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ABSTRACT

Out-of-distribution (OOD) detection is crucial for the safe deployment of deep
neural models in applications such as autonomous driving. With the emerging
multimodal nature of modern applications, recent attention has shifted toward
OOD detection in multimodal settings. However, current multimodal OOD de-
tection methods fail to fully exploit the synergy among modalities: they treat all
modalities equally, disregarding their varying detection performance, and they are
unable to capture the diverse uncertainty information encoded at the logit level.
In this paper, we propose to exploit the dark knowledge within unimodal experts
as the key to revealing their synergy. To this end, we introduce a self multimodal
OOD distillation framework, which leverages logits as uncertainty-aware soft tar-
gets to train a holistic model that operates in the joint embedding space of all
modalities. Specifically, the proposed framework accounts for the negative effects
of underperforming modalities and effectively fuses both the rich feature-level
knowledge and the logit-level knowledge of modalities. As a result, our method
improves the performance of current state-of-the-art multimodal OOD detection
methods, achieving gains of up to 30% across diverse OOD detection benchmarks,
spanning two tasks and five multimodal OOD datasets.

1 INTRODUCTION

Out-of-distribution (OOD) detection aims to reliably identify samples that differ from the training
distribution, which is a crucial requirement for deploying deep neural networks in safety-critical
domains such as autonomous driving (Liu et al., 2023b) and healthcare (Fink et al., 2020). Con-
sequently, a significant body of research has been dedicated to OOD detection (Yang et al., 2024),
where the most standard and fundamental approach is to derive a confidence score from a deep neu-
ral classifier (Hendrycks & Gimpel, 2017; Liu et al., 2020; Hendrycks et al., 2022). Many other
approaches have also been proposed, ranging from distance-based methods (Sun et al., 2022; Lee
et al., 2018) to retraining strategies that enhance ID–OOD separability (Hendrycks et al., 2019; Du
et al., 2022). However, they have predominantly focused on single-modality inputs, such as images
or videos, despite the inherently multimodal nature of real-world applications (Li et al., 2025).

More recently, Dong et al. (2024) introduced the first multimodal OOD benchmark, enabling meth-
ods to leverage the complementary nature of various modalities for OOD detection. They observed
that distributional shift manifests as increased diversity in predictions across modalities and pro-
posed an algorithm to amplify the OOD discrepancy during training. Since then, several works
have been proposed (Li et al., 2025; Liu et al., 2025) for multimodal OOD detection. However,
these methods are unable to capture the full synergy between modalities due to several limiting fac-
tors. For example, they employ complex retraining strategies to enhance the embedding space for
better OOD separation, including contrastive learning (Li et al., 2025), maximizing disagreement
between models on OOD samples (Dong et al., 2024), or improving supervision from unknown
data via outlier synthesis (Liu et al., 2025), while paying limited attention to the intrinsic OOD de-
tection capability of unimodal models. A final classifier is then employed by fusing the enhanced
embeddings from unimodal models, incorporating one-hot targets. However, they overlook diverse
uncertainty knowledge contained at the logit level of each unimodal expert, which can be incorpo-
rated to strengthen OOD detection. Particularly, a key challenge underlying OOD overconfidence is
that ground-truth uncertainty labels for training samples are unavailable (Lakshminarayanan et al.,
2017). Instead, only one-hot class labels are available, which cause the model to treat all class

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

samples uniformly, despite their varying degrees of uncertainty, potentially leading to overconfi-
dent predictions (Yang & Xu, 2025). On the other hand, we found that, as illustrated in Fig. 1,
some modalities (e.g., video) can achieve stronger detection performance than others (e.g., opti-
cal flow)—a fact largely overlooked in previous research, where all modalities are treated equally
without accounting for their varying detection capabilities.

To address these challenges and fully exploit the synergy across modalities for OOD detection,
we propose a self multimodal OOD distillation framework, which trains a holistic model whose
guidance is self-provided by unimodal experts serving as teachers. Traditionally, the hidden infor-
mation within the teacher has been referred to as dark knowledge (Hinton et al., 2015). Accord-
ingly, our framework leverages the uncertainty-aware dark knowledge encoded at the logit level
of unimodal experts to strengthen multimodal OOD detection performance. Given that ground-
truth uncertainty is unavailable, we first estimate predictive uncertainty by approximating it through
the collective behavior of all models, while accounting for underperforming modalities. We then
leverage this estimated uncertainty as soft targets to train a joint classifier in the embedding space
shared across all modalities, thereby reducing OOD overconfidence and accounting for dispari-
ties among modalities. This joint classifier can be conceptually regarded as the student, guided
by the same ensemble of unimodal teachers, who also collectively share the embedding space.

Figure 1: OOD detection performance
on the HMDB51 dataset across different
modalities. The detection performance
of Flow is substantially lower than that
of Video. Multimodal OOD detection
(Video+Flow, obtained using one of the
SOTA methods (Dong et al., 2024)) im-
proves over unimodal OOD, while our
method more effectively harnesses the
synergy among modalities.

In this way, our method exploits both the diverse uncer-
tainty knowledge encoded at the logit level and the rep-
resentational knowledge at the feature level of unimodal
experts, thereby revealing their ultimate synergy. As part
of this work, we also provide a comprehensive analysis of
how the uncertainty-aware dark knowledge in our frame-
work contributes to improving multimodal OOD detec-
tion performance, which cannot be achieved by naively
combining ensembles or merely fusing features across
modalities.

This principled and effective framework of ours al-
lows us to integrate it as a plug-in to mine the intrin-
sic OOD detection capabilities of a given multimodal
model set, thereby alleviating the burden of retraining
large modality-specific models. A simple integration of
our framework into a vanilla baseline yields substantial
improvements in OOD performance (Fig. 1), achieving
comparable or even superior results to current retraining-
based state-of-the-art multimodal OOD detection meth-
ods. Moreover, being agnostic to these methods, it further
improves their performance with gains up to 30% across
diverse OOD detection benchmarks, spanning two tasks
and five OOD datasets.

2 RELATED WORK

Out-of-Distribution (OOD) Detection. A primary approach to OOD detection is to leverage
confidence scores derived from deep neural classifiers, such as the maximum softmax probabil-
ity (MSP) (Hendrycks & Gimpel, 2017), Energy (Liu et al., 2020)—which also mirrors the class-
conditional probability—Generalized Entropy (GEN) (Liu et al., 2023a), and the maximum of logit
(MaxLogit) (Hendrycks et al., 2022). In contrast to these classifier-based scores, kNN (Sun et al.,
2022) and Mahalanobis (Lee et al., 2018) rely on distance metrics in feature space for OOD de-
tection, while Virtual Logit Matching (VIM) (Wang et al., 2022) integrates information from both
feature and logit spaces to define the OOD score. Other approaches, such as ReAct (Sun et al., 2021)
and ASH (Djurisic et al., 2022), enhance existing scoring functions by modifying input activations.
In contrast to the above post-hoc methods, retraining-based approaches (Hendrycks et al., 2019; Du
et al., 2022) aim to enhance representations for better ID–OOD separability. However, all these
methods predominantly focus on single-modality inputs, without accounting for the multimodal na-
ture of recent applications.
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Figure 2: An overview of the proposed self multimodal OOD distillation framework.

Multimodal OOD Detection. With the emergence of large vision–language models (Radford et al.,
2021), the task of multimodal OOD detection was initially associated with approaches that exploited
semantic information from text labels (Ming et al., 2022; Wang et al., 2023b), although their scope
remained restricted to image-only benchmarks. To address this, Dong et al. (2024) introduced the
first multimodal OOD benchmark incorporating multiple modality combinations (i.e., video, au-
dio, and optical flow), and observed that OOD samples tend to exhibit higher discrepancy among
unimodal prediction distributions. They proposed the Agree-to-Disagree algorithm to amplify this
discrepancy during training and further introduced multimodal outlier synthesis (NP-Mix) to obtain
a more discriminative embedding space for OOD detection. More recently, DPU (Li et al., 2025)
employed a contrastive learning strategy to account for intra-class variability in multimodal OOD
detection, while Feature Mixing (Liu et al., 2025) introduced yet another synthetic outlier–based
approach for training. However, these methods are unable to reveal the full synergy between modal-
ities, in that they treat all modalities equally, without considering their varying detection perfor-
mance. In addition, they are unable to capture holistic uncertainty across modalities, leaving the
rich uncertainty-aware information within the logit layers of unimodal experts untapped. Moreover,
they rely on complex retraining approaches, especially with a focus on providing a more discrimi-
native embedding space for OOD detection, while little attention has been given to harnessing the
intrinsic OOD detection capability of the ensemble itself.

Logit Distillation. Logit distillation, which transfers the dark knowledge within logits of a large
model to a smaller one, was initially proposed for model compression (Hinton et al., 2015), but has
since been shown to also improve model accuracy. For example, retraining with self-distillation, has
been found to further improve accuracy (Zhang et al., 2019). Zhao et al. (2022) sought to shed light
on dark knowledge by decoupling it into two components: binary knowledge related to the target
class and relational knowledge pertaining to the non-target classes. More closely related to our work,
Yang & Xu (2025) employed self-knowledge distillation for OOD detection to mitigate the negative
effect from atypical samples during training. However, their method is limited to single modalities,
whereas we leverage it to harness the synergy among multiple modalities. Logit distillation has also
been explored in multimodal applications for cross-modal adaptation (Radevski et al., 2023), but not
to OOD detection. To the best of our knowledge, this is the first work that methodically leverages
and analyzes the role of dark knowledge in improving multimodal OOD detection.

3 METHODOLOGY

In this section, we present our self multimodal OOD distillation framework. We begin with a formal
introduction to the multimodal OOD detection problem, followed by an overview of the framework
and a detailed description of the method. We also provide further insights into uncertainty-aware
dark knowledge within our framework at the end of this section.

3.1 PROBLEM DEFINITION

Let Din = {(xi, yi)}ni=1 be our training set, where each xi ∈ X is an input sample and yi ∈ Y =
{1, 2, . . . , C} is the corresponding class label. In a multimodal setting each training sample xi is
comprised of M modalities, denoted as xi = {xm

i | m = 1, . . . ,M }. Let M be a set of neural
networks trained on each unimodality (e.g., video), fm : Xm → RC . The goal of multimodal OOD
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detection is to effectively combine information from all modalities in order to correctly identify
samples with semantic shifts. Each model fm comprises a feature extractor gm(·), which extracts an
embedding zm for its corresponding modality m and the usual practice is to employ a final classifier
h(·), which takes the combined embeddings from all modalities as input and outputs a prediction
probability pS = δ(h([ g1(x1) || . . . || gM (xM ) ])) = δ(h([ z1 || . . . ||zM ])) = δ(h(z)), where ||
denotes concatenation and δ(·) denotes the softmax function.

When deploying in the real world, h should not only accurately classify known samples from the
in-distribution (ID), but also detect samples that exhibit semantic shifts compared to ID samples
and do not belong to any class in Y , i.e., out-of-distribution (OOD) samples. This aims to define a
separate scoring function S : X → R, which assigns a high score S(x) for samples x ∼ Din and a
low score otherwise. A threshold η is then used to classify each sample x ∈ X as ID or OOD:

Decision(x) =
{

ID, if S(x) ≥ η,

OOD, if S(x) < η.

3.2 MOTIVATION AND METHOD OVERVIEW

In this section, we present the motivation behind our approach and provide a brief overview of our
framework illustrated in Fig. 2. A common approach to combining complementary knowledge from
different modalities is to train a joint classifier (h) in the combined embedding space of modal-
ities, which yields improvements in OOD detection over unimodal models (see ‘Video+Flow’ in
Fig. 1). However, this alone is unable to fully leverage the synergy between modalities, as it does
not properly account for underperforming modalities, and it fails to fully exploit the uncertainty-
related knowledge encoded in modality-specific models. As shown in Fig. 1, some modalities (e.g.,
optical flow) exhibit weaker OOD detection performance than others (e.g., video). Specifically, this
disparity across modalities–whose weakness partly arises from OOD overconfidence– is difficult
to address solely at the feature level; therefore, we turn to the logit level for complementary guid-
ance. In particular, a key challenge underlying OOD overconfidence is that ground-truth uncertainty
labels for training samples are not available. Therefore, we first model the predictive uncertainty
by treating the collective behavior of all models as an approximation to the true uncertainty. We
then employ logit distillation to leverage this estimated uncertainty as soft targets to train the joint
classifier (h). In this framework, h acts as the student, and its guidance is self-provided by the set
of unimodal teachers that collectively share the embedding space. We also employ decoupled KL
divergence (Zhao et al., 2022) for logit distillation, separating it into target and non-target class com-
ponents, which allows better weight adjustment across tasks of varying difficulty (e.g., near-OOD
vs. far-OOD). Ultimately, our framework not only fuses rich feature-space knowledge but also lever-
ages the uncertainty-aware knowledge residing in the logit space of unimodal teachers in a weighted
manner, thus revealing the synergy among them. Building on these insights, we present a detailed
and formal description of our framework in the next section.

3.3 SELF MULTIMODAL OOD DISTILLATION FRAMEWORK

To improve the multimodal OOD detetcion we focus on both feature-space and logit-space knowl-
edge of multimodal models. We begin with the joint classifier h that operates on the combined
embeddings space of unimodal models {fm}. In order to model the holistic predictive capability
of all modalities, we further include a separate classifier hm(·) for each modality m in order to
obtain predictions from each modality individually. The conditional distribution over classes from
the m-th modality is then given by p(y | xm, fm) := δ(hm(gm(xm))). The expected predictive
distribution for a sample x ∈ X can be estimated from the predictive posterior p(y | x;D), which
can be expressed from a Bayesian perspective as:

p(y | x,D) =

∫
f∈F

p(y | x, f) p(f | D) df, (1)

where F denotes the space of predictors. For a given finite set of M diverse models, this integral is
typically approximated by a sum over the individual models (Lakshminarayanan et al., 2017):

p(y | x,D) ≈
M∑

m=1

p(y | xm, fm) p(fm | D). (2)
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By Bayes’ rule, p(fm | D) = p(D|fm) p(fm)
p(D) . Under a uniform prior over the M models (i.e., not

favoring any modality in advance), i.e., p(fm) = 1
M , this reduces to p(fm | D) = p(D|fm)∑M

j=1 p(D|fj)
.

Substituting this into Eq. (2) yields a likelihood-weighted sum across modalities:

p(y | x,D) ≈
M∑

m=1

wm p(y | xm, fm), (3)

where the weights satisfy wm ∝ p(D | fm) and
∑M

m=1 wm = 1. In particular, each wm can be
expressed in terms of the cross-entropy loss (equivalently, the negative log-likelihood) that model
fm exhibits on the dataset D, i.e.,

wm =
exp
(
− CE(fm,D)

)∑M
j=1 exp

(
− CE(f j ,D)

) , (4)

where CE(fm,D) denotes the average cross-entropy loss of model fm on D.

Our goal is to capture the full predictive capability and uncertainty expressed in Eq. (3) to be re-
flected in the final classifier h, such that it inherits both the diverse uncertainty knowledge present at
the logit level of each unimodal model and the strong discriminative power from the feature level.
For convenience, we denote p(y | x,D) as pT and p(y | xm, fm) as pm. Accordingly, h is trained
by minimizing the cross-entropy with soft targets given by pT. From the perspective of knowl-
edge distillation (KD), the output pS of h can be conceptually regarded as the student distribution
while, pT serves as the teacher distribution. Consequently, this corresponds to minimizing the KL
divergence between teacher and student distributions1:

LKL = DKL(p
T ∥pS). (5)

Notably, this loss formulation given by Eq. (5) and Eq. (3), accounts for the effect of underperform-
ing unimodal models when training h by ranking the teachers rather than treating them uniformly.
To practically implement wm, the weights are estimated on each mini-batch B, as a stochastic ap-
proximation to D.

We further decompose the KL divergence, following Zhao et al. (2022), into target and non-target
class components, to gain deeper insights and better leverage the dark knowledge contained in the
multimodal teacher logits for OOD detection. We therefore reformulate Eq. (5) as a weighted sum
of these two components (the derivation is deferred to Section A.1):

LKL = DKL

(
bT ∥ bS)+ (1− pT

t

)
DKL

(
p̂T ∥ p̂S) , (6)

where the notation b = [ pt, p\t ] ∈ R2 denotes the binary probabilities of the target class (pt) and all
non-target classes (p\t = 1− pt). The notation p̂ = [ p̂1, . . . , p̂t−1, p̂t+1, . . . , p̂C ] ∈ R(C−1) is used
to independently model probabilities among non-target classes, i.e., the probabilities normalized
excluding the t-th class.

Specifically, in Eq. (6), the first term transfers knowledge via binary logit distillation for the target
class, referred to as target class KD (TCKD). The second term, referred to as non-target class KD
(NCKD), considers the knowledge among the non-target logits. However, these two KD terms are
coupled with 1−pT

t in Eq. (6). To better adjust the importance of each KD term, the hyperparameters
α and β are introduced in Eq. (7), following Zhao et al. (2022). We further provide insights into
each of these KD losses in the next section. Finally, we adopt the standard cross-entropy loss LCE
as the task loss, and compute the final objective for training the classifier h as:

L = LCE + α DKL

(
bT ∥ bS)︸ ︷︷ ︸

TCKD

+β DKL

(
p̂T ∥ p̂S)︸ ︷︷ ︸

NCKD

. (7)

In particular, the teachers’ guidance itself is integrated into the joint classification head that operates
on the combined embedding space of modalities, rather than relying on a separate student model

1We omit the temperature τ from Hinton et al. (2015) without loss of generality, to allow the student to better
imitate the predictive posterior and to keep it in its natural form (τ = 1), thereby preserving its diversity (Zhang
et al., 2019; Wang et al., 2023a).
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that would otherwise need to learn low-level perception of modalities. Overall, it leverages self-
generated, uncertainty-aware targets—extracted from the logit space of multimodal models—to ef-
fectively learn holistic uncertainty knowledge across modalities. Therefore, the proposed framework
harnesses the intrinsic OOD detection capability of a given set of multimodal models by exploiting
both feature-level and logit-level information across the modalities.

3.4 FURTHER INSIGHTS INTO UNCERTAINTY-AWARE DARK KNOWLEDGE

To gain deeper insights into how the uncertainty-aware dark knowledge contained in multimodal
teacher logits contributes to OOD detection, we reformulate Eq. (5) as the combination of TCKD
and NCKD. In particular, Zhao et al. (2022) study their effect in the task of image classification. In
contrast, below we investigate the role of these two forms of dark knowledge for multimodal OOD
detection.

Figure 3: Classifier-based confi-
dence for OOD detection. It as-
signs low scores in the small in-
between area but may still suffer
from overconfidence issues.

Multimodal near-OOD detection mostly benefits from
TCKD. TCKD transfers knowledge about the relative “diffi-
culty” of training samples, i.e., the knowledge describes how
difficult it is to recognize each sample (Zhao et al., 2022). In
our task, TCKD can be interpreted as binary uncertainty-aware
supervision of the target class, which guides the student to
identify difficult ID samples that lie near the decision boundary
(i.e., with high uncertainty in the target class). This is partic-
ularly relevant to near-OOD detection, where the fundamental
challenge is that near-OOD samples also lie close to ID deci-
sion boundaries (e.g, given ‘cat’ and ‘dog’ as ID classes, im-
ages of ‘fox’ will be near-OOD, see Fig. 3) and often exhibit
ambiguity with those ID samples. Therefore, we argue that
the near-OOD task mostly benefits from TCKD rather than
NCKD (which focuses on the uncertainty knowledge among
non-target classes) in the proposed self multimodal OOD dis-
tillation framework. This claim is further validated by the
empirical results presented in Table 1, where we individually
study the effects of TCKD and NCKD on two near-OOD benchmarks. The results imply that apply-
ing TCKD alone is comparable to, and even better than, classical KD (which combines both TCKD
and NCKD, with results shown in the second row) for the near-OOD task.

Table 1: The effect of TCKD and NCKD for near-OOD detection. Values in brackets represent the
performance improvement over the baseline.

TCKD NCKD HMDB51 25/26 UCF101 50/51

FPR95 AUROC ID ACC FPR95 AUROC ID ACC

– – 38.78 88.83 89.76 10.10 98.06 99.71
✓ ✓ 34.81 (-3.97) 90.07 (+1.24) 90.37 (+0.61) 5.98 (-4.12) 98.57 (+0.51) 99.79 (+0.08)
– ✓ 35.82 (-2.96) 89.69 (+0.86) 89.89 (+0.13) 6.76 (-3.34) 98.49 (+0.43) 99.63 (-0.08)
✓ – 34.99 (-3.79) 90.12 (+1.29) 90.50 (+0.74) 5.92 (-4.18) 98.57 (+0.51) 99.81 (+0.10)

Multimodal Far-OOD detection mostly benefits from NCKD. In contrast to near-OOD samples
that reside close to decision boundaries, far-OOD samples lie far from the ID clusters or centers
and therefore are less influenced by TCKD. However, a common challenge in the far-OOD case
is that classifiers can still be overconfident in these sparse far-OOD regions (Fig. 3)—while they
assign low confidence primarily near decision boundaries, they often misclassify far-OOD samples
as belonging to one of the ID classes (Park et al., 2023). This overconfidence can be attributed
to the fact that the model is trained with one-hot labels, which compel it to treat even atypical
ID samples as strong representatives of their target classes, under the provided high-confidence
supervision (Yang & Xu, 2025). Therefore, rather than relying on the binary uncertainty knowledge
provided by TCKD, which is still related to the target class, the student benefits from NCKD on
these ID samples, which emphasizes uncertainty knowledge among non-target classes. To further
validate this claim, we evaluate the individual effects of TCKD and NCKD on four far-OOD datasets
in Table 2. The results show that applying NCKD alone, or assigning more weight to NCKD, can
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Table 2: The effect of TCKD and NCKD for far-OOD detection, on HMDB51 (Kuehne et al., 2011)
ID dataset. Values in brackets represent the performance improvement over the baseline.

TCKD NCKD UCF101 HAC EPIC-Kitchens Kinetics600

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

– – 31.77 90.55 23.49 94.20 22.12 94.87 26.91 93.53
✓ ✓ 29.49 (-2.28) 90.80 (+0.25) 21.19 (-2.30) 94.77 (+0.57) 18.91 (-3.21) 95.13 (+0.26) 22.49 (-4.42) 94.70 (+1.17)
✓ – 29.83 (-1.94) 90.70 (+0.15) 21.48 (-2.01) 94.71 (+0.51) 19.59 (-2.53) 94.96 (+0.09) 22.81 (-4.10) 94.64 (+1.11)
– ✓ 28.60 (-3.17) 91.46 (+0.91) 20.75 (-2.74) 94.94 (+0.74) 16.01 (-6.11) 96.03 (+1.16) 22.17 (-4.74) 94.83 (+1.30)

yield better detection performance (with gains of up to 15% on EPIC-Kitchens) on the multimodal
far-OOD task.

Our method improves OOD detection, which cannot be achieved by the joint probability dis-
tribution or by naively combining it with predictions from individual modalities. Our method
significantly improves both near-OOD and far-OOD detection by reducing overconfidence and false
positive rates through learning with self uncertainty-aware dark knowledge distilled from the teach-
ers. Notably, this performance gain (see Section 4.3 for empirical validation) cannot be achieved by
relying on inference from the joint probability distribution across all modalities, pS (trained solely
with the task loss), nor by averaging the predicted probabilities of the individual modalities and the
joint classifier: p̄all =

1
M+1

(∑M
m=1 p

m + pS
)

.

4 EVALUATION

In this section, we first describe our experimental setup, then present the main results on diverse
multimodal OOD detection benchmarks, followed by ablation studies.

4.1 EXPERIMENTAL SETTINGS

Datasets and Tasks. Following (Dong et al., 2024; Li et al., 2025; Liu et al., 2025), we evalu-
ate the proposed method on a diverse set of multimodal OOD benchmarks, comprising five action
recognition datasets (HMDB51 (Kuehne et al., 2011), UCF101 (Soomro et al., 2012), Kinetics-
600 (Kay et al., 2017), HAC (Dong et al., 2023), and EPIC-Kitchens (Damen et al., 2018)) and
two tasks, namely multimodal near-OOD detection and multimodal far-OOD detection. HMDB51
and UCF101 provide video and optical flow modalities, whereas the others additionally include
audio modality. For the near-OOD detection task, we evaluate on four datasets: EPIC-Kitchens
4/4, a subset of EPIC-Kitchens divided into four classes for training (ID) and four classes for test-
ing (OOD); HMDB51 25/26, UCF101 50/51, and Kinetics-600 129/100, which are similarly derived
from HMDB51, UCF101, and Kinetics-600, respectively. For the far-OOD detection task, either
HMDB51 or Kinetics-600 is used as the ID dataset, with the remaining datasets serving as OOD.

Evaluation Metrics. We use widely adopted metrics for OOD detection (Dong et al., 2024; Li
et al., 2025), including the area under the receiver operating characteristic curve (AUROC), the false
positive rate at 95% true positive rate (FPR95), and the ID classification accuracy (ID ACC).

Baselines. As the vanilla baseline model (Base), we train all classifiers, including each unimodal
model and a combined classifier (with the same architecture as ours), using only the task loss, i.e.,
cross-entropy loss. Following (Dong et al., 2024; Li et al., 2025; Liu et al., 2025), we adopt the
SlowFast network (Feichtenhofer et al., 2019), initialized with pre-trained weights from Kinetics-
600. As an easy plug-and-play approach, we further evaluate our method on recent SOTA mod-
els as backbones that incorporate retraining approaches, including the Agree-to-Disagree algorithm
(A2D) (Dong et al., 2024), the combination of A2D and NP-Mix (AN) (Dong et al., 2024), DPU (Li
et al., 2025), and Feature Mixing (FM) (Liu et al., 2025). For a fair comparison, we use the same
classifier architecture as theirs, but retrain them using our framework while keeping the backbone
models fixed.

Configuration. As mentioned, our method requires no retraining of the original unimodal mod-
els and involves only retraining a combined classifier. We use the same model architectures as in
the baselines above and retrain their final classifiers using the proposed framework for 10 epochs.
Training is performed with the Adam optimizer (Kingma, 2014), an initial learning rate of 0.0001,
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Table 3: Multimodal near-OOD detection results using video and optical flow. The best results are
bolded. Results averaged over six random runs.

Method HMDB51 25/26 UCF101 50/51 EPIC-Kitchens 4/4 Kinetics600 129/100

FPR95 AUROC ID ACC FPR95 AUROC ID ACC FPR95 AUROC ID ACC FPR95 AUROC ID ACC

Base 38.78 88.83 89.76 10.10 98.06 99.71 75.00 66.70 71.27 64.61 76.59 80.31
+Ours 34.90 90.12 90.50 5.92 98.57 99.81 74.74 68.28 73.02 60.91 78.07 81.58

A2D 38.34 88.22 90.63 7.09 98.19 99.61 66.23 71.04 71.46 63.04 76.47 79.52
+Ours 37.65 88.81 90.81 5.40 98.49 99.71 68.62 70.33 72.35 61.42 77.77 81.35

AN 33.77 88.80 90.20 7.96 98.24 99.71 67.16 71.53 71.64 62.91 76.93 80.54
+Ours 34.07 90.03 90.46 5.51 98.56 99.77 65.67 72.50 72.01 61.16 78.06 82.29

DPU 34.42 89.15 92.16 7.57 98.17 99.81 63.81 71.46 72.39 61.59 77.50 81.07
+Ours 33.25 89.65 92.77 7.84 98.31 99.77 64.70 71.11 73.02 59.46 78.33 81.96

FM 45.10 87.29 89.11 8.06 97.92 99.61 71.83 68.49 72.76 64.10 76.16 80.11
+Ours 37.73 88.99 90.94 6.06 98.49 99.71 72.16 68.93 73.06 62.75 78.13 81.80

Table 4: Multimodal far-OOD detection results using video and optical flow, with HMDB51 as the
ID dataset. The best results are bolded. Results averaged over six random runs.

Method Kinetics-600 UCF101 EPIC-Kitchens HAC Average ID ACC
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Base 26.91 93.53 31.47 90.10 22.12 94.87 23.49 94.20 26.00 93.18 87.46
+Ours 22.17 94.83 28.60 91.46 16.01 96.03 20.75 94.94 21.88 94.31 88.12

A2D 20.18 95.12 33.87 90.29 12.43 96.53 15.85 95.82 20.58 94.44 87.34
+Ours 17.40 95.73 27.55 91.03 8.73 97.33 16.47 96.07 17.54 95.04 87.69

AN 24.29 93.99 36.94 89.71 7.18 97.60 23.15 94.45 22.89 93.94 86.66
+Ours 19.98 94.96 29.35 91.26 10.40 96.05 19.38 94.75 19.78 94.49 86.96

DPU 20.75 95.35 28.39 92.41 4.33 98.46 20.64 95.40 18.53 95.41 87.34
+Ours 19.11 95.32 25.25 92.26 6.50 97.66 18.15 95.36 17.25 95.16 87.94

FM 20.30 94.85 34.89 89.97 9.01 96.42 19.27 95.25 20.87 94.12 86.32
+Ours 16.88 94.79 27.99 90.64 12.03 93.32 16.88 94.94 18.95 93.92 86.26

cosine annealing learning-rate scheduler and a batch size of 16 on an NVIDIA-A100 GPU. Follow-
ing (Zhao et al., 2022) we set the loss terms of KD and CE to 1.0 each. The hyperparameters are
chosen as α = 0.1, β = 0.9 for the far-OOD task, and α = 0.8, β = 0.2 for the near-OOD task.

4.2 MAIN RESULTS

Results for the near-OOD detection task with all five datasets are presented in Table 3. Our method
consistently achieves the best values across key metrics, including FPR95, AUROC, and ID accuracy
on all baselines. Notably, simply incorporating our framework into a vanilla baseline (Base+Ours)
yields substantial improvements in OOD performance, achieving comparable or even superior re-
sults to SOTA multimodal OOD detection methods that rely on complex retraining approaches.
Our method is model-agnostic for diverse multimodal OOD detection methods. As seen, across
different training strategies, including A2D, AN, DPU, and FM, our method consistently improves
performance on nearly every evaluation metric despite their diversity. For example, on the UCF101
dataset with AN, our method reduces FPR95 by up to 31%, while on HMDB51 with FM it achieves
a reduction of 17%.
Our method is effective in multiple OOD tasks. Results for the far-OOD task with HMDB as the
ID dataset are presented in Table 4, and with Kinetics-600 as the ID dataset in Table 6 in the ap-
pendix. Similar to the near-OOD task, our method yields considerable enhancements (with gains up
to 30%) in OOD detection performance across all metrics and all baseline algorithms, demonstrating
the effectiveness of leveraging uncertainty-aware dark knowledge for multimodal OOD detection.
Performs robustly across diverse datasets. Across five diverse datasets covering a wide range of
video styles, including digitized movies, cartoon figures, everyday YouTube videos and kitchen en-
vironments, our method consistently reduces FPR95 and improves both AUROC and ID accuracy.
Our method is adaptable and effective across various combinations of modalities, not limited
to video and optical flow. Results in Table 7 in the appendix and Table 4 show that performance is
consistently improved regardless of the modality combinations used.
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Figure 4: Compatibility of our method with various post-hoc OOD scoring methods.

4.3 ABLATION STUDIES

We conduct ablation studies with two main objectives: (1) to evaluate the compatibility of our
method with various post-hoc OOD scores; and (2) to analyze the contribution of each individual
component of our framework. A detailed hyperparameter analysis is provided in Section A.3.

Compatibility with various post-hoc OOD scores. We evaluate our method across seven post-hoc
OOD scoring methods with different strategies: probability space (MSP), logit space (MaxLogit,
Energy, GEN), penultimate activation manipulations (ReAct, ASH), and combinations of logit- and
feature-space techniques (VIM), beyond the default model scores used in our main experiments.
Results in Fig. 4 show that, despite this diversity, our method consistently improves the performance
of all OOD scoring methods (with detailed results provided in Table 8 in the appendix).

Importance of the components. Our self multimodal OOD distillation framework improves OOD
detection by leveraging uncertainty-aware dark knowledge from unimodal experts. To further val-
idate this, we conduct the following experiments on four OOD datasets. First, we compare the
performance of our method against a combined classifier h trained using only the task loss (i.e.,
equivalent to setting both α and β to 0 in Eq. (7), and denoted as Vanilla in Table 5). We also
compare against an ensemble baseline that averages the predicted probabilities of the individual
modalities and the joint classifier (p̄all, cf. Section 3.4), reported as Ensemble in Table 5. Our
method surpasses these approaches, highlighting the importance of dark knowledge in improving
OOD performance—something that cannot be achieved by naively combining ensembles or simply
fusing features across modalities. We further evaluate a variant without modality-specific weights
(in Eq. (3)), reported as Uniform KD in Table 5, which together demonstrates that our method ef-
fectively accounts for underperforming modalities. We also compare another knowledge transfer
framework, where the pT is replaced with the best-performing modality while fusing features from
all modalities, denoted as Best KD in Table 5. Our method still outperforms this variant, indicat-
ing that leveraging uncertainty-aware dark knowledge across all modalities is more effective than
relying solely on the best individual modality.

Table 5: Ablation study of components for far-OOD detection with HMDB51 as the ID dataset. The
best results are bolded. Results averaged over six random runs.

Method UCF101 HAC EPIC-Kitchens Kinetics-600 Average ID ACC
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Vanilla 31.47 90.10 23.49 94.20 22.12 94.87 26.91 93.53 26.00 93.18 87.46
Ensemble 32.50 90.21 25.88 93.70 21.44 95.14 28.05 93.25 26.97 93.08 88.03
Uniform KD 29.44 91.26 22.37 94.62 16.62 95.87 23.40 94.58 22.96 94.08 88.21
Best KD 30.13 91.29 20.84 94.96 16.90 95.68 22.19 94.75 22.52 94.17 87.89
Ours 28.60 91.46 20.75 94.94 16.01 96.03 22.17 94.83 21.88 94.31 88.12

5 CONCLUSION

In this work, we explore the potential of dark knowledge within multimodal models to strengthen
OOD detection. Building on this, we propose a self multimodal distillation framework that lever-
ages both logit-space uncertainty knowledge and feature-space knowledge from a given set of mul-
timodal models to harness their intrinsic OOD detection capability, while effectively accounting
for underperforming modalities. Extensive experiments demonstrate that our method consistently
improves multimodal OOD detection, further enhances existing approaches, and reveals the full
synergy among modalities.
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REPRODUCIBILITY STATEMENT

Our implementation strictly follows the benchmark guidelines provided in https://github.
com/donghao51/MultiOOD (Dong et al., 2024). The settings and implementation details
are reported in Section 4.1. Our code is publicly available at https://github.com/
codebyhdnu-hub/SMOD. Detailed information on the hardware and software used is also pro-
vided in the repository.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT (OpenAI, GPT-4 Turbo) solely for minor grammar and language corrections. All
scientific content and analysis were entirely developed by the authors.

REFERENCES

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric
vision: The epic-kitchens dataset. In ECCV, pp. 720–736, 2018.

Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
shaping for out-of-distribution detection. arXiv preprint arXiv:2209.09858, 2022.

Hao Dong, Ismail Nejjar, Han Sun, Eleni Chatzi, and Olga Fink. Simmmdg: A simple and effective
framework for multi-modal domain generalization. NeurIPS, 36:78674–78695, 2023.

Hao Dong, Yue Zhao, Eleni Chatzi, and Olga Fink. Multiood: Scaling out-of-distribution detection
for multiple modalities. NeurIPS, 37:129250–129278, 2024.

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by
virtual outlier synthesis. arXiv preprint arXiv:2202.01197, 2022.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In ICCV, pp. 6202–6211, 2019.

Olga Fink, Qin Wang, Markus Svensen, Pierre Dersin, Wan-Jui Lee, and Melanie Ducoffe. Po-
tential, challenges and future directions for deep learning in prognostics and health management
applications. Engineering Applications of Artificial Intelligence, 92:103678, 2020.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In ICLR, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. Deep anomaly detection with outlier
exposure. In ICLR, 2019.

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza Mosta-
jabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world set-
tings. In ICML, pp. 8759–8773, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb:
a large video database for human motion recognition. In ICCV, pp. 2556–2563. IEEE, 2011.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. NeurIPS, 30, 2017.

10

https://github.com/donghao51/MultiOOD
https://github.com/donghao51/MultiOOD
https://github.com/codebyhdnu-hub/SMOD
https://github.com/codebyhdnu-hub/SMOD


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In NeurIPS, 2018.

Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, and Yue Zhao. Dpu: Dynamic
prototype updating for multimodal out-of-distribution detection. In CVPR, pp. 10193–10202,
2025.

Moru Liu, Hao Dong, Jessica Kelly, Olga Fink, and Mario Trapp. Extremely simple mul-
timodal outlier synthesis for out-of-distribution detection and segmentation. arXiv preprint
arXiv:2505.16985, 2025.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. In NeurIPS, pp. 21464–21475, 2020.

Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
out-of-distribution detection. In CVPR, pp. 23946–23955, 2023a.

Yuyuan Liu, Choubo Ding, Yu Tian, Guansong Pang, Vasileios Belagiannis, Ian Reid, and Gus-
tavo Carneiro. Residual pattern learning for pixel-wise out-of-distribution detection in semantic
segmentation. In ICCV, pp. 1151–1161, 2023b.

Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
distribution detection with vision-language representations. NeurIPS, 35:35087–35102, 2022.

Jaewoo Park, Yoon Gyo Jung, and Andrew Beng Jin Teoh. Nearest neighbor guidance for out-of-
distribution detection. In ICCV, pp. 1686–1695, 2023.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In CVPR,
pp. 3967–3976, 2019.

Gorjan Radevski, Dusan Grujicic, Matthew Blaschko, Marie-Francine Moens, and Tinne Tuytelaars.
Multimodal distillation for egocentric action recognition. In ICCV, pp. 5213–5224, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763. PmLR, 2021.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activa-
tions. NeurIPS, 34:144–157, 2021.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In ICML, pp. 20827–20840. PMLR, 2022.

Dongdong Wang, Jingyao Xu, Siyang Lu, Xiang Wei, and Liqiang Wang. Ensemble distillation
for out-of-distribution detection. In 2023 IEEE 29th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 248–253. IEEE, 2023a.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching. In CVPR, pp. 4921–4930, 2022.

Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
clip to say no. In CVPR, pp. 1802–1812, 2023b.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. IJCV, 132(12):5635–5662, 2024.

Yang Yang and Haonan Xu. Strengthen out-of-distribution detection capability with progressive
self-knowledge distillation. In ICML, 2025.

Jingyang Zhang, Nathan Inkawhich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
exposure: Towards out-of-distribution detection in fine-grained environments. pp. 5531–5540,
2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
ICCV, pp. 3713–3722, 2019.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In CVPR, pp. 11953–11962, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL DETAILS OF THE METHOD

Following Zhao et al. (2022), we reformulate KL divergence as a weighted sum of two terms, in
Eq. (6). A detailed derivation of Eq. (6) is provided below. For a given conditional distribution over
classes, let the probability of the i-th class be denoted as pi, i.e.,

pi =
exp(zi)∑C
j=1 exp(zj)

,

where zi is the logit corresponding to the i-th class. Then, we have pt, p\t, and each element p̂i of
p̂ as (with notation consistent with Section 3.3):

pt =
exp(zt)∑C
j=1 exp(zj)

, p\t =

∑C
k=1, k ̸=t exp(zk)∑C

j=1 exp(zj)
, p̂i =

exp(zi)∑C
j=1, j ̸=t exp(zj)

. (8)

LKL = DKL(p
T ∥pS)

=

C∑
i=1

pT
i log

(
pT
i

pS
i

)

= pT
t log

(
pT
t

pS
t

)
+

C∑
i=1,i̸=t

pT
i log

(
pT
i

pS
i

)
.

(9)

According to Eq. (8), we have p̂i = pi/p\t; therefore, Eq. (9) can be rewritten as:

LKL = pT
t log

(
pT
t

pS
t

)
+

C∑
i=1, i̸=t

pT
\tp̂

T
i log

(
pT
\tp̂

T
i

pS
\tp̂

S
i

)

= pT
t log

(
pT
t

pS
t

)
+

C∑
i=1, i̸=t

pT
\tp̂

T
i

(
log

(
p̂T
i

p̂S
i

)
+ log

(
pT
\t

pS
\t

))

= pT
t log

(
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t

pS
t

)
+

C∑
i=1, i̸=t

pT
\tp̂

T
i log

(
p̂T
i

p̂S
i

)
+

C∑
i=1, i̸=t

pT
\tp̂

T
i log

(
pT
\t

pS
\t

)
,

(10)

Since pT
t and pS

\t are independent of the class index i, we have:

C∑
i=1, i̸=t

pT
\tp̂

T
i log

(
pT
\t

pS
\t

)
= pT

\t log

(
pT
\t

pS
\t

)
C∑

i=1, i̸=t

p̂T
i = pT

\t log

(
pT
\t

pS
\t

)
. (11)

Then, from Eq. (10) and Eq. (11), we obtain

LKL = pT
t log

(
pT
t

pS
t

)
+ pT

\t log

(
pT
\t

pS
\t

)
︸ ︷︷ ︸

DKL(bT ∥ bS)

+pT
\t

C∑
i=1, i̸=t

p̂T
i log

(
p̂T
i

p̂S
i

)
︸ ︷︷ ︸

DKL(p̂T ∥ p̂S)

. (12)

It can be seen that Eq. (12) is a combination of two KL divergence loss terms, which can be rewritten
as follows, identical to Eq. (6) in Section 3.3:

LKL = DKL

(
bT ∥ bS)+ (1− pT

t

)
DKL

(
p̂T ∥ p̂S) .

A.2 ADDITIONAL RESULTS

We provide additional experimental results in this section. Table 6 presents the performance of
our method on far-OOD detection with Kinetics-600 as the ID dataset. The results show consistent
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Table 6: Multimodal far-OOD detection results using video and optical flow, with Kinetics-600 as
the ID dataset. The best results are bolded. Results averaged over six random runs.

Method UCF101 HAC EPIC-Kitchens HMDB51 Average ID ACC
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Base 70.67 68.49 55.43 78.40 37.93 85.10 66.08 68.80 57.53 75.20 73.71
+Ours 59.60 76.37 44.86 83.68 26.58 90.10 59.96 77.93 47.75 82.02 75.24

A2D 71.47 67.99 56.53 78.18 39.87 83.96 67.30 67.98 58.79 74.03 73.61
+Ours 59.55 75.97 43.06 84.55 26.89 90.29 60.70 77.51 47.55 82.08 75.83

AN 67.17 74.49 56.69 80.20 34.12 87.49 63.24 74.13 55.31 79.08 73.65
+Ours 58.40 79.08 42.67 85.34 28.27 90.15 60.56 80.22 47.48 83.70 76.14

DPU 55.33 78.20 47.39 82.99 27.38 91.61 61.27 80.83 47.84 83.91 76.74
+Ours 57.69 75.87 45.30 83.42 26.66 91.19 60.41 79.82 47.52 82.58 77.74

Table 7: Multimodal Near-OOD Detection using video, optical flow, and audio on Kinetics-
600 (129/100). Each cell reports baseline / Ours, with the better value in bold. Results are compared
across various post-hoc OOD scoring methods.

Method Base AN DPU

FPR95 AUROC ID ACC FPR95 AUROC ID ACC FPR95 AUROC ID ACC

MSP 61.73 / 60.40 77.24 / 78.97 80.46 / 82.15 58.85 / 57.96 78.50 / 79.41 81.76 / 83.13 63.34 / 61.57 77.47 / 78.26 82.68 / 83.33
MaxLogit 62.81 / 61.40 78.07 / 79.39 80.46 / 82.15 60.98 / 59.59 78.61 / 79.54 81.76 / 83.13 65.87 / 64.77 77.86 / 78.50 82.68 / 83.33
Energy 63.06 / 61.61 77.72 / 78.90 80.46 / 82.15 60.91 / 59.65 78.17 / 79.00 81.76 / 83.13 66.05 / 64.97 77.57 / 78.13 82.68 / 83.33
GEN 61.75 / 60.59 77.80 / 78.73 80.46 / 82.15 59.22 / 58.94 78.61 / 79.16 81.76 / 83.13 65.85 / 65.20 77.17 / 77.82 82.68 / 83.33
ASH 62.34 / 59.83 78.46 / 79.31 80.13 / 81.66 58.94 / 58.18 79.05 / 79.80 81.11 / 82.68 64.85 / 63.59 77.31 / 78.29 81.86 / 82.74
ReAct 69.05 / 65.73 75.76 / 77.39 80.44 / 82.11 66.85 / 64.18 76.40 / 77.44 81.86 / 82.72 69.01 / 67.93 76.77 / 77.13 82.39 / 83.05
VIM 62.97 / 61.81 77.73 / 78.90 80.46 / 82.15 61.06 / 59.69 78.19 / 78.79 81.76 / 83.13 65.81 / 65.42 77.79 / 78.22 82.68 / 83.33

improvements over all baselines across four diverse OOD datasets. These results highlight the effec-
tiveness of our method in detecting far-OOD samples. Table 7 shows the near-OOD detection results
on Kinetics-600 using three input modalities: video, optical flow, and audio. It also compares the
performance of various post-hoc OOD scoring methods for each baseline in this setting. The results
demonstrate that our method remains adaptable and effective across diverse modality combinations.

As discussed, we evaluate our method across seven post-hoc OOD scoring methods with different
strategies: probability space (MSP), logit space (MaxLogit, Energy, GEN), penultimate activation
manipulations (ReAct, ASH), and combined logit–feature space techniques (VIM). Detailed results
on all baselines across four diverse datasets are provided in Table 8, with a summary in Fig. 5. The
results demonstrate that, despite this diversity, our method consistently improves the performance
of all OOD scoring methods.

MSP
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Figure 5: Summary of the performance of our method for far-OOD detection using video and optical
flow, with HMDB51 as the ID dataset, evaluated across different models and various post-hoc OOD
scoring methods.
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Table 8: Comparison of different post-hoc OOD scoring methods for multimodal far-OOD detection
using video and optical flow, with HMDB51 as the ID dataset. Each cell reports baseline / Ours,
with the better value in bold.

Method UCF101 HAC EPIC-Kitchens Kinetics-600

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Base

MSP 37.40 / 31.90 88.68 / 91.33 32.61 / 30.60 89.76 / 91.49 30.44 / 24.63 90.88 / 93.67 35.23 / 30.56 89.16 / 91.41
MaxLogit 31.58 / 28.14 90.22 / 92.21 23.95 / 21.82 93.98 / 94.71 22.81 / 17.24 94.63 / 95.92 26.91 / 22.92 93.29 / 94.58
Energy 31.47 / 28.60 90.10 / 91.46 23.49 / 20.75 94.20 / 94.94 22.12 / 16.01 94.87 / 96.03 26.91 / 22.17 93.53 / 94.83
GEN 34.55 / 27.59 90.94 / 92.65 30.44 / 29.05 91.93 / 92.70 23.15 / 17.26 94.13 / 95.58 32.95 / 29.08 91.13 / 92.53
ASH 41.96 / 28.94 88.97 / 91.77 29.76 / 26.11 93.21 / 94.25 24.40 / 19.09 94.16 / 95.63 36.03 / 31.54 91.23 / 92.93
ReAct 32.73 / 29.85 90.19 / 91.08 20.64 / 18.36 95.26 / 95.34 17.79 / 13.57 95.65 / 96.29 22.92 / 19.22 94.73 / 95.40
VIM 28.85 / 26.39 91.97 / 92.30 6.73 / 6.39 98.75 / 98.69 3.99 / 4.20 99.01 / 99.12 9.35 / 8.26 98.12 / 98.29

A2D

MSP 34.32 / 33.23 89.07 / 90.82 26.11 / 28.83 91.27 / 91.98 25.31 / 19.48 92.94 / 95.14 31.36 / 29.60 90.61 / 91.84
MaxLogit 33.87 / 27.59 90.46 / 91.69 16.08 / 17.99 95.61 / 95.75 13.00 / 9.67 96.41 / 97.36 20.41 / 18.56 94.93 / 95.47
Energy 33.87 / 27.55 90.29 / 91.03 15.85 / 16.47 95.82 / 96.07 12.43 / 8.73 96.53 / 97.33 20.18 / 17.40 95.12 / 95.73
GEN 35.12 / 27.80 91.89 / 93.10 22.23 / 23.99 93.69 / 94.10 17.45 / 12.91 95.83 / 96.95 29.19 / 25.93 92.74 / 93.51
ASH 40.25 / 30.56 89.17 / 91.75 25.77 / 23.81 93.61 / 94.62 21.89 / 11.43 94.94 / 97.33 36.83 / 30.79 91.48 / 93.15
ReAct 31.93 / 27.71 90.10 / 90.46 12.66 / 14.00 96.46 / 96.28 10.72 / 7.96 96.83 / 97.24 15.85 / 14.94 95.94 / 96.18
VIM 27.82 / 25.68 90.72 / 90.67 5.93 / 6.61 98.72 / 98.68 4.45 / 4.79 98.68 / 98.72 7.98 / 7.84 98.10 / 98.20

AN

MSP 40.59 / 34.18 88.00 / 90.44 28.62 / 26.13 91.57 / 92.99 13.45 / 10.49 96.42 / 97.66 29.42 / 27.39 90.65 / 92.58
MaxLogit 36.94 / 29.78 89.73 / 91.72 23.03 / 20.82 94.25 / 94.91 7.18 / 8.39 97.72 / 97.53 24.63 / 21.05 93.72 / 94.90
Energy 36.94 / 29.35 89.71 / 91.26 23.15 / 19.38 94.45 / 94.75 7.18 / 10.40 97.60 / 96.05 24.29 / 19.98 93.99 / 94.96
GEN 37.40 / 29.30 91.24 / 93.14 24.29 / 22.55 94.33 / 95.13 5.13 / 4.42 99.02 / 99.12 25.20 / 23.97 93.54 / 94.72
ASH 38.77 / 30.90 89.54 / 92.06 23.72 / 19.98 94.47 / 95.42 7.07 / 7.02 98.24 / 98.21 27.59 / 24.58 93.19 / 94.53
ReAct 37.29 / 29.71 89.69 / 90.92 20.75 / 17.17 95.05 / 94.78 7.18 / 11.88 97.46 / 95.35 21.44 / 17.42 94.76 / 95.11
VIM 26.91 / 22.37 92.28 / 92.70 6.39 / 6.98 98.56 / 98.41 5.59 / 7.89 98.06 / 97.07 9.35 / 7.94 98.04 / 98.05

DPU

MSP 36.49 / 33.27 90.52 / 91.18 27.37 / 25.95 93.30 / 93.61 12.31 / 11.08 97.52 / 97.67 27.59 / 26.68 93.17 / 93.37
Energy 28.39 / 25.25 92.41 / 92.26 20.64 / 18.15 95.40 / 95.36 4.33 / 6.50 98.46 / 97.66 20.75 / 19.11 95.35 / 95.32
GEN 28.16 / 25.47 93.53 / 94.17 21.44 / 19.04 95.66 / 96.05 3.19 / 3.19 99.30 / 99.27 21.09 / 20.66 95.45 / 95.66
ASH 32.27 / 31.36 91.86 / 92.57 22.46 / 21.05 95.23 / 95.59 5.93 / 4.90 98.82 / 99.01 26.34 / 25.27 94.53 / 94.79
ReAct 28.39 / 27.37 91.95 / 91.50 18.02 / 17.29 95.78 / 95.28 4.68 / 7.73 98.28 / 97.22 18.02 / 17.77 95.78 / 95.30
VIM 20.87 / 20.43 94.42 / 94.17 3.88 / 5.13 99.16 / 98.98 1.71 / 2.08 99.63 / 99.48 6.27 / 6.84 98.74 / 98.57

FM

MSP 34.21 / 30.44 89.35 / 91.28 25.09 / 22.35 92.39 / 93.42 12.09 / 9.18 97.14 / 97.89 26.00 / 22.98 92.33 / 93.79
Energy 34.89 / 27.99 89.97 / 90.64 19.27 / 16.88 95.25 / 94.94 9.01 / 12.03 96.42 / 93.32 20.30 / 16.88 94.85 / 94.79
GEN 28.85 / 27.42 92.11 / 93.18 19.84 / 18.59 95.09 / 95.39 3.19 / 2.68 99.21 / 99.42 20.52 / 18.47 95.11 / 95.82
ASH 32.27 / 28.45 90.08 / 92.31 21.55 / 20.75 94.25 / 94.99 7.98 / 5.19 98.21 / 98.57 23.38 / 20.35 93.74 / 95.07
ReAct 42.08 / 29.59 88.39 / 89.89 22.23 / 16.53 94.79 / 94.77 10.15 / 14.08 95.42 / 92.24 23.49 / 16.48 94.32 / 94.56
VIM 26.11 / 23.66 92.36 / 92.19 8.78 / 8.67 98.24 / 98.03 5.36 / 9.92 97.96 / 96.43 10.95 / 10.43 97.54 / 97.35

A.3 HYPERPARAMETER ANALYSIS

In Fig. 6, we investigate the impact of the hyperparameters α and β in our method across three
far-OOD datasets. Following the basic settings in Zhao et al. (2022); Park et al. (2019), we set
the loss weights of the KD and CE terms to 1.0. As discussed in Section 3.4, assigning a higher
value to β, which emphasizes the NCKD component, leads to improved detection performance in
multimodal far-OOD detection. Furthermore, the detection performance consistently remains above
the baseline across all tested combinations of α and β, demonstrating the stability and robustness of
our framework under varying hyperparameter settings.

Figure 6: OOD detection performance with varying α and β for far-OOD detection using video and
optical flow, with HMDB51 as the ID dataset.
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For real-world deployment where the type of OOD shift is unknown, we recommend a balanced
and task-agnostic configuration such as α = 0.5 and β = 0.5, which performs robustly across
all benchmarks and OOD scenarios. Alternatively, practitioners may adopt a proxy-OOD tuning
strategy, which is conventional in prior OOD detection (Hendrycks et al., 2019; Dong et al., 2024;
Zhang et al., 2023). In practice, many real-world applications naturally prioritize one type of OOD.
Some systems primarily focus on near-OOD detection (e.g., fine-grained classification, medical
imaging, product or defect inspection) (Zhang et al., 2023), where far-OOD samples are trivial
and typically filtered earlier in the pipeline. Conversely, some applications prioritize far-OOD (e.g.,
OCR scanners detecting non-text inputs need to be rejected early in pipeline). Our framework allows
practitioners to adjust α and β according to such priorities, but importantly, no prior knowledge of
the exact OOD type is required to benefit from the method, as it consistently improves both near-
and far-OOD detection under a wide range of settings.
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