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ABSTRACT

Quantum reservoir computing uses the dynamics of quantum systems to pro-
cess temporal data, making it particularly well-suited for machine learning with
noisy intermediate-scale quantum devices. Recent developments have introduced
feedback-based quantum reservoir systems, which process temporal information
with comparatively fewer components and enable real-time computation while
preserving the input history. Motivated by their promising empirical performance,
in this work, we study the approximation capabilities of feedback-based quantum
reservoir computing. More specifically, we are concerned with recurrent quan-
tum neural networks, which are quantum analogues of classical recurrent neural
networks. Our results show that regular state-space systems can be approximated
using quantum recurrent neural networks without the curse of dimensionality and
with the number of qubits only growing logarithmically in the reciprocal of the
prescribed approximation accuracy. Notably, our analysis demonstrates that quan-
tum recurrent neural networks are universal with linear readouts, making them
both powerful and experimentally accessible. These results pave the way for prac-
tical and theoretically grounded quantum reservoir computing with real-time pro-
cessing capabilities.

1 INTRODUCTION

Recent advances in quantum computing have led to a rapid development of quantum machine learn-
ing methods. These methods aim to exploit the potential computational speed-up and reduced com-
plexity offered by quantum computing for machine learning purposes. For learning problems with
temporal structure, quantum reservoir computing (QRC) has emerged as a promising approach for
exploiting noisy intermediate-scale quantum (NISQ) technologies. In contrast to classical machine
learning methods based on bits valued in {0, 1}, quantum bits (qubits) can be in a continuum of
states. QRC aims to exploit this fundamental difference to build efficient machine learning methods
for time series prediction and learning.

In this paper, we are concerned with recurrent quantum neural networks (RQNN), a particular type
of quantum reservoir computing method. RQNNs are a quantum analogue to classical recurrent
neural networks. RQNNs are built from quantum neural networks (QNNs), with weights and biases
typically realized via quantum circuits. Thus, these networks can be evaluated directly on quantum
computers. Thereby, quantum machine learning aims to achieve a significant increase in neural
network expressivity and computational speed-up in inference and training.

Motivated by their promising empirical performance, in this work, we study the approximation
capabilities of feedback-based quantum reservoir computing methods and, specifically, RQNNs. In
particular, our work provides precise bounds on the number of qubits and the size of the underlying
quantum circuit that is required to guarantee a prescribed approximation accuracy. Our results show
that QRNNs can approximate regular state-space systems using a quantum circuit with qubit number
only growing logarithmically in the reciprocal of the prescribed approximation accuracy and with
error rates not suffering from the curse of dimensionality. Thereby, our results pave the way for
theoretically grounded quantum reservoir computing with real-time processing capabilities.
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1.1 RELATED LITERATURE

Quantum reservoir computing methods have been extensively studied for a variety of time-series
prediction and learning tasks, employing different architecture types such as online protocols (Mu-
jal et al., 2023; Franceschetto et al., 2024), mid-circuit measurements and reset operations (Hu et al.,
2024; Murauer et al., 2025), feedback protocols (Kobayashi et al., 2024), QRC with quantum mem-
ristors (Spagnolo et al., 2022) and hybrid QRC techniques (Pfeffer et al., 2022; 2023). We provide
a detailed discussion of QRC methods in Appendix A.

Despite these promising developments, key questions regarding universal approximation capabilities
and expressivity of feedback-driven QRC methods have not been addressed in the literature. For
classical neural networks, qualitative and quantitative universal approximation theorems have been
extensively studied, with seminal works including, e.g. Hornik (1991); Barron (1993); Yarotsky
(2017). Universality results for the dynamic reservoir computing setting have been obtained in
(Grigoryeva & Ortega, 2018a;b; Gonon & Ortega, 2020; 2021; Gonon et al., 2023) for echo state
networks, state-affine systems and linear systems with polynomial / neural network readouts. For
(feedforward) QNNs first qualitative results on universal approximation properties of QNNs have
been proved only very recently Pérez-Salinas et al. (2020); Schuld et al. (2021). Subsequently,
quantitative approximation error bounds for feedforward QNNs were proved in Gonon & Jacquier
(2025); Yu et al. (2024); Aftab & Yang (2024).

For RQNNs, no quantitative approximation error bounds have been previously available in the lit-
erature. Moreover, previous universality results concerning QRC models have relied on the use of
polynomial output layers (Chen & Nurdin, 2019; Chen et al., 2020; Nokkala et al., 2021; Sannia
et al., 2024b;a), which yield a polynomial algebra that can then be used with the Stone-Weierstrass
theorem to obtain universality statements. Nevertheless, most numerical and experimental imple-
mentations of reservoir computers use linear output layers due to their simplicity and fast training.

1.2 CONTRIBUTIONS

For applications of QRC methods in learning tasks with temporal dependence, a precise understand-
ing of RQNN approximation capabilities is essential. In this paper, we derive approximation error
bounds and prove universality statements for RQNN families with a linear output layer and in the
context of the feedback protocol. Universality refers to the ability of these families to uniformly
approximate arbitrarily well a large category of dynamic processes, so-called fading memory in-
put/output systems. Thereby, we contribute to a precise understanding of RQNN approximation
capabilities in several aspects.

• We provide RQNN approximation error bounds for regular state-space systems. Our first
main result, Theorem 4.6, shows that RQNNs are able to approximate regular state-space
systems without the curse of dimensionality, using quantum circuits with qubit number
only growing logarithmically in the reciprocal of the prescribed approximation accuracy.

• In our second main result, Theorem 4.8, we prove that RQNNs can uniformly approximate
the arbitrary fading memory, causal, and time-invariant filters. In particular, RQNNs have
approximation properties as competitive as those of popular reservoir computing/state-
space system families like echo state networks, state-affine systems, or linear systems with
polynomial/neural network readouts.

• To prove these results, we first derive novel qualitative and quantitative approximation error
results for using feedforward QNNs to approximate functions and their derivatives (see
Proposition 4.4 and Corollary 4.5).

In comparison to Gonon & Jacquier (2025), our RQNNs introduce memory through a feedback
loop. Mathematically analysing our RQNNs architecture hence requires a novel, intricate analysis
of QNN approximations of functions jointly with their derivatives. Moreover, approximation analy-
sis in the temporal domain is inherently much more challenging due to the feedback loop. Proving
Theorems 4.6 and 4.8 thus requires new techniques specifically tailored to deal with this situation
(see Appendix C). Most previous literature on RC and QRC universality (Grigoryeva & Ortega,
2018a;b; Gonon & Ortega, 2020; 2021; Chen & Nurdin, 2019; Chen et al., 2020; Nokkala et al.,
2021; Sannia et al., 2024b;a) implicitly assumes the search for an optimal model within a class in
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which all parameters are estimated. Also our results are formulated for variational quantum cir-
cuits for which all parameters are trainable. Nevertheless, the obtained results and developed proof
techniques also promise to be useful for QRC systems in which certain parameters in the recurrent
layer are randomly generated. Our RQNN architecture builds on and extends the feedforward QNN
architecture introduced in Gonon & Jacquier (2025), which also admits results for the randomized
setting. Hence, combining the techniques developed here with these randomized architectures may
provide fruitful for studying randomization in the dynamic quantum reservoir computing setting.
Moreover, the obtained approximation error bounds may serve as a crucial ingredient for bounding
the overall generalization error of QRC methods, by combining our results with suitable risk bounds
as obtained in other contexts in Gonon et al. (2020); Chmielewski et al. (2025).

1.3 OUTLINE

The structure of the paper is as follows. Section 2 introduces background on filters, functionals,
fading-memory and echo state properties. Section 3 describes the RQNN model, a recurrent QNN
with state feedback, building on the feedforward QNN architecture introduced in Gonon & Jacquier
(2025). Section 4.1 derives QNN approximation error bounds for functions and their first deriva-
tives. We then use these results (see Proposition 4.4 and Corollary 4.5) to study the properties of
the RQNN state maps in the uniform approximation of more general state equations as well as in a
square-integrable sense. These results are then used in Section 4.2 to prove the universal uniform
approximation properties of the filters associated with RQNN systems. More specifically, in Theo-
rem 4.6 we provide filter approximation bounds that show that RQNNs can uniformly approximate
the filters induced by any contracting Barron-type state-space system. Finally, Theorem 4.8 of Sec-
tion 4.3 extends this universality property to the much larger category of arbitrary fading memory,
causal, and time-invariant filters. The paper concludes with Section 5, where the main contributions
and outlook of the paper are summarized.

2 BACKGROUND ON FILTERS AND FUNCTIONALS

We start by introducing the input-output maps to be learnt in the dynamic setting. In a static context,
input-output maps are given by functions of the form f : Rd → Rm. For learning with temporal
dependence, the relevant input-output maps are filters and functionals defined on sequences.

Specifically, let (Rn)Z denote the set of infinite real sequences of the form z =
(. . . , z−1, z0, z1, . . .), zi ∈ Rn, i ∈ Z; (Rn)Z− is the subspace consisting of left infinite sequences:
(Rn)Z− = {z = (. . . , z−2, z−1, z0) | zi ∈ Rn, i ∈ Z−}. Analogously, (Dn)

Z and (Dn)
Z− stand

for infinite and semi-infinite sequences, with elements in the subset Dn ⊂ Rn. Let Dn ⊂ Rn and
BN ⊂ RN . We refer to the maps of the type U : (Dn)

Z −→ (BN )Z as filters and to those like
H : (Dn)

Z −→ BN (or H : (Dn)
Z− −→ BN ) as functionals. A filter U : (Dn)

Z −→ (BN )Z is
called causal when for any two elements z,w ∈ (Dn)

Z that satisfy that zτ = wτ for any τ ≤ t, for
a given t ∈ Z, we have that U(z)t = U(w)t. Let Tτ : (Dn)

Z −→ (Dn)
Z, τ ∈ Z be the time delay

operator defined by Tτ (z)t := zt−τ . The filter U is called time-invariant when it commutes with
the time delay operator, that is, Tτ ◦ U = U ◦ Tτ , for any τ ∈ Z, with the two operators Tτ defined
in the appropriate sequence spaces. Finally, there is a bijection between causal time-invariant filters
and functionals on (Dn)

Z− , and we can use them interchangeably (Grigoryeva & Ortega, 2018b).

A specific class of filters is given by state-space systems (such as recurrent neural networks) deter-
mined by two maps, namely the recurrent layer or the state map F : RN ×Rn −→ RN , n,N ∈ N,
and a readout or observation map h : RN → Rm, m ∈ N, given by

xt = F (xt−1, zt),

yt = h(xt),
(1)

where t ∈ Z, zt denotes the input, xt ∈ RN is the state vector, and yt ∈ Rm is the output vector.

Consider now subsets BN ⊂ RN and Dn ⊂ Rn and a recurrent layer defined on them, that is,
F : BN ×Dn −→ BN and h : BN → Rm. Denote byDm := h(BN ) ⊂ Rm. The recurrent system
F is said to have the echo state property with respect to inputs in (Dn)

Z when for any z ∈ (Dn)
Z

there exists a unique element x ∈ (BN )
Z that satisfies the first equation in (1), for each t ∈ Z.

When the echo state property holds, a unique filter UF : (Dn)
Z −→ (BN )Z can be associated to
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the recurrent system determined by F , namely, UF (z)t := xt ∈ BN , for all t ∈ Z. We will denote
by UF

h : (Dn)
Z −→ (Dm)Z the corresponding filter determined by the entire recurrent system, that

is, UF
h (z)t = h

(
UF (z)t

)
:= yt ∈ Dm, for all t ∈ Z. The filters UF and UF

h are causal and
time-invariant by construction. The echo state property is much related with the so-called fading
memory property defined as the continuity of UF

h with respect to weighted norms in its domain
and codomain (Boyd & Chua, 1985) or the product topologies when Dn and Dm are compact
(Grigoryeva & Ortega, 2018b). It can be shown that when Dm is compact, the echo state property
implies the fading memory property (Manjunath, 2020; Ortega & Rossmannek, 2025b); see Ortega
& Rossmannek (2025c) for a comprehensive account of the dynamical implications of the fading
memory property as well as Ortega & Rossmannek (2025a) for a stochastic version.

3 RECURRENT QUANTUM NEURAL NETWORK ARCHITECTURE

Before going into details about the considered RQNN architecture, let us first explain the basic
working principle of feedforward QNNs built in quantum circuits. A QNN is built by transforming
quantum bits (qubits) in a parametric quantum circuit. Each qubit is in state |ψ⟩ = α |0⟩+ β |1⟩ for
some α ∈ C, β ∈ C with |α|2 + |β|2 = 1 and with elementary quantum bit states |0⟩ and |1⟩. For
a circuit with n qubits, at any given point in the circuit, the circuit state can thus be identified with a
vector in CnU for nU = 2n. The quantum state |ψ⟩ can be transformed by applying a quantum gate,
that is, a unitary matrix U ∈ CnU×nU . A QNN now applies quantum gates U(x,θ) that depend on the
initial data and neural network parameters and transforms the circuit accordingly. The QNN output
is obtained by measuring the final quantum state after applying the circuit quantum gates.

Next, we introduce in detail the employed RQNN architecture. Our recurrent quantum circuit is
constructed based on two parametric quantum gates U and V, which we now introduce. The con-
struction extends the feedforward QNN architecture introduced in Gonon & Jacquier (2025) to a
recurrent setting by feeding back the network’s state.

Construction of U. For δ, γ ∈ [0, 2π] and α ∈ R, denote by Rx(δ), Ry(γ), and Rz(α) the rotations
around the X-, Y-and the Z-axis, corresponding to angles δ, γ and α, respectively, and obtained as
the exponentials of the Pauli matrices:

Rx(δ) :=

(
cos
(
δ
2

)
−i sin

(
δ
2

)
−i sin

(
δ
2

)
cos
(
δ
2

) ) , Ry(γ) :=
(
cos
(
γ
2

)
− sin

(
γ
2

)
sin
(
γ
2

)
cos
(
γ
2

) ) , Rz(α) :=
(
e−iα2 0
0 ei

α
2

)
.

For a given accuracy parameter n ∈ N, consider weights a = (a1, . . . ,an) ∈ (Rd+N )n, b =
(b1, . . . , bn) ∈ Rn and γ = (γ1, . . . , γn) ∈ [0, 2π]n. For i = 1, . . . , n, we define parametric gate
maps U(i)1 : RN × Rd → C2×2 that map a current system state x and a current observation z to a
rotation gate. Gate map i depends on parameters ai, bi and is defined by

U
(i)
1 (x, z) := H Rz

(
−bi
)
Rz
(
−aiN+dzd

)
· · · Rz

(
−aiN+1z1

)
Rz
(
−aiNxN

)
· · · Rz

(
−ai1x1

)
H

for any x = (x1, . . . , xN ) ∈ RN and z = (z1, . . . , zd) ∈ Rd, where H is the Hadamard gate. We
may rewrite

U
(i)
1 (x, z) = Rx

(
δi
)
, δi := −bi − aiN+dzd · · · − aiN+1z1 − aiNxN · · · − ai1x1.

Moreover, we also define the gates U
(i)
2 := Ry

(
γi
)

and denote the circuit parameters by θ =

(ai, bi, γi)i=1,...,n ∈ Θ := (Rd+N × R× [0, 2π])n.

With these notations, we are now ready to define the key element of our parametric quantum circuit,
the gate U := Uθ(x, z). U is defined as a block matrix built from the gates Ū(i)(x, z) = U

(i)
1 (x, z)⊗

U
(i)
2 as follows:

Uθ(x, z) :=



Ū(1)(x, z) 04×4 04×4 · · · 04×4 04×n0

04×4 Ū(2)(x, z) 04×4 · · · 04×4

...
...

. . .
...

...

04×4 · · · 04×4 Ū(n−1)(x, z) 04×4

...
04×4 · · · · · · 04×4 Ū(n)(x, z) 04×n0

0n0×4 · · · · · · · · · 0n0×4 1n0×n0


.
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Here, n0 is chosen as the smallest natural number such that the matrix dimension nU = 4n + n0 is
a power of 2, that is, nU = 2n. It can be easily shown that n0 = 4κ with κ ∈ N, since 4n + n0
and 2n + n0/2 must be even for n ≥ 2. Then, U ∈ CnU×nU is a unitary quantum gate operating on
n = log2(nU) = 2 + log2(n+ κ) = ⌈log2(2n)⌉ qubits with a diagonal-block structure:

Uθ(x, z) =

n−1∑
i=0

|i⟩ ⟨i| ⊗ Ū(i+1)(x, z) +

n+κ−1∑
i=n

|i⟩ ⟨i| ⊗ 14×4.

These unitary operators with a block structure are known as uniformly controlled quantum gates.
They are present in many quantum algorithms and are used to decompose general unitary gates and
locally prepare arbitrary quantum states (Möttönen et al., 2004; Mottonen et al., 2004; Bergholm
et al., 2005; Arrazola et al., 2022; Park et al., 2019). They are defined as multi-controlled unitaries
where each unitary block targets a set of qubits, two qubits in this case, while the other log2(n+ κ)
qubits act as control qubits. Multi-controlled unitaries are applied depending on the state of the con-
trol qubits, which are unchanged, and only modify the target qubits. These operations generalize the
CNOT gate for two qubits, in that we can now have several control and target qubits. Notice that the
block structure of the unitary Uθ arises from indexing the targets as the lowest-order bits. Recently,
efficient decompositions of multi-controlled unitaries have been proposed in terms of the number
of single-qubit and two-qubit gates (Zindorf & Bose, 2024; 2025), as well as for approximations of
the multi-controlled gate (Silva et al., 2024). Code implementations of these quantum gates can be
found in the Qclib library (Araujo et al., 2023). Finally, the identity blocks 14×4 do not introduce
additional gates into the quantum circuit, so the effective circuit can be reduced to the application
of the Ū(i) gates. However, the number of control qubits is fixed by log2(n+ κ) and we need all of
them to compute the output probabilities, as we will see below.

Construction of V. Next, let V ∈ CnU×nU be any unitary matrix mapping |0⟩⊗n to the state |ψ⟩ =
1√
n

∑n−1
i=0 |4i⟩ which, for n ≥ 2, is also explicitly given as |ψ⟩ = 1√

n

∑n−1
i=0 |i⟩ ⊗ |00⟩. Note that

different choices of V are possible and the only required property is V |0⟩⊗n
= |ψ⟩. We refer to

Appendix D for an example.

Measuring circuit outputs. We can now measure the state of the n-qubit system after applying
the gates V and U. The possible states that we could measure are given by 0, . . . , nU − 1 (in binary).
By running the circuit repeatedly, we can now obtain (up to well-controlled Monte Carlo error, see
Appendix E) the probabilities Pn

m that the measured state is in {m, 4 +m, . . . , 4(n− 1) +m}, for
m ∈ {0, 1, 2, 3}, where m is the binary state of the last two qubits (the target qubits).

More formally, consider the unitary gate map C(x, z) = Cn,θ(x, z) := Uθ(x, z)V acting on n =

2 + log2(n+ κ) qubits. This circuit acts on the initial state |0⟩⊗n via the quantum gates V and U as

Cn,θ(x, z) |0⟩⊗n
=

1√
n

n−1∑
i=0

|i⟩ ⊗ U
(i+1)
1 (x, z) |0⟩ ⊗ U

(i+1)
2 |0⟩ .

Then, we measure

Pn,θ
m = Pn,θ

m (x, z) := P
(
”Cn,θ(x, z) |0⟩⊗n ∈ {m, 4 +m, . . . , 4(n− 1) +m}”

)
. (2)

This is the sum of the probabilities of being in the states |i⟩ ⊗ |m⟩, where i = 0, . . . , n− 1. That is,

Pn,θ
m (x, z) =

1

n

n∑
i=1

∣∣∣⟨m|
(
U
(i)
1 (x, z) |0⟩ ⊗ U

(i)
2 |0⟩

)∣∣∣2 .
Parallel circuits. With n (or equivalently n) fixed, the quantum circuit introduced above is
uniquely defined by the choice of circuit parameters θ ∈ Θ. In what follows, we will now run
N such circuits in parallel, each representing a component of the state map F in (1). Each circuit
is described by its parameters θj ∈ Θ, j ∈ {1, . . . , N}. The circuit outputs then induce maps
Pn,θj

m : RN × Rd → [0, 1] by the circuit output probabilities (2) with parameters for the j-th circuit
given by θ = θj .

5
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Figure 1: Schematic representation of the j-th circuit given by parameters θj ∈ Θ, j ∈ {1, . . . , N}.

Recurrent quantum neural networks (RQNN). With these ingredients, we can now define the
RQNN that we will consider. Given the gate map Cn,θ andR > 0, we define F̄n,θ

R : RN×Rd → RN

by its component maps F̄n,θ
R = (F̄n,θ

R,1 , . . . , F̄
n,θ
R,N ). For j = 1, . . . , N , the j-th component map

F̄n,θ
R,j : RN × Rd → R is defined by

F̄n,θ
R,j (x, z) := R− 2R[Pn,θj

1 (x, z) + Pn,θj

2 (x, z)], (x, z) ∈ RN × Rd, (3)

with θ = (θ1, . . . ,θN ) ∈ ΘN . Our recurrent quantum neural network (RQNN) is then defined
by the state-space system associated to the state map F̄n,θ

R

x̂t = F̄n,θ
R (x̂t−1, zt), t ∈ Z−. (4)

Figure 1 provides a schematic representation of how the RQNN acts at each time step for the j-
th circuit: at any time t, the system is initialized, the gates V and Uθj (x̂t−1, zt) are applied, and
the system is measured. This process is repeated to estimate the probabilities Pn,θj

1 (x̂t−1, zt) and
Pn,θj

2 (x̂t−1, zt), which are aggregated into the network output F̄n,θ
R,j (x̂t−1, zt) according to (3).

Once this is done for all j ∈ {1, . . . , N}, the network state x̂t is stored to be used as feedback for
the next time step t+ 1.

In the next paragraphs, we aim to address the following questions:

• Can we choose the parameters θ in such a way that the system determined by (4) satisfies
the echo state property?

• Can the family of systems determined by equations of the type (4) approximate general
state-space systems arbitrarily well? More specifically, given an arbitrary state-space map
xt = F (xt−1, zt) with F : RN ×Rd → RN as general as possible, can it be approximated
by equations of the type (4)?

4 RECURRENT QUANTUM NEURAL NETWORK UNIVERSALITY

This section contains approximation guarantees and universality results for the recurrent quantum
neural network (RQNN) family. To achieve this, in Section 4.1 we first prove refined approxi-
mation error bounds (that generalize those in Gonon & Jacquier (2025)) for feedforward quantum
neural networks (QNNs) that allow us to control the error committed when approximating a func-
tion and its derivatives simultaneously, a crucial ingredient for analysing the RQNN feedback loop.
These error bounds show how recurrent QNNs can be used to approximate state-space maps F
arbitrarily well as long as these are sufficiently smooth and satisfy Barron-type integrability condi-
tions like, for example,

∫
RN×Rd ξ

2
i |F̂j(ξ)|dξ < ∞, for i = 1, . . . , N + d and j = 1, . . . , N , or

6
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Iq =
∫
RN×Rd ∥ξ∥q|F̂j(ξ)|dξ < ∞, for some q ≥ 2 (see Proposition 4.2 and Corollary 4.3 below);

RQNN state maps are hence universal in that category. These bounds are devised with respect to L∞

and L2-type norms. As we shall prove, in the L∞ case, the universality of the RQNN family still
holds with respect to state maps that do not necessarily satisfy the Barron condition, even though
in that framework we do not formulate approximation bounds. Finally, in the last two sections, we
exploit all these results on the approximation of state maps to obtain universality statements and
error bounds for the approximation of arbitrary causal, time-invariant, and fading memory filters
using a modified recurrent QNN. In addition to the tools developed here, our proofs of these results
rely on techniques from Gonon & Ortega (2020; 2021) and the overall strategy is reminiscent of
the so-called internal approximation approach introduced in Grigoryeva & Ortega (2018b, Theorem
3.1 (iii)) for echo state networks, which consists of obtaining approximation results for filters out of
statements of that type for the state maps that generate them.

The approximation rate in all our results is free from the curse of dimensionality: the error decays
as 1√

n
as we increase n, with this rate of decay being independent of the input dimension d and the

state space dimension N . Moreover, the required number of qubits n = ⌈log2(2n)⌉ is only grow-
ing logarithmically in the accuracy parameter n. Put differently, our circuit requires only O(ε−2)
weights and O(⌈log2(ε−1)⌉) qubits suffices to achieve approximation error ε > 0 when approxi-
mating functions with sufficiently integrable Fourier transforms.

4.1 RQNN APPROXIMATION OF STATE-SPACE MAPS AND THEIR DERIVATIVES

As a first step, we aim to establish RQNN approximation results for a function jointly with its
derivatives. Denote by FR the class of integrable functions f : RN ×Rd → R with Fourier integral
bounded above by a constant R > 0, that is,

F :=
{
f : RN × Rd → R : f ∈ C

(
RN × Rd

)
∩ L1

(
RN × Rd

)
, ∥f̂∥1 <∞

}
, (5)

FR :=
{
f ∈ F , with ∥f̂∥1 ≤ R

}
, for R > 0. (6)

Here, for a continuous and integrable function f : RN × Rd → R we denote its Fourier transform
by f̂(ξ1, ξ2) :=

∫
RN×Rd e

−2πi(y1,y2)·(ξ1,ξ2)f(y1,y2)dy1dy2, with (ξ1, ξ2) ∈ RN × Rd.

Our first result derives a representation for the QRNN output.
Proposition 4.1. For any n ∈ N, j = 1, . . . , N , θ = (θ1, . . . ,θN ) ∈ ΘN with θj =
(ai,j , bi,j , γi,j)i=1,...,n ∈ Θ, the RQNN introduced in (3) can be represented as

F̄n,θ
R,j (x, z) =

1

n

n∑
i=1

R cos
(
γi,j
)
cos
(
bi,j + ai,j · (x, z)

)
, for all (x, z) ∈ RN × Rd. (7)

Let µ be an arbitrary probability measure on (RN × Rd,B(RN × Rd)). Recall the notation

∥f − g∥L2(µ) :=

(∫
RN×Rd

|f(x, z)− g(x, z)|2 µ(dx,dz)
)1/2

.

Our next result provides an approximation error bound for the QRNN state map jointly with its
derivatives. The proof is provided in Appendix B.2.
Proposition 4.2. Let R > 0 and suppose F = (F1, . . . , FN ) : RN × Rd → RN is continu-
ously differentiable and satisfies Fj ∈ FR and ∂iFj ∈ F and

∫
RN×Rd ξ

2
i |F̂j(ξ)|dξ < ∞ for

i = 1, . . . , N + d and j = 1, . . . , N . Then, for any n ∈ N, there exists θ ∈ ΘN such that∥∥∥F̄n,θ
R,j − Fj

∥∥∥2
L2(µ)

+

N+d∑
i=1

∥∥∥∂iF̄n,θ
R,j − ∂iFj

∥∥∥2
L2(µ)

≤ Cj

n
,

for any j ∈ {1, . . . , N}, where Cj = ∥F̂j∥21 + 4π2∥F̂j∥1
∫
RN×Rd

∑N+d
i=1 ξ2i |F̂j(ξ)|dξ.

Next, we show that it is also possible to also obtain approximation results for QNNs with bounded
network coefficients. The proof is provided in Appendix B.3.

7
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Corollary 4.3. In the setting of Proposition 4.2, assume, in addition, that
∫
RN×Rd ∥ξ∥q|F̂j(ξ)|dξ <

∞ for some q ≥ 2. Then, for any n ∈ N, there exists θ ∈ Θ such that for any j ∈ {1, . . . , N},∥∥∥F̄n,θ
R,j − Fj

∥∥∥2
L2(µ)

+

N+d∑
i=1

∥∥∥∂iF̄n,θ
R,j − ∂iFj

∥∥∥2
L2(µ)

≤ C̄j

n
,

where C̄j = 3Cj . Moreover, we can choose θ = (θ1, . . . ,θN ) ∈ ΘN with θj =
(ai,j , bi,j , γi,j)i=1,...,n in such a way that for all i = 1, . . . , n, j = 1 . . . , N ,

∥ai,j∥ ≤ 2π

(
3n∥F̂j∥−1

1

∫
RN×Rd

∥ξ∥q|F̂j(ξ)|dξ
) 1

q

. (8)

Next, we complement the L2(RN × Rd, µ)-error bound in Proposition 4.2 with a uniform error
bound on compact sets. For M > 0 and f, g ∈ C(RN × Rd) denote

∥f − g∥∞,M := sup
(x,z)∈[−M,M ]N×[−M,M ]d

|f(x, z)− g(x, z)| .

Proposition 4.4. Let R,M > 0 and suppose F = (F1, . . . , FN ) is continuously differentiable and
satisfies Fj ∈ FR and ∂iFj ∈ F and

∫
RN×Rd ∥ξ∥4|F̂j(ξ)|dξ <∞ for j = 1, . . . , N . Then, for any

n ∈ N, there exists θ ∈ Θ such that for any j ∈ {1, . . . , N},∥∥∥F̄n,θ
R,j − Fj

∥∥∥
∞,M

+

N+d∑
i=1

∥∥∥∂iF̄n,θ
R,j − ∂iFj

∥∥∥
∞,M

≤
C∞

j√
n
, (9)

where C∞
j = 2(π+ 1)∥F̂j∥1 + (8πM + 4π2)(N + d)

1
2 ∥F̂j∥

1
2
1 I

1/2
2,j + 16Mπ2(N + d)∥F̂j∥1/21 I

1/2
4,j

for Iq,j =
∫
RN×Rd ∥ξ∥q|F̂j(ξ)|dξ <∞.

The proof can be found in Appendix B.4. Finally, we obtain a qualitative universal approximation
result for QNNs jointly with their derivatives. The proof can be found in Appendix B.5.
Corollary 4.5. Let F = (F1, . . . , FN ) be continuously differentiable. Then for any ε > 0 and
X ⊂ RN × Rd compact there exist n ∈ N, R > 0 and θ ∈ Θ such that for any j ∈ {1, . . . , N},
F̄n,θ
R,j satisfies

sup
(x,z)∈X

|Fj(x, z)− F̄n,θ
R,j (x, z)|+ ∥∇Fj(x, z)−∇F̄n,θ

R,j (x, z)∥ ≤ ε. (10)

4.2 RECURRENT QNN APPROXIMATION BOUNDS FOR STATE-SPACE FILTERS

The results in the previous section show that the family of RQNNs that were introduced in (3) is
capable of approximating arbitrarily well the very general class of continuously differentiable state-
space maps with bounded Fourier transform, together with their derivatives. These approximations
hold with respect to both the L2 norm (Proposition 4.2 and Corollary 4.3) and the L∞ norm on
compacta (Proposition 4.4 and Corollary 4.5). As in the internal approximation approach introduced
in Grigoryeva & Ortega (2018b, Theorem 3.1 (iii)), we will use the uniform RQNN approximation
results for the state maps to conclude similar uniform approximation results for the corresponding
filters under additional hypotheses that guarantee that those exist.

Consider a state-space system

xt = F (xt−1, zt), t ∈ Z−, (11)

with state process (xt)t∈Z− valued in RN , input process (zt)t∈Z− valued in Rd and F : RN ×Rd →
RN . We work under the assumption that F is contractive and satisfies Barron-type integrability
conditions (Barron, 1992; 1993; Barron & Klusowski, 2018). Then, e.g., Proposition 1 and Remark 2
in Gonon et al. (2020) imply that, for any compact Dd ⊂ Rd, the associated filter UF : (Dd)

Z− →
(BN )Z− induced by the restriction of F to BN ×Dd is well-defined and continuous.

Our next result shows that among the RQNNs that we discussed in Proposition 4.4 there exist sys-
tems that have the echo state property and hence have a filter associated. More importantly, those

8
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filters can be used to uniformly approximate any of the filters corresponding to the general systems
introduced above in (11) as long as they satisfy a Barron-type integrability condition and are suffi-
ciently contractive. The proof can be found in Appendix C.1. Here, ∥ · ∥2 is the spectral norm. In
particular, this result shows that the error rate is free from the curse of dimensionality: the error de-
cays as 1√

n
as we increase n, with this rate of decay being independent of the input dimension d and

the state space dimension N . Thus, the RQNN requires only O(ε−2) weights and O(⌈log2(ε−1)⌉)
qubits to achieve approximation error ε > 0 for the considered state-space systems.
Theorem 4.6. Suppose F in (11) is continuously differentiable with ∥∇xF (x, z)∥2 ≤ λ for all
x ∈ RN , z ∈ Dd for some λ ∈ (0, 1) and, moreover, F satisfies Fj ∈ FR, ∂iFj ∈ F and∫
RN×Rd ∥ξ∥4|F̂j(ξ)|dξ < ∞ for j = 1, . . . , N . Denote by UF : (Dd)

Z− → (BN )Z− the filter
associated to (11). Then for any n ∈ N with n > n0 there exists θ ∈ Θ such that the system (4) has
the echo state property and the associated filter Ū : (Dd)

Z− → (RN )Z− satisfies

sup
z∈(Dd)

Z−

sup
t∈Z−

∥∥UF (z)t − Ū(z)t
∥∥ ≤ 1

1− λ

√
N maxj=1,...,N C∞

j√
n

. (12)

Here, n0 may be chosen as n0 = N2 (maxj=1,...,N C∞
j )2

(1−λ)2 .

Notice that N represents the state space dimension of the target F , which is matched by the QRNN
dimension to obtain the approximation error bound. Theorem 4.6 also proves an advantage of
QRNNs over classical RNNs. RNN approximation bounds for state-space systems driven by Barron-
type functions were obtained in (Gonon et al., 2023, Theorem 3). While the approximation rate in
Theorem 4.6 is the same ( 12 in both cases), the Fourier integrability condition required in the quan-
tum case is strictly weaker. Specifically, the condition

∫
RN×Rd ∥ξ∥4|F̂j(ξ)|dξ <∞ implies that the

smoothness assumption (Gonon et al., 2023, Definition 2) required for (Gonon et al., 2023, Theo-
rem 3) is satisfied. For example, consider a Sobolev function F ∈ Hs(RN ×Rd). Then, the integra-
bility condition for the QRNN approximation result is satisfied for any s > N+d

2 + 4 (by (Folland,
2020, Lemma 6.5) and its proof). In contrast, the integrability condition for the RNN approximation
result in (Gonon et al., 2023, Theorem 3) would require the stronger condition s > N + d+ 3.

4.3 UNIVERSALITY

In the previous section, we proved error bounds for the approximation using recurrent QNNs of the
filters induced by contractive state-space targets with Barron-type integrability conditions. These
bounds show, in passing, the universality of the family of RQNN filters in that category. We now
extend this universality statement (without formulating error bounds) to the much larger family of
fading memory filters by introducing a modification in the RQNN reservoir. We define F̃n,θ

R :

RN × Rd → RN by its component maps F̃n,θ
R = (F̃n,θ

R,1 , . . . , F̃
n,θ
R,N ). For j = 1, . . . , N , the j-th

component map F̃n,θ
R,j : RN × Rd → R is defined by

F̃n,θ
R,j (x, z) := R− 2R[Pn,θj

1 (Pjx, z) + Pn,θj

2 (Pjx, z)], (x, z) ∈ RN × Rd, (13)

with θ = (θ1, . . . ,θN ) ∈ ΘN and P1, . . . , PN ∈ RN×N linear preprocessing maps. Our modified
RQNN is then defined by the state-space system associated to the state map F̃n,θ

R

x̂t = F̃n,θ
R (x̂t−1, zt), t ∈ Z−. (14)

The next lemma shows that adding linear preprocessing maps to reservoir equations can lead to
the echo state property without contraction assumptions. The proof of Lemma 4.7 is provided in
Appendix C.2.

Lemma 4.7. Let F̃ = (F̃1, . . . , F̃N ) be a reservoir map where each component F̃j : RN×Rd → R,
for j = 1, . . . , N , is defined as

F̃j(x, z) = gj(Pjx, z) (15)

where P1, . . . , PN ∈ RN×N are linear preprocessing maps for any maps gj : RN × Rd → R, j =
1, . . . , N . Define an arbitrary partition of the state vector x̂t = [x̂

(1)
t , . . . , x̂

(K)
t ] ∈ RI1 ×· · ·×RIK

9
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such that
∑K

k=1 Ik = N > 0 and Ik ≥ 1 for all t ∈ Z−. We define the index lk =
∑k

s=1 Is for
k = 1, . . . ,K. For k = 1, j ∈ {1, . . . , l1}, and k = 2, . . . ,K− 1, j ∈ {lk−1+1, . . . , lk}, select Pj

as the matrix with zero entries, except for (Pj)l,l+lk = 1 for l = 1, . . . ,
∑K

s=k+1 Is and let Pj = 0

for j = lK−1 + 1, . . . , N . Then, the map F̃ has the echo state property for any N ∈ N+.

Notice that Lemma 4.7 provides the echo state property by imposing a finite memory of K − 1 time
steps on the reservoir. Let Dd ⊂ Rd, Bm ⊂ Rm be compact. For a readout W ∈ Rm×N , denote

yt =Wxt (16)
the output process associated to the recurrent QNNs (4) and (14). Our next result proves universality
of RQNNs. The proof is provided in Appendix C.3.
Theorem 4.8. Let U : (Dd)

Z− → (Bm)Z− be a causal and time-invariant filter that satisfies the
fading memory property (that is, it is continuous with respect to the product topology). Then, for any
ε > 0 there exist n,N ∈ N, preprocessing matrices P1, . . . , PN ∈ RN×N , a readout W ∈ Rm×N ,
and circuit parameters θ ∈ ΘN such that the RQNN (14) has the echo state property and the filter
ŪW : (Dd)

Z− → (Bm)Z− associated to the output process (16) satisfies
sup

z∈(Dd)
Z−

sup
t∈Z−

∥∥U(z)t − ŪW (z)t
∥∥ ≤ ε. (17)

5 CONCLUSIONS

Approximation bounds and universality properties are part of the theoretical cornerstone of machine
learning models. While some studies have addressed the question of universality for QRC models,
the combination of the two had not previously been explored in the context of recurrent QNNs. In
this paper, we derived approximation bounds and universality statements for recurrent QNNs based
on the circuit implementation presented in Gonon & Jacquier (2025), which is compatible with
hardware deployment and whose implementation with Rydberg atoms has been already discussed
in Agarwal et al. (2024). This circuit uses a uniformly controlled quantum gate to apply multi-
controlled rotations to a set of control and target qubits, and it has been recently shown that it can be
efficiently implemented (Zindorf & Bose, 2024; Silva et al., 2024; Zindorf & Bose, 2025).

To prove our results, we first derived approximation bounds for the static version of the QNN and
its derivatives. These results are used in Theorem 4.6 to provide filter approximation bounds that
show that RQNNs are able to uniformly approximate the filters induced by any contracting Barron-
type state-space system. Finally, Theorem 4.8 extends this universality property to the much larger
category of arbitrary fading memory, causal, and time-invariant filters. In this last result, neither
Barron-type integrability nor contractivity conditions are needed for the target filter. While our
results apply to variational systems in which all parameters are trainable, they pave the way for
results on quantum reservoir systems in which some parameters in the recurrent layer are randomly
generated and only the output layer weights are tuned. Which strategy is best in terms of speed and
accuracy will depend on the number of blocks n of the circuit, the intrinsic noise of the hardware,
and the target task. Future research will focus on implementing and comparing the variational and
reservoir approaches.

This work paves the way for extending the theoretical analysis of QRC models beyond the state-
affine system (SAS) paradigm (Martı́nez-Peña & Ortega, 2023). It is important to understand in
which situations the feedback approach is preferable to other protocols. Questions such as the
exponential concentration of observables (Sannia et al., 2025; Xiong et al., 2025) and the suitability
of QRC models for learning quantum temporal tasks (Tran & Nakajima, 2021; Nokkala, 2023)
are fundamental to discerning the conditions that render QRC models more useful than classical
machine learning approaches.

While our paper obtains approximation bounds for Barron-type sate-space systems, an important
direction of future research will consist in studying approximation error rates for systems with high
degrees of roughness or non-contractive dynamics. Furthermore, our paper focuses on approxima-
tion properties of RQNNs. Gradient-based training approaches for optimizing RQNN parameters
have been proposed, e.g., in Bausch (2020); Li et al. (2023); Siemaszko et al. (2023). Quantum cir-
cuit training may face Barren plateaus McClean et al. (2018); Larocca et al. (2025), flat parameter
optimization landscapes for large number of qubits. Developing efficient training algorithms and
studying these effects in detail will be a further important direction for future research.
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APPENDIX

A QUANTUM RESERVOIR COMPUTING PROTOCOLS

For learning problems with temporal structure, quantum reservoir computing (QRC) has emerged as
a promising approach for exploiting noisy intermediate-scale quantum (NISQ) technologies. These
include ion traps, nuclear magnetic resonance, cold atoms, photonic platforms, and superconducting
qubits (Mujal et al., 2021). When implementing QRC models experimentally, it is necessary to
consider the backaction and statistical effects introduced by quantum measurements. Backaction
refers to the modification of a quantum state after monitoring, also known as wavefunction collapse.
Due to the probabilistic nature of quantum theory, measurements must be repeated to compute the
expected values of observables, which introduces a statistical component in all these methodologies.
Most available experimental implementations rely on the quantum computer paradigm (Dasgupta
et al., 2022; Mlika et al., 2023; Suzuki et al., 2022; Yasuda et al., 2023; Chen et al., 2020; Kubota
et al., 2023; Molteni et al., 2023; Pfeffer et al., 2022; Ahmed et al., 2025; Hu et al., 2024; Miranda
& Shaji, 2025). However, there is an increasing interest in extending this technique to new settings,
such as optical pulses (Garcı́a-Beni et al., 2023; Paparelle et al., 2025), Rydberg atoms (Bravo et al.,
2022; Kornjača et al., 2024), and quantum memristors (Spagnolo et al., 2022; Selimović et al., 2025).

Early QRC model implementations relied on the simplest possible approach, namely, the restarting
protocol (Dasgupta et al., 2022; Suzuki et al., 2022; Kubota et al., 2023; Chen et al., 2020; Molteni
et al., 2023). In this approach, the expected values of observables are obtained by rerunning the
algorithm from the first time step at each subsequent time step. This avoids the backaction effect
of quantum measurements. However, the complexity of this protocol scales quadratically with the
length of the input sequence, making it very time-consuming. A faster alternative is the rewinding
protocol (Mujal et al., 2021; Čindrak et al., 2024), where the fading memory of the quantum reservoir
is exploited to restart the algorithm with a fixed window of past time steps. This reduces the com-
plexity of the algorithm to linear in terms of input length. Originally proposed in Chen et al. (2020),
this protocol has thus far only been considered numerically (Mujal et al., 2023; Čindrak et al., 2024).
Both the restarting and rewinding protocols use repetition of previous time steps to reproduce the
dynamics of the theoretical model and avoid the disruptive effect of projective measurements used
to extract output information. This comes at the cost of halting the quantum dynamics at each time
step and the need to buffer the input sequence. Consequently, these approaches lack one of the most
important features of traditional reservoir computing, namely, the ability to process information in
real time.

New protocols have been proposed to circumvent this problem. The online protocol (Mujal et al.,
2023; Franceschetto et al., 2024) uses weak measurements to find a balance between erasing and

15

https://openreview.net/forum?id=XCkII8nCt3
https://openreview.net/forum?id=XCkII8nCt3


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

extracting information. Mid-circuit measurements and reset operations (Hu et al., 2024) can split
the reservoir into two parts: memory and readout. The memory retains previous inputs, while mea-
surements only affect the readout part. The feedback protocol (Kobayashi et al., 2024), which can be
traced back to QRC with quantum memristors (Spagnolo et al., 2022) and hybrid QRC techniques
(Pfeffer et al., 2022; 2023), reinjects the measured observables at each time step as parameters of
an input quantum channel. This ensures that no backaction effects are present and that past input
information is preserved. Note that in order to compute the observables in real time, these proto-
cols all require several copies of the system to be run in parallel. Furthermore, these protocols can
be combined with each other. For instance, the feedback protocol has been combined with both
the online protocol (Monomi et al., 2025) and with mid-circuit measurements and reset operations
(Murauer et al., 2025).

Of all these approaches, the feedback protocol presents some particularly interesting features. First,
the feedback protocol enables us to compute the expected values of observables from a single copy
of the system by repeating one time step only. If only a few copies of the system are available, this
reduces the experimental time overhead for real-time applications compared to other approaches.
Second, in contrast to previous QRC models, where an erasure mechanism is added to provide fun-
damental properties such as the echo state property, simple unitary operations can provide these
properties (Kobayashi et al., 2024). Finally, the dynamical equations of quantum reservoirs under
the feedback protocol go beyond the standard state-affine system (SAS) paradigm of QRC models
(Martı́nez-Peña & Ortega, 2023). These properties make the feedback protocol a promising candi-
date for exploring QRC applications.

B PROOFS FOR SECTION 4.1

B.1 PROOF OF PROPOSITION 4.1

Proof. The proof is a modification of the argument used to obtain (Gonon & Jacquier, 2025, Propo-
sition 1). Recall that

F̄n,θ
R,j (x, z) := R− 2R[Pn,θj

1 (x, z) + Pn,θj

2 (x, z)], (x, z) ∈ RN × Rd. (18)

Fix (x, z) ∈ RN × Rd and j ∈ {1, . . . , N} and write Pm := Pn,θj

m (x, z) for m ∈ {0, 1, 2, 3}. To
prove the representation (7), let us first calculate Pm.

As a first step, write

UV |0⟩⊗n
= U |ψ⟩ = 1√

n

n−1∑
l=0

U |4l⟩

=
1√
n

n−1∑
l=0

3∑
k=0

[
U
(l+1)
1 ⊗ U

(l+1)
2

]
k+1,1

|4l + k⟩ .

Thus, for m ∈ {0, 1, 2, 3}, we have

Pm =

n−1∑
i=0

∣∣⟨4i+m| UV |0⟩⊗n
∣∣2

=

n−1∑
i=0

∣∣∣∣∣⟨4i+m| 1√
n

n−1∑
l=0

3∑
k=0

[
U
(l+1)
1 ⊗ U

(l+1)
2

]
k+1,1

|4l + k⟩

∣∣∣∣∣
2

=
1

n

n−1∑
i=0

∣∣∣∣[U(i+1)
1 ⊗ U

(i+1)
2

]
m+1,1

∣∣∣∣2 .
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Next, we may calculate

[U
(i)
1 ⊗ U

(i)
2 ]1,1 = [U

(i)
1 ]1,1[U

(i)
2 ]1,1 = cos

(
γi,j

2

)
cos

(
bi,j + ai,j · (x, z)

2

)
,

[U
(i)
1 ⊗ U

(i)
2 ]2,1 = [U

(i)
1 ]1,1[U

(i)
2 ]2,1 = sin

(
γi,j

2

)
cos

(
bi,j + ai,j · (x, z)

2

)
,

[U
(i)
1 ⊗ U

(i)
2 ]3,1 = [U

(i)
1 ]2,1[U

(i)
2 ]1,1 = i cos

(
γi,j

2

)
sin

(
bi,j + ai,j · (x, z)

2

)
,

[U
(i)
1 ⊗ U

(i)
2 ]4,1 = [U

(i)
1 ]2,1[U

(i)
2 ]2,1 = i sin

(
γi,j

2

)
sin

(
bi,j + ai,j · (x, z)

2

)
,

and thus

P0 =
1

n

n∑
i=1

cos

(
γi,j

2

)2

cos

(
bi,j + ai,j · (x, z)

2

)2

P1 =
1

n

n∑
i=1

sin

(
γi,j

2

)2

cos

(
bi,j + ai,j · (x, z)

2

)2

P2 =
1

n

n∑
i=1

cos

(
γi,j

2

)2

sin

(
bi,j + ai,j · (x, z)

2

)2

P3 =
1

n

n∑
i=1

sin

(
γi,j

2

)2

sin

(
bi,j + ai,j · (x, z)

2

)2

.

Therefore, using cos(y)2 = cos(2y)+1
2 , we obtain

P0 + P1 =
1

n

n∑
i=1

cos

(
bi,j + ai,j · (x, z)

2

)2

=
1

2
+

1

2n

n∑
i=1

cos
(
bi,j + ai,j · (x, z)

)
,

P0 + P2 =
1

n

n∑
i=1

cos

(
γi,j

2

)2

=
1

2
+

1

2n

n∑
i=1

cos
(
γi,j
)
.

Putting it all together we obtain, for any given R > 0, that

F̄n,θ
R,j (x, z) = R− 2R[Pn,θj

1 (x, z) + Pn,θj

2 (x, z)]

= R [1 + 4P0 − 2 (P0 + P1)− 2 (P0 + P2)]

=
1

n

n∑
i=1

R cos
(
γi,j
)
cos
(
bi,j + ai,j · (x, z)

)
.

B.2 PROOF OF PROPOSITION 4.2

Proof. Let j ∈ {1, . . . , N} be fixed. As in the proof of Proposition 2 in Gonon & Jacquier (2025),
we may use the Fourier inversion theorem to represent

Fj(x, z) =

∫
RN×Rd

e2πi(x,z)·(ξ1,ξ2)F̂j(ξ1, ξ2)dξ1dξ2,

which we may rewrite as, with ξ = (ξ1, ξ2),

Fj(x, z) =

∫
RN×Rd

{
cos (2π(x, z) · ξ)Re[F̂j(ξ)] + cos

(
2π(x, z) · ξ +

π

2

)
Im[F̂j(ξ)]

}
dξ

(19)
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The hypothesis ∂iFj ∈ F implies that
∫
RN×Rd |ξi||F̂j(ξ)|dξ < ∞. Hence, applying differentiation

under the integral sign yields

∂iFj(x, z) = −2π

∫
RN×Rd

{
ξi sin (2π(x, z) · ξ)Re[F̂j(ξ)] + ξi sin

(
2π(x, z) · ξ +

π

2

)
Im[F̂j(ξ)]

}
dξ.

(20)

Next, consider the random function

Φj(x, z) :=
1

n

n∑
i=1

Wi cos(Bi +Ai · (x, z)) (21)

for randomly selected weights W1, . . . ,Wn, B1, . . . , Bn and A1, . . . ,An valued in R, R, and
RN × Rd, respectively (for notational simplicity we leave the dependence on j implicit here). The
distributions of these random variables are chosen as follows. First, we let Z1, . . . , Zn be i.i.d.
Bernoulli random variables with

P(Zi = 1) =

∫
RN×Rd |Re[F̂j(ξ)]|dξ∫

RN×Rd |F̂j(ξ)|dξ
, P(Zi = 0) =

∫
RN×Rd |Im[F̂j(ξ)]|dξ∫

RN×Rd |F̂j(ξ)|dξ
. (22)

and let νRe and νIm be the probability measures on RN × Rd with densities

|Re[F̂j ]|∫
RN×Rd |Re[F̂j(ξ)]|dξ

and
|Im[F̂j ]|∫

RN×Rd |Im[F̂j(ξ)]|dξ
, (23)

respectively. In case
∫
RN×Rd |Re[F̂j(ξ)]|dξ = 0, instead we choose for νRe an arbitrary probability

measure and analogously for νIm in case
∫
RN×Rd |Im[F̂j(ξ)]|dξ = 0. Next, let URe

1 , . . . ,URe
n

(resp. UIm
1 , . . . ,UIm

n ) be i.i.d. random variables with distribution νRe (resp. νIm) and assume that
UIm

1 . . . ,UIm
n , URe

1 , . . . ,URe
n , Z1, . . . , Zn are independent. With these preparations, we are now

ready to define the weights in (21):

Ai := 2π(ZiU
Re
i + (1− Zi)U

Im
i ), Bi :=

π

2
(1− Zi),

Wi := ∥F̂j∥1

[
Re[F̂j ](U

Re
i )

|Re[F̂j ](URe
i )|

Zi +
Im[F̂j ](U

Im
i )

|Im[F̂j ](UIm
i )|

(1− Zi)

]
,

with the quotient set to zero when the denominator is null.

Our goal now is to estimate

E

[
∥Fj − Φj∥2L2(µ) +

N+d∑
i=1

∥∂iFj − ∂iΦj∥2L2(µ)

]
= E

[
∥Fj − Φj∥2L2(µ)

]
+

N+d∑
i=1

E
[
∥∂iFj − ∂iΦj∥2L2(µ)

]
(24)

by estimating the summands separately. To achieve this, we first compute E[Φj(x, z)] and
E[∂iΦj(x, z)]. Indeed, inserting the definitions, using independence and representation (19) yields

E[Φj(x, z)] = E[W1 cos(B1 +A1 · (x, z))]

= ∥F̂j∥1E

[(
Re[F̂j ](U

Re
1 )

|Re[F̂j ](URe
1 )|

Z1 +
Im[F̂j ](U

Im
1 )

|Im[F̂j ](UIm
1 )|

(1− Z1)

)
cos
(π
2
(1− Z1) + 2π(Z1U

Re
1 + (1− Z1)U

Im
i ) · (x, z)

)]
= ∥F̂j∥1

(
P(Z1 = 1)E

[
Re[F̂j ](U

Re
1 )

|Re[F̂j ](URe
1 )|

cos(2πURe
1 · (x, z))

]

+P(Z1 = 0)E

[
Im[F̂j ](U

Im
1 )

|Im[F̂j ](UIm
1 )|

cos
(π
2
+ 2πUIm

1 · (x, z)
)])

=

∫
RN×Rd

Re[F̂j ](ξ) cos(2πξ · (x, z))dξ +

∫
RN×Rd

Im[F̂j ](ξ) cos(
π

2
+ 2πξ · (x, z))dξ

= Fj(x, z).
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Analogously, using the representation (20) for the partial derivative ∂iFj instead, we obtain

E[∂iΦj(x, z)] = −E[W1A1,i sin(B1 +A1 · (x, z))]

= −2π∥F̂j∥1

(
P(Z1 = 1)E

[
Re[F̂j ](U

Re
1 )

|Re[F̂j ](URe
1 )|

URe
1,i sin(2πU

Re
1 · (x, z))

]

+P(Z1 = 0)E

[
Im[F̂j ](U

Im
1 )

|Im[F̂j ](UIm
1 )|

U Im
1,i sin

(π
2
+ 2πUIm

1 · (x, z)
)])

= −2π

(∫
RN×Rd

ξiRe[F̂j ](ξ) sin(2πξ · (x, z))dξ +

∫
RN×Rd

ξiIm[F̂j ](ξ) sin(
π

2
+ 2πξ · (x, z))dξ

)
= ∂iFj(x, z).

(25)
Therefore, we may estimate the first expectation in (24) as follows:

E
[
∥Fj − Φj∥2L2(µ)

]
= E

[∫
RN×Rd

|Fj(x, z)− Φj(x, z)|2µ(dx,dz)
]
=

∫
RN×Rd

V[Φj(x, z)]µ(dx,dz)

=
1

n2

∫
RN×Rd

V

[
n∑

i=1

Wi cos(Bi +Ai · (x, z))

]
µ(dx,dz)

=
1

n

∫
RN×Rd

V [W1 cos(B1 +A1 · (x, z))]µ(dx,dz)

≤ 1

n

∫
RN×Rd

E
[
(W1 cos(B1 +A1 · (x, z)))2

]
µ(dx,dz)

≤ 1

n
E
[
W 2

1

]
=

1

n
∥F̂j∥21.

(26)
For the partial derivatives, we obtain analogously

E
[
∥∂iFj − ∂iΦj∥2L2(µ)

]
=

∫
RN×Rd

V[∂iΦj(x, z)]µ(dx,dz)

=
1

n2

∫
RN×Rd

V

[
n∑

k=1

WkAk,i sin(Bk +Ak · (x, z))

]
µ(dx,dz)

=
1

n

∫
RN×Rd

V [W1A1,i sin(B1 +A1 · (x, z))]µ(dx,dz)

≤ 1

n

∫
RN×Rd

E
[
(W1A1,i sin(B1 +A1 · (x, z)))2

]
µ(dx,dz)

≤ 1

n
E
[
W 2

1A
2
1,i

]
=

1

n
∥F̂j∥21E

[
A2

1,i

]
=

4π2

n
∥F̂j∥1

∫
RN×Rd

ξ2i |F̂j(ξ)|dξ,

(27)

where we used that E
[
A2

1,i

]
= 4π2∥F̂j∥−1

1

∫
RN×Rd ξ

2
i |F̂j(ξ)|dξ.

In particular, (26) and (27) imply that there exists a scenario ω ∈ Ω such that Φω
j (x, z) =

1
n

∑n
i=1Wi(ω) cos(Bi(ω) +Ai(ω) · (x, z)) satisfies

∥Fj − Φω
j ∥2L2(µ) +

N+d∑
i=1

∥∥∂iFj − ∂iΦ
ω
j

∥∥2
L2(µ)

≤ Cj

n
, (28)

with Cj = ∥F̂j∥21 + 4π2∥F̂j∥1
∫
RN×Rd

∑N+d
i=1 ξ2i |F̂j(ξ)|dξ. Finally, θ = (θ1, . . . ,θN ) can then be

constructed by setting θj = (Ai(ω), Bi(ω), arccos(
Wi(ω)

R ))i=1,...,n, which guarantees that Φω
j =

F̄n,θ
R,j and so the proposition follows.
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B.3 PROOF OF COROLLARY 4.3

The proof of this corollary requires the following lemma, which extends Gonon (2024,
Lemma 4.10).

Lemma B.1. Let d, n, q ∈ N, let M1,M2 > 0, let U be a non-negative random variable, and let
Y1, . . . , Yn be i.i.d. Rd-valued random variables. Suppose E[U ] ≤M1 and E[|Y1|q] ≤M2. Then

P
[
U ≤ 3M1, max

i=1,...,n
|Yi| ≤ (3nM2)

1
q

]
> 0.

Proof. The proof mimics that of in Gonon (2024, Lemma 4.10) by replacing the use of Markov’s
inequality for q = 1 by the more general version:

P[|Y1| > (3nM2)
1
q ] ≤ E[|Y1|q]

3nM2
≤ 1

3n
.

Proof of the corollary. The corollary follows by replacing the argument leading to (28) in the proof
of Proposition 4.2 by Lemma B.1 and by noticing that

E [∥A1∥q] = (2π)q∥F̂j∥−1
1

∫
RN×Rd

∥ξ∥q|F̂j(ξ)|dξ.

□

B.4 PROOF OF PROPOSITION 4.4

Proof. It follows by combining the proof of Proposition 4.2 with the proof of Theorem 3 in Gonon
& Jacquier (2025). More specifically, the same proof can be used as for Proposition 4.2, except that
we need to replace the L2(µ) error bounds in (26) and (27) by uniform bounds. For (26), we can
follow precisely the proof of Theorem 3 in Gonon & Jacquier (2025) to obtain∥∥∥F̄n,θ

R,j − Fj

∥∥∥
∞,M

≤
C∞,0

j√
n

(29)

with C∞,0
j = 2(π+1)∥F̂j∥1 +8πM(N + d)

1
2 ∥F̂j∥

1
2
1

(∫
RN×Rd

∑N+d
i=1 ξ2i |F̂j(ξ)|dξ

)1/2
. Next, we

turn to the derivatives, that is, we aim to estimate
∥∥∥∂kF̄n,θ

R,j − ∂kFj

∥∥∥
∞,M

. Also in this case, we may

proceed as in the proof of Theorem 3 in Gonon & Jacquier (2025) and apply the same estimates to
the random variables Ui,(x,z) =WiAi,k sin(Bi +Ai · (x, z)). Let ε1, . . . , εn be i.i.d. Rademacher
random variables independent of A = (A1, . . . ,An) and B = (B1, . . . , Bn). Symmetrisation and
independence then yield∥∥∥∂iF̄n,θ

R,j − ∂iFj

∥∥∥
∞,M

= E

[
sup

(x,z)∈[−M,M ]N+d

∣∣∣∣∣ 1n
n∑

i=1

(
Ui,(x,z) − E[Ui,(x,z)]

)∣∣∣∣∣
]

≤ 2E

[
sup

(x,z)∈[−M,M ]N+d

∣∣∣∣∣ 1n
n∑

i=1

εiUi,(x,z)

∣∣∣∣∣
]

= 2E

E[ sup
(x,z)∈[−M,M ]N+d

∣∣∣∣∣ 1n
n∑

i=1

εiwiai,k sin(bi + ai · (x, z))

∣∣∣∣∣
]∣∣∣∣∣

(w,a,b)=(W,A,B)

 .
Now fix a = (a1, . . . ,an) ∈ (RN × Rd)n, b = (b1, . . . , bn) ∈ Rn, w = (w1, . . . , wn) ∈ Rn and
denote

T := {(wiai,k(bi + ai · (x, z)))i=1,...,n : (x, z) ∈ [−M,M ]N+d},

ϱi(x) := wiai,k sin(
x

wiai,k
), x ∈ R,
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for i = 1, . . . , n. Then, using the definitions in the first step, the comparison theorem (Ledoux
& Talagrand, 2013, Theorem 4.12) in the second step (note ϱi(0) = 0 and ϱi is 1-Lipschitz), and
standard Rademacher estimates (see, e.g., Gonon (2023)), we obtain

E

[
sup

(x,z)∈[−M,M ]N+d

∣∣∣∣∣ 1n
n∑

i=1

εiwiai,k sin(bi + ai · (x, z))

∣∣∣∣∣
]

= E

[
sup
t∈T

∣∣∣∣∣ 1n
n∑

i=1

εiϱi(ti)

∣∣∣∣∣
]
≤ 2E

[
sup
t∈T

∣∣∣∣∣ 1n
n∑

i=1

εiti

∣∣∣∣∣
]

= 2E

[
sup

(x,z)∈[−M,M ]N+d

∣∣∣∣∣ 1n
n∑

i=1

εi(wiai,k(bi + ai · (x, z))

∣∣∣∣∣
]

≤ 2E

[∣∣∣∣∣ 1n
n∑

i=1

εiwiai,kbi

∣∣∣∣∣
]
+ 2E

[
sup

(x,z)∈[−M,M ]N+d

∣∣∣∣∣(x, z) · 1n
n∑

i=1

εiwiai,kai

∣∣∣∣∣
]

≤ 2

n

(
n∑

i=1

w2
i a

2
i,kb

2
i

)1/2

+
2M

n

N+d∑
l=1

(
n∑

i=1

w2
i a

2
i,ka

2
i,l

)1/2

.

Putting everything together, we obtain∥∥∥∂iF̄n,θ
R,j − ∂iFj

∥∥∥
∞,M

≤ 2E

 2

n

(
n∑

i=1

W 2
i A

2
i,kB

2
i

)1/2

+
2M

n

N+d∑
l=1

(
n∑

i=1

W 2
i A

2
i,kA

2
i,l

)1/2


≤ 4√
n

E
[
W 2

i A
2
i,kB

2
i

]1/2
+M(N + d)1/2

(
N+d∑
l=1

E
[
W 2

i A
2
i,kA

2
i,l

])1/2


≤
C∞,k

j√
n
,

withC∞,k
j = 4π2∥F̂j∥1/21

((∫
RN×Rd ξ

2
k|F̂j(ξ)|dξ

)1/2
+ 4M(N + d)1/2

(∫
RN×Rd ξ

2
k∥ξ∥2|F̂j(ξ)|dξ

)1/2)
.

Here, the last estimate follows from the inequality

E
[
W 2

i A
2
i,kB

2
i

]
≤ π4∥F̂j∥1

∫
RN×Rd

ξ2k|F̂j(ξ)|dξ

and
E
[
W 2

i A
2
i,kA

2
i,l

]
= 16π4∥F̂j∥1

∫
RN×Rd

ξ2kξ
2
l |F̂j(ξ)|dξ.

Overall, we obtain (9) with C∞
j ≥

∑N+d
k=0 C

∞,k
j chosen as

C∞
j = 2(π + 1)∥F̂j∥1 + (8πM + 4π2)(N + d)

1
2 ∥F̂j∥

1
2
1 I

1/2
2,j + 16Mπ2(N + d)∥F̂j∥1/21 I

1/2
4,j .

B.5 PROOF OF COROLLARY 4.5

Proof. First, extending the proof of Corollary 4 in Gonon & Jacquier (2025), we show that Fj can
be approximated on X up to error ε

2 in C1-norm by a function in C∞
c (RN × Rd). Indeed, first let

M > 0 be such that X ⊂ [−M,M ]N+d. Then, classical approximation results (see, e.g., Whitney,
1934, Lemma 5) imply that there exists a smooth function h : RN × Rd → R such that

sup
(x,z)∈X

|Fj(x, z)− h(x, z)|+ ∥∇Fj(x, z)−∇h(x, z)∥ ≤ ε

2
. (30)

Without loss of generality we may assume that h ∈ C∞
c (RN ×Rd). Otherwise, we multiply h with

a cutoff function ψ ∈ C∞
c (RN × Rd) which is equal to 1 in an open set U with X ⊂ U (see, e.g.,

Hörmander, 1990, Theorem 1.4.1); thereby preserving (30).
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In the next step, we now apply Proposition 4.4 to h. Since h is a Schwartz function, its Fourier
transform ĥ is also a Schwartz function and thus h is integrable and∫

RN×Rd

(1 + ∥ξ∥4)|ĥ(ξ)|dξ <∞.

In particular, h ∈ FR for R > 0 large enough and, as h is a Schwartz function, also ∂ih ∈ F for
all i. Thus, the hypotheses of Proposition 4.4 are satisfied and we obtain that there exist n ∈ N and
θ ∈ Θ such that ∥∥∥F̄n,θ

R,j − h
∥∥∥
∞,M

+

N+d∑
i=1

∥∥∥∂iF̄n,θ
R,j − ∂ih

∥∥∥
∞,M

≤ ε

2
.

This estimate together with (30) then imply

sup
(x,z)∈X

|Fj(x, z)− F̄n,θ
R,j (x, z)|+ ∥∇Fj(x, z)−∇F̄n,θ

R,j (x, z)∥

≤ sup
(x,z)∈X

|Fj(x, z)− h(x, z)|+ ∥∇Fj(x, z)−∇h(x, z)∥

+ sup
(x,z)∈X

|h(x, z)− F̄n,θ
R,j (x, z)|+ ∥∇F̄n,θ

R,j (x, z)−∇h(x, z)∥

≤ sup
(x,z)∈X

|Fj(x, z)− h(x, z)|+ ∥∇Fj(x, z)−∇h(x, z)∥

+ sup
(x,z)∈X

|F̄n,θ
R,j (x, z)− h(x, z)|+

N+d∑
i=1

|∂iF̄n,θ
R,j (x, z)− ∂ih(x, z)|

≤ sup
(x,z)∈X

|Fj(x, z)− h(x, z)|+ ∥∇Fj(x, z)−∇h(x, z)∥

+
∥∥∥F̄n,θ

R,j − h
∥∥∥
∞,M

+

N+d∑
i=1

∥∥∥∂iF̄n,θ
R,j − ∂ih

∥∥∥
∞,M

≤ ε,

where we used that

∥∇F̄n,θ
R,j (x, z)−∇h(x, z)∥ =

(
N+d∑
i=1

|∂iF̄n,θ
R,j (x, z)− ∂ih(x, z)|2

)1/2

≤
N+d∑
i=1

|∂iF̄n,θ
R,j (x, z)−∂ih(x, z)|,

since ∥y∥2 ≤ ∥y∥1 for all y ∈ RN+d.

C PROOFS FOR SECTION 4.2

C.1 PROOF OF THEOREM 4.6

Proof. Choose M such that BN × Dd ⊂ [−M,M ]N+d and [−R,R]N × Dd ⊂ [−M,M ]N+d.
Firstly, our hypotheses on F guarantee that F satisfies the hypotheses of Proposition 4.4. Hence,
there exists θ ∈ Θ such that for any j ∈ {1, . . . , N},∥∥∥F̄n,θ

R,j − Fj

∥∥∥
∞,M

+

N+d∑
i=1

∥∥∥∂iF̄n,θ
R,j − ∂iFj

∥∥∥
∞,M

≤
C∞

j√
n
. (31)

Then, for all x ∈ [−M,M ]N , z ∈ Dd

∥∇xF̄
n,θ
R (x, z)∥2 ≤ ∥∇xF̄

n,θ
R (x, z)−∇xF (x, z)∥2 + ∥∇xF (x, z)∥2

≤

 N∑
i,j=1

|∂iF̄n,θ
R,j (x, z)− ∂iFj(x, z)|2

1/2

+ λ

≤ N
maxj=1,...,N C∞

j√
n

+ λ.

(32)
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Therefore, using that maxx∈[−M,M ]N ∥∇xF̄
n,θ
R (x, z)∥2 is the best Lipschitz-constant for F̄n,θ

R on
[−M,M ]N for any given z ∈ Dd, we obtain for all x ∈ [−M,M ]N , z ∈ Dd that

∥F̄n,θ
R (x1, z)− F̄n,θ

R (x2, z)∥2 ≤ ∥x1 − x2∥2 max
x∈[−M,M ]N

∥∇xF̄
n,θ
R (x, z)∥22

≤
(
N

maxj=1,...,N C∞
j√

n
+ λ

)2

∥x1 − x2∥2.

In particular, for n satisfying N2 (maxj=1,...,N C∞
j )2

(1−λ)2 < n we obtain that F̄n,θ
R : BR × Dd → BR,

with BR = {x ∈ RN : ∥x∥ ≤ R
√
N}, is contractive in the first argument, hence the system (4) has

the echo state property by Gonon et al. (2020, Proposition 1).

By the relation between the Lipschitz-constant and the maximal norm of the Jacobian, the assump-
tion ∥∇xF (x, z)∥2 ≤ λ guarantees that F (·, z) is λ-contractive for any z ∈ Dd. Hence, we may
estimate∥∥UF (z)t − Ū(z)t

∥∥ = ∥xt − x̂t∥ =
∥∥∥F (xt−1, zt)− F̄n,θ

R (x̂t−1, zt)
∥∥∥

≤ ∥F (xt−1, zt)− F (x̂t−1, zt)∥+
∥∥∥F (x̂t−1, zt)− F̄n,θ

R (x̂t−1, zt)
∥∥∥

≤ λ ∥xt−1 − x̂t−1∥+

 N∑
j=1

∥∥∥F̄n,θ
R,j − Fj

∥∥∥2
∞,M

1/2

≤ λ ∥xt−1 − x̂t−1∥+
√
N maxj=1,...,N C∞

j√
n

.

(33)

Iterating (33), we obtain

∥∥UF (z)t − Ū(z)t
∥∥ ≤ λJ ∥xt−J − x̂t−J∥+

J∑
k=1

λk−1

√
N maxj=1,...,N C∞

j√
n

≤ λJ
√
N(M +R) +

J−1∑
k=0

λk
√
N maxj=1,...,N C∞

j√
n

.

(34)

Letting J → ∞, we thus arrive at the bound (12).

C.2 PROOF OF LEMMA 4.7

The proof of Lemma 4.7 is related to the approach introduced in Gonon & Ortega (2020) and sub-
sequently used, e.g., in Gonon et al. (2023); Gonon & Ortega (2021).

Proof. We start by constructing a partition of x̂t as in the statement. If N = 1, we simply
have x̂t = [x̂t] ∈ R. Next, we define the reservoir vector F̃R,i:j = (F̃i, . . . , F̃j). Then, for
k = 1, j ∈ {1, . . . , l1}, and k = 2, . . . ,K − 1, j ∈ {lk−1 + 1, . . . , lk}, we have Pjx̂t =

[x̂
(k+1)
t , . . . , x̂

(K)
t , 0, . . . , 0] and Pjx̂t = 0 for j = lK−1 + 1, . . . , N . Inserting these choices

into (15), we may rewrite the dynamics as

x̂
(k)
t = F̃lk−1+1:lk([x̂

(k+1)
t−1 , . . . , x̂

(K)
t−1, 0, . . . , 0], zt), t ∈ Z−, (35)

for k = 1, . . . ,K − 1 and x̂
(K)
t = F̃lK−1+1:lK (0, zt). In particular, x̂(K)

t = F̃lK−1+1:lK (0, zt),
which depends only on zt, is explicitly given for all t ∈ Z−, and for all k = 1, . . . ,K − 1, we see
that x̂(k)

t only depends on x̂
(k+1)
t−1 , . . . , x̂

(K)
t−1. Thus, (15) admits a unique solution which can be ex-

plicitly obtained from the recursion (35), that is, for all t ∈ Z−, we have x̂(K)
t = F̃lK−1+1:lK (0, zt),

x̂
(K−1)
t = F̃lK−2+1:lK−1

([x̂
(K)
t−1, 0, . . . , 0], zt), . . ., x̂

(1)
t = F̃1:l1([x̂

(2)
t−1, . . . , x̂

(K)
t−1, 0], zt). This

proves that F̃ has the echo state property.
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C.3 PROOF OF THEOREM 4.8

Proof. Without loss of generality we may assume ε ≤ 1, because proving (17) for ε ≤ 1 also
implies that (17) holds for ε > 1.

Let HU : (Dd)
Z− → Bm be the functional associated to the filter U . Then, as in the proof of Gonon

& Ortega (2021, Theorem 2.1), there exists K ∈ N and a continuous function Ḡ : (Dd)
dK → Bm

such that

sup
z∈(Dd)

Z−

∥∥HU (z)− Ḡ(z−K+1, . . . ,z0)
∥∥ < ε

4
. (36)

Moreover, e.g., by the argument in Gonon & Jacquier (2025, Corollary 4), there exists a function
G ∈ C∞

c ((Rd)K , Bm) which satisfies

sup
z∈(Rd)K

∥∥G(z)− Ḡ(z)
∥∥ < ε

4
. (37)

Next, choose N = (K − 1)d+m and consider the recurrent QNN introduced in (4). Denote

F̄n,θ
R,j (x, z) = R− 2R[Pn,θj

1 (x, z) + Pn,θj

2 (x, z)], (x, z) ∈ RN × Rd (38)

the update maps without preprocessing matrices. For 1 ≤ i ≤ j ≤ N , write F̄n,θ
R,i:j =

(F̄n,θ
R,i , . . . , F̄

n,θ
R,j ) and lk = m+ (k − 1)d for k = 1, . . . ,K. Define the constants

LG = max(
√
d, sup

z∈(Rd)K
∥∇G(z)∥) + 1, CG = 4LG

 K∑
k=2

K−k+1∑
j=1

(2LG)
j

1/2

. (39)

Then, as G ∈ C∞
c ((Rd)K) and the identity is smooth, Corollary 4.5 (applied componentwise)

guarantees that there exist nK , RK and θK ∈ Θd such that

sup
z∈Dd

∥F̄nK ,θK

RK ,lK−1+1:lK
(0, z)− z∥+ sup

z∈Dd

∥∇F̄nK ,θK

RK ,lK−1+1:lK
(0, z)− 1d∥ <

ε

CG
, (40)

and (recursively), for all k = K − 1, . . . , 2 there exist nk, Rk and θk ∈ Θd such that

sup
(x,z)∈[−Rk+1,Rk+1]N×Dd

∥F̄nk,θk

Rk,lk−1+1:lk
(x, z)− x1:d∥+ ∥∇F̄nk,θk

Rk,lk−1+1:lk
(x, z)− 1d∥ <

ε

CG
,

(41)
and there exist n1, R1 and θ1 ∈ Θd such that

sup
([z−K+1,...,z−1],z0)∈[−R2,R2]N×Dd

(
∥F̄n1,θ1

R1,1:m
([z−K+1, . . . ,z−1, 0], z0)−G(z−K+1, . . . ,z0)∥

+ ∥∇F̄n1,θ1

R1,1:m
([z−K+1, . . . ,z−1, 0], z0)−∇G(z−K+1, . . . ,z0)∥

)
<
ε

4
.

(42)
Without loss of generality we may choose R = R1 = . . . = RK , since we can always replace
Rk by max(Rk, Rk+1) (and hence ultimately replace R1, . . . , RK by R) and absorb the change in
an adjusted choice of parameters γi,j (see representation (7)). Moreover, by a similar reasoning
we may assume without loss of generality that n = n1 = . . . = nK . Indeed, otherwise we may
again choose n to be the maximum of n1, . . . , nK , replace n1, . . . , nK by n and recover the same
functions (7) by setting surplus terms i > nk to 0 by appropriate choice of γi,j . The extra factor n

nk
,

in turn, can be absorbed by modifying the choice of R.

Denote by Lk be the best Lipschitz constant for F̄n,θk

R,lk−1+1:lk
. Then (40)–(42) imply that Lk ≤√

d + ε ≤ LG for k = K, . . . , 2 and L1 ≤ supz∈Rd)K ∥∇G(z)∥ + 1 ≤ LG. In particular,
LG ≥ max(L1, . . . , LK) is a bound on the Lipschitz constant for all QNNs F̄n,θk

R,lk−1+1:lk
and G.
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Partition x̂t = [x̂
(1)
t , . . . , x̂

(K)
t ] ∈ Rm × (Rd)K−1. Using the triangle inequality, we then obtain

sup
z∈(Dd)K+1

∥∥∥G(z−K+1, . . . ,z0)− x̂
(1)
0

∥∥∥
= sup

z∈(Dd)(K+1)

∥∥∥G(z−K+1, . . . ,z0)− F̄n,θ
R,1:m([x̂

(2)
−1, . . . , x̂

(K)
−1 , 0], z0)

∥∥∥
≤
∥∥∥G(z−K+1, . . . ,z0)−G([x̂

(2)
−1, . . . , x̂

(K)
−1 ], z0)

∥∥∥
+
∥∥∥G([x̂(2)

−1, . . . , x̂
(K)
−1 ], z0)− F̄n,θ

R,1:m([x̂
(2)
−1, . . . , x̂

(K)
−1 , 0], z0)

∥∥∥
≤ LG

∥∥∥(z−K+1, . . . ,z0)− ([x̂
(2)
−1, . . . , x̂

(K)
−1 ], z0)

∥∥∥+ ε

4
.

(43)

For the last norm, we write∥∥∥(z−K+1, . . . ,z0)− ([x̂
(2)
−1, . . . , x̂

(K)
−1 ], z0)

∥∥∥2 =

K−2∑
k=0

∥∥∥z−k−1 − x̂
(K−k)
−1

∥∥∥2 =

K∑
k=2

∥∥∥z−K+k−1 − x̂
(k)
−1

∥∥∥2 .
We proceed by backward induction over k to prove that for all k = K, . . . , 2 it holds∥∥∥z−K+k+t − x̂

(k)
t

∥∥∥2 ≤
K−k+1∑

j=1

(2LG)
j ε

2

C2
G

,

for arbitrary t ∈ Z−. Indeed, we have∥∥∥z−K+k+t − x̂
(k)
t

∥∥∥2 =
∥∥∥z−K+k+t − F̄n,θ

R,lk−1+1:lk
([x̂

(k+1)
t−1 , . . . , x̂

(K)
t−1, 0, . . . , 0], zt)

∥∥∥2
and so for k = K it follows that∥∥∥z−K+k+t − x̂

(k)
t

∥∥∥2 =
∥∥∥zt − F̄n,θ

R,lK−1+1:lK
(0, zt)

∥∥∥2 ≤ ε2

C2
G

≤ 2LG
ε2

C2
G

Assume that the bound holds for a fixed k ∈ {K, . . . , 3}, then for k − 1 we estimate (with the
notation fk−1 = F̄n,θ

R,lk−2+1:lk−1
)∥∥∥z−K+(k−1)+t − x̂

(k−1)
t

∥∥∥2 =
∥∥∥z−K+k−2 − fk−1([x̂

(k)
t−1, . . . , x̂

(K)
t−1, 0, . . . , 0], zt)

∥∥∥2
≤ 2

∥∥∥z−K+k−2 − fk−1([z−K+k−2, x̂
(k+1)
t−1 , . . . , x̂

(K)
t−1, 0, . . . , 0], zt)

∥∥∥2
+ 2

∥∥∥fk−1([z−K+k+t−1, x̂
(k+1)
t−1 , . . . , x̂

(K)
t−1, 0, . . . , 0], zt)− fk−1([x̂

(k)
−2 , . . . , x̂

(K)
t−1, 0, . . . , 0], zt)

∥∥∥2
≤ 2

ε2

C2
G

+ 2L
∥∥∥z−K+k+t−1 − x̂

(k)
t−1

∥∥∥2 ≤ 2
ε2

C2
G

+

K−k∑
j=1

(2L)j+1 ε
2

C2
G

≤
K−k+1∑

j=1

(2L)j
ε2

C2
G

,

which completes the induction. Therefore, we obtain∥∥∥(z−K+1, . . . ,z0)− ([x̂
(2)
−1, . . . , x̂

(K)
−1 ], z0)

∥∥∥2 =

K∑
k=2

∥∥∥z−K+k−1 − x̂
(k)
−1

∥∥∥2
≤

K∑
k=2

∥∥∥z−K+k−1 − x̂
(k)
−1

∥∥∥2 ≤ ε2

C2
G

K∑
k=2

K−k+1∑
j=1

(2L)j =
ε2

16L2
G

From (43), we thus obtain

sup
z∈(Dd)K+1

∥∥∥G(z−K+1, . . . ,z0)− x̂
(1)
0

∥∥∥
≤ LG

∥∥∥(z−K+1, . . . ,z0)− ([x̂
(2)
−1, . . . , x̂

(K)
−1 ], z0)

∥∥∥+ ε

4
≤ ε

2
.

(44)
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Setting W to be the projection onto the first block x̂
(1)
0 , (that is, W has zero entries except for

Wi,i = 1 for i = 1, . . . ,m) and putting together (36), (37) and (44) yields

sup
z∈(Dd)

Z−

sup
t∈Z−

∥∥HU (z)−HŪW
(z)
∥∥ ≤ sup

z∈(Dd)
Z−

∥∥HU (z)− Ḡ(z−K+1, . . . ,z0)
∥∥

+ sup
z∈(Rd)K

∥∥G(z)− Ḡ(z)
∥∥+ sup

z∈(Dd)K+1

∥∥G(z−K+1, . . . ,z0)−HŪW
(z)
∥∥

≤ ε

4
+
ε

4
+
ε

2
= ε.

(45)

It remains to be shown that (14) has the echo state property. Recall that we partition x̂t =

[x̂
(1)
t , . . . , x̂

(K)
t ] ∈ Rm × (Rd)K−1. For k = 1, j ∈ {1, . . . , l1}, and k = 2, . . . ,K − 1,

j ∈ {lk−1 + 1, . . . , lk}, select Pj as the matrix with zero entries, except for (Pj)l,l+lk = 1 for
l = 1, . . . , d(K − k) and let Pj = 0 for j = lK−1 + 1, . . . , N . Then, for k = 1, j ∈ {1, . . . , l1},
and k = 2, . . . ,K − 1, j ∈ {lk−1 + 1, . . . , lk}, we have Pjx̂t = [x̂

(k+1)
t , . . . , x̂

(K)
t , 0, . . . , 0] and

Pjx̂t = 0 for j = lK−1 + 1, . . . , N . Then, echo state property follows by calling Lemma 4.7.
Therefore, the approximation bound for the functional (45) immediately implies the corresponding
bound for the filter (17), which completes the proof of the theorem.

D CONSTRUCTION OF V

In this appendix we provide further details on the choice of V appearing in the quantum circuit. Our
presentation follows Gonon & Jacquier (2025).

Generally, the matrix V ∈ CnU×nU can be any unitary matrix mapping |0⟩⊗n to the state |ψ⟩ =
1√
n

∑n−1
i=0 |4i⟩ which, for n ≥ 2, is also explicitly given as |ψ⟩ = 1√

n

∑n−1
i=0 |i⟩ ⊗ |00⟩.

As V |0⟩⊗n
= |ψ⟩ is the only property required in the proof, many alternative choices of V are

possible and one may thus select the one that is most suitable from the perspective of hardware
requirements or limitations.

Example One explicit example for V is given by V := 2 |φ⟩ ⟨φ| − I, with

|φ⟩ := |0⟩+ |ψ⟩√
2 (1 + ⟨0|ψ⟩)

,

where we write |0⟩ in place of |0⟩⊗n for brevity here. One easily checks that V† = 2 |φ⟩ ⟨φ|−I = V
and thus VV† = V†V = I. Furthermore, a straightforward computation yields that

V |0⟩ = (2 |φ⟩ ⟨φ| − I) |0⟩

=
|0⟩ (1 + ⟨ψ|0⟩) + |ψ⟩ (1 + ⟨ψ|0⟩)

1 + ⟨0|ψ⟩
− |0⟩ = |ψ⟩ .

Construction of |ψ⟩ In the case n0 = 0, there is an explicit construction of ψ in terms of
Hadamard gates acting on the control qubits. Indeed, for n ≥ 2, (Gonon & Jacquier, 2025,
Lemma A.2) shows that

|ψl⟩nl
=

(
nl−2⊗
i=0

H |0⟩

)
⊗ |00⟩ .

E MONTE CARLO ERROR

In practice, the empirical sampling error leads to an additional error component of order 1/
√
S for

S independent shots, see, e.g., Qi et al. (2023); Liu et al. (2025). Here, we outline how this Monte
Carlo error could be taken into account in the present setting.
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More specifically, our QNNs in (3) and (4) are defined using probabilities, rather than their Monte
Carlo estimates

P̂n,θ
m :=

1

S

S∑
s=1

1{m,4+m,...,4(n−1)+m}(i
(s)),

with i(s) the measured state in the i-th shot. To obtain refined bounds incorporating the sampling er-
ror, one would proceed as follows. Denote by F̄n,θ,S

R the RQNN state map with output probabilities
estimated by S shots, by x̂S the associated state and by ŪS the associated filter.

For the state map itself, the L2-error can be directly controlled (as in Gonon & Jacquier (2025)) by

E
[∫

RN×Rd

∣∣∣F̄n,θ
R,j (x, z)− F̄n,θ,S

R,j (x, z)
∣∣∣2 µ(dx,dz)]1/2

≤ 2R

2∑
i=1

(∫
RN×Rd

E
[∣∣∣Pn,θj

i (x, z)− P̂n,θj

i (x, z)
∣∣∣2]µ(dx,dz))1/2

≤ 4R√
S
,

(46)

using that E[|E[X1]− 1
S

∑S
s=1Xs|2] = Var(X1)

S for i.i.d. random variables X1, . . . , XS .

For the associated filter, one may proceed as follows. Firstly, (33) in the proof of Theorem 4.6 can
be adapted to∥∥ŪS(z)t − U(z)t

∥∥ =
∥∥x̂S

t − xt

∥∥ =
∥∥∥F̄n,θ,S

R (x̂S
t−1, zt)− F (xt−1, zt)

∥∥∥
≤
∥∥F (xt−1, zt)− F (x̂S

t−1, zt)
∥∥+ ∥∥∥F (x̂S

t−1, zt)− F̄n,θ,S
R (x̂S

t−1, zt)
∥∥∥

≤ λ
∥∥xt−1 − x̂S

t−1

∥∥+
 N∑

j=1

∥∥∥F̄n,θ,S
R,j − F̄n,θ

R,j

∥∥∥2
∞,M

1/2

+

 N∑
j=1

∥∥∥F̄n,θ
R,j − Fj

∥∥∥2
∞,M

1/2

≤ λ
∥∥xt−1 − x̂S

t−1

∥∥+ √
N maxj=1,...,N C∞

j√
n

+

 N∑
j=1

∥∥∥F̄n,θ,S
R,j − F̄n,θ

R,j

∥∥∥2
∞,M

1/2

.

(47)

The last error term can be bounded as

E


 N∑

j=1

∥∥∥F̄n,θ,S
R,j − F̄n,θ

R,j

∥∥∥2
∞,M

1/2
 ≤

 N∑
j=1

E
[∥∥∥F̄n,θ,S

R,j − F̄n,θ
R,j

∥∥∥2
∞,M

]1/2

≤ C√
S

for a suitable constant C using techniques from statistical learning theory, provided that P̂n,θ
m is

Lipschitz continuous as a function of (x, z). Inserting this into (48) and proceeding precisely as in
the proof of Theorem 4.6 then yields a bound that incorporates also the sampling error.

Alternatively, as the Lipschitz continuity may be hard to verify, we may obtain an L2-bound analo-
gously to Theorem 4.6 as follows. First, using that the shots are independent across evaluations, we
may apply (46) to estimate

E


 N∑

j=1

∥∥∥F̄n,θ,S
R,j (x̂S

t−1, zt)− F̄n,θ
R,j (x̂

S
t−1, zt)

∥∥∥2
1/2


≤

 N∑
j=1

E
[∥∥∥F̄n,θ,S

R,j (x̂S
t−1, zt)− F̄n,θ

R,j (x̂
S
t−1, zt)

∥∥∥2]
1/2

≤
√
N

4R√
S
,
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where the expectations are taken with respect to sampling the probabilities to evaluate
F̄n,θ,S
R,j (x̂S

t−1, zt).

Next, by proceeding as in (48), we may estimate

E[
∥∥ŪS(z)t − U(z)t

∥∥] ≤ λ
∥∥xt−1 − x̂S

t−1

∥∥+ √
N maxj=1,...,N C∞

j√
n

+ E


 N∑

j=1

∥∥∥F̄n,θ,S
R,j (x̂S

t−1, zt)− F̄n,θ
R,j (x̂

S
t−1, zt)

∥∥∥2
1/2


≤ λ

∥∥xt−1 − x̂S
t−1

∥∥+ √
N maxj=1,...,N C∞

j√
n

+
√
N

4R√
S

(48)

with the expectations again taken with respect to sampling the probabilities to evaluate
F̄n,θ,S
R,j (x̂S

t−1, zt). In particular, taking expectations also with respect to a random process Z (taking
values in (Dd)

Z− ) and sampling at each evaluation, the estimate (48) and the same arguments as in
the proof of Theorem 4.6 yield the bound

sup
t∈Z−

E[
∥∥UF (Z)t − ŪS(Z)t

∥∥] ≤ 1

1− λ

(√
N maxj=1,...,N C∞

j√
n

+
√
N

4R√
S

)
. (49)
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