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A B S T R A C T   

Multi-camera systems for structure from motion (SfM) are widely deployed in many mapping applications. 
Existing solutions assume known rig calibration, synchronized frames among cameras, as well as overlapping 
field of views (FoVs). In this paper, we derive novel geometric constraints assuming minimal knowns about the 
multi-camera systems, to benefit low-cost and non-expert use cases where uncalibrated multi-camera systems 
with non-typical geometry setups present, i.e., no rig calibration, no overlapping FoVs. Assuming that these 
cameras are co-located and share the same motion of the platform, the proposed constraints utilize the paral-
lelism and length proportionality of motion vectors of these co-located cameras and formulate them as trans-
lation constraints into the bundle adjustment (BA). The proposed constraints (called motion constraints) impose 
a first-order penalty to co-located cameras whose motion speeds and directions between frames do not match. 
With soft constraints, it can handle loosely synchronized frames (with an error within one second). The proposed 
constraints are integrated into the BA framework and experimented with different camera setups, i.e., on a group 
of casually co-located GoPro cameras with no rig calibration, and some with no overlapping views. Our results 
show that the constraints are extremely effective in improving the reconstruction and pose accuracy for ground 
motion images: in our self-collected open trajectories without loop closure, the proposed constraints are effective 
in correcting topographical errors (i.e., trajectory drifts) of the resulting models, and the dense point clouds 
achieve up to 11.34 m (86.12 %) of mean absolute error (MAE) improvement as compared to reference LiDAR 
point clouds; our results on KITTI-odometry and KITTI-360 datasets also show an improvement of up to 28.82 m 
(81.05 %) in terms of the root mean square error (RMSE) of absolute pose error (APE). We expect that the 
proposed constraints are significant not only as additional geometric constraints for image-based mobile map-
ping, but also will benefit the broader use of photogrammetry, since it empowers the possibility to harness the 
traditionally so-called low-quality stereo/multi-camera data (e.g., by non-photogrammetry citizen scientists) into 
improved 3D products.   

1. Introduction 

A multi-camera system refers to a set of co-located cameras simul-
taneously collecting images for mapping purposes. These cameras can be 
fixed through a rig to create parallaxes for stereo purposes and can be 
equipped with additional sensors such as Global Positioning System 
(GPS) and Inertial Measurement Unit (IMU), to form a well-integrated 
and well-calibrated sensor suite. Alternatively, a low-cost version can 
be as simple as a few casually co-located cameras whose relative posi-
tions are fixed at data collections but uncalibrated, e.g., several GoPro 

cameras mounted on a vehicle. Multi-camera systems have unique ad-
vantages in mapping applications (Harmat et al., 2015; Häne et al., 
2017; Wierzbicki, 2018), due to their extended field of views (FoVs) and 
more stable camera networks for geometric reconstruction. Simulta-
neously using multiple cameras is also regarded as a good practice when 
performing structure from motion (SfM) or photogrammetric recon-
struction at the ground level, as 3D reconstruction using a monocular 
camera (Engel et al., 2014; Mur-Artal et al., 2015; Z. Xu et al., 2022) is 
subject to drift problems caused by several factors. First, a monocular 
camera in a moving trajectory lacks a stable camera network to 
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accurately estimate lens distortions, causing, e.g., the “doming” effect by 
radial distortion errors (James & Robson, 2014). Second, the weak 
camera network itself may lead to less accurate pose estimation, e.g., it 
does not have image overlap in the direction orthogonal to motion, to 
resolve good tilt (or pitch) angle. Last but not least, bundle adjustment 
(BA) applied in incremental SfM is only locally optimal. These factors 
cause accumulated errors, which are eventually observed as trajectory 
drifts and 3D topographical distortions (Cornelis et al., 2004). A multi- 
camera system naturally provides more overlapping images that 
enhance the camera networks, and more redundancies to create paral-
laxes in different directions, hence is powerful in collecting convergent 
images for measurements. 

Commercial-grade multi-camera systems are calibrated regularly in 
the factory, while customized multi-camera systems require calibration 
in the lab before use, typically through fiducial targets or control arrays 
(Heng, Lee, et al., 2015; Heng et al., 2019; Lichti et al., 2021; Dong et al., 
2023). In addition, cameras are usually held on a special mounting rig, 
which is prone to errors due to minor sensor displacement during the 
motion (e.g., platform vibration), or environmental factors such as hu-
midity and temperature. Thus, re-calibration is needed as the camera 
setup changes. However, this is considered an expensive process, and 
oftentimes not an option for users with no access to expertise and fa-
cilities for calibration. 

Self-calibration has been a standard practice in photogrammetry to 
correct the camera lens distortions and interior parameters using the 
camera networks. However, calibrating multi-camera systems also in-
volves the relative positions between different cameras, as well as the 
synchronization of their shutters. Oftentimes the synchronization of 
frames among multiple cameras requires a hardware solution, i.e., a 
trigger box (Nikolic et al., 2014) to control shutters. Thus, in addition to 
applying standard self-calibration for lens distortions, existing ap-
proaches exploited coded constraints assuming fixed relative orienta-
tions among synchronized frames from stereo or multiple cameras 
(Schonberger & Frahm, 2016; Maset et al., 2020), which were reported 
to be overall beneficial to improve the accuracy of the BA. For example, 
using the fixed relative orientation constraints, one can effectively “re- 
calibrate” a stereo rig during the reconstruction, which can supplement 
minor displacement that occurs after the lab calibration. Some of these 
methods were applied to commercial-grade systems such as aerial 
oblique camera systems (Maset et al., 2020). These varying approaches 
all assume aerial blocks with prescribed overlaps among these multiple 
cameras in aerial collections. Our earlier work (Huang, Elhashash, et al., 
2022) proposed baseline constraints for uncalibrated stereo cameras in 
ground-level image collections: assuming an unknown baseline and only 
roughly synchronized video frames (with an error within one second), it 
implemented the constraints into BA that minimized the differences of 
the baselines of two co-located cameras at different locations, which 
reported to have increased the accuracy of 3D reconstruction. However, 
the implementation of the constraints required the FoVs of two cameras 
to have a certain overlap (i.e., tie points) to initiate baseline 
computations. 

Ground-level multi-camera systems can be sophisticated, especially 
if such a system is in a “casual” setup. Also, there may exist no prior 
knowledge about the relative translation between pairs of cameras, no 
precise synchronization of the frames, and marginal or no overlapping 
FoVs among these cameras (e.g., two cameras facing in different di-
rections). To our best knowledge, existing approaches were unable to 
place constraints on such a system, and to the maximum, existing ap-
proaches might independently estimate poses for images for each cam-
era following monocular camera-based reconstruction, which 
apparently would continue to suffer from trajectory drifting and topo-
graphical errors as previously mentioned. 

Although such a “casual” system provides little geometric constraints 
among these cameras, the fact that these cameras are co-located during 
collection still poses weak constraints that tie these frames. Therefore, 
this paper intends to propose a set of weak constraints characterizing 

this fact, and thus, integrate these constraints into BA. This can simul-
taneously resolve poses for image frames from uncalibrated multi- 
camera systems. Assuming that camera frames are only roughly syn-
chronized (with an error within one second), here we present the motion 
constraints respectively corresponding to two facts: 1) length propor-
tionality constraint: the length of motion vectors of two cameras should 
be similar, or at least up to scale. 2) motion parallelism constraint: the 
motion vectors of two cameras should be directionally parallel. Since the 
motion constraints only impose regularities on the motion vectors and 
do not require an explicit baseline to be known, it can be made more 
robust to synchronization errors, and more importantly, provide con-
straints for co-located cameras with non-overlapping FoVs in a multi- 
camera system. 

We first introduce our proposed method in a two-camera case with 
non-overlapping FoVs, then extend it to a more sophisticated configu-
ration with six cameras, containing mixed overlapping and non- 
overlapping FoVs. We performed experiments to compare reconstruc-
tion accuracy for the results obtained from a typical SfM/photogram-
metry pipeline with and without our proposed motion constraints 
applied in BA. Two datasets were collected with LiDAR data available as 
a reference for both qualitative and quantitative evaluations of recon-
struction accuracy, the KITTI-odometry (Geiger et al., 2012) and KITTI- 
360 datasets (Liao et al., 2022) with ground truth poses were used for 
evaluations of pose accuracy. The remainder of this paper is organized as 
follows: Section 2 briefly introduces recent related works on SfM/ 
photogrammetry using multi-camera systems; Section 3 presents the 
formulation of our proposed motion constraints; Section 4 presents the 
experiments, including the experimental design, qualitative and quali-
tative evaluation results, sensitivity analysis and ablation study; Section 
5 concludes this paper with our discussions on the potential usability of 
the motion constraints. 

2. Related work 

Multi-camera systems in photogrammetry. Over the past decade, 
multi-camera systems have gained increasing attention in the photo-
grammetry industry, mounted on different platforms such as unmanned 
aerial vehicles (UAVs), ground vehicles, robots, etc. For example, multi- 
camera systems on UAV or aerial platforms contain a sensor suite con-
sisting of nadir and oblique cameras, onboard GPS/IMU, and precise 
shutter control systems (Nikolic et al., 2014). On the one hand, it ex-
tends the FoVs of the aerial collection. On the other hand, it significantly 
improves the collection of data integrating oblique geometries of the 
scene. Because such a sensor suite is well-integrated and calibrated, and 
its collection pattern allows overlapping FoVs of images at different 
shots, classic photogrammetric methods can process oblique image 
blocks well. This naturally broadens the use of aerial multi-camera 
systems in many applications such as 3D modeling (Papakonstantinou 
et al., 2018; Xu, Qin, Huang, et al., 2023), land change monitoring 
(Bertin et al., 2020; Jenal et al., 2020; Jenal et al., 2021; Xu et al., 2021; 
Huang, Tang, et al., 2022), smart cities (Alshammari & Rawat, 2019; 
Sakamoto et al., 2022; Kaya et al., 2023), etc. In parallel, multi-camera 
systems are also deployed on ground vehicle platforms for use in ap-
plications such as autonomous driving. The work of Yang et al. (2020) 
proposed a simultaneous localization and mapping (SLAM) method 
using multiple cameras, and demonstrated that such a setup could 
improve the localization accuracy for off-road navigation. Other works 
(Häne et al., 2017; Heng et al., 2019) focused on using multi-camera 
systems for autonomous vehicles to enhance 3D visual perception and 
mapping by using the extended FoVs. Furthermore, multi-camera sys-
tems provide robotic vision systems for better environment perception. 
Zhu et al. (2020) proposed an autonomous method for robot navigation 
based on wider FoVs from the multi-camera setup. For ground-based 
multi-camera systems, due to that the platform typically has larger vi-
bration, one critical pre-processing step is to perform stereo calibration 
prior to collection missions, to “re-calibrate” potential camera 
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displacement. In general, there are four ways to approach the calibration 
problem, 1) using ground control points (GCPs) manually identified on 
site, either through surveyed points or from geo-referenced external 
LiDAR scans (Triggs, 1999; Jones et al., 2002); 2) using specific scene 
features such as vanishing points (Caprile & Torre, 1990; Krahnstoever 
& Mendonca, 2005) to achieve control-free calibration; 3) using coded 
targets with known dimensions as metrics for calibration (Marcon et al., 
2017; Xie et al., 2018; Heng et al., 2019); 4) cloud calibration directly 
using the natural features in the survey area (Heng, Furgale, et al., 2015; 
Häne et al., 2017; J. Xu et al., 2022). However, these methods all require 
extra work in data collection, making it less friendly for calibration tasks 
on-the-go and oftentimes inaccessible to non-expert users. 

Geometric constraints for multi-camera systems. Multi-camera 
systems naturally pose geometric constraints among different cameras, 
which has been explored by a few existing works in the literature to 
improve either camera calibration or reconstruction accuracy. Maset 
et al. (2021) investigated relative orientation constraints for 3D recon-
struction using multi-camera systems and reported that using BA with 
relative orientation constraints led to improved accuracy. Existing ap-
proaches can be generally categorized as enforcing explicit and implicit 
multi-camera constraints (Detchev et al., 2018). The explicit constraint 
pre-computes the relative orientation between a master camera to the 
rest and then enforces this relative orientation as a constant throughout 
the BA. The implicit constraints do not enforce specific relative orien-
tation between cameras in the rig, while it minimizes the differences of 
the relative orientation at different rig locations. 

Explicit multi-camera constraints: One family of approaches applies 
the multi-camera constraint explicitly. Maset et al. (2020) estimated the 
exterior orientation of the master camera and the relative orientations of 
the slave cameras in the BA at the last stage of SfM pipeline. The relative 
orientation was constant at different rig locations to enforce the rigidity 
of the multi-camera system, thus requiring a frame to house the cameras 
and rigorous synchronization across the cameras. In the work proposed 
by Cavegn et al. (2018), they exploited and claimed that the usage of 
calibrated or defined relative orientations in BA could improve the 
reconstruction accuracy and robustness for mobile mapping multi- 
camera systems. Another work proposed by Schonberger and Frahm 
(2016) computed the average relative orientation from the initial SfM 
process, and the relative orientation was fixed in BA to enforce the ri-
gidity of the system. However, it could be problematic to compute the 
average values if the initial SfM generated inaccurate results. Another 
approach (Lerma et al., 2010) included the manually measured pairwise 
baseline distances among three cameras as constraints in the BA and 
reported that the calibration could be benefited when the full set of 
baseline distances of cameras was used. 

Implicit multi-camera constraints: Another family of approaches 
applies the implicit multi-camera constraint. Lichti et al. (2020) pre-
sented constraints to enforce the stability of relative orientation. The 
relative orientations were derived from exterior orientations for each 
camera in the rig and the differences were minimized at different rig 
locations. Their approach improved the calibration for a multi-camera 
mobile mapping system. In the work proposed by Rupnik et al. 
(2017), they computed the average relative orientation of the cameras 
from initial SfM similar to (Schonberger & Frahm, 2016; Rupnik et al., 
2017). However, they adjusted the exterior orientation of the cameras in 
BA to achieve constant relative orientation evolved from the average 
relative orientation. Therefore, it could also be problematic if the initial 
SfM generated inaccurate results. Other work (Huang, Elhashash, et al., 
2022) proposed the baseline constraints which derived the relative 
orientations from the exterior orientations of the cameras. The method 
minimized the difference of baselines at adjacent time steps and pun-
ished the outliers. The baseline constraints were reported to improve the 
reconstruction accuracy significantly compared to the unconstrained 
solutions. 

Most of the existing solutions assume either rigorous synchroniza-
tion, a special frame to mount the cameras, overlapping views to derive 

the relative orientations, or pre-calibration to obtain the relative 
orientation to formulate the constraints. In our work, we aim to tackle 
these challenges and get rid of these requirements. 

3. Methodology 

Existing constraints (both explicit and implicit) derived from un-
calibrated multi-camera systems require pre-computed relative orien-
tation as a starting point. Thus, in order to utilize these constraints, the 
cameras must share overlapping FoVs. If two camera views do not 
overlap, these are often treated as separate cameras. To close the gap, 
our novel motion constraints effectively build connections between two 
co-located cameras without requiring them to share overlapping FoVs 
(see Fig. 1), since only the first-order motion between cameras is con-
strained. Instead of assuming a fixed relative orientation between two 
co-located cameras, our motion constraints entail the fact that the mo-
tion vectors of co-located cameras should follow the same direction and 
length proportionality. Further, we demonstrate that the proposed mo-
tion constraints can be used together with existing approaches (Huang, 
Elhashash, et al., 2022), to extend to multi-camera systems with an 
arbitrary number of cameras, with and without overlapping FoVs. In this 
case, it formulates the most comprehensive constraints respecting the 
nature of multi-camera co-location. The next two subsections introduce 
the mathematical formulation of the motion constraints in a two-camera 
basic scenario (Section 3.1) and a scenario with more than two cameras 
(Section 3.2). 

3.1. The proposed motion constraints 

As shown in Fig. 1(a), a steadily moving platform (e.g., a vehicle) is 
mounted with two co-located cameras (green and yellow). We assume 
the motions of these two cameras are parallel to each other in each short 
period of time (e.g., one second) during the data collection. The 
assumption still holds to some extent when the camera system turns 
around a corner, as the motion vectors under our assumption could be 
numerical approximated of the tangent vector (or a secant), which 
would still be parallel to each other in such a circumstance. A few facts 
can safeguard the use of the constraints in general motion scenarios: 
first, very often the turning radius of a vehicle in ground motion is much 
larger than the distance between the cameras, thus the effect of curved 
motion is insignificant; second, our proposed parallelism and length 
proportionality constraints were used as soft constraints and were 
adaptive based on the time interval associated with the motion vector. 
Therefore, conditioning the BA based on this can augment the geometric 
compliance respecting this fact. These two cameras, illustrated as cam-
eras i and j may or may not share overlapping FoVs. The motion con-
straints can be interpreted as the following: for time point s, the formed 
motion vector of the camera i with respect to the previous time point 
s − m, denoted as ti,s− m, is parallel to the motion vector tj,s− m formulated 
with camera j. The motion vector with respect to the next time point can 
be similarly formulated, denoted as ti,s+m and tj,s+m. Here m is a variable 
about time intervals controlling the motion vector formulated based on 
short- or long-range dependences. Further, their moving speed (first- 
order motion difference with respect to time) should be similar. How-
ever, given that these two cameras may not have shared FoVs, the 
constraints should be formulated as a scale-invariant term. Hence, we 
introduce the use of length proportionality between these motion vec-
tors that ratios out the scale. 

As shown in Fig. 1(b), the incremental SfM pipeline will generate two 
separate models for two cameras without content overlap, and the 
reprojection errors of both cameras are formulated separately in the 
standard BA framework (without motion constraints) during the 
reconstruction stage. After the reconstructions of the two models are 
done, they are fed together into our proposed BA framework enhanced 
with the motion constraints to jointly minimize the reprojection errors 
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and motion constraint errors for both models. The motion constraint 
errors serve as the link between the optimizations of reprojection errors 
of both cameras, as the optimizations of motion constraint errors 
formulated by motion vectors from both cameras guide the optimiza-
tions of the reprojection errors of both cameras and vice versa. To be 
more specific, the proposed motion constraints contain two factors: first, 
the motion speed between the two cameras should be similar or up to a 
scale; second, motion vectors should be directionally parallel to each 
other. Based on these two factors, we derive three error terms, 1) length 
proportionality term Eprop, and 2) motion cross-product error term, Ecross, 
and 3) motion dot-product error term, Edot . Eprop corresponds to the first 
factor, i.e., the scale-invariant motion speed constraint; Ecross and Edot 
respectively impose that the motion vectors should be parallel and 
should be pointing in the same direction. The sum of three error terms 
constructs the final motion constraints Emotion (Equation (1)), which is 
added to the total error E for BA, in addition to the regular reprojection 
error Ereproj. 

E = Ereproj + Emotion
Emotion = αEprop + βEcross + γEdot

(1) 

It should be noted that the other typical error terms such as for GCPs 
are not shown in Equation (1) but can be assumed when available. 
Moreover, these different terms are given tunable weights (α, β, γ) to 
impose only soft constraints directly into the energy term, since in our 
problem we only assume that these cameras are loosely synchronized, i. 
e., approximately at a level of one second with clock tuned solely by the 
GPS time. 

Length proportionality error term (Eprop): Given two co-located 
cameras (i and j) capturing images while moving, This term minimizes 
the ratio differences of the lengths of the motion vectors, such that their 
speeds are up to scale, as formulated in Equation (2): 

Eprop =
1
2
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(2)  

where ̃ti,s+m, ̃tj,s+m, ̃ti,s− m, ̃tj,s− m denote the normalized motion vectors by 
the maximum length of ti,s+m, tj,s+m, ti,s− m, tj,s− m, which are the motion 
vectors of camera i and j at time point s with respect to its neighboring 
keyframes (defined as m frames away), and ‖ • ‖2 refers to the L-2 norm. 
Normalization is performed to make sure Eprop has similar scales for 
different range dependencies controlled by m. Equation (2) suggests 

that these vectors should have an equivalent ratio, i.e., ‖̃ti,s+m‖2

‖̃tj,s+m‖2
=

‖̃ti,s− m‖2

‖̃tj,s− m‖2
, 

such that it is invariant to reconstructed models with scale differences. 
The error is built through the Huber loss function (ρ) with δ set to 4 
(Huber, 1992), which is particularly effective in handling outliers. To 
further enhance the robustness of this error to outliers, we aggregate this 
proportionality error using variable time interval m, meaning that we 
select neighboring m frames to compute the motion vectors. ws,m is an 

adaptive weight that determines the contribution of each proportion-
ality error based on the time interval and how far they are from the first 
frame of the reconstruction. This is formulated through two factors: 1) 
s− sst
se − sst 

, which is positively correlated to the distance between the current 
frame s and the starting frame sst of the reconstruction (s − sst), 
normalized by the entire collection trace (se − sst), where se denotes the 
ending frame of the reconstruction; 2) 1m, which is inversely proportional 
to the time interval m. The first factor considers giving higher weight on 
this term as the error accumulates as the frame progresses through the 
reconstruction of the trajectory, and the second factor considers giving 
lower weight for motion vectors calculated using a larger time interval, 
as the numerical differentiation has a higher error as the interval en-
larges. Finally, we place a global and constant weight α to leverage the 
importance of this entire error term, which is empirically set to 102 in 
the experiments. This value is set based on the sensitivity analysis (see 
Section 4.6). 

Motion cross-product error term (Ecross): As mentioned earlier, 
Ecross enforces parallelism of motion vectors between separate cameras. 
Assuming two co-located cameras i and j, Ecross is defined as Equation 
(3): 

Ecross =
1
2
∑se

s=sst

∑n

m=1
ρ
(
‖ws,m‖̂ti,s+m × t̂ j,s+m‖2‖

2
2

)
(3)  

where ̂ti,s+m and ̂tj,s+m are unit-length motion vectors for ti,s+m and tj,s+m. 
ws,m is the same adaptive weight as defined in Equation (2). Similar to α, 
β is a global weight of this error term leveraging its importance, which is 
empirically set to 105 in the experiments based on the sensitivity anal-
ysis (see Section 4.6). 

Motion dot-product error term (Edot): It is possible that two motion 
vectors traveling in opposite directions may still lead to a small Ecross, 
hence we use Edot as a supplemental constraint enforcing the directions 
of the motion vector to be equivalent. Edot computes the dot product 
between t̂ i,s+m and t̂j,s+m, as described in Equation (4), where “1″ is a 
constant enforcing the direction of the two vectors to coincide. 

Edot =
1
2
∑se

s=sst

∑n

m=1
ρ
(
‖ws,m

(
t̂ i,s+m ⋅̂tj,s+m − 1

)
‖

2
2

)
(4) 

ws,m is similarly defined as the other two error terms, and γ is a 
constant weight indicating the contribution of this term, empirically set 
as 101 in the experiments, which is also based on the sensitivity analysis 
(see Section 4.6). 

3.2. Application of motion constraints to multi-camera systems 

The above-described motion constraints, due to their flexibility of 
not requiring overlapping FoVs, can be easily extended to a system that 
contains an arbitrary number of cameras. As an example, Fig. 2(b) 
contains mixed co-located cameras with and without overlapping FoVs, 
and the extension of our motion can be simply an enumeration of 
possible pairs of cameras (i and j) as described in Equation (5): 

Fig. 1. The proposed motion constraints (a) into a typical BA framework (b). Details of the motion constraints in (a) are explained in the text.  
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Emotion =
∑

i

∑

j

(
αEij

prop + βEij
cross + γEij

dot

)
(5) 

Further, when possible, we update the ws,m defined in these error 
terms (Equation (2–4)), to include any possible prior information about 
the distance between two cameras, as ws,m

′ = λijws,m. λij weights the 
camera heavier if camera i and j are closer. These weights can be decided 
empirically, otherwise as equivalent if no prior information is given. 

4. Experiments 

We first performed experiments with two self-collected datasets 
under two types of camera configurations (two-camera and multi- 
camera (six) cases). The accuracy of the reconstruction was evaluated 
against LiDAR reference data. Additionally, we performed experiments 
on the KITTI-odometry (Geiger et al., 2012) and KITTI-360 datasets 
(Liao et al., 2022) to evaluate the absolute pose error (APE) against the 
provided ground truth poses. Section 4.1 briefly introduces the two 
datasets we collected and the reference LiDAR point clouds, and the 
KITTI-odometry and KITTI-360 datasets. Section 4.2 and Section 4.3 
describe the qualitative and quantitative evaluations of reconstruction 
accuracy for the two-camera case and the multi-camera cases, respec-
tively. Section 4.4 and Section 4.5 describe the qualitative and quan-
titative evaluations of pose accuracy using the KITTI-odometry and 
KITTI-360 datasets. A sensitivity test for each error term of motion 
constraints is discussed in Section 4.6. An ablation study was also 
performed to understand the contribution of each component of the 
motion constraints, which is discussed in Section 4.7. 

To evaluate the reconstruction accuracy using our self-collected 
datasets, we first ran the SfM pipeline with and without the motion 
constraints, followed by a dense reconstruction using the open-source 
OpenMVS library (Cernea, 2022). For all the experiments of the multi- 

camera system with six cameras, we also incorporated our previously 
proposed baseline constraints (Huang, Elhashash, et al., 2022) to 
leverage the advantages of cameras with overlapping FoVs. The baseline 
constraints build an error term that minimizes the differences of baseline 
lengths of stereo cameras in different collection time, which can be used 
on camera pairs that share overlapping FoVs. The dense results were 
then metrically registered to the LiDAR point clouds using iterative 
closest point (ICP) algorithm (Besl & McKay, 1992; Xu, Qin, & Song, 
2023) initiated by a few manually selected reference points, in which we 
considered rotation, translation, and scaling. The quantitative evalua-
tion was performed by measuring the mean absolute error (MAE) be-
tween the dense point clouds and reference LiDAR point clouds. MAE is 
derived by a slightly modified chamfer distance, which is the mean of 
absolute distances between each point in the dense point clouds and the 
quadric fitted surface using the nearest 6 points from the reference 
LiDAR point clouds. It is noted that such an evaluation metric is not 
derived by the correct correspondences between the dense point clouds 
and the reference LiDAR point clouds due to the lack of color and 
sparseness of the LiDAR point clouds. However, it still reflects the level 
of non-rigid distortion as the lower bound errors. To have a more 
comprehensive understanding of evaluation, we also picked several 
corresponding subsections from the dense points and LiDAR point 
clouds. The misalignment was then measured as a supplementary 
evaluation to emphasize the improvement quantitatively. The registra-
tion and quantitative evaluation were performed using the open-source 
CloudCompare software (Girardeau-Montaut, 2022). 

To evaluate the pose accuracy using the KITTI-odometry and KITTI- 
360 datasets, we first ran the SfM pipeline with and without the motion 
constraints. A tool named evo (Grupp, 2017) was used to evaluate and 
compare the poses from the SfM pipeline to the ground truth poses 
provided in the KITTI-odometry and KITTI-360 datasets. APE was 

Fig. 2. Overview of data collection and LiDAR datasets. (a) Two moving trajectories of the vehicle. Yellow arrows point to the moving directions. (b) cameras 
“casually” mounted on the vehicle, with two groups of each three cameras, and no overlapping FoVs between groups. Two cameras facing left and right are 
highlighted in red lines for their FoVs, which were used to test the two-camera case. (c-d) Reference LiDAR point clouds color-coded by height based on the height 
scale bar in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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adopted as the metric to evaluate the global consistency of a trajectory. 
As defined in Equation (6), APE is based on the absolute relative pose 
between the reference and estimated poses Pref ,i,Pest,i ∈ SE(3) at time-
stamp i (Lu & Milios, 1997): 

Ei = P− 1
ref ,iPest,i ∈ SE(3) (6) 

Since our motion constraints were formulated as translation con-
straints into the BA, only the translation part of Ei was used to compute 
the APE, which is defined as follows: 

APEi = ‖trans(Ei)‖ (7) 

Before evaluating the APE, the poses from the SfM pipeline were 
aligned to the ground truth by using least square-based Umeyama 
alignment algorithm (Umeyama, 1991), including rotation, translation, 
and scaling. The alignments and APE derivation were done using the evo 
tool. 

4.1. Dataset 

OSU image datasets. Two datasets were self-collected on part of The 
Ohio State University (OSU) campus, as shown in Fig. 2(a): trajectory 1 
consisted of data in a loop (without closing it) and trajectory 2 consisted 
of data with forward motion (open trajectory). Six GoPro cameras were 
mounted on a vehicle with a configuration shown in Fig. 2(b), two of 
which (facing left and right, as their FoVs highlighted in red lines) were 
used to test the basic two-camera case as described in Section 3.1. Data 
from all the cameras were then used to evaluate the motion constraints 
in the multi-camera case as described in Section 3.2. We considered this 
as a “casual” setup because it had cameras with both overlapping and 
non-overlapping FoVs, and no special mounting rig was used. The videos 
were recorded at a frame rate of 30 FPS, and we uniformly extracted 1/6 
of the video frames to constitute the image datasets, thus the time in-
terval between consecutive frames was about 0.2 s. The video clocks 
were synchronized via GPS time with an estimated synchronization 
error of less than one second. The resolution of the images was down-
sampled by half to 2000 × 1500. The detailed information is provided in 
Table 1. 

OSU LiDAR datasets. The high-resolution LiDAR point clouds were 
collected in 2015 for the City of Columbus, Ohio as part of (Ohio 
Statewide Imagery Program (OSIP)). The LiDAR data was collected by a 
Leica ALS70 LiDAR system onboard aircraft with a nominal pulse 
spacing (NPS) of 0.7 m. The horizontal accuracy is 1.182 m at a 95 % 
confidence level, with an average density of 5.76 pts./m2. We prepared 
the LiDAR dataset covering the trajectories as shown in Fig. 2(c-d). 
Although it is airborne LiDAR, the façade points are sufficient for eval-
uation as shown in Fig. 2(c). 

KITTI-odometry and KITTI-360 datasets. KITTI-odometry (Geiger 
et al., 2012) and KITTI-360 datasets (Liao et al., 2022) are large-scale 
suburban driving datasets for various tasks such as semantic scene un-
derstanding, novel view synthesis, and SLAM. It contains rich informa-
tion from multiple sensors. KITTI-odometry dataset contains 11 
trajectories with ground truth poses available and it has two perspective 
stereo cameras to the front, while KITTI-360 dataset contains 9 trajec-
tories with ground truth poses available and it has two perspective 

stereo cameras to the front and two fisheye cameras to each side. The 
ground truth poses for the camera frames are derived from the GPS/IMU 
measurements. The detailed information is provided in Table 1. 

4.2. Evaluation of motion constraints in two-camera case 

Qualitative evaluation. Fig. 3 shows the visual comparison of the 
reconstruction results with and without applying the motion constraints 
for two trajectories. It should be noted that since there are no over-
lapping FoVs between these two cameras, the reconstructed models are 
in separate coordinate systems but here they are co-located for visuali-
zation through similarity transformation, including rotation, trans-
lation, and scaling. Here we hide the reference LiDAR point clouds in 
Fig. 3 to better emphasize the distortion and correction visually, and 
show the visual comparison to LiDAR point clouds in Fig. 4 for four 
manually selected subsections. Thanks to our motion constraints, the 
reconstructions are mutually constrained by the motion vectors from 
each other. As can be seen in Fig. 3(a), there is a noticeable drift at the 
end of the trajectory for trajectory 1, in both horizontal and vertical 
directions: from the bird-eye view, one model tends to drift outwards 
while the other inwards due to the doming effect caused by accumulated 
errors (James & Robson, 2014). The results of our proposed motion 
constraints have significantly improved the drift (Fig. 3(b)). Although 
both cameras do not share overlapping FoVs, the process can be un-
derstood as that each camera provides an approximate motion vector 
that guides the BA, thus it can effectively prevent the cameras from 
deviating from each other at each time step and cancels out the drift for 
both models. Results of trajectory 2 in Fig. 3(c-d) show similar 
improvement for BA with the proposed motion constraints, as shown in 
the focused region outlined in the rectangle where parallel streets tend 
to diverge for reconstruction without the proposed motion constraints. 
The evaluations also indicate that our motion constraints can handle the 
case of curve motion, as can be seen at the corners of both trajectories. It 
should be noted that our motion constraints do not register 3D models 
from these two cameras under the same coordinate frame, rather, they 
utilize the parallelism and length proportionality constraints from each 
other to correct the topographical distortions of their respective geom-
etries. The distortion for reconstruction without motion constraints and 
the correction for reconstruction with motion constraints can be further 
emphasized by comparing the four manually selected subsections from 
the dense point clouds to the corresponding subsections from LiDAR 
point clouds, as shown in Fig. 4. These subsections are selected from 
building façades. Among these subsections, the ones with motion con-
straints are better aligned with the corresponding subsections from 
LiDAR point clouds. 

Quantitative evaluation. The quantitative evaluation was carried 
out by two means: 1) measuring the MAE between the whole dense 
reconstruction results and the reference LiDAR point clouds; 2) 
measuring the misalignments between the corresponding subsections 
from dense reconstruction results and the reference LiDAR point clouds. 
We consider that the reference LiDAR data are more metrically accurate. 
As mentioned earlier, the dense point clouds were registered to the 
LiDAR data prior to evaluation. As demonstrated in Table 2, re-
constructions with motion constraints resulted in a substantial 
improvement in the MAE and standard deviation of both datasets. The 

Table 1 
Information of OSU image datasets, KITTI-odometry and KITTI-360 datasets.  

Dataset ID GPS length [m] Driving direction Camera configuration Video frames Resolution Time interval [s] 

OSU Trajectory 1 1200 Anticlockwise 2 cams 1400 2000 × 1500 0.2 
6 cams 4200 

OSU Trajectory 2 860 Southward 2 cams 1060 
6 cams 3180 

KITTI-odometry, 11 Trajectories 22,179 Various 2 cams 11,614 1226 × 370 0.2 – 0.3 
KITTI-360, 

9 Trajectories 
66,591 Various 4 cams 72,154 1408 × 376 

1400 × 1400 
0.2 – 0.3  
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improvement is up to 0.97 m (42.46 %) for MAE and 0.91 m (28.48 %) 
for standard deviation for trajectory 1, and up to 0.92 m (47.53 %) for 
MAE and 1.13 m (45.26 %) for standard deviation for trajectory 2. While 
MAE of the whole reconstruction indicates the lower bound errors, the 
misalignments of the subsections further reveal the significant 
improvement brought by the motion constraints. The improvement is up 
to 12.90 m (73.43 %) for MAE and 7.30 m (79.15 %) for standard de-
viation for subsections in trajectory 1, and up to 11.34 m (86.12 %) for 
MAE and 4.91 m (80.00 %) for standard deviation for subsections in 
trajectory 2. 

4.3. Evaluation of motion constraints in multi-camera case 

In this experiment, we used the images from all six cameras and 
applied the aggregated constraints among each pair of cameras (as 
described in Section 3.2). The previously proposed baseline constraints 
were also incorporated in all the experiments. Both the qualitative and 
quantitative results are shown as follows. 

We first compared the reconstruction results without motion con-
straints between two-camera and multi-camera cases. For the multi- 
camera case, baseline constraints were applied additionally. Visual 

Fig. 3. Visual comparison of the whole reconstructions with and without motion constraints. The red rectangle in (a) shows the drifts in both horizontal (top) and 
vertical (bottom) directions for the reconstruction without motion constraints, which are reduced after using the motion constraints, as outlined in the green 
rectangles in (b). The red rectangles in (c) outline the drift regions at both ends of the trajectory, in both horizontal (top) and vertical (bottom) directions. It is 
mitigated after using motion constraints as outlined in the green rectangles in (d). The numbers indicate different subsections of distortion (indexed by red numbers) 
and correction (indexed by green numbers), which are visually compared to the corresponding subsections from the LiDAR point clouds as shown in Fig. 4. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Visual comparison showing a top view of four selected subsections of the generated reconstruction results against the LiDAR as a reference. The subsections 
before and after applying the motion constraints are indexed by red and green numbers, respectively. The drift and distortions are reduced after applying the motion 
constraints leading to better aligned results with LiDAR point clouds. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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inspection shows that the reconstruction of six cameras for both tra-
jectories has a better appearance in terms of scene coverage and drifts at 
the ends of both trajectories (outlined in red rectangles in Fig. 3(a, c) 
and Fig. 5(a, c)), thanks to the advantages of multi-camera systems that 
provide extended FoVs and tighter camera networks. The results of the 
visual inspection are also correspondingly reflected in the statistical 
results, which will be discussed later. 

Qualitative evaluation. Because the six cameras were mounted in a 
manner where three of the six cameras were on one side and the other 
three were on an opposite side, there is a natural lack of overlapping 
FoVs between cameras from each side, thus it will produce two separate 

models mapping different side of the street. Fig. 5 shows similar ob-
servations demonstrated in the two-camera case (Fig. 3). First of all, the 
six-camera reconstruction without motion constraints naturally shows 
better geometry (i.e., less drift) than that generated from a two-camera 
case (e.g., comparing Fig. 3(a) with Fig. 5(a)), thanks to the redundant 
cameras with overlapping FoVs. However, drifts still exist as shown in 
the red rectangle region in Fig. 5(a) in the horizontal direction while 
being slightly better in the vertical direction. Our proposed approach 
can improve such errors to a notable level especially in the horizontal 
direction, as seen in Fig. 5(b). For trajectory 2, we can observe notable 
differences in results with and without our proposed motion constraints, 

Table 2 
Statistics of the reconstruction accuracy in the two-camera case. For each trajectory, two separate models were reconstructed from the left and right cameras and 
evaluated respectively, which we call models #1 and #2 in the table. “Sub” refers to the subsections of reconstruction, indices of which are shown in Figs. 3 - 4.  

Dataset model MAE [m]  Standard deviation [m] 

w/o motion constraints w/ motion constraints w/o motion constraints w/ motion constraints 

Trajectory 1 #1  2.277  1.310   3.206  2.293 
#2  1.952  1.403   2.384  2.056 
Sub #1  17.565  4.667   9.227  1.924 
Sub #2  22.343  7.073   7.886  2.310 

Trajectory 2 #1  1.939  1.017   2.485  1.360 
#2  1.083  0.777   1.711  1.188 
Sub #3  5.976  1.107   6.145  1.229 
Sub #4  13.172  1.828   6.825  2.349  

Fig. 5. Visual comparison of the whole reconstruction with and without motion constraints. The red rectangles in (a) show the drift mainly in the horizontal direction 
(top) and less in the vertical direction (bottom) for the reconstruction without motion constraints, which is reduced after using the extended motion constraints, as 
outlined in the green rectangles in (b). The red rectangles in (c) also show the drift mainly in the horizontal direction (top) and less in the vertical direction (bottom) 
at both ends of the trajectory. It is mitigated with extended motion constraints, as outlined in the green rectangles in (d). It is worth noting that the reconstruction in 
the multi-camera case has more points than in the two-camera case. The numbers indicate different subsections of distortion (indexed by red numbers) and correction 
(indexed by green numbers), which are visually compared to the corresponding subsections from the LiDAR point clouds as shown in Fig. 6. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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and the reader may focus on the rectangle regions where distorted point 
clouds are corrected after using our proposed approach. Similar obser-
vations for visual comparison of the same four corresponding sub-
sections from dense point clouds and LiDAR point clouds were found in 
Fig. 6. The subsections of six-camera reconstructions with and without 
motion constraints show better alignment than those of two-camera 
reconstructions, among which the ones with motion constraints are 
even closer to the corresponding subsections from the LiDAR point 
clouds. 

Quantitative evaluation. Table 3 shows the statistical comparison 
between the dense results with and without the proposed motion con-
straints. For trajectory 1, the proposed motion constraints achieve up to 
0.06 m (5.11 %) improvement for MAE and 0.06 m (2.72 %) for standard 
deviation. For trajectory 2, motion constraints achieve statistically up to 
0.53 m (36.70 %) improvement for MAE and 1.10 m (45.93 %) for 
standard deviation. As for the misalignments of subsections, the 
improvement is up to 8.08 m (81.50 %) for MAE and 4.63 m (73.90 %) 
for standard deviation for subsections in trajectory 1, and up to 3.58 m 
(76.00 %) for MAE and 2.82 m (67.98 %) for standard deviation for 
subsections in trajectory 2. This level of improvement is in line with the 
qualitative evaluation but also suggests that the improvement is more 
significant for cases with fewer cameras (e.g., the two-camera case). 

4.4. Evaluation of motion constraints in KITTI-odometry and KITTI-360 
datasets 

Table 4 shows the statistical results for the APE evaluation of poses 
with and without motion constraints for both KITTI-odometry and 
KITTI-360 datasets. It should be noted that both datasets have over-
lapping FoVs among all the cameras, where the KITTI-odometry 
collection came from two cameras while KITTI-360 data came from 
four (better connected). We can see that the improvement on KITTI- 
odometry dataset is much more significant than that on KITTI-360 
dataset, with update to 28.82 m (81.05 %) improvement on Trajectory 
01 and an average improvement of 4.48 m (24.39 %) for all the tra-
jectories in KITTI-odometry dataset. For KITTI-360 dataset, because the 
four cameras are better connected with strong correspondences, the 
improvement of RMSE of APE is rather marginal: up to 0.14 m (4.28 %) 
for Trajectory 03 and the average improvement is only 0.18 m (0.26 %). 
This mere improvement by our motion constraint is also affected by 
several challenging such as trajectory 05 and 07, due to a section of 
frames full of moving vehicles (an example is shown in Fig. 7). 

The quantitative results indicate that our motion constraints work 
more effectively in short (<3km) and regular (smooth turns, no revis-
iting) trajectories (e.g., Trajectory 01, 03, 04, 06, 09, 10 in KITTI- 
odometry dataset). Fig. 8 shows the visual comparison of the poses 
with and without our motion constraints compared to the ground truth 
poses for Trajectory 01 and 09 in KITTI-odometry dataset. The trajec-
tories of poses with motion constraints are better aligned with the 
ground truth poses, especially at the beginning and the end of the 
trajectories. 

The results also indicate that for long trajectories with complicated 
road condition, the benefit brought by our motion constraints is less 
noticeable, e.g., Trajectory 02 in KITTI-odometry dataset and most tra-
jectories in KITTI-360 dataset. These trajectories cover longer distances 
and contain more turns and revisiting of some sections of road. Addi-
tionally, the traffic condition in KITTI-360 is much busier with more 
moving objects in the scenes, thus the initial reconstruction (before 
applying motion constraints) is relatively poorly determined (see Fig. 7). 
Our motion constraints improve upon initial reconstructions, in cases 
where poor camera network is generated, the fraction of improvement of 
the motion constraints (probably built on poorly determined initial ge-
ometry), is also impacted. On the other hand, our motion constraints are 
designed to work best for co-located cameras that do not share over-
lapping FoVs, e.g., side-looking cameras at opposite directions 
(explained with experiments shown in Section 4.2). As we explained 
earlier, the KITTI-360 dataset, however, has co-located cameras that 
share overlapping FoVs, wherein the features connecting these four 
cameras kick in. While our motion constraints still show benefits in these 
cases, it is less. 

4.5. Loop closure and incremental incorporation of motion constraints 

Generally, the reconstruction can be easily improved when common 
strategies such as loop closure (when available) or more sophisticated 
ones such as an incremental bundle adjustment (incremental BA incor-
porating the motion constraint) are considered. As an example, we 
tested on KITTI-360 Trajectory #5, where, for the purpose of this testing, 
we removed the section of frames with heavy moving traffic (red box in 
Fig. 7). In this experiment, we included: 1) loop closure among inter-
secting frames; 2) incrementally incorporate the motion constraints 

Fig. 6. Visual comparison showing a top view of four selected subsections of the generated reconstruction results against the LiDAR as a reference. The subsections 
before and after applying the motion constraints are indexed by red and green numbers, respectively. The drift and distortions are reduced after applying the motion 
constraints leading to better aligned results with LiDAR point clouds. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Table 3 
Statistics of the reconstruction accuracy in the multi-camera case. For each 
trajectory, two separate models were reconstructed from the left and right 
camera groups and evaluated respectively, which we call models #1 and #2 in 
the table. “Sub” refers to the subsections of reconstruction, indices of which are 
shown in Figs. 5 - 6.  

dataset model MAE [m] Standard deviation [m] 

w/o motion 
constraints 

w/ motion 
constraints 

w/o motion 
constraints 

w/ motion 
constraints 

Trajectory 
1 

#1  1.078  1.022  2.187  2.127 
#2  1.398  1.364  2.185  2.147 
Sub 
#1  

9.915  1.834  6.271  1.637 

Sub 
#2  

2.210  0.766  0.778  0.615 

Trajectory 
2 

#1  1.434  0.908  2.388  1.291 
#2  0.702  0.631  1.227  1.238 
Sub 
#3  

3.612  0.946  4.148  1.328 

Sub 
#4  

4.716  1.132  2.922  1.373  
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during the reconstruction. The results are shown in Table 5. As expected, 
we can see that both strategies can notably improve the accuracy in 
cases where the cameras are already well connected (KITTI-360 data): 
namely up to 0.3 m of improvement with incremental motion constraint 
strategy, 0.2 m of improvement with loop closure, and 0.5 m combined. 
This shows that more sophisticated strategies can easily catalyze the 
effectiveness of our proposed motion constraints in its ability to improve 
the reconstruction accuracy. 

4.6. Sensitivity analysis on different error terms 

A sensitivity analysis is conducted to evaluate the contribution of 
different error terms controlled by the weight parameters (introduced in 
Section 3.1) on the reconstruction accuracy. The two-camera dataset of 
trajectory 1 was used for the sensitivity test. The weight was determined 
as those achieved the smallest MAE by grid search, which were at the 
order of 102 for proportionality parameter α, 105 for cross-product 
parameter β, and 101 for dot-product parameter γ. To understand the 

Table 4 
RMSE of APE (m) for KITTI-odometry and KITTI-360 datasets, with and without motion constraints. Bold results indicate the trajectories with most improvements in 
each dataset.  

KITTI-Odometry Trajectory# 00 01 02 03 04 05 06 07 08 09 10 Ave 

w/o motion constraints 25.80 35.56 41.08 2.29 0.71 20.38 19.20 5.78 23.21 22.74  5.30  18.37 
w/ motion constraints 25.75 6.74 40.38 1.22 0.36 19.71 14.50 5.05 23.12 12.02  3.99  13.89 

KITTI-360 Trajectory# 00 02 03 04 05 06 07 09 10 Ave   

w/o motion constraints 70.62 67.55 3.27 8.14 156.58 32.10 176.97 80.63 17.41 68.14   
w/ motion constraints 70.10 67.42 3.13 8.00 156.57 32.07 176.88 80.56 16.90 67.96    

Fig. 7. Left: reconstruction results of KITTI-360 Trajectory #5. The region where the pose estimation becomes problematic is outlined in red box. Right: an example 
image in the problematic region that causes incorrect pose estimation. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 8. Visual comparison of poses with and without motion constraints to the ground truth poses. (a) and (b) show trajectories with significant improvement in 
KITTI-odometry dataset. The blue lines represent the trajectories of poses without motion constraints. The green lines represent the trajectories of poses with motion 
constraints. The dashed lines represent the trajectories of the ground truth poses. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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sensitivity of each error term, we adjusted the weight of each error term 
and evaluated the performance of our method. In Fig. 9, the perfor-
mance is shown by varying the weight of each error term, such that the 
actual quantity of each error term varies from 0.00001 % to 100000 % of 
the reprojection error budget (we call this percentage relative error 
quantity), as reflected at the x-axis of the figures presented on a base-10 
log scale. As indicated in the middle of Fig. 9, when set to the optimal 
weight values (determined by grid search), the cross-product errors 
constitute the majority of the BA problem, being 50 times (equivalently 
5000 %) of the reprojection errors. This gives a strong constraint to 
stabilize the BA to respect the motion constraint. The proportionality is 
comparatively, much smaller, at only 0.15 % of the reprojection error, 
while the dot-product errors are even less (0.00007, equivalently 0.007 
% of the reprojection error). The dot-product error has a very minor 
impact on the error term, while may play roles in regularizing the mo-
tion to be in the same direction. Both the proportionality and cross- 
product terms are relatively robust when their relative error quantity 
is within an order of magnitude of 10, while the cross-product error term 
is slightly more sensitive since the error may increase when this error 
term contributes 100 times more or less of the optimal value. Therefore, 
the adjustment of the weight parameter, as they follow what is suggested 
by Fig. 9, may produce the best MAE in the experiment. To obtain the 
parameter values for other datasets, it is recommended that the users 
first obtain the quantity for each error term and the reprojection error by 
setting the weight parameters to the default unit value (e.g., 1), and then 
follow our weight suggestions based on the recommended percentage 
relative error quantity values in the sensitivity analysis, which are 5000 
% for cross-product errors, 0.15 % for the proportionality errors, and 
0.007 % for the dot-product errors. 

4.7. Ablation study on different error terms 

An ablation study was conducted to understand the contribution of 
different error terms in our motion constraints. The experiment was also 
performed on the two-camera dataset of trajectory 1. We first added 
each error term individually to BA and evaluated the improvement 
achieved by each error term. Then we gradually added the error terms to 

BA in descending order of contribution and evaluated their intersection 
effects. As shown in Table 6, the results indicate that the cross-product 
error term has the largest contribution, resulting in an improvement of 
0.685 m or equivalently 32.40 % compared to the results without mo-
tion constraints. The proportionality error and dot-product error ach-
ieved 10.17 % and 8.14 % improvement, respectively. By gradually 
adding the error terms in order of decreasing induvial contribution, the 
results show that the aggregated terms have a positive impact towards 
reducing the errors, yet the improvement of adding proportionality er-
rors reduces by 2/3 and the improvement of adding dot-product error 
becomes marginal, which can be regarded as a supplemental constraint 
when cross-product errors exist. Dot-product term provides extra 
enforcement if the non-cooperative case occurs, i.e., motion directions 
are wrongly estimated in an opposite direction. 

5. Conclusion 

In this paper, we attempt to address the problem of BA for uncali-
brated multi-camera systems to achieve improvement in metric accu-
racy. By observing the fact that co-located cameras share the same 
motion, we propose novel motion constraints incorporated into a BA 
framework to enforce the optimization to respect this fact. A significant 
difference between our motion constraints, as compared to similar 
works in the literature, is that our constraints have a high degree of 
flexibility and do not even require cameras with overlapping FoVs, 
which allows multi-camera systems with any “casual” setups to benefit 
from our proposed constraints. Our experiments show that, with cam-
eras not sharing overlapping FoVs that generate separate 3D re-
constructions, our proposed constraints can still positively improve the 
metric accuracy, in that the motion vectors of co-located cameras pro-
vide guidance for each other to travel in paralleling speeds and di-
rections. With two datasets containing over 7,000 video frames in total 
and a LiDAR reference, we experimented with our proposed approach 
and have shown that this resulted in reconstruction accuracy of up to 
11.34 m (86.12 %) of MAE improvement for a two-camera system, and 
up to 8.08 m (81.50 %) of MAE improvement for a six-camera system. 
Our motion constraints were also tested with the KITTI-odometry and 
KITTI-360 datasets to evaluate the pose accuracy, which achieved an 

Fig. 9. Sensitivity analysis on different error terms. The x-axis refers to the relative error quantity to the reprojection errors. The x-axis is presented on a base-10 log 
scale. The y-axis refers to the reconstruction accuracy in terms of MAE. The numbers above the minimum points of the lines indicate the relative error quantity of 
each error term with the optimal weight value. Detailed explanation in the text. 

Table 5 
Statistics results for reconstruction KITTI-360 Trajectory #5 without the section 
with heavy traffic (red box in Fig. 7).   

RMSE of APE [m] 

No loop closure, no motion constraint  3.94 
No loop closure, motion constraint  3.92 
No loop closure, incremental motion constraint  3.66 
Loop closure, no motion constraint  2.41 
Loop closure, motion constraint  2.23 
Loop closure, incremental motion constraint  1.93  

Table 6 
Ablation over each component of the motion constraints.  

BA Eprop Ecross Edot MAE | improvement [-m] 

w/o motion constraints × × × 2.114 
w/ motion constraints √ × × 1.899|-0.215 

× √ × 1.429|-0.685 
× × √ 1.942|-0.172 
√ √ × 1.360|-0.754 
√ √ √ 1.356|-0.758  
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improvement of up to 28.82 m (81.05 %) in terms of the RMSE of APE. 
We also showed that more sophisticated strategies commonly used in 
structure from motion, such as loop closure (when available) and in-
cremental bundle adjustment incorporating our motion constraints, can 
further improve the reconstruction accuracy. Our proposed motion 
constraints are under the context of low-cost mapping, which can be 
expanded with a broader impact that enables citizen scientists to capture 
3D information with improved accuracy. For example, non-experts can 
casually place multiple co-located cameras (or even smartphone cam-
eras) without the need to go through a rigorous rig calibration to use the 
stereo capability. It should also be advised that for two or more sets of 
cameras with non-overlapping FoVs, our proposed motion constraints 
may still result in separated models, while the motion constraints are 
able to utilize the trajectory of each other to improve the geometric 
reconstruction of their respective models. In our future work, we aim to 
further test the capability of the proposed approach for non-expert user 
cases to expand the photogrammetry applications. 
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Häne, C., Heng, L., Lee, G.H., Fraundorfer, F., Furgale, P., Sattler, T., Pollefeys, M., 2017. 
3D visual perception for self-driving cars using a multi-camera system: Calibration, 
mapping, localization, and obstacle detection. Image Vis. Comput. 68, 14–27. 

Harmat, A., Trentini, M., Sharf, I., 2015. Multi-camera tracking and mapping for 
unmanned aerial vehicles in unstructured environments. J. Intell. Rob. Syst. 78 (2), 
291–317. 

Heng, L., Choi, B., Cui, Z., Geppert, M., Hu, S., Kuan, B., Liu, P., Nguyen, R., Yeo, Y. C., & 
Geiger, A. (2019). Project autovision: Localization and 3d scene perception for an 
autonomous vehicle with a multi-camera system. 2019 International Conference on 
Robotics and Automation (ICRA). 

Heng, L., Furgale, P., Pollefeys, M., 2015. Leveraging image-based localization for 
infrastructure-based calibration of a multi-camera rig. J. Field Rob. 32 (5), 775–802. 

Heng, L., Lee, G.H., Pollefeys, M., 2015. Self-calibration and visual slam with a multi- 
camera system on a micro aerial vehicle. Auton. Robot. 39 (3), 259–277. 

Huang, D., Elhashash, M., Qin, R., 2022. Constrained bundle adjustment for structure 
from motion using uncalibrated multi-camera systems. ISPRS Ann. Photogramm. 
Remote Sens. Spatial Inform. Sci. 2, 17–22. 

Huang, D., Tang, Y., Qin, R., 2022. An evaluation of PlanetScope images for 3D 
reconstruction and change detection–experimental validations with case studies. 
Gisci. Remote Sens. 59 (1), 744–761. 

Huber, P. J. (1992). Robust estimation of a location parameter. Breakthroughs in statistics: 
Methodology and distribution, 492-518. 

James, M.R., Robson, S., 2014. Mitigating systematic error in topographic models 
derived from UAV and ground-based image networks. Earth Surf. Proc. Land. 39 
(10), 1413–1420. 

Jenal, A., Lussem, U., Bolten, A., Gnyp, M.L., Schellberg, J., Jasper, J., Bongartz, J., 
Bareth, G., 2020. Investigating the potential of a newly developed UAV-based VNIR/ 
SWIR imaging system for forage mass monitoring. PFG–J. Photogramm. Remote 
Sens. Geoinform. Sci. 88 (6), 493–507. 

Jenal, A., Hüging, H., Ahrends, H.E., Bolten, A., Bongartz, J., Bareth, G., 2021. 
Investigating the potential of a newly developed UAV-mounted vnir/swir imaging 
system for monitoring crop traits—A case study for winter wheat. Remote Sens. 
(Basel) 13 (9), 1697. 

Jones, G., Renno, J., & Remagnino, P. (2002). Auto-calibration in multiple-camera 
surveillance environments. Third IEEE International Workshop on Performance 
Evaluation of Tracking and Surveillance. 
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