ (⃗b) =
dmin(q⃗, b⃗)

Rq⃗
− 1 (181)

The minimum value across all attribute combinations is:

γq⃗ = min
b̸⃗=q⃗

γq⃗ (⃗b) (182)

Our goal is to limit the probability that a record from a non-matching attribute combination b⃗ ̸= q⃗
appears among the top-k nearest neighbors. To achieve this, we rely on standard concentration in-
equalities from probability theory, specifically Gaussian (or sub-Gaussian) concentration inequalities.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Formally, consider points in a high-dimensional metric space transformed by our sequential attribute
transformations. For a high-dimensional vector X ∈ Rd, known Gaussian concentration inequalities
provide a bound on the probability that the distance of X deviates from its expectation by at least
some margin t > 0:

P (∥X − E[X]∥ ≥ t) ≤ 2 exp

(
− t2

2σ2

)
(183)

Here, σ2 is related to the variance or scale parameter of the distribution.

In our setting, after applying F sequential transformations, the minimal normalized separation metric
γq⃗ characterizes the relative margin of separation between the query cluster and any non-matching
cluster. Specifically, the minimal separation distance between clusters increases proportionally to
γq⃗
√
F, since each attribute transformation contributes independently and additively to the squared

separation.

Thus, setting t = γq⃗
√
F ·Rq⃗ (the absolute minimal separation distance scaled by the query cluster

radius), and absorbing constants into definitions, we obtain a simplified exponential bound:

P (⃗b appears in top-k) ≤ exp(−γ2
q⃗ · F · k) (184)

This exponential bound clearly shows the rapidly decreasing probability that a record from a different
attribute cluster appears among the nearest neighbors as the number of attribute filters (F), the cluster
separation metric (γq⃗), or the number of neighbors considered (k) increase.

The factor F in the exponent reflects the compounding effect of multiple transformations, each
creating additional separation in its respective dimension. This is because each transformation Ψj

creates a separation along a different attribute dimension, and records must match on all dimensions
to be considered as true candidates.

For all N −Nq⃗ records with attribute combinations different from q⃗, the expected number appearing
in the top-k is bounded by:

E[non-q⃗ records in top-k] ≤ (N −Nq⃗) · exp(−γ2
q⃗ · F · k) (185)

To ensure we retrieve the true top-k records with attribute combination q⃗ with probability at least
1− ϵ, we need:

(N −Nq⃗) · exp(−γ2
q⃗ · F · k) ≤ ϵ ·Nq⃗ (186)

Solving for k:

k ≥ 1

γ2
q⃗ · F

· ln
(
N −Nq⃗

ϵ ·Nq⃗

)
=

1

γ2
q⃗ · F

·
(
ln

(
N −Nq⃗

Nq⃗

)
+ ln

(
1

ϵ

))
(187)

Providing a slight overestimate for practical use:

k′ =

⌈
k ·

(
1 +

ln(1/ϵ)

γ2
q⃗ · F

·
N −Nq⃗

Nq⃗

)⌉
(188)

This formula determines k′ at query time using the precomputed statistics (γq⃗, Nq⃗, and N ), the
number of attribute filters F, and the desired confidence level (1− ϵ).

Importantly, when F = 1, this formula exactly reduces to the single-attribute case:

k′ =

⌈
k ·

(
1 +

ln(1/ϵ)

γ2
q⃗

·
N −Nq⃗

Nq⃗

)⌉
(189)

Which matches Theorem 2 when we substitute q⃗ with a, as all corresponding metrics (γq⃗, Nq⃗, etc.)
become identical to their single-attribute counterparts (γa, Na, etc.).

The effectiveness of the transformation sequence is demonstrated by observing that:

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

1. As the parameters αj increase, the separation between clusters increases (increasing γq⃗)

2. As the number of filter attributes F increases, the required k′ decreases due to the F factor in
the denominator

3. As γq⃗ and F increase, k′ approaches k, indicating better discrimination between attribute
combinations

This confirms that multiple attribute filters indeed narrow the target space more effectively, requiring
fewer candidates to achieve the same accuracy guarantees.

Algorithm 3 for multi-attribute indexing and search follows naturally from the single-attribute
case. During indexing, we apply transformations sequentially to each record, computing statistical
information for unique attribute combinations. At query time, we apply the same transformations to
the query, retrieve candidates, and re-rank based on attribute and content distances.

Algorithm 3 Hierarchical Multi-Attribute Vector Indexing

1: [Offline Indexing] Require: Dataset D(F), attribute sequence (f (1), . . . , f (F))
2: for j = 1 to F do
3: Obtain the optimal (αj , βj) over fused space vj−1 based on Cor. 1 (v0 is v0[i]← v(oi) : ∀oi ∈ D(F))
4: for each o

(F)
i in D(F) do

5: vj [i]← Ψj(vj−1[i], f
(j)(oi), αj , βj)

6: Add vj [i] to index, retaining reference to o
(F)
i

7: end for
8: end for
9: Precompute for each attribute combination a⃗: radius Ra⃗, minimum inter-cluster distances dmin(⃗a, b⃗), cluster

counts Na⃗, and separation metric γa⃗ = minb̸⃗=a⃗
dmin(a⃗,⃗b)

Ra⃗
− 1

10: [Online Query Processing] Require: Query q(F) = [v(q), (F (1), . . . , F (F))], k, error probability ϵ
11: v0 ← v(q)
12: for j = 1 to F do
13: vj ← Ψj(vj−1, F

(j), αj , βj)
14: end for
15: Compute k′ (Theorem 11) based on query attribute combination q⃗ = (F (1), . . . , F (F)) and cluster statistics
16: Retrieve top-k′ candidates from index using vF
17: for each candidate o

(F)
i do

18: Compute combined score using attribute and content distances
19: end for
20: Sort candidates by score and return top-k

Algorithm Details For the multi-attribute case, we compute statistics for each unique combination
of attribute values. The candidate set size determination on line 16 uses Theorem 11, which accounts
for the narrowing effect of multiple attribute filters through the F factor. When the number of attribute
combinations is large, statistics can be approximated or computed for the most frequent combinations.
For scoring in line 18, we can either use a binary match approach (match all attributes or none) or a
weighted approach where different attributes contribute differently to the final score based on their
importance to the query.

F.7 ATTRIBUTE UPDATES ANALYSIS

Theorem 12 (Attribute Addition). Let D(F) be a record set with F attributes transformed using
sequential transformations Ψπ(1),Ψπ(2), . . . ,Ψπ(F). Adding a new attribute f (F+1) requires:

(a) If added with highest priority: A single additional transformation ΨF+1(vF, f
(F+1), αF+1, βF+1),

preserving all existing transformations.

(b) If inserted at priority position j (1 ≤ j < F): Re-computation of transformations
Ψπ(1),Ψπ(2), . . . ,Ψπ(j−1) after incorporating the new attribute in the priority sequence.

Proof. For case (a), since the highest priority attribute corresponds to the last transformation
in our sequence, adding a new highest priority attribute simply means appending a new trans-

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

formation at the end. The sequential nature of our transformations means that adding ΨF+1

as the final step preserves all previous transformations. The overall transformation becomes:
vF+1 = ΨF+1(vF, f

(F+1), αF+1, βF+1)

For case (b), inserting in the priority position j (where j < F) changes the existing priorities.
Transformations from position j onward remain the same in terms of attribute mapping, but the first
j-1 positions must be recomputed to incorporate the new priority sequence. This requires a partial
recomputation of the transformation pipeline for the affected attributes. □

Theorem 13 (Priority Update Propagation). Given a priority mapping π : [1,F] → [1,F] for
attributes, let π′ be a new priority mapping. Define j = min k : ∀i ≥ k, π(i) = π′(i) as the first
position from which all subsequent positions have the same priority in both mappings. Then only
transformations Ψπ(1),Ψπ(2), . . . ,Ψπ(j−1) need to be recomputed using the new priority ordering
π′.

Proof. Let v0, v1, . . . , vF be the sequence of vectors produced by applying transformations according
to mapping π. For any i ≥ j, we have π(i) = π′(i), meaning the transformations from position j
onward are identical under both mappings.

For positions i < j, we have π(i) ̸= π′(i) for at least one such position, requir-
ing application of different transformations according to the new priority mapping: v′i =

Ψπ′(i)(v′i− 1, f (π′(i)), απ′(i), βπ′(i))

These modifications in the early transformations create a new base vector v′j − 1 that differs from
vj − 1. However, since the priority mappings are identical from position j onward (π(i) = π′(i) for
all i ≥ j), the same sequence of remaining transformations can be applied to this new base vector.
Therefore, we only need to recompute the first j-1 transformations, not the entire sequence. □

Theorem 14 (Computational Complexity of Updates). The computational complexity of updating
from priority order π to π′ is O(N ·j ·d), where N is the number of records, d is the vector dimension,
and j = min k : ∀i ≥ k, π(i) = π′(i).

Proof. For each of the N records in the dataset, we must recompute the transformations for positions
1 through j-1. Each transformation has complexity O(d), since it processes a vector of dimensions d.
There are j-1 transformations to recompute.

Therefore, the total complexity is N · (j − 1) ·O(d) = O(N · j · d).
This highlights the efficiency of our update mechanism: When changes affect only the earliest
positions in the priority sequence (small j), the update cost is significantly lower than the full
recomputation of all transformations, which would require O(NFd) operations. □

G RANGE FILTERING IN FUSEDANN ANALYSIS

This section provides a detailed analysis of our range filtering approach, focusing on optimal sampling
strategies, efficient line indexing structures, and distance-based indexing techniques.

G.1 LINE REPRESENTATION OF RANGE QUERIES

We first prove that the transformation of a range query indeed forms a line segment in our transformed
space:

Theorem 15 (Range Query Line). Given a content vector q and an attribute range [l, u], the set of
all points in the transformed space corresponding to (q, f) where f ∈ [l, u] forms exactly the line
segment connecting Ψ(q, l, α, β) and Ψ(q, u, α, β).

Proof. For any f ∈ [l, u], we can express it as a convex combination of endpoints: f = (1− t)l+ tu
for some t ∈ [0, 1].

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

The transformed point for (q, f) is:

Ψ(q, f, α, β) = [
q(1) − α · f

β
,
q(2) − α · f

β
, ...,

q(d/m) − α · f
β

] (190)

= [
q(1) − α · ((1− t)l + tu)

β
,
q(2) − α · ((1− t)l + tu)

β
, ...,

q(d/m) − α · ((1− t)l + tu)

β
]

(191)

Distributing the terms:

Ψ(q, f, α, β) = [
q(1) − α(1− t)l − αtu

β
,
q(2) − α(1− t)l − αtu

β
, ...,

q(d/m) − α(1− t)l − αtu

β
]

(192)

= [
(1− t)(q(1) − αl) + t(q(1) − αu)

β
,
(1− t)(q(2) − αl) + t(q(2) − αu)

β
, ...,

(193)

(1− t)(q(d/m) − αl) + t(q(d/m) − αu)

β
] (194)

This equals:

Ψ(q, f, α, β) = (1− t)[
q(1) − αl

β
,
q(2) − αl

β
, ...,

q(d/m) − αl

β
] (195)

+ t[
q(1) − αu

β
,
q(2) − αu

β
, ...,

q(d/m) − αu

β
] (196)

= (1− t)Ψ(q, l, α, β) + tΨ(q, u, α, β) (197)

This is precisely the parametric equation of the line segment connecting pl = Ψ(q, l, α, β) and
pu = Ψ(q, u, α, β). Furthermore, every point on this line segment corresponds to some f ∈ [l, u],
which completes the proof.

G.2 DISTANCE PROPERTIES OF THE RANGE LINE

Next, we analyze the distance from a transformed point to the query line:
Theorem 16 (Distance Characterization). For a point Ψ(v, f, α, β) where f ∈ [l, u], its distance to
the range query line L(Q, t) is:

ρ(Ψ(v, f, α, β), L(Q, tf )) =
∥v − q∥

β
(198)

where tf ∈ [0, 1] is the parameter such that f = (1− tf )l + tfu.

Proof. For a point Ψ(v, f, α, β) with f ∈ [l, u], there exists a unique tf ∈ [0, 1] such that f =
(1− tf )l + tfu.

The point on the line segment L(Q, t) at parameter tf is:

L(Q, tf ) = (1− tf )Ψ(q, l, α, β) + tfΨ(q, u, α, β) (199)

= (1− tf )[
q(1) − αl

β
, ...,

q(d/m) − αl

β
] + tf [

q(1) − αu

β
, ...,

q(d/m) − αu

β
] (200)

= [
q(1) − α((1− tf )l + tfu)

β
, ...,

q(d/m) − α((1− tf )l + tfu)

β
] (201)

= [
q(1) − αf

β
, ...,

q(d/m) − αf

β
] (202)

= Ψ(q, f, α, β) (203)

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Now we compute the squared distance between Ψ(v, f, α, β) and L(Q, tf ):
∥Ψ(v, f, α, β)− L(Q, tf )∥2 = ∥Ψ(v, f, α, β)−Ψ(q, f, α, β)∥2 (204)

= ∥[v
(1) − αf

β
, ...,

v(d/m) − αf

β
]− [

q(1) − αf

β
, ...,

q(d/m) − αf

β
]∥2

(205)

= ∥[v
(1) − q(1)

β
, ...,

v(d/m) − q(d/m)

β
]∥2 (206)

=
1

β2
∥v − q∥2 (207)

Taking the square root of both sides, we get:

∥Ψ(v, f, α, β)− L(Q, tf )∥ =
∥v − q∥

β
(208)

which completes the proof.

This fundamental result shows that the distance from a transformed point to the query line is directly
proportional to the similarity between the corresponding content vectors.
Corollary 5 (Minimum Distance). For any point Ψ(v, f, α, β), its minimum distance to the line
segment L(Q, t) is:

dtube(Ψ(v, f, α, β), Q) = (209){
∥v−q∥

β if f ∈ [l, u]

min{∥Ψ(v, f, α, β)−Ψ(q, l, α, β)∥, ∥Ψ(v, f, α, β)−Ψ(q, u, α, β)∥} if f /∈ [l, u]

(210)

Proof. For f ∈ [l, u], the result follows directly from Theorem 16.

For f /∈ [l, u], the minimum distance to a line segment is either the perpendicular distance to the line
(if the projection falls within the segment) or the distance to one of the endpoints (if the projection
falls outside the segment).

Given the properties of our transformation, the projection of Ψ(v, f, α, β) onto the infinite line
containing L(Q, t) falls outside the segment when f /∈ [l, u]. Therefore, the minimum distance is to
one of the endpoints:
dtube(Ψ(v, f, α, β), Q) = min{∥Ψ(v, f, α, β)−Ψ(q, l, α, β)∥, ∥Ψ(v, f, α, β)−Ψ(q, u, α, β)∥}

(211)

This completes the proof.

G.3 EMPIRICAL DISTRIBUTION ESTIMATION

To implement our adaptive sampling strategy, we need reliable estimates of the query distribution Dq

and range distribution Dr. We propose the following practical approaches:

Query Distribution Estimation. The query distribution Dq can be estimated by:

1. Historical query analysis: When available, historical query logs provide the most accurate
representation of the actual query distribution. We apply kernel density estimation (KDE) to
the historical query vectors with bandwidth selection using Scott’s rule: h = n−1/(d+4) · σ,
where n is the number of samples and σ is the standard deviation.

2. Content vector approximation: In the absence of query logs, we use the normalized
distribution of content vectors in the dataset as a proxy. This approximation works well
in practice because queries tend to be semantically similar to the items they are aiming to
retrieve.

3. Cluster-based estimation: For large datasets, we first cluster the content vectors using
k-means (with k =

√
n) and use the cluster centroids weighted by cluster sizes as represen-

tative points of the query distribution.

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Range Distribution Estimation. For the range distribution Dr, we employ:

1. Attribute statistics: We compute the mean µa and the standard deviation σa for each
numerical attribute a. The range endpoints are typically distributed as la ∼ N (µa −
cσa, σ

2
a/2) and ua ∼ N (µa + cσa, σ

2
a/2), where c is estimated from historical range

queries (typically 0.5 ≤ c ≤ 2).
2. Categorical attribute handling: For categorical attributes, we estimate probability pi for

each category value i and model range queries as a sampling of this distribution without
replacement.

3. Width correlation modeling: We capture the correlation between the widths of the range
and the attributes using a conditional probability model: P (w|v) = P (u− l|v), where v is
the center value of the range.

To validate our distribution estimates, we employ cross-validation against a held-out set of actual
queries if available, or use statistical divergence measures (e.g., Kullback-Leibler divergence) between
our estimated distributions and bootstrapped samples from the dataset.

These empirically estimated distributions are then used in Algorithm 4 to sample representative line
segments that efficiently cover the range query space while minimizing redundancy and computational
overhead.

G.4 OPTIMAL SAMPLING OF THE RANGE SPACE

To efficiently support arbitrary range queries, we need to precompute a representative set of range
lines that provide good coverage of the range space, which is the space of all possible cylinders.
Definition 4. Given a metric space (X, d) and non-empty subsets A,B ⊆ X , the Hausdorff distance
is

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

Definition 5 (Sampling Resolution). Let S ⊂ Rd be a finite set of sampled points in a metric space
(Rd, ∥ · ∥). The sampling resolution r of S is the smallest value such that for every point x in the
domain of interest X ⊆ Rd, there exists a sampled point s ∈ S satisfying

∥x− s∥ ≤ r.

Equivalently, r is the minimal radius such that the union of closed balls of radius r centered at each
point in S covers X .
Definition 6 (Effective Diameter of a Distribution). The effective diameter of D defined as the
smallest radius r such that a ball of radius r contains at least 1− δ probability mass, for some small
δ > 0. Formally, let D be a distribution over Rd. For δ > 0, the effective diameter of D is

DD = inf
{
r > 0 : ∃ c ∈ Rd such that Pr

x∼D
[∥x− c∥ ≤ r] ≥ 1− δ

}
.

Definition 7 (ϵ-Line Cover). A set of line segments L = {L1, L2, . . . , Lm} is an ϵ-line cover for the
range query space if for any possible range query line LQ, there exists a line Li ∈ L such that the
Hausdorff distance dH(LQ, Li) ≤ ε.
Corollary 6 (Line Distance Bound). The Hausdorff distance between two range query lines L1

(representing range [l1, u1] for query q1) and L2 (representing range [l2, u2] for query q2) is bounded
by:

dH(L1, L2) ≤
1

β
max(∥q1 − q2∥, α ·max(∥l1 − l2∥, ∥u1 − u2∥)) (212)

Proof. Consider points p1(t) = (1 − t) · Ψ(q1, l1, α, β) + t · Ψ(q1, u1, α, β) on L1 and p2(t) =
(1− t) ·Ψ(q2, l2, α, β) + t ·Ψ(q2, u2, α, β) on L2 for t ∈ [0, 1].

The distance between these corresponding points is:

∥p1(t)− p2(t)∥ = ∥(1− t)[Ψ(q1, l1, α, β)−Ψ(q2, l2, α, β)] + t[Ψ(q1, u1, α, β)−Ψ(q2, u2, α, β)]∥
(213)

≤ (1− t)∥Ψ(q1, l1, α, β)−Ψ(q2, l2, α, β)∥+ t∥Ψ(q1, u1, α, β)−Ψ(q2, u2, α, β)∥
(214)

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

For the first term:

∥Ψ(q1, l1, α, β)−Ψ(q2, l2, α, β)∥ = ∥
q1 − αl1

β
− q2 − αl2

β
∥ (215)

=
1

β
∥q1 − q2 − α(l1 − l2)∥ (216)

≤ 1

β
(∥q1 − q2∥+ α∥l1 − l2∥) (217)

Similarly for the second term. The maximum value is achieved at one of the endpoints, giving the
stated bound.

Based on this distance bound, we develop an adaptive sampling strategy for the range space:
Theorem 17 (Optimal Range Line Sampling). Given distributions of query vectors Dq and attribute
ranges Dr, to achieve an ϵ-line cover with probability at least 1 − δ, the number of line segments
needed is:

N(ε, δ) = O

((
max(Dq, αDr)

βε

)d

· log 1

δ

)
(218)

where Dq and Dr are the effective diameters (Definition 6) of the query and range distributions.

Proof. To achieve a ϵ line cover with probability at least 1− δ, we must discretize both the query
space and the attribute range space such that the Hausdorff distance between any possible query or
range in their respective distributions and the closest sampled point is at most ϵ.

By Corollary 6, this requires sampling the query space with resolution (Definition 5) at most βϵ, and
the range space with resolution at most βϵ/α.

Consider a d-dimensional space with effective diameter D. To ensure that every point in the space
lies within distance r of some sampled point (i.e., to achieve resolution r), it suffices to cover the
space with balls of radius r. The minimum number of such balls required is known as covering
number of the space and is upper bounded by O

((
D
r

)d)
(Vershynin, 2018).

To ensure that, with probability at least 1− δ, every such ball contains at least one sampled point,
we can use a standard union bound argument: if we sample each point independently from the
distribution, it suffices to take O

((
D
r

)d
log 1

δ

)
samples to guarantee that all balls are covered with

high probability (Matoušek, 2002).

Applying this to our setting, for each of the query and range spaces, we replace D with their respective
effective diameters and r with their respective required resolutions. Combining these requirements,
dominated by the larger term, so taking the maximum (since both spaces must be covered) gives the
stated bound.

N(ϵ, δ) = O

max

(Dq

βϵ

)d

· log 1

δ
,

(
Dr

βϵ
α

)d

· log 1

δ

 = O

((
max(Dq, αDr)

βϵ

)d

· log 1

δ

)

Theorem 18 (Optimal Cylinder Radius). For a range query (q, [l, u]), to retrieve at least (1− ϵ)k of
the true top-k results with probability at least 1− δ, the cylinder radius should be:

r =
dk
β

+

√
− ln(δ/2)

2n
· σ (219)

where dk is the distance to the k-th closest content vector, n is the number of records, and σ is the
standard deviation of distances.

Proof. From Theorem 16, we know that for records with attribute values in [l, u], the distance to the
line is exactly ∥v−q∥

β . Therefore, to capture all records within distance dk of the query, we need a
cylinder radius of at least dk

β .

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Algorithm 4 Adaptive Range Line Sampling

1: Input: Dataset D, error bound ε, failure probability δ, Transformation parameters α, β, Number
of NN k

2: Output: Set of representative line segments L
3: Estimate query distribution Dq from content vectors (or historical queries if available) (§G.3)
4: Estimate range distribution Dr from attribute values (§G.3)
5: Determine sampling resolution rq = βε for query space
6: Determine sampling resolution rr = βε

α for range space
7: Sample query vectors {q1, q2, . . . , qn} with resolution rq
8: Sample range endpoints {(l1, u1), (l2, u2), . . . , (lm, um)} with resolution rr
9: L ← ∅

10: for each query vector qi do
11: for each range [lj , uj ] do
12: Lij ← LineSegment(Ψ(qi, lj , α, β),Ψ(qi, uj , α, β))
13: rij ← ComputeOptimalRadius(qi, [lj , uj ], ϵ, δ, k) (Theorem 18)
14: L ← L ∪ {(Lij , rij)}
15: end for
16: end for
17: Prune redundant lines while maintaining ϵ-coverage
18: return L

Let Xi be the random variable representing the distance of the i-th record to the query. By Hoeffding’s
inequality:

P (|X̄ − E[X]| > t) ≤ 2 exp(−2nt2/σ2) (220)

Setting the right side equal to δ and solving for t:

t =

√
− ln(δ/2)

2n
· σ (221)

To ensure we retrieve at least (1− ϵ)k of the top-k results with probability at least 1− δ, we set the
radius to include records with distances up to dk + t, which translates to dk

β + t in the transformed
space.

Therefore, the optimal cylinder radius is:

r =
dk
β

+

√
− ln(δ/2)

2n
· σ (222)

This radius guarantees that with probability at least 1− δ, we will retrieve at least (1− ϵ)k of the
true top-k nearest neighbors within the specified range.

G.5 LINE SIMILARITY INDEXING

To efficiently find the most similar line segment to a query line, we develop a specialized index
structure.

Definition 8 (Line Similarity Measure). For two line segments L1 = (a1, b1) and L2 = (a2, b2)
represented by their endpoints, we define the similarity as:

sim(L1, L2) = wd·cos∠(b1−a1, b2−a2)+wp·
(
1− ∥m1 −m2∥

Dmax

)
+wl·min

(
∥b1 − a1∥
∥b2 − a2∥

,
∥b2 − a2∥
∥b1 − a1∥

)
(223)

where m1 = a1+b1
2 and m2 = a2+b2

2 are the midpoints, Dmax is the maximum distance in the space,
and wd, wp, wl are weights for direction, position, and length components.

Theorem 19 (Line Similarity Properties). The line similarity measure satisfies:

1. sim(L1, L2) ∈ [0, 1]

2. sim(L1, L2) = 1 if and only if L1 and L2 are identical

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

3. If sim(L1, L2) > 1 − ε where ε < min(wd, wp, wl), then dH(L1, L2) < λ · ε for some
constant λ

Proof. We prove each property of the line similarity measure:

Property 1: sim(L1, L2) ∈ [0, 1]

The cosine of the angle between two vectors is bounded by [−1, 1], but since we’re considering line
segments (where direction matters but orientation doesn’t), we take the absolute value, giving a range
of [0, 1] for the first term.

The position term 1− |m1−m2|
Dmax

ranges from 0 (when midpoints are maximally distant) to 1 (when
midpoints coincide).

The length ratio term min
(

|b1−a1|
|b2−a2| ,

|b2−a2|
|b1−a1|

)
is bounded by [0, 1], with 1 achieved when lengths are

equal.

Since wd + wp + wl = 1 and all weights are non-negative, the weighted sum must be in [0, 1].

Property 2: sim(L1, L2) = 1 if and only if L1 and L2 are identical

(⇒) If sim(L1, L2) = 1, then each component must equal 1 since they are all bounded by 1:

• cos∠(b1 − a1, b2 − a2) = 1 implies the lines have the same direction.

• 1− |m1−m2|
Dmax

= 1 implies |m1 −m2| = 0, so the midpoints coincide.

• min
(

|b1−a1|
|b2−a2| ,

|b2−a2|
|b1−a1|

)
= 1 implies |b1 − a1| = |b2 − a2|, so the lengths are equal.

With identical direction, midpoint, and length, the line segments must be identical.

(⇐) If L1 and L2 are identical (same endpoints or equivalent representation), then:

• Their directions are identical, so cos∠(b1 − a1, b2 − a2) = 1.

• Their midpoints coincide, so |m1 −m2| = 0, making the position term equal to 1.

• Their lengths are equal, so the length ratio is 1.

With all components equal to 1, the weighted sum sim(L1, L2) = 1.

Property 3: If sim(L1, L2) > 1− ε where ε < min(wd, wp, wl), then dH(L1, L2) < λ · ε for some
constant λ

Since ε < min(wd, wp, wl) and sim(L1, L2) > 1 − ε, each component of the similarity must be
close to 1. Specifically:

• Direction component > 1− ε
wd

, implying 1− cos∠(b1 − a1, b2 − a2) <
ε
wd

.

• Position component > 1− ε
wp

, implying |m1−m2|
Dmax

< ε
wp

.

• Length component > 1− ε
wl

, implying 1−min
(

|b1−a1|
|b2−a2| ,

|b2−a2|
|b1−a1|

)
< ε

wl
.

When all components are close to 1 (which is guaranteed by ε < min(wd, wp, wl)), the Hausdorff
distance between the line segments is bounded.

For small angle differences ϱ, we know that 1− cos ϱ ≈ ϱ2

2 , so ϱ <
√

2ε
wd

.

For two line segments with similar direction, position, and length, the Hausdorff distance is bounded
by: dH(L1, L2) ≤ C1 · |m1−m2|+C2 · ϱ ·max(|b1− a1|, |b2− a2|) +C3 · ||b1− a1| − |b2− a2||

Where C1, C2, C3 are constants. Substituting our bounds: dH(L1, L2) < C1 · ε·Dmax

wp
+C2 ·

√
2ε
wd
·

Dmax + C3 · ε·Dmax

wl

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Let λ = max
(
C1 · Dmax

wp
, C2 ·

√
2
wd
·Dmax, C3 · Dmax

wl

)
.

Then dH(L1, L2) < λ · ε for small enough ε.

The constraint ε < min(wd, wp, wl) is necessary to ensure that all three components of similarity are
individually high, which is required for a small Hausdorff distance.

Based on this similarity measure, we design a hierarchical index structure that combines directional
and positional indexing in Algorithm 5. The key insight behind our hierarchical line indexing
approach is that line similarity in high-dimensional spaces can be decomposed into two primary
components: directional similarity and spatial proximity. By organizing our index hierarchically, we
can drastically reduce the search space and avoid expensive similarity computations with dissimilar
lines.
Algorithm 5 Hierarchical Line Index Construction

1: Input: Set of line segments L, angular resolution ν
2: Output: Hierarchical line index I
3: {First level: directional partitioning}
4: Partition unit sphere into cells of angular resolution ν
5: Create directional hash tableHd mapping direction cells to line sets
6: for each line segment L = (a, b) in L do
7: dir ← b−a

∥b−a∥ {Unit direction vector}
8: cell← DirectionToCell(dir) {Determine directional cell}
9: Add L toHd[cell]

10: end for
11: {Second level: spatial partitioning}
12: for each directional cell c inHd do
13: Hd[c].spatial_index← CreateSpatialIndex(Hd[c])
14: end for
15: I.directional_index← Hd

16: return I

Algorithm 6 Find Nearest Line

1: Input: Query line LQ = (aQ, bQ), line index I, similarity threshold τ
2: Output: Most similar indexed line Lsimilar

3: dirQ ← bQ−aQ

∥bQ−aQ∥ {Query direction}
4: neighboring_cells← GetNeighboringCells(dirQ, ν) {Get directional cells}
5: candidates← ∅
6: for each cell c in neighboring_cells do
7: midpointQ ← aQ+bQ

2 {Query midpoint}
8: lengthQ ← ∥bQ − aQ∥ {Query length}
9: cell_candidates← I.directional_index[c].spatial_index.Search(midpointQ, κ · lengthQ)

10: Add cell_candidates to candidates
11: end for
12: Lsimilar ← null
13: sim∗ ← 0
14: for each line L in candidates do
15: similarity ← ComputeLineSimilarity(LQ, L) (Definition 8)
16: if similarity > sim∗ then
17: sim∗ ← similarity
18: Lsimilar ← L
19: end if
20: if sim∗ > τ then
21: return Lsimilar

22: end if
23: end for
24: return Lsimilar

59



3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Intuition The hierarchical line index operates on the observation that two line segments with
significantly different directions or distant spatial locations are unlikely to be similar. Algorithm 5
implements this insight by partitioning the index into two levels: the first level groups lines by their
direction vectors, while the second level organizes lines within each directional group according to
their spatial locations. This structure enables efficient pruning of the search space when finding the
nearest line to a query.

Algorithm Process The index construction (Algorithm 5) proceeds in two main phases:

1. Directional Partitioning: We first discretize the unit sphere into cells of angular resolution
ν, effectively creating buckets for different line directions. Each line segment is assigned
to a cell based on its normalized direction vector. This partitioning allows us to quickly
identify lines with similar orientation to a query line.

2. Spatial Indexing: Within each directional cell, we build a spatial index (such as an R-tree
or k-d tree) to organize the lines based on their spatial positions, typically represented by
their midpoints. This second-level index enables efficient retrieval of spatially proximate
lines within a directional group.

The search algorithm (Algorithm 6) leverages this hierarchical structure to efficiently locate the most
similar line to a query:

1. Directional Filtering: We first identify candidate directional cells based on the query line’s
direction. This step immediately eliminates vast portions of the index containing lines with
significantly different orientations.

2. Spatial Filtering: Within each candidate directional cell, we use the spatial index to retrieve
lines near the query line’s location. We use the query line’s midpoint as the search center
and adjust the search radius proportionally to the line’s length using parameter κ.

3. Similarity Ranking: Finally, we compute the exact similarity between the query line
and each candidate, maintaining the best match found. The early termination condition
(sim∗ > τ ) allows us to return immediately if we find a sufficiently similar line, avoiding
unnecessary computations.

Complexity Analysis The time complexity of index construction is O(N logN), where N is the
number of line segments. Specifically, assigning each line to a directional cell takes O(N) time,
while building the spatial indices across all cells requires O(N logN) time in the worst case. The
space complexity is O(N) for storing all line segments.

For the search operation in Algorithm 6, the time complexity is O(logN+C), where C is the number
of candidate lines retrieved for exact similarity computation. In the worst case where all lines share
similar directions, C could approach N , but in practice, the directional and spatial filtering steps
typically reduce the candidate set to a small fraction of the dataset, resulting in near-logarithmic query
time. The parameter ν controls the trade-off between query time and index size—smaller values of ν
create more directional cells, potentially reducing C at the expense of increased index size.

G.6 CYLINDRICAL DISTANCE INDEXING

For each indexed line segment, we need an efficient structure to retrieve points within a specified
distance of the line:
Definition 9 (Cylindrical Coordinates). For a line segment L = (a, b) and a point p, the cylindrical
coordinates are:

t = clamp
(
(p− a) · (b− a)

∥b− a∥2
, 0, 1

)
(224)

r = ∥p− (a+ t(b− a))∥ (225)
θ = angle in plane perpendicular to line direction (226)

where clamp(x,min,max) = min(max(x,min),max) restricts the value of x to the range
[min,max] (see Figure 3(f))). The parameter t represents the normalized projection of point p
onto the line segment, r is the perpendicular distance from p to the line, and θ is the angular position
around the line.

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Intuition The cylindrical indexing approach leverages the geometric properties of distance relation-
ships in our transformed space. When searching for points near a line segment, points that are similar
tend to cluster in cylindrical regions around the line. Our indexing structure exploits this property by
partitioning the space around each reference line into cylindrical sections, organizing points based on
both their position along the line and their radial distance from it. This organization enables efficient
pruning of distant points during query processing.

Corollary 7 (Cylindrical Search Properties). For points indexed in cylindrical coordinates relative to
line L:

1. A point is within distance R of line L if and only if r ≤ R

2. For points with similar t values, their Euclidean distance is primarily determined by their r
values

3. The set of points within distance R of line L forms a cylinder of radius R around L

Based on these properties, we design an efficient cylindrical index structure:

Algorithm 7 Cylindrical Index Construction

1: Input: Line segment L = (a, b), point set P , radius R
2: Output: Cylindrical index C
3: C.line← L
4: C.max_radius← R
5: length← ∥b− a∥
6: num_sections← max(1, ⌈length/R⌉) {Partition line into sections}
7: Initialize array sections[num_sections] of empty sets
8: for each point p in P do
9: Compute cylindrical coordinates (t, r, θ) for p relative to L

10: if r ≤ R then
11: section_idx← min(⌊t · num_sections⌋, num_sections− 1)
12: Add (p, r) to sections[section_idx]
13: end if
14: end for
15: for i = 0 to num_sections− 1 do
16: Build radius-based index for sections[i] {E.g., using a ball tree}
17: end for
18: C.sections← sections
19: return C

Algorithm Process The cylindrical index construction (Algorithm 7) proceeds through several key
steps:

1. Line Segmentation: We divide the reference line segment into multiple sections of ap-
proximately equal length (proportional to the cylinder radius). This partitioning allows for
more localized searches and avoids examining the entire cylinder when only a portion might
contain relevant points.

2. Cylindrical Projection: For each point in the dataset, we compute its cylindrical coordinates
relative to the reference line: the normalized projection position along the line (t), the
perpendicular distance from the line (r), and the angular position around the line (θ).

3. Sectional Organization: Points are assigned to sections based on their projection position
t, and only points within the maximum radius R are included in the index. This filtering
step immediately eliminates points that cannot be retrieved by any valid query.

4. Per-Section Indexing: Within each section, we build a specialized radius-based index (such
as a ball tree) to efficiently support radius-based queries. This nested indexing structure
allows for rapid retrieval of points within a specified distance of any position along the line.

The cylinder search algorithm (Algorithm 8) utilizes this structure to efficiently retrieve points near a
query line:

61



3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Algorithm 8 Cylinder Search

1: Input: Line segment LQ = (aQ, bQ), radius RQ, cylindrical index C
2: Output: Points within distance RQ of LQ

3: L← C.line {Indexed line}
4: R← C.max_radius {Indexed radius}
5: dH ← HausdorffDistance(L,LQ) {Line distance}
6: adjusted_radius← RQ + dH {Adjust for line difference}
7: results← ∅
8: if adjusted_radius > R then
9: return "Radius too large for this index"

10: end if
11: for each section i in C.sections do
12: tmin ← i/num_sections
13: tmax ← (i+ 1)/num_sections
14: closest_distance← MinDistanceBetweenLineSegments(LQ, L.Subsegment(tmin, tmax))
15: if closest_distance ≤ adjusted_radius then
16: section_candidates← C.sections[i].GetPointsWithinRadius(adjusted_radius)
17: for each point p in section_candidates do
18: dist_to_query ← DistanceToLine(p, LQ)
19: if dist_to_query ≤ RQ then
20: Add p to results
21: end if
22: end for
23: end if
24: end for
25: return results

1. Radius Adjustment: We first compute the Hausdorff distance between the indexed line
and the query line, then adjust the search radius accordingly. This step accounts for the
difference between lines and ensures we capture all relevant points.

2. Section Filtering: For each section, we compute the minimum distance between the
corresponding subsegment of the indexed line and the query line. Sections whose minimum
distance exceeds the adjusted radius are immediately pruned from consideration.

3. Candidate Retrieval: For each relevant section, we retrieve candidate points within the
adjusted radius using the section’s radius-based index.

4. Exact Distance Verification: Finally, we compute the exact distance from each candidate
point to the query line and filter out points whose distance exceeds the original query radius
RQ.

Complexity Analysis The time complexity for constructing the cylindrical index is O(n log n)
where n is the number of points within the maximum radius R of the line. Specifically, computing
cylindrical coordinates for all points takes O(n) time, while building the radius-based indexes requires
O(n log n) time in the worst case.

For the search operation, the time complexity is O(s+ k log ns), where s is the number of sections,
k is the number of candidate points examined, and ns is the average number of points per section.
The section filtering step takes O(s) time, while the retrieval and verification of candidates takes
O(k logns) time. In practice, section filtering typically eliminates a large portion of the cylinder,
making the effective value of k much smaller than the total number of points in the cylinder. The
number of sections s is chosen as max(1, ⌈length/R⌉), balancing the overhead of section processing
with the benefit of finer spatial partitioning.

G.7 ERROR ANALYSIS AND ADAPTATION

Similar approach in Foster et al. (2018); Heidari et al. (2020a), when using a similar indexed line as a
proxy for the query line, we need to account for the approximation error similar approach:
Theorem 20 (Error Compensation). Let LQ be a query line and Lsimilar be the most similar indexed
line with Hausdorff distance δH = dH(LQ, Lsimilar). To retrieve the top-k nearest neighbors with
probability at least 1− ϵ, we need to:

62



3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

1. Increase the search radius by δH

2. Retrieve k′ = k + ⌈c · log(1/ϵ) · δH · η⌉ candidates

where η is the local density factor and c is a constant that depends on the data distribution.

Proof. For the radius adjustment, consider a point p that is within distance r of LQ. By the triangle
inequality, its distance to Lsimilar is at most r+ δH . Therefore, to ensure we capture all points within
distance r of LQ, we need to search within distance r + δH of Lsimilar.

For the result count adjustment, we need to account for the fact that points may be ranked differently
with respect to LQ and Lsimilar. The number of points affected depends on the local density η and
the perturbation δH .

Using concentration inequalities, the probability that more than δH · η · log(1/ϵ) points change
their ranking status (from top-k to outside top-k or vice versa) is less than ϵ. Therefore, retrieving
k′ = k + ⌈c · log(1/ϵ) · δH · η⌉ candidates ensures capturing the true top-k with probability at least
1− ϵ.

Algorithm 9 Adaptive k’ Selection

1: Input: Query line LQ, similar line Lsimilar, target k, error probability ϵ
2: Output: Adjusted k’ value
3: δH ← dH(LQ, Lsimilar) {Hausdorff distance}
4: η ← EstimateLocalDensity(Lsimilar) {Estimate local density}
5: c← 2.0 {Constant factor based on empirical analysis}
6: k′ ← k + ⌈c · log(1/ϵ) · δH · η⌉
7: return k′

Theorem 21 (Density Estimation). The local density factor η around a line segment L = (a, b),
where a and b are the endpoints of L, can be estimated as:

η ≈ Nr

Vr
=

Nr

πr2 · ∥b− a∥
(227)

where Nr is the number of points within distance r of L, and Vr is the volume of the cylinder with
radius r around L.

Proof. The density factor η measures the concentration of data points in the neighborhood of line
segment L. To estimate this density, we consider the ratio of points within a cylindrical region around
the line to the volume of that region.

For a line segment L with endpoints a and b, the cylindrical region with radius r around L consists of
all points within perpendicular distance r of any point on L. The volume of this cylinder is given by:

Vr = πr2 · ∥b− a∥ (228)

This follows from the standard formula for the volume of a cylinder: V = πr2h, where r is the radius
and h is the height. In our case, the height corresponds to the length of the line segment ∥b− a∥.

Let Nr denote the number of data points falling within this cylindrical region. The ratio Nr

Vr
then

gives us the average number of points per unit volume in the vicinity of line segment L, providing a
direct estimate of the local point density.

This density estimate is particularly relevant for error compensation analysis because it helps predict
how many additional points might need to be examined when approximating a query line with a
similar indexed line. Higher density regions require examining more candidates to maintain the same
probability of capturing the true nearest neighbors.

Intuition The density estimation theorem provides a crucial metric for adapting our range query
parameters to the local characteristics of the data distribution. Intuitively, the density factor η
measures how "crowded" the space is around a particular line segment. This has direct implications
for approximation error handling—in high-density regions, small deviations between a query line
and its approximation can affect many more points than in sparse regions. The formula expresses this
density as points per unit volume in the cylindrical neighborhood around the line, giving us a locally
adaptive measure for error compensation.

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Algorithm Process Computing the density factor involves these key steps: (1) identifying all points
within distance r of the line segment using cylindrical coordinates, (2) counting these points to
determine Nr, (3) calculating the cylinder volume using the line length and radius, and (4) computing
their ratio. In practice, we can efficiently estimate this density using the cylindrical index structure
without explicitly enumerating all points. The density factor is typically calculated during index
construction and stored with each indexed line segment, then used during query time to dynamically
adjust the search parameters based on Theorem 20.

Complexity Analysis The computational complexity of estimating the density factor is O(N +
logN) where N is the total number of indexed points. The dominant cost comes from identifying
points within radius r of the line, which requires O(logN) time with an efficient spatial index,
plus O(Nr) time to process those points. Since the density calculation is performed during index
construction and cached, it adds minimal overhead to query processing. The additional space
complexity is O(M) where M is the number of indexed line segments, as we need to store one
density value per line. This small storage investment enables significant query performance gains
through adaptive parameter selection, particularly in datasets with heterogeneous density distributions.

Algorithm 10 Complete Range Query Processing

1: Input: Query vector q, range [l, u], number of results k, error probability ϵ
2: Output: Top-k nearest neighbors within range [l, u]
3: {Phase 1: Query preparation}
4: pl ← Ψ(q, l, α, β)
5: pu ← Ψ(q, u, α, β)
6: LQ ← LineSegment(pl, pu)
7: {Phase 2: Find similar indexed line}
8: Lsimilar ← FindNearestLine(LQ, line_index)
9: δH ← dH(LQ, Lsimilar)

10: base_radius← Lsimilar.cylinder_radius
11: adjusted_radius← base_radius+ δH
12: {Phase 3: Determine search parameters}
13: η ← EstimateLocalDensity(Lsimilar)
14: k′ ← k + ⌈2 · log(1/ϵ) · δH · η⌉
15: {Phase 4: Retrieve candidates}
16: candidates← CylinderSearch(LQ, adjusted_radius, Lsimilar.cylinder_index)
17: {Phase 5: Filter and refine results}
18: filtered_candidates← ∅
19: for each point p = Ψ(v, f, α, β) in candidates do
20: if l ≤ f ≤ u then
21: distance← ∥v − q∥
22: Add (v, f, distance) to filtered_candidates
23: end if
24: end for
25: Sort filtered_candidates by distance
26: return Top-k records from filtered_candidates

G.8 COMPLETE RANGE QUERY ALGORITHM

Putting all components together, we present the complete range query in Algorithm 10.
Theorem 22 (Query Complexity). The complete range query algorithm has expected time complexity:

O(logL+ logP + k log(1/ϵ) + k log k) (229)

where L is the number of indexed line segments, P is the maximum number of points in any cylindrical
index, k is the number of requested results, and ϵ is the error probability. Since L,P ≤ N (where N
is the total dataset size), this simplifies to O(logN + k log(1/ϵ) + k log k).

Proof. The algorithm consists of these main steps:

1. Finding the nearest line: O(logL) using the hierarchical line index (Algorithm 6), where L
is the number of indexed line segments from the adaptive sampling algorithm (Theorem 17)

64



3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

2. Cylinder search: O(logP + k′) where P is the number of points in the relevant cylindrical
index and k′ = O(k log(1/ϵ)) from Theorem 20

3. Filtering and ranking: O(k′ log k) to sort the candidates

Combining these terms and noting that both L and P are bounded by the total dataset size N , we get
the simplified complexity O(logN + k log(1/ϵ) + k log k).

The complete algorithm (Algorithm 10) provides strong theoretical guarantees while maintaining
practical efficiency for large-scale datasets, making it an ideal solution for range-constrained vector
search problems.

H THEOREMS, COROLLARIES, AND ALGORITHMS CHEAT SHEET

In this section, we provide a summary of key concepts and findings.

Table 9: Summary of Theorems, Corollaries, and Algorithms in FUSEDANN Paper

Name/Type Label/Ref Functionality / Statement
Single-Attribute Hybrid Vec-
tor Indexing (FusedANN)

Alg. 1 Core algorithm for fusing content and attribute vec-
tors via transformation Ψ for hybrid vector search,
supporting both offline indexing and online query
with parameterized separation and candidate selec-
tion.

Properties of Ψ Transforma-
tion

Theorem 1 Transformation preserves k-NN order within at-
tribute groups, increases inter-attribute distances
with α, and controls scaling with β.

Practical Candidate Set Size Theorem 2 Provides formula for number of candidates k′

needed to guarantee recall in hybrid search, based
on attribute cluster statistics and separation.

Expected Candidate Set Size Theorem 3 Gives the expected k′ across queries based on at-
tribute distribution, showing k′ → k as separation
increases.

Parameter Selection for ϵf -
bounded Clusters

Theorem 4 Gives minimum values for α, β to ensure attribute
cluster compactness and inter-cluster separation in
fused space.

Optimality of Minimal Param-
eters

Cor. 1 Setting β, α as per Theorem 4 yields minimum sep-
aration/compactness bounds, balancing recall and
efficiency.

Uniqueness of Transformation Theorem 5 Shows that Ψ is injective (one-to-one) if d > m and
parameters satisfy minimal bounds.

Property Preservation Theorem 6 Order of k-NN among records with the same at-
tributes is preserved under sequential application of
Ψ.

Attribute Priority Theorem 7 Later-applied attributes in Ψ sequence have higher
effective priority in determining k-NN order.

Attribute Match Distance Hi-
erarchy

Theorem 9 Records with more matching attributes are always
closer to the query (after transformation) than those
with fewer matches.

Generalized Attribute Match
Hierarchy

Theorem 10 For any two records, there exist αj such that more at-
tribute matches always yield smaller fused distance.

Continued on next page

65



3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Table 9 – continued from previous page
Name/Type Label/Ref Functionality / Statement

Monotone Priority in
FUSEDANN

Theorem 8 ANNS in the fused space yields results that satisfy
the monotone attribute priority property for hybrid
queries.

Multi-Attribute Candidate Set
Size

Theorem 11 Extends candidate selection formula to multi-
attribute (hierarchical) fused space; k′ shrinks as
more attributes are used.

Hierarchical Multi-Attribute
Vector Indexing

Alg. 3 Complete indexing and query algorithm for multi-
attribute hybrid queries, applying Ψ recursively and
managing cluster statistics.

Range Query Line Theorem 15 Set of all fused query points for attribute in [l, u]
forms a line segment in fused space.

Distance Characterization
(Range)

Theorem 16 Distance from a point to the query range line is
proportional to vector similarity, enabling cylinder
search interpretation.

Optimal Range Line Sampling Theorem 17 Gives sample complexity for covering the fused
range-query space with pre-indexed lines (cylinders)
for range queries.

Optimal Cylinder Radius Theorem 18 Formula for radius to guarantee recall for range
queries, based on k-th neighbor distance and local
statistics.

Line Similarity Mea-
sure/Properties

Def. 8,
Theo-
rem 19

Defines a composite metric for line similarity;
proves its bounds and relation to Hausdorff distance.

Hierarchical Line Index Con-
struction

Alg. 5 Builds two-level index for fast retrieval of similar
lines: first by direction, then by spatial proximity.

Find Nearest Line Alg. 6 Searches the hierarchical index to find the closest
pre-indexed line to a query line.

Cylindrical Index Construc-
tion

Alg. 7 Builds an index for each line, partitioning points
by distance to the line (for efficient range/cylinder
search).

Cylinder Search Alg. 8 Retrieves all points within a specified radius of a line
(i.e., inside a cylinder) using the cylindrical index.

Adaptive Range Line Sam-
pling

Alg. 4 Strategy for sampling lines (cylinders) to cover the
fused range-query space adaptively, based on empir-
ical distributions.

Adaptive k’ Selection Alg. 9 Adjusts the number of candidates k′ for range
queries to compensate for line approximation error
and local density.

Complete Range Query Pro-
cessing

Alg. 10 End-to-end algorithm for efficient range queries:
transforms the query, finds similar pre-indexed cylin-
der, adjusts search, retrieves and ranks results.

Query Complexity Theorem 22 Shows that the complete range query algorithm has
O(logN + k log(1/ϵ) + k log k) expected time.

66


	Introduction
	Preliminaries
	FusedANN Framework
	Multi-Attributes and Attribute Hierarchy
	Attribute Updates in FusedANN

	Range Filter on FusedANN
	Experiments
	Discussion
	Conclusion
	Table of Notations
	Numerical Example of  transformation
	Extended Limitations and Future Work
	Extended Experiments
	Experimental Setup
	Datasets
	Implementation Details
	Baselines
	Metrics and Protocol

	Single Attribute Filtering
	Overall Performance
	Effect of Data Distribution

	Multiple Attribute Filtering
	Two Attributes
	Scaling with Number of Attributes

	Range Filtering
	Half-Bounded Range Performance
	Arbitrary Range Performance

	Ablation Studies
	Impact of Components
	Impact of Base Index Selection
	Impact of Parameters

	Scalability Analysis
	Memory Footprint and Index Construction

	FusedANN Framework Theoretical Analysis
	Properties of  Transformation
	Candidate Set Size
	Approximate Fixed Candidate Set Size

	Optimal Parameter Selection
	Uniqueness of Points in Transformed Space

	Proofs for Attribute Hierarchy
	Preliminaries and Notation
	Intuition behind Monotone Attribute Priority
	Property Preservation Theorem
	Attribute Priority Theorem
	Monotonicity of Attributes Priority over Fused Space

	Attribute Match Distance Hierarchy
	Hierarchical Multi-Attribute Vector Indexing
	Attribute Updates Analysis

	Range Filtering in FusedANN Analysis
	Line Representation of Range Queries
	Distance Properties of the Range Line
	Empirical Distribution Estimation
	Optimal Sampling of the Range Space
	Line Similarity Indexing
	Cylindrical Distance Indexing
	Error Analysis and Adaptation
	Complete Range Query Algorithm

	Theorems, Corollaries, and Algorithms Cheat Sheet

