

000 001 002 003 004 005 LEVERAGING DARK KNOWLEDGE FOR INTRINSIC 006 MULTIMODAL OUT-OF-DISTRIBUTION DETECTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Out-of-distribution (OOD) detection is crucial for the safe deployment of deep neural models in applications such as autonomous driving. With the emerging multimodal nature of modern applications, recent attention has shifted toward OOD detection in multimodal settings. However, current multimodal OOD detection methods fail to fully exploit the synergy among modalities: they treat all modalities equally, disregarding their varying detection performance, and they are unable to capture the diverse uncertainty information encoded at the logit level. In this paper, we propose to exploit the *dark knowledge* within unimodal experts as the key to revealing their synergy. To this end, we introduce a self multimodal OOD distillation framework, which leverages logits as uncertainty-aware soft targets to train a holistic model that operates in the joint embedding space of all modalities. Specifically, the proposed framework accounts for the negative effects of underperforming modalities and effectively fuses both the rich feature-level knowledge and the logit-level knowledge of modalities. As a result, our method improves the performance of current state-of-the-art multimodal OOD detection methods, achieving gains of up to 30% across diverse OOD detection benchmarks, spanning two tasks and five multimodal OOD datasets.

1 INTRODUCTION

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Out-of-distribution (OOD) detection aims to reliably identify samples that differ from the training distribution, which is a crucial requirement for deploying deep neural networks in safety-critical domains such as autonomous driving (Liu et al., 2023b) and healthcare (Fink et al., 2020). Consequently, a significant body of research has been dedicated to OOD detection (Yang et al., 2024), where the most standard and fundamental approach is to derive a confidence score from a deep neural classifier (Hendrycks & Gimpel, 2017; Liu et al., 2020; Hendrycks et al., 2022). Many other approaches have also been proposed, ranging from distance-based methods (Sun et al., 2022; Lee et al., 2018) to retraining strategies that enhance ID–OOD separability (Hendrycks et al., 2019; Du et al., 2022). However, they have predominantly focused on single-modality inputs, such as images or videos, despite the inherently multimodal nature of real-world applications (Li et al., 2025).

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
More recently, Dong et al. (2024) introduced the first multimodal OOD benchmark, enabling methods to leverage the complementary nature of various modalities for OOD detection. They observed that distributional shift manifests as increased diversity in predictions across modalities and proposed an algorithm to amplify the OOD discrepancy during training. Since then, several works have been proposed (Li et al., 2025; Liu et al., 2025) for multimodal OOD detection. However, these methods are unable to capture the full synergy between modalities due to several limiting factors. For example, they employ complex retraining strategies to enhance the embedding space for better OOD separation, including contrastive learning (Li et al., 2025), maximizing disagreement between models on OOD samples (Dong et al., 2024), or improving supervision from unknown data via outlier synthesis (Liu et al., 2025), while paying limited attention to the intrinsic OOD detection capability of unimodal models. A final classifier is then employed by fusing the enhanced embeddings from unimodal models, incorporating one-hot targets. However, they overlook diverse uncertainty knowledge contained at the logit level of each unimodal expert, which can be incorporated to strengthen OOD detection. Particularly, a key challenge underlying OOD overconfidence is that *ground-truth* uncertainty labels for training samples are unavailable (Lakshminarayanan et al., 2017). Instead, only one-hot class labels are available, which cause the model to treat all class

samples uniformly, despite their varying degrees of uncertainty, potentially leading to overconfident predictions (Yang & Xu, 2025). On the other hand, we found that, as illustrated in Fig. 1, some modalities (e.g., video) can achieve stronger detection performance than others (e.g., optical flow)—a fact largely overlooked in previous research, where all modalities are treated equally without accounting for their varying detection capabilities.

To address these challenges and fully exploit the synergy across modalities for OOD detection, we propose a self multimodal OOD distillation framework, which trains a holistic model whose guidance is self-provided by unimodal experts serving as teachers. Traditionally, the hidden information within the teacher has been referred to as *dark knowledge* (Hinton et al., 2015). Accordingly, our framework leverages the uncertainty-aware dark knowledge encoded at the logit level of unimodal experts to strengthen multimodal OOD detection performance. Given that ground-truth uncertainty is unavailable, we first estimate predictive uncertainty by approximating it through the collective behavior of all models, while accounting for underperforming modalities. We then leverage this estimated uncertainty as soft targets to train a joint classifier in the embedding space shared across all modalities, thereby reducing OOD overconfidence and accounting for disparities among modalities. This joint classifier can be conceptually regarded as the student, guided by the same ensemble of unimodal teachers, who also collectively share the embedding space. In this way, our method exploits both the diverse uncertainty knowledge encoded at the logit level and the representational knowledge at the feature level of unimodal experts, thereby revealing their ultimate synergy. As part of this work, we also provide a comprehensive analysis of how the uncertainty-aware dark knowledge in our framework contributes to improving multimodal OOD detection performance, which cannot be achieved by naively combining ensembles or merely fusing features across modalities.

This principled and effective framework of ours allows us to integrate it as a plug-in to mine the intrinsic OOD detection capabilities of a given multimodal model set, thereby alleviating the burden of retraining large modality-specific models. A simple integration of our framework into a vanilla baseline yields substantial improvements in OOD performance (Fig. 1), achieving comparable or even superior results to current retraining-based state-of-the-art multimodal OOD detection methods. Moreover, being agnostic to these methods, it further improves their performance with gains up to 30% across diverse OOD detection benchmarks, spanning two tasks and five OOD datasets.

2 RELATED WORK

Out-of-Distribution (OOD) Detection. A primary approach to OOD detection is to leverage confidence scores derived from deep neural classifiers, such as the maximum softmax probability (MSP) (Hendrycks & Gimpel, 2017), Energy (Liu et al., 2020)—which also mirrors the class-conditional probability—Generalized Entropy (GEN) (Liu et al., 2023a), and the maximum of logit (MaxLogit) (Hendrycks et al., 2022). In contrast to these classifier-based scores, kNN (Sun et al., 2022) and Mahalanobis (Lee et al., 2018) rely on distance metrics in feature space for OOD detection, while Virtual Logit Matching (VIM) (Wang et al., 2022) integrates information from both feature and logit spaces to define the OOD score. Other approaches, such as ReAct (Sun et al., 2021) and ASH (Djurisic et al., 2022), enhance existing scoring functions by modifying input activations. In contrast to the above post-hoc methods, retraining-based approaches (Hendrycks et al., 2019; Du et al., 2022) aim to enhance representations for better ID–OOD separability. However, all these methods predominantly focus on single-modality inputs, without accounting for the multimodal nature of recent applications.

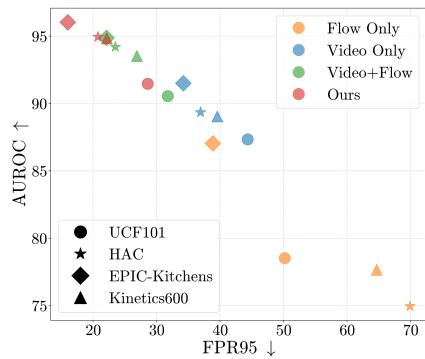


Figure 1: OOD detection performance on the HMDB51 dataset across different modalities. The detection performance of *Flow* is substantially lower than that of *Video*. Multimodal OOD detection (*Video+Flow*, obtained using one of the SOTA methods (Dong et al., 2024)) improves over unimodal OOD, while our method more effectively harnesses the synergy among modalities.

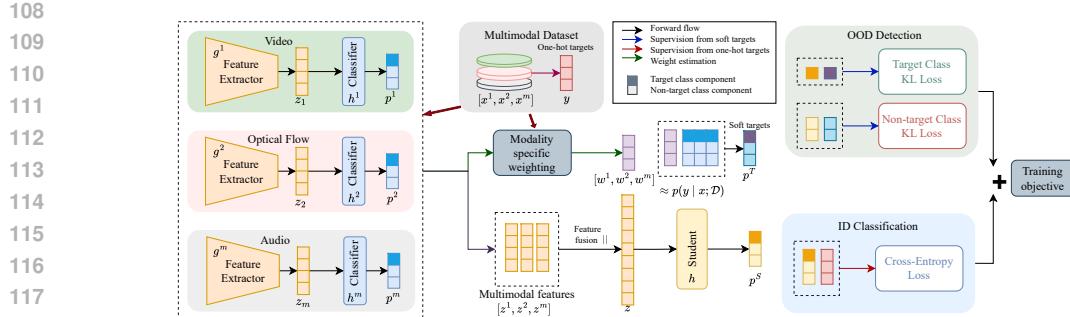


Figure 2: An overview of the proposed self multimodal OOD distillation framework.

Multimodal OOD Detection. With the emergence of large vision–language models (Radford et al., 2021), the task of *multimodal OOD detection* was initially associated with approaches that exploited semantic information from text labels (Ming et al., 2022; Wang et al., 2023b), although their scope remained restricted to image-only benchmarks. To address this, Dong et al. (2024) introduced the first multimodal OOD benchmark incorporating multiple modality combinations (i.e., video, audio, and optical flow), and observed that OOD samples tend to exhibit higher discrepancy among unimodal prediction distributions. They proposed the Agree-to-Disagree algorithm to amplify this discrepancy during training and further introduced multimodal outlier synthesis (NP-Mix) to obtain a more discriminative embedding space for OOD detection. More recently, DPU (Li et al., 2025) employed a contrastive learning strategy to account for intra-class variability in multimodal OOD detection, while Feature Mixing (Liu et al., 2025) introduced yet another synthetic outlier-based approach for training. However, these methods are unable to reveal the full synergy between modalities, in that they treat all modalities equally, without considering their varying detection performance. In addition, they are unable to capture holistic uncertainty across modalities, leaving the rich uncertainty-aware information within the logit layers of unimodal experts untapped. Moreover, they rely on complex retraining approaches, especially with a focus on providing a more discriminative embedding space for OOD detection, while little attention has been given to harnessing the intrinsic OOD detection capability of the ensemble itself.

Logit Distillation. Logit distillation, which transfers the *dark knowledge* within logits of a large model to a smaller one, was initially proposed for model compression (Hinton et al., 2015), but has since been shown to also improve model accuracy. For example, retraining with self-distillation, has been found to further improve accuracy (Zhang et al., 2019). Zhao et al. (2022) sought to shed light on dark knowledge by decoupling it into two components: binary knowledge related to the target class and relational knowledge pertaining to the non-target classes. More closely related to our work, Yang & Xu (2025) employed self-knowledge distillation for OOD detection to mitigate the negative effect from atypical samples during training. However, their method is limited to single modalities, whereas we leverage it to harness the synergy among multiple modalities. Logit distillation has also been explored in multimodal applications for cross-modal adaptation (Radevski et al., 2023), but not to OOD detection. To the best of our knowledge, this is the first work that methodically leverages and analyzes the role of dark knowledge in improving multimodal OOD detection.

3 METHODOLOGY

In this section, we present our self multimodal OOD distillation framework. We begin with a formal introduction to the multimodal OOD detection problem, followed by an overview of the framework and a detailed description of the method. We also provide further insights into uncertainty-aware dark knowledge within our framework at the end of this section.

3.1 PROBLEM DEFINITION

Let $\mathcal{D}_{\text{in}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ be our training set, where each $\mathbf{x}_i \in \mathcal{X}$ is an input sample and $y_i \in \mathcal{Y} = \{1, 2, \dots, C\}$ is the corresponding class label. In a multimodal setting each training sample \mathbf{x}_i is comprised of M modalities, denoted as $\mathbf{x}_i = \{ \mathbf{x}_i^m \mid m = 1, \dots, M \}$. Let M be a set of neural networks trained on each unimodality (e.g., video), $f^m : \mathcal{X}^m \rightarrow \mathbb{R}^C$. The goal of multimodal OOD

162 detection is to effectively combine information from all modalities in order to correctly identify
 163 samples with semantic shifts. Each model f^m comprises a feature extractor $g^m(\cdot)$, which extracts an
 164 embedding \mathbf{z}^m for its corresponding modality m and the usual practice is to employ a final classifier
 165 $h(\cdot)$, which takes the combined embeddings from all modalities as input and outputs a prediction
 166 probability $\mathbf{p}^S = \delta(h([g^1(\mathbf{x}^1) \parallel \dots \parallel g^M(\mathbf{x}^M)])) = \delta(h([\mathbf{z}^1 \parallel \dots \parallel \mathbf{z}^M])) = \delta(h(\mathbf{z}))$, where \parallel
 167 denotes concatenation and $\delta(\cdot)$ denotes the softmax function.

168 When deploying in the real world, h should not only accurately classify known samples from the
 169 in-distribution (ID), but also detect samples that exhibit semantic shifts compared to ID samples
 170 and do not belong to any class in \mathcal{Y} , i.e., out-of-distribution (OOD) samples. This aims to define a
 171 separate scoring function $S : \mathcal{X} \rightarrow \mathbb{R}$, which assigns a high score $S(\mathbf{x})$ for samples $\mathbf{x} \sim \mathcal{D}_{\text{in}}$ and a
 172 low score otherwise. A threshold η is then used to classify each sample $\mathbf{x} \in \mathcal{X}$ as ID or OOD:

$$\text{Decision}(\mathbf{x}) = \begin{cases} \text{ID}, & \text{if } S(\mathbf{x}) \geq \eta, \\ \text{OOD}, & \text{if } S(\mathbf{x}) < \eta. \end{cases}$$

3.2 MOTIVATION AND METHOD OVERVIEW

173 In this section, we present the motivation behind our approach and provide a brief overview of our
 174 framework illustrated in Fig. 2. A common approach to combining complementary knowledge from
 175 different modalities is to train a joint classifier (h) in the combined embedding space of modalities,
 176 which yields improvements in OOD detection over unimodal models (see ‘Video+Flow’ in
 177 Fig. 1). However, this alone is unable to fully leverage the synergy between modalities, as it does
 178 not properly account for underperforming modalities, and it fails to fully exploit the uncertainty-
 179 related knowledge encoded in modality-specific models. As shown in Fig. 1, some modalities (e.g.,
 180 optical flow) exhibit weaker OOD detection performance than others (e.g., video). Specifically, this
 181 disparity across modalities—whose weakness partly arises from OOD overconfidence—is difficult
 182 to address solely at the feature level; therefore, we turn to the logit level for complementary guid-
 183 ance. In particular, a key challenge underlying OOD overconfidence is that *ground-truth* uncertainty
 184 labels for training samples are not available. Therefore, we first model the predictive uncertainty
 185 by treating the collective behavior of all models as an approximation to the true uncertainty. We
 186 then employ logit distillation to leverage this estimated uncertainty as soft targets to train the joint
 187 classifier (h). In this framework, h acts as the student, and its guidance is self-provided by the set
 188 of unimodal teachers that collectively share the embedding space. We also employ decoupled KL
 189 divergence (Zhao et al., 2022) for logit distillation, separating it into target and non-target class com-
 190 ponents, which allows better weight adjustment across tasks of varying difficulty (e.g., near-OOD
 191 vs. far-OOD). Ultimately, our framework not only fuses rich feature-space knowledge but also lever-
 192 ages the uncertainty-aware knowledge residing in the logit space of unimodal teachers in a weighted
 193 manner, thus revealing the synergy among them. Building on these insights, we present a detailed
 194 and formal description of our framework in the next section.

3.3 SELF MULTIMODAL OOD DISTILLATION FRAMEWORK

195 To improve the multimodal OOD detection we focus on both feature-space and logit-space knowl-
 196 edge of multimodal models. We begin with the joint classifier h that operates on the combined
 197 embeddings space of unimodal models $\{f^m\}$. In order to model the holistic predictive capability
 198 of all modalities, we further include a separate classifier $h^m(\cdot)$ for each modality m in order to
 199 obtain predictions from each modality individually. The conditional distribution over classes from
 200 the m -th modality is then given by $p(y | \mathbf{x}^m, f^m) := \delta(h^m(g^m(\mathbf{x}^m)))$. The expected predictive
 201 distribution for a sample $\mathbf{x} \in \mathcal{X}$ can be estimated from the predictive posterior $p(y | \mathbf{x}; \mathcal{D})$, which
 202 can be expressed from a Bayesian perspective as:

$$p(y | \mathbf{x}, \mathcal{D}) = \int_{f \in \mathcal{F}} p(y | \mathbf{x}, f) p(f | \mathcal{D}) df, \quad (1)$$

203 where \mathcal{F} denotes the space of predictors. For a given finite set of M diverse models, this integral is
 204 typically approximated by a sum over the individual models (Lakshminarayanan et al., 2017):

$$p(y | \mathbf{x}, \mathcal{D}) \approx \sum_{m=1}^M p(y | \mathbf{x}^m, f^m) p(f^m | \mathcal{D}). \quad (2)$$

216 By Bayes' rule, $p(f^m | \mathcal{D}) = \frac{p(\mathcal{D}|f^m)p(f^m)}{p(\mathcal{D})}$. Under a uniform prior over the M models (i.e., not
 217 favoring any modality in advance), i.e., $p(f^m) = \frac{1}{M}$, this reduces to $p(f^m | \mathcal{D}) = \frac{p(\mathcal{D}|f^m)}{\sum_{j=1}^M p(\mathcal{D}|f^j)}$.
 218 Substituting this into Eq. (2) yields a likelihood-weighted sum across modalities:
 219

$$220 \quad 221 \quad 222 \quad 223 \quad p(y | \mathbf{x}, \mathcal{D}) \approx \sum_{m=1}^M w_m p(y | \mathbf{x}^m, f^m), \quad (3)$$

224 where the weights satisfy $w_m \propto p(\mathcal{D} | f^m)$ and $\sum_{m=1}^M w_m = 1$. In particular, each w_m can be
 225 expressed in terms of the cross-entropy loss (equivalently, the negative log-likelihood) that model
 226 f^m exhibits on the dataset \mathcal{D} , i.e.,

$$227 \quad 228 \quad 229 \quad w_m = \frac{\exp(-\text{CE}(f^m, \mathcal{D}))}{\sum_{j=1}^M \exp(-\text{CE}(f^j, \mathcal{D}))}, \quad (4)$$

230 where $\text{CE}(f^m, \mathcal{D})$ denotes the average cross-entropy loss of model f^m on \mathcal{D} .
 231

232 Our goal is to capture the full predictive capability and uncertainty expressed in Eq. (3) to be re-
 233 reflected in the final classifier h , such that it inherits both the diverse uncertainty knowledge present at
 234 the logit level of each unimodal model and the strong discriminative power from the feature level.
 235 For convenience, we denote $p(y | \mathbf{x}, \mathcal{D})$ as \mathbf{p}^T and $p(y | \mathbf{x}^m, f^m)$ as \mathbf{p}^m . Accordingly, h is trained
 236 by minimizing the cross-entropy with soft targets given by \mathbf{p}^T . From the perspective of knowl-
 237 edge distillation (KD), the output \mathbf{p}^S of h can be conceptually regarded as the student distribution
 238 while, \mathbf{p}^T serves as the teacher distribution. Consequently, this corresponds to minimizing the KL
 239 divergence between teacher and student distributions¹:

$$239 \quad 240 \quad \mathcal{L}_{\text{KL}} = D_{\text{KL}}(\mathbf{p}^T \| \mathbf{p}^S). \quad (5)$$

241 Notably, this loss formulation given by Eq. (5) and Eq. (3), accounts for the effect of underperform-
 242 ing unimodal models when training h by ranking the teachers rather than treating them uniformly.
 243 To practically implement w_m , the weights are estimated on each mini-batch \mathcal{B} , as a stochastic ap-
 244 proximation to \mathcal{D} .

245 We further decompose the KL divergence, following Zhao et al. (2022), into target and non-target
 246 class components, to gain deeper insights and better leverage the dark knowledge contained in the
 247 multimodal teacher logits for OOD detection. We therefore reformulate Eq. (5) as a weighted sum
 248 of these two components (the derivation is deferred to Section A.1):
 249

$$250 \quad \mathcal{L}_{\text{KL}} = D_{\text{KL}}(\mathbf{b}^T \| \mathbf{b}^S) + (1 - p_t^T) D_{\text{KL}}(\hat{\mathbf{p}}^T \| \hat{\mathbf{p}}^S), \quad (6)$$

251 where the notation $\mathbf{b} = [p_t, p_{\setminus t}] \in \mathbb{R}^2$ denotes the binary probabilities of the target class (p_t) and all
 252 non-target classes ($p_{\setminus t} = 1 - p_t$). The notation $\hat{\mathbf{p}} = [\hat{p}_1, \dots, \hat{p}_{t-1}, \hat{p}_{t+1}, \dots, \hat{p}_C] \in \mathbb{R}^{(C-1)}$ is used
 253 to independently model probabilities among non-target classes, i.e., the probabilities normalized
 254 excluding the t -th class.
 255

256 Specifically, in Eq. (6), the first term transfers knowledge via binary logit distillation for the target
 257 class, referred to as target class KD (TCKD). The second term, referred to as non-target class KD
 258 (NCKD), considers the knowledge among the non-target logits. However, these two KD terms are
 259 coupled with $1 - p_t^T$ in Eq. (6). To better adjust the importance of each KD term, the hyperparameters
 260 α and β are introduced in Eq. (7), following Zhao et al. (2022). We further provide insights into
 261 each of these KD losses in the next section. Finally, we adopt the standard cross-entropy loss \mathcal{L}_{CE}
 262 as the task loss, and compute the final objective for training the classifier h as:
 263

$$263 \quad 264 \quad 265 \quad \mathcal{L} = \mathcal{L}_{\text{CE}} + \alpha \underbrace{D_{\text{KL}}(\mathbf{b}^T \| \mathbf{b}^S)}_{\text{TCKD}} + \beta \underbrace{D_{\text{KL}}(\hat{\mathbf{p}}^T \| \hat{\mathbf{p}}^S)}_{\text{NCKD}}. \quad (7)$$

266 In particular, the teachers' guidance itself is integrated into the joint classification head that operates
 267 on the combined embedding space of modalities, rather than relying on a separate student model

268 ¹We omit the temperature τ from Hinton et al. (2015) without loss of generality, to allow the student to better
 269 imitate the predictive posterior and to keep it in its natural form ($\tau = 1$), thereby preserving its diversity (Zhang
 et al., 2019; Wang et al., 2023a).

270 that would otherwise need to learn low-level perception of modalities. Overall, it leverages self-
 271 generated, uncertainty-aware targets—extracted from the logit space of multimodal models—to ef-
 272 ffectively learn holistic uncertainty knowledge across modalities. Therefore, the proposed framework
 273 harnesses the intrinsic OOD detection capability of a given set of multimodal models by exploiting
 274 both feature-level and logit-level information across the modalities.

276 3.4 FURTHER INSIGHTS INTO UNCERTAINTY-AWARE DARK KNOWLEDGE

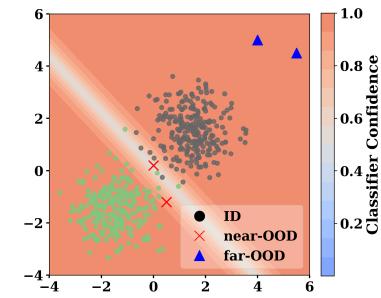
278 To gain deeper insights into how the uncertainty-aware dark knowledge contained in multimodal
 279 teacher logits contributes to OOD detection, we reformulate Eq. (5) as the combination of TCKD
 280 and NCKD. In particular, Zhao et al. (2022) study their effect in the task of image classification. In
 281 contrast, below we investigate the role of these two forms of dark knowledge for multimodal OOD
 282 detection.

283 **Multimodal near-OOD detection mostly benefits from**

284 **TCKD.** TCKD transfers knowledge about the relative “diffi-
 285 culty” of training samples, i.e., the knowledge describes how
 286 difficult it is to recognize each sample (Zhao et al., 2022). In
 287 our task, TCKD can be interpreted as binary uncertainty-aware
 288 supervision of the target class, which guides the student to
 289 identify difficult ID samples that lie near the decision boundary
 290 (i.e., with high uncertainty in the target class). This is partic-
 291 ularly relevant to near-OOD detection, where the fundamental
 292 challenge is that near-OOD samples also lie close to ID deci-
 293 sion boundaries (e.g, given ‘cat’ and ‘dog’ as ID classes, im-
 294 ages of ‘fox’ will be near-OOD, see Fig. 3) and often exhibit
 295 ambiguity with those ID samples. Therefore, we argue that
 296 the near-OOD task mostly benefits from TCKD rather than
 297 NCKD (which focuses on the uncertainty knowledge among
 298 non-target classes) in the proposed self multimodal OOD
 299 distillation framework. This claim is further validated by the
 300 empirical results presented in Table 1, where we individually
 301 study the effects of TCKD and NCKD on two near-OOD benchmarks. The results imply that apply-
 302 ing TCKD alone is comparable to, and even better than, classical KD (which combines both TCKD
 303 and NCKD, with results shown in the second row) for the near-OOD task.

304 Table 1: The effect of TCKD and NCKD for near-OOD detection. Values in brackets represent the
 305 performance improvement over the baseline.

306 TCKD	NCKD	307 HMDB51 25/26			308 UCF101 50/51		
		309 FPR95	310 AUROC	311 ID ACC	312 FPR95	313 AUROC	314 ID ACC
–	–	38.78	88.83	89.76	10.10	98.06	99.71
✓	✓	34.81 (-3.97)	90.07 (+1.24)	90.37 (+0.61)	5.98 (-4.12)	98.57 (+0.51)	99.79 (+0.08)
–	✓	35.82 (-2.96)	89.69 (+0.86)	89.89 (+0.13)	6.76 (-3.34)	98.49 (+0.43)	99.63 (-0.08)
✓	–	34.99 (-3.79)	90.12 (+1.29)	90.50 (+0.74)	5.92 (-4.18)	98.57 (+0.51)	99.81 (+0.10)



315 Figure 3: Classifier-based confidence for OOD detection. It as-
 316 signs low scores in the small in-
 317 between area but may still suffer
 318 from overconfidence issues.

319 **Multimodal Far-OOD detection mostly benefits from NCKD.** In contrast to near-OOD samples
 320 that reside close to decision boundaries, far-OOD samples lie far from the ID clusters or centers
 321 and therefore are less influenced by TCKD. However, a common challenge in the far-OOD case
 322 is that classifiers can still be overconfident in these sparse far-OOD regions (Fig. 3)—while they
 323 assign low confidence primarily near decision boundaries, they often misclassify far-OOD samples
 324 as belonging to one of the ID classes (Park et al., 2023). This overconfidence can be attributed
 325 to the fact that the model is trained with one-hot labels, which compel it to treat even atypical
 326 ID samples as strong representatives of their target classes, under the provided high-confidence
 327 supervision (Yang & Xu, 2025). Therefore, rather than relying on the binary uncertainty knowledge
 328 provided by TCKD, which is still related to the target class, the student benefits from NCKD on
 329 these ID samples, which emphasizes uncertainty knowledge among non-target classes. To further
 330 validate this claim, we evaluate the individual effects of TCKD and NCKD on four far-OOD datasets
 331 in Table 2. The results show that applying NCKD alone, or assigning more weight to NCKD, can

324
 325 Table 2: The effect of TCKD and NCKD for far-OOD detection, on HMDB51 (Kuehne et al., 2011)
 326 ID dataset. Values in brackets represent the performance improvement over the baseline.
 327

TCKD	NCKD	UCF101		HAC		EPIC-Kitchens		Kinetics600	
		FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC
–	–	31.77	90.55	23.49	94.20	22.12	94.87	26.91	93.53
✓	✓	29.49 (-2.28)	90.80 (+0.25)	21.19 (-2.30)	94.77 (+0.57)	18.91 (-3.21)	95.13 (+0.26)	22.49 (-4.42)	94.70 (+1.17)
✓	–	29.83 (-1.94)	90.70 (+0.15)	21.48 (-2.01)	94.71 (+0.51)	19.59 (-2.53)	94.96 (+0.09)	22.81 (-4.10)	94.64 (+1.11)
–	✓	28.60 (-3.17)	91.46 (+0.91)	20.75 (-2.74)	94.94 (+0.74)	16.01 (-6.11)	96.03 (+1.16)	22.17 (-4.74)	94.83 (+1.30)

328
 329 yield better detection performance (with gains of up to 15% on EPIC-Kitchens) on the multimodal
 330 far-OOD task.
 331

332 **Our method improves OOD detection, which cannot be achieved by the joint probability dis-**
 333 **tribution or by naively combining it with predictions from individual modalities.** Our method
 334 significantly improves both near-OOD and far-OOD detection by reducing overconfidence and false
 335 positive rates through learning with self uncertainty-aware dark knowledge distilled from the teach-
 336 ers. Notably, this performance gain (see Section 4.3 for empirical validation) cannot be achieved by
 337 relying on inference from the joint probability distribution across all modalities, p^S (trained solely
 338 with the task loss), nor by averaging the predicted probabilities of the individual modalities and the
 339 joint classifier: $\bar{p}_{\text{all}} = \frac{1}{M+1} \left(\sum_{m=1}^M p^m + p^S \right)$.
 340

341 **4 EVALUATION**

342 In this section, we first describe our experimental setup, then present the main results on diverse
 343 multimodal OOD detection benchmarks, followed by ablation studies.
 344

345 **4.1 EXPERIMENTAL SETTINGS**

346 **Datasets and Tasks.** Following (Dong et al., 2024; Li et al., 2025; Liu et al., 2025), we eval-
 347 uate the proposed method on a diverse set of multimodal OOD benchmarks, comprising five action
 348 recognition datasets (HMDB51 (Kuehne et al., 2011), UCF101 (Soomro et al., 2012), Kinetics-
 349 600 (Kay et al., 2017), HAC (Dong et al., 2023), and EPIC-Kitchens (Damen et al., 2018)) and
 350 two tasks, namely multimodal near-OOD detection and multimodal far-OOD detection. HMDB51
 351 and UCF101 provide video and optical flow modalities, whereas the others additionally include
 352 audio modality. For the near-OOD detection task, we evaluate on four datasets: EPIC-Kitchens
 353 4/4, a subset of EPIC-Kitchens divided into four classes for training (ID) and four classes for test-
 354 ing (OOD); HMDB51 25/26, UCF101 50/51, and Kinetics-600 129/100, which are similarly derived
 355 from HMDB51, UCF101, and Kinetics-600, respectively. For the far-OOD detection task, either
 356 HMDB51 or Kinetics-600 is used as the ID dataset, with the remaining datasets serving as OOD.
 357

358 **Evaluation Metrics.** We use widely adopted metrics for OOD detection (Dong et al., 2024; Li
 359 et al., 2025), including the area under the receiver operating characteristic curve (AUROC), the false
 360 positive rate at 95% true positive rate (FPR95), and the ID classification accuracy (ID ACC).
 361

362 **Baselines.** As the vanilla baseline model (Base), we train all classifiers, including each unimodal
 363 model and a combined classifier (with the same architecture as ours), using only the task loss, i.e.,
 364 cross-entropy loss. Following (Dong et al., 2024; Li et al., 2025; Liu et al., 2025), we adopt the
 365 SlowFast network (Feichtenhofer et al., 2019), initialized with pre-trained weights from Kinetics-
 366 600. As an easy plug-and-play approach, we further evaluate our method on recent SOTA mod-
 367 els as backbones that incorporate retraining approaches, including the Agree-to-Disagree algorithm
 368 (A2D) (Dong et al., 2024), the combination of A2D and NP-Mix (AN) (Dong et al., 2024), DPU (Li
 369 et al., 2025), and Feature Mixing (FM) (Liu et al., 2025). For a fair comparison, we use the same
 370 classifier architecture as theirs, but retrain them using our framework while keeping the backbone
 371 models fixed.
 372

373 **Configuration.** As mentioned, our method requires no retraining of the original unimodal mod-
 374 els and involves only retraining a combined classifier. We use the same model architectures as in
 375 the baselines above and retrain their final classifiers using the proposed framework for 10 epochs.
 376 Training is performed with the Adam optimizer (Kingma, 2014), an initial learning rate of 0.0001,
 377

378

379
380
Table 3: Multimodal near-OOD detection results using video and optical flow. The best results are
bolded. Results averaged over six random runs.

Method	HMDB51 25/26			UCF101 50/51			EPIC-Kitchens 4/4			Kinetics600 129/100		
	FPR95	AUROC	ID ACC	FPR95	AUROC	ID ACC	FPR95	AUROC	ID ACC	FPR95	AUROC	ID ACC
Base	38.78	88.83	89.76	10.10	98.06	99.71	75.00	66.70	71.27	64.61	76.59	80.31
+Ours	34.90	90.12	90.50	5.92	98.57	99.81	74.74	68.28	73.02	60.91	78.07	81.58
A2D	38.34	88.22	90.63	7.09	98.19	99.61	66.23	71.04	71.46	63.04	76.47	79.52
+Ours	37.65	88.81	90.81	5.40	98.49	99.71	68.62	70.33	72.35	61.42	77.77	81.35
AN	33.77	88.80	90.20	7.96	98.24	99.71	67.16	71.53	71.64	62.91	76.93	80.54
+Ours	34.07	90.03	90.46	5.51	98.56	99.77	65.67	72.50	72.01	61.16	78.06	82.29
DPU	34.42	89.15	92.16	7.57	98.17	99.81	63.81	71.46	72.39	61.59	77.50	81.07
+Ours	33.25	89.65	92.77	7.84	98.31	99.77	64.70	71.11	73.02	59.46	78.33	81.96
FM	45.10	87.29	89.11	8.06	97.92	99.61	71.83	68.49	72.76	64.10	76.16	80.11
+Ours	37.73	88.99	90.94	6.06	98.49	99.71	72.16	68.93	73.06	62.75	78.13	81.80

392

393
394
Table 4: Multimodal far-OOD detection results using video and optical flow, with HMDB51 as the
ID dataset. The best results are bolded. Results averaged over six random runs.

Method	Kinetics-600		UCF101		EPIC-Kitchens		HAC		Average		ID ACC
	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	
Base	26.91	93.53	31.47	90.10	22.12	94.87	23.49	94.20	26.00	93.18	87.46
+Ours	22.17	94.83	28.60	91.46	16.01	96.03	20.75	94.94	21.88	94.31	88.12
A2D	20.18	95.12	33.87	90.29	12.43	96.53	15.85	95.82	20.58	94.44	87.34
+Ours	17.40	95.73	27.55	91.03	8.73	97.33	16.47	96.07	17.54	95.04	87.69
AN	24.29	93.99	36.94	89.71	7.18	97.60	23.15	94.45	22.89	93.94	86.66
+Ours	19.98	94.96	29.35	91.26	10.40	96.05	19.38	94.75	19.78	94.49	86.96
DPU	20.75	95.35	28.39	92.41	4.33	98.46	20.64	95.40	18.53	95.41	87.34
+Ours	19.11	95.32	25.25	92.26	6.50	97.66	18.15	95.36	17.25	95.16	87.94
FM	20.30	94.85	34.89	89.97	9.01	96.42	19.27	95.25	20.87	94.12	86.32
+Ours	16.88	94.79	27.99	90.64	12.03	93.32	16.88	94.94	18.95	93.92	86.26

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216

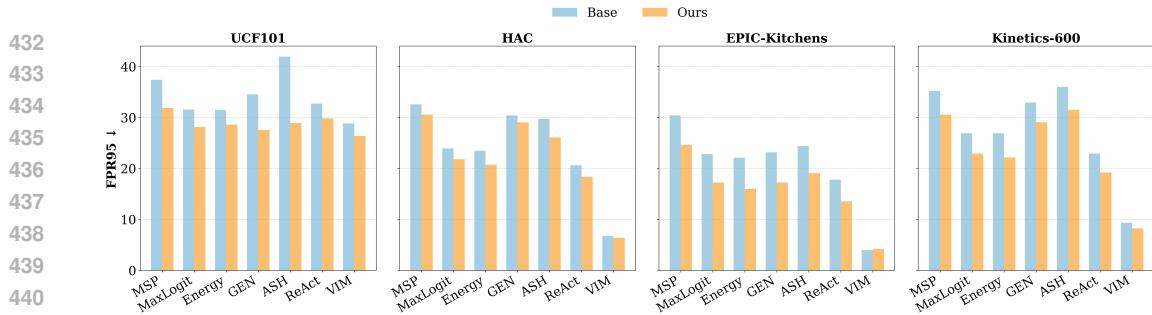


Figure 4: Compatibility of our method with various post-hoc OOD scoring methods.

4.3 ABLATION STUDIES

We conduct ablation studies with two main objectives: (1) to evaluate the compatibility of our method with various post-hoc OOD scores; and (2) to analyze the contribution of each individual component of our framework. A detailed hyperparameter analysis is provided in Section A.3.

Compatibility with various post-hoc OOD scores. We evaluate our method across seven post-hoc OOD scoring methods with different strategies: probability space (MSP), logit space (MaxLogit, Energy, GEN), penultimate activation manipulations (ReAct, ASH), and combinations of logit- and feature-space techniques (VIM), beyond the default model scores used in our main experiments. Results in Fig. 4 show that, despite this diversity, our method consistently improves the performance of all OOD scoring methods (with detailed results provided in Table 8 in the appendix).

Importance of the components. Our self multimodal OOD distillation framework improves OOD detection by leveraging uncertainty-aware dark knowledge from unimodal experts. To further validate this, we conduct the following experiments on four OOD datasets. First, we compare the performance of our method against a combined classifier h trained using only the task loss (i.e., equivalent to setting both α and β to 0 in Eq. (7), and denoted as *Vanilla* in Table 5). We also compare against an ensemble baseline that averages the predicted probabilities of the individual modalities and the joint classifier (\bar{p}_{all} , cf. Section 3.4), reported as *Ensemble* in Table 5. Our method surpasses these approaches, highlighting the importance of dark knowledge in improving OOD performance—something that cannot be achieved by naively combining ensembles or simply fusing features across modalities. We further evaluate a variant without modality-specific weights (in Eq. (3)), reported as *Uniform KD* in Table 5, which together demonstrates that our method effectively accounts for underperforming modalities. We also compare another knowledge transfer framework, where the p^T is replaced with the best-performing modality while fusing features from all modalities, denoted as *Best KD* in Table 5. Our method still outperforms this variant, indicating that leveraging uncertainty-aware dark knowledge across all modalities is more effective than relying solely on the best individual modality.

Table 5: Ablation study of components for far-OOD detection with HMDB51 as the ID dataset. The best results are bolded. Results averaged over six random runs.

Method	UCF101		HAC		EPIC-Kitchens		Kinetics-600		Average		ID ACC
	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	
Vanilla	31.47	90.10	23.49	94.20	22.12	94.87	26.91	93.53	26.00	93.18	87.46
Ensemble	32.50	90.21	25.88	93.70	21.44	95.14	28.05	93.25	26.97	93.08	88.03
Uniform KD	29.44	91.26	22.37	94.62	16.62	95.87	23.40	94.58	22.96	94.08	88.21
Best KD	30.13	91.29	20.84	94.96	16.90	95.68	22.19	94.75	22.52	94.17	87.89
Ours	28.60	91.46	20.75	94.94	16.01	96.03	22.17	94.83	21.88	94.31	88.12

5 CONCLUSION

In this work, we explore the potential of dark knowledge within multimodal models to strengthen OOD detection. Building on this, we propose a self multimodal distillation framework that leverages both logit-space uncertainty knowledge and feature-space knowledge from a given set of multimodal models to harness their intrinsic OOD detection capability, while effectively accounting for underperforming modalities. Extensive experiments demonstrate that our method consistently improves multimodal OOD detection, further enhances existing approaches, and reveals the full synergy among modalities.

486
487

REPRODUCIBILITY STATEMENT

488
489
490
491
492

Our implementation strictly follows the benchmark guidelines provided in <https://github.com/donghao51/MultiOOD> (Dong et al., 2024). The settings and implementation details are reported in Section 4.1. Our code is publicly available at <https://github.com/codebyhdnu-hub/SMOD>. Detailed information on the hardware and software used is also provided in the repository.

493

THE USE OF LARGE LANGUAGE MODELS (LLMs)

495
496
497

We used ChatGPT (OpenAI, GPT-4 Turbo) solely for minor grammar and language corrections. All scientific content and analysis were entirely developed by the authors.

498

REFERENCES

500
501
502
503

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric vision: The epic-kitchens dataset. In *ECCV*, pp. 720–736, 2018.

504
505

Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation shaping for out-of-distribution detection. *arXiv preprint arXiv:2209.09858*, 2022.

506
507
508

Hao Dong, Ismail Nejjar, Han Sun, Eleni Chatzi, and Olga Fink. Simmmdg: A simple and effective framework for multi-modal domain generalization. *NeurIPS*, 36:78674–78695, 2023.

509
510

Hao Dong, Yue Zhao, Eleni Chatzi, and Olga Fink. Multiood: Scaling out-of-distribution detection for multiple modalities. *NeurIPS*, 37:129250–129278, 2024.

511
512

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual outlier synthesis. *arXiv preprint arXiv:2202.01197*, 2022.

513
514
515

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition. In *ICCV*, pp. 6202–6211, 2019.

516
517
518

Olga Fink, Qin Wang, Markus Svensen, Pierre Dersin, Wan-Jui Lee, and Melanie Ducoffe. Potential, challenges and future directions for deep learning in prognostics and health management applications. *Engineering Applications of Artificial Intelligence*, 92:103678, 2020.

519
520
521

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In *ICLR*, 2017.

522
523

Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. Deep anomaly detection with outlier exposure. In *ICLR*, 2019.

524
525
526
527

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza Mostajabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings. In *ICML*, pp. 8759–8773, 2022.

528
529

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*, 2015.

530
531
532
533

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. *arXiv preprint arXiv:1705.06950*, 2017.

534
535

Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

536
537
538

Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a large video database for human motion recognition. In *ICCV*, pp. 2556–2563. IEEE, 2011.

539

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. *NeurIPS*, 30, 2017.

- 540 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 541 out-of-distribution samples and adversarial attacks. In *NeurIPS*, 2018.
- 542
- 543 Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, and Yue Zhao. Dpu: Dynamic
 544 prototype updating for multimodal out-of-distribution detection. In *CVPR*, pp. 10193–10202,
 545 2025.
- 546 Moru Liu, Hao Dong, Jessica Kelly, Olga Fink, and Mario Trapp. Extremely simple mul-
 547 timodal outlier synthesis for out-of-distribution detection and segmentation. *arXiv preprint*
 548 *arXiv:2505.16985*, 2025.
- 549
- 550 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
 551 tion. In *NeurIPS*, pp. 21464–21475, 2020.
- 552
- 553 Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
 554 out-of-distribution detection. In *CVPR*, pp. 23946–23955, 2023a.
- 555
- 556 Yuyuan Liu, Choubo Ding, Yu Tian, Guansong Pang, Vasileios Belagiannis, Ian Reid, and Gus-
 557 tavo Carneiro. Residual pattern learning for pixel-wise out-of-distribution detection in semantic
 558 segmentation. In *ICCV*, pp. 1151–1161, 2023b.
- 559
- 560 Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
 561 distribution detection with vision-language representations. *NeurIPS*, 35:35087–35102, 2022.
- 562
- 563 Jaewoo Park, Yoon Gyo Jung, and Andrew Beng Jin Teoh. Nearest neighbor guidance for out-of-
 564 distribution detection. In *ICCV*, pp. 1686–1695, 2023.
- 565
- 566 Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In *CVPR*,
 567 pp. 3967–3976, 2019.
- 568
- 569 Gorjan Radevski, Dusan Grujicic, Matthew Blaschko, Marie-Francine Moens, and Tinne Tuytelaars.
 570 Multimodal distillation for egocentric action recognition. In *ICCV*, pp. 5213–5224, 2023.
- 571
- 572 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 573 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 574 models from natural language supervision. In *ICML*, pp. 8748–8763. PMLR, 2021.
- 575
- 576 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 577 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.
- 578
- 579 Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activa-
 580 tions. *NeurIPS*, 34:144–157, 2021.
- 581
- 582 Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
 583 neighbors. In *ICML*, pp. 20827–20840. PMLR, 2022.
- 584
- 585 Dongdong Wang, Jingyao Xu, Siyang Lu, Xiang Wei, and Liqiang Wang. Ensemble distillation
 586 for out-of-distribution detection. In *2023 IEEE 29th International Conference on Parallel and
 587 Distributed Systems (ICPADS)*, pp. 248–253. IEEE, 2023a.
- 588
- 589 Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
 590 logit matching. In *CVPR*, pp. 4921–4930, 2022.
- 591
- 592 Hualiang Wang, Yi Li, Hufeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
 593 clip to say no. In *CVPR*, pp. 1802–1812, 2023b.
- 594
- 595 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
 596 A survey. *IJCV*, 132(12):5635–5662, 2024.
- 597
- 598 Yang Yang and Haonan Xu. Strengthen out-of-distribution detection capability with progressive
 599 self-knowledge distillation. In *ICML*, 2025.
- 600
- 601 Jingyang Zhang, Nathan Inkawich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
 602 exposure: Towards out-of-distribution detection in fine-grained environments. pp. 5531–5540,
 603 2023.

594 Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
595 own teacher: Improve the performance of convolutional neural networks via self distillation. In
596 *ICCV*, pp. 3713–3722, 2019.

597 Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
598 In *CVPR*, pp. 11953–11962, 2022.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**649 **A.1 ADDITIONAL DETAILS OF THE METHOD**650
651
652 Following Zhao et al. (2022), we reformulate KL divergence as a weighted sum of two terms, in
653 Eq. (6). A detailed derivation of Eq. (6) is provided below. For a given conditional distribution over
654 classes, let the probability of the i -th class be denoted as p_i , i.e.,

655
656
$$p_i = \frac{\exp(z_i)}{\sum_{j=1}^C \exp(z_j)},$$

657

658 where z_i is the logit corresponding to the i -th class. Then, we have p_t , $p_{\setminus t}$, and each element \hat{p}_i of
659 $\hat{\mathbf{p}}$ as (with notation consistent with Section 3.3):

660
661
$$p_t = \frac{\exp(z_t)}{\sum_{j=1}^C \exp(z_j)}, \quad p_{\setminus t} = \frac{\sum_{k=1, k \neq t}^C \exp(z_k)}{\sum_{j=1}^C \exp(z_j)}, \quad \hat{p}_i = \frac{\exp(z_i)}{\sum_{j=1, j \neq t}^C \exp(z_j)}. \quad (8)$$

662

663
664
$$\begin{aligned} \mathcal{L}_{\text{KL}} &= D_{\text{KL}}(\mathbf{p}^T \parallel \mathbf{p}^S) \\ 665 &= \sum_{i=1}^C p_i^T \log \left(\frac{p_i^T}{p_i^S} \right) \\ 666 &= p_t^T \log \left(\frac{p_t^T}{p_t^S} \right) + \sum_{i=1, i \neq t}^C p_i^T \log \left(\frac{p_i^T}{p_i^S} \right). \end{aligned} \quad (9)$$

667

668 According to Eq. (8), we have $\hat{p}_i = p_i / p_{\setminus t}$; therefore, Eq. (9) can be rewritten as:
669

670
671
$$\begin{aligned} \mathcal{L}_{\text{KL}} &= p_t^T \log \left(\frac{p_t^T}{p_t^S} \right) + \sum_{i=1, i \neq t}^C p_{\setminus t}^T \hat{p}_i^T \log \left(\frac{p_{\setminus t}^T \hat{p}_i^T}{p_{\setminus t}^S \hat{p}_i^S} \right) \\ 672 &= p_t^T \log \left(\frac{p_t^T}{p_t^S} \right) + \sum_{i=1, i \neq t}^C p_{\setminus t}^T \hat{p}_i^T \left(\log \left(\frac{\hat{p}_i^T}{\hat{p}_i^S} \right) + \log \left(\frac{p_{\setminus t}^T}{p_{\setminus t}^S} \right) \right) \\ 673 &= p_t^T \log \left(\frac{p_t^T}{p_t^S} \right) + \sum_{i=1, i \neq t}^C p_{\setminus t}^T \hat{p}_i^T \log \left(\frac{\hat{p}_i^T}{\hat{p}_i^S} \right) + \sum_{i=1, i \neq t}^C p_{\setminus t}^T \hat{p}_i^T \log \left(\frac{p_{\setminus t}^T}{p_{\setminus t}^S} \right), \end{aligned} \quad (10)$$

674

675 Since p_t^T and $p_{\setminus t}^S$ are independent of the class index i , we have:
676

677
678
$$\sum_{i=1, i \neq t}^C p_{\setminus t}^T \hat{p}_i^T \log \left(\frac{p_{\setminus t}^T}{p_{\setminus t}^S} \right) = p_{\setminus t}^T \log \left(\frac{p_{\setminus t}^T}{p_{\setminus t}^S} \right) \sum_{i=1, i \neq t}^C \hat{p}_i^T = p_{\setminus t}^T \log \left(\frac{p_{\setminus t}^T}{p_{\setminus t}^S} \right). \quad (11)$$

679

680 Then, from Eq. (10) and Eq. (11), we obtain
681

682
683
$$\mathcal{L}_{\text{KL}} = \underbrace{p_t^T \log \left(\frac{p_t^T}{p_t^S} \right) + p_{\setminus t}^T \log \left(\frac{p_{\setminus t}^T}{p_{\setminus t}^S} \right)}_{D_{\text{KL}}(\mathbf{b}^T \parallel \mathbf{b}^S)} + \underbrace{p_{\setminus t}^T \sum_{i=1, i \neq t}^C \hat{p}_i^T \log \left(\frac{\hat{p}_i^T}{\hat{p}_i^S} \right)}_{D_{\text{KL}}(\hat{\mathbf{p}}^T \parallel \hat{\mathbf{p}}^S)}. \quad (12)$$

684

685 It can be seen that Eq. (12) is a combination of two KL divergence loss terms, which can be rewritten
686 as follows, identical to Eq. (6) in Section 3.3:
687

688
689
$$\mathcal{L}_{\text{KL}} = D_{\text{KL}}(\mathbf{b}^T \parallel \mathbf{b}^S) + (1 - p_t^T) D_{\text{KL}}(\hat{\mathbf{p}}^T \parallel \hat{\mathbf{p}}^S).$$

690

691 **A.2 ADDITIONAL RESULTS**692
693 We provide additional experimental results in this section. Table 6 presents the performance of
694 our method on far-OOD detection with Kinetics-600 as the ID dataset. The results show consistent
695

702
 703 Table 6: Multimodal far-OOD detection results using video and optical flow, with Kinetics-600 as
 704 the ID dataset. The best results are bolded. Results averaged over six random runs.

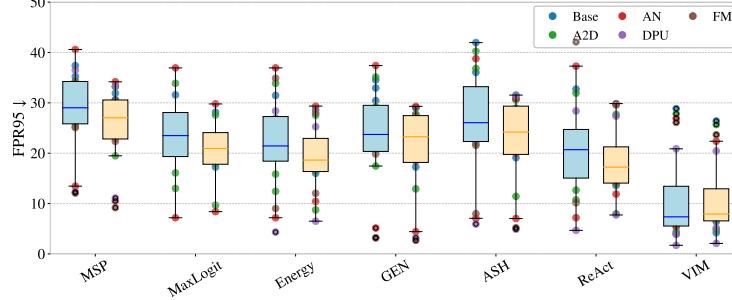
Method	UCF101			HAC			EPIC-Kitchens			HMDB51			Average		ID ACC
	FPR95	AUROC		FPR95	AUROC		FPR95	AUROC		FPR95	AUROC		FPR95	AUROC	
Base	70.67	68.49	55.43	78.40	37.93	85.10	66.08	68.80	57.53	75.20	73.71				
+Ours	59.60	76.37	44.86	83.68	26.58	90.10	59.96	77.93	47.75	82.02	75.24				
A2D	71.47	67.99	56.53	78.18	39.87	83.96	67.30	67.98	58.79	74.03	73.61				
+Ours	59.55	75.97	43.06	84.55	26.89	90.29	60.70	77.51	47.55	82.08	75.83				
AN	67.17	74.49	56.69	80.20	34.12	87.49	63.24	74.13	55.31	79.08	73.65				
+Ours	58.40	79.08	42.67	85.34	28.27	90.15	60.56	80.22	47.48	83.70	76.14				
DPU	55.33	78.20	47.39	82.99	27.38	91.61	61.27	80.83	47.84	83.91	76.74				
+Ours	57.69	75.87	45.30	83.42	26.66	91.19	60.41	79.82	47.52	82.58	77.74				

715
 716 Table 7: Multimodal Near-OOD Detection using video, optical flow, and audio on Kinetics-
 717 600 (129/100). Each cell reports baseline / Ours, with the better value in bold. Results are compared
 718 across various post-hoc OOD scoring methods.

Method	Base			AN			DPU		
	FPR95	AUROC	ID ACC	FPR95	AUROC	ID ACC	FPR95	AUROC	ID ACC
MSP	61.73 / 60.40	77.24 / 78.97	80.46 / 82.15	58.85 / 57.96	78.50 / 79.41	81.76 / 83.13	63.34 / 61.57	77.47 / 78.26	82.68 / 83.33
MaxLogit	62.81 / 61.40	78.07 / 79.39	80.46 / 82.15	60.98 / 59.59	78.61 / 79.54	81.76 / 83.13	65.87 / 64.77	77.86 / 78.50	82.68 / 83.33
Energy	63.06 / 61.61	77.72 / 78.90	80.46 / 82.15	60.91 / 59.65	78.17 / 79.00	81.76 / 83.13	66.05 / 64.97	77.57 / 78.13	82.68 / 83.33
GEN	61.75 / 60.59	77.80 / 78.73	80.46 / 82.15	59.22 / 58.94	78.61 / 79.16	81.76 / 83.13	65.85 / 65.20	77.17 / 77.82	82.68 / 83.33
ASH	62.34 / 59.83	78.46 / 79.31	80.13 / 81.66	58.94 / 58.18	79.05 / 79.80	81.11 / 82.68	64.85 / 63.59	77.31 / 78.29	81.86 / 82.74
ReAct	69.05 / 65.73	75.76 / 77.39	80.44 / 82.11	66.85 / 64.18	76.40 / 77.44	81.86 / 82.72	69.01 / 67.93	76.77 / 77.13	82.39 / 83.05
VIM	62.97 / 61.81	77.73 / 78.90	80.46 / 82.15	61.06 / 59.69	78.19 / 78.79	81.76 / 83.13	65.81 / 65.42	77.79 / 78.22	82.68 / 83.33

727
 728
 729 improvements over all baselines across four diverse OOD datasets. These results highlight the effec-
 730 tiveness of our method in detecting far-OOD samples. Table 7 shows the near-OOD detection results
 731 on Kinetics-600 using three input modalities: video, optical flow, and audio. It also compares the
 732 performance of various post-hoc OOD scoring methods for each baseline in this setting. The results
 733 demonstrate that our method remains adaptable and effective across diverse modality combinations.

734 As discussed, we evaluate our method across seven post-hoc OOD scoring methods with different
 735 strategies: probability space (MSP), logit space (MaxLogit, Energy, GEN), penultimate activation
 736 manipulations (ReAct, ASH), and combined logit–feature space techniques (VIM). Detailed results
 737 on all baselines across four diverse datasets are provided in Table 8, with a summary in Fig. 5. The
 738 results demonstrate that, despite this diversity, our method consistently improves the performance
 739 of all OOD scoring methods.



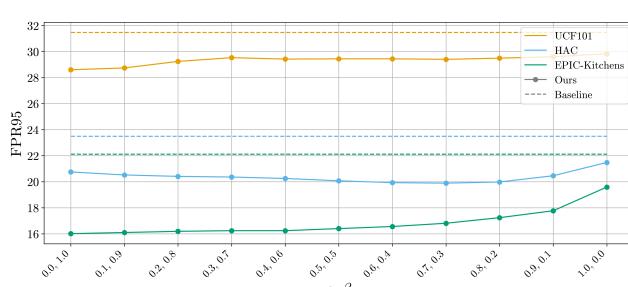
752 Figure 5: Summary of the performance of our method for far-OOD detection using video and optical
 753 flow, with HMDB51 as the ID dataset, evaluated across different models and various post-hoc OOD
 754 scoring methods.

756
757 Table 8: Comparison of different post-hoc OOD scoring methods for multimodal far-OOD detection
758 using video and optical flow, with HMDB51 as the ID dataset. Each cell reports baseline / Ours,
759 with the better value in bold.

760	761	Method	762 UCF101		763 HAC		764 EPIC-Kitchens		765 Kinetics-600	
			FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑
766	767	MSP	37.40 / 31.90	88.68 / 91.33	32.61 / 30.60	89.76 / 91.49	30.44 / 24.63	90.88 / 93.67	35.23 / 30.56	89.16 / 91.41
		MaxLogit	31.58 / 28.14	90.22 / 92.21	23.95 / 21.82	93.98 / 94.71	22.81 / 17.24	94.63 / 95.92	26.91 / 22.92	93.29 / 94.58
		Energy	31.47 / 28.60	90.10 / 91.46	23.49 / 20.75	94.20 / 94.94	22.12 / 16.01	94.87 / 96.03	26.91 / 22.17	93.53 / 94.83
		Base GEN	34.55 / 27.59	90.94 / 92.65	30.44 / 29.05	91.93 / 92.70	23.15 / 17.26	94.13 / 95.58	32.95 / 29.08	91.13 / 92.53
		ASH	41.96 / 28.94	88.97 / 91.77	29.76 / 26.11	93.21 / 94.25	24.40 / 19.09	94.16 / 95.63	36.03 / 31.54	91.23 / 92.93
		ReAct	32.73 / 29.85	90.19 / 91.08	20.64 / 18.36	95.26 / 95.34	17.79 / 13.57	95.65 / 96.29	22.92 / 19.22	94.73 / 95.40
768	769	VIM	28.85 / 26.39	91.97 / 92.30	6.73 / 6.39	98.75 / 98.69	3.99 / 4.20	99.01 / 99.12	9.35 / 8.26	98.12 / 98.29
		MSP	34.32 / 33.23	89.07 / 90.82	26.11 / 28.83	91.27 / 91.98	25.31 / 19.48	92.94 / 95.14	31.36 / 29.60	90.61 / 91.84
		MaxLogit	33.87 / 27.59	90.46 / 91.69	16.08 / 17.99	95.61 / 95.75	13.00 / 9.67	96.41 / 97.36	20.41 / 18.56	94.93 / 95.47
		Energy	33.87 / 27.55	90.29 / 91.03	15.85 / 16.47	95.82 / 96.07	12.43 / 8.73	96.53 / 97.33	20.18 / 17.40	95.12 / 95.73
		A2D GEN	35.12 / 27.80	91.89 / 93.10	22.23 / 23.99	93.69 / 94.10	17.45 / 12.91	95.83 / 96.95	29.19 / 25.93	92.74 / 93.51
		ASH	40.25 / 30.56	89.17 / 91.75	25.77 / 23.81	93.61 / 94.62	21.89 / 11.43	94.94 / 97.33	36.83 / 30.79	91.48 / 93.15
770	771	ReAct	31.93 / 27.71	90.10 / 90.46	12.66 / 14.00	96.46 / 96.28	10.72 / 7.96	96.83 / 97.24	15.85 / 14.94	95.94 / 96.18
		VIM	27.82 / 25.68	90.72 / 90.67	5.93 / 6.61	98.72 / 98.68	4.45 / 4.79	98.68 / 98.72	7.98 / 7.84	98.10 / 98.20
		MSP	40.59 / 34.18	88.00 / 90.44	28.62 / 26.13	91.57 / 92.99	13.45 / 10.49	96.42 / 97.66	29.42 / 27.39	90.65 / 92.58
		MaxLogit	36.94 / 29.78	89.73 / 91.72	23.03 / 20.82	94.25 / 94.91	7.18 / 8.39	97.72 / 97.53	24.63 / 21.05	93.72 / 94.90
		Energy	36.94 / 29.35	89.71 / 91.26	23.15 / 19.38	94.45 / 94.75	7.18 / 10.40	97.60 / 96.05	24.29 / 19.98	93.99 / 94.96
		AN GEN	37.40 / 29.30	91.24 / 93.14	24.29 / 22.55	94.33 / 95.13	5.13 / 4.42	99.02 / 99.12	25.20 / 23.97	93.54 / 94.72
772	773	ASH	38.77 / 30.90	89.54 / 92.06	23.72 / 19.98	94.47 / 95.42	7.07 / 7.02	98.24 / 98.21	27.59 / 24.58	93.19 / 94.53
		ReAct	37.29 / 29.71	89.69 / 90.92	20.75 / 17.17	95.05 / 94.78	7.18 / 11.88	97.46 / 95.35	21.44 / 17.42	94.76 / 95.11
		VIM	26.91 / 22.37	92.28 / 92.70	6.39 / 6.98	98.56 / 98.41	5.59 / 7.89	98.06 / 97.07	9.35 / 7.94	98.04 / 98.05
		MSP	36.49 / 33.27	90.52 / 91.18	27.37 / 25.95	93.30 / 93.61	12.31 / 11.08	97.52 / 97.67	27.59 / 26.68	93.17 / 93.37
		Energy	28.39 / 25.25	92.41 / 92.26	20.64 / 18.15	95.40 / 95.36	4.33 / 6.50	98.46 / 97.66	20.75 / 19.11	95.35 / 95.32
		DPU GEN	28.16 / 25.47	93.53 / 94.17	21.44 / 19.04	95.66 / 96.05	3.19 / 3.19	99.30 / 99.27	21.09 / 20.66	95.45 / 95.66
774	775	ASH	32.27 / 31.36	91.86 / 92.57	22.46 / 21.05	95.23 / 95.59	5.93 / 4.90	98.82 / 99.01	26.34 / 25.27	94.53 / 94.79
		ReAct	28.39 / 27.37	91.95 / 91.50	18.02 / 17.29	95.78 / 95.28	4.68 / 7.73	98.28 / 97.22	18.02 / 17.77	95.78 / 95.30
		VIM	20.87 / 20.43	94.42 / 94.17	3.88 / 5.13	99.16 / 98.98	1.71 / 2.08	99.63 / 99.48	6.27 / 6.84	98.74 / 98.57
		MSP	34.21 / 30.44	89.35 / 91.28	25.09 / 22.35	92.39 / 93.42	12.09 / 9.18	97.14 / 97.89	26.00 / 22.98	92.33 / 93.79
		Energy	34.89 / 27.99	89.97 / 90.64	19.27 / 16.88	95.25 / 94.94	9.01 / 12.03	96.42 / 93.32	20.30 / 16.88	94.85 / 94.79
		FM GEN	28.85 / 27.42	92.11 / 93.18	19.84 / 18.59	95.09 / 95.39	3.19 / 2.68	99.21 / 99.42	20.52 / 18.47	95.11 / 95.82
776	777	ASH	32.27 / 28.45	90.08 / 92.31	21.55 / 20.75	94.25 / 94.99	7.98 / 5.19	98.21 / 98.57	23.38 / 20.35	93.74 / 95.07
		ReAct	42.08 / 29.59	88.39 / 89.89	22.23 / 16.53	94.79 / 94.77	10.15 / 14.08	95.42 / 92.24	23.49 / 16.48	94.32 / 94.56
		VIM	26.11 / 23.66	92.36 / 92.19	8.78 / 8.67	98.24 / 98.03	5.36 / 9.92	97.96 / 96.43	10.95 / 10.43	97.54 / 97.35

778 A.3 HYPERPARAMETER ANALYSIS

779 In Fig. 6, we investigate the impact of the hyperparameters α and β in our method across three
780 far-OOD datasets. Following the basic settings in Zhao et al. (2022); Park et al. (2019), we set
781 the loss weights of the KD and CE terms to 1.0. As discussed in Section 3.4, assigning a higher
782 value to β , which emphasizes the NCKD component, leads to improved detection performance in
783 multimodal far-OOD detection. Furthermore, the detection performance consistently remains above
784 the baseline across all tested combinations of α and β , demonstrating the stability and robustness of
785 our framework under varying hyperparameter settings.



800 Figure 6: OOD detection performance with varying α and β for far-OOD detection using video and
801 optical flow, with HMDB51 as the ID dataset.

810 For real-world deployment where the type of OOD shift is unknown, we recommend a balanced
811 and task-agnostic configuration such as $\alpha = 0.5$ and $\beta = 0.5$, which performs robustly across
812 all benchmarks and OOD scenarios. Alternatively, practitioners may adopt a proxy-OOD tuning
813 strategy, which is conventional in prior OOD detection (Hendrycks et al., 2019; Dong et al., 2024;
814 Zhang et al., 2023). In practice, many real-world applications naturally prioritize one type of OOD.
815 Some systems primarily focus on near-OOD detection (e.g., fine-grained classification, medical
816 imaging, product or defect inspection) (Zhang et al., 2023), where far-OOD samples are trivial
817 and typically filtered earlier in the pipeline. Conversely, some applications prioritize far-OOD (e.g.,
818 OCR scanners detecting non-text inputs need to be rejected early in pipeline). Our framework allows
819 practitioners to adjust α and β according to such priorities, but importantly, no prior knowledge of
820 the exact OOD type is required to benefit from the method, as it consistently improves both near-
821 and far-OOD detection under a wide range of settings.
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863