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Abstract

As large-scale datasets grow, neural networks are increasingly trained in a sequen-
tial manner, raising concerns about plasticity loss—a reduced ability to adapt to
new data. Prior studies suggest that warm-start training, which continues from pre-
viously trained model, yields worse generalization than cold-start training, which
reinitializes models at each training phase. However, these works often ignore
standard training schemes such as utilizing data augmentation. We revisit this
problem under standard training schemes and show, through extensive experiments
on various settings, and multiple downstream tasks, that warm-start does not harm
generalization compared to cold-start. This finding holds consistently across train-
ing from scratch, finetuning of pretranied model, and training of foundation models
under a warm-start scenario, indicating that warm-starting is a robust and reliable
strategy for large-scale neural network training.

1 Introduction

As the data for training large foundation models grows rapidly, it becomes inevitable to focus on
incorporating newly arriving data rather than relying on fixed datasets. A key concern in this setting
is the loss of plasticity [6} [1} 18}, 12, |17} |6l [12} [15]]—the gradual reduction in a neural network’s ability
to adapt to new information as the data distribution evolves in a non-stationary manner. Several
works have investigated this issue by attributing loss of plasticity to reduced trainability, namely
the diminishing ability of neural networks to fit newly introduced data, typically manifested as
persistently high training loss during sequential learning.

However, as emphasized by Berariu et al. [3], the loss of plasticity should be understood not only as
reduced trainability—the ability of a network to fit new data—but also as degraded generalization,
which remains a central challenge in continual foundation model training. This generalization
aspect was first concretely illustrated by Ash and Adams [2], who framed it as the warm-starting
problem: although restarting from prior weights may stabilize optimization, it often results in
poorer generalization. Subsequent works [[17, |12} [15] have reinforced this observation, consistently
reporting that warm-start training yields higher test errors than cold-start training, where the model is
re-initialized from scratch at each phase.

Nevertheless, these studies were largely conducted under restricted conditions that diverge from
standard training practices (e.g., omitting widely used techniques such as data augmentation), likely
to highlight the observed effects, leaving their conclusions limited in scope. Moreover, little attention
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has been paid to pretrain—finetune settings that are central to foundation model development, where
warm-starting is commonly employed yet its impact remains insufficiently examined.

In this work, we address the warm-starting problem by examining it under more general and practical
training settings. We begin by analyzing whether training with a warm-start scenario indeed affects
neural network performance when models are trained using a standard training scheme. Here, the
standard training scheme for a given architecture is defined as the procedure introduced in its seminal
work—for example, training ResNet-18 [9] with the same optimizer, learning rate schedule, and data
augmentation strategies as described in the original paper. Adopting this notion of standard training,
our extensive experiments demonstrate that training neural networks under a warm-start scenario
does not adversely impact the generalization ability of the resulting models. We further extend our
investigation to pretrain—finetune settings, which are central to the development of foundation models.
Through experiments in these settings, we show that, contrary to prior concerns raised in the literature,
warm-starting does not lead to degraded generalization performance compared to cold-starting.

2 Revisiting Warm-Start Training: Conceptual and Empirical Motivation

2.1 Conceptual Background and Motivation

Warm-Start Training Warm-starting refers to the practice of continuing training with the
parameters of a network that has already been trained on a smaller dataset. When new data
chunks are introduced, the model resumes training from this previously learned state, rather than
re-initializing the parameters. The term “warm-start” highlights the idea that the network has
been “preheated” through prior training before additional data are incorporated.

Cold-Start Training Cold-starting denotes re-initializing all parameters of the network whenever
new data chunks are added. Training thus begins anew each time on the enlarged dataset. The
expression “cold-start” emphasizes that, unlike warm-starting, the previously preheated network
is reset to a cold state before retraining commences.

Warm-starting bears a close conceptual relationship to continual learning, as both paradigms empha-
size incremental model updates without reinitializing parameters from scratch. In continual learning,
a model adapts to newly arriving data or tasks by leveraging previously learned representations—an
idea that closely parallels the warm-start process of resuming training from an already optimized
state. Both frameworks share the principle of maintaining continuity in learned weights to accelerate
convergence and preserve useful knowledge across training phases.

This connection becomes particularly significant in the era of foundation models, which are typi-
cally pretrained on large and diverse datasets and later extended through finetuning or incremental
adaptation. Such adaptation can be viewed as a form of warm-start training, where the pretrained
model provides a preheated initialization for downstream learning. Understanding the dynamics of
warm-start training, therefore, offers insights into how foundation models evolve under continual
updates—whether through task-specific fine-tuning, domain expansion, or sustained exposure to new
data distributions—and whether the reuse of learned parameters inherently constrains or enhances
generalization.

Previous studies [2 22] [12} |17} [15] have demonstrated that warm-starting the training of a neural
network upon the arrival of new data leads to inferior generalization performance compared to cold-
start training. However, this line of work conducted their analyses under vanilla training, deliberately
excluding standard training schemes such as using data augmentation, in order to highlight the
effects attributable solely to warm-starting [2,[17, [15]]. While such experimental settings may reveal
the severity of warm-starting in restricted scenarios, they do not provide sufficient evidence to
conclude that the problem is pervasive in more general circumstances. Accordingly, in this section,
we re-examine whether training a network under conventional training strategies within a warm-start
scenario indeed leads to inferior generalization compared to cold-start training.
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Figure 1: The experiment results on CIFAR 100 dataset for class and data incremental settings. We
plot both train and test accuracy.
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Figure 2: The ablation study on CIFAR 100 dataset with various training schemes. The red colored
scheme represents the standard training scheme.

2.2 Empirical Observations on Warm-Start Training

We conduct experiments by training a ResNet-18 [9] model on the CIFAR-100 dataset [11]. The
network is optimized using stochastic gradient descent (SGD) with an initial learning rate of 0.1, which
is decayed at the 20th and 60th epochs. Standard training practices, including data augmentation, are
applied following the original implementation in He et al. [9]. All models are trained for 100 epochs

in total.

We evaluate both cold-start and warm-start training settings across two learning scenarios: (1) data-
incremental learning, and (2) class-incremental learning. In the data-incremental setting, the original
dataset is randomly divided into multiple chunks, while in the class-incremental setting, we first
partition the classes randomly and then split the dataset accordingly based on these class subsets.
Under this setup, we further compare our results with Shrink & Perturb (S&P) [2] and DASH [17].

All models are trained from scratch for each experiment.

Since our focus is solely on the effect of the warm-start setting, unlike in conventional continual
learning, the model has access to all previous data chunks during each training phase. Consequently,
we do not employ an external memory buffer containing samples from earlier chunks. This design
effectively eliminates the effects of forgetting inherent to continual learning, thereby ensuring that
the observed differences arise primarily from the initialization strategy.

Figure[I]shows the results of training the model from scratch. In the figure, the metric reported for
both class-incremental and data-incremental settings is the average accuracy computed over all
classes learned up to the current training phase. This means that the plotted accuracy reflects
the model’s ability to generalize across all previously learned classes at each point in training. In
the class-incremental setting, earlier phases involve learning a smaller number of classes, which
makes the initial tasks relatively easier and thus yields higher early-phase accuracy. Conversely, in
the data-incremental setting, the model learns all classes from the beginning but with limited data per
class in the initial stages, leading to lower early accuracy.
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Figure 3: The results of finetuning the pretrained ResNet-18 [9] model on 6 downstream tasks. We
report the test accuracies for both warm-start and cold-start, averaged over the entire sequence of
training phases.

Different from the phenomena reported in previous works [2,[17, [15]], the test accuracy gap between
warm-start and cold-start is marginal in the class-incremental setting, and warm-start even performs
slightly better in the data-incremental setting. Furthermore, since the generalization ability is not
degraded in the warm-start scenario, applying methods such as S&P or DASH offers no advan-
tage. The key takeaway from this experiment is that training under a standard scheme with data
augmentation does not yield any meaningful difference in generalization between warm-start and
cold-start models. To further analyze this behavior, we conducted an ablation study to identify which
components of the standard training setup—namely (1) data augmentation, (2) optimizer, and (3)
learning rate—contribute most to generalization.

Figure 2] presents the ablation results, where we visualize and sort the performance difference
between warm-start and cold-start across various configurations. The noteworthy finding is that
data augmentation emerges as the most influential factor, yet it is often omitted or relegated to the
appendices in previous studies [13].

3 Evaluating Warm-Start Training across Finetuning and Pretraining

So far, we have mainly examined the impact of warm-start training when models are trained from
scratch, focusing on its effect on generalization ability. However, as large open-source foundation
models such as Qwen 2.5 [20], LLaMA 2 [21]], and Gemma [19] are widely adopted for solving
complex downstream tasks, it becomes crucial to analyze how warm-starting behaves in more realistic
scenarios involving pretrained models. To this end, we consider two representative cases where the
warm-start setting naturally arises: (1) finetuning a pretrained model on downstream tasks, and (2)
pretraining a foundation model under a data-incremental setting. The following subsections present
empirical results for both cases.

3.1 Finetuning under the Warm-Start Scenario

In this experiment, we finetune the ImageNet [5]] pretrained ResNet-18 [9] model on six downstream
datasets: Aircraft [[13], Caltech-101 [[7]], Cars [10], DTD [4]], Flowers-102 [14]], and Pets [[16]. The
finetuning follows a data-incremental setting under both warm-start and cold-start scenarios. Each
model is trained for 100 epochs per learning phase, and in the cold-start setting, we reload the
pretrained model before each new phase. We additionally conduct an ablation study to assess the
contribution of data augmentation to generalization performance.

Figure [3] reports the results, where the metric used is the average test accuracy computed over
the entire sequence of incremental training phases. Consistent with our findings from the training-
from-scratch experiments, the performance gap between warm-start and cold-start across all datasets
remains marginal. In particular, finetuning under the warm-start setting does not exhibit any degrada-
tion in generalization. While the ablation results indicate that data augmentation can still influence
generalization in certain cases (e.g., Cars, DTD), its effect is considerably weaker than in scratch
training. Overall, these results demonstrate that, regardless of initialization, warm-start finetuning
does not inherently impair generalization ability when trained under standard protocols.
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Figure 4: (Left) pretraining loss of both cold-start and warm-start on ImageNet-1K [5] dataset. (Right
The pretraining loss differece of loaded checkpoints at each evaluation phase.
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Figure 5: The results of linear evaluation and finetuning on 6 downstream tasks using pretrained
MAE. The reported top-1 accuracies represent averages computed across all training phases.

3.2 Pretraining Foundation Models under the Warm-Start Scenario

In this experiment, we pretrain a Masked Autoencoder (MAE) (8] model under a data-incremental
setting, applying both cold-start and warm-start strategies. Figure [ (left) shows the pretraining
loss on the ImageNet-1K dataset, where the warm-start consistently achieves lower training loss
throughout all phases. To ensure a fair comparison, we align evaluation checkpoints between the two
settings such that both models share the same pretraining loss before downstream evaluation.

We evaluate the pretrained checkpoints using both linear evaluation and full finetuning on the
six downstream datasets. The metric reported in Figure[3is the average top-1 test accuracy over
all incremental training phases. While minor variations are observed across datasets, the overall
performance difference between warm-start and cold-start is negligible for both evaluation protocols.
This finding suggests that warm-start pretraining is a stable and reliable strategy, showing no inherent
drawbacks in generalization or downstream transfer compared to cold-start initialization.

4 Conclusion and Future Works

In this work, we revisited the warm-start training paradigm through extensive experiments spanning
training from scratch, finetuning, and foundation model pretraining. Contrary to prior findings that
reported degraded generalization under warm-start settings, our analyses show that when standard
training schemes such as data augmentation are properly applied, warm-start training performs on
par with or even better than cold-start training. These results suggest that warm-start initialization
remains a reliable and efficient approach for incremental and large-scale model training.

This study is limited by its vision-centric scope and empirical nature. Future work should extend
these analyses to other modalities such as language and multimodal models, and develop theoretical
insights into why warm-start training maintains generalization under standard optimization schemes.



References

[1] Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of
plasticity in continual deep reinforcement learning. In Sarath Chandar, Razvan Pascanu, Hanie
Sedghi, and Doina Precup, editors, Proceedings of The 2nd Conference on Lifelong Learning
Agents, volume 232 of Proceedings of Machine Learning Research, pages 620—636. PMLR,
22-25 Aug 2023.

[2] Jordan Ash and Ryan P Adams. On warm-starting neural network training. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 3884-3894. Curran Associates, Inc., 2020.

[3] Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan
Pascanu, and Claudia Clopath. A study on the plasticity of neural networks, 2023.

[4] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, and Andrea Vedaldi. Describing textures in
the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, 2009.

[6] Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam
Mahmood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature,
632(8026):768-774, 2024.

[7] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In CVPR 2004
Workshop on Generative-Model Based Vision, 2004.

[8] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 16000—-16009, June 2022.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[10] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In 4th IEEE Workshop on 3D Representation and Recognition (3dRR-13),
at ICCV, 2013.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
20009.

[12] Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare
Lyle. Slow and steady wins the race: Maintaining plasticity with hare and tortoise networks. In
Forty-first International Conference on Machine Learning, 2024.

[13] Subhransu Maji, Juho Kannala, Esa Rahtu, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. Technical report, 2013.

[14] M-E. Nilsback and Andrew Zisserman. Automated flower classification over a large number of
classes. In Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP),
2008.

[15] Sangyeon Park, Isaac Han, Seungwon Oh, and KyungJoong Kim. Activation by interval-
wise dropout: A simple way to prevent neural networks from plasticity loss. In Forty-second
International Conference on Machine Learning, 2025.

[16] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.



[17]

[18]

[19]

[20]

[21]

[22]

Baekrok Shin, Junsoo Oh, Hanseul Cho, and Chulhee Yun. DASH: Warm-starting neural
network training without loss of plasticity under stationarity. In 2nd Workshop on Advancing
Neural Network Training: Computational Efficiency, Scalability, and Resource Optimization
(WANT@ICML 2024), 2024.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron
phenomenon in deep reinforcement learning. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 32145-32168. PMLR, 23-29 Jul 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova,
Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk
Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikuta, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel,
Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross Mcllroy,
Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg,
Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic
Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis
Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins,
Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open
Models Based on Gemini Research and Technology. arXiv preprint arXiv:2403.08295, 2024.

Qwen Team, An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.
Technical report, arXiv preprint arXiv:2412.15115, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Cantén Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit-Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. LLaMA 2: Open Foundation
and Fine-Tuned Chat Models. arXiv preprint arXiv:2307.09288, 2023.

Sheheryar Zaidi, Tudor Berariu, Hyunjik Kim, Jorg Bornschein, Claudia Clopath, Yee Whye
Teh, and Razvan Pascanu. When does re-initialization work? In Javier Antoran, Arno Blaas, Fan
Feng, Sahra Ghalebikesabi, lan Mason, Melanie F. Pradier, David Rohde, Francisco J. R. Ruiz,
and Aaron Schein, editors, Proceedings on "I Can’t Believe It’s Not Better! - Understanding
Deep Learning Through Empirical Falsification" at NeurIPS 2022 Workshops, volume 187 of
Proceedings of Machine Learning Research, pages 12-26. PMLR, 03 Dec 2023.



	Introduction
	Revisiting Warm-Start Training: Conceptual and Empirical Motivation
	Conceptual Background and Motivation
	Empirical Observations on Warm-Start Training

	Evaluating Warm-Start Training across Finetuning and Pretraining
	Finetuning under the Warm-Start Scenario
	Pretraining Foundation Models under the Warm-Start Scenario

	Conclusion and Future Works

