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Abstract
With the rapid expansion in the scale of large
language models (LLMs), enabling efficient dis-
tributed inference across multiple computing units
has become increasingly critical. However, com-
munication overheads from popular distributed
inference techniques such as Tensor Parallelism
pose a significant challenge to achieve scalability
and low latency. Therefore, we introduce a novel
optimization technique, Sync-Point Drop (SPD),
to reduce communication overheads in tensor par-
allelism by selectively dropping synchronization
on attention outputs. In detail, we first propose
a block design that allows execution to proceed
without communication through SPD. Second, we
apply different SPD strategies to attention blocks
based on their sensitivity to the model accuracy.
The proposed methods effectively alleviate com-
munication bottlenecks while minimizing accu-
racy degradation during LLM inference, offering
a scalable solution for diverse distributed environ-
ments: SPD offered about 20% overall inference
latency reduction with < 1% accuracy regression
for LLaMA2-70B inference over 8 GPUs.

1. Introduction
Large Language Models (LLMs) (Gunter et al., 2024;
Brown et al., 2020; Bubeck et al., 2023; Touvron et al.,
2023a;b; Zhang et al., 2022; Penedo et al., 2023; Jiang et al.,
2023) have revolutionized the field of natural language pro-
cessing (NLP), driving significant advancements in a wide
range of applications. Their ability to understand and gen-
erate human-like text has opened new possibilities for both
research and practical uses. However, as these models grow
in size and complexity, optimizing their performance be-
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comes a crucial challenge, particularly in terms of latency.

A proven approach to achieving low latency is to run LLM
inference in distributed computing environments, notably
using Tensor Parallelism (TP) (Shoeybi et al., 2019). By
sharding tensor operations into separate tracks or blocks
and processing them simultaneously on parallel devices,
TP significantly reduces inference time while maintaining
accuracy.

However, to maintain mathematical parity with single-
device inference, TP requires collective communica-
tion—often referred to as sync-points—throughout the
model. These sync-points serve as communication barriers
across all parallel devices to synchronize hidden represen-
tation tensors, as shown in Figure 1a. Because of this com-
municative nature, the overhead of sync-points depends on
hardware constraints—such as the interconnects between de-
vices and the network connections between nodes—which
can become a bottleneck during execution. As LLMs grow
in size, one must use more compute devices, which in turn
increases the number of sync-points and further worsens
inference latency. Therefore, in any distributed system, opti-
mizing sync-points would greatly improve overall system
performance.

To tackle this important issue, we propose Sync-Point Drop
(SPD) a simple yet novel optimization technique with broad
applications for LLM systems. Unlike existing works which
tried to improve the communication process itself (NVIDIA,
2019; Jeaugey, 2019; Cheng et al., 2023) on system-level,
SPD directly removes sync-point in the self-attention output
(as in Figure 1b) within the target budget. To enable SPD
directly on decoder block, we first introduce a block design
for SPD that minimizes negative effects resulting from re-
duced communication (see Figure 3). Second, we apply
SPD strategies differently to each blocks based on commu-
nication sensitivity, which we defined as the relative impact
on downstream performance when all communications are
dropped up to that point (see Figure 4). Our experimental re-
sults show effective possibility of latency improvement with
minimizing the accuracy degradation throughout diverse
sizes of models. In summary, our contributions are:

• We propose novel block designs for SPD that minimize
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(a) With fully synchronous tensor parallelism. (b) With the elimination of the sync-point in the attention output.

Figure 1. Tensor parallelism applied on transformer decoder block (in 2-GPUs distributed inference case).

information loss from lack of communication.

• We identify the sensitivity of each block within the
model and classify them into three distinct categories,
allowing for the application of tailored optimization
strategies to each group based on their characteristics.

• Empirical results on various datasets and models show
that proposed SPD with optimization strategies can
offer better accuracy/latency trade-off by enabling a
scalable solution for distributed environments and mini-
mizing quality loss for overall communication budgets.

2. Related Works
The inefficiency of LLMs, which emerged with a significant
impact on computation and memory, has led to a large de-
mand for optimization techniques. Model-level optimization
has gained attention for opportunities within the vast redun-
dancies of LLMs. Quantization (Frantar et al., 2023; Xiao
et al., 2023; Lin et al., 2024; Shao et al., 2024; Chee et al.,
2023; Ashkboos et al., 2024) reduces the precision of model
parameters, allowing for faster operations with minimal im-
pact on performance. In particular, (Agrawal et al., 2024;
Dong et al., 2024) are intended to optimize communication
performance with low-bit expressions. Pruning (Frantar &
Alistarh, 2023; Sun et al., 2024; Liu et al., 2023; Xia et al.,
2024) eliminates less critical parameters or neurons from
the model, thereby reducing its size and computational com-
plexity. In the aggressive scale, block skipping (Xia et al.,
2024; Song et al., 2024), which involves bypassing certain
blocks, further enhances efficiency by eliminating the oper-
ations of a block. These approaches focus on compressive
and computational effects which makes the model suitable
for real-time and resource-constrained environments.

Following the underlying mechanism of model deployment,
beyond model-level optimization, system-level optimiza-
tions (Shoeybi et al., 2019; Huang et al., 2019; Zhao et al.,
2023; Aminabadi et al., 2022; Kwon et al., 2023) are ex-
plored. Different from model-level approach, system-level
optimization does not change any numerical values of a

model. One of the distributed deployment techniques, ten-
sor parallelism (Shoeybi et al., 2019), enables fast serving
of a model by parallel execution of a block into multiple
devices. However, this technique requires large commu-
nication overheads between devices to keep the numeric
precision of execution flow. Considering the communica-
tion bottleneck of tensor parallelism, existing works also
focus on improving the communication operation itself sys-
tematically, including ring-topology all-reduce (NVIDIA,
2019) and tree-topology all-reduce (Jeaugey, 2019). Specif-
ically for large models, ATP (Cheng et al., 2023) improves
training efficiency by dynamically choosing the parallel
strategy.

In this paper, we leverage optimization benefits in model-
level from the system perspective (enabling SPD in the sys-
tem while minimizing accuracy degradation in the model).

3. Preliminary: Tensor Parallelism in LLMs
Tensor Parallelism (TP) (Shoeybi et al., 2019) is a system-
atic computing technique on a distributed environment used
to accelerate large-scale language models. This is real-
ized by partitioning individual weight tensors of a model
across multiple devices. Instead of replicating the entire
model across GPUs (as in data parallelism), TP divides
each block’s computation across multiple devices (as in Fig-
ure 1a), enabling the model to handle larger tensors that
would otherwise exceed the memory capacity of a single
GPU. This approach significantly improves the scalability
and efficiency in both training and inference, particularly
in LLMs. However, the realization of effective TP requires
collective communication (all-reduce in Figure 1) between
devices to synchronize and exchange partial computations.
The communication latency is typically decided by network
bandwidth between devices. The lower the bandwidth, the
more the parallel system gets bottleneck originated from
the sync-point. To resolve the bottleneck of distributed in-
ference, our proposed optimization technique, SPD, simply
eliminates the communication within each decoder block
(as in Figure 1b).
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Figure 2. Data transfer latency of LLaMA2-70B distributed inference with SPD on different system settings of NVIDIA A100-80G GPU
node. ‘HBW’ represents high bandwidth setting and ‘LBW’ represents low bandwidth setting for device interconnect. Input consist of
batch size of 1 and sequence length of 128 is used.

Figure 2 shows the data transfer latency of all-reduce in-
curred by GPU kernel. The metrics are measured on
LLaMA2-70B distributed inference in different system set-
tings with diverse levels of SPD across the model blocks.
The measurement is conducted under both high bandwidth
(HBW; 300GB/s interconnect) and low bandwidth (LBW;
10GB/s interconnect) device interconnect (Detailed settings
about connection bandwidth are explained in Section 5.1).
Applying SPD at 100%, which halves the number of sync
points in the entire model, significantly reduces data trans-
fer latency (over 46% reduction in all system settings), re-
sulting in substantial overall model latency improvement
across diverse system configurations (as in Figure 7c). This
highlights the importance of addressing communication bot-
tlenecks for efficient distributed inference. However, reduc-
ing sync points to minimize latency may lead to disrupted
numerical parity, which does not always guarantee non-
degraded accuracy. To address this, we propose novel block
design and techniques combined with SPD that alleviate
communication bottlenecks while minimizing quality loss
across various SPD budget cases, providing a scalable solu-
tion for distributed inference systems.

4. Sync-Point Drop
As an efficient method to improve distributed inference
performance, Sync-Point Drop (SPD) selectively removes
the all-reduce communication operation after self atten-
tion output, as illustrated in Figure 1b. In this section, we
discuss how to maintain high model quality with reduced
communication overhead. First, we introduce a novel block
structure design that serves as the foundation block for the
non-communicating structure with minimal quality degra-
dation. Second, we propose a strategy of applying SPD
in a block-wise manner which achieves lower latency with
minimal accuracy loss.

4.1. Block Design

If the synchronization of the self attention output is skipped,
the attention output will diverge across multiple devices.
Therefore, SPD requires two architecture changes in the
transformer block, the MLP input and output in a way that
information loss from SPD can be minimized. Also, the

complexity of such changes increases if the output projec-
tion layers in self attention include a bias.

4.1.1. BLOCK WITHOUT BIAS IN LINEAR LAYER

Figure 3a shows the SPD block design used without bias in
linear layer. The most essential objective of block design
is constructing the combination of connections which gives
least numerical difference between TP and SPD.

MLP input The sync-point enables each parallel device to
capture the attention output from all the other devices. How-
ever, when the outputs from other devices are unavailable by
elimination of sync-point, the only information the device
(i) can utilize is its own attention output (Yi). Therefore,
to minimize the numerical difference compared to the case
of all information available, residual connection (X) and
attention output of own device (Yi) are added and fed into
MLP input (X + Yi).

MLP output When the sync-point exists after attention
output, the MLP input is utilized as a residual connection
added to the MLP output. However, dropping the sync-point
yields incomplete MLP input (X+Yi) with lack of attention
outputs from other devices. The desired block output is a
combination of block input (X), attention output from all
devices (

∑
i Yi), and MLP output from all devices (

∑
i Zi).

Therefore, we disassemble the original residual connection
to block input residual (X) and attention output residual
from a device (Yi). Then, Yi forms a new type of residual
connection which is added before the sync operation. X is
added on the same point as the original connection, after
the sync operation which finally leads to a complete form
of output (X +

∑
i Yi +

∑
i Zi).

4.1.2. BLOCK WITH BIAS IN LINEAR LAYER

In TP, each of the linear layers in self attention part of a block
is parallelized in a different manner. The linear layers before
self attention operation (query, key, and value projection)
are divided in a column-wise manner which enables the
bias divided along the same dimension. However, the linear
layer after self attention operation (output projection) is
parallelized in an orthogonal way, row-wise manner. The
bias, a vector along the column dimension, therefore, can
not be divided in the direction of the row. This requires a
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(a) Block design without bias in linear layer. (b) Block design with bias in linear layer.

Figure 3. Decoder block structure with sync-point drop (in 2-GPUs distributed inference case). ‘Wi’ and ‘b’ represent weight and bias of
linear layer on each device (i). ‘X’, ‘Yi’, ‘Zi’ and ‘Pi’ denotes a hidden representation of each device (i) on ‘•’ in the figure.

new mechanism of the bias application on MLP input and
output as shown in Figure 3b.

MLP input Different from the case with bias (Section
4.1.1), the indecomposable bias term (b) is included after
weight multiplication. Following the essential objective, the
least error in the MLP input compared to the result of TP, we
use the partial weight multiplication result with the addition
of bias (Yi = Pi + b) and input residual connection (X) as
MLP input (X + Pi + b).

MLP output Following Section 4.1.1, the original residual
connection is disassembled to block input residual (X) and
attention output residual (Yi) from a device. Due to the exis-
tence of bias, we further disassemble Yi to the result of the
partial weight multiplication (Pi) and the bias (b). To make
the bias not affected by communication, we place the bias
residual add after the sync operation while adding the par-
tial weight multiplication result before the sync operation.
Finally, in a device, this makes the bias residual be added
once on MLP output while the parallelized weight multi-
plication results form a complete state through collective
communication (X +

∑
i Pi + b+

∑
i Zi).

4.2. Sync-Point Drop based on Block-wise Sensitivity

While the lack of communication incurs numerical disparity
across all parallel devices, such disparity in different blocks
will impact the model accuracy differently. In this section,
we introduce a multi-tiered block-wise approach to mini-
mize the overall accuracy loss based on the SPD-specific
per-layer sensitivity.

First, in Section 4.2.1, we categorize transformer blocks
based on their sensitivity to SPD: in-sensitive blocks (ISB),
sensitive blocks (SB), and extremely sensitive blocks (ESB).
Based on the classification result, before applying SPD,
we perform individual preprocessing steps (Section 4.2.2,
4.2.3, and 4.2.4). This specific strategy allows us to min-
imize accuracy degradation from SPD thereby enabling a

better balance between model performance and quality on
deployment.

4.2.1. BLOCK-WISE SYNC SENSITIVITY
IDENTIFICATION

To identify the sensitivity of a block to SPD, we utilize the
perplexity metric by measuring the relative impact of a block
to performance (the difference from application between
TP block and SPD block in Figure 4) as sensitivity mea-
surement. For example, when we measure the sensitivity of
i-th block to SPD, we apply SPD to all blocks starting from
the {i+ 1}-th block to the final block and measure the per-
plexity, while leaving the i-th block unchanged (TP block).
We then measure the perplexity by additionally modifying
the system setting of i-th block to SPD. The difference in
perplexity before and after applying SPD to i-th block is
used as a measure of sensitivity. In this measurement, we
use calibration data obtained by sampling a small portion
of the large training dataset. By progressive replacement of
TP block to SPD block and measurement of quality degra-
dation as relative perplexity difference, we can compare the
sensitivity between blocks in the entire model and classify
the blocks into three sensitivity categories (ISB, SB, and
ESB).

Algorithm 1 shows the overall process of applying SPD in a
multi-tiered block-wise approach with measured sync sen-
sitivity. Based on the sync sensitivity value of blocks (S),
we rank the blocks in an ascending order (B). According to
the predetermined ranking of the sensitivity, SPD is applied
within the target number of blocks to optimize (Nspd). In
the sequence, the processing of a block is classified into
three sensitivity categories based on predefined threshold
criteria (τ1 and τ2). This classification allows us to apply
separate approaches aimed at minimizing quality degrada-
tion according to the identified groups. In the following
sections, we introduce the individual strategies applied to
three categories of the blocks.
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Figure 4. Sync sensitivity identification of a
decoder block (measuring the sensitivity of
i-th block).

Algorithm 1 Sync-point drop based on sensitivity

1: SPD: SYNC-POINT DROP
2: B2B: BLOCK-TO-BLOCK DISTILLATION
3: HG: ATTENTION HEAD GROUPING INITIALIZATION
4: Block ← list of all decoder blocks in model
5: S ← list of sensitivity measurement
6: B ← block index list in ascending order of S
7: Nspd ← Target budget: the number of blocks to SPD
8: τ1, τ2 ← sensitivity thresholds
9: for i = 0 to Nspd − 1 do

10: if S[B[i]] ≤ τ1 then ▷ Categorize as ISB: Section 4.2.2
11: Block[B[i]]← SPD(Block[B[i]])
12: else if S[B[i]] ≤ τ2 then ▷ Categorize as SB: Section 4.2.3
13: Block[B[i]]← SPD(B2B(Block[B[i]]))
14: else ▷ Categorize as ESB: Section 4.2.4
15: Block[B[i]]← SPD(B2B(HG(Block[B[i]])))
16: end if
17: end for

4.2.2. IN-SENSITIVE BLOCKS: ZERO-SHOT DROPPING

ISBs show minimal quality degradation with SPD. There-
fore, within the targeted budget of communication opti-
mization (Nspd), we drop the sync-point of these blocks,
prioritized over other types of blocks, in a zero-shot manner.
Note that zero-shot dropping can give a significant amount
of benefit with sensitivity identification. As shown in Sec-
tion 5, in every model, zero-shot dropping can obtain at
least 44% of blocks as SPD blocks with little sacrifice of
accuracy.

4.2.3. SENSITIVE BLOCKS: SPD AWARE
BLOCK-TO-BLOCK DISTILLATION

SBs exhibit larger effects on quality degradation compared
to ISBs. To further achieve the optimization objectives and
recover the associated performance degradation in SB, we
obtain SPD aware parameters by adopting block-to-block
distillation. Block-to-block distillation is a low-cost fine-
tuning method that involves training only the specific SB
with SPD setting. We set the teacher block as TP block
and the student block as the SPD block. For the data used
in tuning, we utilize calibration data used in the sensitivity
identification step in Section 4.2.1. This data passes through
consecutive TP blocks of the model by the block in which
distillation will be conducted. Then, we utilize the hidden
representation of the block’s input where distillation will be
performed. Following the fine-tuning objective in Equation
1, we forward the hidden representation (x) to each teacher
and student block and apply outputs to mean squared error
(MSE) loss. Note that the parameter of SPD block (θspd)
is initialized from the parameter of TP block (θ). Since
SPD and TP are execution methods within the system, they

originally use the same model parameters. However, to ob-
tain the special weights aware of eliminated communication,
parameters for SPD are newly initialized from the original
and used separately.

argmin
θspd

MSE(SPD(θspd, x), TP(θ, x)) (1)

4.2.4. EXTREMELY SENSITIVE SLOCKS: SPD AWARE
ATTENTION HEAD GROUPING INITIALIZATION

Beyond the recovery of block-to-block distillation on SBs, a
few blocks show sharp quality degradation. We define these
blocks as ESBs and introduce a novel SPD aware initializa-
tion before conducting block-to-block distillation. As the
sync-points are removed, the model partitions located on
each device are isolated from each other, preventing mutual
access. This makes a decoder block as if it is a combination
of parallel and independent mini decoder blocks. In this cir-
cumstance, a self attention fragment cannot access any MLP
partitions in other parallel devices and also MLP partitions
are unable to access self attention output in other parallel de-
vices, resulting in inevitable information loss. To ensure that
these parallel architectures operate as close as the original
structure, it is important to make attention heads evenly dis-
tributed based on functionality following the sparse nature
of head activated differently (Liu et al., 2023) and redun-
dancy of head showing similar behaviors (Agarwal et al.,
2024) on in-context. To reflect these in-context properties
to out-context as much as possible, we utilize calibration
data and obtain attention score (σ) as a metric of the head
functionality.

Head scattering In the self attention, the set of the query
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(Q), key (K) and value (V) associated with each head can
be defined as A = {<Q1,K1, V1>,<Q2,K2, V2>, · · · , <
QN ,KN , VN >} where N is the number of heads. The
goal of head scattering is finding the set of heads show-
ing the even distribution of attention score (σ(Qi,Ki))
across the parallel devices. By defining a set of heads to
be placed in a device as Ai where Ai ⊂ A and n(Ai) =
N/number of devices , the objective of head scattering is
defined in Equation 2. We achieve the objective of finding
an even distribution based on head functionality by max-
imizing the sum of distances on the clustering algorithm
which originally utilized the opposite metric. For the dis-
tance, attention scores of each sequence as a high dimension
vector are utilized with euclidean distance (d).

argmax
Ai

n(Ai)∑
j=1

n(Ai)∑
k=j+1

d
(
σ(QAi,j ,KAi,j ),

σ(QAi,k
,KAi,k

)
)
, where Ai ⊂ A

(2)

MLP matching After getting the scattered clusters of atten-
tion heads, matching Ai with proper MLP partition (sharded
MLP operation in a parallel device) should be conducted to
search for complete parallel independent architecture that
operate close to the original structure. We found that the
norm of MLP output before adding residual connection is a
well-fit indicator. The MLP output norm is small compared
to the residual connection norm (Liu et al., 2023). A large
block output norm implies that the block contributes well
when combined with the residual. Therefore, we compare
the norm of all the matching combinations and pick the best
maximum case as the matching result. By defining the MLP
partition of a device as MLPm and a matching combination
as MC and its universal set (all combinations) as MCall,
the objective of MLP matching is defined as Equation 3.

argmax
MC

MC∑
<Ai,MLPm>

Norm(MLPm(Ai)),

where MC ∈MCall

(3)

After determining the optimal Ai and MC, the hidden rep-
resentation of each head should be physically located on
the device designated by MC. Figure 5 illustrates the ex-
ample of SPD with best Ai and MC. To align the assign-
ment with the static behavior of the system in SPD, we
reorder the columns of the query, key, and value linear
layer weights (WQ, WK , WV ) based on their head-specific
partitions (WQh, WKh, WV h, where h denotes the head in-
dex). Similarly, the row order of output linear layer weight
(WO) based on head partitions (WOh) is reordered. This
reordering ensures that the hidden representations are dis-
tributed in the order of MC, allowing the heads in Ai to

Figure 5. SPD block in case having 8-heads on 4-GPUs parallel
with given head subset (Ai) and matching combination (MC).

0% 20% 40% 60% 80% 100%

OPT-66B 8-GPUs
OPT-30B 8-GPUs
OPT-13B 4-GPUs
OPT-13B 8-GPUs

OPT-6.7B 4-GPUs
OPT-6.7B 8-GPUs

LLaMA2-70b 8-GPUs
LLaMA2-13b 4-GPUs
LLaMA2-13b 8-GPUs

LLaMA2-7b 4-GPUs
LLaMA2-7b 8-GPUs

in-sensitive sensitive extremely sensitive

Figure 6. Block-wise sync sensitivity identification result for
LLaMA2 and OPT models over 8-GPUs and 4-GPUs.

reside on the same parallel device. As a result, a group of
scattered heads subset and MLP partition is assigned to a
single device, working as SPD aware initialization. Apply-
ing block-to-block distillation after head grouping further
enhances accuracy recovery in the ESBs.

5. Experiments
5.1. Setup

Models We conduct experiments on LLaMA2 (7B, 13B, and
70B) (Touvron et al., 2023b) and OPT (6.7B, 13B, 30B, and
66B) (Zhang et al., 2022). We apply 8-GPUs and 4-GPUs
distributed inference for all the models except LLaMA2-
70B, OPT-30B, and 66B which apply 8-GPUs setting only.
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(a) LLaMA2-7B 8-GPUs distributed
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(b) LLaMA2-13B 8-GPUs distributed
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(c) LLaMA2-70B 8-GPUs distributed
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(d) LLaMA2-7B 4-GPUs distributed
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(e) LLaMA2-13B 4-GPUs distributed

Figure 7. LLaMA2 distributed inference average accuracy on zero-shot tasks (top) and normalized speedup of time to first token (bottom).
Speedup is normalized based on latency of 0% (No SPD state which consists of TP blocks in entire model) in each distributed inference
setting. ‘ZS’ represents applying zero-shot dropping to all blocks. ‘ZS+B2B’ represents applying zero-shot dropping on ISBs and block-
to-block distillation to the other remaining SBs and ESBs. ‘ZS+B2B+HG’ is applying zero-shot dropping on ISBs and block-to-block
distillation to SBs and block-to-block distillation with head grouping initialization to the other remaining ESBs. ‘HBW’ represents high
GPU interconnect bandwidth of 300GB/s setting and ‘LBW’ represents low GPU interconnect bandwidth of 10GB/s setting.

Calibration data From WikiText2 (Merity et al., 2016)
training dataset, randomly selected 128-samples consisting
of tokens with a sequence length of 2048 are used by fol-
lowing existing work (Shao et al., 2024). Each sample of
calibration data is utilized as a mini batch for distillation.

Evaluation data We evaluate the accuracy of our optimiza-
tion method to zero-shot tasks (ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), LAMBADA (Paperno
et al., 2016), PIQA (Bisk et al., 2020), SciQ (Welbl et al.,
2017), and WinoGrande (Sakaguchi et al., 2020)) by aver-
aging all the results and MMLU tasks (Hendrycks et al.,
2021).

Hyper-parameter setting For all models except larger mod-
els (LLaMA2-70B, OPT-30B, and OPT-66B), we use τ1 as
0.05 and τ2 as 10. For larger models, we use τ1 as 0.02
and τ2 as 10. In block-to-block distillation on SBs and
ISBs, the learning rate is used as 5×10−5 for LLaMA2 and
1× 10−6 for OPT. 10-epochs distillation is conducted with

each 1-epoch utilizing whole 128-samples of calibration
data.

Environment setting The accuracy and latency of all our
experiments are measured on nodes with Nvidia A100-80G
GPU node under high (300GB/s) and low (10GB/s) band-
width GPU interconnect setups following (Cho et al., 2024).
The low bandwidth interconnect is established by turning
off the high-speed CUDA-direct link (NVIDIA, 2019). For
2-node of 8-GPUs distributed cases, each node consists of
4-GPUs with 50GB/s interconnect between nodes.

5.2. Sensitivity Identification

Figure 6 shows the block-wise sync sensitivity identification
result of the blocks in LLaMA2 and OPT models. For all
models, the percentage of ISBs (yellow bar) indicates that
the same amount of blocks can be used as SPD with an
ignorable accuracy drop (less than about 1% on zero-shot
tasks). This can be achieved in the zero-shot manner (de-

7



SPD: Sync-Point Drop for Efficient Tensor Parallelism of Large Language Models

50%

60%

70%

25.0% 50.0% 75.0% 84.4% 93.8% 100.0%

A
cc

ur
ac

y

Percentage of SPD block to total number of blocks

ZS ZS+B2B ZS+B2B+HG No SPD

(a) OPT-6.7B 8-GPUs distributed

50%

60%

70%

25.0% 50.0% 60.0% 70.0% 80.0% 90.0% 95.0% 100.0%

A
cc

ur
ac

y

Percentage of SPD block to total number of blocks

ZS ZS+B2B No SPD

(b) OPT-13B 8-GPUs distributed

50%

60%

70%

25.0% 50.0% 62.5% 75.0% 85.4% 97.9% 100.0%

A
cc

ur
ac

y

Percentage of SPD block to total number of blocks

ZS ZS+B2B No SPD

(c) OPT-30B 8-GPUs distributed

50%

60%

70%

25.0% 50.0% 75.0% 84.4% 93.8% 100.0%

A
cc

ur
ac

y

Percentage of SPD block to total number of blocks

ZS ZS+B2B ZS+B2B+HG No SPD

(d) OPT-6.7B 4-GPUs distributed

50%

60%

70%

25.0% 50.0% 60.0% 70.0% 80.0% 90.0% 95.0% 100.0%
A

cc
ur

ac
y

Percentage of SPD block to total number of blocks

ZS ZS+B2B No SPD

(e) OPT-13B 4-GPUs distributed

50%

60%

70%

25.0% 50.0% 62.5% 75.0% 81.3% 90.6% 96.9% 100.0%

A
cc

ur
ac

y

Percentage of SPD block to total number of blocks

ZS ZS+B2B No SPD

(f) OPT-66B 8-GPUs distributed

Figure 8. OPT distributed inference average accuracy on zero-shot tasks (Notations are same as in Figure 7).

tailed results are described in Section 5.3). The percentage
of ISBs increases when the model size gets larger (75%
in LLaMA2-70B 8-GPUs and 84% in OPT-66B 8-GPUs).
Overall, LLaMA2 models show higher sensitivity compared
to OPT models. LLaMA2-7B 8-GPUs model is available
with a zero-shot drop of 44% while entire OPT models are
available with dropping 70% of blocks. ESBs are shown
only in smaller models (LLaMA2-7B, 13B, and OPT-6.7B)
with one or two blocks.

5.3. Sensitivity based Sync-Point Drop

Figure 7 shows the SPD results of LLaMA2 models on zero-
shot tasks. After the amount of target SPD blocks exceeds
in-sensitive boundary, zero-shot dropping (ZS) shows large
accuracy drop (over 1%) in all models and system settings.
Block-to-block distillation with ZS (ZS+B2B) successfully
recovers large amount of accuracy degradation in SB region,
especially giving larger amount on smaller models (+28%
on 13B 8-GPUs of Figure 7b and +20% on 7B 4-GPUs of
Figure 7d on 100% SPD). Furthermore, smaller models hav-
ing ESBs show further accuracy recovery from B2B (+3%
on 7B 8-GPUs of Figure 7a and +2% on 13B 4-GPUs of
Figure 7e on 100% SPD) with adding head grouping initial-
ization (ZS+B2B+HG). Similar tendencies are appeared on
MMLU results in Appendix A.

SPD brings benefits of latency improvement from the elimi-
nation of sync point while the multi-tiered block-wise ap-
proach recovers accuracy degradation. In 1-node cases,
overall, the lower the device interconnect bandwidth, the
larger the speedup SPD achieves. For LLaMA2-70B with
LBW in Figure 7c, 70% SPD offers about 19.7% speedup
while only sacrificing 0.94% accuracy. Note that this result
is from simple zero-shot dropping from ISBs. In 2-node
cases (Figure 7a, 7b and 7c) where the distributed system

has connection between the nodes, both HBW and LBW
interconnect setups show significant amount of latency im-
provement. For all models with 2-node system, SPD shows
over 10% speedup on both HBW and LBW of SPD per-
centage over 70%. In LLaMA2-13B (Figure 7b) and 70B
(Figure 7c), speedup over 20% can be achieved on the ex-
treme level of SPD (nearly 100%) with LBW setting.

Figure 8 shows the SPD results of OPT models on zero-shot
tasks. OPT models show less drop compared to LLaMA2
models possibly due to high redundancy (Liu et al., 2023;
Agarwal et al., 2024). Models except 6.7B show a maximum
1.3% degradation regardless of the sensitivity of the block.
Therefore, results in OPT with ZS+B2B show small im-
provements since they already have less drop only with ZS.
However, in OPT-6.7B (Figure 8a and 8d), when the drop
occurs in ZS by increasing the percentage of SPD block,
ZS+B2B and ZS+B2B+HG give recovered accuracy (+2.8%
in 8-GPUs of Figure 8a and +2% in 4-GPUs of Figure 8d
on 100% SPD).

Overall the proposed SPD effectively alleviates sync-point
bottleneck while minimizing accuracy degradation. This
shows that SPD gives both moderate optimization with no
performance degradation and the better trade-off between
larger optimization and performance leading to a scalable
solution.

6. Conclusion
In this paper, we present Sync-Point Drop (SPD), a novel
optimization technique that improves the latency of LLMs
on distributed inference systems. By adopting a new block
design and separated approaches based on block-wisely
identified sensitivity for lack of sync-point, SPD enables
efficient deployment across multiple computing units with
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little compromising model performance. Our experiments
show that SPD successfully alleviate communication over-
head in tensor parallelism with minimum quality loss in
all budgets, which enable scalable solution for distributed
inference systems.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Sensitivity based sync-point drop
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Figure 9. LLaMA2 distributed inference accuracy on MMLU tasks (Notations are same as in Figure 7).

B. Ablation study
B.1. Effects of design choice in block design

Table 1. SPD MLP output design choice WikiText2 perplexity on block (SPD is only on 1st block of the model).

Attention output residual add (Yi) PPL (↓)
LLaMA2-7B no SPD 5.47

Before MLP all-reduce 10.65
After MLP all-reduce 177.69

(a) Without bias in linear layer

Bias residual add (b) PPL (↓)
OPT-6.7B no SPD 10.86

Before MLP all-reduce 332.60
After MLP all-reduce 13.07

(b) With bias in linear layer

Section 4.1 shows that the tensor parallelism block system is not compatible with lack of communication and this makes
several design choices on block structure. Table 1a and 1b show quality degradation per design choice on MLP output.
Whether the targeted residual connections on each table use collective communication or not will be determined by the
addition point (before and after MLP all-reduce). The results show that using collective communication on attention output
residual (Table 1a) and not using it on bias (Table 1b) are the proper choice of residual addition point design selections as in
Figure 3 which minimizes negative effect from SPD.

C. Discussion
C.1. Sensitivity identification

In Section 4.2.1, when measuring the sensitivity of a block to SPD, we apply SPD to consecutive blocks starting from the
selected block and extending toward the last block. This approach allows us to evaluate the worst-case impact of SPD on the
block’s output while ensuring that its input activations remain numerically identical to the original, unaffected by prior SPD
modifications. By analyzing the perplexity difference between a given block and the next block, we can isolate the effect of
SPD at that specific layer, excluding any influence from subsequent layers. This method provides a fast yet precise and
independent measurement of each block’s sensitivity.

C.2. Compatibility with other parallelism

SPD can be integrated with diverse settings to suit specific application contexts. In this section, we describe how SPD can
be combined with such settings.

Data parallelism Data parallelism can be achieved with SPD by replicating an SPD model across distributed GPU
environments. For example, in an 8-GPUs configuration, a 4-GPUs SPD model can be instantiated as a single replica, which
is then duplicated across the remaining 4-GPUs. Consequently, two replicas operate in parallel, forming a data parallelism
setup with SPD.

Pipeline parallelism Pipeline parallelism can be incorporated into SPD by applying it at the level of each parallelized
decoder block, in which the attention and feed-forward network (FFN) components are already distributed across multiple
GPUs. For instance, in an SPD configuration where a single decoder block is partitioned across 4-GPUs, pipeline parallelism
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can be realized by further dividing the entire distributed blocks into two sequential groups. This results in a 4×2-GPUs
system, where each of the four SPD branches is executed in a two-stage pipeline across a pair of GPUs, thereby enabling
pipeline parallelism within SPD blocks.

Hybrid parallelism A pipeline-parallelized model can be instantiated as a replica to enable data parallelism. By replicating
this pipeline-parallelized model, data parallelism can be applied on top of the pipeline setup. This approach ultimately
facilitates the implementation of combined parallelism in conjunction with SPD.

C.3. Impact of SPD on tensor parallelism compared to pipeline parallelism

In this work, we focus on optimizing tensor parallelism (TP) by addressing the communication bottlenecks that frequently
arise in distributed inference systems. Although TP is widely adopted in practice due to its engineering simplicity
and high compute utilization, pipeline parallelism (PP) is often considered a promising alternative, primarily due to its
lower communication overhead. Nonetheless, TP remains the preferred strategy in many real-world distributed inference
deployments, even under constrained interconnect bandwidth, due to its ability to more effectively utilize available compute
resources.

While the relative reduction in communication volume achieved by SPD may appear modest (maximum 50% since SPD
only targets the sync-point after self attention output), its impact on end-to-end latency is substantial. This is because the
reduction in communication bottlenecks allows the remaining computational tasks, which are less affected by the system’s
bandwidth, to proceed more efficiently, ultimately improving the end-to-end performance. Therefore, TP optimized by SPD
is more effective in deployment scenarios where compute resources need to be fully utilized across GPUs, as seen in prefill
stage of large language model (Figure 7).
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