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ABSTRACT

Quantum reservoir computing uses the dynamics of quantum systems to pro-
cess temporal data, making it particularly well-suited for machine learning with
noisy intermediate-scale quantum devices. Recent developments have introduced
feedback-based quantum reservoir systems, which process temporal information
with comparatively fewer components and enable real-time computation while
preserving the input history. Motivated by their promising empirical performance,
in this work, we study the approximation capabilities of feedback-based quantum
reservoir computing. More specifically, we are concerned with recurrent quan-
tum neural networks, which are quantum analogues of classical recurrent neural
networks. Our results show that regular state-space systems can be approximated
using quantum recurrent neural networks without the curse of dimensionality and
with the number of qubits only growing logarithmically in the reciprocal of the
prescribed approximation accuracy. Notably, our analysis demonstrates that quan-
tum recurrent neural networks are universal with linear readouts, making them
both powerful and experimentally accessible. These results pave the way for prac-
tical and theoretically grounded quantum reservoir computing with real-time pro-
cessing capabilities.

1 INTRODUCTION

Recent advances in quantum computing have led to a rapid development of quantum machine learn-
ing methods. These methods aim to exploit the potential computational speed-up and reduced com-
plexity offered by quantum computing for machine learning purposes. For learning problems with
temporal structure, quantum reservoir computing (QRC) has emerged as a promising approach for
exploiting noisy intermediate-scale quantum (NISQ) technologies. In contrast to classical machine
learning methods based on bits valued in {0, 1}, quantum bits (qubits) can be in a continuum of
states. QRC aims to exploit this fundamental difference to build efficient machine learning methods
for time series prediction and learning.

In this paper, we are concerned with recurrent quantum neural networks (RQNN), a particular type
of quantum reservoir computing method. RQNNSs are a quantum analogue to classical recurrent
neural networks. RQNNs are built from quantum neural networks (QNNs), with weights and biases
typically realized via quantum circuits. Thus, these networks can be evaluated directly on quantum
computers. Thereby, quantum machine learning aims to achieve a significant increase in neural
network expressivity and computational speed-up in inference and training.

Motivated by their promising empirical performance, in this work, we study the approximation
capabilities of feedback-based quantum reservoir computing methods and, specifically, RQNNs. In
particular, our work provides precise bounds on the number of qubits and the size of the underlying
quantum circuit that is required to guarantee a prescribed approximation accuracy. Our results show
that QRNNs can approximate regular state-space systems using a quantum circuit with qubit number
only growing logarithmically in the reciprocal of the prescribed approximation accuracy and with
error rates not suffering from the curse of dimensionality. Thereby, our results pave the way for
theoretically grounded quantum reservoir computing with real-time processing capabilities.
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1.1 RELATED LITERATURE

Quantum reservoir computing methods have been extensively studied for a variety of time-series
prediction and learning tasks, employing different architecture types such as online protocols (Mu-
jal et al.; 2023} [Franceschetto et al.|[2024), mid-circuit measurements and reset operations (Hu et al.,
2024; Murauer et al., |[2025)), feedback protocols (Kobayashi et al., 2024), QRC with quantum mem-
ristors (Spagnolo et al.l|2022) and hybrid QRC techniques (Pfeffer et al.,|2022;2023). We provide
a detailed discussion of QRC methods in Appendix [A]

Despite these promising developments, key questions regarding universal approximation capabilities
and expressivity of feedback-driven QRC methods have not been addressed in the literature. For
classical neural networks, qualitative and quantitative universal approximation theorems have been
extensively studied, with seminal works including, e.g. [Hornikl (1991); Barron| (1993); Yarotsky
(2017). Universality results for the dynamic reservoir computing setting have been obtained in
(Grigoryeva & Ortega, 2018alb; |Gonon & Ortegal, 20205 2021} |Gonon et al., 2023)) for echo state
networks, state-affine systems and linear systems with polynomial / neural network readouts. For
(feedforward) QNNs first qualitative results on universal approximation properties of QNNs have
been proved only very recently |Pérez-Salinas et al.| (2020); [Schuld et al.| (2021). Subsequently,
quantitative approximation error bounds for feedforward QNNs were proved in (Gonon & Jacquier,
(2025); |Yu et al.| (2024); |Aftab & Yang|(2024).

For RQNNS, no quantitative approximation error bounds have been previously available in the lit-
erature. Moreover, previous universality results concerning QRC models have relied on the use of
polynomial output layers (Chen & Nurdin, [2019; |Chen et al.| [2020; Nokkala et al., [2021}; |Sannia
et al.| 2024bga), which yield a polynomial algebra that can then be used with the Stone-Weierstrass
theorem to obtain universality statements. Nevertheless, most numerical and experimental imple-
mentations of reservoir computers use linear output layers due to their simplicity and fast training.

1.2 CONTRIBUTIONS

For applications of QRC methods in learning tasks with temporal dependence, a precise understand-
ing of RQNN approximation capabilities is essential. In this paper, we derive approximation error
bounds and prove universality statements for RQNN families with a linear output layer and in the
context of the feedback protocol. Universality refers to the ability of these families to uniformly
approximate arbitrarily well a large category of dynamic processes, so-called fading memory in-
put/output systems. Thereby, we contribute to a precise understanding of RQNN approximation
capabilities in several aspects.

* We provide RQNN approximation error bounds for regular state-space systems. Our first
main result, Theorem [£.6] shows that RQNNs are able to approximate regular state-space
systems without the curse of dimensionality, using quantum circuits with qubit number
only growing logarithmically in the reciprocal of the prescribed approximation accuracy.

* In our second main result, Theorem@.8] we prove that RQNNs can uniformly approximate
the arbitrary fading memory, causal, and time-invariant filters. In particular, RQNNs have
approximation properties as competitive as those of popular reservoir computing/state-
space system families like echo state networks, state-affine systems, or linear systems with
polynomial/neural network readouts.

 To prove these results, we first derive novel qualitative and quantitative approximation error
results for using feedforward QNNs to approximate functions and their derivatives (see
Proposition d.4]and Corollary .3).

In comparison to |[Gonon & Jacquier] (2025)), our RQNNs introduce memory through a feedback
loop. Mathematically analysing our RQNNSs architecture hence requires a novel, intricate analysis
of QNN approximations of functions jointly with their derivatives. Moreover, approximation analy-
sis in the temporal domain is inherently much more challenging due to the feedback loop. Proving
Theorems and [4.8] thus requires new techniques specifically tailored to deal with this situation
(see Appendix [C). Most previous literature on RC and QRC universality (Grigoryeva & Ortegal
2018alb; (Gonon & Ortegal [2020; |2021; |(Chen & Nurdin| [2019; |Chen et al., [2020; Nokkala et al.,
2021} Sannia et al.l [2024bga) implicitly assumes the search for an optimal model within a class in
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which all parameters are estimated. Also our results are formulated for variational quantum cir-
cuits for which all parameters are trainable. Nevertheless, the obtained results and developed proof
techniques also promise to be useful for QRC systems in which certain parameters in the recurrent
layer are randomly generated. Our RQNN architecture builds on and extends the feedforward QNN
architecture introduced in |Gonon & Jacquier| (2025), which also admits results for the randomized
setting. Hence, combining the techniques developed here with these randomized architectures may
provide fruitful for studying randomization in the dynamic quantum reservoir computing setting.
Moreover, the obtained approximation error bounds may serve as a crucial ingredient for bounding
the overall generalization error of QRC methods, by combining our results with suitable risk bounds
as obtained in other contexts in|Gonon et al.| (2020); Chmielewski et al.| (2025)).

1.3 OUTLINE

The structure of the paper is as follows. Section [2] introduces background on filters, functionals,
fading-memory and echo state properties. Section |3| describes the RQNN model, a recurrent QNN
with state feedback, building on the feedforward QNN architecture introduced in|Gonon & Jacquier
(2025). Section [.1] derives QNN approximation error bounds for functions and their first deriva-
tives. We then use these results (see Proposition and Corollary to study the properties of
the RQNN state maps in the uniform approximation of more general state equations as well as in a
square-integrable sense. These results are then used in Section 2] to prove the universal uniform
approximation properties of the filters associated with RQNN systems. More specifically, in Theo-
rem we provide filter approximation bounds that show that RQNNs can uniformly approximate
the filters induced by any contracting Barron-type state-space system. Finally, Theorem [4.8] of Sec-
tion extends this universality property to the much larger category of arbitrary fading memory,
causal, and time-invariant filters. The paper concludes with Section[5} where the main contributions
and outlook of the paper are summarized.

2 BACKGROUND ON FILTERS AND FUNCTIONALS

We start by introducing the input-output maps to be learnt in the dynamic setting. In a static context,
input-output maps are given by functions of the form f : R? — R™. For learning with temporal
dependence, the relevant input-output maps are filters and functionals defined on sequences.

Specifically, let (R™)? denote the set of infinite real sequences of the form z =
(...,2_1,20,21,...), 2; € R", i € Z; (R™)%~ is the subspace consisting of left infinite sequences:
(RM)2- ={z=(...,2_2,2_1,20) | z: € R",i € Z_}. Analogously, (D,,)Z and (D,,)2- stand
for infinite and semi-infinite sequences, with elements in the subset D,, C R”. Let D,, C R" and
By C RY. We refer to the maps of the type U : (D,,)? — (Bn)Z as filters and to those like
H : (D,)? — By (or H : (D)%~ — By) as functionals. A filter U : (D,,)? — (Bn)% is
called causal when for any two elements z, w € (Dn)Z that satisfy that z, = w. for any 7 < ¢, for
a given t € Z, we have that U(z); = U(w);. Let Ty : (D,,)%2 — (D,,)%, T € Z be the time delay
operator defined by T%-(z): := z;—,. The filter U is called time-invariant when it commutes with
the time delay operator, that is, 7 o U = U o T, for any 7 € Z, with the two operators 7 defined
in the appropriate sequence spaces. Finally, there is a bijection between causal time-invariant filters
and functionals on (D,,)?~, and we can use them interchangeably (Grigoryeva & Ortega, [2018b).

A specific class of filters is given by state-space systems (such as recurrent neural networks) deter-
mined by two maps, namely the recurrent layer or the state map F : RN x R" — RN, n, N € N,
and a readout or observation map h : R — R™, m € N, given by

= F(xi1,2),
Yt = h(mt)v

where t € Z, z; denotes the input, x; € RY is the state vector, and y+ € R™ is the output vector.

(1)

Consider now subsets By C RY and D,, C R™ and a recurrent layer defined on them, that is,
F:BnxxD, — Byandh: By — R™. Denote by D,, := h(Bx) C R™. The recurrent system

F is said to have the echo state property with respect to inputs in (Dn)Z when for any z € (Dn)Z

there exists a unique element x € (BN)Z that satisfies the first equation in (I), for each t € Z.
When the echo state property holds, a unique filter U¥" : (D,,)* — (By)? can be associated to
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the recurrent system determined by F', namely, U F (2)t == & € By, forall t € Z. We will denote
by UF" : (D)% — (D)% the corresponding filter determined by the entire recurrent system, that
is, U (z); = h (U (2):) ==yt € Dy, forallt € Z. The filters UF and U} are causal and
time-invariant by construction. The echo state property is much related with the so-called fading
memory property defined as the continuity of U }f with respect to weighted norms in its domain
and codomain (Boyd & Chual, [1985) or the product topologies when D,, and D,, are compact
(Grigoryeva & Ortegal 2018b). It can be shown that when D,,, is compact, the echo state property
implies the fading memory property (Manjunathl 2020; Ortega & Rossmannek, [2025b); see |Ortega
& Rossmannek| (2025c) for a comprehensive account of the dynamical implications of the fading
memory property as well as|Ortega & Rossmannek! (2025a)) for a stochastic version.

3 RECURRENT QUANTUM NEURAL NETWORK ARCHITECTURE

Before going into details about the considered RQNN architecture, let us first explain the basic
working principle of feedforward QNNs built in quantum circuits. A QNN is built by transforming
quantum bits (qubits) in a parametric quantum circuit. Each qubit is in state |¢)) = «|0) + §]1) for
some a € C, B € C with |a|? + |8|?> = 1 and with elementary quantum bit states |0) and |1). For
a circuit with n qubits, at any given point in the circuit, the circuit state can thus be identified with a
vector in C™ for ny = 2". The quantum state |1)) can be transformed by applying a quantum gate,
that is, a unitary matrix U € C™*™_ A QNN now applies quantum gates U(x, @) that depend on the
initial data and neural network parameters and transforms the circuit accordingly. The QNN output
is obtained by measuring the final quantum state after applying the circuit quantum gates.

Next, we introduce in detail the employed RQNN architecture. Our recurrent quantum circuit is
constructed based on two parametric quantum gates U and V, which we now introduce. The con-
struction extends the feedforward QNN architecture introduced in |[Gonon & Jacquier| (2025) to a
recurrent setting by feeding back the network’s state.

Construction of U. For d,v € [0,27] and a € R, denote by Rx(4), Ry (7y), and R,(«) the rotations
around the X-, Y-and the Z-axis, corresponding to angles J, v and «, respectively, and obtained as
the exponentials of the Pauli matrices:

wid) = (il ) o= () ) e = () )

—isin (5 cos (5 sin % cos (5

For a given accuracy parameter n € N, consider weights a = (a',...,a”) € (R*M)", b =
(bt,...;b") € R"and v = (v},...,9™) € [0,27]™. Fori = 1,...,n, we define parametric gate
maps ng) : RN x R — C?*2 that map a current system state x and a current observation z to a
rotation gate. Gate map ¢ depends on parameters a’, b* and is defined by

U(lz) (z,z) :=HR, (fbi) R, (*G§V+d2d) --+R, (fafw_lzl) R, (faﬁva) --+R, (fa’ixl) H
forany ¢ = (z1,...,zy) € RY and 2 = (z1,...,24) € R?, where H is the Hadamard gate. We
may rewrite

Ugi)(m, z) =R (6"), 0" = b —aly,4zq4 - — a1z —ayay o —alz.

Moreover, we also define the gates Uéi) = Ry (vi) and denote the circuit parameters by 8 =
(ai,biﬁi)i:l,wn €0 := (Rd+N x R x [0727&'])”
With these notations, we are now ready to define the key element of our parametric quantum circuit,
the gate U := Ug(x, 2). U is defined as a block matrix built from the gates U¥) (z, z) = Ugl) (z,2)®
Ul as follows:

[0 (2, 2) O4x4 O4x4 e O4x4 O4xny |
O4x4 U (x,2) 04x4 O4x4
Ug(x, 2) :=
0454 e Osxs U Y(z,2) ~ O4xa
0454 0454 U (z,2)  Oyxn,
L Ono x4 e 0n0><4 1ng><no_
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Here, ng is chosen as the smallest natural number such that the matrix dimension ny = 4n + ng is
a power of 2, that is, ny = 2". It can be easily shown that ny = 4k with k € N, since 4n + ng
and 2n + ng/2 must be even for n > 2. Then, U € C™*"™ is a unitary quantum gate operating on
n = logy(ny) = 2+ logy(n + k) = [log,(2n)] qubits with a diagonal-block structure:

n—1 n+rk—1
z) =Y ) (i@ (@, 2) + > i) (i| @ Laxa.
=0 =n

These unitary operators with a block structure are known as uniformly controlled quantum gates.
They are present in many quantum algorithms and are used to decompose general unitary gates and
locally prepare arbitrary quantum states (Mottonen et al., 2004; Mottonen et al.| [2004; |Bergholm
et al. 2005} |Arrazola et al., 20225 [Park et al.| 2019). They are defined as multi-controlled unitaries
where each unitary block targets a set of qubits, two qubits in this case, while the other log,(n + &)
qubits act as control qubits. Multi-controlled unitaries are applied depending on the state of the con-
trol qubits, which are unchanged, and only modify the target qubits. These operations generalize the
CNOT gate for two qubits, in that we can now have several control and target qubits. Notice that the
block structure of the unitary Uy arises from indexing the targets as the lowest-order bits. Recently,
efficient decompositions of multi-controlled unitaries have been proposed in terms of the number
of single-qubit and two-qubit gates (Zindorf & Bosel 2024;2025), as well as for approximations of
the multi-controlled gate (Silva et al.,[2024). Code implementations of these quantum gates can be
found in the Qclib library (Araujo et all [2023). Finally, the identity blocks 1444 do not introduce
additional gates into the quantum circuit, so the effective circuit can be reduced to the application
of the U(Y) gates. However, the number of control qubits is fixed by log,(n + k) and we need all of
them to compute the output probabilities, as we will see below.

Construction of V. Next, let V€ C™*™ be any unitary matrix mapping \0) " to the state |¢p) =
f S 7 |44) which, for n > 2, is also explicitly given as [3) = \F i i) ®100). Note that

different choices of V are possible and the only required property is V ‘0>§§n = |¢). We refer to

Appendix [D]for an example.

Measuring circuit outputs. We can now measure the state of the n-qubit system after applying
the gates V and U. The possible states that we could measure are given by 0, ..., ny — 1 (in binary).
By running the circuit repeatedly, we can now obtain (up to well-controlled Monte Carlo error, see
Appendix [E) the probabilities P7, that the measured state is in {m,4 + m, ..., 4(n — 1) + m}, for
m € {0,1,2,3}, where m is the binary state of the last two qubits (the target qubits).

More formally, consider the unitary gate map C(x, z) = Cng(x, z) := Ug(a, 2)V acting on n =
2 + log, (n + ) qubits. This circuit acts on the initial state |0)®" via the quantum gates V and U as

Coo(x, 2) |0)® Z ® U™ (@, 2)0) @ UST |0) .
=0

Then, we measure
Pl — P, 2) =P (”Cmg(:c, 2)0)%" e {m, 4+ m,...,4(n—1) + m}") . ()

This is the sum of the probabilities of being in the states |i) ® |m), where i = 0,...,n — 1. That is,
P8 (x, z) Z’ (m] (U(l (x, z)\O)@U;”O))‘ .

Parallel circuits. With n (or equivalently n) fixed, the quantum circuit introduced above is
uniquely defined by the choice of circuit parameters 8 € ©. In what follows, we will now run
N such circuits in parallel, each representing a component of the state map F in (I). Each circuit
is described by its parameters 87 € ©, j € {1,...,N}. The circuit outputs then induce maps
]P’;’nvej : RN x R? — [0, 1] by the circuit output probabilities (@) with parameters for the j-th circuit
givenby 6 = 67,
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State and input vectors

Parameters

zZ= (Z] ----- Zd) ‘ 01 = (aisbi’yi)izl ..... n

[0) —

L0z | |
E | I
2o M — I :
Elo—|v . AL el s )
A P; (X-1,21)
,:é'
Ho— — — = —
% U(l)(j«l[—l,Z[) U(n)(f‘r—l»Zr)
Elio—| — — —
— [} A — ~
o Feedback: X; = F;’”(ﬁ,_l L Z1)
Figure 1: Schematic representation of the j-th circuit given by parameters 87 € ©, j € {1,..., N}.

Recurrent quantum neural networks (RQNN). With these ingredients, we can now define the
RQNN that we will consider. Given the gate map Cy g and R > 0, we define Fi? : RN xR? — RN
by its component maps Fg’g = (F‘g:f, . FE:%). For j = 1,..., N, the j-th component map
Fgf :RY x R? — R is defined by

Fg:?(sc, z):=R-— 2R[IP’T’9j (z,2) + Pg’aj (x,2)], (x,z)eRY xR, (3)

with @ = (8',...,0") € ©V. Our recurrent quantum neural network (RQNN) is then defined
by the state-space system associated to the state map F‘g’e

&y = Fp(@1,2), t€Z_. )

Figure [T] provides a schematic representation of how the RQNN acts at each time step for the j-
th circuit: at any time ¢, the system is initialized, the gates V and Ug; (€;_1, z;) are applied, and
the system is measured. This process is repeated to estimate the probabilities IP’?’G'7 (41, 2¢) and
]P’S"HJ (&¢_1, z¢), which are aggregated into the network output Fgf?(:ﬁt,l, z¢) according to (3).
Once this is done for all j € {1,..., N}, the network state &; is stored to be used as feedback for
the next time step ¢ + 1.

In the next paragraphs, we aim to address the following questions:

* Can we choose the parameters @ in such a way that the system determined by (@) satisfies
the echo state property?

* Can the family of systems determined by equations of the type (4) approximate general
state-space systems arbitrarily well? More specifically, given an arbitrary state-space map
xy = F(2_1, z;) with F: RN x R? — R¥ as general as possible, can it be approximated
by equations of the type ()?

4 RECURRENT QUANTUM NEURAL NETWORK UNIVERSALITY

This section contains approximation guarantees and universality results for the recurrent quantum
neural network (RQNN) family. To achieve this, in Section [4.1] we first prove refined approxi-
mation error bounds (that generalize those in [Gonon & Jacquier| (2025)) for feedforward quantum
neural networks (QNNs) that allow us to control the error committed when approximating a func-
tion and its derivatives simultaneously, a crucial ingredient for analysing the RQNN feedback loop.
These error bounds show how recurrent QNNs can be used to approximate state-space maps F'
arbitrarily well as long as these are sufficiently smooth and satisfy Barron-type integrability condi-

tions like, for example, [,x . . $f|ﬁ;(é)\d€ < oo, fori =1,..., N+dandj = 1,...,N, or
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Iy = Jan opa €I F;(€)|dE < oo, for some g > 2 (see Proposition 4.2 and Corollarybelow);
RQNN state maps are hence universal in that category. These bounds are devised with respect to L>°
and L2-type norms. As we shall prove, in the L™ case, the universality of the RQNN family still
holds with respect to state maps that do not necessarily satisfy the Barron condition, even though
in that framework we do not formulate approximation bounds. Finally, in the last two sections, we
exploit all these results on the approximation of state maps to obtain universality statements and
error bounds for the approximation of arbitrary causal, time-invariant, and fading memory filters
using a modified recurrent QNN. In addition to the tools developed here, our proofs of these results
rely on techniques from |Gonon & Ortega) (2020; 2021)) and the overall strategy is reminiscent of
the so-called internal approximation approach introduced in|Grigoryeva & Ortega|(2018b, Theorem
3.1 (iii)) for echo state networks, which consists of obtaining approximation results for filters out of
statements of that type for the state maps that generate them.

The approximation rate in all our results is free from the curse of dimensionality: the error decays
as \} as we increase n, with this rate of decay being independent of the input dimension d and the

state space dimension IN. Moreover, the required number of qubits n = D()g2(2nﬂ is only grow—
ing logarithmically in the accuracy parameter n. Put differently, our circuit requires only O(c~2)
weights and O([log,(e71)]) qubits suffices to achieve approximation error ¢ > 0 when approxi-
mating functions with sufficiently integrable Fourier transforms.

4.1 RQNN APPROXIMATION OF STATE-SPACE MAPS AND THEIR DERIVATIVES

As a first step, we aim to establish RQNN approximation results for a function jointly with its
derivatives. Denote by Fg the class of integrable functions f: RY x R? — R with Fourier integral
bounded above by a constant R > 0, that is,

]-":{f:]RNde—HR:feC(RNde)ﬂLl(RNx]Rd), ||ﬂ|1<oo}, )
Fri={feF wih|fl <R}, forR>0. (6)

Here, for a continuous and integrable function f: RY x R? — R we denote its Fourier transform
by f(&1,€2) : = Jan ga € 21V (€082) £y 40 )dy dys, with (€1,&) € RN x RY.

Our first result derives a representation for the QRNN output.

Proposition 4.1. For any n € N, j = 1,...,N, 8 = (8',...,0Y) € O with ¢7 =
(a"7,6"7,4"7)i=1, .. n € O, the RONN introduced in @ can be represented as

F” Oz, z2) ZRCOS “Ycos (b7 + a7 - (x,2)), forall (z,z) € RN x R (D)

Let ;1 be an arbitrary probability measure on (RY x R? B(RY x R?)). Recall the notation
1/2
2
I =gl = ([ 1)~ e P u(deaz)
RN xR

Our next result provides an approximation error bound for the QRNN state map jointly with its
derivatives. The proof is provided in Appendix[B.2]

Proposition 4.2. Let R > 0 and suppose F = (Fy,...,Fy) : RY x R4 — RN is continu-
ously differentiable and satisfies F; € Fr and 9;F; € F and [on  pa §f\ﬁ;(£)|d£ < o for
i=1,...,N+dandj=1,...,N. Then, foranyn € N, there exists @ € O such that

<G

i

|7 -
2 = n

L2 ()

0, Fpf — 8F’

foranyj € {1,...,N}, where C; = ||F,; H1+47r2||F 1 faw e St €2(F;(€)]de.

Next, we show that it is also possible to also obtain approximation results for QNNs with bounded
network coefficients. The proof is provided in Appendix
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Corollary 4.3. In the setting of Proposition assume, in addition, that [, pa [|€]] |f?;(§) |d¢ <
oo for some q > 2. Then, for any n € N, there exists @ € © such that forany j € {1,...,N},

Cs
o _ F‘ 9, Fm0 BF‘ <Y
H R L2(n) R.g LW~ n
where C; = 3Cj. Moreover, we can choose 8 = (6',...,0Y) € OV with 67 =
(@™, 059 y"9);_y . in such a way that foralli =1,...,n,j =1...,N,
1
o) <2n (sulB0 [ lelIF @) ®
RN xR4

Next, we complement the L2(RY x R?, y)-error bound in Proposition |4.2| with a uniform error
bound on compact sets. For M > 0 and f, g € C(RY x R?) denote

1f = glloe.ar = sup (@, z) - gla. 2).
(@,2)€[— M, M]N x[—M,M]d

Proposition 4.4. Ler R, M > 0 and suppose F = (F1, ..., Fy) is continuously differentiable and
satisfies I'; € Fr and 0;F; € F and f]RNx]Rd EN14|F;(€)|d€ < oo for j =1,..., N. Then, for any
n € N, there exists @ € O such that forany j € {1,..., N},
CJ
nl _ O.F, H = )

21,0
Fpf-F|| o+ Z |o:F
H R.j Moo, M 0o,M ~ \/ﬁ’

where C3° = 2(x + 1)|[F} | + (87M +4x)(N + )# | | L} +16Mm* (N + )| F 11117
for Iy = Jpo cpa €171 E5(€)1d€ < oc.

The proof can be found in Appendix [B.4} Finally, we obtain a qualitative universal approximation
result for QNN jointly with their derivatives. The proof can be found in Appendix

Corollary 4.5. Let F = (Fi,...,Fn) be continuously differentiable. Then for any € > 0 and
X C RN x R compact there exist n € N, R > 0 and @ € © such that for any j € {1,...,N},

=n.,0 .
Fp’ p satisfies

oo

( su)p |Fj(x, z) — Fg:?(:c,zﬂ + IVFj(x, z) — Vngg(w,z)H <e. (10)
x,z)eEX

4.2 RECURRENT QNN APPROXIMATION BOUNDS FOR STATE-SPACE FILTERS

The results in the previous section show that the family of RQNNs that were introduced in (3) is
capable of approximating arbitrarily well the very general class of continuously differentiable state-
space maps with bounded Fourier transform, together with their derivatives. These approximations
hold with respect to both the L? norm (Proposition and Corollary and the L°° norm on
compacta (Propositionf.4Jand Corollary[4.3)). As in the internal approximation approach introduced
in (Grigoryeva & Ortegal (2018b, Theorem 3.1 (iii)), we will use the uniform RQNN approximation
results for the state maps to conclude similar uniform approximation results for the corresponding
filters under additional hypotheses that guarantee that those exist.

Consider a state-space system
Tt :F(wt,th), t EZ*» (11)

with state process (x;)¢cz_ valued in RY, input process (2¢);cz_ valued in R? and F': RN x R% —
RY. We work under the assumption that F is contractive and satisfies Barron-type integrability
conditions (Barron| [1992;|1993;Barron & Klusowskil, 2018]). Then, e.g., Proposition 1 and Remark 2
in Gonon et al.[(2020) imply that, for any compact D; C R?, the associated filter U : (Dg)%~ —
(By)“ induced by the restriction of F' to By x Dy is well-defined and continuous.

Our next result shows that among the RQNN s that we discussed in Proposition {f.4] there exist sys-
tems that have the echo state property and hence have a filter associated. More importantly, those
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filters can be used to uniformly approximate any of the filters corresponding to the general systems
introduced above in (1)) as long as they satisfy a Barron-type integrability condition and are suffi-
ciently contractive. The proof can be found in Appendix [C.I] Here, || - ||, is the spectral norm. In
particular, this result shows that the error rate is free from the curse of dimensionality: the error de-
cays as \% as we increase n, with this rate of decay being independent of the input dimension d and
the state space dimension N. Thus, the RQNN requires only O(e~2) weights and O([log,(¢71)])
qubits to achieve approximation error € > 0 for the considered state-space systems.

Theorem 4.6. Suppose F in (I1)) is continuously differentiable with ||V, F(x. z)|s < X for all
x € RN 2z € D, for some A\ € (0,1) and, moreover, F satisfies F; € Fr, 0;F; € F and
Jan oga €I F;(€)|dE < oo for j = 1,...,N. Denote by U : (Dg)*~ — (Bn)%~ the filter
associated to (T1). Then for any n € N withn > ng there exists @ € © such that the system [@) has
the echo state property and the associated filter U: (Dg)?~ — (RN)%- satisfies

1 \/Nmaszl,m,N (O

» _
sup  sup [|[U"(2): —U(2)s]| < (12)
z€(Dg)"~ t€Z~ || H 1=A \/ﬁ
g (maxj—i. N C]-°°)2
Here, ny may be chosen as ng = N B ey Ca—

Notice that N represents the state space dimension of the target F', which is matched by the QRNN
dimension to obtain the approximation error bound. Theorem .6 also proves an advantage of
QRNNS over classical RNNs. RNN approximation bounds for state-space systems driven by Barron-
type functions were obtained in (Gonon et al| 2023 Theorem 3). While the approximation rate in
Theoremis the same (% in both cases), the Fourier integrability condition required in the quan-

tum case is strictly weaker. Specifically, the condition [i,x , pa [[€]|*|F}(€)|d€ < oo implies that the
smoothness assumption (Gonon et al.| [2023| Definition 2) required for (Gonon et all, 2023 Theo-
rem 3) is satisfied. For example, consider a Sobolev function F' € H*(R" x R?). Then, the integra-
bility condition for the QRNN approximation result is satisfied for any s > w + 4 (by
Lemma 6.5) and its proof). In contrast, the integrability condition for the RNN approximation
result in (Gonon et al} [2023] Theorem 3) would require the stronger condition s > N + d + 3.

4.3 UNIVERSALITY

In the previous section, we proved error bounds for the approximation using recurrent QNNs of the
filters induced by contractive state-space targets with Barron-type integrability conditions. These
bounds show, in passing, the universality of the family of RQNN filters in that category. We now
extend this universality statement (without formulating error bounds) to the much larger family of

fading memory filters by introducing a modification in the RQNN reservoir. We define 13’;’9 :
RY x R? — RY by its component maps Fg’o = (Fgf, cey FE%) For j = 1,..., N, the j-th
component map Fgf : RNV x R? — Ris defined by

Fpf(x,z) = R—2R[P}? (Pyz,2) + By® (Pjz, z)], (z,2) eRY xRY,  (13)

with @ = (8%,...,0V) ¢ ®N and P, ..., Py € RY*Y linear preprocessing maps. Our modified
RQNN is then defined by the state-space system associated to the state map F}%’G

@y = Fpf(#1,2), tEZ_. (14)

The next lemma shows that adding linear preprocessing maps to reservoir equations can lead to
the echo state property without contraction assumptions. The proof of Lemma [4.7] is provided in

Appendix [C.2]
Lemma4.7. Let F = (1*:‘ Tye-- ,FN) be a reservoir map where each component l:"j RV xR — R,
forj=1,... N, is defined as

Fj(z,z) = g;(Pjx, 2) (15)
where Py, ..., Py € RNXN are linear preprocessing maps for any maps gj : RY xR 5 R, j =
1,..., N. Define an arbitrary partition of the state vector &; = [iﬁl), .. ,ﬁng)] eRI x...xRIx
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such that Zle Iy =N >0and I, > 1forallt € Z_. We define the index l;, = Zle I, for
k=1,...,K. Fork=1j€{1,....,4t},andk=2,... ., K—1,j € {lp_1+1,...,1;}, select P;

K i1 Is and let Pj = 0

forj=Ilk_1+1,...,N. Then, the map F has the echo state property for any N € NT.

as the matrix with zero entries, except for (P41, = 1forl=1,...,%

Notice that Lemma .7 provides the echo state property by imposing a finite memory of K — 1 time
steps on the reservoir. Let Dy C R B,, C R™ be compact. For a readout W € R™*N denote

yir=Wa, (16)
the output process associated to the recurrent QNNs (@) and (14). Our next result proves universality
of RQNNS. The proof is provided in Appendix [C.3]

Theorem 4.8. Let U: (Dg)%~ — (Bp)% be a causal and time-invariant filter that satisfies the
fading memory property (that is, it is continuous with respect to the product topology). Then, for any
€ > 0 there exist n, N € N, preprocessing matrices P, ..., Py € RN*N a readout W € R™*N,
and circuit parameters @ € ON such that the RONN (T4) has the echo state property and the filter
Uw : (Dg)%= — (By,)%= associated to the output process (16)) satisfies

sup  sup |U(2): — Uw (2)e] <e. (17)
[SY/5

5 CONCLUSIONS

Approximation bounds and universality properties are part of the theoretical cornerstone of machine
learning models. While some studies have addressed the question of universality for QRC models,
the combination of the two had not previously been explored in the context of recurrent QNNs. In
this paper, we derived approximation bounds and universality statements for recurrent QNNs based
on the circuit implementation presented in |Gonon & Jacquier| (2025), which is compatible with
hardware deployment and whose implementation with Rydberg atoms has been already discussed
in |Agarwal et al.| (2024)). This circuit uses a uniformly controlled quantum gate to apply multi-
controlled rotations to a set of control and target qubits, and it has been recently shown that it can be
efficiently implemented (Zindorf & Bose, 2024} [Silva et al, 2024} [Zindorf & Bose), [2025).

To prove our results, we first derived approximation bounds for the static version of the QNN and
its derivatives. These results are used in Theorem .6 to provide filter approximation bounds that
show that RQNNS are able to uniformly approximate the filters induced by any contracting Barron-
type state-space system. Finally, Theorem [4.8]extends this universality property to the much larger
category of arbitrary fading memory, causal, and time-invariant filters. In this last result, neither
Barron-type integrability nor contractivity conditions are needed for the target filter. While our
results apply to variational systems in which all parameters are trainable, they pave the way for
results on quantum reservoir systems in which some parameters in the recurrent layer are randomly
generated and only the output layer weights are tuned. Which strategy is best in terms of speed and
accuracy will depend on the number of blocks n of the circuit, the intrinsic noise of the hardware,
and the target task. Future research will focus on implementing and comparing the variational and
reservoir approaches.

This work paves the way for extending the theoretical analysis of QRC models beyond the state-
affine system (SAS) paradigm (Martinez-Pefia & Ortegal [2023)). It is important to understand in
which situations the feedback approach is preferable to other protocols. Questions such as the
exponential concentration of observables (Sannia et al.| 2025} Xiong et al., 2025) and the suitability
of QRC models for learning quantum temporal tasks (Tran & Nakajima, 2021}, [Nokkala, [2023))
are fundamental to discerning the conditions that render QRC models more useful than classical
machine learning approaches.

While our paper obtains approximation bounds for Barron-type sate-space systems, an important
direction of future research will consist in studying approximation error rates for systems with high
degrees of roughness or non-contractive dynamics. Furthermore, our paper focuses on approxima-
tion properties of RQNNs. Gradient-based training approaches for optimizing RQNN parameters
have been proposed, e.g., in[Bausch| (2020); [Li et al| (2023)); [Siemaszko et al](2023). Quantum cir-
cuit training may face Barren plateaus McClean et al.| (2018); [Larocca et al.| (2025), flat parameter
optimization landscapes for large number of qubits. Developing efficient training algorithms and
studying these effects in detail will be a further important direction for future research.
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APPENDIX

A QUANTUM RESERVOIR COMPUTING PROTOCOLS

For learning problems with temporal structure, quantum reservoir computing (QRC) has emerged as
a promising approach for exploiting noisy intermediate-scale quantum (NISQ) technologies. These
include ion traps, nuclear magnetic resonance, cold atoms, photonic platforms, and superconducting
qubits (Mujal et al 2021). When implementing QRC models experimentally, it is necessary to
consider the backaction and statistical effects introduced by quantum measurements. Backaction
refers to the modification of a quantum state after monitoring, also known as wavefunction collapse.
Due to the probabilistic nature of quantum theory, measurements must be repeated to compute the
expected values of observables, which introduces a statistical component in all these methodologies.
Most available experimental implementations rely on the quantum computer paradigm (Dasgupta
et al.| [2022; Mlika et al., 2023} [Suzuki et al., 2022} Yasuda et al., [2023; (Chen et al., 2020; [Kubota
et al., 2023 Molteni et al.| [2023}; [Pfeffer et al., 2022; |Ahmed et al., 2025; [Hu et al., |2024; [Miranda
& Shaji, [2025). However, there is an increasing interest in extending this technique to new settings,
such as optical pulses (Garcia-Beni et al., [2023} |Paparelle et al., [2025)), Rydberg atoms (Bravo et al.,
2022; Kornjaca et al.,[2024])), and quantum memristors (Spagnolo et al.,[2022;|Selimovic et al.|[2025).

Early QRC model implementations relied on the simplest possible approach, namely, the restarting
protocol (Dasgupta et al.l 2022} Suzuki et al.l 2022; |[Kubota et al., 2023} |Chen et al., [2020; Molteni
et al.l 2023). In this approach, the expected values of observables are obtained by rerunning the
algorithm from the first time step at each subsequent time step. This avoids the backaction effect
of quantum measurements. However, the complexity of this protocol scales quadratically with the
length of the input sequence, making it very time-consuming. A faster alternative is the rewinding
protocol (Mujal et al., 2021} Cindrak et al., 2024), where the fading memory of the quantum reservoir
is exploited to restart the algorithm with a fixed window of past time steps. This reduces the com-
plexity of the algorithm to linear in terms of input length. Originally proposed in|Chen et al.[(2020),
this protocol has thus far only been considered numerically (Mujal et al., 2023 Cindrak et al.,[2024).
Both the restarting and rewinding protocols use repetition of previous time steps to reproduce the
dynamics of the theoretical model and avoid the disruptive effect of projective measurements used
to extract output information. This comes at the cost of halting the quantum dynamics at each time
step and the need to buffer the input sequence. Consequently, these approaches lack one of the most
important features of traditional reservoir computing, namely, the ability to process information in
real time.

New protocols have been proposed to circumvent this problem. The online protocol (Mujal et al.,
2023} [Franceschetto et al., 2024) uses weak measurements to find a balance between erasing and
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extracting information. Mid-circuit measurements and reset operations 2024) can split
the reservoir into two parts: memory and readout. The memory retains previous inputs, while mea-
surements only affect the readout part. The feedback protocol (Kobayashi et al.}[2024), which can be
traced back to QRC with quantum memristors (Spagnolo et al.| [2022) and hybrid QRC techniques
(Pfeffer et al}, 2022} 2023), reinjects the measured observables at each time step as parameters of
an input quantum channel. This ensures that no backaction effects are present and that past input
information is preserved. Note that in order to compute the observables in real time, these proto-
cols all require several copies of the system to be run in parallel. Furthermore, these protocols can
be combined with each other. For instance, the feedback protocol has been combined with both
the online protocol (Monomi et al.} 2025)) and with mid-circuit measurements and reset operations

(Murauer et al,[2025).

Of all these approaches, the feedback protocol presents some particularly interesting features. First,
the feedback protocol enables us to compute the expected values of observables from a single copy
of the system by repeating one time step only. If only a few copies of the system are available, this
reduces the experimental time overhead for real-time applications compared to other approaches.
Second, in contrast to previous QRC models, where an erasure mechanism is added to provide fun-
damental properties such as the echo state property, simple unitary operations can provide these
properties (Kobayashi et al.| 2024). Finally, the dynamical equations of quantum reservoirs under
the feedback protocol go beyond the standard state-affine system (SAS) paradigm of QRC models
(Martinez-Pefia & Ortegal [2023)). These properties make the feedback protocol a promising candi-
date for exploring QRC applications.

B PROOFS FOR SECTION (4.1]

B.1 PROOF OF PROPOSITION [4.1]

Proof. The proof is a modification of the argument used to obtain (Gonon & Jacquier, [2025] Propo-
sition 1). Recall that

Fﬁf(w z):=R— QR[P;L’G'j(m, z)+ P;’ej(a:, 2)], (®,2z) € RY xR (18)

Fix (z,2) € RV x R?and j € {1,..., N} and write P, := P29 (z, z) for m € {0,1,2,3}. To
prove the representation (7)), let us first calculate P,

As a first step, write

n—1

1
O =uly) = — Y U4l
0) V) \/ﬁ; |41)

n—1 3

(1+1) g y(+D)
ZZ[Ul L+11‘4l+k>'

1=0 k=0 Y

%‘H
=
3

Thus, for m € {0, 1,2, 3}, we have

n—1
P = |(4i+m|vv|0)®" [
1=0

n—1 3 2

(4i +m| — Z > [ Ut @ U;H)} oy R

/1 0 k=0

=0
n—1

1
:;Z

=0

[Ugww ®Uéi+1)]

m-+1,1
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Next, we may calculate

. . . . ij bid + @i - (x,
0 1 = 66 = o () o (P 222,

2
i i i i . I bl +atl - (z, 2
[Ug) ®Ué)}2,1 = [Ug )]1,1[U; )]2=1 - (72 ) o < 2 : >> 7
i i i i . EANNN A
[U<1) ®Ug)}371 = [Ug )]2,1[U(2 )]1,1 =1cos <72 ) sin < 5 ( )) )
i i i i . WIN (b 4+ at - (x, 2
07 @ U141 = [07]2,1[05")2.0 = isin (72 ) “( - )> ’
and thus
. s o 2
1 i) pisi 0]
Py = — cos (7 > cos ra (:c,z))
n =1 2 2
1 ' ,yi,j 2 bhd + aqbd - (537 z) 2
P, = - ;sm 5 cos B
n iGN\ 2 i\J ) 2
1 1,5 biJ ] .
Py = — Cos (’Y > sin < ta (%z))
nia 2 2
Lo i 2 b+ abd - (z,z)\
r g () ()
Therefore, using cos(y)? = %, we obtain

n

P P 2
1 bt-d v (e, 1 1 . .
Forle=1 Z ( =5 - Z)) BERET) Z:l cos (b7 +a' - (, 2)),

1 A B | »
]P’0+IP’2nZCOS<72 ) :§+%ZCOS(7”).

i=1

Putting it all together we obtain, for any given R > 0, that

Fp(@,z) = R - 2R[PP? (2,2) + P? (2, 2)]
= R[1+ 4Py — 2 (Po + P1) — 2 (Py + Py)]

= LS Reos (49) con (19 + a9 - (@,2)).
=1

B.2 PROOF OF PROPOSITION [4.2]

Proof. Letj € {1,..., N} be fixed. As in the proof of Proposition 2 in|Gonon & Jacquier] (2025)),
we may use the Fourier inversion theorem to represent

Fy(@,2) = / AT (€ S F (61, 65)d€1dés,
RN xR4
which we may rewrite as, with € = (&1, &2),

Fez) = [ {eosCale.2) ORlF©)]+cos (2n(a.2) €+ § ) InlF (€)]} g
19)
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The hypothesis 0;F; € F implies that [x . pa |£Z-Hf7‘;(£)|d£ < oo. Hence, applying differentiation
under the integral sign yields

07 (@.2) = ~2n [ {gsin(2n(a2) ORe[F€)] + sin (2n(e.2) - € + T ) mlF5(6)] de.
RN xRd
(20)
Next, consider the random function

Q;(x,z) ZW cos(B; + A; - (z, 2)) (21)
=1
for randomly selected weights Wy, ..., W, By,...,B, and Ay,..., A, valued in R, R, and
RN x RY, respectively (for notational simplicity we leave the dependence on j implicit here). The
distributions of these random variables are chosen as follows. First, we let Z1,..., Z, be i.i.d.
Bernoulli random variables with

Jan wma [R[E; (€)]|d€ Jon g [T [E (€ dg

P(Zi=1)= = . P(Zi=0)= (22)
f]RNx]Rd |F](£)|d£ f]RNXRd |F ( )|d£
and let v, and vy, be the probability measures on RY x R? with densities
[Re[F5 ()| -

= an
Jew e IRe[F;(£)]|dE S g I [E; ()A€
respectively. In case [in ., pa [Re[F) [A( £)]|d€ = 0, instead we choose for v, an arbitrary probability

measure and analogously for vy, in case [n . pa |Im[ 5(€)]|d¢ = 0. Next, let URe, ... URe

(resp. UI’“, e Ullm) be i.i.d. random variables with distribution v, (resp. v1,) and assume that
ulm . ,UL‘“, Ule, o U}}e, Zy,..., 2, are independent. With these preparations, we are now
ready to define the weights in 21)):

A; = 27T(Z¢U?e +(1- Zz')U%m% B; ) (1 — Zi),

Re[F F)(UF) Im([F5)(UI™)
Wi = ]” Re Zi+ 1-2)],
[Re[F;](URe), [l [ (UT))
with the quotient set to zero when the denominator is null.
Our goal now is to estimate
N+d N+d
2 2
1Ey = @il + D0 10:F = 0: 130 | =B [IF = 0513200 |+ D E [10:F; = 0195132, |
i=1 i=1

(24)
by estimating the summands separately. To achieve this, we first compute E[®,(x, z)] and
E[0;®,(x, z)]. Indeed, inserting the definitions, using independence and representation (19) yields

E[®;(x, z)] = E[W; cos(B1 + A1 - (x, 2))]
( Re[F;)(UF) ,  Dm{F)(UY) ) Zl)>
|

= 1% o
Re[F5](UF)] [Im[E5](U}")

1= Z)U") - (@.2))|

cos (gu — 71) + 21(Z,URe 4

= | E;lx (M =1)E

+P(Z; = 0)E

— [ RelF)€) costeme - (@ e+ [ m{E)() cos(F +2mE- (. 2)ig
RN xR4
= Fj (:I), Z).
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Analogously, using the representation (20) for the partial derivative d; F; instead, we obtain

= —E[W1A;,;sin(B1 + A; - (x,2))]

= —277||F It ( (Zy =1E Re[A](URC) URe i sin(27rURe . (:c,z))]
|Re[F;](UT)]
— J](Ullm) Im sin E T Im | T
s um@](Uﬁmn Vit (5 2r U (.2) )
=27 </RNde &Re[F;|(€) sin(27€ - (z, z))d€ + /RNde &Im[F;)(8) sin(§ +27€ - (x, z))d&)
= 0,;Fj(=, z).

(25)
Therefore, we may estimate the first expectation in (24) as follows:

B (17 - @) =2 | [ 150 - eaPutina)] = [ Vo e, d)

1 n
=2 fon \% ; Wicos(B; + A; - (x,2)) | p(de,dz)
1
= f/ V([Wicos(By + A - (x, 2))] p(de, dz)
RN xRd
1
= */ E (Wi cos(By + As - (@, 2)))°] ul(da, d2)
N JRN xRd
< e = LF)
=7 1 Il
(26)
For the partial derivatives, we obtain analogously
B[j0.F; ~ 03| = [ Vot (e2)lu(de.d2)
RN xR
1 S .
=3 \% Z Wi Ag,;sin(By + Ay - (=, z))] p(de, dz)
RN xR 1
1
= 7/ A% [WlAl,'L SiD(Bl + A1 . (.’1}, Z))] u(d:c, dZ) (27)
RN xR4
1

IN

—/ E [(WlAM sin(B; + A - (a:,z)))ﬂ p(de, dz)
RN xRd
1 2 42 1 =2 2 4m 21
< 51[*3 [W1 Al,i] = E”FJHJE [Al,z] = HF Hl .y fz‘ |Fj(€)|d€7
><

where we used that E [Aii] = 47r2HFjH1_1 fRNde E2|F;(€)|de.

In particular, (26) and imply that there exists a scenario w € € such that ®%(x,2) =
LS Wiw) cos(B;(w) + Aj(w) - (, 2)) satisfies

pRse 2 C

w2 w J
15 = 5 l[22) + 2_; 10:F5 = 052y < S %)
with Cj = || Fj |13 + 472 Fj |1 fen g Soneh® €2|F;(£)|d€. Finally, @ = (8*,...,0") can then be
constructed by setting 87 = (A;(w), B;(w), arCCOS(W))i:L...,n, which guarantees that $% =

Fgf and so the proposition follows. [
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B.3 PROOF OF COROLLARY [4.3]
The proof of this corollary requires the following lemma, which extends |Gonon| (2024}
Lemma 4.10).

Lemma B.1. Let d,n,q € N, let M1, My > 0, let U be a non-negative random variable, and let
Y1,..., Y, be iid. R%-valued random variables. Suppose E[U] < M, and E[|Y1|?] < My. Then

P\U < 3My, max |V < (3nMy)7 | > 0.

.....

Proof. The proof mimics that of in |Gonon| (2024, Lemma 4.10) by replacing the use of Markov’s
inequality for ¢ = 1 by the more general version:

PlYi| > (3nMy)a] < ———
]

Proof of the corollary. The corollary follows by replacing the argument leading to (28)) in the proof
of Proposition[4.2]by Lemma[B.T]and by noticing that

EllA] = otIFI [ leliF @l

B.4 PROOF OF PROPOSITION 4.4

Proof. It follows by combining the proof of Proposition 4.2 with the proof of Theorem 3 in|Gonon
& Jacquier] (2025). More specifically, the same proof can be used as for Proposition4.2] except that
we need to replace the L?(y) error bounds in (26) and (27) by uniform bounds. For (26)), we can
follow precisely the proof of Theorem 3 in|Gonon & Jacquier] (2025) to obtain

0 ot
o, . J
HFRJ _FJHOO,M = Vn @)

h O30 =2 D)||Fj|l1 +87M(N +d)z || F; NH e2|F(€)|d 1/2N
wit (r+ D[ Fjll1 + 87 M (N +d)% | ||1 Jn wma 2oy EIFj(€)]dE) . Next, we

turn to the derivatives, that is, we aim to estimate ’ " 9

. Also in this case, we may

proceed as in the proof of Theorem 3 in|Gonon & Jacquier (2025) and apply the same estimates to
the random variables U; (5, ») = W;A; psin(B; + A; - (x, 2)). Letey, ..., e, be iid. Rademacher
random variables independent of A = (A4,...,A,) and B = (By,..., B,). Symmetrisation and
independence then yield

sup
(x,z)E[—M,MN+d

0, Fp? - aiFjH . =E

1 n
EZ Ui w.z) — U,(m,z)])H
n ZE’LU (x,2) 1

Zelwzal rsin(b; + a; - (x, z))H

<2E sup

(x,z)€[—M,M|N+d

=2E [E sup

(z,z)€[—M,M|N+d | TV

(w,a,b)=(W,A,B)

Now fix @ = (ay,...,a,) € (RN x R)", b = (by,...,b,) € R", w = (wy,...,w,) € R” and
denote
T = {(wia; k(bi + a; - (@, 2)))iz1,..n ¢ (@,2) € [-M, MV},

), z€R,

0i(z) == wia mn(wiamC
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forv = 1,...,n. Then, using the definitions in the first step, the comparison theorem (Ledoux
& Talagrand, 2013| Theorem 4.12) in the second step (note g;(0) = 0 and p; is 1-Lipschitz), and
standard Rademacher estimates (see, e.g.,/(Gonon|(2023)), we obtain

E sup eiw;a; k sin(b; + a; - (¢, 2))
(@,2)€[—M,M|N+d | TV Zl
= sup g;0i(t; < 2E |sup gt
teT Z ] LET n Z ]
=2E sup gi(wia; ik (b; +a; - (z, 2))
Lw z)€[-M,MN+d | TV Z
1 1 &
E — Z siwiaLkbi + 2E sup - Z EiW; a5 kA,
i (z,2)€[— M, M|N+d i
n 1/2 N+d / n 1/2
2 2 2 12 2M
<= ‘a2, b .
n <; Wi alvk % ; ;wz al k‘al l

Putting everything together, we obtain

n 1/2 N—+d n 1/2
B 9 2M
|0:750 — our L S2E |2 (Z WEA?,ka> — > (Z WiA; )
o9, i=1

=1 =1

A N+d 1/2
< — |EW2A2, B + M(N + )V [ Y E[WP42,42)]
vn ’ =1 s
0o,k
< Y
— \/ﬁ b

. o0,k =l/2
with €% = 4n%|| 5|1/

N

—~ 1/2 ey 1/2
(Jur e SIFHOIE) ™+ AMN + )2 (fyn s €I F5 (€€ )

Here, the last estimate follows from the inequality

BW2ALB <o Bl [ i@l

RN xR
and
BWEAL AL =167l [ @R ©de,
RN xR4
o N+d o0,k
Overall, we obtain () with C° > > 7, C7™" chosen as

O =2(r+ 1)||Fj||1 + (877M+47r2)(]\7+d)2 | F; ||2[1/2 +16M7*(N + d)|| F; H1/2 1/2.

O

B.5 PROOF OF COROLLARY [4.3]

Proof. First, extending the proof of Corollary 4 in|Gonon & Jacquier| (2025)), we show that F}; can
be approximated on X’ up to error § in C'-norm by a function in C2°(RY x R9). Indeed, first let

M > 0 be such that X C [—M, M]V*4. Then, classical approximation results (see, e.g., Whitney,
1934, Lemma 5) imply that there exists a smooth function h: RY x R? — R such that

sup |Fj(x,z) — h(zx, 2)| + || VF;(x, z) — Vh(z, 2)|| < g (30)
(z,z)eX

Without loss of generality we may assume that h € C2°(RY x R%). Otherwise, we multiply h with
a cutoff function ¢y € C°(RYN x R%) which is equal to 1 in an open set U with X C U (see, e.g.,
Hormander} [1990, Theorem 1.4.1); thereby preserving (30).
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In the next step, we now apply Proposition 4] to h. Since h is a Schwartz function, its Fourier
transform h is also a Schwartz function and thus £ is integrable and

/ (1+ €] A(€) dé < o
RN xR4

In particular, h € Fg for R > 0 large enough and, as h is a Schwartz function, also 9;h € F for
all 4. Thus, the hypotheses of Proposition .4 are satisfied and we obtain that there exist n € N and

0 € O such that
N+4d
—n,0
et il 5

This estimate together with (30) then imply

<

) €
il'Rj — PY
R.j 2°

sup |Fj(z,2) — FRf(z,2)| + |VFj(z, 2) — VERY (2, 2)|

(z,2)eX
< swp |Fj(@.z) - h(@,2)| + |VE,(z,2) — Vh(z,z)|
(z,z)EX
+ sup |h(m,z) — Fpf(a,2)| + |V (2, 2) - Vi(w, 2)|
(z,2)eX
< sup [Fj(z,z) - h(z, 2)| + [|VEj(z, 2) — Vh(z, 2)|
(z,2z)EX
B N+d
+ sup |Fpf(x,z) - h(z,z |+Z|a — O0;h(x, z)|
(z,z)eX
< sup |Fj(z,2)— h(z,2)|+ IIVFj(w,Z) — Vh(z, z)|
(z,2z)eX
=n,0 5
L L D Y G2 T
where we used that
) Ntd 12 Nia )
IVER? (@, 2)—Vh(z, z)|| = (Z 0, P78 (2, ) —8¢h(w,z)|2> < 0 PR (0, 2)—0ih(x, ),
i=1 i=1
since ||y||2 < [|yl1 forall y € RN+, O

C PROOFS FOR SECTION

C.1 PROOF OF THEOREM [4.6]

Proof. Choose M such that By x Dy C [-M,M|N*% and [-R,R]N x Dy C [-M, M|N+d.
Firstly, our hypotheses on F' guarantee that F’ satisfies the hypotheses of Proposition f.4] Hence,
there exists @ € © such that forany j € {1,..., N},

_ c
e _ F, F9 _ o F; < L (31)
R.j Moo, 01 R.j Moo T

Then, for all z € [-M, MY,z € Dy

IVaFg (@, 2)ll2 < IVaFg® (@, 2) = Vo F (@, 2) 2 + | Vo F (2, )5

1/2
< Z 0:F 0 (2, 2) — 0:F;(m,2)]* | + A (32)
7,7=1
max; cee
j=1,....N ¥ +A

N
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Therefore, using that maxge( s a1~ ||V Fjy® (2, 2)||2 is the best Lipschitz-constant for Fj® on
[—M, M|~ for any given z € D,, we obtain for all & € [-M, M|V, z € D, that

IFR® (!, z) - FRl(a® 2)|” < [la* — 2| max ||V Fpl(x,2)|3
xe[—M,M
max;—i. .. C} 2
N j=1,....N %~ + A H(IZI*.’EQHQ.
NG
In particular, for n satisfying N 2% < n we obtain that F®: Bp x Dy — Bg,

with Bg = {x € RV : ||z|| < RV/N}, is contractive in the first argument, hence the system (@) has
the echo state property by [Gonon et al.| (2020| Proposition 1).

By the relation between the Lipschitz-constant and the maximal norm of the Jacobian, the assump-
tion |V F(x, z)||2 < A guarantees that F'(-, z) is A-contractive for any z € D,. Hence, we may
estimate

U7 (20 = T2l = llwe = @l = | Fl@io1, 20) = Fi® (@i, 20)

SNF (i1, 2¢) — F(T—1, 2¢)|| + “F(it—lyzt) - Fg’e(a?t_l,zt)H

1/2
’ (33)
R P R
@1 — @ea | + Z -
\/Nmax - O
< A|@im1 — B ]| + J\/%,“.,N ;

Iterating (33)), we obtain

_ J N - s
U7 (2)e ~ T(2)e] < N ey — @ sl + 3 N fm“;;” ’
k=1

J—1
v N max.— (O5ad
<NVN(M+R)+ > A m Xﬂ\/%w-vN J

Letting J — oo, we thus arrive at the bound (12). O

(34)

C.2 PROOF OF LEMMA 4.7

The proof of Lemma [4.7]is related to the approach introduced in|Gonon & Ortegal (2020) and sub-
sequently used, e.g., in|Gonon et al.|(2023));|/Gonon & Ortegal (2021).

Proof. We start by constructing a partition of @; as in the statement. If N = 1, we simply
have &, = [#;] € R. Next, we define the reservoir vector Fr,; = (Fj,...,F;). Then, for
E=1j7e{l,....h},and k = 2,... ., K — 1,7 € {lp—1 +1,...,lx}, we have Pjz; =

[ﬁcgkﬁ),...,ﬁch),O,...,O] and Pj&; = 0 for j = lx_1 + 1,...,N. Inserting these choices

into (T3), we may rewrite the dynamics as

& =F o (@Y 2% 0,0, 2), teZ_, (35)
fork =1,...,K — 1 and aAch) = EK71+1ZZK(O,Zt). In particular, §;§K) = EK71+1:lK(O7Zt),
which depends only on z;, is explicitly given forallt € Z_, and forall k = 1,..., K — 1, we see
that & A( ) only depends on :i:gktl), s (K) . Thus, (T3) admits a unique solution which can be ex-
pllCltly obtained from the recursion @ that is, for all t € Z_, we have w( ) = Fl e+ 1i5 (0, 2),
mgK Y= FZK—2+11lK—1 ([$§ %a 0,... ,O], Zt)s oo wgl) = Fl:ll ([$§2_)1, s 7£§I—<1)7 0]7 z¢). This
proves that F" has the echo state property. O
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C.3 PROOF OF THEOREM[4.§]

Proof. Without loss of generality we may assume € < 1, because proving for e < 1 also
implies that holds for ¢ > 1.

Let Hy : (Dg)%~ — B,y be the functional associated to the filter U. Then, as in the proof of|Gonon
& Ortega) (2021} Theorem 2.1), there exists K € N and a continuous function G': (Dd)dK — B,
such that

sup  ||Hu(2z) — G(z—k+1,---,20)|| < (36)

z€(Dg)"~

| ™

Moreover, e.g., by the argument in |Gonon & Jacquier| (2025, Corollary 4), there exists a function
G € CX((RYK | B,,) which satisfies

sup ||G(z) — G(2)]| < Z 37
ze(R4)K

Next, choose N = (K — 1)d + m and consider the recurrent QNN introduced in @). Denote
=n,0 - n,67 1,07 N d
FR,j (.’I},Z) _R_QR[Pl (xvz)+]}p2 (.’E,Z)], (.’B,Z) eR” xR (38)

the update maps without preprocessing matrices. For 1 < ¢ < 5 < N, write Fg:gj =
(Fp?.... ,F};:?) andl = m + (k — 1)dfork = 1,..., K. Define the constants

K K—k+1 1/2
Lo =max(Vd, sup [[VG(z)|)+1, Co=4Lc (> > (2Lg) . (39)
ze(RHK k=2 j=1

Then, as G € C°((R?)X) and the identity is smooth, Corollary (applied componentwise)
guarantees that there exist nx, Rx and O € ®7 such that

€

0 < K ,6
sup [|[Fpir® 1 10.(0,2) = 2| + sup [[VFREVE 1, (0,2) — 14 < oo (40)
z€Dy z€Dy G
and (recursively), for all k = K — 1,...,2 there exist ny, R, and 8, € ©? such that
n 0 N ,0k €
sup [P a, (T, 2) —wral| + [ VERS 1, (@ 2) = 14| < =,
(,2)€[— Ri+ 1, Ris1]N x Dy Ryl —1+1:lg Ry lg—1+1:lg Ce
41)
and there exist nq, Ry and 6; € ©% such that
sup (1FR2 2 (s o 220,00, 20) = Glzo sty 20)]|

([2—K+1,-+r2-1],20)€[—R2,R2]N x Dy

+ ||Vng:?:lm([z—K+1, T OLZO) - VG(z—K-l-la ) ZO)”) <

(42)
Without loss of generality we may choose R = R; = ... = R, since we can always replace
Ry, by max(Ry, Rk+1) (and hence ultimately replace Ry, ..., Rk by R) and absorb the change in
an adjusted choice of parameters v (see representation (7)). Moreover, by a similar reasoning
we may assume without loss of generality that n = n; = ... = ng. Indeed, otherwise we may
again choose n to be the maximum of nq,...,ng, replace ni,...,nk by n and recover the same
functions (7)) by setting surplus terms ¢ > ny, to 0 by appropriate choice of *7. The extra factor nl,,
in turn, can be absorbed by modifying the choice of R.
Denote by Ly, be the best Lipschitz constant for F’g:i’”'_l 41.,- Then @0)-@2) imply that Ly <
Vd+e < Lgfork = K,...,2and ; < sup,epayx [VG(2)|| +1 < Lg. In particular,

Le > max(Ly,...,Lk) is a bound on the Lipschitz constant for all QNNs Fg:i’iﬁl:lk and G.
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Partition &, = [&{",...,&")] € R™ x (R?)K~1. Using the triangle inequality, we then obtain
sup G(z_g+1,---,20) —a}gl)H
z€(Dg)K+1
— s ‘G(z,K+17...7z0) - F’g:im([ﬁ:ﬂ,...,ﬁ:(f?,OLZO)H
z€(Dg)(K+1)
. - 4
< |[Gzxinz0) = G5, 2 z0)| “43)

+ G, 8900 20) - PR, (222, 0] 20)|

~ (K €
SLGH(Z,KH,...,zO) ([w(Qi, ..,wgl)],zo)’ JrZ'
For the last norm, we write
.2 () 2 & (- . k) ||?
H(Z—KH,W,ZO) (= —iv"'v ]ZO)H = Z HZ k— 1—513 )H ZHZ7K+IC71_:%—1H :
— k=2

We proceed by backward induction over k to prove that for all k = K, ..., 2 it holds

K—k+1

2 2
- (k)
HZ—K+k+t - H < ; (2Lg) Cf
for arbitrary ¢ € Z_. Indeed, we have
2 2
L (k n,0 . (k41 (K
HZ—K+k+t — @ )H = HZ—K+k+t Fpp o (@50, a0,.0,0,2)
and so for k = K it follows that
2 2 2
n,0 g g
Hz Kokt — B )H ‘ —Fple e (02| < 0z S2ogz
G G
Assume that the bound holds for a fixed k € {K,...,3}, then for £ — 1 we estimate (with the
notation fr_1 = FR’lk oLl )
2
k—1 k (K
HZ Kt (k—1)+t — &) )H HZ—K+k—2 - fk_l([:ci )1, . -7375172707 o5 0], 2¢)
2
< 2 Hz7K+k72 - fk*l([sz+k727:ﬁj(5k41_1)v s 7531(5[7(1)707 cee 70]3 zt)
+ 2 ka*l Z K+k+t— 17w§kt1)7 .. '7i:§i<1)707 <. .,0},2,5) - fkfl( Afg)u .. '7§3§i(1)703 cee 70],2,5)
2 K—k 22 K—k+1 22
= _ = j+1 = ji=
<2542 [ERTT—— 1H % F LG S Y LY G
Jj=1 Jj=1
which completes the induction. Therefore, we obtain
@) (K) 2 )
H(z,KH,...,zO) —([5,..., 25 ],ZO)H = Z Hz Kik—1—& lH
K 52 K K-— k+1 2
SZHZJ(M 1—x 1” Sﬁz —
k=2 e k=2 j=1 16L
From (@3)), we thus obtain
sup G(z-K+1,--+,20) — 1%(()1)H
=etbn o (44)
< Lg H(z,KH,...,zO) — (&%, .. .,ge_f?],zo)H +o<z
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Setting W to be the projection onto the first block :i:gl), (that is, W has zero entries except for
W, =1fori=1,...,m) and putting together (36), (37) and @4 yields

sup  sup ||Hy(z) — Hy,, (2)] < |Hu(2) = G(z-ry1,- -5 20)
z€(Dg)"~ t€L- ze(Dd)
+ sup [|G(2) = G(2)||+ sup ||G(z—k41,---,20) — Hg,, (2)]| (45)
G(Rd)K zE€(Dg)K+1
<ititz=e

It remains to be shown that (T4) has the echo state property. Recall that we partition &; =

@M, 25 e Rm x (ROE-L Fork = 1,5 € {1,...,h},and k = 2,.... K — 1,
j € {lg—1 +1,...,1lx}, select P; as the matrix with zero entries, except for (P;); 41, = 1 for
l=1,...,d(K —k)andlet P, =0for j =lg_1+1,...,N. Then, fork = 1,5 € {1,...,01},

andk=2,..., K -1, € {lk—1+1,..., 0k} wehavert:[ §k+1), . ﬁ:(K),O,. O]and

Pjz, = 0forj = lg_1+1,...,N. Then echo state property follows by calhng Lemma-
Therefore the approximation bound for the functional (@5) immediately implies the corresponding
bound for the filter (T7), which completes the proof of the theorem.

O

D CONSTRUCTION OF V

In this appendix we provide further details on the choice of V appearing in the quantum circuit. Our
presentation follows|[Gonon & Jacquier] (2025)).

Generally, the matrix V.€ C™*"™ can be any unitary matrix mapping |0> " to the state |¢p) =
\% SO |44) which, for n > 2, is also explicitly given as [¢) = ﬁ S 1) @ 100).

As V]0)®" = [¢) is the only property required in the proof, many alternative choices of V are
possible and one may thus select the one that is most suitable from the perspective of hardware
requirements or limitations.

Example One explicit example for Vis given by V:= 2|¢) (| — I, with

[0) + 1¢)
) = —mm————,
2(1+(0[¥))
where we write |0) in place of [0)™" for brevity here. One easily checks that Vi=2|p)(p|-TI=V
and thus VVT = VIV = I. Furthermore, a straightforward computation yields that
V[0) = (2p) (¢l = 1) |0)
_ 10 (A + @|0) + [9) (1 + (¥]0))
14 (0[¢)

>®u

—10) =4y

Construction of |¢)) In the case ng = 0, there is an explicit construction of ¢ in terms of
Hadamard gates acting on the control qubits. Indeed, for n > 2, (Gonon & Jacquier] [2025]

Lemma A.2) shows that
ng -2
|¥1)y, = <® H |0>) ® |00) .

i=0

E MONTE CARLO ERROR

In practice, the empirical sampling error leads to an additional error component of order 1/ V'S for
S independent shots, see, e.g.,[Qi et al.|(2023)); [Liu et al|(2025)). Here, we outline how this Monte
Carlo error could be taken into account in the present setting.
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More specifically, our QNN in (@) and @) are defined using probabilities, rather than their Monte
Carlo estimates

=~ 1 (s
P .= 3 Z 1{m,4+m,...,4(n—1)+m}(l( ),
s=1

with i(*) the measured state in the i-th shot. To obtain refined bounds incorporating the sampling er-
ror, one would proceed as follows. Denote by Fg,e,s the RQNN state map with output probabilities
estimated by S shots, by ° the associated state and by Ug the associated filter.

For the state map itself, the L2-error can be directly controlled (as in{Gonon & Jacquier{(2025)) by

=l
RN ><]Rd

1/2
Fpl(x, z) — Fg:?’s(:c,z) u(dm,dz)]

2
g |

; o ) 1/2
< 2RZ </ {]P’?’e (z,z) — PM° (w,z)‘ } u(dw,dz)) (46)
RN xR
4R
< a0
VS
using that E[|E[X] — 5 Ly X = Var(Xl) for i.i.d. random variables X1,. .., Xg.

For the associated filter, one may proceed as follows. Firstly, (33) in the proof of Theorem [.6] can
be adapted to

|Us(z) = U] = |85 - ail| = | Fp®S @50, 20) = Pl 2)

< | F@er,20) = F@gy, 20| + | P8y, 20) - Fp®S (@5, 2)

1/2 N 1/2
<afeci-stl+ (Sme-mel ) (SlEe-nl,) @
/ ) — .
o ' 1/2
<A\}mt1—:&fl||+mmaxj\;ﬁl’ ZHF”S F”"HooM
The last error term can be bounded as
1/2 1/2 -
e (Slmee-mel,) | (Sellme-mll)) <%

for a suitable constant C' using techniques from statistical learning theory, provided that @%0 is
Lipschitz continuous as a function of (x, z). Inserting this into @8] and proceeding precisely as in
the proof of Theorem [.6]then yields a bound that incorporates also the sampling error.

Alternatively, as the Lipschitz continuity may be hard to verify, we may obtain an L?-bound analo-
gously to Theorem [f.6|as follows. First, using that the shots are independent across evaluations, we

may apply @6) to estimate

1/27
N /

*nGS’ n,0
E ZHF (&5 1,20) — Fpl(@f ), 20)

2

N -
2
BS =n,0 /-
<|2E HF” (@5 1,2) — Fid (@), 20)

3\
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where the expectations are taken with respect to sampling the probabilities to evaluate
FpoS(@s |, z)
R,j t—15%t)-

Next, by proceeding as in [@8), we may estimate

VN max;—1, .. N C’]C-’o

E[||Us(2)e — U(2)e]] < A ||@em1 — &5, || +

vn
. , 1/2
+B | | S ||FR S @i, 20 - Byl sz (48)
j=1
VNmax;_; nCO® 4R
< Az — 5 =N O /AR
SAllers =~ + VIR
with the expectations again taken with respect to sampling the probabilities to evaluate

Fg’;}’s (271, 2¢). In particular, taking expectations also with respect to a random process Z (taking

values in (D4)%-) and sampling at each evaluation, the estimate (@) and the same arguments as in
the proof of Theorem [£.§yield the bound

sup E[||[U(Z). - Us(Z)e] < 1 iA (

VN max;=1,. .~ C 4R
e VN 49
NG TYATS )
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