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ABSTRACT

Efforts to address declining accuracy as a result of data shifts often involve various
data-augmentation strategies. Adversarial training is one such method, designed
to improve robustness to worst-case distribution shifts caused by adversarial ex-
amples. While this method can improve robustness, it may also hinder general-
ization to clean examples and exacerbate performance imbalances across different
classes. This paper explores the impact of adversarial training on both overall
and class-specific performance, as well as its spill-over effects. We observe that
enhanced labeling during training boosts adversarial robustness by 53.50% and
mitigates class imbalances by 5.73%, leading to improved accuracy in both clean
and adversarial settings compared to standard adversarial training.

1 INTRODUCTION

Adversarial examples are inputs to machine learning models that have been intentionally crafted
to cause incorrect model predictions. These examples are typically made by introducing slight
perturbations that distort model outputs while maintaining a high degree of similarity Goodfellow
et al. (2014); Papernot et al. (2016); Tramèr et al. (2017); Madry et al. (2017).

Formally, given an image xi with its corresponding label yi, and a model f that correctly classifies it,
i.e., f(xi) = yi, an adversarial example x′

i is defined as an image that satisfies two conditions: first,
it causes the classifier to misclassify the image, such that f(xi) ̸= f(x′

i); and second, it remains
visually similar to the original image xi Carlini et al. (2019); Engstrom et al. (2019); Wang et al.
(2019). Typically, similarity between the two images is measured using an ℓp-norm, meaning that
x′
i = xi + δ is considered a valid adversarial example if and only if ∥δ∥p≤ ε, where ε is a small

constant, and p ∈ [0,∞]. Under these similarity constraints, adversarial examples x′
i are often

crafted as in Eq. 1, to maximize the loss of the model when processing the sample xi.

max
∥δ∥p≤ε

L(f(xi + δ), yi). (1)

The set of adversarial data points generated by this maximization implicitly defines a distribution
of adversarial examples Goodfellow (2019). The Fast Gradient Sign Method (FGSM) Goodfellow
et al. (2014) approximates the above maximization, and generates adversarial examples by back-
propagating the gradient of the loss to the input data to compute ∇xiL(xi, yi). This gives direction
in which the loss function increases the most with respect to small changes in the input data xi.
It then moves the data in this direction (i.e., sign∇xi

L(xi, yi)) that maximizes the loss for xi, as
shown in Eq. 2:

x′
i = xi + ε · sign(∇xi

L(xi, yi)), (2)

where the added perturbation is scaled down by ε to maintain similarity distance. FGSM Goodfellow
et al. (2014) is designed for fast generation rather than optimality. Basic Iterative Method Kurakin
et al. (2016) and Projected Gradient Descent (PGD) Madry et al. (2017) are iterative extensions of
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FGSM, designed to generate stronger adversarial examples. These examples typically viewed as
the worst-case form of distributional shift, where even minor perturbations can lead to significant
misclassifications Rice et al. (2021).

To address distribution shifts, data augmentation techniques are commonly used to improve model
performance in image classification by increasing data variety and reducing the gap between training
and test data distributions Hendrycks & Dietterich (2019); Xu et al. (2023). Likewise, to enhance
model robustness against attacks, adversarial training is the most effective method, involving the
augmentation of training data with adversarial examples Goodfellow et al. (2014); Kurakin et al.
(2016); Moosavi-Dezfooli et al. (2016); Madry et al. (2018); Athalye et al. (2018).

While data augmentation enhances overall accuracy and robustness, its effects are often highly
class-dependent. Techniques like random cropping, for instance, can introduce class imbal-
ance—improving average test performance while significantly degrading accuracy for certain
classes Kirichenko et al. (2024). Augmentations may also produce unintended spillover effects;
for example, color jittering strengthens robustness to brightness and color shifts yet unexpectedly
weakens robustness to pose Idrissi et al. (2022). Similarly, while adversarial training enhances ro-
bustness, it comes at a cost. It imposes trade-offs between robustness and accuracy Tsipras et al.
(2018), as well as between in- and out-of-distribution generalization Zhang et al. (2019), while also
amplifying disparities in performance across different classes. As a result, certain classes may be
disproportionately disadvantaged, affecting model fairness Benz et al. (2021).

A data augmentation policy that fails to preserve label integrity can further disrupt class balance.
When applied uniformly across all classes, augmentations may degrade label information unevenly,
leading to imbalances even in originally well-balanced datasets Kim et al. (2020); Balestriero et al.
(2022); Islam et al. (2024). In this paper, we aim to mitigate the class imbalance caused by adver-
sarial training by adjusting the labels used during the adversarial training process.

2 RELATED WORKS

Adversarial training is a form of data augmentation that incorporates adversarial examples into the
training pipeline. Typically, augmentation techniques expand training data by randomly applying
transformations to promote invariance, thus encouraging models to make consistent predictions
across different views of each sample Geiping et al. (2023). In general, augmentation techniques
can be classified into two categories: label-preserving and label-mixing techniques.

Label-preserving augmentation uses transformations on images that preserve their semantic con-
tent. While these methods have shown improvements in generalization for some factors, they can
also negatively impact others Idrissi et al. (2022). Label-mixing approaches use convex combina-
tions of pairs of examples and their labels to encourage linear behavior between training examples,
which helps to regularize the model Zhang et al. (2018). Despite their effectiveness, these methods
have been found to introduce label ambiguities due to random placements of images, resulting in
misleading signals for supervision Kim et al. (2020); Islam et al. (2024). Similar to both types, Label
Augmentation Amerehi & Healy (2024) aims to maintain invariance to the class identity of images
while also encouraging separation between class identity and transformation. It does so by assign-
ing one-hot labels zj to each transformation operation oj applied during augmentations. Rather than
merely augmenting the transformed data x̃i during training, without distinguishing between labels
for transformed and untransformed inputs, it augments the labels by concatenating the original input
labels with the operation labels:

ỹi = Concat[(1− δ)yi, δzj ], (3)

where, where δ is a scaling factor that prevents excessive deviation of the model toward the aug-
mented label. The training objective is thus expressed as:

LLA(ỹip̃i) = −
K+M∑
k=1

ỹik log p̃ik, (4)
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Training Clean mCE PGD-40
Std 20.87 58.06 94.06
Adv 32.18 71.41 70.32
Adv+ 26.70 66.43 32.70

Table 1: Error Rate of Adversarial Training With/Without Label Augmentation on ResNet-50

where, p̃i denotes the softmax of predictions for x̃i, and ỹik is a vector of length K + M , which
merges the original K class labels and the M transformation labels. This method has been shown to
improve both the clean and robust accuracy. In the following sections, we examine whether Label
Augmentation can be incorporated into adversarial training to reduce its negative side effects.

3 EXPERIMENTAL SETUP

We study how average and class-level performance change when concatenating labels during 10-step
PGD Madry et al. (2017) adversarial training, with ℓ∞ constraints and constraint budget ε = 0.03.
Our evaluation focuses on robustness against common and adversarial perturbations, as well as the
induced side effects of adversarial training.

Architecture and Training Details. We run all experiments on an RTX-3080 GPU with CUDA
Version 12.5 using PyTorch version 2.0.1. We fine-tune the ResNet50 model with default weights
on the ImageNet (IN) for 10 epochs. The training starts with a learning rate of 0.01, which decays
by a factor of 0.0001 according to a cosine annealing learning rate schedule (Loshchilov & Hutter,
2016). We optimize the models using stochastic gradient descent with a momentum of 0.9. The
batch sizes for training and evaluation are set to 64. We set the scaling factor δ = 0.03 to reflect
the strength of the added perturbation. We evaluate both average error and per-class error using
the original ImageNet and the corresponding robustness benchmark datasets: IN-C Hendrycks &
Dietterich (2019), IN-X Idrissi et al. (2022), and IN-ReaL Beyer et al. (2020). Additionally, we
assess their adversarial robustness using a 40-step PGD attack, with ℓ∞ constraints and constraint
budget ε = 0.03.

Evaluation metrics. The Clean error denotes the standard classification error on uncorrupted test
data. For a given corruption c within IN-C, the error at severity s is denoted as Ec,s. The Corrup-
tion Error (CEc) is the average error over severities: CEc = 1

5

∑5
s=1 Ec,s. The mean Corruption

Error (mCE) is then averaged across all 15 corruptions: mCE = 1
15

∑15
c=1 CEc. This single value

enables comparisons against common corruptions Hendrycks & Dietterich (2019). To account for
label noise, we evaluate on IN-ReaL Beyer et al. (2020), which provides re-assessed multi-label
annotations for the ImageNet validation set. These metrics quantify a model’s error in assigning
incorrect labels. To explore spillover effects, we evaluate on IN-X Idrissi et al. (2022), which in-
cludes human annotations of failure modes across 16 variation factors, such as pose, size, color,
and occlusions. We compute standard classification error as well as error ratio for each factor as
Ef = 1−accuracy(factor)

1−accuracy(model) , which measures how much a model’s errors increase for a specific variation
factor relative to its overall performance Idrissi et al. (2022).

4 RESULTS

Average Error. Table 1 presents error rates under three evaluation conditions. Compared to the
standard model, adversarial training (Adv) improves adversarial robustness by 25.24% but compro-
mises clean error and corruption robustness by 54.19% and 22.99%, respectively. Adv+ further
enhances adversarial robustness by 65.23% while weakening clean error by 27.93% and corruption
robustness by 14.42%. Both methods involve trade-offs, but Adv+ achieves a better balance, mit-
igating the losses in clean error by 17.03% and corruption robustness by 6.97% compared to Adv,
while achieving a 53.50% more improvement in adversarial robustness.

Class-Wise Error. Figure 1 shows the class-wise error comparessions. Both Clean ImageNet 1a
and ImageNet-ReaL 1b show that, compared to the standard model, adversarial methods increase
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(a) Clean ImageNet. (b) ImageNet-ReaL. (c) PGD-40 on ImageNet.

Figure 1: Class-wise errors on different settings.

Clean ReaL PGD-40

Method Mean SD Mean SD Mean SD

std 20.87 15.65 19.43 12.78 94.06 4.71
adv 32.17 17.78 29.00 15.24 70.32 15.77
adv+ 26.69 16.76 24.27 14.04 32.70 15.33

Table 2: Mean and Standard Deviation (SD) across Different Methods

the existing class-wise imbalance. However, Adv+ outperforms Adv by reducing both mean error
and class-wise error variability—by 5.73% on Clean and 7.87% on IN-ReaL settings. Under a PGD-
40 attack 1c, the standard model exhibits the highest error and low variability, suggesting uniform
vulnerability. In contrast, adversarial models exhibit similar class-wise imbalances, with Adv+
reducing imbalance by 2.79% compared to Adv while also achieving greater adversarial robustness.

Error Rates Across Corruptions and Categories. Figure 2 presents error rates on ImageNet-
C Hendrycks & Dietterich (2019) across various corruption types and severity levels. In most cases,
the standard model performs better across different corruption types and severity levels. For ad-
versarial models, Adv+ consistently outperforms Adv, except in JPEG and Pixelate corruptions.
Figures 3 and 4 show the error rates and error ratios across different IN-X categories. While the
standard model achieves lower overall error, all models exhibit similar types of mistakes. However,
adversarial models demonstrate improved error ratios in style and texture variations.

5 CONCLUSION

While adversarial training helps mitigate distribution shifts from adversarial examples, it often re-
sults in reduced performance on clean samples and increased class-wise error disparities. Modifying
labels during adversarial training is easy to implement, enhancing overall robustness while achieving
a more favorable trade-off compared to standard adversarial training.
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Figure 2: Error rates across corruption types and severity levels on ImageNet-C.

Figure 3: Error rate across ImageNet-X categories.

Figure 4: Error ratio across ImageNet-X categories.
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