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ABSTRACT

Do large language models (LLMs) have theory of mind? A plethora of papers and
benchmarks have been introduced to evaluate if current models have been able to
develop this key ability of social intelligence. However, all rely on limited datasets
with simple patterns that can potentially lead to problematic blind spots in evalua-
tion and an overestimation of model capabilities. We introduce TRACKTHEMIND,
the first framework to allow large-scale generation of diverse and challenging
theory of mind data for robust training and evaluation. Our approach leverages
an A* search over a custom domain-specific language to produce complex story
structures and novel, diverse, yet plausible scenarios to stress test the limits of
LLMs. Our evaluation reveals that state-of-the-art LLMs, such as Llama-3.1-70B
and GPT-4o, show accuracies as low as 5% on TRACKTHEMIND-generated data,
highlighting the need for more robust theory of mind evaluation. As our gener-
ations are a conceptual superset of prior work, fine-tuning on our data yields a
26-point accuracy improvement on the classic ToMi benchmark (Le et al., 2019).
TRACKTHEMIND also enables uncovering underlying skills and factors missing
for models to show theory of mind, such as unreliable state tracking or data im-
balances, which may contribute to models’ poor performance on benchmarks.1

1 INTRODUCTION

Reasoning about other people’s intentions, goals, thoughts, and beliefs is a foundation of social in-
telligence. Known as Theory of Mind (ToM) (Premack & Woodruff, 1978), this capability is crucial
for effective human interaction. There has been a plethora of recent research that develops theory of
mind benchmarks and test LLM capabilities, usually inspired in standard tests for research in chil-
dren such as the Sally-Anne test (Wimmer & Perner, 1983). However, these tests are not well-suited
for extensively evaluating models, as they focus on specific scenarios and lack the variability and
complexity required to remain challenging after online pre-training. As a result, many existing com-
putational benchmarks may not be effective in robustly evaluating models’ theory of mind abilities.

We introduce TRACKTHEMIND, an A*-powered algorithm for generating reliable, diverse, and
challenging theory of mind data that can be effectively employed for testing or fine-tuning LLMs.
Our approach leverages a domain-specific language to generate synthetic story structures and their
character’s mental states. We then use LLMs to create plausible stories based on these plots, allowing
for precise control over the narrative and tracking each character’s mental state with high confidence.
We employ A* search (Hart et al., 1968) to efficiently navigate the vast space of possible narratives
and pinpoint those that are most likely to fool state-of-the-art LLMs. This in turn allows to create
a robust, rich dataset that effectively tests the limits of current models (Fig. 1). By generating story
structures separately from lexical realizations, we can distinguish the model’s core understanding of
the social reasoning from vocabulary cues that might give away stylistic hints.

Our contributions are three-fold: we algorithmically address blind spots in theory of mind eval-
uation, we provide a recipe to create complex training data that helps imbue models with better
theory of mind reasoning skills, and we provide insights into why theory of mind skills are still
elusive for LLMs.

1We will release all code and generated data upon acceptance.
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Anne entered the kitchen.

Beth entered the kitchen.

Beth salted the apple. 
Beth left the kitchen.

Beth texted to Charles to let him 
know the apple is salted. Charles 

entered the kitchen.

Charles moved 
the apple to the 

fridge.

Beth poisoned the apple. Beth 
covered the apple in chocolate.

Charles entered the 
kitchen. Charles told 

Anne that today will rain.

worldState[Beth, location] ->  kitchen 
belief[Anne, Beth, location] -> kitchen 
…

belief[Anne, apple, salted] -> yes 
belief[Anne, Beth, apple, salted] -> yes 
…

Where is the apple right now?  fridge 
Where does Beth think the apple is?  table 
Does Anne know that the apple is salted?  yes 
Does Anne think Charles knows that the apple is salted?  no acc = 0.5 

…

update  
#1

update  
#2

tracker-
generated  
questions 

fridge ✓ 
table ✓ 
no ✗ 
yes ✗

update 

<story start>

…
update 

<selected end>

Figure 1: TRACKTHEMIND finds challenging stories for a given language model by searching
through the space of stories supported by its domain-specific language for mental state tracking ( ),
sampling k supported actions at a time (shown as a node, k = 2 in the example). Difficulty evalua-
tion (simplified in the figure as easy, medium, hard) of each partial story is done through automati-
cally generated questions with reliable ground-truth answers thanks to our tracking procedure.

First, our work helps to address the conflicting results from a large number of prior research on eval-
uating theory of mind (e.g. Sap et al., 2022; Shapira et al., 2023a; Kim et al., 2023; Zhou et al., 2023;
Gandhi et al., 2024; Strachan et al., 2024), including reports that due to oversimplified datasets, prior
theory of mind estimates may be overly optimistic (Ullman, 2023). Our algorithmic approach also
helps address the issue of developing benchmarks that may be close to saturation at the time of
release, given the increasingly harder task of anticipating LLM failures (e.g., Kim et al., 2024).
TRACKTHEMIND’s adversarial nature allows for generating stories to stress test any LLM, dimin-
ishing the risk of data leakage onto training data, and thus being more robust than manually-crafted
benchmarks. Our experiments show that TRACKTHEMIND-generated data is extremely chal-
lenging, with GPT-4o and Llama-3.1 70B accuracies as low as 5%. TRACKTHEMIND supports
significantly more scenarios than previously possible, with the unique addition of knowledge gain
asymmetry during an interaction, among other improvements.

Second, our method allows creating complex and diverse theory of mind data that can be leveraged
for model fine-tuning. Given theory of mind’s implicit nature, it is challenging to find data that
explicitly articulates the required reasoning, and existing benchmarks are not suitable to use as
training data: they are often limited in scale (Xu et al., 2024), portray specific scripted scenarios (Wu
et al., 2023; Le et al., 2019), and are prone to leakage risks that would make them fully unsuitable
for future use. Fine-tuning with this data has been shown to overfit to specific story structures
instead of learning the underlying reasoning required (Sclar et al., 2023), leading to works focused
on creating inference-time algorithms to improve the model’s capabilities through prompting or
more sophisticated strategies (Sclar et al., 2023; Zhou et al., 2023; Wilf et al., 2023; Jung et al.,
2024). While inference-time methods have proven useful for improving performance in theory
of mind benchmarks, the benefits of these methods cannot be readily transferred to downstream
applications that may also require customized inference-time algorithms for their specific use cases.
Fine-tuning Llama-3.1 70B on TRACKTHEMIND’s data achieves a substantial +26 accuracy point
improvement on the classic ToMi benchmark (Le et al., 2019), showing good generalization
to even more complex TRACKTHEMIND stories than those seen during training, while still
retaining general reasoning capabilities.

Finally, TRACKTHEMIND enables providing new insights into why basic theory of mind reasoning
is still challenging for LLMs. We show that LLMs struggle with basic state tracking, a fundamental
skill underlying theory of mind reasoning: tracking mental states necessarily requires being able
to track states. Our experiments also reveal that in order to improve on theory of mind during
fine-tuning, it is crucial to use data that requires theory of mind as opposed to simply requiring
state tracking. However, found data (either in-the-wild, or randomly generated) is unlikely to have
this necessary property, which may be a key contributor to lagging model performance. Overall,
TRACKTHEMIND offers a valuable tool for advancing the theory of mind research, enabling the
development of more effective LLMs that can better handle complex social interactions.
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People: Anne, a head chef; Beth, a pastry 
chef; Charles, a line cook. 
Location: Restaurant kitchen. 
Alternative location: Walk-in pantry. 
Object: apple.   
Plausible containers: wooden crate; fridge. 
Discussion topics: food safety protocols; 
menu changes.

Visible state changes: covering the apple  
            in chocolate; peeling the apple, … 
Invisible state changes: salting the apple;           
            poisoning the apple; …

In the bustling kitchen of a high-end restaurant, 
the scent of freshly baked bread and 
simmering sauces filled the air, mingling with 
the hum of appliances and the soft clinking of 
pots and pans. As the swinging kitchen doors 
parted, Anne strode in, her sharp eyes 
scanning the room to ensure every station was 
in full swing, and was closely followed by Beth, 
who made a beeline for the counter where a 
lone apple waited to be transformed into the 
evening's dessert masterpiece. Beth's skilled 
hands moved with precision, sprinkling a pinch 
of salt onto the apple's tender flesh to draw out 
its natural sweetness. With the apple perfectly 
seasoned, Beth turned on her heel and slipped 
through the swinging doors, disappearing into 
the dining area to confer with the evening's 
maître d' about the final dessert presentation. 
Beth quickly pulled her phone from her pocket 
and shot off a text to Charles - "Apple's salted”.

A. Sample story context

B. Sample state updates

Anne and Beth 
entered the kitchen.

Beth salted the apple 
and left the kitchen.

Beth texted to Charles to let 
him know the apple is salted. 
Charles entered the kitchen.

Charles moved the 
apple to the fridge.

…

…

…

C. Search for difficult story 
structures with our 
mental-state tracker

D. Infill story incrementally

Co
nt

ex
t

N
od

e 
#1

N
od

e 
#2

#3

#3

#1

#2

#4

Figure 2: Overview of TRACKTHEMIND’s story generation procedure. We first sample a plausible
story context using an LLM (shown in A and B). Topics discussed, location changes of objects and
people, and object state updates, may all be required to track in order to pass our theory of mind tests.
We then search for difficult story structures (i.e., the raw story points) by sampling and analyzing
different orders in which these actions may be performed using A* search (shown in C, and Fig. 1).
This ensures that the resulting stories will all be challenging tests for models, and may be used for
further improvement. Finally, these story structures (nodes #1-4) are iteratively infilled, one story
action at a time, using a language model, yielding a natural-sounding story. Infilled stories are used
as training data; benchmarking is done with story structures since they have the highest reliability.

2 ADVERSARIALLY CONSTRUCTED STORIES WITH TRACKTHEMIND

Building on the standard approach in theory of mind of assessing mental state understanding through
question answering (Wimmer & Perner, 1983; Kinderman et al., 1998; Baron-Cohen et al., 1999),
TRACKTHEMIND creates stories where different characters may have different beliefs about the
current world state and about other people’s beliefs, paired with questions to probe model under-
standing (see Fig. 1’s highlighted story, along with associated questions probing understanding that
e.g. “Anne does not know that Charles knows that the apple has been salted”).

TRACKTHEMIND’s story generation process is divided into three main steps: plausible story con-
text sampling (Section 2.1), adversarial story structure generation (Section 2.2), and optionally story
infilling (Section 2.3) – an example is outlined in Figure 2. We automatically generate questions to
probe understanding of said stories as part of the adversarial story structure generation process (Sec-
tion 2.2.2); this process finds challenging story structures, i.e., story structures that would yield low
accuracy with our generated questions. Because questions are generated automatically and directly
from the tracked mental and world states, ground truth answers have a high degree of reliability: we
do not use language models at all in the question-answer generation procedure.

2.1 PLAUSIBLE STORY CONTEXT SAMPLING

We use an LLM zero-shot to generate a consistent and plausible story context, comprising essential
elements such as character names, roles, locations, relevant objects, object containers, and discus-
sion topics (see Fig. 2A for a full example). This single-step process ensures a coherent and be-
lievable setup for our theory of mind stories. Previous approaches (such as ToMi (Le et al., 2019))
sample objects (e.g., an apple) and object containers independently (e.g. a bottle), often resulting
in commonsense violations. Unlike these approaches, our method generates a coherent context by
sampling these elements jointly in a single LLM call: autorregresive LLMs will naturally suggest
contextually plausible elements based on the ones they already generated, and especially so when
explicitly requesting it in the prompt. Additionally, we sample possible object state updates (Fig-
ure 2B), which are then refined through using an LLM as a judge to filter out implausible and low
quality generations. The role of these state updates will be discussed in further detail in Section 2.2.1.
The exact prompts used for sampling story contexts are shown in App. C.
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2.2 ADVERSARIALLY GENERATING CHALLENGING YET PLAUSIBLE STORY SCRIPTS

2.2.1 THEORY OF MIND-SPECIFIC LANGUAGE DEFINITION

TRACKTHEMIND’s theory of mind-specific language consists of a diverse set of actions A, each
transforming the world state and the beliefs of the people involved (the story state s ∈ S). A
story is thus defined as a sequence of actions (a1, . . . , an), where each action ai ∈ A is a function
ai : S → S. Each action also has preconditions to be able to apply it, i.e., restrictions to its domain.
For example, a precondition for “Charles entering the kitchen” is to not be in it already. Applying an
action also automatically updates our world state tracking and belief tracking: for example, “Charles
is now in the kitchen”; “Anne knows that Charles is in the kitchen since they were also in the
kitchen”; “Charles knows that Anne is in the kitchen since he can see her”; and so forth. All these
updates and conditions are specifically programmed and tested; see App. A.1 for the full programs.

TRACKTHEMIND enables the generation of diverse stories by significantly expanding the range of
supported actions. These actions include physical changes to the world state such as entering and
leaving a room (denoted aenter, aleave), moving an object to a container (or in general, updating its
state; denoted amoveObjContainer, aupdateObjState respectively), relocating an object to a different room
(amoveObjRoom). Additionally, TRACKTHEMIND supports various forms of communication, includ-
ing: private conversations between two characters, or public broadcasts to all characters in a room;
casual discussions about a topic (denoted chit-chat), or notifications about changes in the world state
(denoted info); these actions are referred to as ainfo-private, ainfo-public, achitChat-private, and achitChat-public.
These actions can occur at any point in the story, allowing for a rich and dynamic narrative (see
formal definition in App. A.1) and expanding prior work (Wu et al., 2023).

Each new action requires carefully writing the implied belief and world state updates, which pre-
cludes scaling the number of actions supported. However, we alleviate this by noting that from a
theory of mind perspective, many actions are equivalent. For example, “peeling an apple” or “cov-
ering an apple in chocolate” have the same implications with respect to belief updates (a visible
property of the apple is being updated, and the witnesses would be the same). Similarly, poisoning
an apple has the same implications as moving an apple from a drawer to a fridge (an invisible prop-
erty is updated, witnesses would be the same, and non-witnesses would not assume there has been
an update). The instantiations of these equivalent state updates from a belief perspective are done
with an LLM during the story context sampling (see Figure 2.B).

Asymmetric belief updates In prior work, all belief updates were symmetric: if A and B witnessed
an action, then A knows that B witnessed the action and vice versa. Our framework introduces the
ability to model asymmetric scenarios. Specifically, we enable the addition of secret witnesses to
an action such as someone observing through a security camera, or removal of witnesses without
others’ knowledge, as in the case of someone becoming distracted by their phone. This added nuance
allows for more realistic and complex social scenarios. Asymmetries apeek and adistracted are modifier
functions, e.g., as a modifier to “Beth salted the apple” (aupdateObjState(·)) there may be a secret person
peeking (apeek(aupdateObjState(·))): “While this was happening, Diane witnessed it in secret.”

2.2.2 GENERATING QUESTIONS AND ASSESSING RESULTING STORY DIFFICULTY

We assess a model’s understanding of a generated story s=(a1, . . . , an) by probing it with auto-
matically generated question-answer pairs. TRACKTHEMIND-generated answers are more reliable
than purely-LLM generated ones, since they are directly produced from the states’ trajectory with
our tracker. Questions may be testing first-order beliefs, second-order beliefs, or regular state track-
ing: First-order refers to asking about someone’s mental state (e.g., “Does Anne know the apple is
salted?”); Second-order refers to one extra level of recursion in mental state tracking (e.g., “Does
Anne think that Charles know the apple is salted?”); State tracking may probe about the current state
(ground truth) or prior ones (memory).

We expand the complexity of memory questions with respect to prior work by asking about any
intermediate state (e.g. “Where was the object before X happened?”) instead of solely about the ini-
tial one (“Where was the object at the beginning?”). Our generated questions are simple to evaluate:
they are either binary (yes/no), or are answered by stating an object, container, or room. Specific
question formulations differ based on the property, e.g., location (“Where does Charles think that
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Anne will search for the apple?”) or knowledge (“Does Charles know that the apple is salted?”).
See App. A.2 for the full list of supported questions.

A question is considered interesting if the answer would change depending on the person being
asked about. For example “Does Anne think that Charles knows that the apple is salted?” is inter-
esting because the answer would differ if asked about someone else, such as “Does Beth think that
Charles knows the apple is salted?”. TRACKTHEMIND’s tracker very easily allows for automatically
detecting interestingness.

2.2.3 A* SEARCH

Given a context C and a set of actions A, our main goal is to find challenging story structures. To
increase TRACKTHEMIND’s usage flexibility, we support the option of searching for stories s that
fulfill desired user conditions isDesired(s) ∈ {0, 1}, such as the number of people involved, or the
number of actions belonging to a subset A′ ⊆ A of important actions.

We search over the space of plausible story structures of up to m actions. We define this space as a
directed graph, where each node is a sequence of valid actions s=(a1,. . . ,ai), and there is an edge
between s and s′ if and only if s is prefix of s′, and s′ contains k more actions than s. k ≥ 1 is the
grouping factor for actions, defining the granularity with which we will sample and evaluate nodes.
For simplicity, Figure 1 depicts only the new k = 2 actions that each node introduces.

To find challenging stories that simultaneously fulfill the user constraints we use A∗ search (Hart
et al., 1968). By definition, A∗ selects the path that minimizes f(s) = g(s) + h(s), where g(s)
is the cost of the path from the start to node s, and h(s) is a heuristic that estimates the cost of the
cheapest path from s to a goal node (one of the nodes where it would be acceptable to finish the
search). In our context, goal nodes are those such that isDesired(s′) = 1. We choose A* as our
search algorithm precisely because it enables to search this space prioritizing desired user conditions
through h(s), as we will detail below.

A story is said to be challenging for a model if it incorrectly answers our generated questions, i.e.,
it shows low accuracy. Thus, we define g(s) as our target model’s accuracy among all questions for
s. We define the heuristic function h(s) as a proxy estimation of the likelihood of generating a full
story s+ s′ that fulfills user constraints isDesired(s) = 1, where s′ is the continuation of story s:

h(s) = α
(
1− 1

P

P∑
i=1

1(isDesired(s+ s′i) = 1)
)

Here, all s′i are randomly sampled continuations of s and 0 ≤ α ≤ 1 is a scaling factor. A*
requires to evaluate all neighbors of a node s. Since this would be infeasible given the vast space to
explore, and that each f(·) evaluation requires several LLM calls (one per question), we restrict the
evaluation to a pre-defined constant number of neighbors, prioritized by the closeness of this node to
fulfilling the conditions described by isDesired(·). This pre-defined constant may depend on f(s)
to prioritize more promising partial stories (i.e., with lower f(s) values).

2.3 STORY INFILLING

Story infilling is the process of transforming a full story structure s = (a1, a2, . . . , an) with a story
context C into a natural-sounding narration (see Fig. 2D). We infill stories iteratively with an LLM by
transforming each action a into a more natural sounding one, according to some stylistic desiderata
d, and conditioned on the previously infilled context z (denoted infill(a, z, d)). Supported stylistic
desiderata d are length requests (e.g., “use up to two sentences”) or style requests (e.g., “make this
into a conversation”); we optionally also include sampled character goals g and an initial narration
context c based on the story s, also generated with an LLM (e.g., Anne’s goal may be to oversee that
all dishes are rapidly delivered to customers; see initial context example in Fig. 2). Concretely, the
full story infilling SI is as follows:

SI(i) = infill(ai, SI(i− 1), di, g) where SI(0) = c

Infilling is done iteratively to ensure that the order of the actions stays the same, since this is impor-
tant for keeping the mental state tracking valid. To further increase reliability, we use an LLM as a
judge after each infilling step to confirm that each mental state tracked after executing the story step
ai still holds even after infilling. This discards infillings that introduced ambiguity or hallucinations.
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Table 1: Accuracy results of TRACKTHEMIND’s story structures on 18 action sets A, each aggre-
gating 90 total stories from 9 different settings (number of people, actions, and rooms). Each set
is either based on actions supported by well-known theory of mind tests or includes our novel ex-
pansions, and is analyzed excluding or including asymmetry (✗, ✓). Each setting requires at least
one action in the story to be from one of the squared actions to encourage non-overlapping story
structure characteristics between action sets shown. Data was generated using each model as its own
evaluator (i.e., as g(·)), and results shown include all first-order questions—the most basic theory of
mind level, not requiring recursion. Lowest accuracy for each model is bolded.

TRACKTHEMIND action set
{aenter, aleave, . . .

Llama-3.1
70B Inst. GPT-4o Mixtral

8x7B Inst.

include asymmetry modifiers? (apeek, adistracted) ✗ ✓ ✗ ✓ ✗ ✓

. . . , amoveObjContainer } .19 .08 .40 .34 .32 .29
. . . , aupdateObjState } .26 .37 .17 .31 .03 .08

. . . , amoveObjContainer , aupdateObjState } .20 .18 .35 .40 .13 .21
. . . , amoveObjContainer, amoveObjRoom } .11 .18 .05 .32 .05 .04

. . . , amoveObjContainer, ainfo-* } .05 .08 .36 .40 .31 .39
. . . , amoveObjContainer, amoveObjRoom, ainfo-* } .13 .26 .24 .39 .09 .34

. . . , amoveObjContainer, amoveObjRoom, achitChat-*, ainfo-* } .72 .71 .71 .68 .52 .51
. . . , achitChat-private } .78 .61 .76 .58 .51 .57
. . . , achitChat-public } .54 .57 .46 .52 .33 .37

2 3 4
# People

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Llama-3.1-70B-Inst
gpt-4o
Mixtral-8x7B-Inst

2 3 4
# Actions (from ′)

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Llama-3.1-70B-Inst
gpt-4o
Mixtral-8x7B-Inst

Figure 3: Accuracy on TRACKTHEMIND’s story structures when increasing the number of actions
or people involved. Accuracy is computed across all story structure settings. A story with greater
number of people suggests lower difficulty, possibly because there is a fixed number of actions,
thus fewer actions per person. Difficulty of TRACKTHEMIND-generated stories stay similar when
increasing the number of actions.

3 TRACKTHEMIND AS AN EVALUATION BENCHMARK

We begin by showcasing how TRACKTHEMIND story structures can be used as a challenging bench-
mark, highlighting its unique features and advantages.

Experimental setup We use TRACKTHEMIND to generate 10 story structures for each of 9
action sets (each with and without asymmetry) and each set of user conditions. Each story genera-
tion is allowed to evaluate 50 nodes. User conditions—isDesired(·)—require exactly p ∈ {2, 3, 4}
people involved, with a ∈ {2, 3, 4} actions belonging to the set of important actions A′, span-
ning across either r = 1 or r = 2 rooms, and with m ≤ 15 actions in total—leading to a
total of 162 settings. In all experiments, A′ are the actions that add new basic world knowl-
edge: A′ = {amoveObjContainer, aupdateObjState, amoveObjRoom, achitChat-*}. We then infill every story. We
use Llama-3.1-70B-Instruct (Dubey et al., 2024), GPT-4o (OpenAI, 2024), and Mixtral-8x7B-
Instruct (Jiang et al., 2024) to generate story structures. A* is run with α = 0.1, P = 50, and
k = 3 (i.e. grouping three actions per node). See generation examples in App. D.

TRACKTHEMIND finds challenging story structures for frontier models As shown in Table 1,
our TRACKTHEMIND consistently identifies story structures that are highly challenging for models

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Accuracy results on TRACKTHEMIND-generated data built to minimize accuracy for each
particular model. A random sample of 10000 (story structure, question) pairs is shown. Data remains
challenging even if it was built with a different model, and even including questions we did not
optimize for: story structures were selected adversarially towards first-order belief questions only
(g(·)), accuracies shown include all belief questions.

Model used for evaluation

Model used in TRACKTHEMIND
generation (g(·))

Llama-3.1
70B Inst. GPT-4o Mixtral

7x8B Inst.

Llama-3.1 70B Inst. 0.56 0.63 0.46
GPT-4o 0.61 0.60 0.44

Mixtral 7x8B Inst. 0.64 0.67 0.41

across various action sets, with average performances in TRACKTHEMIND-generated datasets as
low as 0.05 for GPT-4o (i.e., 5%). Performance tends to decrease when increasing the number of
people involved, possibly because with a fixed number of state-changing actions, there will be fewer
actions per person which may be difficult to track. There is no clear trend when increasing actions,
as all settings remain similarly challenging. See Figure 3.

A* is a better strategy than over-generation and filtering Over-generation and filtering has be-
come a standard procedure for synthetic data generation (e.g. West et al., 2022; Wang et al., 2023).
We measure the effectiveness of A* by comparing the A*-generated data to the data resulting from
over-generating stories with our domain-specific language—using the same isDesired(·) criteria
and budget as used in the A* search—and retaining only the most difficult stories. In a set of 81
randomly-selected settings (50% of the original 162 settings, due to the experiment’s high cost),
we generate 50 stories with each method using Llama-3.1-70B-Instruct and a budget of 2500 accu-
racy evaluations each. A* yielded a more challenging dataset (by 2 accuracy points), with shorter
stories on average (0.6 fewer actions). This length difference is possibly due to the pressures A*
induces towards shorter stories through the heuristic h(s). Moreover, A* successfully generated the
requested 50 stories with non-perfect accuracy for 95% of settings, whereas the baseline only in
62% of cases—even with the generous budget and total action limit (m = 15). See Table 6 for the
full distribution of results.

Story structures found adversarially for a model remain challenging for other models We
evaluate the difficulty of a TRACKTHEMIND-generated dataset with each model, and find that al-
though there is an increased difficulty towards data generated adversarially with the same model, it
remains challenging for all others. Notably, the generated datasets remain challenging even when
adding question types not included in the g(·) optimization (second-order belief questions). See
Table 2.

Humans agree with TRACKTHEMIND-generated story structures labels We conducted a
human evaluation to verify the quality of the story structures’ automatically-generated labels and the
story infillings. For labels, we annotated 283 questions across 35 randomly-sampled story structures
from all settings generated for Table 1, and found 98% agreement with our expected answers—likely
due to the clear and concise nature of our stories and that the ground truth labels were generated by
our domain-specific language. The annotation load was equally divided between two annotators.

Infilled stories remain challenging Infilled stories with Llama-3.1 70B yielded an average
accuracy of 0.55. Although the average accuracy increased by 0.21 through the infilling process, the
samples remained challenging thanks to the highly challenging underlying stories2. One key factor
for this accuracy difference comes from models sometimes making the mental states more explicit
through the infilling process: results shown correspond to a single attempt at infilling each story
(73% of the samples ended successfully in a single attempt, judged by an LLM). Although stories
remain challenging, since infilling with an LLM may introduce hallucinations (especially when not
constraining on infilling length or style) we only use them as training data. See App. B.2 for detailed
results for all action sets.

2Infilling can be also added to the A* search; we deemed it unnecessary given that this simpler method still
yields a highly challenging benchmark and it is less costly.
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Table 3: Performance on major false-belief benchmarks; accuracy (in %) unless otherwise stated.
Parenthesis reflect differences between out-of-the-box model and fine-tuned version using TRACK-
THEMIND-generated data. Bold reflects higher overall performance.

ToMi Hi-ToM BigToM OpenToM (F1) FANToM

Llama-3.1 8B Instruct 68% 30% 75% .39 0.3%
TRACKTHEMIND-8B 94% (+26) 52% (+22) 79% (+4) .42 (+.03) 0.5% (+0.02)
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# Actions (from ′)
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0.98
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p = {2, 3, 4}
p = 5

Figure 4: TRACKTHEMIND-8B accuracy
when evaluating on TRACKTHEMIND-
generated data with more people p and/or
more actions a than seen during training
(p<5, a<5). Performance remains high when
adding several actions and/or one more person.
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Figure 5: ToMi accuracy when training with
TRACKTHEMIND-generated data with differ-
ent proportions of interesting questions (i.e.,
questions potentially requiring theory of mind
to answer). Here, all variants are fine-tuned
with 85000 story structure samples for 1 epoch.

4 TRACKTHEMIND IS EFFECTIVE AS TRAINING DATA GENERATOR

Experimental setup We fine-tune Llama-3.1 8B Instruct using a dataset of 114000 (story, ques-
tion, answer) triples, focusing solely on the completion tasks, and dub the resulting model TRACK-
THEMIND-8B. The dataset comprises both raw story structures and infilled stories, incorporating
story structures from each of the 9 action sets listed in Table 1 (excluding asymmetry, and with a
balanced number of questions per story type), and various user constraints—the same as in Sec-
tion 3. We do full fine-tuning with the following hyperparameters: a learning rate of 10−6, 100
warm-up steps, effective batch size of 40 samples, where we fine-tune solely on completions.

Fine-tuning with TRACKTHEMIND generalizes well to TRACKTHEMIND-generated data with
more people and more actions than used in training Since TRACKTHEMIND-8B is trained with
TRACKTHEMIND-generated data involving p = {2, 3, 4} people with m = {2, 3, 4} actions from
the set of important actions A′, we evaluate generalization within the TRACKTHEMIND domain by
evaluating on TRACKTHEMIND-generated data involving 5 people, and up to 11 actions. This data
is generated with Llama-3.1, the same model as original training data.

Fine-tuning with TRACKTHEMIND improves or maintains performance on theory of mind
benchmarks without hurting general reasoning capabilities We evaluate our fine-tuned
TRACKTHEMIND-8B model on five prominent theory of mind benchmarks: ToMi (Le et al., 2019),
Hi-ToM (Wu et al., 2023), BigToM (Gandhi et al., 2024), OpenToM (Xu et al., 2024), and FAN-
ToM (Kim et al., 2023). Results show significant improvements in performance on ToMi and
HiToM, with accuracy gains of +20 points on both benchmarks (see Table 3). The model main-
tains or shows small gains on the remaining three similar benchmarks, indicating that fine-tuning on
TRACKTHEMIND data enhances or preserves performance across a range of theory of mind tasks.

We also evaluate out-of-domain reasoning skills using the two datasets: Multi3Woz (Hu et al., 2023),
a commonly-used dataset for dialogue state tracking, and MMLU (Hendrycks et al., 2021), which
tests both world knowledge and problem-solving abilities. Dialogue state tracking capabilities are
preserved: both the base model and TRACKTHEMIND-8B achieve 94%. Broader reasoning capa-
bilities are also generally preserved, with a small 2% performance difference (base model achieves
69%; TRACKTHEMIND-8B, 67%). Given the out-of-domain nature, we expect that intermixing data
with samples more similar to MMLU’s domains will substantially alleviate this slight regression.

Data mixture affects downstream performance We fine-tune five models, with 0%, 25%,
50%, 75%, or 100% of the stories requiring theory of mind to answer at least one question about
the story. Figure 5 shows that training with as much stories that require theory of mind is crucial
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for achieving high downstream performance (using ToMi as a proxy dataset), even if some of the
individual questions used for training do not require theory of mind.

5 ON UNDERLYING SKILLS NEEDED FOR THEORY OF MIND

TRACKTHEMIND enables uncovering and quantifying underlying causes for models’ poor theory of
mind reasoning in models out-of-the-box. We specifically focus on the lack of robust state tracking
skills, and the need for targeted training data in order to improve theory of mind capabilities.

LLMs lack robust state tracking skills TRACKTHEMIND’s objective is to find story structures
where models fail to answer questions; some of these questions simply require state tracking, specif-
ically the ones where every person would give the same answer (i.e., their mental state is the same
in this regard; e.g., in Fig. 1, all X ∈ {Anne, Beth, Charles} would answer the same to “Where
does X think Anne is right now?”). By definition (see § 2.2.2), these are the uninteresting questions.
TRACKTHEMIND-generated questions are approximately evenly split between interesting and unin-
teresting, and uninteresting ones are even more challenging on average: the accuracy of interesting
and uninteresting questions is 50% and 36% respectively for Llama-3.1 70B, 56% and 41% for
GPT-4o, and 46% and 30% for Mixtral. See Table 6 in App. B.3 for full breakdown for all settings.

State tracking questions are a subset of theory of mind questions, and arguably an easier case since
the required logic for answering questions is simpler. Therefore, improving models’ performance
on state tracking may be a crucial prerequisite for achieving theory of mind reasoning in LLMs. As
we have demonstrated, TRACKTHEMIND can be easily adapted to stress test pure state tracking,
simply by retaining only the uninteresting questions.

Training data biases against theory of mind and its implications Figure 5 shows that to suc-
cessfully improve performance on the ToMi benchmark, TRACKTHEMIND fine-tuning data needs
to be biased towards interesting questions. However, a significant portion of models’ training data
is likely biased against requiring the tracking of divergent mental states (e.g., news articles).

As a conceptual proof that this phenomena occurs even within our custom domain-specific language
unless we explicitly bias towards theory of mind, we demonstrate that randomly-sampled story
structures tend not to require theory of mind. Using TRACKTHEMIND’s domain-specific language,
we randomly generate 1000 story structures with ToMi primitives ({aenter, aleave, amoveObjContainer})
for stories involving {2, 3, 4} people and {2, 3, 4} object movements. We consider a story to not
require theory of mind if all first-order and second-order theory of mind questions are un-interesting,
as defined in § 2.2.2 (i.e., all share the same mental state). This stringent criterion evaluates all
questions simultaneously. Nevertheless, our results show that 78% or more of the randomly-sampled
stories meet this condition across all settings, with up to 87% of stories fulfilling the condition for
the smallest setting (2 people, 2 object movements). When considering each question individually,
91%-95% are uninteresting questions. See App. B.4 for more details.

6 RELATED WORK

Theory of mind benchmarking for language models Theory of mind benchmarks in language
models can be categorized into human-generated and model-generated datasets. While human-
generated datasets (Shapira et al., 2023b; Kim et al., 2024; Chen et al., 2024) test reasoning about
goals, emotions of others, and future actions, they are often limited in size and scope. Machine-
generated datasets, such as foundational ToMi (Le et al., 2019) and its successor Hi-ToM (Wu et al.,
2023) focus primarily on mental state tracking, but have significant limitations: ToMi only supports
a restricted set of actions ({aenter, aleave, amoveObjContainer}), while Hi-ToM adds ainfo-* but only as the
last action in a story, and both datasets have extremely restricted interactions to orders. In contrast,
our method, TRACKTHEMIND, significantly expands the scope of machine-generated datasets by
supporting a larger number of actions, diverse wording, and plausible contexts. Unlike recent ap-
proaches that rely on LLMs for generation (Kim et al., 2023; Xu et al., 2024; Gandhi et al., 2024),
TRACKTHEMIND ensures reliability and multi-interaction storytelling, making it a more compre-
hensive and robust benchmark for theory of mind in LLMs.

Theory of mind beyond language modeling Theory of mind has been explored in various areas,
including human computer interaction (Wang et al., 2021), explainable AI (Akula et al., 2022), and

9
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multi-agent reinforcement learning (Rabinowitz et al., 2018; Sclar et al., 2022; Zhu et al., 2021).
Recent benchmarks have evaluated theory of mind in multi-modal settings (Jin et al., 2024) and
multi-agent collaboration (Bara et al., 2021; Shi et al., 2024), but these focus on goal-driven in-
teractions. Psychologists distinguish between affective (emotions, desires) and cognitive (beliefs,
knowledge) theory of mind (Shamay-Tsoory et al., 2010), with cognitive theory of mind developing
later in children (Wellman, 2014). Our work targets cognitive theory of mind, which is well-suited
for generating situations with a domain-specific language and provides unambiguous answers across
cultures. By focusing on cognitive theory of mind, our approach complements existing research and
provides a comprehensive benchmark for this crucial aspect of human reasoning in language models.

Synthetic data generation Synthetic data has become promising approach for acquiring high-
quality data in various domains, including multihop question-answering (Lupidi et al., 2024), and
language model evaluation (Wang et al., 2024). The process involves data augmentation/generation
and curation, with techniques such as permutation-based augmentation (Yu et al., 2024; Li et al.,
2024a) and iterative prompting (Yang et al., 2022). However, model hallucination (Guarnera et al.,
2020; Van Breugel et al., 2023; Wood et al., 2021; Zhang et al., 2023) requires careful filtration and
curation to ensure data quality. While prior works have used external feedback (Zelikman et al.,
2022; Luo et al., 2024), our approach leverages an external LLM-as-judge to evaluate the plausi-
bility and challenge of generated stories, both before and after infilling. Recently, AutoBencher (Li
et al., 2024b) has also been proposed to automatically search for datasets that meet a salience, nov-
elty, and difficulty desiderata, highlighting the importance of careful benchmark creation. Unlike
AutoBencher, which over-generates under the assumption that text-based conditioning minimizes
hallucinations, our approach lifts this assumption and actively searches the space of possible narra-
tives. This enables to create high-quality synthetic data regardless of the likelihood of a story being
generated zero-shot, and generating even more challenging stories than with over-generation.

7 CONCLUSIONS

Theory of mind (ToM) is essential for social intelligence, and developing agents with theory of
mind is a requisite for efficient interaction and collaboration with humans. Thus, it is important to
build a path forward for imbuing agents with this type of reasoning, as well as methods for robustly
assessing the of models’ theory of mind reasoning capabilities.

We present TRACKTHEMIND, an A*-powered algorithm for generating reliable, diverse and chal-
lenging theory of mind data; specifically, creating synthetic stories that require theory of mind to
understand them, along with questions to probe understanding. TRACKTHEMIND’s adversarial
nature enables the stress testing of future models and making our evaluation more robust to data
leakage. We show that TRACKTHEMIND generates challenging theory of mind evaluation sets for
many frontier models, with accuracies as low as 5% for Llama-3.1 70B Instruct and GPT-4o. More-
over, we show that TRACKTHEMIND can be used as a method for generating training data, leading
to improvements of up to 26 accuracy points in well-known theory of mind benchmarks. Synthetic
data is crucial for this domain, given that data that articulates theory of mind reasoning is difficult to
find in the wild: children have access to a wide range of naturalistic social settings that incentivize
the development of theory of mind but there is no such parallel pressure for LLMs.

Finally, we provide insights as to why basic theory of mind is still elusive to LLMs, including poor
state tracking skills and demonstrating the need for training data that purposefully requires theory
of mind, which is likely not present in the wild nor in randomly-generated data.

LIMITATIONS

TRACKTHEMIND offers a valuable tool for theory of mind research, and is a first step towards
developing LLMs that can handle social interactions effectively. Although its data encompasses
diverse and challenging settings—more than previously available—, and is grounded in established
psychological tests, TRACKTHEMIND necessarily simplifies the complexity of real-world states
and narratives by constraining it to the supported types of actions and interactions. Our frame-
work requires manual coding of new actions, wich can be time-consuming process but comes with
the benefit of a significant reliability improvement. Furthermore, our stories are not necessarily
goal-oriented narratives, highlighting an important avenue for future work: creating datasets where
actions stem directly from character goals to further enhance diversity and plausibility.
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A APPENDIX

A.1 ACTIONS’ FORMAL DEFINITION (CONT. FROM 2.2.1)

All actions are functions that transform a state into another state, updating the world state and the
beliefs of everyone involved up to two levels of recursion. All actions have preconditions, e.g. to
enter a room you need to not be in it already.

A state ∈ S is comprised of a world state ws (the things currently true physically about the world
described), the first-order beliefs b1, and the second-order beliefs b2. First-order beliefs describe
what each person believes to be the current world state, e.g. Anne believes that the apple is salted.
Second-order beliefs describe what each person estimates that each other person believes to be the
current world state, e.g. Anne believes that Beth thinks that the apple is salted.

Let’s describe the definition of leaving in a room through an example: “Beth left the kitchen.”, and
build the definition of the action function aleave, Beth, kitchen : S → S . As described above, the state is
comprised of a world state, first-order beliefs, and second-order beliefs, i.e.,

aleave, Beth, kitchen(ws, b1, b2) := (ws′, b′1, b
′
2)

Let’s first describe the world state update ws′. The world state remains the same for every entity
(object, container, person, etc.), except for the person leaving the room—Beth. Thus,

ws(q, room) = ws′(q, room) ∀q ̸= Beth and ws′(q, room) = ¬kitchen

Let’s then describe the first-order belief updates b′1. Here, we assume that everyone in the same
room as Beth (the kitchen) will know that Beth has left. We denote this group of people as
witnesses(kitchen):

witnesses(kitchen) := {p|ws(p, room) = kitchen}
Everyone not in the kitchen will assume that Beth is still there unless communicated otherwise, since
they have no reason to believe she has left. Thus,

b1(p,Beth, room) = b′1(p,Beth, room) = kitchen ∀p /∈ witnesses(kitchen)

b1(p,Beth, room) = ¬kitchen ∀p ∈ witnesses(kitchen)

We now describe the second-order belief updates b′2. Here, we assume that everyone in the kitchen
(including Beth) assumes that everyone else in the kitchen knows Beth left (and only them). If
someone was not in the kitchen, they will assume nothing has happened. Formally,

b2(p, q,Beth, room) = b′2(p, q,Beth, room) = kitchen ∀p /∈ witnesses(kitchen), ∀q

b2(p, q,Beth, room) = ¬kitchen ∀p ∈ witnesses(kitchen) ∀q ∈ witnesses(kitchen)
b2(p, q,Beth, room) = kitchen ∀p ∈ witnesses(kitchen) ∀q /∈ witnesses(kitchen)

Finally, the function can only be applied if Beth is in the kitchen, i.e. it has the precondition
ws(Beth, room) = kitchen.

All other functions definitions can be found verbatim in the code to be released.
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A.2 ALL SUPPORTED QUESTIONS (CONT. FROM SECTION 2.2.2)

Table 4: List of all supported TRACKTHEMIND questions per property discussed and level of theory
of mind, transcribed verbatim.
Property
asked about

ToM
Order Question (requesting Short Answer. in prompt) Expected

Answers

room location – In which room was the <object> at the begin-
ning?

room name

room location – In which room is the <object> now? room name

room location – In which room was the <object> before
<action>?

room name

room location 1st In which room will <person> search for the
<object>?

room name

room location 2nd In which room does <person1> think that
<person2> will search for the <object>?

room name

container location – In which container was the <object> at the be-
ginning?

container name

container location – In which container is the <object> now? container name

container location – In which container was the <object> before
<action>?

container name

container location 1st In which container will <person> search for
the <object>?

container name

container location 2nd In which container does <person1> think that
<person2> will search for the <object>?

container name

abstract topic
knowledge

1st Does <person1> know about
<topicDiscussed>?

yes or no

abstract topic
knowledge

2nd What does <person1> think about
<person2>’s belief on <topicDiscussed>?
(knows about it / does not know about it)

knows about it
or does not know
about it

knowledge about
state update

1st Does <person> believe that the <object>
<newState>? Answer yes or no.

yes or no

knowledge about
state update

2nd Does <person1> believe that <person2> be-
lieves that the <object> <newState>? An-
swer yes or no.

yes or no
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B ADDITIONAL EXPERIMENTS

B.1 A*-GENERATED STORIES ARE MORE CHALLENGING THAN OVERGENERATING AND
FILTERING (CONT. FROM § 3)

0.2 0.1 0.0 0.1
Acc. Diff. between A* - and Baseline-generated data

0

10

20
Co

un
t

Figure 6: Histogram depicting accuracy differences between A*-generated datasets for Llama-3.1-
70B-Instruct and a dataset created by over-generating and filtering with the same budget (i.e., base-
line). Results show that A* is better at finding story structures that make a challenging benchmark
by showing low accuracy (negative values mean A* is better at finding challenging story structures).

B.2 INFILLED STORY STRUCTURES REMAIN CHALLENGING (CONT. FROM § 3)

Table 5: Changes in accuracy when infilling TRACKTHEMIND-generated story structures to output
natural-sounding stories. We only include comparison between the 73% of stories where the LLM
as a judge (Llama-3.1-70B Instruct) determined that all infilled actions were high quality.

Action Set:
{aenter, aleave, . . .

Include
asymmetry

Acc. Story
Structure

Acc.
Infilled

Acc.
Diff.

. . . , amoveObjContainer}, (denoted A1) ✗ 0.21 0.48 0.27
✓ 0.09 0.38 0.29

. . . , aupdateObjState}, (denoted A2) ✗ 0.21 0.39 0.18
✓ 0.36 0.45 0.09

. . . , amoveObjContainer, aupdateObjState} (A3) ✗ 0.19 0.42 0.23
✓ 0.14 0.51 0.37

. . . , amoveObjContainer, amoveObjRoom} (A4) ✗ 0.10 0.47 0.37
✓ 0.23 0.50 0.28

. . . , amoveObjContainer, ainfo-*} (A5) ✗ 0.03 0.44 0.40
✓ 0.08 0.40 0.32

. . . , amoveObjContainer, amoveObjRoom, ainfo-*} (A6) ✗ 0.16 0.57 0.41
✓ 0.29 0.66 0.37

amoveObjContainer, amoveObjRoom, achitChat-*, ainfo-*} (A7) ✗ 0.73 0.77 0.04
✓ 0.74 0.79 0.06

. . . , achitChat-private} (A8) ✗ 0.77 0.79 0.02
✓ 0.61 0.68 0.07

. . . , achitChat-public} (A9) ✗ 0.56 0.65 0.10
✓ 0.57 0.63 0.06

Table 5 shows a breakdown across all settings. 73% of the stories were infilled in a single attempt.
Next step options are sampled simultaneously with repetition penalty for added wording diversity.
Without this constraint, 81% of the story structures are infilled within a single attempt.
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B.3 MODELS FAIL BOTH AT THEORY OF MIND AND PURE STATE TRACKING (CONT. FROM
§ 5)

Table 6: Accuracy breakdown of the experiment shown in Table 1, discriminating if each question is
interesting or not. A question is interesting if the answer would change depending on the entity asked
about, thus potentially requiring theory of mind. Results show that part of a model’s difficulty with
TRACKTHEMIND’s generated data can be attributed to poor state tracking (i.e., the uninteresting
questions, noted ¬Int.).

Llama GPT4o Mixtral

Action Set Includes
Symmetry?

Acc.
Int.

Acc.
¬Int.

%
Int.

Acc.
Int.

Acc.
¬Int.

%
Int.

Acc.
Int.

Acc.
¬Int.

%
Int.

A1 ✗ 0.45 0.20 48% 0.47 0.45 48% 0.42 0.33 49%
✓ 0.37 0.14 50% 0.51 0.35 50% 0.42 0.36 51%

A2 ✗ 0.58 0.25 49% 0.42 0.16 49% 0.14 0.02 49%
✓ 0.52 0.34 50% 0.59 0.31 50% 0.42 0.08 42%

A3 ✗ 0.52 0.18 50% 0.52 0.31 49% 0.33 0.05 49%
✓ 0.45 0.18 50% 0.62 0.37 48% 0.44 0.20 48%

A4 ✗ 0.53 0.13 27% 0.50 0.05 28% 0.60 0.05 24%
✓ 0.36 0.21 46% 0.55 0.31 35% 0.47 0.04 29%

A5 ✗ 0.31 0.07 50% 0.50 0.38 46% 0.44 0.36 50%
✓ 0.26 0.15 52% 0.52 0.42 51% 0.47 0.45 54%

A6 ✗ 0.44 0.17 50% 0.57 0.27 47% 0.48 0.10 49%
✓ 0.39 0.28 45% 0.57 0.37 15% 0.52 0.27 33%

A7 ✗ 0.67 0.80 48% 0.70 0.80 48% 0.55 0.66 45%
✓ 0.71 0.76 51% 0.69 0.80 49% 0.55 0.73 44%

A8 ✗ 0.81 0.78 56% 0.78 0.74 51% 0.52 0.55 51%
✓ 0.57 0.57 73% 0.59 0.48 67% 0.55 0.55 70%

A9 ✗ 0.48 0.62 40% 0.48 0.41 40% 0.47 0.25 40%
✓ 0.54 0.60 50% 0.58 0.46 52% 0.53 0.28 51%

Total — 0.50 0.36 50% 0.56 0.41 48% 0.46 0.30 47%

B.4 HOW LIKELY IS A RANDOMLY-SAMPLED STORY TO REQUIRE THEORY OF MIND? (CONT.
FROM §5)

Table 7: Probability that a randomly-sampled story would require theory of mind for answering at
least one question. Actions considered are {aenter, aleave, amoveObjContainer}, all settings of {2, 3, 4}
people and {2, 3, 4} amoveObjContainer movements, with 10 maximum actions, are shown.

Number of movements

Number of people 2 3 4
2 0.131 0.208 0.235
3 0.195 0.234 0.288
4 0.210 0.259 0.315

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Probability that a randomly-sampled (story, question) pair would potentially require the-
ory of mind, meaning that the answer to the question varies depending on the entities considered.
Actions considered are {aenter, aleave, amoveObjContainer}, all settings of {2, 3, 4} people and {2, 3, 4}
amoveObjContainer movements, with 10 maximum actions, are shown.

Number of movements

Number of people 2 3 4
2 0.090 0.123 0.124
3 0.120 0.109 0.121
4 0.111 0.101 0.112

Table 9: Probability that a randomly-sampled (story, question, answer) triple would require an an-
swer that is different from the true world state (i.e., it is a false-belief question. Actions considered
are {aenter, aleave, amoveObjContainer}, all settings of {2, 3, 4} people and {2, 3, 4} amoveObjContainer move-
ments, with 10 maximum actions, are shown.

Number of movements

Number of people 2 3 4
2 0.059 0.084 0.086
3 0.065 0.065 0.072
4 0.056 0.049 0.058
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C PROMPTS USED FOR GENERATING AND VALIDATING TRACKTHEMIND’S
DATA

C.1 GENERATING STORY CONTEXTS (CONT. FROM §2.1)

Suggest a short context where {num_people} people are together in a
room. It should be at most two sentences long, and they should be able
to observe each other. Later in the story, characters are going to move
around and store objects, so your context should be plausible under
those constraints. Do not explicitly include that they can all see each
other, it should be clear from context. The room could be in a house,
work environment, etc.

Here's an example for three people. Follow the same format.

LIST CHARACTERS' NAMES:
1. Emily, a meticulous office manager.
2. Jason, a tech-savvy intern.
3. Karen, a diligent accountant.

GIVE SHORT STORY CONTEXT:
Emily, Jason, and Karen gathered around the central table in the sleek
office's conference room, discussing the upcoming audit. As they
strategized, the shelves and storage compartments lining the walls
around them held the tools and documents they would soon need to
organize and pack away.

ROOM IN WHICH THIS STORY BEGINS:

NAME ONE REASONABLE ALTERNATIVE ROOM THEY COULD MOVE TO:

NAME ONE OBJECT TO BE MOVED BY A PERSON DURING THE STORY:

LIST {num_containers} REASONABLE OPAQUE CONTAINERS THAT COULD CONTAIN
THIS OBJECT:

LIST {num_topics} DISTINCT AND REASONABLE TOPICS THEY COULD BE CHATTING
ABOUT:

To get inspired, make this context happen in {sampled_location}.
Suggested names are {sampled_names}, but feel free to come up with your
own names if it would suit the story better. Be direct with your
answers: do not include parentheses or clarifications beyond the
responses requested. Do not refer to plural objects or give options if
a singular thing is requested. The object could be anything--a pen, an
apple, a spoon, a pair of scissors, etc.--, be creative!

Figure 7: Prompts used for generating a story context, after infilling the variables (number of people,
containers, topics, names, and location). Names and location are sampled independently to increase
diversity, prompts shown in Fig. 8.
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List 100 names. Do not include any other text.

Suggest 100 different general contexts in which a story may happen. The
context should be able to have several people in the same location
easily listening and observing each other.

1. a school
2. a hospital
3. a vet shop
4. a family living room

Follow the format and make the descriptions as short as possible. Do
not include any text before the list.

Figure 8: Prompts used for generating a list of possible characters’ names and locations for the story.

C.2 PROMPTS USED FOR STORY INFILLING

You are an expert writer that uses simple language, avoiding sounding
unnatural or cliché. You are clear, creative, and helpful.

Figure 9: System prompt used for story infilling

Given the following story and knowing the description of the characters
involved, write the start of a story. Don't actually describe any
actions in the story, just the setting in which the story will happen.
Only include the characters that are mentioned in the story.

STORY:
{story_script}

CHARACTERS:
{characters_description}

TWO-SENTENCE STORY BEGINNING THAT DOES NOT INCLUDE OR SUGGEST ANY
INFORMATION OF WHAT WILL HAPPEN IN THE STORY. DO NOT MENTION PEOPLE:

Figure 10: System prompt used for sampling narration (the start of the story, before infilling).

Given the following story and knowing the description of the characters
involved, suggest a reasonable goal for each character. Only include
the characters that were mentioned in the story.

STORY:
{story_script}

CHARACTERS:
{characters_description}

CHARACTERS GOALS: <insert here>

Follow the format and do not include any other text. Only include the
characters mentioned in the story, and do not even mention the others
in your list.

Figure 11: System prompt used for sampling character goals.
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Continue the story {story_length}, clearly conveying the action or
information below without altering it. Do not contradict any prior
information. Avoid repeating the information verbatim, instead
naturally (and possibly implicitly, but still unambiguously) conveying
the meaning. Do not add characters or actions that were not explicitly
described. Do not replace characters even if this would improve flow.
Combining actions into a single sentence is OK as long as you do not
alter the original information. {infilling_text_type}

Make it a short, yet an interesting story to read. Make the text
exciting to read as well as each character's speech, so try to avoid
e.g. starting all the sentences the same way. The story needs to follow
common sense, e.g. do not magically change an object's location without
mentioning it. Do not include any notes, comments, parentheses, or any
other form of extra text that would not belong in a story. Feel free to
hint or describe characters' goals and motivations for performing the
actions if it would make the story flow better.

As a warning, take into account that when someone tells someone
privately they might not be in the same location, e.g. they might be
sending a text message or making a phone call; they might also be in
the same location, in that case they could also communicate through a
gesture, a whisper, etc. Do not assume a person is in the same room if
it has not been made explicit before. Also, if someone was spying, or
if they were distracted and did not listen/saw something happen, do not
forget to include it!

Give {num_tries_completions} responses, ensuring to give
{num_tries_completions} different phrasings of continuing the story
conveying the action. Use very different wordings and sentence
structures!

WHO ARE THE CHARACTERS: {people_with_personas}

WHAT ARE THEIR GOALS: {optional_characters_goals}

NEW ACTION OR INFORMATION TO INCLUDE: {new_information}

CURRENT SHORT STORY: {story_context}

Follow the format and do not include any other text. Do not include any
text before the list. Do not enumerate. Continue the story
{story_length}. Avoid repeating the information verbatim, instead
naturally (and possibly implicitly, but still unambiguously) conveying
the meaning.

STORY CONTINUATION: <fill>

STORY CONTINUATION: <fill>

Figure 12: Prompt used for iterative story infilling including characters’ goals, and allowing for
simultaneous sampling of several possible infillings, which when associated with repetition penalty,
yields more diverse infillings. Infilling length is uniformly chosen between ‘with a single sentence’
and ‘with up to two sentences’, and infilling text type is uniformly chosen between ‘Make the new
text be declarative, without including conversations.’ and ‘Make the new text conversational, using
direct quotes to convey the words spoken by a character.’
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D TRACKTHEMIND EXAMPLES (CONT. FROM §3)

D.1 STORY STRUCTURE EXAMPLES

• Addison entered the monastery dining hall.
• Addison filled the large ceramic vase with fresh sunflowers.
• Addison left the monastery dining hall.
• Charlotte entered the monastery dining hall.
• Charlotte painted the large ceramic vase with intricate designs in gold.
• Charlotte glued a few loose diamonds around the neck of the large ceramic vase. While this was

happening, Addison witnessed this action in secret (and only this action).

• Amelia entered the staff room.
• Amelia moved the large first aid kit to the plastic storage bin, which is also located in the staff room.

While this was happening, Alexis witnessed this action in secret (and only this action).
• Amelia entered the equipment storage room.
• Amelia left the equipment storage room.
• Amelia entered the staff room.
• Amelia moved the large first aid kit to the equipment storage room, leaving the plastic storage bin in its

original location.
• Amelia moved the large first aid kit to the metal cabinet, which is also located in the equipment storage

room.

• Alexander entered the city hall planning department.
• Alexander moved the large map of the city to the cardboard tube, which is also located in the city hall

planning department.
• Alexander told privately to Leslie that the large map of the city is in the cardboard tube.
• Victoria entered the city hall planning department. Leslie told privately to Peyton that the large map of

the city is in the cardboard tube.
• Victoria moved the large map of the city to the plastic storage bin, which is also located in the city hall

planning department.

Figure 13: Examples of the following story structures: aupdateObjState (A2) with asymmetry;
{amoveObjContainer, amoveObjRoom} (A4) with asymmetry; and {amoveObjContainer,ainfo} (A5) without asym-
metry.
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D.2 STORY INFILLING EXAMPLES

Table 10: Example of adversarially sampled story structure and iterative infilling with Llama-3.1
70B Instruct, including a story context (first row). This example showcases how the infilling process
is able to group sentences when they depict the same event but for more than one person, allowing
for an even more natural-sounding story.
Story Structure (list of actions) Infilling for each action

<initial context> The operations center, a bustling hub of activity during the
park’s peak festival season, was dimly lit except for a few
overhead fluorescent lights that cast a sterile glow over the
rows of workstations and storage units. The air was thick
with the smell of stale coffee and fresh printer paper, a
familiar scent to anyone who spent time behind the scenes
of the busy amusement park.

Brooklyn entered the operations
center.

As she entered the operations center, Brooklyn’s presence
was swiftly followed by James, whose rugged demeanor
stood in contrast to the sterile environment of the room.James entered the operations center.

James moved the large festival
schedule poster to the cardboard
box, which is also located in the op-
erations center.

James neatly relocated the oversized festival schedule
poster, carefully placing it within the confines of a card-
board box, a receptacle that had been securely positioned
in a corner of the operations center.

James left the operations center. Brooklyn stepped out into the bright sunlight, a stark
contrast to the dimly lit operations center she had just
left, while James followed suit, the warm rays
illuminating his weathered features. The festival
preparations were now unfolding across the park, with
both of them poised to tackle their respective tasks.

Brooklyn left the operations center.

Tyler entered the operations center. As Tyler walked into the operations center, the soft hum
of idle machinery and the faint scent of printer paper
enveloped him, a familiar yet calming atmosphere before
the chaos of the festival. The room’s sterile lighting
seemed to intensify, reflecting off the polished surfaces as
Brooklyn slipped in, her footsteps quiet on the worn floor.

Brooklyn entered the operations
center.

Brooklyn moved the large festival
schedule poster to the plastic storage
bin, which is also located in the op-
erations center.

Brooklyn’s hands moved swiftly as she carefully slid the
oversized festival schedule poster into the large plastic
storage bin in the operations center.
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Table 11: Example of adversarially sampled story structure and simple iterative infilling with Llama-
3.1 70B Instruct, along with example questions and model answers.
Story Structure (list of actions) Infilling for each action

David entered the study room. David walked into the study room, scanning the
organized chaos of files on the desk, just as Sarah stepped
in, clutching her tablet and a determined look.

Sarah entered the study room.

Sarah moved the prototype model
to the metal filing cabinet, which is
also located in the study room.

Sarah moved the prototype model to the metal filing cab-
inet, her fingers brushing against the cool surface before
turning to David with a confident smile.

David left the study room. After a brief exchange with Sarah, David grabbed his
briefcase and left the study room, mindful of the upcom-
ing meeting downtown.

Mark entered the study room. Mark entered the study room, his eyes quickly assessing
the scattered documents and half-finished sketches on the
table, before settling into his favorite chair by the window
to brainstorm new ideas.

Mark moved the prototype model to
the wooden chest, which is also lo-
cated in the study room.

Mark, contemplating his latest concept, carefully picked
up the prototype model from the metal filing cabinet and
transferred it to the wooden chest, a better place for such
an inspiration-spurring creation.

Selected Questions

TRACKTHEMIND
-generated answer
using our domain-
specific language

GPT-4o’s responses Correct?

In which container will David
search for the prototype model?

metal filing cabinet david will search for the
prototype model in the
metal filing cabinet.

Yes

In which container will Sarah
search for the prototype model?

wooden chest sarah will search for the
prototype model in the
metal filing cabinet.

No

In which container will Mark
search for the prototype model?

wooden chest mark will search for the
prototype model in the
wooden chest.

Yes

In which container will David
search for the prototype model?

metal filing cabinet the metal filing cabinet. Yes

In which container will Sarah
search for the prototype model?

wooden chest sarah will search for the
prototype model in the
metal filing cabinet.

No

In which container will Mark
search for the prototype model?

wooden chest the wooden chest. Yes

25


	Introduction
	Adversarially constructed stories with TrackTheMind
	Plausible story context sampling   
	Adversarially Generating Challenging yet Plausible Story Scripts
	Theory of Mind-Specific Language Definition
	Generating Questions and Assessing Resulting Story Difficulty
	A* Search

	Story infilling

	TrackTheMind as an evaluation benchmark
	TrackTheMind is effective as training data generator
	On underlying skills needed for theory of mind
	Related Work
	Conclusions
	Appendix
	Actions' formal definition (cont. from 2.2.1)
	All supported questions (Cont. from Section 2.2.2)

	Additional Experiments
	A*-generated stories are more challenging than overgenerating and filtering (cont. from § 3)
	Infilled Story Structures Remain Challenging (cont. from § 3)
	Models Fail Both at Theory of Mind and Pure State Tracking (Cont. from § 5)
	How likely is a randomly-sampled story to require theory of mind? (cont. from §5)

	Prompts used for generating and validating TrackTheMind's data
	Generating story contexts (cont. from §2.1)
	Prompts used for story infilling

	TrackTheMind examples (cont. from §3)
	Story structure examples
	Story infilling examples


