

000 001 002 003 004 005 FEEDBACK-DRIVEN RECURRENT QUANTUM NEURAL 006 NETWORK UNIVERSALITY 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032
033
034 Quantum reservoir computing uses the dynamics of quantum systems to pro-
035 cess temporal data, making it particularly well-suited for machine learning with
036 noisy intermediate-scale quantum devices. Recent developments have introduced
037 feedback-based quantum reservoir systems, which process temporal information
038 with comparatively fewer components and enable real-time computation while
039 preserving the input history. Motivated by their promising empirical performance,
040 in this work, we study the approximation capabilities of feedback-based quantum
041 reservoir computing. More specifically, we are concerned with recurrent quan-
042 tum neural networks, which are quantum analogues of classical recurrent neural
043 networks. Our results show that regular state-space systems can be approximated
044 using quantum recurrent neural networks without the curse of dimensionality and
045 with the number of qubits only growing logarithmically in the reciprocal of the
046 prescribed approximation accuracy. Notably, our analysis demonstrates that quan-
047 tum recurrent neural networks are universal with linear readouts, making them
048 both powerful and experimentally accessible. These results pave the way for prac-
049 tical and theoretically grounded quantum reservoir computing with real-time pro-
050 cessing capabilities.
051
052
053

1 INTRODUCTION

054
055 Recent advances in quantum computing have led to a rapid development of quantum machine learn-
056 ing methods. These methods aim to exploit the potential computational speed-up and reduced com-
057 plexity offered by quantum computing for machine learning purposes. For learning problems with
058 temporal structure, quantum reservoir computing (QRC) has emerged as a promising approach for
059 exploiting noisy intermediate-scale quantum (NISQ) technologies. In contrast to classical machine
060 learning methods based on bits valued in $\{0, 1\}$, quantum bits (qubits) can be in a continuum of
061 states. QRC aims to exploit this fundamental difference to build efficient machine learning methods
062 for time series prediction and learning.
063

064 In this paper, we are concerned with recurrent quantum neural networks (RQNN), a particular type
065 of quantum reservoir computing method. RQNNs are a quantum analogue to classical recurrent
066 neural networks. RQNNs are built from quantum neural networks (QNNs), with weights and biases
067 typically realized via quantum circuits. Thus, these networks can be evaluated directly on quantum
068 computers. Thereby, quantum machine learning aims to achieve a significant increase in neural
069 network expressivity and computational speed-up in inference and training.
070

071 Motivated by their promising empirical performance, in this work, we study the approximation
072 capabilities of feedback-based quantum reservoir computing methods and, specifically, RQNNs. In
073 particular, our work provides precise bounds on the number of qubits and the size of the underlying
074 quantum circuit that is required to guarantee a prescribed approximation accuracy. Our results show
075 that QRNNs can approximate regular state-space systems using a quantum circuit with qubit number
076 only growing logarithmically in the reciprocal of the prescribed approximation accuracy and with
077 error rates not suffering from the curse of dimensionality. Thereby, our results pave the way for
078 theoretically grounded quantum reservoir computing with real-time processing capabilities.
079
080

054 1.1 RELATED LITERATURE
055

056 Quantum reservoir computing methods have been extensively studied for a variety of time-series
057 prediction and learning tasks, employing different architecture types such as online protocols (Mu-
058 jal et al., 2023; Franceschetto et al., 2024), mid-circuit measurements and reset operations (Hu et al.,
059 2024; Murauer et al., 2025), feedback protocols (Kobayashi et al., 2024), QRC with quantum mem-
060 ristors (Spagnolo et al., 2022) and hybrid QRC techniques (Pfeffer et al., 2022; 2023). We provide
061 a detailed discussion of QRC methods in Appendix A.

062 Despite these promising developments, key questions regarding universal approximation capabilities
063 and expressivity of feedback-driven QRC methods have not been addressed in the literature. For
064 classical neural networks, qualitative and quantitative universal approximation theorems have been
065 extensively studied, with seminal works including, e.g. Hornik (1991); Barron (1993); Yarotsky
066 (2017). Universality results for the dynamic reservoir computing setting have been obtained in
067 (Grigoryeva & Ortega, 2018a;b; Gonon & Ortega, 2020; 2021; Gonon et al., 2023) for echo state
068 networks, state-affine systems and linear systems with polynomial / neural network readouts. For
069 (feedforward) QNNs first qualitative results on universal approximation properties of QNNs have
070 been proved only very recently Pérez-Salinas et al. (2020); Schuld et al. (2021). Subsequently,
071 quantitative approximation error bounds for feedforward QNNs were proved in Gonon & Jacquier
072 (2025); Yu et al. (2024); Aftab & Yang (2024).

073 For RQNNs, no quantitative approximation error bounds have been previously available in the lit-
074 erature. Moreover, previous universality results concerning QRC models have relied on the use of
075 polynomial output layers (Chen & Nurdin, 2019; Chen et al., 2020; Nokkala et al., 2021; Sannia
076 et al., 2024b;a), which yield a polynomial algebra that can then be used with the Stone-Weierstrass
077 theorem to obtain universality statements. Nevertheless, most numerical and experimental imple-
078 mentations of reservoir computers use linear output layers due to their simplicity and fast training.

079 1.2 CONTRIBUTIONS
080

081 For applications of QRC methods in learning tasks with temporal dependence, a precise understand-
082 ing of RQNN approximation capabilities is essential. In this paper, we derive approximation error
083 bounds and prove universality statements for RQNN families with a linear output layer and in the
084 context of the feedback protocol. Universality refers to the ability of these families to uniformly
085 approximate arbitrarily well a large category of dynamic processes, so-called fading memory in-
086 put/output systems. Thereby, we contribute to a precise understanding of RQNN approximation
087 capabilities in several aspects.

- 088 • We provide RQNN approximation error bounds for regular state-space systems. Our first
089 main result, Theorem 4.6, shows that RQNNs are able to approximate regular state-space
090 systems without the curse of dimensionality, using quantum circuits with qubit number
091 only growing logarithmically in the reciprocal of the prescribed approximation accuracy.
- 092 • In our second main result, Theorem 4.8, we prove that RQNNs can uniformly approximate
093 the arbitrary fading memory, causal, and time-invariant filters. In particular, RQNNs have
094 approximation properties as competitive as those of popular reservoir computing/state-
095 space system families like echo state networks, state-affine systems, or linear systems with
096 polynomial/neural network readouts.
- 097 • To prove these results, we first derive novel qualitative and quantitative approximation error
098 results for using feedforward QNNs to approximate functions and their derivatives (see
099 Proposition 4.4 and Corollary 4.5).

100 In comparison to Gonon & Jacquier (2025), our RQNNs introduce memory through a feedback
101 loop. Mathematically analysing our RQNNs architecture hence requires a novel, intricate analysis
102 of QNN approximations of functions jointly with their derivatives. Moreover, approximation analy-
103 sis in the temporal domain is inherently much more challenging due to the feedback loop. Proving
104 Theorems 4.6 and 4.8 thus requires new techniques specifically tailored to deal with this situation
105 (see Appendix C). Most previous literature on RC and QRC universality (Grigoryeva & Ortega,
106 2018a;b; Gonon & Ortega, 2020; 2021; Chen & Nurdin, 2019; Chen et al., 2020; Nokkala et al.,
107 2021; Sannia et al., 2024b;a) implicitly assumes the search for an optimal model within a class in

108 which all parameters are estimated. Also our results are formulated for variational quantum cir-
 109 cuits for which all parameters are trainable. Nevertheless, the obtained results and developed proof
 110 techniques also **promise to be** useful for QRC systems in which certain parameters in the recurrent
 111 layer are randomly generated. Our RQNN architecture builds on and extends the feedforward QNN
 112 architecture introduced in Gonon & Jacquier (2025), which also admits results for the randomized
 113 setting. Hence, **combining the techniques developed here with these randomized architectures may**
 114 **provide fruitful for studying** randomization in the dynamic quantum reservoir computing setting.
 115 Moreover, the obtained approximation error bounds may serve as a crucial ingredient for bounding
 116 the overall generalization error of QRC methods, by combining our results with suitable risk bounds
 117 as obtained in other contexts in Gonon et al. (2020); Chmielewski et al. (2025).

118 1.3 OUTLINE

120 The structure of the paper is as follows. Section 2 introduces background on filters, functionals,
 121 fading-memory and echo state properties. Section 3 describes the RQNN model, a recurrent QNN
 122 with state feedback, building on the feedforward QNN architecture introduced in Gonon & Jacquier
 123 (2025). Section 4.1 derives QNN approximation error bounds for functions and their first deriva-
 124 tives. We then use these results (see Proposition 4.4 and Corollary 4.5) to study the properties of
 125 the RQNN state maps in the uniform approximation of more general state equations as well as in a
 126 square-integrable sense. These results are then used in Section 4.2 to prove the universal uniform
 127 approximation properties of the filters associated with RQNN systems. More specifically, in The-
 128 orem 4.6 we provide filter approximation bounds that show that RQNNs can uniformly approximate
 129 the filters induced by any contracting Barron-type state-space system. Finally, Theorem 4.8 of Sec-
 130 tion 4.3 extends this universality property to the much larger category of arbitrary fading memory,
 131 causal, and time-invariant filters. The paper concludes with Section 5, where the main contributions
 132 and outlook of the paper are summarized.

133 2 BACKGROUND ON FILTERS AND FUNCTIONALS

135 We start by introducing the input-output maps to be learnt in the dynamic setting. In a static context,
 136 input-output maps are given by functions of the form $f : \mathbb{R}^d \rightarrow \mathbb{R}^m$. For learning with temporal
 137 dependence, the relevant input-output maps are *filters* and *functionals* defined on sequences.

138 Specifically, let $(\mathbb{R}^n)^\mathbb{Z}$ denote the set of infinite real sequences of the form $\mathbf{z} = (\dots, \mathbf{z}_{-1}, \mathbf{z}_0, \mathbf{z}_1, \dots)$, $\mathbf{z}_i \in \mathbb{R}^n$, $i \in \mathbb{Z}$; $(\mathbb{R}^n)^\mathbb{Z}_-$ is the subspace consisting of left infinite sequences:
 139 $(\mathbb{R}^n)^\mathbb{Z}_- = \{\mathbf{z} = (\dots, \mathbf{z}_{-2}, \mathbf{z}_{-1}, \mathbf{z}_0) \mid \mathbf{z}_i \in \mathbb{R}^n, i \in \mathbb{Z}_-\}$. Analogously, $(D_n)^\mathbb{Z}$ and $(D_n)^\mathbb{Z}_-$ stand
 140 for infinite and semi-infinite sequences, with elements in the subset $D_n \subset \mathbb{R}^n$. Let $D_n \subset \mathbb{R}^n$ and
 141 $B_N \subset \mathbb{R}^N$. We refer to the maps of the type $U : (D_n)^\mathbb{Z} \rightarrow (B_N)^\mathbb{Z}$ as **filters** and to those like
 142 $H : (D_n)^\mathbb{Z} \rightarrow B_N$ (or $H : (D_n)^\mathbb{Z}_- \rightarrow B_N$) as **functionals**. A filter $U : (D_n)^\mathbb{Z} \rightarrow (B_N)^\mathbb{Z}$ is
 143 called **causal** when for any two elements $\mathbf{z}, \mathbf{w} \in (D_n)^\mathbb{Z}$ that satisfy that $\mathbf{z}_\tau = \mathbf{w}_\tau$ for any $\tau \leq t$, for
 144 a given $t \in \mathbb{Z}$, we have that $U(\mathbf{z})_t = U(\mathbf{w})_t$. Let $T_\tau : (D_n)^\mathbb{Z} \rightarrow (D_n)^\mathbb{Z}$, $\tau \in \mathbb{Z}$ be the **time delay**
 145 operator defined by $T_\tau(\mathbf{z})_t := \mathbf{z}_{t-\tau}$. The filter U is called **time-invariant** when it commutes with
 146 the time delay operator, that is, $T_\tau \circ U = U \circ T_\tau$, for any $\tau \in \mathbb{Z}$, with the two operators T_τ defined
 147 in the appropriate sequence spaces. Finally, there is a bijection between causal time-invariant filters
 148 and functionals on $(D_n)^\mathbb{Z}_-$, and we can use them interchangeably (Grigoryeva & Ortega, 2018b).

149 A specific class of filters is given by state-space systems (such as recurrent neural networks) deter-
 150 mined by two maps, namely the **recurrent** layer or the **state map** $F : \mathbb{R}^N \times \mathbb{R}^n \rightarrow \mathbb{R}^N$, $n, N \in \mathbb{N}$,
 151 and a **readout** or **observation** map $h : \mathbb{R}^N \rightarrow \mathbb{R}^m$, $m \in \mathbb{N}$, given by

$$152 \begin{aligned} \mathbf{x}_t &= F(\mathbf{x}_{t-1}, \mathbf{z}_t), \\ 153 \mathbf{y}_t &= h(\mathbf{x}_t), \end{aligned} \tag{1}$$

154 where $t \in \mathbb{Z}$, \mathbf{z}_t denotes the input, $\mathbf{x}_t \in \mathbb{R}^N$ is the state vector, and $\mathbf{y}_t \in \mathbb{R}^m$ is the output vector.

155 Consider now subsets $B_N \subset \mathbb{R}^N$ and $D_n \subset \mathbb{R}^n$ and a recurrent layer defined on them, that is,
 156 $F : B_N \times D_n \rightarrow B_N$ and $h : B_N \rightarrow \mathbb{R}^m$. Denote by $D_m := h(B_N) \subset \mathbb{R}^m$. The recurrent system
 157 F is said to have the **echo state property** with respect to inputs in $(D_n)^\mathbb{Z}$ when for any $\mathbf{z} \in (D_n)^\mathbb{Z}$
 158 there exists a unique element $\underline{\mathbf{x}} \in (B_N)^\mathbb{Z}$ that satisfies the first equation in (1), for each $t \in \mathbb{Z}$.
 159 When the echo state property holds, a unique filter $U^F : (D_n)^\mathbb{Z} \rightarrow (B_N)^\mathbb{Z}$ can be associated to

the recurrent system determined by F , namely, $U^F(\mathbf{z})_t := \mathbf{x}_t \in B_N$, for all $t \in \mathbb{Z}$. We will denote by $U_h^F : (D_n)^\mathbb{Z} \longrightarrow (D_m)^\mathbb{Z}$ the corresponding filter determined by the entire recurrent system, that is, $U_h^F(\mathbf{z})_t := h(U^F(\mathbf{z})_t) := \mathbf{y}_t \in D_m$, for all $t \in \mathbb{Z}$. The filters U^F and U_h^F are causal and time-invariant by construction. The echo state property is much related with the so-called **fading memory property** defined as the continuity of U_h^F with respect to weighted norms in its domain and codomain (Boyd & Chua, 1985) or the product topologies when D_n and D_m are compact (Grigoryeva & Ortega, 2018b). It can be shown that when D_m is compact, the echo state property implies the fading memory property (Manjunath, 2020; Ortega & Rossmanek, 2025b); see Ortega & Rossmanek (2025c) for a comprehensive account of the dynamical implications of the fading memory property as well as Ortega & Rossmanek (2025a) for a stochastic version.

3 RECURRENT QUANTUM NEURAL NETWORK ARCHITECTURE

Before going into details about the considered RQNN architecture, let us first explain the basic working principle of feedforward QNNs built in quantum circuits. A QNN is built by transforming quantum bits (*qubits*) in a parametric quantum circuit. Each qubit is in state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ for some $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C}$ with $|\alpha|^2 + |\beta|^2 = 1$ and with elementary quantum bit states $|0\rangle$ and $|1\rangle$. For a circuit with n qubits, at any given point in the circuit, the circuit state can thus be identified with a vector in \mathbb{C}^{n^2} for $n = 2^n$. The quantum state $|\psi\rangle$ can be transformed by applying a *quantum gate*, that is, a unitary matrix $U \in \mathbb{C}^{n^2 \times n^2}$. A QNN now applies quantum gates $U(\mathbf{x}, \theta)$ that depend on the initial data and neural network parameters and transforms the circuit accordingly. The QNN output is obtained by measuring the final quantum state after applying the circuit quantum gates.

Next, we introduce in detail the employed RQNN architecture. Our recurrent quantum circuit is constructed based on two parametric quantum gates U and V , which we now introduce. The construction extends the feedforward QNN architecture introduced in Gonon & Jacquier (2025) to a recurrent setting by feeding back the network's state.

Construction of U . For $\delta, \gamma \in [0, 2\pi]$ and $\alpha \in \mathbb{R}$, denote by $R_x(\delta)$, $R_y(\gamma)$, and $R_z(\alpha)$ the rotations around the X-, Y-and the Z-axis, corresponding to angles δ , γ and α , respectively, and obtained as the exponentials of the Pauli matrices:

$$R_x(\delta) := \begin{pmatrix} \cos\left(\frac{\delta}{2}\right) & -i\sin\left(\frac{\delta}{2}\right) \\ -i\sin\left(\frac{\delta}{2}\right) & \cos\left(\frac{\delta}{2}\right) \end{pmatrix}, R_y(\gamma) := \begin{pmatrix} \cos\left(\frac{\gamma}{2}\right) & -\sin\left(\frac{\gamma}{2}\right) \\ \sin\left(\frac{\gamma}{2}\right) & \cos\left(\frac{\gamma}{2}\right) \end{pmatrix}, R_z(\alpha) := \begin{pmatrix} e^{-i\frac{\alpha}{2}} & 0 \\ 0 & e^{i\frac{\alpha}{2}} \end{pmatrix}.$$

For a given accuracy parameter $n \in \mathbb{N}$, consider weights $\mathbf{a} = (a^1, \dots, a^n) \in (\mathbb{R}^{d+N})^n$, $\mathbf{b} = (b^1, \dots, b^n) \in \mathbb{R}^n$ and $\gamma = (\gamma^1, \dots, \gamma^n) \in [0, 2\pi]^n$. For $i = 1, \dots, n$, we define parametric gate maps $U_1^{(i)} : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{C}^{2 \times 2}$ that map a current system state \mathbf{x} and a current observation \mathbf{z} to a rotation gate. Gate map i depends on parameters a^i, b^i and is defined by

$$U_1^{(i)}(\mathbf{x}, \mathbf{z}) := H R_z(-b^i) R_z(-a_{N+d}^i z_d) \cdots R_z(-a_{N+1}^i z_1) R_z(-a_N^i x_N) \cdots R_z(-a_1^i x_1) H$$

for any $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^N$ and $\mathbf{z} = (z_1, \dots, z_d) \in \mathbb{R}^d$, where H is the Hadamard gate. We may rewrite

$$U_1^{(i)}(\mathbf{x}, \mathbf{z}) = R_x(\delta^i), \quad \delta^i := -b^i - a_{N+d}^i z_d - \cdots - a_{N+1}^i z_1 - a_N^i x_N - \cdots - a_1^i x_1.$$

Moreover, we also define the gates $U_2^{(i)} := R_y(\gamma^i)$ and denote the circuit parameters by $\theta = (\mathbf{a}^i, \mathbf{b}^i, \gamma^i)_{i=1, \dots, n} \in \Theta := (\mathbb{R}^{d+N} \times \mathbb{R} \times [0, 2\pi])^n$.

With these notations, we are now ready to define the key element of our parametric quantum circuit, the gate $U := U_\theta(\mathbf{x}, \mathbf{z})$. U is defined as a block matrix built from the gates $\bar{U}^{(i)}(\mathbf{x}, \mathbf{z}) = U_1^{(i)}(\mathbf{x}, \mathbf{z}) \otimes U_2^{(i)}$ as follows:

$$U_\theta(\mathbf{x}, \mathbf{z}) := \begin{bmatrix} \bar{U}^{(1)}(\mathbf{x}, \mathbf{z}) & \mathbf{0}_{4 \times 4} & \mathbf{0}_{4 \times 4} & \cdots & \mathbf{0}_{4 \times 4} & \mathbf{0}_{4 \times n_0} \\ \mathbf{0}_{4 \times 4} & \bar{U}^{(2)}(\mathbf{x}, \mathbf{z}) & \mathbf{0}_{4 \times 4} & \cdots & \mathbf{0}_{4 \times 4} & \vdots \\ \vdots & & \ddots & & \vdots & \vdots \\ \mathbf{0}_{4 \times 4} & \cdots & \mathbf{0}_{4 \times 4} & \bar{U}^{(n-1)}(\mathbf{x}, \mathbf{z}) & \mathbf{0}_{4 \times 4} & \vdots \\ \mathbf{0}_{4 \times 4} & \cdots & \cdots & \mathbf{0}_{4 \times 4} & \bar{U}^{(n)}(\mathbf{x}, \mathbf{z}) & \mathbf{0}_{4 \times n_0} \\ \mathbf{0}_{n_0 \times 4} & \cdots & \cdots & \cdots & \mathbf{0}_{n_0 \times 4} & \mathbf{1}_{n_0 \times n_0} \end{bmatrix}.$$

216 Here, n_0 is chosen as the smallest natural number such that the matrix dimension $n_U = 4n + n_0$ is
 217 a power of 2, that is, $n_U = 2^n$. It can be easily shown that $n_0 = 4\kappa$ with $\kappa \in \mathbb{N}$, since $4n + n_0$
 218 and $2n + n_0/2$ must be even for $n \geq 2$. Then, $U \in \mathbb{C}^{n_U \times n_U}$ is a unitary quantum gate operating on
 219 $n = \log_2(n_U) = 2 + \log_2(n + \kappa) = \lceil \log_2(2n) \rceil$ qubits with a diagonal-block structure:
 220

$$221 \quad U_{\theta}(x, z) = \sum_{i=0}^{n-1} |i\rangle\langle i| \otimes \bar{U}^{(i+1)}(x, z) + \sum_{i=n}^{n+\kappa-1} |i\rangle\langle i| \otimes \mathbf{1}_{4 \times 4}.$$

$$222$$

$$223$$

224 These unitary operators with a block structure are known as uniformly controlled quantum gates.
 225 They are present in many quantum algorithms and are used to decompose general unitary gates and
 226 locally prepare arbitrary quantum states (Möttönen et al., 2004; Mottonen et al., 2004; Bergholm
 227 et al., 2005; Arrazola et al., 2022; Park et al., 2019). They are defined as multi-controlled unitaries
 228 where each unitary block targets a set of qubits, two qubits in this case, while the other $\log_2(n + \kappa)$
 229 qubits act as control qubits. **Multi-controlled unitaries are applied depending on the state of the control**
 230 **qubits, which are unchanged, and only modify the target qubits.** These operations generalize the
 231 **CNOT gate for two qubits, in that we can now have several control and target qubits.** Notice that the
 232 block structure of the unitary U_{θ} arises from indexing the targets as the lowest-order bits. Recently,
 233 efficient decompositions of multi-controlled unitaries have been proposed in terms of the number
 234 of single-qubit and two-qubit gates (Zindorf & Bose, 2024; 2025), as well as for approximations of
 235 the multi-controlled gate (Silva et al., 2024). Code implementations of these quantum gates can be
 236 found in the *Qclib* library (Araujo et al., 2023). Finally, the identity blocks $\mathbf{1}_{4 \times 4}$ do not introduce
 237 additional gates into the quantum circuit, so the effective circuit can be reduced to the application
 238 of the $\bar{U}^{(i)}$ gates. However, the number of control qubits is fixed by $\log_2(n + \kappa)$ and we need all of
 239 them to compute the output probabilities, as we will see below.

240 **Construction of V .** Next, let $V \in \mathbb{C}^{n_U \times n_U}$ be any unitary matrix mapping $|0\rangle^{\otimes n}$ to the state $|\psi\rangle =$
 241 $\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |4i\rangle$ which, for $n \geq 2$, is also explicitly given as $|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle \otimes |00\rangle$. Note that
 242 different choices of V are possible and the only required property is $V|0\rangle^{\otimes n} = |\psi\rangle$. We refer to
 243 Appendix D for an example.

244 **Measuring circuit outputs.** We can now measure the state of the n -qubit system after applying
 245 the gates V and U . The possible states that we could measure are given by $0, \dots, n_U - 1$ (in binary).
 246 By running the circuit repeatedly, we can now obtain (up to well-controlled Monte Carlo error, see
 247 Appendix E) the probabilities \mathbb{P}_m^n that the measured state is in $\{m, 4 + m, \dots, 4(n - 1) + m\}$, for
 248 $m \in \{0, 1, 2, 3\}$, where m is the binary state of the last two qubits (the target qubits).

249 More formally, consider the unitary gate map $C(x, z) = C_{n, \theta}(x, z) := U_{\theta}(x, z)V$ acting on $n =$
 250 $2 + \log_2(n + \kappa)$ qubits. This circuit acts on the initial state $|0\rangle^{\otimes n}$ via the quantum gates V and U as
 251

$$252 \quad C_{n, \theta}(x, z)|0\rangle^{\otimes n} = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle \otimes U_1^{(i+1)}(x, z)|0\rangle \otimes U_2^{(i+1)}|0\rangle.$$

$$253$$

$$254$$

$$255$$

256 Then, we measure

$$257 \quad \mathbb{P}_m^{n, \theta} = \mathbb{P}_m^{n, \theta}(x, z) := \mathbb{P} \left("C_{n, \theta}(x, z)|0\rangle^{\otimes n} \in \{m, 4 + m, \dots, 4(n - 1) + m\}" \right). \quad (2)$$

$$258$$

$$259$$

260 This is the sum of the probabilities of being in the states $|i\rangle \otimes |m\rangle$, where $i = 0, \dots, n - 1$. That is,

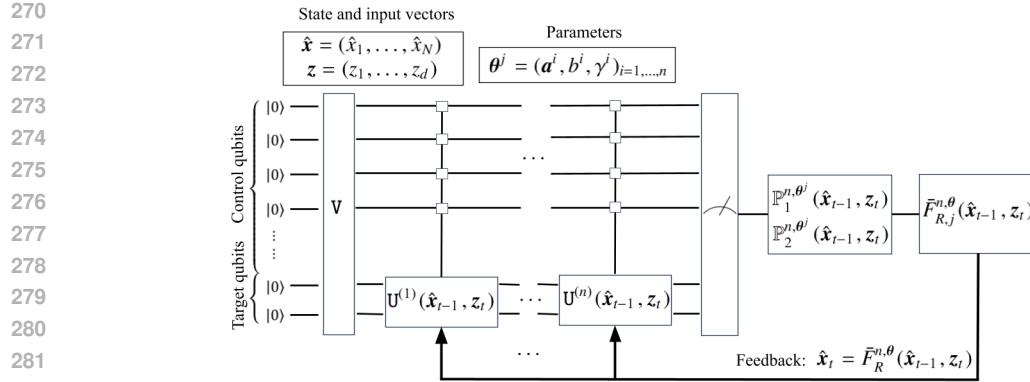
$$261 \quad \mathbb{P}_m^{n, \theta}(x, z) = \frac{1}{n} \sum_{i=1}^n \left| \langle m | \left(U_1^{(i)}(x, z)|0\rangle \otimes U_2^{(i)}|0\rangle \right) \right|^2.$$

$$262$$

$$263$$

$$264$$

265 **Parallel circuits.** With n (or equivalently n) fixed, the quantum circuit introduced above is
 266 uniquely defined by the choice of circuit parameters $\theta \in \Theta$. In what follows, we will now run
 267 N such circuits in parallel, each representing a component of the state map F in (1). Each circuit
 268 is described by its parameters $\theta^j \in \Theta$, $j \in \{1, \dots, N\}$. The circuit outputs then induce maps
 269 $\mathbb{P}_m^{n, \theta^j} : \mathbb{R}^N \times \mathbb{R}^d \rightarrow [0, 1]$ by the circuit output probabilities (2) with parameters for the j -th circuit
 given by $\theta = \theta^j$.

Figure 1: Schematic representation of the j -th circuit given by parameters $\theta^j \in \Theta, j \in \{1, \dots, N\}$.

Recurrent quantum neural networks (RQNN). With these ingredients, we can now define the RQNN that we will consider. Given the gate map $C_{n,\theta}$ and $R > 0$, we define $\bar{F}_R^{n,\theta} : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}^N$ by its component maps $\bar{F}_R^{n,\theta} = (\bar{F}_{R,1}^{n,\theta}, \dots, \bar{F}_{R,N}^{n,\theta})$. For $j = 1, \dots, N$, the j -th component map $\bar{F}_{R,j}^{n,\theta} : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}$ is defined by

$$\bar{F}_{R,j}^{n,\theta}(x, z) := R - 2R[\mathbb{P}_1^{n,\theta^j}(x, z) + \mathbb{P}_2^{n,\theta^j}(x, z)], \quad (x, z) \in \mathbb{R}^N \times \mathbb{R}^d, \quad (3)$$

with $\theta = (\theta^1, \dots, \theta^N) \in \Theta^N$. Our **recurrent quantum neural network (RQNN)** is then defined by the state-space system associated to the state map $\bar{F}_R^{n,\theta}$

$$\hat{x}_t = \bar{F}_R^{n,\theta}(\hat{x}_{t-1}, z_t), \quad t \in \mathbb{Z}_-. \quad (4)$$

Figure 1 provides a schematic representation of how the RQNN acts at each time step for the j -th circuit: at any time t , the system is initialized, the gates V and $U_{\theta^j}(\hat{x}_{t-1}, z_t)$ are applied, and the system is measured. This process is repeated to estimate the probabilities $\mathbb{P}_1^{n,\theta^j}(\hat{x}_{t-1}, z_t)$ and $\mathbb{P}_2^{n,\theta^j}(\hat{x}_{t-1}, z_t)$, which are aggregated into the network output $\bar{F}_{R,j}^{n,\theta}(\hat{x}_{t-1}, z_t)$ according to (3). Once this is done for all $j \in \{1, \dots, N\}$, the network state \hat{x}_t is stored to be used as feedback for the next time step $t + 1$.

In the next paragraphs, we aim to address the following questions:

- Can we choose the parameters θ in such a way that the system determined by (4) satisfies the echo state property?
- Can the family of systems determined by equations of the type (4) approximate general state-space systems arbitrarily well? More specifically, given an arbitrary state-space map $x_t = F(x_{t-1}, z_t)$ with $F : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}^N$ as general as possible, can it be approximated by equations of the type (4)?

4 RECURRENT QUANTUM NEURAL NETWORK UNIVERSALITY

This section contains approximation guarantees and universality results for the recurrent quantum neural network (RQNN) family. To achieve this, in Section 4.1 we first prove refined approximation error bounds (that generalize those in Gonon & Jacquier (2025)) for feedforward quantum neural networks (QNNs) that allow us to control the error committed when approximating a function and its derivatives simultaneously, a crucial ingredient for analysing the RQNN feedback loop. These error bounds show how recurrent QNNs can be used to approximate state-space maps F arbitrarily well as long as these are sufficiently smooth and satisfy Barron-type integrability conditions like, for example, $\int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_i^2 |\widehat{F}_j(\xi)| d\xi < \infty$, for $i = 1, \dots, N + d$ and $j = 1, \dots, N$, or

324 $I_q = \int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^q |\widehat{F}_j(\xi)| d\xi < \infty$, for some $q \geq 2$ (see Proposition 4.2 and Corollary 4.3 below);
 325 RQNN state maps are hence universal in that category. These bounds are devised with respect to L^∞
 326 and L^2 -type norms. As we shall prove, in the L^∞ case, the universality of the RQNN family still
 327 holds with respect to state maps that do not necessarily satisfy the Barron condition, even though
 328 in that framework we do not formulate approximation bounds. Finally, in the last two sections, we
 329 exploit all these results on the approximation of state maps to obtain universality statements and
 330 error bounds for the approximation of arbitrary causal, time-invariant, and fading memory filters
 331 using a modified recurrent QNN. In addition to the tools developed here, our proofs of these results
 332 rely on techniques from Gonon & Ortega (2020; 2021) and the overall strategy is reminiscent of
 333 the so-called internal approximation approach introduced in Grigoryeva & Ortega (2018b, Theorem
 334 3.1 (iii)) for echo state networks, which consists of obtaining approximation results for filters out of
 335 statements of that type for the state maps that generate them.

336 The approximation rate in all our results is free from the curse of dimensionality: the error decays
 337 as $\frac{1}{\sqrt{n}}$ as we increase n , with this rate of decay being independent of the input dimension d and the
 338 state space dimension N . Moreover, the required number of qubits $n = \lceil \log_2(2n) \rceil$ is only grow-
 339 ing logarithmically in the accuracy parameter n . Put differently, our circuit requires only $\mathcal{O}(\varepsilon^{-2})$
 340 weights and $\mathcal{O}(\lceil \log_2(\varepsilon^{-1}) \rceil)$ qubits suffices to achieve approximation error $\varepsilon > 0$ when approxi-
 341 mating functions with sufficiently integrable Fourier transforms.

342 343 4.1 RQNN APPROXIMATION OF STATE-SPACE MAPS AND THEIR DERIVATIVES

344 As a first step, we aim to establish RQNN approximation results for a function jointly with its
 345 derivatives. Denote by \mathcal{F}_R the class of integrable functions $f: \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}$ with Fourier integral
 346 bounded above by a constant $R > 0$, that is,

$$348 \mathcal{F} := \left\{ f: \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R} : f \in \mathcal{C}(\mathbb{R}^N \times \mathbb{R}^d) \cap L^1(\mathbb{R}^N \times \mathbb{R}^d), \quad \|\widehat{f}\|_1 < \infty \right\}, \quad (5)$$

$$350 \mathcal{F}_R := \left\{ f \in \mathcal{F}, \text{ with } \|\widehat{f}\|_1 \leq R \right\}, \quad \text{for } R > 0. \quad (6)$$

351 Here, for a continuous and integrable function $f: \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}$ we denote its Fourier transform
 352 by $\widehat{f}(\xi_1, \xi_2) := \int_{\mathbb{R}^N \times \mathbb{R}^d} e^{-2\pi i(\mathbf{y}_1, \mathbf{y}_2) \cdot (\xi_1, \xi_2)} f(\mathbf{y}_1, \mathbf{y}_2) d\mathbf{y}_1 d\mathbf{y}_2$, with $(\xi_1, \xi_2) \in \mathbb{R}^N \times \mathbb{R}^d$.

354 Our first result derives a representation for the QRNN output.

355 **Proposition 4.1.** *For any $n \in \mathbb{N}$, $j = 1, \dots, N$, $\boldsymbol{\theta} = (\boldsymbol{\theta}^1, \dots, \boldsymbol{\theta}^N) \in \boldsymbol{\Theta}^N$ with $\boldsymbol{\theta}^j =$
 356 $(\mathbf{a}^{i,j}, b^{i,j}, \gamma^{i,j})_{i=1, \dots, n} \in \boldsymbol{\Theta}$, the RQNN introduced in (3) can be represented as*

$$358 \bar{F}_{R,j}^{n, \boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) = \frac{1}{n} \sum_{i=1}^n R \cos(\gamma^{i,j}) \cos(b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})), \quad \text{for all } (\mathbf{x}, \mathbf{z}) \in \mathbb{R}^N \times \mathbb{R}^d. \quad (7)$$

361 Let μ be an arbitrary probability measure on $(\mathbb{R}^N \times \mathbb{R}^d, \mathcal{B}(\mathbb{R}^N \times \mathbb{R}^d))$. Recall the notation

$$363 \|f - g\|_{L^2(\mu)} := \left(\int_{\mathbb{R}^N \times \mathbb{R}^d} |f(\mathbf{x}, \mathbf{z}) - g(\mathbf{x}, \mathbf{z})|^2 \mu(d\mathbf{x}, d\mathbf{z}) \right)^{1/2}.$$

366 Our next result provides an approximation error bound for the QRNN state map jointly with its
 367 derivatives. The proof is provided in Appendix B.2.

368 **Proposition 4.2.** *Let $R > 0$ and suppose $F = (F_1, \dots, F_N) : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}^N$ is continu-
 369 ously differentiable and satisfies $F_j \in \mathcal{F}_R$ and $\partial_i F_j \in \mathcal{F}$ and $\int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_i^2 |\widehat{F}_j(\xi)| d\xi < \infty$ for
 370 $i = 1, \dots, N + d$ and $j = 1, \dots, N$. Then, for any $n \in \mathbb{N}$, there exists $\boldsymbol{\theta} \in \boldsymbol{\Theta}^N$ such that*

$$372 \left\| \bar{F}_{R,j}^{n, \boldsymbol{\theta}} - F_j \right\|_{L^2(\mu)}^2 + \sum_{i=1}^{N+d} \left\| \partial_i \bar{F}_{R,j}^{n, \boldsymbol{\theta}} - \partial_i F_j \right\|_{L^2(\mu)}^2 \leq \frac{C_j}{n},$$

375 for any $j \in \{1, \dots, N\}$, where $C_j = \|\widehat{F}_j\|_1^2 + 4\pi^2 \|\widehat{F}_j\|_1 \int_{\mathbb{R}^N \times \mathbb{R}^d} \sum_{i=1}^{N+d} \xi_i^2 |\widehat{F}_j(\xi)| d\xi$.

377 Next, we show that it is also possible to also obtain approximation results for QNNs with bounded
 378 network coefficients. The proof is provided in Appendix B.3.

378 **Corollary 4.3.** *In the setting of Proposition 4.2, assume, in addition, that $\int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^q |\widehat{F}_j(\xi)| d\xi < \infty$ for some $q \geq 2$. Then, for any $n \in \mathbb{N}$, there exists $\theta \in \Theta$ such that for any $j \in \{1, \dots, N\}$,*

$$381 \quad \left\| \bar{F}_{R,j}^{n,\theta} - F_j \right\|_{L^2(\mu)}^2 + \sum_{i=1}^{N+d} \left\| \partial_i \bar{F}_{R,j}^{n,\theta} - \partial_i F_j \right\|_{L^2(\mu)}^2 \leq \frac{\bar{C}_j}{n},$$

384 where $\bar{C}_j = 3C_j$. Moreover, we can choose $\theta = (\theta^1, \dots, \theta^N) \in \Theta^N$ with $\theta^j =$
385 $(a^{i,j}, b^{i,j}, \gamma^{i,j})_{i=1, \dots, n}$ in such a way that for all $i = 1, \dots, n$, $j = 1, \dots, N$,

$$387 \quad \|\mathbf{a}^{i,j}\| \leq 2\pi \left(3n \|\widehat{F}_j\|_1^{-1} \int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^q |\widehat{F}_j(\xi)| d\xi \right)^{\frac{1}{q}}. \quad (8)$$

390 Next, we complement the $L^2(\mathbb{R}^N \times \mathbb{R}^d, \mu)$ -error bound in Proposition 4.2 with a uniform error
391 bound on compact sets. For $M > 0$ and $f, g \in \mathcal{C}(\mathbb{R}^N \times \mathbb{R}^d)$ denote

$$392 \quad \|f - g\|_{\infty, M} := \sup_{(\mathbf{x}, \mathbf{z}) \in [-M, M]^N \times [-M, M]^d} |f(\mathbf{x}, \mathbf{z}) - g(\mathbf{x}, \mathbf{z})|.$$

394 **Proposition 4.4.** *Let $R, M > 0$ and suppose $F = (F_1, \dots, F_N)$ is continuously differentiable and
395 satisfies $F_j \in \mathcal{F}_R$ and $\partial_i F_j \in \mathcal{F}$ and $\int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^4 |\widehat{F}_j(\xi)| d\xi < \infty$ for $j = 1, \dots, N$. Then, for any
396 $n \in \mathbb{N}$, there exists $\theta \in \Theta$ such that for any $j \in \{1, \dots, N\}$,*

$$398 \quad \left\| \bar{F}_{R,j}^{n,\theta} - F_j \right\|_{\infty, M} + \sum_{i=1}^{N+d} \left\| \partial_i \bar{F}_{R,j}^{n,\theta} - \partial_i F_j \right\|_{\infty, M} \leq \frac{C_j^\infty}{\sqrt{n}}, \quad (9)$$

401 where $C_j^\infty = 2(\pi + 1) \|\widehat{F}_j\|_1 + (8\pi M + 4\pi^2)(N + d)^{\frac{1}{2}} \|\widehat{F}_j\|_1^{\frac{1}{2}} I_{2,j}^{1/2} + 16M\pi^2(N + d) \|\widehat{F}_j\|_1^{1/2} I_{4,j}^{1/2}$
402 for $I_{q,j} = \int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^q |\widehat{F}_j(\xi)| d\xi < \infty$.

404 The proof can be found in Appendix B.4. Finally, we obtain a qualitative universal approximation
405 result for QNNs jointly with their derivatives. The proof can be found in Appendix B.5.

407 **Corollary 4.5.** *Let $F = (F_1, \dots, F_N)$ be continuously differentiable. Then for any $\varepsilon > 0$ and
408 $\mathcal{X} \subset \mathbb{R}^N \times \mathbb{R}^d$ compact there exist $n \in \mathbb{N}$, $R > 0$ and $\theta \in \Theta$ such that for any $j \in \{1, \dots, N\}$,
409 $\bar{F}_{R,j}^{n,\theta}$ satisfies*

$$410 \quad \sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} |F_j(\mathbf{x}, \mathbf{z}) - \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z})| + \|\nabla F_j(\mathbf{x}, \mathbf{z}) - \nabla \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z})\| \leq \varepsilon. \quad (10)$$

4.2 RECURRENT QNN APPROXIMATION BOUNDS FOR STATE-SPACE FILTERS

415 The results in the previous section show that the family of RQNNs that were introduced in (3) is
416 capable of approximating arbitrarily well the very general class of continuously differentiable state-
417 space maps with bounded Fourier transform, together with their derivatives. These approximations
418 hold with respect to both the L^2 norm (Proposition 4.2 and Corollary 4.3) and the L^∞ norm on
419 compacta (Proposition 4.4 and Corollary 4.5). As in the internal approximation approach introduced
420 in Grigoryeva & Ortega (2018b, Theorem 3.1 (iii)), we will use the uniform RQNN approximation
421 results for the state maps to conclude similar uniform approximation results for the corresponding
422 filters under additional hypotheses that guarantee that those exist.

423 Consider a state-space system

$$424 \quad \mathbf{x}_t = F(\mathbf{x}_{t-1}, \mathbf{z}_t), \quad t \in \mathbb{Z}_-, \quad (11)$$

425 with state process $(\mathbf{x}_t)_{t \in \mathbb{Z}_-}$ valued in \mathbb{R}^N , input process $(\mathbf{z}_t)_{t \in \mathbb{Z}_-}$ valued in \mathbb{R}^d and $F: \mathbb{R}^N \times \mathbb{R}^d \rightarrow$
426 \mathbb{R}^N . We work under the assumption that F is contractive and satisfies Barron-type integrability
427 conditions (Barron, 1992; 1993; Barron & Klusowski, 2018). Then, e.g., Proposition 1 and Remark 2
428 in Gonon et al. (2020) imply that, for any compact $D_d \subset \mathbb{R}^d$, the associated filter $U^F: (D_d)^{\mathbb{Z}_-} \rightarrow$
429 $(B_N)^{\mathbb{Z}_-}$ induced by the restriction of F to $B_N \times D_d$ is well-defined and continuous.

431 Our next result shows that among the RQNNs that we discussed in Proposition 4.4 there exist systems that have the echo state property and hence have a filter associated. More importantly, those

filters can be used to uniformly approximate any of the filters corresponding to the general systems introduced above in (11) as long as they satisfy a Barron-type integrability condition and are sufficiently contractive. The proof can be found in Appendix C.1. Here, $\|\cdot\|_2$ is the spectral norm. In particular, this result shows that the error rate is free from the curse of dimensionality: the error decays as $\frac{1}{\sqrt{n}}$ as we increase n , with this rate of decay being independent of the input dimension d and the state space dimension N . Thus, the RQNN requires only $\mathcal{O}(\varepsilon^{-2})$ weights and $\mathcal{O}(\lceil \log_2(\varepsilon^{-1}) \rceil)$ qubits to achieve approximation error $\varepsilon > 0$ for the considered state-space systems.

Theorem 4.6. Suppose F in (11) is continuously differentiable with $\|\nabla_{\mathbf{x}} F(\mathbf{x}, \mathbf{z})\|_2 \leq \lambda$ for all $\mathbf{x} \in \mathbb{R}^N, \mathbf{z} \in D_d$ for some $\lambda \in (0, 1)$ and, moreover, F satisfies $F_j \in \mathcal{F}_R, \partial_i F_j \in \mathcal{F}$ and $\int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^4 |\widehat{F}_j(\xi)| d\xi < \infty$ for $j = 1, \dots, N$. Denote by $U^F: (D_d)^{\mathbb{Z}_-} \rightarrow (B_N)^{\mathbb{Z}_-}$ the filter associated to (11). Then for any $n \in \mathbb{N}$ with $n > n_0$ there exists $\theta \in \Theta$ such that the system (4) has the echo state property and the associated filter $\bar{U}: (D_d)^{\mathbb{Z}_-} \rightarrow (\mathbb{R}^N)^{\mathbb{Z}_-}$ satisfies

$$\sup_{\mathbf{z} \in (D_d)^{\mathbb{Z}_-}} \sup_{t \in \mathbb{Z}_-} \|U^F(\mathbf{z})_t - \bar{U}(\mathbf{z})_t\| \leq \frac{1}{1 - \lambda} \frac{\sqrt{N} \max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}}. \quad (12)$$

Here, n_0 may be chosen as $n_0 = N^2 \frac{(\max_{j=1, \dots, N} C_j^\infty)^2}{(1 - \lambda)^2}$.

Notice that N represents the state space dimension of the target F , which is matched by the QRNN dimension to obtain the approximation error bound. Theorem 4.6 also proves an advantage of QRNNs over classical RNNs. RNN approximation bounds for state-space systems driven by Barron-type functions were obtained in (Gonon et al., 2023, Theorem 3). While the approximation rate in Theorem 4.6 is the same ($\frac{1}{2}$ in both cases), the Fourier integrability condition required in the quantum case is *strictly weaker*. Specifically, the condition $\int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^4 |\widehat{F}_j(\xi)| d\xi < \infty$ implies that the smoothness assumption (Gonon et al., 2023, Definition 2) required for (Gonon et al., 2023, Theorem 3) is satisfied. For example, consider a Sobolev function $F \in H^s(\mathbb{R}^N \times \mathbb{R}^d)$. Then, the integrability condition for the QRNN approximation result is satisfied for any $s > \frac{N+d}{2} + 4$ (by (Folland, 2020, Lemma 6.5) and its proof). In contrast, the integrability condition for the RNN approximation result in (Gonon et al., 2023, Theorem 3) would require the stronger condition $s > N + d + 3$.

4.3 UNIVERSALITY

In the previous section, we proved error bounds for the approximation using recurrent QNNs of the filters induced by contractive state-space targets with Barron-type integrability conditions. These bounds show, in passing, the universality of the family of RQNN filters in that category. We now extend this universality statement (without formulating error bounds) to the much larger family of fading memory filters by introducing a modification in the RQNN reservoir. We define $\tilde{F}_R^{n, \theta} : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}^N$ by its component maps $\tilde{F}_R^{n, \theta} = (\tilde{F}_{R,1}^{n, \theta}, \dots, \tilde{F}_{R,N}^{n, \theta})$. For $j = 1, \dots, N$, the j -th component map $\tilde{F}_{R,j}^{n, \theta} : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}$ is defined by

$$\tilde{F}_{R,j}^{n, \theta}(\mathbf{x}, \mathbf{z}) := R - 2R[\mathbb{P}_1^{n, \theta^j}(P_j \mathbf{x}, \mathbf{z}) + \mathbb{P}_2^{n, \theta^j}(P_j \mathbf{x}, \mathbf{z})], \quad (\mathbf{x}, \mathbf{z}) \in \mathbb{R}^N \times \mathbb{R}^d, \quad (13)$$

with $\theta = (\theta^1, \dots, \theta^N) \in \Theta^N$ and $P_1, \dots, P_N \in \mathbb{R}^{N \times N}$ linear preprocessing maps. Our modified RQNN is then defined by the state-space system associated to the state map $\tilde{F}_R^{n, \theta}$

$$\hat{x}_t = \tilde{F}_R^{n, \theta}(\hat{x}_{t-1}, \mathbf{z}_t), \quad t \in \mathbb{Z}_-. \quad (14)$$

The next lemma shows that adding linear preprocessing maps to reservoir equations can lead to the echo state property without contraction assumptions. The proof of Lemma 4.7 is provided in Appendix C.2.

Lemma 4.7. Let $\tilde{F} = (\tilde{F}_1, \dots, \tilde{F}_N)$ be a reservoir map where each component $\tilde{F}_j : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}$, for $j = 1, \dots, N$, is defined as

$$\tilde{F}_j(\mathbf{x}, \mathbf{z}) = g_j(P_j \mathbf{x}, \mathbf{z}) \quad (15)$$

where $P_1, \dots, P_N \in \mathbb{R}^{N \times N}$ are linear preprocessing maps for any maps $g_j : \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}$, $j = 1, \dots, N$. Define an arbitrary partition of the state vector $\hat{x}_t = [\hat{x}_t^{(1)}, \dots, \hat{x}_t^{(K)}] \in \mathbb{R}^{I_1} \times \dots \times \mathbb{R}^{I_K}$

such that $\sum_{k=1}^K I_k = N > 0$ and $I_k \geq 1$ for all $t \in \mathbb{Z}_-$. We define the index $l_k = \sum_{s=1}^k I_s$ for $k = 1, \dots, K$. For $k = 1, j \in \{1, \dots, l_1\}$, and $k = 2, \dots, K-1, j \in \{l_{k-1}+1, \dots, l_k\}$, select P_j as the matrix with zero entries, except for $(P_j)_{l,l+l_k} = 1$ for $l = 1, \dots, \sum_{s=k+1}^K I_s$ and let $P_j = 0$ for $j = l_{K-1}+1, \dots, N$. Then, the map \tilde{F} has the echo state property for any $N \in \mathbb{N}^+$.

Notice that Lemma 4.7 provides the echo state property by imposing a finite memory of $K-1$ time steps on the reservoir. Let $D_d \subset \mathbb{R}^d, B_m \subset \mathbb{R}^m$ be compact. For a readout $W \in \mathbb{R}^{m \times N}$, denote

$$\mathbf{y}_t = W \mathbf{x}_t \quad (16)$$

the output process associated to the recurrent QNNs (4) and (14). Our next result proves universality of RQNNs. The proof is provided in Appendix C.3.

Theorem 4.8. *Let $U: (D_d)^{\mathbb{Z}_-} \rightarrow (B_m)^{\mathbb{Z}_-}$ be a causal and time-invariant filter that satisfies the fading memory property (that is, it is continuous with respect to the product topology). Then, for any $\varepsilon > 0$ there exist $n, N \in \mathbb{N}$, preprocessing matrices $P_1, \dots, P_N \in \mathbb{R}^{N \times N}$, a readout $W \in \mathbb{R}^{m \times N}$, and circuit parameters $\theta \in \Theta^N$ such that the RQNN (14) has the echo state property and the filter $\bar{U}_W: (D_d)^{\mathbb{Z}_-} \rightarrow (B_m)^{\mathbb{Z}_-}$ associated to the output process (16) satisfies*

$$\sup_{\mathbf{z} \in (D_d)^{\mathbb{Z}_-}} \sup_{t \in \mathbb{Z}_-} \|U(\mathbf{z})_t - \bar{U}_W(\mathbf{z})_t\| \leq \varepsilon. \quad (17)$$

5 CONCLUSIONS

Approximation bounds and universality properties are part of the theoretical cornerstone of machine learning models. While some studies have addressed the question of universality for QRC models, the combination of the two had not previously been explored in the context of recurrent QNNs. In this paper, we derived approximation bounds and universality statements for recurrent QNNs based on the circuit implementation presented in Gonon & Jacquier (2025), which is compatible with hardware deployment and whose implementation with Rydberg atoms has been already discussed in Agarwal et al. (2024). This circuit uses a uniformly controlled quantum gate to apply multi-controlled rotations to a set of control and target qubits, and it has been recently shown that it can be efficiently implemented (Zindorf & Bose, 2024; Silva et al., 2024; Zindorf & Bose, 2025).

To prove our results, we first derived approximation bounds for the static version of the QNN and its derivatives. These results are used in Theorem 4.6 to provide filter approximation bounds that show that RQNNs are able to uniformly approximate the filters induced by any contracting Barron-type state-space system. Finally, Theorem 4.8 extends this universality property to the much larger category of arbitrary fading memory, causal, and time-invariant filters. In this last result, neither Barron-type integrability nor contractivity conditions are needed for the target filter. While our results apply to variational systems in which all parameters are trainable, they pave the way for results on quantum reservoir systems in which some parameters in the recurrent layer are randomly generated and only the output layer weights are tuned. Which strategy is best in terms of speed and accuracy will depend on the number of blocks n of the circuit, the intrinsic noise of the hardware, and the target task. Future research will focus on implementing and comparing the variational and reservoir approaches.

This work paves the way for extending the theoretical analysis of QRC models beyond the state-affine system (SAS) paradigm (Martínez-Peña & Ortega, 2023). It is important to understand in which situations the feedback approach is preferable to other protocols. Questions such as the exponential concentration of observables (Sannia et al., 2025; Xiong et al., 2025) and the suitability of QRC models for learning quantum temporal tasks (Tran & Nakajima, 2021; Nokkala, 2023) are fundamental to discerning the conditions that render QRC models more useful than classical machine learning approaches.

While our paper obtains approximation bounds for Barron-type state-space systems, an important direction of future research will consist in studying approximation error rates for systems with high degrees of roughness or non-contractive dynamics. Furthermore, our paper focuses on approximation properties of RQNNs. Gradient-based training approaches for optimizing RQNN parameters have been proposed, e.g., in Bausch (2020); Li et al. (2023); Siemaszko et al. (2023). Quantum circuit training may face *Barren plateaus* McClean et al. (2018); Larocca et al. (2025), flat parameter optimization landscapes for large number of qubits. Developing efficient training algorithms and studying these effects in detail will be a further important direction for future research.

540 REFERENCES
541

542 Junaid Aftab and Haizhao Yang. Approximating korobov functions via quantum circuits. *arXiv*
543 *preprint arXiv:2404.14570*, 2024.

544 Ishita Agarwal, Taylor L Patti, Rodrigo Araiza Bravo, Susanne F Yelin, and Anima Anandkumar.
545 Extending quantum perceptrons: Rydberg devices, multi-class classification, and error tolerance.
546 *arXiv preprint arXiv:2411.09093*, 2024.

547 Osama Ahmed, Felix Tennie, and Luca Magri. Optimal training of finitely sampled quantum reser-
548 voir computers for forecasting of chaotic dynamics. *Quantum Machine Intelligence*, 7(1):1–16,
549 2025.

550 Israel F Araujo, Ismael C Araújo, Leon D da Silva, Carsten Blank, and Adenilton J da Silva. Quan-
551 tum computing library. 2023. <https://github.com/qclib/qclib>.

552 Juan Miguel Arrazola, Olivia Di Matteo, Nicolás Quesada, Soran Jahangiri, Alain Delgado, and
553 Nathan Killoran. Universal quantum circuits for quantum chemistry. *Quantum*, 6:742, 2022.

554 Andrew R. Barron. Neural net approximation. In *Yale Workshop on Adaptive and Learning Systems*,
555 volume 1, pp. 69–72, 1992.

556 Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.
557 *IEEE Trans. Inform. Theory*, 39(3):930–945, 1993. ISSN 0018-9448. doi: 10.1109/18.256500.
558 URL <https://doi.org/10.1109/18.256500>.

559 Andrew R. Barron and Jason M. Klusowski. Approximation and estimation for high-dimensional
560 deep learning networks. *Preprint, arXiv 1809.03090*, 2018.

561 Johannes Bausch. Recurrent quantum neural networks. *Advances in neural information processing*
562 *systems*, 33:1368–1379, 2020.

563 Ville Bergholm, Juha J Vartiainen, Mikko Möttönen, and Martti M Salomaa. Quantum circuits
564 with uniformly controlled one-qubit gates. *Physical Review A—Atomic, Molecular, and Optical*
565 *Physics*, 71(5):052330, 2005.

566 S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators with
567 Volterra series. *IEEE Transactions on Circuits and Systems*, 32(11):1150–1161, 1985.

568 Rodrigo Araiza Bravo, Khadijeh Najafi, Xun Gao, and Susanne F Yelin. Quantum reservoir com-
569 puting using arrays of rydberg atoms. *PRX Quantum*, 3(3):030325, 2022.

570 Jiayin Chen and Hendra I Nurdin. Learning nonlinear input–output maps with dissipative quantum
571 systems. *Quantum Information Processing*, 18:1–36, 2019.

572 Jiayin Chen, Hendra I Nurdin, and Naoki Yamamoto. Temporal information processing on noisy
573 quantum computers. *Physical Review Applied*, 14(2):024065, 2020.

574 Naomi Mona Chmielewski, Nina Amini, and Joseph Mikael. Quantum reservoir computing and risk
575 bounds. *arXiv preprint arXiv:2501.08640*, 2025.

576 Saud Čindrak, Brecht Donvil, Kathy Lüdge, and Lina Jaurigue. Enhancing the performance of
577 quantum reservoir computing and solving the time-complexity problem by artificial memory re-
578 striction. *Physical Review Research*, 6(1):013051, 2024.

579 Samudra Dasgupta, Kathleen E Hamilton, and Arnab Banerjee. Characterizing the memory capacity
580 of transmon qubit reservoirs. In *2022 IEEE International Conference on Quantum Computing and*
581 *Engineering (QCE)*, pp. 162–166. IEEE, 2022.

582 Gerald B. Folland. *Introduction to Partial Differential Equations: Second Edition*. Prince-
583 ton University Press, 2020. ISBN 9780691213033. doi: doi:10.1515/9780691213033. URL
584 <https://doi.org/10.1515/9780691213033>.

585 Giacomo Franceschetto, Marcin Płodzień, Maciej Lewenstein, Antonio Acín, and Pere Mujal. Har-
586 nessing quantum back-action for time-series processing. *arXiv preprint arXiv:2411.03979*, 2024.

594 Jorge García-Beni, Gian Luca Giorgi, Miguel C Soriano, and Roberta Zambrini. Scalable photonic
 595 platform for real-time quantum reservoir computing. *Physical Review Applied*, 20(1):014051,
 596 2023.

597 Lukas Gonon. Random feature neural networks learn black-scholes type pdes without curse of di-
 598 mensionality. *J. Mach. Learn. Res.*, 24(189):1–51, 2023. URL <http://jmlr.org/papers/v24/21-0987.html>.

600 Lukas Gonon. Deep neural network expressivity for optimal stopping problems. *Finance and
 601 Stochastics*, 28:865–910, 2024.

603 Lukas Gonon and Antoine Jacquier. Universal approximation theorem and error bounds for quantum
 604 neural networks and quantum reservoirs. *Preprint, arXiv 2307.12904; to appear in IEEE TNNLS*,
 605 2025.

607 Lukas Gonon and Juan-Pablo Ortega. Reservoir computing universality with stochastic inputs. *IEEE
 608 Trans. Neural Netw. Learn. Syst.*, 31(1):100–112, 2020. ISSN 2162-237X,2162-2388.

609 Lukas Gonon and Juan-Pablo Ortega. Fading memory echo state networks are universal. *Neural
 610 Netw.*, 138:10–13, 2021.

612 Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Risk bounds for reservoir computing.
 613 *J. Mach. Learn. Res.*, 21:Paper No. 240, 61, 2020. ISSN 1532-4435,1533-7928.

614 Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Approximation bounds for ran-
 615 dom neural networks and reservoir systems. *Ann. Appl. Probab.*, 33(1):28–69, 2023. ISSN
 616 1050-5164,2168-8737. doi: 10.1214/22-aap1806. URL <https://doi.org/10.1214/22-aap1806>.

617 Lyudmila Grigoryeva and Juan-Pablo Ortega. Universal discrete-time reservoir computers with
 618 stochastic inputs and linear readouts using non-homogeneous state-affine systems. *Journal of
 619 Machine Learning Research*, 19(24):1–40, 2018a. URL <http://arxiv.org/abs/1712.00754>.

620 Lyudmila Grigoryeva and Juan-Pablo Ortega. Echo state networks are universal. *Neural Networks*,
 621 108:495–508, 2018b.

622 Lars Hörmander. *The analysis of linear partial differential operators I*. Springer, second edition
 623 edition, 1990.

624 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural Networks*, 4
 625 (1989):251–257, 1991. doi: 10.1016/0893-6080(91)90009-T.

626 Fangjun Hu, Saeed A Khan, Nicholas T Bronn, Gerasimos Angelatos, Graham E Rowlands, Guil-
 627 hem J Ribeill, and Hakan E Türeci. Overcoming the coherence time barrier in quantum machine
 628 learning on temporal data. *Nature Communications*, 15(1):7491, 2024.

629 Kaito Kobayashi, Keisuke Fujii, and Naoki Yamamoto. Feedback-driven quantum reservoir com-
 630 puting for time-series analysis. *PRX Quantum*, 5(4):040325, 2024.

631 Milan Kornjača, Hong-Ye Hu, Chen Zhao, Jonathan Wurtz, Phillip Weinberg, Majd Hamdan, Andrii
 632 Zhdanov, Sergio H Cantu, Hengyun Zhou, Rodrigo Araiza Bravo, et al. Large-scale quantum
 633 reservoir learning with an analog quantum computer. *arXiv preprint arXiv:2407.02553*, 2024.

634 Tomoyuki Kubota, Yudai Suzuki, Shumpei Kobayashi, Quoc Hoan Tran, Naoki Yamamoto, and
 635 Kohei Nakajima. Temporal information processing induced by quantum noise. *Physical Review
 636 Research*, 5(2):023057, 2023.

637 Martin Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J Coles,
 638 Lukasz Cincio, Jarrod R McClean, Zoë Holmes, and Marco Cerezo. Barren plateaus in variational
 639 quantum computing. *Nature Reviews Physics*, pp. 1–16, 2025.

640 Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces*. Springer Berlin Heidelberg,
 641 2013.

648 Yanan Li, Zhimin Wang, Rongbing Han, Shangshang Shi, Jiaxin Li, Ruimin Shang, Haiyong Zheng,
 649 Guoqiang Zhong, and Yongjian Gu. Quantum recurrent neural networks for sequential learning.
 650 *Neural Networks*, 166:148–161, 2023.

651

652 Chen-Yu Liu, En-Jui Kuo, Chu-Hsuan Abraham Lin, Jason Gensun Young, Yeong-Jar Chang, Min-
 653 Hsiu Hsieh, and Hsi-Sheng Goan. Quantum-train: Rethinking hybrid quantum-classical machine
 654 learning in the model compression perspective. *Quantum Machine Intelligence*, 7(2):80, 2025.

655 G Manjunath. Stability and memory-loss go hand-in-hand: three results in dynamics \& compu-
 656 tation. *Proceedings of the Royal Society London Ser. A Math. Phys. Eng. Sci.*, 476(2242):1–25,
 657 2020. doi: 10.1098/rspa.2020.0563. URL <http://arxiv.org/abs/2001.00766>.

658

659 Rodrigo Martínez-Peña and Juan-Pablo Ortega. Quantum reservoir computing in finite dimensions.
 660 *Physical Review E*, 107(3):035306, 2023.

661 Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Bar-
 662 ren plateaus in quantum neural network training landscapes. *Nature communications*, 9(1):4812,
 663 2018.

664

665 Eduardo Miranda and Hari Shaji. A quantum reservoir computing approach to computer-aided
 666 music composition. *Academia Quantum*, 2(2), 2025.

667 Zoubeir Mlika, Soumaya Cherkaoui, Jean Frédéric Laprade, and Simon Corbeil-Letourneau. User
 668 trajectory prediction in mobile wireless networks using quantum reservoir computing. *IET Quantum
 669 Communication*, 4(3):125–135, 2023.

670

671 Riccardo Molteni, Claudio Destri, and Enrico Prati. Optimization of the memory reset rate of a
 672 quantum echo-state network for time sequential tasks. *Physics Letters A*, pp. 128713, 2023.

673 Tomoya Monomi, Wataru Setoyama, and Yoshihiko Hasegawa. Feedback-enhanced quantum reser-
 674 voir computing with weak measurements. *arXiv preprint arXiv:2503.17939*, 2025.

675

676 Mikko Möttönen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa. Quantum circuits for
 677 general multiqubit gates. *Physical review letters*, 93(13):130502, 2004.

678

679 Mikko Mottonen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa. Transformation of
 680 quantum states using uniformly controlled rotations. *arXiv preprint quant-ph/0407010*, 2004.

681

682 Pere Mujal, Rodrigo Martínez-Peña, Johannes Nokkala, Jorge García-Beni, Gian Luca Giorgi,
 683 Miguel C Soriano, and Roberta Zambrini. Opportunities in quantum reservoir computing and
 684 extreme learning machines. *Advanced Quantum Technologies*, 4(8):2100027, 2021.

685

686 Pere Mujal, Rodrigo Martínez-Peña, Gian Luca Giorgi, Miguel C Soriano, and Roberta Zambrini.
 687 Time-series quantum reservoir computing with weak and projective measurements. *npj Quantum
 688 Information*, 9(1):16, 2023.

689

690 Jakob Murauer, Rajiv Krishnakumar, Sabine Tornow, and Michaela Geierhos. Feedback con-
 691 nections in quantum reservoir computing with mid-circuit measurements. *arXiv preprint
 692 arXiv:2503.22380*, 2025.

693

694 Johannes Nokkala. Online quantum time series processing with random oscillator networks. *Sci-
 695 entific Reports*, 13(1):7694, 2023.

696

697 Johannes Nokkala, Rodrigo Martínez-Peña, Gian Luca Giorgi, Valentina Parigi, Miguel C Soriano,
 698 and Roberta Zambrini. Gaussian states of continuous-variable quantum systems provide universal
 699 and versatile reservoir computing. *Communications Physics*, 4(1):53, 2021.

700

701 Juan-Pablo Ortega and Florian Rossmannek. State-space systems as dynamic generative models.
 702 *Proceedings of the Royal Society A*, 481(2309):20240308, 2025a. ISSN 1471-2946. doi: 10.
 703 1098/rspa.2024.0308. URL <https://doi.org/10.1098/rspa.2024.0308>.

704

705 Juan-Pablo Ortega and Florian Rossmannek. Stochastic dynamics learning with state-space systems.
 706 *Preprint*, 2025b.

702 Juan-Pablo Ortega and Florian Rossmanek. Echoes of the past: a unified perspective on fading
 703 memory and echo states. *Preprint*, 2025c.
 704

705 Iris Paparelle, Johan Henaff, Jorge Garcia-Beni, Emilie Gillet, Gian Luca Giorgi, Miguel C Soriano,
 706 Roberta Zambrini, and Valentina Parigi. Experimental memory control in continuous variable
 707 optical quantum reservoir computing. *arXiv preprint arXiv:2506.07279*, 2025.

708 Daniel K Park, Francesco Petruccione, and June-Koo Kevin Rhee. Circuit-based quantum random
 709 access memory for classical data. *Scientific reports*, 9(1):3949, 2019.
 710

711 Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. Data re-uploading
 712 for a universal quantum classifier. *Quantum*, 4:226, February 2020. ISSN 2521-327X. doi: 10.
 713 22331/q-2020-02-06-226. URL <https://doi.org/10.22331/q-2020-02-06-226>.

714 Philipp Pfeffer, Florian Heyder, and Jörg Schumacher. Hybrid quantum-classical reservoir comput-
 715 ing of thermal convection flow. *Physical Review Research*, 4(3):033176, 2022.
 716

717 Philipp Pfeffer, Florian Heyder, and Jörg Schumacher. Reduced-order modeling of two-dimensional
 718 turbulent rayleigh-bénard flow by hybrid quantum-classical reservoir computing. *Physical review*
 719 *research*, 5(4):043242, 2023.

720 Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, and Min-Hsiu Hsieh. Theoretical error performance
 721 analysis for variational quantum circuit based functional regression. *npj Quantum Information*, 9
 722 (1):4, 2023.
 723

724 Antonio Sannia, Gian Luca Giorgi, Stefano Longhi, and Roberta Zambrini. Skin effect in quantum
 725 neural networks. *arXiv preprint arXiv:2406.14112*, 2024a.

726 Antonio Sannia, Rodrigo Martínez-Peña, Miguel C Soriano, Gian Luca Giorgi, and Roberta Zam-
 727 brini. Dissipation as a resource for quantum reservoir computing. *Quantum*, 8:1291, 2024b.
 728

729 Antonio Sannia, Gian Luca Giorgi, and Roberta Zambrini. Exponential concentration and symme-
 730 tries in quantum reservoir computing. *arXiv preprint arXiv:2505.10062*, 2025.
 731

732 Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the expres-
 733 sive power of variational quantum-machine-learning models. *Phys. Rev. A*, 103:032430, Mar
 2021. doi: 10.1103/PhysRevA.103.032430. URL <https://link.aps.org/doi/10.1103/PhysRevA.103.032430>.
 734

735 Mirela Selimović, Iris Agresti, Michał Siemaszko, Joshua Morris, Borivoje Dakić, Riccardo Albiero,
 736 Andrea Crespi, Francesco Ceccarelli, Roberto Osellame, Magdalena Stobińska, et al. Experimen-
 737 tal neuromorphic computing based on quantum memristor. *arXiv preprint arXiv:2504.18694*,
 738 2025.
 739

740 Michał Siemaszko, Adam Buraczewski, Bertrand Le Saux, and Magdalena Stobińska. Rapid train-
 741 ing of quantum recurrent neural networks. *Quantum Machine Intelligence*, 5(2):31, 2023.
 742

743 Jefferson DS Silva, Thiago Melo D Azevedo, Israel F Araujo, and Adenilton J da Silva. Lin-
 744 ear decomposition of approximate multi-controlled single qubit gates. *IEEE Transactions on*
 745 *Computer-Aided Design of Integrated Circuits and Systems*, 2024.

746 Michele Spagnolo, Joshua Morris, Simone Piacentini, Michael Antesberger, Francesco Massa, An-
 747 drea Crespi, Francesco Ceccarelli, Roberto Osellame, and Philip Walther. Experimental photonic
 748 quantum memristor. *Nature Photonics*, 16(4):318–323, 2022.
 749

750 Yudai Suzuki, Qi Gao, Ken C Pradel, Kenji Yasuoka, and Naoki Yamamoto. Natural quantum
 751 reservoir computing for temporal information processing. *Scientific reports*, 12(1):1–15, 2022.
 752

753 Quoc Hoan Tran and Kohei Nakajima. Learning temporal quantum tomography. *Physical review*
 754 *letters*, 127(26):260401, 2021.
 755 Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. *Transactions*
 of the American Mathematical Society, 36(1):63–89, 1934.

756 Weijie Xiong, Zoë Holmes, Armando Angrisani, Yudai Suzuki, Thiparat Chotibut, and Supanut
 757 Thanasilp. Role of scrambling and noise in temporal information processing with quantum sys-
 758 tems. *arXiv preprint arXiv:2505.10080*, 2025.

759
 760 Dimitry Yarotsky. Error bounds for approximations with deep ReLU networks. *Neural Networks*,
 761 94:103–114, 2017.

762 Toshiki Yasuda, Yudai Suzuki, Tomoyuki Kubota, Kohei Nakajima, Qi Gao, Wenlong Zhang,
 763 Satoshi Shimono, Hendra I Nurdin, and Naoki Yamamoto. Quantum reservoir computing with
 764 repeated measurements on superconducting devices. *arXiv preprint arXiv:2310.06706*, 2023.

765
 766 Zhan Yu, Qiuhan Chen, Yuling Jiao, Yinan Li, Xiliang Lu, Xin Wang, and Jerry Zhijian Yang.
 767 Non-asymptotic approximation error bounds of parameterized quantum circuits. In *The Thirty-
 768 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=XCKII8nCt3>.

769
 770 Ben Zindorf and Sougato Bose. Efficient implementation of multi-controlled quantum gates. *arXiv
 771 preprint arXiv:2404.02279*, 2024.

772 Ben Zindorf and Sougato Bose. Multi-controlled quantum gates in linear nearest neighbor. *arXiv
 773 preprint arXiv:2506.00695*, 2025.

774
 775
 776 APPENDIX

777
 778 A QUANTUM RESERVOIR COMPUTING PROTOCOLS

779
 780 For learning problems with temporal structure, quantum reservoir computing (QRC) has emerged as
 781 a promising approach for exploiting noisy intermediate-scale quantum (NISQ) technologies. These
 782 include ion traps, nuclear magnetic resonance, cold atoms, photonic platforms, and superconducting
 783 qubits (Mujal et al., 2021). When implementing QRC models experimentally, it is necessary to
 784 consider the backaction and statistical effects introduced by quantum measurements. Backaction
 785 refers to the modification of a quantum state after monitoring, also known as wavefunction collapse.
 786 Due to the probabilistic nature of quantum theory, measurements must be repeated to compute the
 787 expected values of observables, which introduces a statistical component in all these methodologies.
 788 Most available experimental implementations rely on the quantum computer paradigm (Dasgupta
 789 et al., 2022; Mlika et al., 2023; Suzuki et al., 2022; Yasuda et al., 2023; Chen et al., 2020; Kubota
 790 et al., 2023; Molteni et al., 2023; Pfeffer et al., 2022; Ahmed et al., 2025; Hu et al., 2024; Miranda
 791 & Shaji, 2025). However, there is an increasing interest in extending this technique to new settings,
 792 such as optical pulses (García-Beni et al., 2023; Paparelle et al., 2025), Rydberg atoms (Bravo et al.,
 793 2022; Kornjača et al., 2024), and quantum memristors (Spagnolo et al., 2022; Selimović et al., 2025).

794 Early QRC model implementations relied on the simplest possible approach, namely, the restarting
 795 protocol (Dasgupta et al., 2022; Suzuki et al., 2022; Kubota et al., 2023; Chen et al., 2020; Molteni
 796 et al., 2023). In this approach, the expected values of observables are obtained by rerunning the
 797 algorithm from the first time step at each subsequent time step. This avoids the backaction effect
 798 of quantum measurements. However, the complexity of this protocol scales quadratically with the
 799 length of the input sequence, making it very time-consuming. A faster alternative is the rewinding
 800 protocol (Mujal et al., 2021; Čindrak et al., 2024), where the fading memory of the quantum reservoir
 801 is exploited to restart the algorithm with a fixed window of past time steps. This reduces the com-
 802 plexity of the algorithm to linear in terms of input length. Originally proposed in Chen et al. (2020),
 803 this protocol has thus far only been considered numerically (Mujal et al., 2023; Čindrak et al., 2024).
 804 Both the restarting and rewinding protocols use repetition of previous time steps to reproduce the
 805 dynamics of the theoretical model and avoid the disruptive effect of projective measurements used
 806 to extract output information. This comes at the cost of halting the quantum dynamics at each time
 807 step and the need to buffer the input sequence. Consequently, these approaches lack one of the most
 808 important features of traditional reservoir computing, namely, the ability to process information in
 809 real time.

New protocols have been proposed to circumvent this problem. The online protocol (Mujal et al.,
 2023; Franceschetto et al., 2024) uses weak measurements to find a balance between erasing and

extracting information. Mid-circuit measurements and reset operations (Hu et al., 2024) can split the reservoir into two parts: memory and readout. The memory retains previous inputs, while measurements only affect the readout part. The feedback protocol (Kobayashi et al., 2024), which can be traced back to QRC with quantum memristors (Spagnolo et al., 2022) and hybrid QRC techniques (Pfeffer et al., 2022; 2023), reinjects the measured observables at each time step as parameters of an input quantum channel. This ensures that no backaction effects are present and that past input information is preserved. Note that in order to compute the observables in real time, these protocols all require several copies of the system to be run in parallel. Furthermore, these protocols can be combined with each other. For instance, the feedback protocol has been combined with both the online protocol (Monomi et al., 2025) and with mid-circuit measurements and reset operations (Murauer et al., 2025).

Of all these approaches, the feedback protocol presents some particularly interesting features. First, the feedback protocol enables us to compute the expected values of observables from a single copy of the system by repeating one time step only. If only a few copies of the system are available, this reduces the experimental time overhead for real-time applications compared to other approaches. Second, in contrast to previous QRC models, where an erasure mechanism is added to provide fundamental properties such as the echo state property, simple unitary operations can provide these properties (Kobayashi et al., 2024). Finally, the dynamical equations of quantum reservoirs under the feedback protocol go beyond the standard state-affine system (SAS) paradigm of QRC models (Martínez-Peña & Ortega, 2023). These properties make the feedback protocol a promising candidate for exploring QRC applications.

B PROOFS FOR SECTION 4.1

B.1 PROOF OF PROPOSITION 4.1

Proof. The proof is a modification of the argument used to obtain (Gonon & Jacquier, 2025, Proposition 1). Recall that

$$\bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) := R - 2R[\mathbb{P}_1^{n,\theta^j}(\mathbf{x}, \mathbf{z}) + \mathbb{P}_2^{n,\theta^j}(\mathbf{x}, \mathbf{z})], \quad (\mathbf{x}, \mathbf{z}) \in \mathbb{R}^N \times \mathbb{R}^d. \quad (18)$$

Fix $(\mathbf{x}, \mathbf{z}) \in \mathbb{R}^N \times \mathbb{R}^d$ and $j \in \{1, \dots, N\}$ and write $\mathbb{P}_m := \mathbb{P}_m^{n,\theta^j}(\mathbf{x}, \mathbf{z})$ for $m \in \{0, 1, 2, 3\}$. To prove the representation (7), let us first calculate \mathbb{P}_m .

As a first step, write

$$\begin{aligned} \mathbf{U}\mathbf{V}|0\rangle^{\otimes n} &= \mathbf{U}|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{l=0}^{n-1} \mathbf{U}|4l\rangle \\ &= \frac{1}{\sqrt{n}} \sum_{l=0}^{n-1} \sum_{k=0}^3 \left[\mathbf{U}_1^{(l+1)} \otimes \mathbf{U}_2^{(l+1)} \right]_{k+1,1} |4l+k\rangle. \end{aligned}$$

Thus, for $m \in \{0, 1, 2, 3\}$, we have

$$\begin{aligned} \mathbb{P}_m &= \sum_{i=0}^{n-1} |\langle 4i+m | \mathbf{U}\mathbf{V}|0\rangle^{\otimes n}|^2 \\ &= \sum_{i=0}^{n-1} \left| \langle 4i+m | \frac{1}{\sqrt{n}} \sum_{l=0}^{n-1} \sum_{k=0}^3 \left[\mathbf{U}_1^{(l+1)} \otimes \mathbf{U}_2^{(l+1)} \right]_{k+1,1} |4l+k\rangle \right|^2 \\ &= \frac{1}{n} \sum_{i=0}^{n-1} \left| \left[\mathbf{U}_1^{(i+1)} \otimes \mathbf{U}_2^{(i+1)} \right]_{m+1,1} \right|^2. \end{aligned}$$

864
865

Next, we may calculate

$$\begin{aligned}
 866 \quad [\mathbf{U}_1^{(i)} \otimes \mathbf{U}_2^{(i)}]_{1,1} &= [\mathbf{U}_1^{(i)}]_{1,1} [\mathbf{U}_2^{(i)}]_{1,1} = \cos\left(\frac{\gamma^{i,j}}{2}\right) \cos\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right), \\
 867 \quad [\mathbf{U}_1^{(i)} \otimes \mathbf{U}_2^{(i)}]_{2,1} &= [\mathbf{U}_1^{(i)}]_{1,1} [\mathbf{U}_2^{(i)}]_{2,1} = \sin\left(\frac{\gamma^{i,j}}{2}\right) \cos\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right), \\
 868 \quad [\mathbf{U}_1^{(i)} \otimes \mathbf{U}_2^{(i)}]_{3,1} &= [\mathbf{U}_1^{(i)}]_{2,1} [\mathbf{U}_2^{(i)}]_{1,1} = i \cos\left(\frac{\gamma^{i,j}}{2}\right) \sin\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right), \\
 869 \quad [\mathbf{U}_1^{(i)} \otimes \mathbf{U}_2^{(i)}]_{4,1} &= [\mathbf{U}_1^{(i)}]_{2,1} [\mathbf{U}_2^{(i)}]_{2,1} = i \sin\left(\frac{\gamma^{i,j}}{2}\right) \sin\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right),
 \end{aligned}$$

870
871
872
873
874
875

and thus

$$\begin{aligned}
 876 \quad \mathbb{P}_0 &= \frac{1}{n} \sum_{i=1}^n \cos\left(\frac{\gamma^{i,j}}{2}\right)^2 \cos\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right)^2 \\
 877 \quad \mathbb{P}_1 &= \frac{1}{n} \sum_{i=1}^n \sin\left(\frac{\gamma^{i,j}}{2}\right)^2 \cos\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right)^2 \\
 878 \quad \mathbb{P}_2 &= \frac{1}{n} \sum_{i=1}^n \cos\left(\frac{\gamma^{i,j}}{2}\right)^2 \sin\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right)^2 \\
 879 \quad \mathbb{P}_3 &= \frac{1}{n} \sum_{i=1}^n \sin\left(\frac{\gamma^{i,j}}{2}\right)^2 \sin\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right)^2.
 \end{aligned}$$

880
881
882
883
884
885
886
887
888

Therefore, using $\cos(y)^2 = \frac{\cos(2y)+1}{2}$, we obtain

$$\begin{aligned}
 889 \quad \mathbb{P}_0 + \mathbb{P}_1 &= \frac{1}{n} \sum_{i=1}^n \cos\left(\frac{b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})}{2}\right)^2 = \frac{1}{2} + \frac{1}{2n} \sum_{i=1}^n \cos(b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})), \\
 890 \quad \mathbb{P}_0 + \mathbb{P}_2 &= \frac{1}{n} \sum_{i=1}^n \cos\left(\frac{\gamma^{i,j}}{2}\right)^2 = \frac{1}{2} + \frac{1}{2n} \sum_{i=1}^n \cos(\gamma^{i,j}).
 \end{aligned}$$

891
892
893
894
895
896

Putting it all together we obtain, for any given $R > 0$, that

$$\begin{aligned}
 897 \quad \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) &= R - 2R[\mathbb{P}_1^{n,\theta^j}(\mathbf{x}, \mathbf{z}) + \mathbb{P}_2^{n,\theta^j}(\mathbf{x}, \mathbf{z})] \\
 898 \quad &= R[1 + 4\mathbb{P}_0 - 2(\mathbb{P}_0 + \mathbb{P}_1) - 2(\mathbb{P}_0 + \mathbb{P}_2)] \\
 899 \quad &= \frac{1}{n} \sum_{i=1}^n R \cos(\gamma^{i,j}) \cos(b^{i,j} + \mathbf{a}^{i,j} \cdot (\mathbf{x}, \mathbf{z})).
 \end{aligned}$$

900
901
902
903
904
905

□

906 B.2 PROOF OF PROPOSITION 4.2

907
908 *Proof.* Let $j \in \{1, \dots, N\}$ be fixed. As in the proof of Proposition 2 in Gonon & Jacquier (2025),
909 we may use the Fourier inversion theorem to represent
910

$$911 \quad F_j(\mathbf{x}, \mathbf{z}) = \int_{\mathbb{R}^N \times \mathbb{R}^d} e^{2\pi i(\mathbf{x}, \mathbf{z}) \cdot (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2)} \widehat{F}_j(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) d\boldsymbol{\xi}_1 d\boldsymbol{\xi}_2,$$

912
913

which we may rewrite as, with $\boldsymbol{\xi} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2)$,

$$914 \quad F_j(\mathbf{x}, \mathbf{z}) = \int_{\mathbb{R}^N \times \mathbb{R}^d} \left\{ \cos(2\pi(\mathbf{x}, \mathbf{z}) \cdot \boldsymbol{\xi}) \operatorname{Re}[\widehat{F}_j(\boldsymbol{\xi})] + \cos\left(2\pi(\mathbf{x}, \mathbf{z}) \cdot \boldsymbol{\xi} + \frac{\pi}{2}\right) \operatorname{Im}[\widehat{F}_j(\boldsymbol{\xi})] \right\} d\boldsymbol{\xi} \quad (19)$$

918 The hypothesis $\partial_i F_j \in \mathcal{F}$ implies that $\int_{\mathbb{R}^N \times \mathbb{R}^d} |\xi_i| |\widehat{F}_j(\xi)| d\xi < \infty$. Hence, applying differentiation
 919 under the integral sign yields
 920

$$921 \partial_i F_j(\mathbf{x}, \mathbf{z}) = -2\pi \int_{\mathbb{R}^N \times \mathbb{R}^d} \left\{ \xi_i \sin(2\pi(\mathbf{x}, \mathbf{z}) \cdot \xi) \operatorname{Re}[\widehat{F}_j(\xi)] + \xi_i \sin\left(2\pi(\mathbf{x}, \mathbf{z}) \cdot \xi + \frac{\pi}{2}\right) \operatorname{Im}[\widehat{F}_j(\xi)] \right\} d\xi. \\ 922 \\ 923 \quad (20)$$

924 Next, consider the random function

$$925 \Phi_j(\mathbf{x}, \mathbf{z}) := \frac{1}{n} \sum_{i=1}^n W_i \cos(B_i + \mathbf{A}_i \cdot (\mathbf{x}, \mathbf{z})) \\ 926 \\ 927 \quad (21)$$

928 for randomly selected weights W_1, \dots, W_n , B_1, \dots, B_n and $\mathbf{A}_1, \dots, \mathbf{A}_n$ valued in \mathbb{R} , \mathbb{R} , and
 929 $\mathbb{R}^N \times \mathbb{R}^d$, respectively (for notational simplicity we leave the dependence on j implicit here). The
 930 distributions of these random variables are chosen as follows. First, we let Z_1, \dots, Z_n be i.i.d.
 931 Bernoulli random variables with

$$932 \mathbb{P}(Z_i = 1) = \frac{\int_{\mathbb{R}^N \times \mathbb{R}^d} |\operatorname{Re}[\widehat{F}_j(\xi)]| d\xi}{\int_{\mathbb{R}^N \times \mathbb{R}^d} |\widehat{F}_j(\xi)| d\xi}, \quad \mathbb{P}(Z_i = 0) = \frac{\int_{\mathbb{R}^N \times \mathbb{R}^d} |\operatorname{Im}[\widehat{F}_j(\xi)]| d\xi}{\int_{\mathbb{R}^N \times \mathbb{R}^d} |\widehat{F}_j(\xi)| d\xi}. \\ 933 \\ 934 \quad (22)$$

935 and let ν_{Re} and ν_{Im} be the probability measures on $\mathbb{R}^N \times \mathbb{R}^d$ with densities

$$936 \frac{|\operatorname{Re}[\widehat{F}_j]|}{\int_{\mathbb{R}^N \times \mathbb{R}^d} |\operatorname{Re}[\widehat{F}_j(\xi)]| d\xi} \quad \text{and} \quad \frac{|\operatorname{Im}[\widehat{F}_j]|}{\int_{\mathbb{R}^N \times \mathbb{R}^d} |\operatorname{Im}[\widehat{F}_j(\xi)]| d\xi}, \\ 937 \\ 938 \quad (23)$$

939 respectively. In case $\int_{\mathbb{R}^N \times \mathbb{R}^d} |\operatorname{Re}[\widehat{F}_j(\xi)]| d\xi = 0$, instead we choose for ν_{Re} an arbitrary probability
 940 measure and analogously for ν_{Im} in case $\int_{\mathbb{R}^N \times \mathbb{R}^d} |\operatorname{Im}[\widehat{F}_j(\xi)]| d\xi = 0$. Next, let $\mathbf{U}_1^{\operatorname{Re}}, \dots, \mathbf{U}_n^{\operatorname{Re}}$
 941 (resp. $\mathbf{U}_1^{\operatorname{Im}}, \dots, \mathbf{U}_n^{\operatorname{Im}}$) be i.i.d. random variables with distribution ν_{Re} (resp. ν_{Im}) and assume that
 942 $\mathbf{U}_1^{\operatorname{Im}}, \dots, \mathbf{U}_n^{\operatorname{Im}}, \mathbf{U}_1^{\operatorname{Re}}, \dots, \mathbf{U}_n^{\operatorname{Re}}, Z_1, \dots, Z_n$ are independent. With these preparations, we are now
 943 ready to define the weights in (21):
 944

$$945 \mathbf{A}_i := 2\pi(Z_i \mathbf{U}_i^{\operatorname{Re}} + (1 - Z_i) \mathbf{U}_i^{\operatorname{Im}}), \quad B_i := \frac{\pi}{2}(1 - Z_i), \\ 946 \\ 947 W_i := \|\widehat{F}_j\|_1 \left[\frac{\operatorname{Re}[\widehat{F}_j](\mathbf{U}_i^{\operatorname{Re}})}{|\operatorname{Re}[\widehat{F}_j](\mathbf{U}_i^{\operatorname{Re}})|} Z_i + \frac{\operatorname{Im}[\widehat{F}_j](\mathbf{U}_i^{\operatorname{Im}})}{|\operatorname{Im}[\widehat{F}_j](\mathbf{U}_i^{\operatorname{Im}})|} (1 - Z_i) \right], \\ 948 \\ 949 \quad \text{with the quotient set to zero when the denominator is null.}$$

950 Our goal now is to estimate

$$951 \mathbb{E} \left[\|F_j - \Phi_j\|_{L^2(\mu)}^2 + \sum_{i=1}^{N+d} \|\partial_i F_j - \partial_i \Phi_j\|_{L^2(\mu)}^2 \right] = \mathbb{E} \left[\|F_j - \Phi_j\|_{L^2(\mu)}^2 \right] + \sum_{i=1}^{N+d} \mathbb{E} \left[\|\partial_i F_j - \partial_i \Phi_j\|_{L^2(\mu)}^2 \right] \\ 952 \\ 953 \quad (24)$$

954 by estimating the summands separately. To achieve this, we first compute $\mathbb{E}[\Phi_j(\mathbf{x}, \mathbf{z})]$ and
 955 $\mathbb{E}[\partial_i \Phi_j(\mathbf{x}, \mathbf{z})]$. Indeed, inserting the definitions, using independence and representation (19) yields

$$956 \mathbb{E}[\Phi_j(\mathbf{x}, \mathbf{z})] = \mathbb{E}[W_1 \cos(B_1 + \mathbf{A}_1 \cdot (\mathbf{x}, \mathbf{z}))] \\ 957 \\ 958 = \|\widehat{F}_j\|_1 \mathbb{E} \left[\left(\frac{\operatorname{Re}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Re}})}{|\operatorname{Re}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Re}})|} Z_1 + \frac{\operatorname{Im}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Im}})}{|\operatorname{Im}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Im}})|} (1 - Z_1) \right) \right. \\ 959 \\ 960 \quad \left. \cos\left(\frac{\pi}{2}(1 - Z_1) + 2\pi(Z_1 \mathbf{U}_1^{\operatorname{Re}} + (1 - Z_1) \mathbf{U}_1^{\operatorname{Im}}) \cdot (\mathbf{x}, \mathbf{z})\right) \right] \\ 961 \\ 962 = \|\widehat{F}_j\|_1 \left(\mathbb{P}(Z_1 = 1) \mathbb{E} \left[\frac{\operatorname{Re}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Re}})}{|\operatorname{Re}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Re}})|} \cos(2\pi \mathbf{U}_1^{\operatorname{Re}} \cdot (\mathbf{x}, \mathbf{z})) \right] \right. \\ 963 \\ 964 \quad \left. + \mathbb{P}(Z_1 = 0) \mathbb{E} \left[\frac{\operatorname{Im}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Im}})}{|\operatorname{Im}[\widehat{F}_j](\mathbf{U}_1^{\operatorname{Im}})|} \cos\left(\frac{\pi}{2} + 2\pi \mathbf{U}_1^{\operatorname{Im}} \cdot (\mathbf{x}, \mathbf{z})\right) \right] \right) \\ 965 \\ 966 = \int_{\mathbb{R}^N \times \mathbb{R}^d} \operatorname{Re}[\widehat{F}_j](\xi) \cos(2\pi \xi \cdot (\mathbf{x}, \mathbf{z})) d\xi + \int_{\mathbb{R}^N \times \mathbb{R}^d} \operatorname{Im}[\widehat{F}_j](\xi) \cos\left(\frac{\pi}{2} + 2\pi \xi \cdot (\mathbf{x}, \mathbf{z})\right) d\xi \\ 967 \\ 968 = F_j(\mathbf{x}, \mathbf{z}). \\ 969$$

Analogously, using the representation (20) for the partial derivative $\partial_i F_j$ instead, we obtain

$$\begin{aligned}
& \mathbb{E}[\partial_i \Phi_j(\mathbf{x}, \mathbf{z})] = -\mathbb{E}[W_1 A_{1,i} \sin(B_1 + \mathbf{A}_1 \cdot (\mathbf{x}, \mathbf{z}))] \\
& = -2\pi \|\widehat{F_j}\|_1 \left(\mathbb{P}(Z_1 = 1) \mathbb{E} \left[\frac{\text{Re}[\widehat{F_j}](\mathbf{U}_1^{\text{Re}})}{|\text{Re}[\widehat{F_j}](\mathbf{U}_1^{\text{Re}})|} U_{1,i}^{\text{Re}} \sin(2\pi \mathbf{U}_1^{\text{Re}} \cdot (\mathbf{x}, \mathbf{z})) \right] \right. \\
& \quad \left. + \mathbb{P}(Z_1 = 0) \mathbb{E} \left[\frac{\text{Im}[\widehat{F_j}](\mathbf{U}_1^{\text{Im}})}{|\text{Im}[\widehat{F_j}](\mathbf{U}_1^{\text{Im}})|} U_{1,i}^{\text{Im}} \sin\left(\frac{\pi}{2} + 2\pi \mathbf{U}_1^{\text{Im}} \cdot (\mathbf{x}, \mathbf{z})\right) \right] \right) \\
& = -2\pi \left(\int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_i \text{Re}[\widehat{F_j}](\xi) \sin(2\pi \xi \cdot (\mathbf{x}, \mathbf{z})) d\xi + \int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_i \text{Im}[\widehat{F_j}](\xi) \sin\left(\frac{\pi}{2} + 2\pi \xi \cdot (\mathbf{x}, \mathbf{z})\right) d\xi \right) \\
& = \partial_i F_j(\mathbf{x}, \mathbf{z}).
\end{aligned} \tag{25}$$

Therefore, we may estimate the first expectation in (24) as follows:

$$\begin{aligned}
& \mathbb{E} \left[\|F_j - \Phi_j\|_{L^2(\mu)}^2 \right] = \mathbb{E} \left[\int_{\mathbb{R}^N \times \mathbb{R}^d} |F_j(\mathbf{x}, \mathbf{z}) - \Phi_j(\mathbf{x}, \mathbf{z})|^2 \mu(d\mathbf{x}, d\mathbf{z}) \right] = \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{V}[\Phi_j(\mathbf{x}, \mathbf{z})] \mu(d\mathbf{x}, d\mathbf{z}) \\
&= \frac{1}{n^2} \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{V} \left[\sum_{i=1}^n W_i \cos(B_i + \mathbf{A}_i \cdot (\mathbf{x}, \mathbf{z})) \right] \mu(d\mathbf{x}, d\mathbf{z}) \\
&= \frac{1}{n} \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{V} [W_1 \cos(B_1 + \mathbf{A}_1 \cdot (\mathbf{x}, \mathbf{z}))] \mu(d\mathbf{x}, d\mathbf{z}) \\
&\leq \frac{1}{n} \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{E} \left[(W_1 \cos(B_1 + \mathbf{A}_1 \cdot (\mathbf{x}, \mathbf{z})))^2 \right] \mu(d\mathbf{x}, d\mathbf{z}) \\
&\leq \frac{1}{n} \mathbb{E} [W_1^2] = \frac{1}{n} \|F_j\|_1^2. \tag{26}
\end{aligned}$$

For the partial derivatives, we obtain analogously

$$\begin{aligned}
& \mathbb{E} \left[\|\partial_i F_j - \partial_i \Phi_j\|_{L^2(\mu)}^2 \right] = \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{V}[\partial_i \Phi_j(\mathbf{x}, \mathbf{z})] \mu(d\mathbf{x}, d\mathbf{z}) \\
&= \frac{1}{n^2} \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{V} \left[\sum_{k=1}^n W_k A_{k,i} \sin(B_k + \mathbf{A}_k \cdot (\mathbf{x}, \mathbf{z})) \right] \mu(d\mathbf{x}, d\mathbf{z}) \\
&= \frac{1}{n} \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{V} [W_1 A_{1,i} \sin(B_1 + \mathbf{A}_1 \cdot (\mathbf{x}, \mathbf{z}))] \mu(d\mathbf{x}, d\mathbf{z}) \\
&\leq \frac{1}{n} \int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{E} \left[(W_1 A_{1,i} \sin(B_1 + \mathbf{A}_1 \cdot (\mathbf{x}, \mathbf{z})))^2 \right] \mu(d\mathbf{x}, d\mathbf{z}) \\
&\leq \frac{1}{n} \mathbb{E} [W_1^2 A_{1,i}^2] = \frac{1}{n} \|\widehat{F_j}\|_1^2 \mathbb{E} [A_{1,i}^2] = \frac{4\pi^2}{n} \|\widehat{F_j}\|_1 \int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_i^2 |\widehat{F_j}(\boldsymbol{\xi})| d\boldsymbol{\xi}, \tag{27}
\end{aligned}$$

where we used that $\mathbb{E} [A_{1,i}^2] = 4\pi^2 \|\widehat{F}_i\|_1^{-1} \int_{\mathbb{P}_N \times \mathbb{R}^d} \xi_i^2 |\widehat{F}_i(\xi)| d\xi$.

In particular, (26) and (27) imply that there exists a scenario $\omega \in \Omega$ such that $\Phi_j^\omega(\mathbf{x}, \mathbf{z}) = \frac{1}{\pi} \sum_{i=1}^n W_i(\omega) \cos(B_i(\omega) + \mathbf{A}_i(\omega) \cdot (\mathbf{x}, \mathbf{z}))$ satisfies

$$\|F_j - \Phi_j^\omega\|_{L^2(\mu)}^2 + \sum_{i=1}^{N+d} \|\partial_i F_j - \partial_i \Phi_j^\omega\|_{L^2(\mu)}^2 \leq \frac{C_j}{n}, \quad (28)$$

with $C_j = \|\widehat{F}_j\|_1^2 + 4\pi^2 \|\widehat{F}_j\|_1 \int_{\mathbb{R}^N \times \mathbb{R}^d} \sum_{i=1}^{N+d} \xi_i^2 |\widehat{F}_j(\xi)| d\xi$. Finally, $\boldsymbol{\theta} = (\boldsymbol{\theta}^1, \dots, \boldsymbol{\theta}^N)$ can then be constructed by setting $\boldsymbol{\theta}^j = (\mathbf{A}_i(\omega), B_i(\omega), \arccos(\frac{W_i(\omega)}{R}))_{i=1, \dots, n}$, which guarantees that $\Phi_j^\omega = \bar{F}_{R, j}^{n, \boldsymbol{\theta}}$ and so the proposition follows. \square

1026 B.3 PROOF OF COROLLARY 4.3
10271028 The proof of this corollary requires the following lemma, which extends Gonon (2024,
1029 Lemma 4.10).
10301031 **Lemma B.1.** *Let $d, n, q \in \mathbb{N}$, let $M_1, M_2 > 0$, let U be a non-negative random variable, and let
1032 Y_1, \dots, Y_n be i.i.d. \mathbb{R}^d -valued random variables. Suppose $\mathbb{E}[U] \leq M_1$ and $\mathbb{E}[|Y_1|^q] \leq M_2$. Then*

1033
$$\mathbb{P}\left[U \leq 3M_1, \max_{i=1, \dots, n} |Y_i| \leq (3nM_2)^{\frac{1}{q}}\right] > 0.$$

1034

1035 *Proof.* The proof mimics that of in Gonon (2024, Lemma 4.10) by replacing the use of Markov's
1036 inequality for $q = 1$ by the more general version:
1037

1038
$$\mathbb{P}[|Y_1| > (3nM_2)^{\frac{1}{q}}] \leq \frac{\mathbb{E}[|Y_1|^q]}{3nM_2} \leq \frac{1}{3n}.$$

1039

□

1040 *Proof of the corollary.* The corollary follows by replacing the argument leading to (28) in the proof
1041 of Proposition 4.2 by Lemma B.1 and by noticing that
1042

1043
$$\mathbb{E}[\|\mathbf{A}_1\|^q] = (2\pi)^q \|\widehat{F}_j\|_1^{-1} \int_{\mathbb{R}^N \times \mathbb{R}^d} \|\xi\|^q |\widehat{F}_j(\xi)| d\xi.$$

1044

□

1045 B.4 PROOF OF PROPOSITION 4.4
10461047 *Proof.* It follows by combining the proof of Proposition 4.2 with the proof of Theorem 3 in Gonon
1048 & Jacquier (2025). More specifically, the same proof can be used as for Proposition 4.2, except that
1049 we need to replace the $L^2(\mu)$ error bounds in (26) and (27) by uniform bounds. For (26), we can
1050 follow precisely the proof of Theorem 3 in Gonon & Jacquier (2025) to obtain
1051

1052
$$\left\| \bar{F}_{R,j}^{n,\theta} - F_j \right\|_{\infty,M} \leq \frac{C_j^{\infty,0}}{\sqrt{n}} \quad (29)$$

1053

1054 with $C_j^{\infty,0} = 2(\pi + 1)\|\widehat{F}_j\|_1 + 8\pi M(N + d)^{\frac{1}{2}} \|\widehat{F}_j\|_1^{\frac{1}{2}} \left(\int_{\mathbb{R}^N \times \mathbb{R}^d} \sum_{i=1}^{N+d} \xi_i^2 |\widehat{F}_j(\xi)| d\xi \right)^{1/2}$. Next, we
1055 turn to the derivatives, that is, we aim to estimate $\left\| \partial_k \bar{F}_{R,j}^{n,\theta} - \partial_k F_j \right\|_{\infty,M}$. Also in this case, we may
1056 proceed as in the proof of Theorem 3 in Gonon & Jacquier (2025) and apply the same estimates to
1057 the random variables $U_{i,(\mathbf{x},\mathbf{z})} = W_i A_{i,k} \sin(B_i + \mathbf{A}_i \cdot (\mathbf{x}, \mathbf{z}))$. Let $\varepsilon_1, \dots, \varepsilon_n$ be i.i.d. Rademacher
1058 random variables independent of $\mathbf{A} = (\mathbf{A}_1, \dots, \mathbf{A}_n)$ and $\mathbf{B} = (B_1, \dots, B_n)$. Symmetrisation and
1059 independence then yield
1060

1061
$$\begin{aligned} \left\| \partial_i \bar{F}_{R,j}^{n,\theta} - \partial_i F_j \right\|_{\infty,M} &= \mathbb{E} \left[\sup_{(\mathbf{x},\mathbf{z}) \in [-M, M]^{N+d}} \left| \frac{1}{n} \sum_{i=1}^n (U_{i,(\mathbf{x},\mathbf{z})} - \mathbb{E}[U_{i,(\mathbf{x},\mathbf{z})}]) \right| \right] \\ &\leq 2\mathbb{E} \left[\sup_{(\mathbf{x},\mathbf{z}) \in [-M, M]^{N+d}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i U_{i,(\mathbf{x},\mathbf{z})} \right| \right] \\ &= 2\mathbb{E} \left[\mathbb{E} \left[\sup_{(\mathbf{x},\mathbf{z}) \in [-M, M]^{N+d}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i w_i a_{i,k} \sin(b_i + \mathbf{a}_i \cdot (\mathbf{x}, \mathbf{z})) \right| \right] \right]_{(\mathbf{w},\mathbf{a},\mathbf{b})=(\mathbf{W},\mathbf{A},\mathbf{B})}. \end{aligned}$$

1062 Now fix $\mathbf{a} = (\mathbf{a}_1, \dots, \mathbf{a}_n) \in (\mathbb{R}^N \times \mathbb{R}^d)^n$, $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{R}^n$, $\mathbf{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$ and
1063 denote
1064

1065
$$\mathcal{T} := \{(w_i a_{i,k} (b_i + \mathbf{a}_i \cdot (\mathbf{x}, \mathbf{z})))_{i=1, \dots, n} : (\mathbf{x}, \mathbf{z}) \in [-M, M]^{N+d}\},$$

1066

1067
$$\varrho_i(x) := w_i a_{i,k} \sin\left(\frac{x}{w_i a_{i,k}}\right), \quad x \in \mathbb{R},$$

1068

for $i = 1, \dots, n$. Then, using the definitions in the first step, the comparison theorem (Ledoux & Talagrand, 2013, Theorem 4.12) in the second step (note $\varrho_i(0) = 0$ and ϱ_i is 1-Lipschitz), and standard Rademacher estimates (see, e.g., Gonon (2023)), we obtain

$$\begin{aligned}
& \mathbb{E} \left[\sup_{(\mathbf{x}, \mathbf{z}) \in [-M, M]^{N+d}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i w_i a_{i,k} \sin(b_i + \mathbf{a}_i \cdot (\mathbf{x}, \mathbf{z})) \right| \right] \\
&= \mathbb{E} \left[\sup_{\mathbf{t} \in \mathcal{T}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \varrho_i(t_i) \right| \right] \leq 2 \mathbb{E} \left[\sup_{\mathbf{t} \in \mathcal{T}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i t_i \right| \right] \\
&= 2 \mathbb{E} \left[\sup_{(\mathbf{x}, \mathbf{z}) \in [-M, M]^{N+d}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i (w_i a_{i,k} (b_i + \mathbf{a}_i \cdot (\mathbf{x}, \mathbf{z}))) \right| \right] \\
&\leq 2 \mathbb{E} \left[\left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i w_i a_{i,k} b_i \right| \right] + 2 \mathbb{E} \left[\sup_{(\mathbf{x}, \mathbf{z}) \in [-M, M]^{N+d}} \left| (\mathbf{x}, \mathbf{z}) \cdot \frac{1}{n} \sum_{i=1}^n \varepsilon_i w_i a_{i,k} \mathbf{a}_i \right| \right] \\
&\leq \frac{2}{n} \left(\sum_{i=1}^n w_i^2 a_{i,k}^2 b_i^2 \right)^{1/2} + \frac{2M}{n} \sum_{l=1}^{N+d} \left(\sum_{i=1}^n w_i^2 a_{i,k}^2 a_{i,l}^2 \right)^{1/2}.
\end{aligned}$$

Putting everything together, we obtain

$$\begin{aligned}
\left\| \partial_i \bar{F}_{R,j}^{n,\theta} - \partial_i F_j \right\|_{\infty, M} &\leq 2 \mathbb{E} \left[\frac{2}{n} \left(\sum_{i=1}^n W_i^2 A_{i,k}^2 B_i^2 \right)^{1/2} + \frac{2M}{n} \sum_{l=1}^{N+d} \left(\sum_{i=1}^n W_i^2 A_{i,k}^2 A_{i,l}^2 \right)^{1/2} \right] \\
&\leq \frac{4}{\sqrt{n}} \left(\mathbb{E} [W_i^2 A_{i,k}^2 B_i^2]^{1/2} + M(N+d)^{1/2} \left(\sum_{l=1}^{N+d} \mathbb{E} [W_i^2 A_{i,k}^2 A_{i,l}^2] \right)^{1/2} \right) \\
&\leq \frac{C_j^{\infty, k}}{\sqrt{n}},
\end{aligned}$$

with $C_j^{\infty, k} = 4\pi^2 \|\widehat{F}_j\|_1^{1/2} \left(\left(\int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_k^2 |\widehat{F}_j(\xi)| d\xi \right)^{1/2} + 4M(N+d)^{1/2} \left(\int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_k^2 \|\xi\|^2 |\widehat{F}_j(\xi)| d\xi \right)^{1/2} \right)$.

Here, the last estimate follows from the inequality

$$\mathbb{E} [W_i^2 A_{i,k}^2 B_i^2] \leq \pi^4 \|\widehat{F}_j\|_1 \int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_k^2 |\widehat{F}_j(\xi)| d\xi$$

and

$$\mathbb{E} [W_i^2 A_{i,k}^2 A_{i,l}^2] = 16\pi^4 \|\widehat{F}_j\|_1 \int_{\mathbb{R}^N \times \mathbb{R}^d} \xi_k^2 \xi_l^2 |\widehat{F}_j(\xi)| d\xi.$$

Overall, we obtain (9) with $C_j^{\infty} \geq \sum_{k=0}^{N+d} C_j^{\infty, k}$ chosen as

$$C_j^{\infty} = 2(\pi+1) \|\widehat{F}_j\|_1 + (8\pi M + 4\pi^2)(N+d)^{1/2} \|\widehat{F}_j\|_1^{1/2} I_{2,j}^{1/2} + 16M\pi^2(N+d) \|\widehat{F}_j\|_1^{1/2} I_{4,j}^{1/2}.$$

□

B.5 PROOF OF COROLLARY 4.5

Proof. First, extending the proof of Corollary 4 in Gonon & Jacquier (2025), we show that F_j can be approximated on \mathcal{X} up to error $\frac{\varepsilon}{2}$ in C^1 -norm by a function in $C_c^{\infty}(\mathbb{R}^N \times \mathbb{R}^d)$. Indeed, first let $M > 0$ be such that $\mathcal{X} \subset [-M, M]^{N+d}$. Then, classical approximation results (see, e.g., Whitney, 1934, Lemma 5) imply that there exists a smooth function $h: \mathbb{R}^N \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that

$$\sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} |F_j(\mathbf{x}, \mathbf{z}) - h(\mathbf{x}, \mathbf{z})| + \|\nabla F_j(\mathbf{x}, \mathbf{z}) - \nabla h(\mathbf{x}, \mathbf{z})\| \leq \frac{\varepsilon}{2}. \quad (30)$$

Without loss of generality we may assume that $h \in C_c^{\infty}(\mathbb{R}^N \times \mathbb{R}^d)$. Otherwise, we multiply h with a cutoff function $\psi \in C_c^{\infty}(\mathbb{R}^N \times \mathbb{R}^d)$ which is equal to 1 in an open set U with $\mathcal{X} \subset U$ (see, e.g., Hörmander, 1990, Theorem 1.4.1); thereby preserving (30).

1134 In the next step, we now apply Proposition 4.4 to h . Since h is a Schwartz function, its Fourier
 1135 transform \widehat{h} is also a Schwartz function and thus h is integrable and
 1136

$$1137 \int_{\mathbb{R}^N \times \mathbb{R}^d} (1 + \|\xi\|^4) |\widehat{h}(\xi)| d\xi < \infty.$$

1139 In particular, $h \in \mathcal{F}_R$ for $R > 0$ large enough and, as h is a Schwartz function, also $\partial_i h \in \mathcal{F}$ for
 1140 all i . Thus, the hypotheses of Proposition 4.4 are satisfied and we obtain that there exist $n \in \mathbb{N}$ and
 1141 $\theta \in \Theta$ such that

$$1142 \left\| \bar{F}_{R,j}^{n,\theta} - h \right\|_{\infty,M} + \sum_{i=1}^{N+d} \left\| \partial_i \bar{F}_{R,j}^{n,\theta} - \partial_i h \right\|_{\infty,M} \leq \frac{\varepsilon}{2}.$$

1145 This estimate together with (30) then imply

$$\begin{aligned} 1146 \sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} & |F_j(\mathbf{x}, \mathbf{z}) - \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z})| + \|\nabla F_j(\mathbf{x}, \mathbf{z}) - \nabla \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z})\| \\ 1147 & \leq \sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} |F_j(\mathbf{x}, \mathbf{z}) - h(\mathbf{x}, \mathbf{z})| + \|\nabla F_j(\mathbf{x}, \mathbf{z}) - \nabla h(\mathbf{x}, \mathbf{z})\| \\ 1148 & + \sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} |h(\mathbf{x}, \mathbf{z}) - \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z})| + \|\nabla \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - \nabla h(\mathbf{x}, \mathbf{z})\| \\ 1149 & \leq \sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} |F_j(\mathbf{x}, \mathbf{z}) - h(\mathbf{x}, \mathbf{z})| + \|\nabla F_j(\mathbf{x}, \mathbf{z}) - \nabla h(\mathbf{x}, \mathbf{z})\| \\ 1150 & + \sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} |\bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - h(\mathbf{x}, \mathbf{z})| + \sum_{i=1}^{N+d} |\partial_i \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - \partial_i h(\mathbf{x}, \mathbf{z})| \\ 1151 & \leq \sup_{(\mathbf{x}, \mathbf{z}) \in \mathcal{X}} |F_j(\mathbf{x}, \mathbf{z}) - h(\mathbf{x}, \mathbf{z})| + \|\nabla F_j(\mathbf{x}, \mathbf{z}) - \nabla h(\mathbf{x}, \mathbf{z})\| \\ 1152 & + \left\| \bar{F}_{R,j}^{n,\theta} - h \right\|_{\infty,M} + \sum_{i=1}^{N+d} \left\| \partial_i \bar{F}_{R,j}^{n,\theta} - \partial_i h \right\|_{\infty,M} \leq \varepsilon, \\ 1153 & \end{aligned}$$

1154 where we used that

$$1155 \|\nabla \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - \nabla h(\mathbf{x}, \mathbf{z})\| = \left(\sum_{i=1}^{N+d} |\partial_i \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - \partial_i h(\mathbf{x}, \mathbf{z})|^2 \right)^{1/2} \leq \sum_{i=1}^{N+d} |\partial_i \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - \partial_i h(\mathbf{x}, \mathbf{z})|,$$

1156 since $\|\mathbf{y}\|_2 \leq \|\mathbf{y}\|_1$ for all $\mathbf{y} \in \mathbb{R}^{N+d}$. □

1157 C PROOFS FOR SECTION 4.2

1158 C.1 PROOF OF THEOREM 4.6

1159 *Proof.* Choose M such that $B_N \times D_d \subset [-M, M]^{N+d}$ and $[-R, R]^N \times D_d \subset [-M, M]^{N+d}$.
 1160 Firstly, our hypotheses on F guarantee that F satisfies the hypotheses of Proposition 4.4. Hence,
 1161 there exists $\theta \in \Theta$ such that for any $j \in \{1, \dots, N\}$,

$$1162 \left\| \bar{F}_{R,j}^{n,\theta} - F_j \right\|_{\infty,M} + \sum_{i=1}^{N+d} \left\| \partial_i \bar{F}_{R,j}^{n,\theta} - \partial_i F_j \right\|_{\infty,M} \leq \frac{C_j^\infty}{\sqrt{n}}. \quad (31)$$

1163 Then, for all $\mathbf{x} \in [-M, M]^N, \mathbf{z} \in D_d$

$$\begin{aligned} 1164 \|\nabla_{\mathbf{x}} \bar{F}_R^{n,\theta}(\mathbf{x}, \mathbf{z})\|_2 & \leq \|\nabla_{\mathbf{x}} \bar{F}_R^{n,\theta}(\mathbf{x}, \mathbf{z}) - \nabla_{\mathbf{x}} F(\mathbf{x}, \mathbf{z})\|_2 + \|\nabla_{\mathbf{x}} F(\mathbf{x}, \mathbf{z})\|_2 \\ 1165 & \leq \left(\sum_{i,j=1}^N |\partial_i \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - \partial_i F_j(\mathbf{x}, \mathbf{z})|^2 \right)^{1/2} + \lambda \\ 1166 & \leq N \frac{\max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}} + \lambda. \end{aligned} \quad (32)$$

1188 Therefore, using that $\max_{\mathbf{x} \in [-M, M]^N} \|\nabla_{\mathbf{x}} \bar{F}_R^{n, \theta}(\mathbf{x}, \mathbf{z})\|_2$ is the best Lipschitz-constant for $\bar{F}_R^{n, \theta}$ on
 1189 $[-M, M]^N$ for any given $\mathbf{z} \in D_d$, we obtain for all $\mathbf{x} \in [-M, M]^N, \mathbf{z} \in D_d$ that
 1190

$$\begin{aligned} 1191 \|\bar{F}_R^{n, \theta}(\mathbf{x}^1, \mathbf{z}) - \bar{F}_R^{n, \theta}(\mathbf{x}^2, \mathbf{z})\|^2 &\leq \|\mathbf{x}^1 - \mathbf{x}^2\|^2 \max_{\mathbf{x} \in [-M, M]^N} \|\nabla_{\mathbf{x}} \bar{F}_R^{n, \theta}(\mathbf{x}, \mathbf{z})\|_2^2 \\ 1192 &\leq \left(N \frac{\max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}} + \lambda \right)^2 \|\mathbf{x}^1 - \mathbf{x}^2\|^2. \end{aligned}$$

1193 In particular, for n satisfying $N^2 \frac{(\max_{j=1, \dots, N} C_j^\infty)^2}{(1-\lambda)^2} < n$ we obtain that $\bar{F}_R^{n, \theta} : B_R \times D_d \rightarrow B_R$,
 1194 with $B_R = \{\mathbf{x} \in \mathbb{R}^N : \|\mathbf{x}\| \leq R\sqrt{N}\}$, is contractive in the first argument, hence the system (4) has
 1195 the echo state property by Gonon et al. (2020, Proposition 1).

1200 By the relation between the Lipschitz-constant and the maximal norm of the Jacobian, the assumption
 1201 $\|\nabla_{\mathbf{x}} F(\mathbf{x}, \mathbf{z})\|_2 \leq \lambda$ guarantees that $F(\cdot, \mathbf{z})$ is λ -contractive for any $\mathbf{z} \in D_d$. Hence, we may
 1202 estimate

$$\begin{aligned} 1203 \|U^F(\mathbf{z})_t - \bar{U}(\mathbf{z})_t\| &= \|\mathbf{x}_t - \hat{\mathbf{x}}_t\| = \left\| F(\mathbf{x}_{t-1}, \mathbf{z}_t) - \bar{F}_R^{n, \theta}(\hat{\mathbf{x}}_{t-1}, \mathbf{z}_t) \right\| \\ 1204 &\leq \|F(\mathbf{x}_{t-1}, \mathbf{z}_t) - F(\hat{\mathbf{x}}_{t-1}, \mathbf{z}_t)\| + \left\| F(\hat{\mathbf{x}}_{t-1}, \mathbf{z}_t) - \bar{F}_R^{n, \theta}(\hat{\mathbf{x}}_{t-1}, \mathbf{z}_t) \right\| \\ 1205 &\leq \lambda \|\mathbf{x}_{t-1} - \hat{\mathbf{x}}_{t-1}\| + \left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n, \theta} - F_j \right\|_{\infty, M}^2 \right)^{1/2} \\ 1206 &\leq \lambda \|\mathbf{x}_{t-1} - \hat{\mathbf{x}}_{t-1}\| + \frac{\sqrt{N} \max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}}. \end{aligned} \tag{33}$$

1213 Iterating (33), we obtain

$$\begin{aligned} 1214 \|U^F(\mathbf{z})_t - \bar{U}(\mathbf{z})_t\| &\leq \lambda^J \|\mathbf{x}_{t-J} - \hat{\mathbf{x}}_{t-J}\| + \sum_{k=1}^J \lambda^{k-1} \frac{\sqrt{N} \max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}} \\ 1215 &\leq \lambda^J \sqrt{N} (M + R) + \sum_{k=0}^{J-1} \lambda^k \frac{\sqrt{N} \max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}}. \end{aligned} \tag{34}$$

1216 Letting $J \rightarrow \infty$, we thus arrive at the bound (12). \square

1223 C.2 PROOF OF LEMMA 4.7

1225 The proof of Lemma 4.7 is related to the approach introduced in Gonon & Ortega (2020) and sub-
 1226 sequently used, e.g., in Gonon et al. (2023); Gonon & Ortega (2021).

1227 *Proof.* We start by constructing a partition of $\hat{\mathbf{x}}_t$ as in the statement. If $N = 1$, we simply
 1228 have $\hat{\mathbf{x}}_t = [\hat{x}_t] \in \mathbb{R}$. Next, we define the reservoir vector $\tilde{F}_{R,i:j} = (\tilde{F}_i, \dots, \tilde{F}_j)$. Then, for
 1229 $k = 1, j \in \{1, \dots, l_1\}$, and $k = 2, \dots, K-1, j \in \{l_{k-1}+1, \dots, l_k\}$, we have $P_j \hat{\mathbf{x}}_t =$
 1230 $[\hat{x}_t^{(k+1)}, \dots, \hat{x}_t^{(K)}, 0, \dots, 0]$ and $P_j \hat{\mathbf{x}}_t = 0$ for $j = l_{K-1}+1, \dots, N$. Inserting these choices
 1231 into (15), we may rewrite the dynamics as
 1232

$$\hat{\mathbf{x}}_t^{(k)} = \tilde{F}_{l_{k-1}+1:l_k}([\hat{x}_{t-1}^{(k+1)}, \dots, \hat{x}_{t-1}^{(K)}, 0, \dots, 0], \mathbf{z}_t), \quad t \in \mathbb{Z}_-, \tag{35}$$

1233 for $k = 1, \dots, K-1$ and $\hat{\mathbf{x}}_t^{(K)} = \tilde{F}_{l_{K-1}+1:l_K}(0, \mathbf{z}_t)$. In particular, $\hat{\mathbf{x}}_t^{(K)} = \tilde{F}_{l_{K-1}+1:l_K}(0, \mathbf{z}_t)$,
 1234 which depends only on \mathbf{z}_t , is explicitly given for all $t \in \mathbb{Z}_-$, and for all $k = 1, \dots, K-1$, we see
 1235 that $\hat{\mathbf{x}}_t^{(k)}$ only depends on $\hat{\mathbf{x}}_{t-1}^{(k+1)}, \dots, \hat{\mathbf{x}}_{t-1}^{(K)}$. Thus, (15) admits a unique solution which can be ex-
 1236 plicitly obtained from the recursion (35), that is, for all $t \in \mathbb{Z}_-$, we have $\hat{\mathbf{x}}_t^{(K)} = \tilde{F}_{l_{K-1}+1:l_K}(0, \mathbf{z}_t)$,
 1237 $\hat{\mathbf{x}}_t^{(K-1)} = \tilde{F}_{l_{K-2}+1:l_{K-1}}([\hat{\mathbf{x}}_{t-1}^{(K)}, 0, \dots, 0], \mathbf{z}_t)$, ..., $\hat{\mathbf{x}}_t^{(1)} = \tilde{F}_{1:l_1}([\hat{\mathbf{x}}_{t-1}^{(2)}, \dots, \hat{\mathbf{x}}_{t-1}^{(K)}, 0], \mathbf{z}_t)$. This
 1238 proves that \tilde{F} has the echo state property. \square

1242 C.3 PROOF OF THEOREM 4.8
12431244 *Proof.* Without loss of generality we may assume $\varepsilon \leq 1$, because proving (17) for $\varepsilon \leq 1$ also
1245 implies that (17) holds for $\varepsilon > 1$.1246 Let $H_U: (D_d)^{\mathbb{Z}_-} \rightarrow B_m$ be the functional associated to the filter U . Then, as in the proof of Gonon
1247 & Ortega (2021, Theorem 2.1), there exists $K \in \mathbb{N}$ and a continuous function $\bar{G}: (D_d)^{dK} \rightarrow B_m$
1248 such that

1249
$$\sup_{\mathbf{z} \in (D_d)^{\mathbb{Z}_-}} \|H_U(\mathbf{z}) - \bar{G}(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0)\| < \frac{\varepsilon}{4}. \quad (36)$$

1250
1251

1252 Moreover, e.g., by the argument in Gonon & Jacquier (2025, Corollary 4), there exists a function
1253 $G \in C_c^\infty((\mathbb{R}^d)^K, B_m)$ which satisfies

1254
$$\sup_{\mathbf{z} \in (\mathbb{R}^d)^K} \|G(\mathbf{z}) - \bar{G}(\mathbf{z})\| < \frac{\varepsilon}{4}. \quad (37)$$

1255
1256

1257 Next, choose $N = (K-1)d + m$ and consider the recurrent QNN introduced in (4). Denote
1258

1259
$$\bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) = R - 2R[\mathbb{P}_1^{n,\theta^j}(\mathbf{x}, \mathbf{z}) + \mathbb{P}_2^{n,\theta^j}(\mathbf{x}, \mathbf{z})], \quad (\mathbf{x}, \mathbf{z}) \in \mathbb{R}^N \times \mathbb{R}^d \quad (38)$$

1260
1261

1262 the update maps without preprocessing matrices. For $1 \leq i \leq j \leq N$, write $\bar{F}_{R,i:j}^{n,\theta} =$
1263 $(\bar{F}_{R,i}^{n,\theta}, \dots, \bar{F}_{R,j}^{n,\theta})$ and $l_k = m + (k-1)d$ for $k = 1, \dots, K$. Define the constants
1264

1265
$$L_G = \max(\sqrt{d}, \sup_{\mathbf{z} \in (\mathbb{R}^d)^K} \|\nabla G(\mathbf{z})\|) + 1, \quad C_G = 4L_G \left(\sum_{k=2}^K \sum_{j=1}^{K-k+1} (2L_G)^j \right)^{1/2}. \quad (39)$$

1266
1267
1268

1269 Then, as $G \in C_c^\infty((\mathbb{R}^d)^K)$ and the identity is smooth, Corollary 4.5 (applied componentwise)
1270 guarantees that there exist n_K, R_K and $\theta_K \in \Theta^d$ such that
1271

1272
$$\sup_{\mathbf{z} \in D_d} \|\bar{F}_{R_K, l_{K-1}+1:l_K}^{n_K, \theta_K}(0, \mathbf{z}) - \mathbf{z}\| + \sup_{\mathbf{z} \in D_d} \|\nabla \bar{F}_{R_K, l_{K-1}+1:l_K}^{n_K, \theta_K}(0, \mathbf{z}) - \mathbf{1}_d\| < \frac{\varepsilon}{C_G}, \quad (40)$$

1273
1274

1275 and (recursively), for all $k = K-1, \dots, 2$ there exist n_k, R_k and $\theta_k \in \Theta^d$ such that
1276

1277
$$\sup_{(\mathbf{x}, \mathbf{z}) \in [-R_{k+1}, R_{k+1}]^N \times D_d} \|\bar{F}_{R_k, l_{k-1}+1:l_k}^{n_k, \theta_k}(\mathbf{x}, \mathbf{z}) - \mathbf{x}_{1:d}\| + \|\nabla \bar{F}_{R_k, l_{k-1}+1:l_k}^{n_k, \theta_k}(\mathbf{x}, \mathbf{z}) - \mathbf{1}_d\| < \frac{\varepsilon}{C_G}, \quad (41)$$

1278
1279

1280 and there exist n_1, R_1 and $\theta_1 \in \Theta^d$ such that
1281

1282
$$\begin{aligned} \sup_{([\mathbf{z}_{-K+1}, \dots, \mathbf{z}_{-1}], \mathbf{z}_0) \in [-R_2, R_2]^N \times D_d} & \left(\|\bar{F}_{R_1, 1:m}^{n_1, \theta_1}([\mathbf{z}_{-K+1}, \dots, \mathbf{z}_{-1}, 0], \mathbf{z}_0) - G(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0)\| \right. \\ & \left. + \|\nabla \bar{F}_{R_1, 1:m}^{n_1, \theta_1}([\mathbf{z}_{-K+1}, \dots, \mathbf{z}_{-1}, 0], \mathbf{z}_0) - \nabla G(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0)\| \right) < \frac{\varepsilon}{4}. \end{aligned} \quad (42)$$

1283
1284
1285

1286 Without loss of generality we may choose $R = R_1 = \dots = R_K$, since we can always replace
1287 R_k by $\max(R_k, R_{k+1})$ (and hence ultimately replace R_1, \dots, R_K by R) and absorb the change in
1288 an adjusted choice of parameters $\gamma^{i,j}$ (see representation (7)). Moreover, by a similar reasoning
1289 we may assume without loss of generality that $n = n_1 = \dots = n_K$. Indeed, otherwise we may
1290 again choose n to be the maximum of n_1, \dots, n_K , replace n_1, \dots, n_K by n and recover the same
1291 functions (7) by setting surplus terms $i > n_k$ to 0 by appropriate choice of $\gamma^{i,j}$. The extra factor $\frac{n}{n_k}$,
1292 in turn, can be absorbed by modifying the choice of R .1293 Denote by L_k be the best Lipschitz constant for $\bar{F}_{R, l_{k-1}+1:l_k}^{n, \theta_k}$. Then (40)–(42) imply that $L_k \leq$
1294 $\sqrt{d} + \varepsilon \leq L_G$ for $k = K, \dots, 2$ and $L_1 \leq \sup_{\mathbf{z} \in (\mathbb{R}^d)^K} \|\nabla G(\mathbf{z})\| + 1 \leq L_G$. In particular,
1295 $L_G \geq \max(L_1, \dots, L_K)$ is a bound on the Lipschitz constant for all QNNs $\bar{F}_{R, l_{k-1}+1:l_k}^{n, \theta_k}$ and G .

1296 Partition $\hat{\mathbf{x}}_t = [\hat{\mathbf{x}}_t^{(1)}, \dots, \hat{\mathbf{x}}_t^{(K)}] \in \mathbb{R}^m \times (\mathbb{R}^d)^{K-1}$. Using the triangle inequality, we then obtain
1297

$$\begin{aligned}
1298 \quad & \sup_{\mathbf{z} \in (D_d)^{K+1}} \|G(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - \hat{\mathbf{x}}_0^{(1)}\| \\
1299 \quad &= \sup_{\mathbf{z} \in (D_d)^{(K+1)}} \|G(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - \bar{F}_{R,1:m}^{n,\theta}([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}, 0], \mathbf{z}_0)\| \\
1300 \quad &\leq \|G(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - G([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}], \mathbf{z}_0)\| \\
1301 \quad &+ \|G([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}], \mathbf{z}_0) - \bar{F}_{R,1:m}^{n,\theta}([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}, 0], \mathbf{z}_0)\| \\
1302 \quad &\leq L_G \|(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - ([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}], \mathbf{z}_0)\| + \frac{\varepsilon}{4}. \\
1303 \quad & \\
1304 \quad & \\
1305 \quad & \\
1306 \quad & \\
1307 \quad & \\
1308 \quad & \\
1309 \quad & \\
1310 \quad & \\
1311 \quad & \\
1312 \quad & \\
1313 \quad & \\
1314 \quad & \\
1315 \quad & \\
1316 \quad & \\
1317 \quad & \\
1318 \quad & \\
1319 \quad & \\
1320 \quad & \\
1321 \quad & \\
1322 \quad & \\
1323 \quad & \\
1324 \quad & \\
1325 \quad & \\
1326 \quad & \\
1327 \quad & \\
1328 \quad & \\
1329 \quad & \\
1330 \quad & \\
1331 \quad & \\
1332 \quad & \\
1333 \quad & \\
1334 \quad & \\
1335 \quad & \\
1336 \quad & \\
1337 \quad & \\
1338 \quad & \\
1339 \quad & \\
1340 \quad & \\
1341 \quad & \\
1342 \quad & \\
1343 \quad & \\
1344 \quad & \\
1345 \quad & \\
1346 \quad & \\
1347 \quad & \\
1348 \quad & \\
1349 \quad &
\end{aligned} \tag{43}$$

For the last norm, we write

$$\|(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - ([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}], \mathbf{z}_0)\|^2 = \sum_{k=0}^{K-2} \|\mathbf{z}_{-k-1} - \hat{\mathbf{x}}_{-1}^{(K-k)}\|^2 = \sum_{k=2}^K \|\mathbf{z}_{-K+k-1} - \hat{\mathbf{x}}_{-1}^{(k)}\|^2.$$

We proceed by backward induction over k to prove that for all $k = K, \dots, 2$ it holds

$$\|\mathbf{z}_{-K+k+t} - \hat{\mathbf{x}}_t^{(k)}\|^2 \leq \sum_{j=1}^{K-k+1} (2L_G)^j \frac{\varepsilon^2}{C_G^2},$$

for arbitrary $t \in \mathbb{Z}_-$. Indeed, we have

$$\|\mathbf{z}_{-K+k+t} - \hat{\mathbf{x}}_t^{(k)}\|^2 = \|\mathbf{z}_{-K+k+t} - \bar{F}_{R,l_{k-1}+1:l_k}^{n,\theta}([\hat{\mathbf{x}}_{t-1}^{(k+1)}, \dots, \hat{\mathbf{x}}_{t-1}^{(K)}, 0, \dots, 0], \mathbf{z}_t)\|^2$$

and so for $k = K$ it follows that

$$\|\mathbf{z}_{-K+k+t} - \hat{\mathbf{x}}_t^{(k)}\|^2 = \|\mathbf{z}_t - \bar{F}_{R,l_{K-1}+1:l_K}^{n,\theta}(0, \mathbf{z}_t)\|^2 \leq \frac{\varepsilon^2}{C_G^2} \leq 2L_G \frac{\varepsilon^2}{C_G^2}$$

Assume that the bound holds for a fixed $k \in \{K, \dots, 3\}$, then for $k-1$ we estimate (with the notation $f_{k-1} = \bar{F}_{R,l_{k-2}+1:l_{k-1}}^{n,\theta}$)

$$\begin{aligned}
1329 \quad & \|\mathbf{z}_{-K+(k-1)+t} - \hat{\mathbf{x}}_t^{(k-1)}\|^2 = \|\mathbf{z}_{-K+k-2} - f_{k-1}([\hat{\mathbf{x}}_{t-1}^{(k)}, \dots, \hat{\mathbf{x}}_{t-1}^{(K)}, 0, \dots, 0], \mathbf{z}_t)\|^2 \\
1330 \quad & \leq 2 \|\mathbf{z}_{-K+k-2} - f_{k-1}([\mathbf{z}_{-K+k-2}, \hat{\mathbf{x}}_{t-1}^{(k+1)}, \dots, \hat{\mathbf{x}}_{t-1}^{(K)}, 0, \dots, 0], \mathbf{z}_t)\|^2 \\
1331 \quad & + 2 \|f_{k-1}([\mathbf{z}_{-K+k-2}, \hat{\mathbf{x}}_{t-1}^{(k+1)}, \dots, \hat{\mathbf{x}}_{t-1}^{(K)}, 0, \dots, 0], \mathbf{z}_t) - f_{k-1}([\hat{\mathbf{x}}_{-2}^{(k)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}, 0, \dots, 0], \mathbf{z}_t)\|^2 \\
1332 \quad & \leq 2 \frac{\varepsilon^2}{C_G^2} + 2L \|\mathbf{z}_{-K+k-2} - \hat{\mathbf{x}}_{t-1}^{(k)}\|^2 \leq 2 \frac{\varepsilon^2}{C_G^2} + \sum_{j=1}^{K-k} (2L)^{j+1} \frac{\varepsilon^2}{C_G^2} \leq \sum_{j=1}^{K-k+1} (2L)^j \frac{\varepsilon^2}{C_G^2},
\end{aligned}$$

which completes the induction. Therefore, we obtain

$$\begin{aligned}
1340 \quad & \|\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - ([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}], \mathbf{z}_0)\|^2 = \sum_{k=2}^K \|\mathbf{z}_{-K+k-1} - \hat{\mathbf{x}}_{-1}^{(k)}\|^2 \\
1341 \quad & \leq \sum_{k=2}^K \|\mathbf{z}_{-K+k-1} - \hat{\mathbf{x}}_{-1}^{(k)}\|^2 \leq \frac{\varepsilon^2}{C_G^2} \sum_{k=2}^K \sum_{j=1}^{K-k+1} (2L)^j = \frac{\varepsilon^2}{16L_G^2}
\end{aligned}$$

From (43), we thus obtain

$$\begin{aligned}
1347 \quad & \sup_{\mathbf{z} \in (D_d)^{K+1}} \|G(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - \hat{\mathbf{x}}_0^{(1)}\| \\
1348 \quad & \leq L_G \|(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - ([\hat{\mathbf{x}}_{-1}^{(2)}, \dots, \hat{\mathbf{x}}_{-1}^{(K)}], \mathbf{z}_0)\| + \frac{\varepsilon}{4} \leq \frac{\varepsilon}{2}.
\end{aligned} \tag{44}$$

1350 Setting W to be the projection onto the first block $\hat{\mathbf{x}}_0^{(1)}$, (that is, W has zero entries except for
 1351 $W_{i,i} = 1$ for $i = 1, \dots, m$) and putting together (36), (37) and (44) yields
 1352

$$\begin{aligned} 1353 \sup_{\mathbf{z} \in (D_d)^{\mathbb{Z}_-}} \sup_{t \in \mathbb{Z}_-} \|H_U(\mathbf{z}) - H_{\bar{U}_W}(\mathbf{z})\| &\leq \sup_{\mathbf{z} \in (D_d)^{\mathbb{Z}_-}} \|H_U(\mathbf{z}) - \bar{G}(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0)\| \\ 1354 &+ \sup_{\mathbf{z} \in (\mathbb{R}^d)^K} \|G(\mathbf{z}) - \bar{G}(\mathbf{z})\| + \sup_{\mathbf{z} \in (D_d)^{K+1}} \|G(\mathbf{z}_{-K+1}, \dots, \mathbf{z}_0) - H_{\bar{U}_W}(\mathbf{z})\| \\ 1355 &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned} \quad (45)$$

1356 It remains to be shown that (14) has the echo state property. Recall that we partition $\hat{\mathbf{x}}_t =$
 1357 $[\hat{\mathbf{x}}_t^{(1)}, \dots, \hat{\mathbf{x}}_t^{(K)}] \in \mathbb{R}^m \times (\mathbb{R}^d)^{K-1}$. For $k = 1$, $j \in \{1, \dots, l_1\}$, and $k = 2, \dots, K-1$,
 1358 $j \in \{l_{k-1}+1, \dots, l_k\}$, select P_j as the matrix with zero entries, except for $(P_j)_{l,l+l_k} = 1$ for
 1359 $l = 1, \dots, d(K-k)$ and let $P_j = 0$ for $j = l_{K-1}+1, \dots, N$. Then, for $k = 1, j \in \{1, \dots, l_1\}$,
 1360 and $k = 2, \dots, K-1$, $j \in \{l_{k-1}+1, \dots, l_k\}$, we have $P_j \hat{\mathbf{x}}_t = [\hat{\mathbf{x}}_t^{(k+1)}, \dots, \hat{\mathbf{x}}_t^{(K)}, 0, \dots, 0]$ and
 1361 $P_j \hat{\mathbf{x}}_t = 0$ for $j = l_{K-1}+1, \dots, N$. Then, echo state property follows by calling Lemma 4.7.
 1362 Therefore, the approximation bound for the functional (45) immediately implies the corresponding
 1363 bound for the filter (17), which completes the proof of the theorem.
 1364

□

D CONSTRUCTION OF V

1370 In this appendix we provide further details on the choice of V appearing in the quantum circuit. Our
 1371 presentation follows Gonon & Jacquier (2025).

1372 Generally, the matrix $V \in \mathbb{C}^{n_v \times n_v}$ can be any unitary matrix mapping $|0\rangle^{\otimes n}$ to the state $|\psi\rangle =$
 1373 $\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |4i\rangle$ which, for $n \geq 2$, is also explicitly given as $|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle \otimes |00\rangle$.

1374 As $V|0\rangle^{\otimes n} = |\psi\rangle$ is the only property required in the proof, many alternative choices of V are
 1375 possible and one may thus select the one that is most suitable from the perspective of hardware
 1376 requirements or limitations.

1377 **Example** One explicit example for V is given by $V := 2|\varphi\rangle\langle\varphi| - I$, with

$$1378 |\varphi\rangle := \frac{|0\rangle + |\psi\rangle}{\sqrt{2(1 + \langle 0|\psi\rangle)}},$$

1379 where we write $|0\rangle$ in place of $|0\rangle^{\otimes n}$ for brevity here. One easily checks that $V^\dagger = 2|\varphi\rangle\langle\varphi| - I = V$
 1380 and thus $VV^\dagger = V^\dagger V = I$. Furthermore, a straightforward computation yields that

$$\begin{aligned} 1381 V|0\rangle &= (2|\varphi\rangle\langle\varphi| - I)|0\rangle \\ 1382 &= \frac{|0\rangle(1 + \langle\psi|0\rangle) + |\psi\rangle(1 + \langle\psi|0\rangle)}{1 + \langle 0|\psi\rangle} - |0\rangle = |\psi\rangle. \end{aligned}$$

1383 **Construction of $|\psi\rangle$** In the case $n_0 = 0$, there is an explicit construction of ψ in terms of
 1384 Hadamard gates acting on the control qubits. Indeed, for $n \geq 2$, (Gonon & Jacquier, 2025,
 1385 Lemma A.2) shows that

$$1386 |\psi_i\rangle_{n_i} = \left(\bigotimes_{i=0}^{n_i-2} H |0\rangle \right) \otimes |00\rangle.$$

E MONTE CARLO ERROR

1387 In practice, the empirical sampling error leads to an additional error component of order $1/\sqrt{S}$ for
 1388 S independent shots, see, e.g., Qi et al. (2023); Liu et al. (2025). Here, we outline how this Monte
 1389 Carlo error could be taken into account in the present setting.

1404 More specifically, our QNNs in (3) and (4) are defined using probabilities, rather than their Monte
 1405 Carlo estimates

$$1406 \quad \widehat{\mathbb{P}}_m^{n,\theta} := \frac{1}{S} \sum_{s=1}^S \mathbb{1}_{\{m,4+m,\dots,4(n-1)+m\}}(i^{(s)}),$$

1409 with $i^{(s)}$ the measured state in the i -th shot. To obtain refined bounds incorporating the sampling er-
 1410 ror, one would proceed as follows. Denote by $\bar{F}_R^{n,\theta,S}$ the RQNN state map with output probabilities
 1411 estimated by S shots, by \hat{x}^S the associated state and by \bar{U}_S the associated filter.

1412 For the state map itself, the L^2 -error can be directly controlled (as in Gonon & Jacquier (2025)) by

$$1414 \quad \mathbb{E} \left[\int_{\mathbb{R}^N \times \mathbb{R}^d} \left| \bar{F}_{R,j}^{n,\theta}(\mathbf{x}, \mathbf{z}) - \bar{F}_{R,j}^{n,\theta,S}(\mathbf{x}, \mathbf{z}) \right|^2 \mu(d\mathbf{x}, d\mathbf{z}) \right]^{1/2} \\ 1415 \quad \leq 2R \sum_{i=1}^2 \left(\int_{\mathbb{R}^N \times \mathbb{R}^d} \mathbb{E} \left[\left| \mathbb{P}_i^{n,\theta^j}(\mathbf{x}, \mathbf{z}) - \widehat{\mathbb{P}}_i^{n,\theta^j}(\mathbf{x}, \mathbf{z}) \right|^2 \right] \mu(d\mathbf{x}, d\mathbf{z}) \right)^{1/2} \\ 1416 \quad \leq \frac{4R}{\sqrt{S}}, \quad (46)$$

1422 using that $\mathbb{E}[\|\mathbb{E}[X_1] - \frac{1}{S} \sum_{s=1}^S X_s\|^2] = \frac{\text{Var}(X_1)}{S}$ for i.i.d. random variables X_1, \dots, X_S .

1424 For the associated filter, one may proceed as follows. Firstly, (33) in the proof of Theorem 4.6 can
 1425 be adapted to

$$1426 \quad \|\bar{U}_S(\mathbf{z})_t - U(\mathbf{z})_t\| = \|\hat{x}_t^S - \mathbf{x}_t\| = \left\| \bar{F}_R^{n,\theta,S}(\hat{x}_{t-1}^S, \mathbf{z}_t) - F(\mathbf{x}_{t-1}, \mathbf{z}_t) \right\| \\ 1427 \quad \leq \|F(\mathbf{x}_{t-1}, \mathbf{z}_t) - F(\hat{x}_{t-1}^S, \mathbf{z}_t)\| + \left\| F(\hat{x}_{t-1}^S, \mathbf{z}_t) - \bar{F}_R^{n,\theta,S}(\hat{x}_{t-1}^S, \mathbf{z}_t) \right\| \\ 1428 \quad \leq \lambda \|\mathbf{x}_{t-1} - \hat{x}_{t-1}^S\| + \left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n,\theta,S} - \bar{F}_{R,j}^{n,\theta} \right\|_{\infty, M}^2 \right)^{1/2} + \left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n,\theta} - F_j \right\|_{\infty, M}^2 \right)^{1/2} \\ 1429 \quad \leq \lambda \|\mathbf{x}_{t-1} - \hat{x}_{t-1}^S\| + \frac{\sqrt{N} \max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}} + \left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n,\theta,S} - \bar{F}_{R,j}^{n,\theta} \right\|_{\infty, M}^2 \right)^{1/2} \\ 1430 \quad \leq \lambda \|\mathbf{x}_{t-1} - \hat{x}_{t-1}^S\| + \frac{\sqrt{N} \max_{j=1, \dots, N} C_j^\infty}{\sqrt{n}} + \left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n,\theta,S} - \bar{F}_{R,j}^{n,\theta} \right\|_{\infty, M}^2 \right)^{1/2}. \quad (47)$$

1437 The last error term can be bounded as

$$1438 \quad \mathbb{E} \left[\left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n,\theta,S} - \bar{F}_{R,j}^{n,\theta} \right\|_{\infty, M}^2 \right)^{1/2} \right] \leq \left(\sum_{j=1}^N \mathbb{E} \left[\left\| \bar{F}_{R,j}^{n,\theta,S} - \bar{F}_{R,j}^{n,\theta} \right\|_{\infty, M}^2 \right] \right)^{1/2} \leq \frac{C}{\sqrt{S}}$$

1443 for a suitable constant C using techniques from statistical learning theory, provided that $\widehat{\mathbb{P}}_m^{n,\theta}$ is
 1444 Lipschitz continuous as a function of (\mathbf{x}, \mathbf{z}) . Inserting this into (48) and proceeding precisely as in
 1445 the proof of Theorem 4.6 then yields a bound that incorporates also the sampling error.

1446 Alternatively, as the Lipschitz continuity may be hard to verify, we may obtain an L^2 -bound analo-
 1447 gously to Theorem 4.6 as follows. First, using that the shots are independent across evaluations, we
 1448 may apply (46) to estimate

$$1449 \quad \mathbb{E} \left[\left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n,\theta,S}(\hat{x}_{t-1}^S, \mathbf{z}_t) - \bar{F}_{R,j}^{n,\theta}(\hat{x}_{t-1}^S, \mathbf{z}_t) \right\|^2 \right)^{1/2} \right] \\ 1450 \quad \leq \left(\sum_{j=1}^N \mathbb{E} \left[\left\| \bar{F}_{R,j}^{n,\theta,S}(\hat{x}_{t-1}^S, \mathbf{z}_t) - \bar{F}_{R,j}^{n,\theta}(\hat{x}_{t-1}^S, \mathbf{z}_t) \right\|^2 \right] \right)^{1/2} \\ 1451 \quad \leq \sqrt{N} \frac{4R}{\sqrt{S}},$$

1458 where the expectations are taken with respect to sampling the probabilities to evaluate
 1459 $\bar{F}_{R,j}^{n,\theta,S}(\hat{x}_{t-1}^S, \mathbf{z}_t)$.
 1460

1461 Next, by proceeding as in (48), we may estimate

$$\begin{aligned}
 1462 \mathbb{E}[\|\bar{U}_S(\mathbf{z})_t - U(\mathbf{z})_t\|] &\leq \lambda \|\mathbf{x}_{t-1} - \hat{\mathbf{x}}_{t-1}^S\| + \frac{\sqrt{N} \max_{j=1,\dots,N} C_j^\infty}{\sqrt{n}} \\
 1463 &\quad + \mathbb{E} \left[\left(\sum_{j=1}^N \left\| \bar{F}_{R,j}^{n,\theta,S}(\hat{\mathbf{x}}_{t-1}^S, \mathbf{z}_t) - \bar{F}_{R,j}^{n,\theta}(\hat{\mathbf{x}}_{t-1}^S, \mathbf{z}_t) \right\|^2 \right)^{1/2} \right] \\
 1464 &\leq \lambda \|\mathbf{x}_{t-1} - \hat{\mathbf{x}}_{t-1}^S\| + \frac{\sqrt{N} \max_{j=1,\dots,N} C_j^\infty}{\sqrt{n}} + \sqrt{N} \frac{4R}{\sqrt{S}}
 \end{aligned} \tag{48}$$

1469 with the expectations again taken with respect to sampling the probabilities to evaluate
 1470 $\bar{F}_{R,j}^{n,\theta,S}(\hat{\mathbf{x}}_{t-1}^S, \mathbf{z}_t)$. In particular, taking expectations also with respect to a random process \mathbf{Z} (taking
 1471 values in $(D_d)^{\mathbb{Z}_-}$) and sampling at each evaluation, the estimate (48) and the same arguments as in
 1472 the proof of Theorem 4.6 yield the bound

$$\sup_{t \in \mathbb{Z}_-} \mathbb{E}[\|U^F(\mathbf{Z})_t - \bar{U}_S(\mathbf{Z})_t\|] \leq \frac{1}{1-\lambda} \left(\frac{\sqrt{N} \max_{j=1,\dots,N} C_j^\infty}{\sqrt{n}} + \sqrt{N} \frac{4R}{\sqrt{S}} \right). \tag{49}$$

1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511