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ABSTRACT

Safe policy improvement (SPI) offers theoretical control over policy updates,
yet existing guarantees largely concern offline, tabular reinforcement learning
(RL). We study SPI in general online settings, when combined with world model
and representation learning. We develop a theoretical framework showing that
restricting policy updates to a well-defined neighborhood of the current policy
ensures monotonic improvement and convergence. This analysis links transition
and reward prediction losses to representation quality, yielding online, “deep”
analogues of classical SPI theorems from the offline RL literature. Building on
these results, we introduce DeepSPI, a principled on-policy algorithm that couples
local transition and reward losses with regularised policy updates. On the ALE-57
benchmark, DeepSPI matches or exceeds strong behaviorals, including PPO and
DeepMDPs, while retaining theoretical guarantees.

1 INTRODUCTION

Reinforcement learning (RL) trains agents to act in complex environments through trial and error
(Sutton and Barto, 2018). To scale to high-dimensional domains, modern approaches rely on
function approximation, making representation learning (Echchahed and Castro, 2025) essential for
constructing latent spaces where behaviorally similar states are mapped close together and policies
and value functions become easier to estimate. A complementary approach is model learning, where
a predictive model of the environment is trained (Ha and Schmidhuber, 2018). Such models can be
leveraged for planning, generating simulated experience, or improving value estimates (Hafner et al.,
2021; Schrittwieser et al., 2020; Xiao et al., 2019).

In the online setting, where the agent updates its policy during interaction, avoiding catastrophic
errors is critical. Two key challenges arise: out-of-trajectory (OOT) world models and confounding
policy updates. OOT issues arise when the world model fails to capture rarely visited regions of
the state space, leading to unreliable predictions and unsafe updates when the latent policy explores
these regions (Suau et al., 2024). Confounding updates occur when both the policy and its underlying
representation are updated simultaneously: poor representations can lock the agent into suboptimal
behavior, while the policy itself prevents corrective updates to the representation. Safe Policy
Improvement (SPI) mitigates such risks by ensuring that new policies are not substantially worse than
their predecessors (Thomas et al., 2015). Classical SPI methods provide rigorous results in tabular
MDPs but depend on exhaustive state–action coverage, making them unsuitable for continuous or
high-dimensional spaces.

We address this gap by directly connecting representation and model learning with safe policy
improvement in complex environments with general state spaces. Our contributions are threefold.
First, we introduce a novel neighborhood operator that constrains policy updates, enabling policy
improvement with convergence guarantees. Second, we combine this operator with principled
model losses to bound the gap between a policy’s performance in the world model and in the true
environment, thereby enabling safe policy improvement in complex MDPs. This analysis also shows
that our scheme enforces representation quality by ensuring that states with similar values remain
close in the learned latent space. Third, we connect our theory to PPO (Schulman et al., 2017) and
propose DeepSPI, a practical algorithm that achieves strong empirical performance on the Arcade
Learning Environment (ALE; Bellemare et al. 2013) while retaining theoretical guarantees.
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1.1 RELATED WORK

Regularizing policy improvements. Regularized updates, as in TRPO, PPO, and related analyses,
are now standard for stabilizing policy optimization (Schulman et al., 2015; 2017; Geist et al., 2019;
Kuba et al., 2022). Our work extends this perspective to the joint training of a world model and a
representation, where we constrain policy updates in a principled neighborhood while controlling
model quality through transition and reward losses.

SPI methods provide principled guarantees on policy updates from fixed datasets (offline RL)
(Thomas et al., 2015; Ghavamzadeh et al., 2016a; Laroche et al., 2019; Simão et al., 2020; Castellini
et al., 2023). These methods assume tabular state spaces and offline data, where error bounds must
hold globally across all state–action pairs, often via robust MDP formulations (Iyengar, 2005; Nilim
and Ghaoui, 2005). Our setting is fundamentally different: we study online RL with high-dimensional
inputs, where such global constraints are intractable. We take inspiration from the SPI literature but
introduce local, on-policy losses that make safe improvement feasible in practice. In spirit, other
model-based methods share the goal of providing SPI-like guarantees in more general settings, but
are again purely offline, omit any form of representation learning, and rely on assumptions that differ
substantially from ours (Yu et al., 2020; 2021; Kidambi et al., 2020).

Representation learning and model-based RL. Auxiliary transition and reward prediction losses
are central to many model-based methods, from DeepMDP to Dreamer and related world-model
approaches (Gelada et al., 2019; Hafner et al., 2021). In particular, the losses we consider for
learning transitions and rewards generalize a wide range of objectives used across the model-based
RL literature (François-Lavet et al., 2019; van der Pol et al., 2020; Kidambi et al., 2020; Delgrange
et al., 2022; Dong et al., 2023; Alegre et al., 2023). Conceptually, our representation guarantees are
related to the notions of state abstraction in MDPs (Li et al., 2006) and bisimulation (Larsen and Skou,
1991; Desharnais et al., 1998; Givan et al., 2003; Ferns et al., 2011). Building upon bisimulation,
works design representations that cluster states into groups where the agent is guaranteed to behave
similarly under the current policy (Castro, 2020; Zhang et al., 2021; Castro et al., 2021; Agarwal
et al., 2021a; Avalos et al., 2024). By contrast, we directly link representation quality and model
accuracy to our safe policy improvement analysis, yielding tractable guarantees in the online setting.

2 BACKGROUND

In the following, given a measurable space X , we write ∆(X ) for the set of distributions over X . For
any distribution µ ∈ ∆(X ), we denote by supp(µ) its support.

Markov Decision Processes (MDPs) offer a formalism for sequential decision-making under uncer-
tainty. Formally, an MDP is a tuple of the formM = ⟨S,A, P,R, sI , γ⟩ consisting of a set of states
S , actions A, a transition function P : S ×A → ∆(S), a bounded reward function R : S ×A → R
with ∥R∥∞ = RMAX, an initial state sI ∈ S , and a discount factor γ ∈ [0, 1). Unless otherwise stated,
we generally assume that S and A are compact. An agent interacting inM produces trajectories, i.e.,
infinite sequences of states and actions (st, at)t≥0 visited along the interaction so that s0 = sI and
st+1 ∼ P (· | st, at) for all t ≥ 0.

At each time step t, the agent selects an action according to a (stationary) policy π : S → ∆(A)
mapping states to distributions over actions. Running an MDP under π induces a unique probability
measure Pπ over trajectories (Revuz, 1984), with associated expectation operator Eπ; we write
Eπ[· | s0 = s] when the initial state is fixed to s ∈ S . A policy has full support if supp(π(· | s)) = A
for all s ∈ S, and we denote the set of all policies by Π. A stationary measure of π is a distribution
over states visited under π, and is defined as a solution of ξπ(·) = Es∼ξπEa∼π(·|s)[P (· | s, a)]. Such
a measure is often assumed to exist in continual RL (Sutton and Barto, 2018), is unique in episodic
RL (Huang, 2020), and defines the occupancy measure in discounted RL (Metelli et al., 2023).1

Value functions. The performance of the agent executing a policy π ∈ Π in each single state
s ∈ S can be evaluated through the value function V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at) | s0 = s]. The
goal of an agent is to maximize the return from the initial state, given by ρ(π,M) = V π(sI ).
To evaluate the quality of any action a ∈ A, we consider the action value function Qπ(s, a) =

1Details on the formalization of episodic processes and value functions can be found in Appendix A.
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R(s, a) + γ Es′∼P (·|s,a) V
π(s′), being the unique solution of Bellman’s equation with V π(s) =

Ea∼π(·|s) Q
π(s, a). Alternatively, any given action can be evaluated through the advantage function

Aπ(s, a) = Qπ(s, a)− V π(s), giving the advantage of selecting an action over the current policy.

Representation learning in RL. In realistic environments, the state–action space is too large for
tabular policies or value functions. Instead, deep RL employs an encoder ϕ : S → S that maps states
to a tractable latent space S , from which value functions can be approximated. Learning such encoders
is referred to as representation learning (Echchahed and Castro, 2025). To improve representations,
agents are often trained with additional objectives, commonly auxiliary tasks requiring predictive
signals. Policy-based methods then optimize a latent policy π : S → ∆(A) jointly with ϕ, executed
in the environment as π(· | ϕ(s)). By convention, we write π(· | s) for π ◦ ϕ(s) when ϕ is clear, and
denote the set of all latent policies by Π. For any π ∈ Π, the composed policy π ◦ ϕ belongs to Π.

Model-based RL augments policy learning with a world modelM = ⟨S,A, P ,R, s̄I , γ⟩, which can
improve (i) sample efficiency by generating trajectories (e.g., Hafner et al. 2021), (ii) value estimation
through planning (e.g., Buckman et al. 2018), and (iii) representation learning by grouping states
with similar behavior (e.g., Gelada et al. 2019; Zhang et al. 2021). When S = S, the model must
replicate environment dynamics, which is often intractable. Instead, we focus on S defined by the
learned representation ϕ, so thatM becomes an abstraction ofM. Learning transition and reward
functions then additionally serves as an auxiliary signal for the representation, encouraging states
with similar behavior to map close in S . Since S is the latent space, Π corresponds to the policies of
M. We further assume S is equipped with a metric d : S × S → [0,∞) to measure distances.

3 NO WAY HOME: WHEN WORLD MODELS AND POLICIES GO OUT OF
TRAJECTORIES

World models are usually learned toward minimizing a reward loss LR and/or transition loss LP
from experiences η collected along the agent’s trajectories. Those experiences are either gathered
in the form of a batch or a replay buffer B. In general, the loss functions take the following form:
LR = Eη∼B fR

(
ϕ,R; η

)
and LP = Eη∼B fP

(
ϕ, P ; η

)
, where fR (resp. fP ) assign a “cost” relative

to the error between R and R (resp. P and P ) according to the experiences η and their representation.
Henceforth, we refer to the policy πb used to insert experiences in B as the behavioral policy.

3.1 OUT-OF-TRAJECTORY WORLD MODEL

One may consider leveraging the model M to improve the policy πb. This can be achieved by
directly planning a new policy π in M or drawing imagined trajectories in the world model to
evaluate new actions and improve on sample complexity during RL. However, since the world model
is learned from experiences stored in B, we can only be certain of its average accuracy according
to this data. This is problematic because some regions of the state space of M may have been
rarely, or not at all, visited under πb. In that case, the predictions made inM might cause the agent
to “hallucinate” inaccurate trajectories in the latent space and spoil the policy improvement. This
problem, known as the out-of-trajectory (OOT) issue (Suau et al., 2024), arises when a policy inM
deviates substantially from πb, which can render the model unreliable.

To illustrate this problem, consider the world model of Figure 1. Assume the model is trained by
collecting trajectories produced by πb inM where πb(a2 | s) ≤ ϵ for all s ∈ S1, with ϵ > 0. For
a sufficiently small ϵ, the region S3 in the original environment would remain largely unexplored
while having almost no impact on the losses LR, LP . Therefore, the representation of states in S3
(s̄3 and s̄′3) may turn completely inaccurate. Here, the model incorrectly assigns a reward of 20 to s̄′3,
whereas the true reward is strictly negative. Consequently, the optimal policy inM deterministically
selects a2 in s̄1. When executed in the original environment, this policy drives the agent to S3 thereby
degrading the behavioral policy πb.

3.2 CONFOUNDING POLICY UPDATE

Updating both the representation and the policy solely from experience collected under a behavioral
policy can degrade performance rather than improve it. In the same spirit as policy confounding
(Suau et al., 2024), we call this phenomenon confounding policy update. The MDP in Figure 2
illustrates the issue.
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S1

S2

S3

S4

a1

a2

a3

(a) A large MDP M whose state space is divided in four
regions S =

⋃4
i=1 Si.

a1

a2

a3
+1

+20

s̄1

s̄2

s̄3

s̄4

4/5

3/4

1/5

1/4

1/10

9/10

s̄′3

(b) A simple world model M whose state space is
S = {s̄1, s̄2, s̄3, s̄′3, s̄4}.

Figure 1: In M, continuously playing a1 in states from S1 eventually leads the agent to the region S2, and
playing a3 in S2 eventually leads the agent to S4 where a reward of 1 is incurred at each time step, whatever the
action played. Playing a2 in S1 leads the agent to the region S3, where all actions incur negative rewards. Here,
ϕ(s) = s̄i for any s ∈ Si and i = {1, 2, 4}. For s ∈ S3, we have either ϕ(s) = s̄3 or ϕ(s) = s̄′3.

s1

s2

s3

s4

a2

a1

a1

a2

1− ϵ

ϵ

+2

+1

+1

−2/ϵ

Figure 2: MDP where the probabil-
ity of transitioning from s1 to s2 is
1− ϵ, for 0 < ϵ < 1/4.

The agent maps the states s2 and s3 to the same latent state s̄, i.e.
ϕ(s) = s̄ iff s ∈ {s2, s3}. States s1 and s4 each have their own
latent state. We consider the behavioral policy πb := πb ◦ϕ, where
πb is a stochastic policy with a small exploration rate ζ:

πb(a1 | s̄) = 1− ζ, πb(a2 | s̄) = ζ, (1)

for 0 < ζ ≪ ϵ. A good representation would ideally group states
from which the agent behaves similarly. Because trajectories that
reach s3 and pick a2 are unlikely, the two states appear identical
under πb: |V πb(s2)− V πb(s3)|≈0. Therefore, this justifies using
ϕ as representation for πb, because the values of s2 and s3 are
nearly identical: the agent exhibits close behaviors under πb from those states.

Suppose exploration under πb eventually discovers that playing a2 in s̄ sometimes yields the +2
reward. Based on exploration data, an RL agent might therefore be tempted to change the latent
policy to π(a2 | s̄) = 1 without modifying the representation ϕ. With the representation still grouping
s2 and s3, the new policy would now deterministically pick a2 in both concrete states. Whenever the
agent actually reaches s3, it would receive the large negative reward −2/ϵ, which turns the overall
return (from s1) negative, thus worse than under πb even though a2 is indeed optimal in s2.

A solution to this problem would have been to split the representation of s2 and s3 in two distinct
latent states. In general, representation and policy learning must be coupled since any change in
the policy that alters the distribution over states can invalidate a previously adequate representation.
However, in this example, the agent has no incentive to do so based on the experiences collected
under πb. As we will show below, updating both the policy and the representation jointly should be
handled carefully to ensure policy improvement.

Our goal is to establish sufficient conditions to guarantee safe policy improvement during the RL
process, either based on world models, state representations, or both, thus alleviating OOT world
model and confounding policy update issues. Notice that, in the examples, both problems occur when
performing aggressive updates from πb to a new policy π (the mode of the distributions drastically
shifts). Intuitively, smooth updates indeed ensure to alleviate those issues: constraining the policy
search to policies “close” to πb (i) prevents hallucinations in parts of the world model that have
been underexplored; (ii) reduces the risk of significantly degrading the return when updating the
policy. While the benefits of regularizing policy improvements have already been both theoretically
and practically justified (e.g., Geist et al. 2019; Kuba et al. 2022), their implications when mixing
model-based and representation learning in RL have been underexplored.

Roadmap. To rigorously address the OOT and confounding-update issues, the next sections develop
the theoretical foundations of our approach, showing how controlled policy updates, local model
losses, and representation stability interact. We briefly summarize how the main results connect.

Our analysis combines neighborhood-restricted policy updates, model-quality bounds, and
representation guarantees. Sect. 4 introduces the neighborhood operator defining a trust region
around the behavioral policy; restricting updates to this region ensures monotonic improvement and
convergence (Thm. 1). Sect. 5 then links the reward and transition losses to value discrepancies:
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Thm. 2 shows that, when these losses are small, and updates remain in the neighborhood, the world
model stays accurate under the learned representation. Combining these ingredients yields our
first SPI result (Thm. 3), guaranteeing that direct policy updates in the world model translate to
improvement under controlled error. Finally, Thm. 4 shows that the same loss-based control stabilizes
the encoder, ensuring that value-distinct states remain separated in the latent space.

4 YOUR FRIENDLY NEIGHBORHOOD POLICY

Motivated by the intuition that constraining policy updates can mitigate OOT and confounding policy
issues, we consider measuring the update as the importance ratio (IR) of the policies. This measure
provides guarantees for constraining policy and representation updates, and with an appropriate
optimisation scheme, ensures both policy improvement and convergence. In Section 5, we will further
show that properly constraining the IR allows for safe policy improvements in world models while
providing representation guarantees.

Let π, π′ ∈ Π, the extremal importance ratios are defined as Dext
IR (π, π′) =

ext {π′(a|s)/π(a|s) : s ∈ S, a ∈ supp(π(· | s))} , where ext ∈ {inf, sup} . We define a neighbor-
hood operator2 based on the IR, NC : Π → 2Π for some constant 1 < C < 2, establishing a
trust region for policies updates that constraints the IR between 2− C and C:

NC(π) =

{
π′ ∈ Π

∣∣∣∣ 2− C ≤ Dinf
IR (π, π′) ≤ Dsup

IR (π, π′) ≤ C,

and supp(π(· | s)) = supp(π′(· | s)) ∀s ∈ S

}
∀π ∈ Π. (2)

A critical question is whether an agent that restricts its policy updates to a defined neighborhood is
truly following a sound policy improvement scheme. The following theorem shows that it does and
further guarantees convergence.
Theorem 1. (Policy improvement and convergence guarantees) Assume S and A are finite spaces.
Let π0 ∈ Π be a policy with full support and (πn)n≥0 be a sequence of policy updates defined as

πn+1 := arg sup
π′∈NC(πn)

E
s∼µπn

E
a∼π′(·|s)

Aπn(s, a), (3)

where µπn
is a sampling distribution with supp(µπn

) = S for each n ≥ 0. Then, the value function
V πn is monotonically improving, converges to V ∗, and so is the return ρ(πn,M).

The proof consists in showing the resulting policy update scheme is an instance of mirror learning
(Kuba et al., 2022), which yields the guarantees. Notice that since π0 has full support, all the
subsequent policies πn have full support as well. To maintain the guarantees, considering a stationary
measure ξπn

as the sampling distribution is only possible when supp(ξπn
) = S. Note that this is

always the case in episodic tasks (as the policy itself has full support). This is more generally true in
ergodic MDPs (Puterman, 1994).

5 WITH GREAT WORLD MODELS COMES GREAT REPRESENTATION

This section explains how the neighborhood operator of Eq. 2 enables safe policy improvement during
world-model planning and representation updates in complex environments. Standard SPI methods
ignore representation learning and require exhaustive state–action coverage in B to obtain guarantees,
making them unsuitable for general state-action spaces. Even in finite domains, bounding the count
of each state–action pair does not scale. Laroche et al. (2019) proposed baseline bootstrapping for
under-sampled pairs, but their approach remains impractical in large-scale settings despite conceptual
similarities to our operator. Further discussion of SPI limitations is provided in Appendix D.

Learning an accurate world model. SPI typically relies on optimizing a policy with respect to
a latent model learned from the data stored in B. In contrast to previous methods, our approach
scales to high-dimensional feature spaces by (i) learning a representation ϕ and (ii) considering local
error measures as opposed to global measures across the whole state-action space. We formalize

2There are clear similarities between the IR, our neighborhood operator, and the PPO loss function (Schulman
et al., 2017). We discuss this connection in Section 6.
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them as tractable loss functions. Their local nature makes them compliant with stochastic gradient
descent methods. Formally, given a distribution B ∈ ∆(S ×A), we define the reward loss LB

R and
the transition loss LB

P as

LB
R := E

s,a∼B

∣∣R(s, a)−R(s̄, a)
∣∣ , LB

P := E
s,a∼B

W
(
ϕ♯P (· | s, a), P (· | ϕ(s), a)

)
(4)

where ϕ♯P is the pushforward measure of P by ϕ, andW the Wasserstein distance (Vaserstein, 1969).
W between µ, ν ∈ ∆

(
S
)

is defined asW (µ, ν) = infλ∈Λ(µ,ν) E(s̄,s̄′)∼λ d(s̄, s̄′), where Λ(µ, ν) is
the set of all couplings of µ and ν. While the Wasserstein operator may seem scary at first glance, it
generalizes over transition losses that can be found in the literature (cf. Sect. 1.1). In particular, when
the latent space is discrete, this distance boils down to the total variation distance. Another notable
case is when the transition dynamics are deterministic, in which case the transition loss reduces to
LB
P = Es,a,s′∼B d

(
ϕ(s′), P (ϕ(s), a)

)
. Finally, in general, a tractable upper bound can be obtained

as LB
P ≤ Es,a,s′∼B Es̄′∼P (·|ϕ(s),a) d(ϕ(s

′), s̄′) (proof in Appendix C).

Lipschitz constants. To provide the guarantees, for any particular policy π ∈ Π, we assume the
world model is equipped with Lipschitz constants Kπ

R
, Kπ

P
defined as follows: for all s̄1, s̄2 ∈ S,∣∣∣∣ E

a1∼π(·|s̄1)
R(s̄1, a1)− E

a2∼π(·|s̄2)
R(s̄2, a2)

∣∣∣∣ ≤ Kπ
R
· d(s̄1, s̄2),

W
(

E
a1∼π(·|s̄1)

P (· | s̄1, a1), E
a2∼π(·|s̄2)

P (· | s̄2, a2)
)
≤ Kπ

P
· d(s̄1, s̄2).

Intuitively, the Lipschitzness of the latent reward and transition functions guarantees that the latent
space is well-structured, so that nearby latent states exhibit similar latent dynamics. Gelada et al.
(2019) control those bounds by adding a gradient penalty term to the loss and enforce Lipschitzness
(Gulrajani et al., 2017). One can also obtain constrained Lipchitz constants as a side effect by
enforcing the metric d to match the bisimulation distance in the latent space (Zhang et al., 2021).
Interestingly, when the latent space is discrete, Lipschitz constants can be trivially inferred since
Kπ

R
= 2RMAX and Kπ

P
= 1 (Delgrange et al., 2022). Note also that as the spaces are assumed

compact, restricting to continuous functions ensures Lipschitz continuity.

For the sake of presentation, we restrict our attention to the following assumption for Thms. 2 and 3:
Assumption 1. We assume that the agent operates in the episodic RL setting, i.e., we consider the
standard RL framework where the environment is eventually reset with probability one.

Our results extend to general settings where a stationary distribution is accessible (c.f. Remark 3).

World model quality. Before introducing our safe policy improvement theorem, we first show
that the local losses effectively measure the world model’s quality with respect to the original
environment. Namely, their difference in return obtained under any latent policy in a well-defined
neighborhood is bounded by the local losses derived from the reference, behavioral policy’s
state-action distribution. This is formalized in the following theorem.
Theorem 2. Suppose γ > 1/2 and Kπ

P
< 1/γ. Let C ∈ (1, 1/γ), πb ∈ Π be the base policy,

(π ◦ ϕ) ∈ NC(πb) where π ∈ Π is a latent policy and ϕ : S → S a state representation. Then,

∣∣ρ(π ◦ ϕ,M)− ρ
(
π,M

)∣∣ ≤ AEL(πb) ·
L

ξπb
R /γ +KV · L

ξπb
P

1/Dsup
IR (πb,π)−γ

,

where AEL(πb) denotes the average episode length whenM runs under πb, KV = Kπ
R/(1−γKπ

P ),

and L
ξπb
R , L

ξπb
P are the local losses of Eq. 4 over the stationary distribution ξπb induced by πb.

In simpler terms, if the deviation (supremum IR, or SIR for short) between the behavioral policy and
any new policy π stays strictly lower than 1/γ, the gap in return between the environment and the
world model for this new policy can be bounded using data collected via πb. Minimizing local losses
from πb’s data ensures that refining the representation ϕ for π improves model quality: when these
losses vanish,M andM are almost surely equivalent under π. The bound depends on the Average
Episode Length (AEL), but even a loose upper bound is sufficient to preserve guarantees. It is also
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strongly influenced by the discount factor γ, which defines an implicit horizon. Smaller values permit
larger deviations from πb and relax the accuracy required of the world model.

Safe policy improvement. We consider the setting where the world model is used to improve the
behavioral policy πb = πb ◦ ϕ, with πb ∈ Π and the representation ϕ is fixed during each update.
Restricting updates to a well-defined neighborhood guarantees that ρ(π ◦ ϕ,M) − ρ(πb,M) ≥
ρ
(
π,M

)
− ρ
(
πb,M

)
− ζ , where ζ is defined as the cumulative modeling error from the local losses.

Theorem 3. (Deep, Safe Policy Improvement) Under the same preamble as in Thm. 2, assume that ϕ
if fixed during the policy update and the behavioral is a latent policy with πb := πb ◦ ϕ and πb ∈ Π.
Then, the improvement of the return ofM under π can be guaranteed on πb as

ρ(π ◦ ϕ,M)− ρ(πb,M) ≥ ρ
(
π,M

)
− ρ
(
πb,M

)
− ζ,

where ζ := AEL(πb) ·
(
L

ξπb
R /γ +KV L

ξπb
P

)( 1
1/Dsup

IR (πb,π)− γ
+

1

1− γ

)
.

Theorem 3 addresses the OOT issue (Section 3.1): if the SIR of the behavioral remains strictly below
1/γ, then minimizing the local losses reduces the error ζ, ensuring safe policy improvement when
the world model is used to enhance the policy. While our focus is not on offline SPI, Appendix E
(Thm. 5) additionally provides a PAC variant of the result, following the standard use of confidence
bounds in the SPI literature.

Representation learning. Finally, we analyze how learning a world model using our loss functions
as an auxiliary task facilitates the learning of a useful representation. A good representation should
ensure that environment states that are close in the representation also have close values, directly
supporting policy learning. Specifically, we seek “almost” Lipschitz continuity (Vanderbei, 1991) of
the form ∃K : ∀s1, s2 ∈ S, |V πb(s1)− V πb(s2)| ≤ K · d(ϕold(s1), ϕold(s2))+Lπb(ϕold) where Lπb

is an auxiliary loss depending on the data collected by πb. Notably, a critical question is whether
updating the policy and its representation, respectively to π and ϕ, maintains Lipschitz continuity.
Crucially, as the behavioral πb is updated to π ◦ ϕ with respect to the experience collected under
πb, the bound must hold for Lπb . The following theorem is a probabilistic version of this statement,
formalized as a concentration inequality:
Theorem 4. (Deep SPI for representation learning) Under the same preamble as in Thm. 2, let

ε > 0 and δ := 4 · L
ξπb
R +γKV ·L

ξπb
P

ε·(1/Dsup
IR (πb,π)−γ)

. Then, with probability at least 1− δ under ξπb , we have for all

s1, s2 ∈ S that ∣∣V π(s1)− V π(s2)
∣∣ ≤ KV · d(ϕ(s1), ϕ(s2)) + ε.

Theorem 4 addresses confounding policy updates (Section 3.2): minimizing the losses increases the
probability that learned representations remain almost Lipschitz under controlled policy changes (with
an SIR below 1/γ). This prevents distinct states from collapsing into identical latent representations
that degrade performance. We note that Gelada et al. (2019) proved a similar bound when πb = π
(the policy update was disregarded), which in contrast to ours, surely holds with

ε :=
Lξπ
R + γKV · Lξπ

P

1− γ
·
(

1

ξπ(s1)
+

1

ξπ(s2)

)
.

However, in general spaces, for any specific s ∈ S , ξπ(s) might simply equal zero, making the bound
undefined. In particular, in the continuous setting, S is widely assumed to be endowed with a Borel
sigma-algebra, where the probability of every single point is indeed zero.

6 ACROSS THE SPI-VERSE: PPO COMES INTO PLAY

These theorems inspire a practical RL algorithm that combines policy improvement and guarantees
with solid empirical performance. The critical part of our approach is to make sure updates are
restricted to the policy neighborhood while minimizing the auxiliary losses LR, LP . In fact, our
neighborhood operator has close connections to PPO (Schulman et al., 2017), where the policy update
is given by3

3we give the formulation of Kuba et al. (2022), which is equal to the one of Schulman et al. (2017).
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πn+1 := arg sup
π′∈Π

E
s∼ξπn

[
E

a∼π′(·|s)
Aπn(s, a)−Dπn(π

′ | s)
]
, (5)

with Dπn
(π′ | s) = Ea∼πn(·|s) ReLu

([
π′(a|s)/πn(a|s)− clip(π′(a|s)/πn(a|s), 1± ϵ)

]
·Aπn(s, a)

)
,

for some ϵ > 0. By fixing ϵ = C − 1, instead of strictly constraining the updates to the neighborhood,
the regularization Dπn

(π′ | s) corrects the utility Ea∼π′(·|s) A
πn(s, a) (compare Eq. 3 and Eq. 5), so

that there is no incentive for π′ to deviate from πn with an IR outside the range [2− C,C]. Under
the same assumption as in Theorem 1, PPO is also an instance of mirror learning (Kuba et al., 2022),
meaning it also benefits from the same convergence guarantees.

Strictly restricting the IR in a neighborhood is much harder in practice, considering a PPO objective
is thus an appealing alternative. However, it is not sufficient to add the auxiliary losses LP , LR to the
objective of Eq. 5 to maintain the guarantees. Indeed, updating the representation ϕ by minimizing
the additional losses may push the the policy π ◦ ϕ outside the neighborhood. As a solution we
propose to incorporate the local losses by replacing all occurrences of Aπn in Eq. 5 by the utility

Uπn(s, a, s′) := Aπn(s, a)− αR · ℓR(s, a)− αP · ℓP (s, a, s′), (6)

where ℓR(s, a) :=
∣∣R(s, a)−R(ϕ(s), a)

∣∣, ℓP (s, a, s
′) := Es̄′∼P (·|ϕ(s),a) d(ϕ(s

′), s̄′), s′ ∼
P (· | s, a), and αR, αP ∈ (0, 1]. Intuitively, ℓR, ℓP are transition-wise auxiliary losses that al-
low retrieving L

ξπn

R and L
ξπn

P in expectation w.r.t. the current policy πn. When optimized, since they
are clipped in a PPO-fashion, Uπn allows restricting the policy updates to the neighborhood.

Algorithm 1: DeepSPI
Inputs: Horizon T , batch size B, vectorized

environment env, parameters θ
Initialize vectors
s ∈ S(T+1)×B ,a ∈ AT×B , r ∈ RT×B

repeat
for t← 1 to T do

Draw actions from the current policy:
at,i ∼ π(· | ϕ(st,i)) ∀1 ≤ i ≤ B

Perform a single parallelized (B) step:
rt, st+1 ← env.step(st,at)

Update θ by descending
∇θ DeepSPI_loss(s,a, r, Uπ◦ϕ, θ)

▷ change A in Eq. 5 by U from Eq. 6
s1 ← sT+1

until convergence
return θ

From this loss, we propose DeepSPI, a prin-
cipled algorithm leveraging the policy im-
provement and representation learning ca-
pabilities developed in our theory. As our
losses rely on distributions defined over the
current policy, we focus on the on-policy set-
ting. While model-based approaches are not
standard in this setting, we stress that highly
parallelized collection of data (e.g., via vec-
torized environments) enables a wide cover-
age of the state space (cf. Mayor et al., 2025;
Gallici et al., 2025), which is suitable to opti-
mize the latent model. DeepSPI updates the
world model, the encoder, and the policy si-
multaneously while guaranteeing the represen-
tation is suited to perform safe policy updates.

6.1 ILLUSTRATIVE EXAMPLE

I

⋆

⋆

Figure 3: Toy maze environment illustrating
the confounding policy update problem.

To illustrate the representation learning capabilities of
DeepSPI, we consider the toy grid-world shown in Fig. 3.
This environment mirrors the confounding policy update
discussed in Sect. 3.2, instantiated earlier in Fig. 2.

The agent starts in the cell labeled I. Upon leaving the
orange cell immediately to its right, it is sent to the top
branch with probability 1 − ϵ and to the bottom branch
with probability ϵ. It must then traverse a corridor of n
blue cells (here n=5). Moving one cell to the right yields
a reward of +1, and the agent cannot move backwards.

At the final corridor cell, marked with a ⋆, moving right yields a reward of +1 regardless of whether
the agent is in the top or bottom branch, and the episode terminates. The difference is when the agent
moves up from the ⋆ cell: in the top branch, it receives a reward of +n/γn, whereas in the bottom
branch it receives −(2−ϵ)n/(ϵ γn) before termination. As in Sect. 3.2, this construction ensures that
if both ⋆ states are merged in the latent space, choosing “right” remains acceptable (their values
coincide), but choosing “up” produces a negative expected return from the initial state I (details in
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Figure 5: Aggregate results on stochastic versions of the standard 57 environments from ALE, with 95%
confidence intervals (CIs). Higher values for the mean, median, and interquartile mean (IQM) indicate better
performance, while a lower optimality gap is preferable (cf. Agarwal et al. 2021b). CIs are obtained through
percentile bootstrapping with stratified resampling. Plots per environment available in Appendix H.2.

Appendix G). To improve upon the policy that always chooses “right,” the agent must learn to assign
distinct representations to the two ⋆ cells, select “up” in the top one, and “right” in the bottom one.

We compare the behaviour of PPO and DeepSPI in this environment. Since our goal is to high-
light the agent’s representation-learning capabilities, each observation is provided as raw pixels.

Figure 4: Value from cell I in the maze (left) and distance between the
representation of the ⋆ cell from the top and bottom branches (right).

The agent must therefore learn
both a policy and an encoder
mapping pixels to a structured
latent space. Further details on
the environment and observation
scheme are given in Appendix G.
As shown in Fig. 4, the repre-
sentation learned by PPO col-
lapses the top and bottom ⋆ cells
into a single latent state. With
such a representation, the best
policy PPO can learn is to always
choose “right,” which leads to a
return of ∼4.8. In contrast, DeepSPI benefits from the representation quality guarantees of Thm. 4,
which ensure that states with different values remain separated in the latent space for all policies in a
suitable neighborhood. This is exactly what we observe: the learned representation distinguishes the
two ⋆ cells. As a result, the agent learns to choose “up” in the top ⋆ cell and “right” in the bottom
one, achieving a return of ∼8.

7 EXPERIMENTS

Figure 6: Sample efficiency w.r.t. IQM nor-
malized scores on the stochastic ALE-57.
Shaded regions give pointwise 95% CIs ob-
tained via percentile stratified bootstrap.

In this section, we evaluate the practical performance of
DeepSPI in environments where (i) representation learn-
ing is essential and (ii) dynamics are complex. We use
the Atari Arcade Learning Environment (ALE; Bellemare
et al. 2013) and consider each state as four stacked frames.
ALE domains feature a wide range of dynamics; to further
introduce stochasticity, we follow Machado et al. (2018)
and employ two standard tricks: sticky actions, where with
probability pa the previous action is repeated (simulat-
ing joystick or reaction-time imperfections), and random
initialisation, where the agent begins after nNOOP initial
no-op frames. We set pa = 0.3 and nNOOP = 60.

As baselines, we consider PPO (vectorized cleanRL implementation; Huang et al., 2022) and
DeepMDPs (Gelada et al., 2019). Essentially, DeepMDPs are principled auxiliary tasks (the losses
LR, LP presented in Sect. 5) that can be plugged to any RL algorithm to improve the representation
learned (with guarantees). The main difference with DeepSPI is that LR, LP are able to push the
updated policy out of the neighborhood by learning the representation via the additional losses, for
which updates are not constrained. This means that none of the SPI guarantees presented in this
paper apply to DeepMDPs. For a fair comparison, we plugged the DeepMDP losses to (vectorized)
PPO, and we use the architecture as for DeepSPI. We use the default cleanRL’s hyperparameters
for the three algorithms, except for the data collection (128 environments with a horizon of 8 steps).
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Figure 8: Sample environments from ALE where DreamSPI learns meaningful behaviors.
As latent space, we use the raw 3D representation obtained after the convolution layers (as recom-
mended and used by Gelada et al., 2019). For modeling the transition function, we found best to
use a mixture of multivariate normal distributions (the transition network outputs 5 means/diagonal
matrices). To deal with the Lipschitz constraints that need to be enforced on the reward and transition
functions, we found the most efficient to model R,P via Lipschitz networks (precisely, we use
norm-constrained GroupSort architectures to enforce 1-Lipschitzness; Anil et al., 2019).

As shown in Fig. 5 and 6, DeepSPI delivers strong performance, improving on both
PPO and DeepMDP. Notably, these results are obtained while preserving SPI-style prop-
erties; a valuable combination, as such theoretical control typically comes at the expense
of performance and substantial data requirements. Beyond pure performance, we want
to assess whether the world model, learned via DeepSPI, exhibits accurate dynamics.

Figure 7: Median transition and reward losses during
training, aggregated across all the ALE. For the sake of
visualization, we cut LP lower values from the plot.

Fig. 7 reports LP , LR during training. Note
that DeepSPI consistently achieves lower tran-
sition losses, indicating more accurate transition
functions. We discuss the statistical significance
of that statement in Appendix H.2. In contrast to
the off-policy setting where Gelada et al. (2019)
reported competing transition and reward losses,
we did not observe such behavior in our parallel
on-policy setting. We attribute this stability to
the fact that our losses are always computed un-
der the current policy, unlike off-policy methods
that rely on replay buffers.

To probe the predictive quality of the latent model and illustrate Thm. 3, we introduced DreamSPI, a
naïve variant where DeepSPI learns the world model and representation, and PPO updates the policy
from imagined trajectories (Appendix F). Unlike off-policy approaches that exploit replay buffers
and update the model at every interaction step, our fully on-policy setting updates the world model
only from fresh interaction data, which makes combining model learning and planning inherently
more challenging. Even so, DreamSPI achieves learning progress in several environments and
exhibits coherent behaviours (cf. Fig. 8 & Appendix H.2). While its aggregate median score remains
below the baselines, this is somehow expected given the stricter data requirements compared to usual
model-based approaches. Importantly, the ability to maintain a model offers benefits that extend far
beyond raw scores, enabling future applications in safety, verification, and reactive synthesis.

8 CONCLUSION AND FUTURE WORK

We developed a theoretical framework for safe policy improvement (SPI) that combines world-model
and representation learning in nontrivial settings. Our results show that constraining policy updates
within a well-defined neighborhood yields monotonic improvement and convergence, while auxiliary
transition and reward losses ensure that the latent space remains suitable for policy optimisation.
We further provided model-quality guarantees in the form of a “deep” SPI theorem, which jointly
accounts for the learned representation and the reward/transition losses. These results directly
address two critical issues in model-based RL: out-of-trajectory errors and confounding policy
updates. Building on this analysis, we proposed DeepSPI, a principled algorithm that integrates the
theoretical ingredients with PPO. On ALE, DeepSPI is competitive with and often improves upon
PPO and DeepMDPs, while providing SPI guarantees.

This work opens several directions. A first avenue is to make pure deep SPI model-based planning
practical. Our experiments with DreamSPI suggest that this is feasible but requires improved sample
efficiency. Another direction goes beyond return optimization: a principled world model, grounded in
our theory, can support safe reinforcement learning via formal methods, through synthesis (Delgrange
et al., 2025; Lechner et al., 2022), or shielding (Jansen et al., 2020).
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REPRODUCIBILITY STATEMENT

All theoretical results are stated with explicit assumptions, and complete proofs are included in the
appendix. The experimental setup is described in detail in the main text and supplementary material,
including environments, hyperparameters, and training procedures. We provide the full source code
as supplementary material to enable reproduction of our results. Datasets used in the experiments are
publicly available (we use envpool Atari).
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Appendix
A REMARK ON VALUE FUNCTIONS AND EPISODIC PROCESSES

An episodic process is formally defined as an MDPM = ⟨S,A, P,R, sI , γ⟩ where:

(i) there is a special state sreset ∈ S, intuitively indicating the termination of any episode;
(ii) the reset state does not incur any reward: R(sreset, a) = 0 for all actions a ∈ A;

(iii) sreset is almost surely visited under any policy: for all policies π ∈ Π, Pπ

({
(st, at)t≥0 | ∃i : si = sreset

})
= 1;

and
(iv) M restarts from the initial state once reset: P ({sI } | sreset, a) = 1 for all a ∈ A.

Note that by items (iii) and (iv), sreset is almost surely infinitely often visited: we have for all π ∈ Π that

Pπ

({
(st, at)t≥0 | ∀i ≥ 0, ∃j > i : sj = sreset

})
= 1.

Alternatively and equivalently, an episodic process may also be defined without a unique reset state by the means of
several terminal states, which go back to the initial state with probability one.

An episode ofM is thus the prefix s0, a0, . . . , at−1, st of a trajectory where st = sreset and for all i < t, si ̸= sreset.
Notice that our formulation embeds (but is not limited to) finite-horizon tasks, where an upper bound on the length
of the episodes is fixed. The average episode length (AEL) of π is then formally defined as AEL(π) = Eπ [T] with

T(τ) =

∞∑
i=0

(i+ 1) · 1 {si = sreset and ∀j < i, sj ̸= sreset}

for any trajectory τ = (st, at)t≥0.

Often, when considering episodic tasks, RL algorithms stops accumulating rewards upon the termination of every
episode. In practical implementations, this corresponds to discarding rewards when a flag done, indicating episode
termination, is set to true. In such case, we may slightly adapt our value functions as:

V π(s) =

Eπ

[ ∞∑
t=0

(
t∏

i=1

1 {si ̸= sreset} · γ

)
R(st, at)

∣∣∣ s0 = s

]
if s ̸= sreset

0 otherwise;

or, when formalized as Bellman’s equation:

Qπ(s, a) =

{
R(s, a) + γ · Es′∼P (·|s,a) V

π(s′) if s ̸= sreset

0 otherwise; and

V π(s) = E
a∼π(·|s)

Qπ(s, a).

All our results extend to this formulation (cf. Remark 2).

Remark 1 (Occupancy measure). In RL theory, the discounted occupancy measure

µγ
π(s) := (1− γ) ·

∞∑
t=0

γtPπ

({
(si, ai)i≥0 | st = s

})
is often considered as the default marginal distribution over states the agent visit along the interaction, mostly
because of its suitable theoretical properties. In fact, for any arbitrary MDP, µγ

π is the stationary distribution of
the episodic process obtained by considering a reset probability of 1 − γ from every state of the original MDP
(Puterman, 1994; Metelli et al., 2023). Again, we contend that all our results can be extended to the occupancy
measure with little effort.
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B POLICY IMPROVEMENTS THROUGH MIRROR LEARNING AND CONVERGENCE
GUARANTEES

In this section, we prove that NC (Eq. 2) is a proper mirror learning neighborhood operator. As a consequence,
appropriately updating the policy according to NC is guaranteed to be an instance of mirror learning, yielding the
convergence guarantees of Theorem 1.

For completeness, we recall the definition of neighborhood operator from Kuba et al. (2022).
Definition 1 (Neighborhood operator). The mapping N : Π→ 2Π is a (mirror learning) neighborhood operator, if

1. (continuity) It is a continuous map;
2. (compactness) Every N (π) is a compact set; and
3. (closed ball) There exists a metric d : Π × Π → [0,∞), such that for all policies π ∈ Π, there exists ϵ > 0,

such that d(π, π′) ≤ ϵ implies π′ ∈ N (π).

The trivial neighborhood operator is N (π) = Π.
Lemma 1. NC is a neighborhood operator.

Proof. Henceforth, fix a policy π ∈ Π. When taking the supremum, infimum, maximum, or minimum value
over states and actions, we always consider actions to be taken from the support of the behavioral policy (in the
denominator of the quotient).

Item 2 (compactness) is trivial due to Dinf
IR (π, π′) ≥ 2 − C and Dsup

IR (π, π′) ≤ C for any π′ ∈ NC(π). This
means NC(π) contains its extrema, i.e., all the policies π′ satisfying Dinf

IR (π, π′) = 2− C and Dsup
IR (π, π′) ≤ C,

or Dinf
IR (π, π′) ≥ 2− C and Dsup

IR (π, π′) = C.

In the following, for any π ∈ Π and sequence (πn)n≥0, we write πn → π for the convergence of the sequence to π
with respect to the metric

d(π1, π2) =

{
∥π1 − π2∥∞ if supp(π1(· | s)) = supp(π2(· | s)) ∀s ∈ S, and
1 otherwise.

(7)

In other words, πn → π means that πn converges to π in supremum norm as n → ∞ when the support of the
converging policy stabilizes and becomes the same as the limit policy.

Let us prove item 1 (continuity). We show that NC is a continuous correspondence by showing it is upper and
lower hemicontinuous (Ok, 2007).

NC is upper hemicontinuous (uhc) if it is compact-valued (item 1) and, for all policies π ∈ Π and every sequences
(πn)n≥0 and (π′

n)n≥0 with π′
n ∈ NC(πn) for all n ≥ 0, πn → π and π′

n → π′ implies π′ ∈ NC(π). Let (πn)n≥0

and (π′
n)n≥0 be sequences of policies with π′

n ∈ NC(πn) for all n ≥ 0.

Fix s ∈ S and a ∈ A. Consider the mapping

fs,a : {(π, π′) ∈ Π×Π | a ∈ supp(π(· | s))} → [0,∞), (π, π′) 7→ π′(a | s)
π(a | s)

.

It is clear fs,a is continuous since the application of π to π(a | s) is continuous and the division of two continuous
functions is also continuous (when considering actions from the support of π(· | s)). Importantly, for ext ∈
{sup, inf}, Dext

IR (π, π′) = ext {fs,a(π, π′) : s ∈ S, a ∈ supp(π(· | s))} is also continuous: since S and A are
finite, the supremum (resp. infimum) boils down to taking the maximum (resp. minimum) of finitely many many
continuous functions, which is a continuous operation.

Now, assume that πn → π and π′
n → π′. The continuity of Dext

IR means that Dext
IR (πn, π

′
n)→ Dext

IR (π, π′). Since
π′
n ∈ NC(πn), we have Dinf

IR (πn, π
′
n) ≥ 2−C and Dsup

IR (πn, π
′
n) ≤ C for all n ≥ 0. By the fact that Dext

IR (πn, π
′
n)

converges to Dext
IR (π, π′) for ext ∈ {inf, sup}, we also have that Dinf

IR (π, π′) ≥ 2− C and Dsup
IR (π, π′) ≤ C.

Then, NC is uhc.

NC is lower hemicontinuous (lhc) if, for every policy π, sequence (πn)n≥0 with πn → π, and policy π′ ∈ NC(π),
there exists a sequence (π′

n)n≥0 with π′
n → π′ and such that there is a n0 ≥ 0 from which, for all n ≥ n0,

π′
n ∈ NC(πn). Therefore, let (πn)n≥0 be a sequence of policies so that πn → π and π′ ∈ N (π). Since πn → π,
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we have

∀δ > 0,∃n0 ∈ N : ∀n ≥ n0, ∥πn − π∥∞ ≤ δ and supp(πn(· | s)) = supp(π(· | s)) ∀s ∈ S.

In particular, this holds for δ < πmin/2, where πmin = min {π(a | s) : s ∈ S, a ∈ supp(π(· | s))} . Let n0 ≥ 0 be
the step associated with δ < πmin/2 and n ≥ n0. Write δn = ∥πn − π∥∞ and let

ϵn =
2Cδn

πmin(C − 1) + 2Cδn
∈ (0, 1)

Construct a sequence (π′
n)n≥0 so that, for all s ∈ S, a ∈ A, and n ≥ n0,

π′
n(a | s) = (1− ϵn) · π′(a | s) + ϵn · πn(a | s).

Intuitively, π′
n is a mixture of distributions π′(· | s) and πn(· | s). Consequently, π′

n(· | s) is a well-defined
distribution. Finally, note that π′

n → π′ because δn → 0, and so does ϵn.

Now, we restrict our attention to a ∈ supp(πn(· | s)). Note that since πn stably converges to π with its support, π
has the same support as πn. Furthermore, since π′ ∈ NC(C), π′ has also the same support as πn. In consequence,
π′
n has the same support as πn.

Having that said, we start by showing the upper bound:

π′
n(a | s)

πn(a | s)
= (1− ϵn)

π′(a | s)
πn(a | s)

+ ϵn

≤ (1− ϵn)
C · π(a | s)
πn(a | s)

+ ϵn (because π′(a | s) ≤ C · π(a | s))

≤ (1− ϵn) ·
C · π(a | s)
π(a | s)− δn

+ ϵn (because πn(a | s) ≥ π(a | s)− δn)

= (1− ϵn)
C

1− δn/π(a|s)
+ ϵn

≤ (1− ϵn)
C

1− δn/πmin

+ ϵn.

Note that for all x ∈ [0, 1/2],

1

1− x
≤ 1 + 2x because 1 + 2x− 1

1− x
≥ 0 ⇐⇒ (1 + 2x)(1− x)− 1

1− x
≥ 0 ⇐⇒ x(1− 2x)

1− x
≥ 0.

Then, since 0 < δn/πmin < 1/2, we have

π′
n(a | s)

πn(π | s)
≤ (1− ϵn) · C · (1 + 2δn/πmin) + ϵn.

Let xn = 1 + 2δn
πmin

, and note that

ϵn =
2Cδn

πmin(C − 1) + 2Cδn
=

2C · δn/πmin

C + 2C · δn/πmin − 1
=

−2C · δn/πmin

1− C − 2C · δn/πmin

=
C(1− xn)

1− xn · C
.

Then,

π′
n(a | s)

πn(a | s)
≤ (1− ϵn)xn · C + ϵn

= xn · C − ϵn · xn · C + ϵn

= xn · C −
C(1− xn)

1− xn · C
· xn · C +

C(1− xn)

1− xn · C

=
xn · C(1− xn · C)− xn · C2(1− xn) + C(1− xn)

1− xn · C

=
xn · C − x2

nC
2 − xn · C2 + x2

nC
2 + C − xn · C

1− xn · C
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=
−xn · C2 + C

1− xn · C

= C · 1− xn · C
1− xn · C

= C,

which means that Dsup
IR (πn, π

′
n) ≤ C.

We now show the lower bound:

π′
n(a | s)

πn(a | s)
= (1− ϵn)

π′(a | s)
πn(a | s)

+ ϵn

≥ (1− ϵn)
(2− C) · π(a | s)

πn(a | s)
+ ϵn (because π′(a | s) ≥ (2− C) · π(a | s))

≥ (1− ϵn)
(2− C) · π(a | s)
π(a | s) + δn

+ ϵn (because πn(a | s) ≤ π(a | s) + δn)

= (1− ϵn)
(2− C)

1 + δn/π(a|s)
+ ϵn

≥ (1− ϵn)
(2− C)

1 + δn/πmin

+ ϵn

≥ (1− ϵn) · (2− C) · (1− δn/πmin) + ϵn (because for all x ∈ R, 1
1+x ≥ 1− x)

= (1− ϵn) · (2− C − 2 · δn/πmin + C · δn/πmin) + ϵn

= (1− ϵn) · (2− C + (C − 2) · δn/πmin) + ϵn

= 2− C + (C − 2) · δn/πmin − ϵn(2− C + (C − 2) · δn/πmin) + ϵn

= 2− C + (C − 2) · δn/πmin + ϵn(C − 1 + (2− C) · δn/πmin)

= 2− C + (C − 2) · δn/πmin + ϵn (C − 1) + ϵn · (2− C) · δn/πmin

= 2− C + (C − 2) · δn/πmin +
2Cδn · (C − 1)

πmin(C − 1) + 2Cδn
+

2Cδn · (2− C)

πmin(C − 1) + 2Cδn
· δn/πmin

= 2− C + δn ·
(
C − 2

πmin
+

2C · (C − 1)

πmin(C − 1) + 2Cδn
+

2Cδn · π−1
min · (2− C)

πmin(C − 1) + 2Cδn

)
≥ 2− C.

To see how we obtain the last line, note that it suffices to show the content of the parenthesis multiplied by δn is
greater than zero, i.e.,

C − 2

πmin
+

2C · (C − 1)

πmin(C − 1) + 2Cδn
+

2Cδn · π−1
min · (2− C)

πmin(C − 1) + 2Cδn
≥ 0

⇐⇒ 2C · (C − 1) + 2Cδn · π−1
min · (2− C)

πmin(C − 1) + 2Cδn
≥ 2− C

πmin

⇐⇒ 2Cπmin · (C − 1) + 2Cδn · (2− C) ≥ (2− C) · (πmin(C − 1) + 2Cδn)

⇐⇒ 2Cπmin · (C − 1) ≥ (2− C) · (πmin(C − 1) + 2Cδn − 2Cδn)

⇐⇒ 2Cπmin · (C − 1) ≥ (2− C) · (πmin(C − 1))

⇐⇒ 2C ≥ 2− C,

which is always satisfied because C ≥ 1. Therefore, since this holds for any s ∈ S and both π′
n and πn have the

same support, we have that Dinf
IR (π, π′) ≥ 2− C.

Thus, we have Dinf
IR (π, π′) ≥ 2− C and Dsup

IR (π, π′) ≤ C, π′
n ∈ NC(πn). Therefore, NC is lhc.

Since NC is uhc and lhc, it is continuous. This concludes the proof of item 1.

It remains to show item 3. Let ϵ = (C − 1)·mins,a π(a | s), with a taken from supp(π(· | s)). Assume d(π, π′) ≤ ϵ
(cf. Eq. 7). For all s ∈ S, a ∈ supp(π(· | s)), we have

π′(a | s)
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≤π(a | s) + ϵ

≤π(a | s) + (C − 1) ·min
s,a

π(a | s)

≤π(a | s) + (C − 1) · π(a | s)
=π(a | s) · (1 + C − 1)

=π(a | s) · C,

or equivalently:
π′(a | s)
π(a | s)

≤ C.

It remains to show the lower bound:

π′(a | s) ≥ π(a | s)− ϵ

= π(a | s)− (C − 1) ·min
s,a

π(a | s)

≥ π(a | s)− (C − 1) · π(a | s)
= π(a | s) · (1− C + 1)

= π(a | s) · C
≥ π(a | s)(2− C),

or equivalently:
π′(a | s)
π(a | s)

≥ 2− C.

This concludes the proof of item 3.

Then, Theorem 1 is obtained as a corollary of Lemma 1, and the fact that the update process

πn+1 := arg sup
π′∈NC(πn)

E
s∼ξπn

E
a∼π′(·|s)

[Aπn(s, a)] ,

is an instance of mirror learning (Kuba et al., 2022).

C CRUDE WASSERSTEIN UPPER BOUND

Lemma 2. Let s ∈ S and a ∈ A, the following upper bound holds:

W
(
ϕ♯P (· | s, a), P (· | ϕ(s), a)

)
≤ Es′∼P (·|s,a) Es̄′∼P (·|ϕ(s),a) d

(
ϕ(s′), s̄′

)
.

Proof.

W
(
ϕ♯P (· | s, a), P (· | ϕ(s), a)

)
= sup

∥f∥Lip≤1

[
Es′∼P (·|s,a)f

(
ϕ(s′)

)
− Es̄′∼P (·|ϕ(s),a)f(s̄

′)

]
(1)

≤ Es′∼P (·|s,a)

[
sup

∥f∥Lip≤1

f
(
ϕ(s′)

)
− Es̄′∼P (·|ϕ(s),a)f(s̄

′)

]
= Es′∼P (·|s,a)W

(
δϕ(s′), P (· | ϕ(s), a)

)
= Es′∼P (·|s,a)

[
min

λ∈Λ(δϕ(s′), P (·|ϕ(s),a))
E(s̄1,s̄2)∼λ d(s̄1, s̄2)

]
(2)

= Es′∼P (·|s,a) Es̄′∼P (·|ϕ(s),a) d
(
ϕ(s′), s̄′

)
.

Here, (1) corresponds to the dual Kantorovich–Rubinstein formulation (Kantorovich and Rubinstein, 1958) where
∥·∥Lip corresponds to the Lipschitz norm, while (2) follows from the primal Monge formulation (Monge, 1781),
with a trivial coupling induced by δϕ(s′), the Dirac measure with impulse ϕ(s′).
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D REMARK ON SAFE POLICY IMPROVEMENT METHODS

Standard principled safe policy improvement methods (SPI; Thomas et al., 2015; Ghavamzadeh et al., 2016a;
Laroche et al., 2019; Simão et al., 2020; Castellini et al., 2023; Wienhöft et al., 2023) do not consider representation
learning. Instead, SPI methods assume S := S and learn R, P by maximum likelihood estimation with respect to
the experience stored in B collected by the behavioral πb. Then, the policy improvement relies on finding the best
policy inM that is (probably approximately correctly) guaranteed to improves on the behavioral policy (up to an
error term ζ > 0) against a set of all admissible MDPs, called robust MDPs (Iyengar, 2005; Nilim and Ghaoui,
2005; Wiesemann et al., 2013; Ghavamzadeh et al., 2016b; Suilen et al., 2024):

arg sup
π∈Π

ρ
(
π,M

)
such that arg inf

M′∈Ξ(M,e)
ρ(π,M′) ≥ ρ(πb,M′)− ζ, where

Ξ
(
M, e

)
:=

{
M = ⟨S,A, P,R, sI , γ⟩

∣∣∣∣
∣∣R(s, a)−R(s, a)

∣∣ ≤ RMAX · e(s, a) and
dTV

(
P (· | s, a), P (· | s, a)

)
≤ e(s, a) ∀s ∈ S, a ∈ A

}
,

e(s, a) being an error term depending on the number of times each state s and action a are present in the dataset B,
and dTV being the total variation distance (Müller, 1997) which boils down to the L1 distance when the state-action
space is finite. To provide probably approximately correct (PAC) guarantees, the state-action pairs need to be visited
a sufficient amount of time, depending on the size of the state-action space, to ensure e is sufficiently small.

Note that the reward and total variation constraints are very related to our local losses LR and LP : the representation
corresponds here to the identity and dTV coincides with Wasserstein as the state space is discrete (Villani, 2009).
The major difference here is that the bounds need to hold globally, i.e., for all state-action pairs, which make their
computation typically intractable in complex settings (e.g., high-dimensional feature spaces).

We argue this objective is ill-suited to complex settings. First, classic SPI does not apply to general spaces.
Second, assuming we deal with finite, high-dimensional feature spaces (e.g., visual inputs or the RAM of a video
game), it is simply unlikely that B contains all state-action pairs. SPI with baseline bootstrapping (Laroche et al.,
2019) allows bypassing this requirement by updating πb only in state-action pairs where a sufficient number of
samples are present in B. Nevertheless, this number is gigantic and is linear in the state-action space while being
exponential in the size of the encoding of γ and the desired error ζ . This deems the policy update intractable. Finally,
as mentioned, standard SPI does not consider representation learning. This is a further obstacle to its application in
complex settings.

E SAFE POLICY IMPROVEMENTS: PROOFS

Notations Henceforth, we denote by V π the value function of the world modelM obtained under any latent policy
π ∈ Π. When it is clear from the context that ϕ is the representation used jointly with a latent policy π, we may
simply write V π instead of V (π◦ϕ) for the value function of executing π inM. In the following, we may also write
(s, a) ∼ ξπ as a shorthand for first drawing s ∼ ξπ and then a ∼ π(· | s) for any policy π ∈ Π.

We start by recalling a result from Gelada et al. (2019) that will be useful in the subsequent proofs.
Lemma 3 (Lipschitzness of the latent value function). LetM be a latent MDP and π be a policy forM. Assume
that M has reward and transition constants Kπ

R
and Kπ

P
with Kπ

P
< 1/γ. Then, the latent value function is

Kπ
R/(1−γKπ

P )-Lipschitz, i.e., for all s̄1, s̄2 ∈ S,

∣∣V π(s̄1)− V π(s̄2)
∣∣ ≤ Kπ

R

1− γKπ
P

· d(s̄1, s̄2)

Note that the bound is straightforward when the latent space is discrete and the discrete metric 1 {̸=} is chosen for
d: the largest possible difference in values is 2RMAX/1−γ.

We also consider bounding expected value difference between the original MDP and the latent MDP by the local
losses evaluated with respect to a behavioral policy πb. Importantly, the expectation is measured over states and
actions generated according to πb, whereas the values correspond to those evaluated under another latent policy
π. The following Lemma states that the value difference yielded by a latent policy can be measured according to
another behavioral policy, provided that the latent policy lies within a well-defined neighborhood of the behavioral
policy.
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Lemma 4 (Average value difference bound). Let πb ∈ Π be the behavioral policy, (π ◦ ϕ) ∈ N 1/γ(πb) so that
π ∈ Π and ϕ : S → S is a state representation. AssumeM is equipped by the Lipschitz constants Kπ

R
and Kπ

P
and

let KV = Kπ
R/(1−γKπ

P ). Assume that Kπ
P

is strictly lower than 1/γ. Then, the average difference of value ofM and
M under π is bounded by

E
s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ L

ξπb
R + γKV · L

ξπb
P

1/Dsup
IR (πb,π)− γ

.

Proof. The proof follows by adapting the proof of (Gelada et al., 2019, Lemma 3) by taking extra care of the
behavioral policy. Namely, we want to evaluate the value difference bound for the latent policy π, assuming states
and actions are/have been produced by executing the behavioral policy πb. The idea is to incorporate the divergence
from πb to π in the bound, formalized as the supremum IR between the underlying distribution of the two policies.

E
s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣

= E
s∼ξπb

∣∣∣∣∣ E
a∼π(·|ϕ(s))

[
R(s, a) + γ E

s′∼P (·|s,a)

[
V π(s′)

]]
− E

a∼π(·|ϕ(s))

[
R(ϕ(s), a) + γ E

s̄′∼P (·|ϕ(s),a)

[
V π(s̄′)

]]∣∣∣∣∣
= E

s∼ξπb

∣∣∣∣∣∣∣ E
a∼π(·|ϕ(s))

[
R(s, a)−R(ϕ(s), a)

]
+ γ E

a∼π(·|ϕ(s))

 E
s′∼P (·|s,a)

s̄′∼P (·|ϕ(s),a)

[
V π(s′)− V π(s̄′)

]
∣∣∣∣∣∣∣

= E
s∼ξπb

∣∣∣∣∣∣∣ E
a∼π(·|ϕ(s))

[
R(s, a)−R(ϕ(s), a)

]
+ γ E

a∼π(·|ϕ(s))

 E
s′∼P (·|s,a)

s̄′∼P (·|ϕ(s),a)

[
V π(s′)− V π(ϕ(s′)) + V π(ϕ(s′))− V π(s̄′)

]
∣∣∣∣∣∣∣

= E
s∼ξπb

∣∣∣∣ E
a∼π(·|ϕ(s))

[
R(s, a)−R(ϕ(s), a)

]

+ γ E
a∼π(·|ϕ(s))

 E
s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]
+ E

s′∼P (·|s,a)
s̄′∼P (·|ϕ(s),a)

[
V π(ϕ(s′))− V π(s̄′)

]
∣∣∣∣∣∣∣

≤ E
s∼ξπb

E
a∼π(·|ϕ(s))

∣∣∣∣∣∣∣
[
R(s, a)−R(ϕ(s), a)

]
+ γ E

s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]
+ γ E

s′∼P (·|s,a)
s̄′∼P (·|ϕ(s),a)

[
V π(ϕ(s′))− V π(s̄′)

]∣∣∣∣∣∣∣
(Jensen’s inequality)

≤ E
s∼ξπb

E
a∼π(·|ϕ(s))

∣∣R(s, a)−R(ϕ(s), a)
∣∣+ γ E

s∼ξπb

E
a∼π(·|ϕ(s))

∣∣∣∣∣∣∣ E
s′∼P (·|s,a)

s̄′∼P (·|ϕ(s),a)

[
V π(ϕ(s′))− V π(s̄′)

]∣∣∣∣∣∣∣
+ γ E

s∼ξπb

E
a∼π(·|ϕ(s))

∣∣∣∣ E
s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]∣∣∣∣
(Triangle inequality)

=

+ γ E
s∼ξπb

E
a∼πb(·|s)

∣∣∣∣∣∣∣
π(a | ϕ(s))
πb(a | s)

E
s′∼P (·|s,a)

s̄′∼P (·|ϕ(s),a)

[
V π(ϕ(s′))− V π(s̄′)

]∣∣∣∣∣∣∣
+ γ E

s∼ξπb

E
a∼πb(·|s)

∣∣∣∣π(a | ϕ(s))πb(a | s)
E

s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]∣∣∣∣
(because supp(π(· | ϕ(s))) = supp(πb(· | s)) for all s ∈ S)
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≤Dsup
IR (πb, π) E

s,a∼ξπb

∣∣R(s, a)−R(ϕ(s), a)
∣∣+ γ ·Dsup

IR (πb, π) E
s,a∼ξπb

∣∣∣∣∣ E
s̄′∼ϕ♯P (·|s,a)

V π(s̄′)− E
s̄′∼P (·|ϕ(s),a)

V π(s̄′)

∣∣∣∣∣
+ γ ·Dsup

IR (πb, π) E
s,a∼ξπb

∣∣∣∣ E
s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]∣∣∣∣
(because Dsup

IR (πb, π) = sups,a

[
π(a|ϕ(s))
πb(·|s)

]
)

=Dsup
IR (πb, π) · L

ξπb
R + γ ·Dsup

IR (πb, π) E
s,a∼ξπb

∣∣∣∣∣ E
s̄′∼ϕ♯P (·|s,a)

V π(s̄′)− E
s̄′∼P (·|ϕ(s),a)

V π(s̄′)

∣∣∣∣∣
+ γ ·Dsup

IR (πb, π) E
s,a∼ξπb

∣∣∣∣ E
s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]∣∣∣∣
(by definition of L

ξπb
R )

≤Dsup
IR (πb, π) · L

ξπb
R + γKV ·Dsup

IR (πb, π) E
s,a∼ξπb

Wd

(
ϕ♯P (· | s, a), P (· | ϕ(s), a)

)
+ γ ·Dsup

IR (πb, π) E
s,a∼ξπb

∣∣∣∣ E
s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]∣∣∣∣
(by Theorem 3 and the dual formulation of Wasserstein)

=Dsup
IR (πb, π) ·

(
L
ξπb
R + γKV · L

ξπb
P

)
+ γDsup

IR (πb, π) · E
s,a∼ξπb

∣∣∣∣ E
s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]∣∣∣∣
(by definition of L

ξπb
P )

≤Dsup
IR (πb, π) ·

(
L
ξπb
R + γKV · L

ξπb
P

)
+ γDsup

IR (πb, π) · E
s,a∼ξπb

E
s′∼P (·|s,a)

∣∣V π(s′)− V π(ϕ(s′))
∣∣

(Jensen’s inequality)

=Dsup
IR (πb, π) ·

(
L
ξπb
R + γKV · L

ξπb
P

)
+ γDsup

IR (πb, π) · E
s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣
(as ξπb is a stationary measure)

To summarize, we have:

E
s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ Dsup

IR (πb, π) ·
(
L
ξπb
R + γKV · L

ξπb
P

)
+ γDsup

IR (πb, π) · E
s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣ .

Or equivalently,

(1− γDsup
IR (πb, π)) E

s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ Dsup

IR (πb, π) ·
(
L
ξπb
R + γKV · L

ξπb
P

)
E

s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ Dsup

IR (πb, π) ·
L
ξπb
R + γKV · L

ξπb
P

1− γDsup
IR (πb, π)

=
L
ξπb
R + γKV · L

ξπb
P

1/Dsup
IR (πb,π)− γ

,

which is well-defined because Dsup
IR (πb, π) is assumed strictly lower than 1/γ.

In the main text, we made the assumption the environment is episodic. Let us formally restate this assumption:
Assumption 2. The environmentM and the world modelM are episodic.
Assumption 3. ∀s ∈ S, ϕ(s) = s̄reset if and only if s = sreset.

Note that, as mentioned in Section 2, Assumption 2 ensures the existence of a stationary distribution ξπ and the
ergodicity of both the original environment and the latent model. Assumption 3 guarantees that the reset states are
aligned in the original and latent MDPs.

We are now ready to prove Theorem 2.
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Theorem 2. Suppose γ > 1/2 and Kπ
P

< 1/γ. Let C ∈ (1, 1/γ), πb ∈ Π be the base policy, (π ◦ ϕ) ∈ NC(πb)

where π ∈ Π is a latent policy and ϕ : S → S a state representation. Then,

∣∣ρ(π ◦ ϕ,M)− ρ
(
π,M

)∣∣ ≤ AEL(πb) ·
L

ξπb
R /γ +KV · L

ξπb
P

1/Dsup
IR (πb,π)−γ

,

where AEL(πb) denotes the average episode length whenM runs under πb, KV = Kπ
R/(1−γKπ

P ), and L
ξπb
R , L

ξπb
P

are the local losses of Eq. 4 over the stationary distribution ξπb induced by πb.

Proof. The first part of the proof follows by the expected value difference bound of Lemma 4. The second part
of the proof follows by adapting of the one of Delgrange et al., 2025, Theorem 1, where the authors considered
discrete latent MDPs and reach-avoid objectives (rewards were disregarded).

Our goal is to get rid of the expectation. First, note that for any measurable state so that ξπb({s}) > 0, we have∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ 1/ξπb ({s}) · Es′∼ξπb

∣∣V π(s′)− V π(ϕ(s′))
∣∣. For simplicity, we write ξπb(s) as shorthand

for ξπb({s}) when considering such states. Second, note that as sreset is almost surely visited episodically (Assump-
tion 2), restarting the MDP (i.e., visiting sreset) is a measurable event, meaning that sreset has a non-zero probability
ξπb(sreset) ∈ (0, 1). Then, ∣∣ρ(π ◦ ϕ,M)− ρ

(
π,M

)∣∣ (8)

=
∣∣V π(sI )− V π(s̄I)

∣∣ (9)

=
1

γ

∣∣γ · V π(sI )− γ · V π(s̄I)
∣∣ (10)

=
1

γ

∣∣V π(sreset)− V π(ϕ(sreset))
∣∣ (by Assumptions 2 and 3)

≤ 1

γ · ξπb(sreset)
E

s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣ (11)

≤
L

ξπb
R /γ +KV · L

ξπb
P

ξπb(sreset)(1/Dsup
IR (πb,π)−γ)

. (12)

Finally, the result follows from the fact that 1/ξπb (sreset) corresponds to the AEL. Indeed, whenM is episodic, it is
irreducible and recurrent (Huang, 2020); thus, given the random variable

Ts(τ = s0, a0, s1, a1, . . .) =

∞∑
T=1

T · 1 {sT = s and st ̸= s for all 0 < t < T} ,

we have ξπ(s) = 1/Eπ [Ts|s0=s] for any s ∈ S and stationary policy π, where Eπ [Ts | s0 = s] is the mean
recurrence time of s under π (Serfozo, 2009, Chapter 1, Theorem 54). In particular, this means that 1/ξπb (sreset) =
Eπb

[Tsreset | s0 = sreset] = Eπb
[T] is the AEL ofM under πb, which yields

∣∣ρ(π ◦ ϕ,M)− ρ
(
π,M

)∣∣ ≤ Eπb
[T] ·

L
ξπb
R /γ +KV · L

ξπb
P

1/Dsup
IR (πb,π)−γ

.

Remark 2 (Extension to episodic value functions). In Lemma 4 and Theorem 2, we considered the standard
definition of value function. One may wonder whether the results hold when considering episodic value functions,
as defined in Appendix A. It turns out that it is the case, as one can easily adapt the proofs for those particular value
functions.

We start by adapting the proof of Lemma 4:

E
s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣
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= E
s∼ξπb

∣∣∣∣∣∣∣∣∣∣
1 {s ̸= sreset} ·


E

a∼π(·|ϕ(s))

[
R(s, a) + γ E

s′∼P (·|s,a)

[
V π(s′)

]]
− E

a∼π(·|ϕ(s))

[
R(ϕ(s), a) + γ E

s̄′∼P (·|ϕ(s),a)

[
V π(s̄′)

]]

∣∣∣∣∣∣∣∣∣∣

≤ E
s∼ξπb

∣∣∣∣∣ E
a∼π(·|ϕ(s))

[
R(s, a) + γ E

s′∼P (·|s,a)

[
V π(s′)

]]
− E

a∼π(·|ϕ(s))

[
R(ϕ(s), a) + γ E

s̄′∼P (·|ϕ(s),a)

[
V π(s̄′)

]]∣∣∣∣∣ .
The remaining of the proof is identical.

Concerning Theorem 2, we take a detour by defining a new value function U as

Uπ(s) = E
a∼π(·|ϕ(s))

[
R(s, a) + γ · E

s′∼P (·|s,a)

[
Uπ(s′) · 1 {s′ ̸= sreset}

]]
∀s ∈ S

The latent counterpart Uπ is defined similarly. By definition of the episodic value function (Appendix A) and since
V π(sreset) = 0, it is clear that

V π(s) =

{
Uπ(s) if s ̸= sreset

Uπ(s) · 1 {s ̸= sreset} otherwise; and
V π(s̄) =

{
Uπ(s̄) if s̄ ̸= ϕ(sreset)

Uπ(s̄) · 1 {s̄ ̸= ϕ(sreset)} otherwise.
(13)

Therefore,

E
s∼ξπb

∣∣Uπ(s)− Uπ(ϕ(s))
∣∣

≤ E
s,a∼ξπb

[
π(a | ϕ(s))
πb(a | s)

·
∣∣R(s, a)−R(ϕ(s), a)

∣∣]

+ γ E
s,a∼ξπb

[
π(a | ϕ(s))
πb(a | s)

·

∣∣∣∣∣ E
s′∼P (·|s,a)

[
Uπ(s′) · 1 {s′ ̸= sreset}

]
− E

s̄′∼P (ϕ(s),a)

[
Uπ(s̄′) · 1 {s̄′ ̸= ϕ(sreset)}

]∣∣∣∣∣
]

(Triangle inequality and importance sampling)

=Dsup
IR (πb, π) · E

s,a∼ξπb

∣∣R(s, a)−R(ϕ(s), a)
∣∣+ γDsup

IR (πb, π) · E
s,a∼ξπb

∣∣∣∣∣ E
s′∼P (·|s,a)

V π(s′)− E
s̄′∼P (·|ϕ(s),a)

V π(s̄′)

∣∣∣∣∣
(by Eq. 13 and definition of the SIR)

≤D
sup
IR (πb, π) E

s,a∼ξπb

∣∣R(s, a)−R(ϕ(s), a)
∣∣+ γ ·Dsup

IR (πb, π) E
s,a∼ξπb

∣∣∣∣ E
s′∼P (·|s,a)

[
V π(s′)− V π(ϕ(s′))

]∣∣∣∣
+ γ ·Dsup

IR (πb, π) E
s,a∼ξπb

∣∣∣∣∣ E
s̄′∼ϕ♯P (·|s,a)

V π(s̄′)− E
s̄′∼P (·|ϕ(s),a)

V π(s̄′)

∣∣∣∣∣
(Triangle inequality)

≤Dsup
IR (πb, π) · L

ξπb
R + γDsup

IR (πb, π) · E
s∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣+ γDsup

IR (πb, π) ·KV · Lξπ
P

(by the same developments as in the proof of Lemma 4)

≤Dsup
IR (πb, π) · Lξπ

R + γDsup
IR (πb, π) ·

L
ξπb
R + γKV · L

ξπb
P

1/Dsup
IR (πb,π)− γ

+ γDsup
IR (πb, π) ·KV · Lξπ

P (Lemma 4)

=Dsup
IR (πb, π)

(
L
ξπb
R

(
1 +

γ

Dsup
IR (πb, π)

−1 − γ

)
+ γKV · L

ξπb
P

(
1 +

γ

Dsup
IR (πb, π)

−1 − γ

))

=Dsup
IR (πb, π)

(
L
ξπb
R · γKV · L

ξπb
P

)(
1 +

γ

Dsup
IR (πb, π)

−1 − γ

)

=
L
ξπb
R + γKV · L

ξπb
P

1/Dsup
IR (πb,π)− γ

.
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Now, in the proof of Theorem 2, it suffices to replace Equation 9 by observing that, in the episodic case, we have∣∣ρ(π ◦ ϕ,M)− ρ
(
π,M

)∣∣ = ∣∣V π(sI )− V π(s̄I)
∣∣ = ∣∣Uπ(sI )− Uπ(s̄I)

∣∣ (again, by Equation 13)

=
1

γ

∣∣γ · Uπ(sI )− γ · Uπ(s̄I)
∣∣ = 1

γ

∣∣Uπ(sreset)− Uπ(ϕ(sreset))
∣∣

Modulo this change, the remaining of the proof remains identical; one just needs to replace the occurrences of
Es∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣ by Es∼ξπb

∣∣Uπ(s)− Uπ(ϕ(s))
∣∣.

Since the subsequent results all rely on Lemma 4 and Theorem 2, they all extend to episodic value functions.

Theorem 3. (Deep, Safe Policy Improvement) Under the same preamble as in Thm. 2, assume that ϕ if fixed during
the policy update and the behavioral is a latent policy with πb := πb ◦ ϕ and πb ∈ Π. Then, the improvement of the
return ofM under π can be guaranteed on πb as
ρ(π ◦ ϕ,M)− ρ(πb,M) ≥ ρ

(
π,M

)
− ρ
(
πb,M

)
− ζ,

where ζ := AEL(πb) ·
(
L

ξπb
R /γ +KV L

ξπb
P

)( 1
1/Dsup

IR (πb,π)− γ
+

1

1− γ

)
.

Proof. First, note that

ρ(π ◦ ϕ,M)− ρ(πb,M)

=ρ(π ◦ ϕ,M)− ρ
(
π,M

)
+ ρ
(
π,M

)
− ρ(πb,M). (14)

By Theorem 2, we have with Dsup
IR (πb, πb) = 1 that∣∣ρ(πb,M)− ρ

(
πb,M

)∣∣ ≤ EM
πb

[T] ·
L

ξπb
R /γ +KV · L

ξπb
P

1− γ
,

which implies that

ρ(πb,M)− ρ
(
πb,M

)
≤ EM

πb
[T] ·

L
ξπb
R /γ +KV · L

ξπb
P

1−γ

⇐⇒ ρ(πb,M) ≤ ρ
(
πb,M

)
+ EM

πb
[T] ·

L
ξπb
R /γ +KV · L

ξπb
P

1−γ
. (15)

On the other hand, we have∣∣ρ(π ◦ ϕ,M)− ρ
(
π,M

)∣∣ ≤ EM
πb

[T] ·
L

ξπb
R /γ +KV · L

ξπb
P

1/Dsup
IR (πb,π)−γ

,

which implies that

ρ(π ◦ ϕ,M)− ρ
(
π,M

)
≥ −EM

πb
[T] ·

L
ξπb
R /γ +KV · L

ξπb
P

1/Dsup
IR (πb,π)−γ

. (16)

By plugging Equations 15 and 16 into Equation 14, we get the desired result:

ρ(π ◦ ϕ,M)− ρ(πb,M)

= ρ(π ◦ ϕ,M)− ρ
(
π,M

)︸ ︷︷ ︸
≥

−EM
πb

[T] ·
L

ξπb
R /γ +KV · L

ξπb
P

1/Dsup
IR (πb,π)−γ

+ρ
(
π,M

)
− ρ(πb,M)︸ ︷︷ ︸

≤

ρ(πb,M)+ EM
πb

[T] ·
L

ξπb
R /γ +KV · L

ξπb
P

1−γ

≥− EM
πb

[T] ·
L

ξπb
R /γ +KV · L

ξπb
P

1/Dsup
IR (πb,π)−γ

+ ρ
(
π,M

)
− ρ
(
πb,M

)
− EM

πb
[T] ·

L
ξπb
R /γ +KV · L

ξπb
P

1−γ

=ρ
(
π,M

)
− ρ
(
πb,M

)
− EM

πb
[T]
(
L

ξπb
R /γ +KV L

ξπb
P

)( 1
1/Dsup

IR (πb,π)− γ
+

1

1− γ

)
.
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In the following, we provide a probabilistic version of Theorem 3, as it is standard in the SPI literature. Essentially,
we derive probably approximately correct estimations from interaction data of LR, LP . Then, we use those
estimations to get an approximation of ζ, the error term of the safe policy improvement inequality of Theorem 3.

Those PAC guarantees rely on a discrete latent space. While it may seem restrictive, learning discrete latent spaces
turns out to be beneficial not only theoretically (e.g., it yields trivial Lipschitz bounds on the latent reward and
transition functions), but also in practice (see, e.g., Hafner et al., 2021).

Finally, note that we provide two versions of the theorem: (1) one where we have access to an upper bound of the
AEL (which is mild in practice), and (2) another one where this bound cannot be derived. The latter case yields
an additional challenge as we need to estimate the AEL from sample states drawn according to the stationary
distribution. In this case, the bound yields a probabilistic algorithm that is guaranteed to almost surely terminate
without any predefined endpoint, as it depends on the current approximation of the losses.

Theorem 5 (Probabilistic Deep SPI with confidence bound). Under the same preamble as in Theorem 3, assume
now S is discrete. Let {⟨st, at, rt, s′t⟩ : 1 ≤ t ≤ T} be a set of T transitions drawn from ξπb by simulatingMπb ,
i.e., st ∼ ξπb , at ∼ πb(· | st), rt = R(st, at), and s′t ∼ P (· | st, at) for all 1 ≤ t ≤ T . Let ε, δ > 0 and define

L̂P := 1− 1

T

T∑
t=1

P (ϕ(s′t) | ϕ(st), at), L̂R :=
1

T

T∑
t=1

∣∣rt −R(ϕ(s), a)
∣∣ , ξ̂reset :=

1

T

T∑
t=0

1 {st = sreset} ,

κ := 1
1/Dsup

IR (πb, π̄)−γ + 1
1−γ , and R∗ := max

{
1, 4R2

MAX

}
. Then, the policy can be safely improved as

ρ(π ◦ ϕ,M)− ρ(πb,M) ≥ ρ
(
π,M

)
− ρ
(
πb,M

)
− ζ̂, (17)

with probability at least 1− δ under the following conditions:

(1) one has access to an upper bound L ≥ AEL(πb), the number of collected transitions is lower-bounded by

T ≥ L2 ·
⌈

−R∗ log( δ
2 ·κ

2(1/γ+KV )2)
ε2

⌉
, and ζ̂ := L ·

(
L̂R/γ +KV L̂P

)
κ+ ε; or

(2) without access to such a bound, we take

T ≥


−R∗ log(δ/3)

2
·max

1/ξ̂2reset,

κ/ξ̂reset

(
L̂R/γ +KV L̂P

)
+ ε+ κ · (1/γ +KV )

εξ̂reset

2

 ,

and ζ̂ := 1
ξ̂reset

(
L̂R/γ +KV L̂P

)
κ+ ε.

Proof. Let ε, δ > 0. First, note that we need T ≥
⌈
−R∗ log(δ/2)

ε2

⌉
, to satisfy both (a) L̂R + ε > L

ξπb
R and

(b) L̂P + ε > L
ξπb
P with probability 1 − δ and T ≥

⌈
−R∗ log(δ/3)

ε2

⌉
to satisfy simultaneously (a), (b), and (c)

ξ̂reset − ε < ξπb(sreset) with probability 1− δ. This statement is proven by Delgrange et al. (2022) and Delgrange
et al. (2025). The result is essentially due to a raw application of Hoeffding’s inequality and the fact that Wasserstein
boils down to total variation when the state space is discrete (Villani, 2009).

Let ε′ > 0.

Case 1. Assume we have an upper bound on AEL(πb), say L. Then it follows that

ζ ≤ L ·
(

L
ξπb
R

γ +KV L
ξπb
P

)
· κ (ζ is the safe policy improvement error term of Theorem 3)

≤ L ·
(

L̂R+ε′

γ +KV (L̂P + ε′)
)
· κ,

with probability at least 1− δ whenever

T ≥ −R
∗ log(δ/2)

ε′2
.

To ensure an error of at most ε, choose ε′ such that

L ·
(

L̂R+ε′

γ +KV (L̂P + ε′)
)
κ ≤ L ·

(
L̂R

γ +KV L̂P

)
κ+ ε.
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Equivalently,

Lκ
(

ε′

γ +KV ε
′
)
≤ ε

⇐⇒ ε′ ≤ ε

Lκ (1/γ +KV )
.

Thus, it suffices that

T ≥ −R
∗ log(δ/2)

ε′2
≥ −R

∗ log(δ/2)

ε2
(Lκ (1/γ +KV ))

2

to satisfy ζ ≤ ζ̂ with probability at least 1− δ.

Case 2. Suppose we do not have an upper bound on AEL(πb). From the proof of Theorem 2, we know that
AEL(πb) = 1/ξπb

(sreset). In this case we include an estimate ξ̂reset in the bound and use the high-probability
deviations

L̂R + ε′ > L
ξπb
R , L̂P + ε′ > L̂P , ξ̂reset − ε′ < ξπb

(sreset).

We have

ζ =
1

ξπb
(sreset)

(
LR

γ +KV LP

)
κ (18)

≤ 1

ξ̂reset − ε′

(
L̂R+ε′

γ +KV (L̂P + ε′)
)
κ, (19)

with probability at least 1− δ whenever

T ≥ R∗ log(δ/3)

2 ε′2
.

To guarantee an error at most ε, we require

1

ξ̂reset

(
L̂R

γ +KV L̂P

)
κ+ ε ≥ 1

ξ̂reset − ε′

(
L̂R+ε′

γ +KV (L̂P + ε′)
)
κ. (20)

Assuming ε′ < ξ̂reset, we multiply both sides of (20) by (ξ̂reset − ε′) and expand:(
L̂R

γ +KV L̂P

)
κ
(
1− ε′

ξ̂reset

)
+ ε ξ̂reset − ε ε′

≥
(

L̂R

γ +KV L̂P

)
κ+

(
1
γ +KV

)
κ ε′.

Cancel the common term
(
L̂R

γ +KV L̂P

)
κ and group the ε′ terms:

ε ξ̂reset ≥ ε′
[ κ

ξ̂reset

(
L̂R

γ +KV L̂P

)
+ ε+

(
1
γ +KV

)
κ
]
.

Therefore a sufficient condition is the explicit upper bound

ε′ < min

ξ̂reset,
ε ξ̂reset

κ

ξ̂reset

(
L̂R

γ +KV L̂P

)
+ ε+

(
1
γ +KV

)
κ

 . (21)

Together with the concentration requirement on T , the choice (21) ensures an error on ζ of at most ε with probability
at least 1− δ.

Finally, the safe policy improvement bound follows from the fact that ζ̂ is greater than ζ with probability 1 − δ.
Then, due to the SPI bound of Theorem 3, the improvement is guaranteed to be even larger when using ζ instead of
ζ̂ as error term. This guarantees the improvement when ζ̂ is small enough.

Remark 3 (Episodic assumption). For the sake of presentation, we have considered and proved the bounds for
episodic processes (cf. Appendix A). One could extend them to more general cases under the assumption that
one has access to a stationary distribution ξπb ofM. As mentioned in Section 2, the existence of a stationary
distribution is often assumed in continual RL (Sutton and Barto, 2018) and guaranteed unique in the episodic case
(Huang, 2020). Then, replacing the difference of returns in Theorem 3 by an expectation (similar to Theorem 2 with
Lemma 4) would allow to remove the AEL term and obtain similar results.
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Theorem 4. (Deep SPI for representation learning) Under the same preamble as in Thm. 2, let ε > 0 and

δ := 4 · L
ξπb
R +γKV ·L

ξπb
P

ε·(1/Dsup
IR (πb,π)−γ)

. Then, with probability at least 1− δ under ξπb , we have for all s1, s2 ∈ S that

∣∣V π(s1)− V π(s2)
∣∣ ≤ KV · d(ϕ(s1), ϕ(s2)) + ε.

Proof. First, let us consider bounding the following absolute value difference for every possible state s ∈ S, i.e.,∣∣V π(s)− V π(ϕ(s))
∣∣. To that aim, we consider Markov’s inequality:4

ξπb

({
s ∈ S :

∣∣V π(s)− V π(ϕ(s))
∣∣ > ε/2

})
≤ ξπb

({
s ∈ S :

∣∣V π(s)− V π(ϕ(s))
∣∣ ≥ ε/2

})
≤ 2 ·

Es∼ξπb

∣∣V π(s)− V π(ϕ(s))
∣∣

ε
(Markov’s inequality)

≤ 2 ·
L
ξπb
R + γKV · L

ξπb
P

ε · (1/Dsup
IR (πb,π)− γ)

. (by Lemma 4)

Consider any joint distribution λ ∈ Λ(ξπb , ξπb), i.e., any joint distribution over S × S whose marginals both match
ξπb . Then, by the union bound, we have

λ
({
⟨s1, s2⟩ ∈ S × S :

∣∣V π(s1)− V π(ϕ(s1))
∣∣ > ε/2 or

∣∣V π(s2)− V π(ϕ(s2))
∣∣ > ε/2

})
≤ λ

({
⟨s1, s2⟩ ∈ S × S :

∣∣V π(s1)− V π(ϕ(s1))
∣∣≥ε/2 or

∣∣V π(s2)− V π(ϕ(s2))
∣∣≥ε/2

})
≤ λ

({
⟨s1, s2⟩ ∈ S × S :

∣∣V π(s1)− V π(ϕ(s1))
∣∣ ≥ ε/2

})
+ λ

({
⟨s1, s2⟩ ∈ S × S :

∣∣V π(s2)− V π(ϕ(s2))
∣∣ ≥ ε/2

})
(union bound)

= ξπb

({
s1 ∈ S :

∣∣V π(s1)− V π(ϕ(s1))
∣∣ ≥ ε/2

})
+ ξπb

({
s2 ∈ S :

∣∣V π(s2)− V π(ϕ(s2))
∣∣ ≥ ε/2

})
(λ has ξπb as marginal distributions)

≤ 4 ·
L
ξπb
R + γKV · L

ξπb
P

ε · (1/Dsup
IR (πb,π)− γ)

.

Therefore, since this holds for any such λ, we have with at least probability 1 − δ that for all s1, s2 ∈ S,∣∣V π(s1)− V π(ϕ(s1))
∣∣ ≤ ε/2 and

∣∣V π(s2)− V π(ϕ(s2))
∣∣ ≤ ε/2. In consequence, with same probability, we have

∣∣V π(s1)− V π(s2)
∣∣

=
∣∣V π(s1)− V π(ϕ(s1)) + V π(ϕ(s1))− V π(ϕ(s2)) + V π(ϕ(s2))− V π(s2)

∣∣
≤
∣∣V π(s1)− V π(ϕ(s1))

∣∣+ ∣∣V π(ϕ(s1))− V π(ϕ(s2))
∣∣+ ∣∣V π(s2)− V π(ϕ(s2))

∣∣ (triangle inequality)

≤
∣∣V π(ϕ(s1))− V π(ϕ(s2))

∣∣+ ε

≤KV · d(ϕ(s1), ϕ(s2)) + ε. (by Lemma 3)

4also referred to as Chebyshev’s inequality (Stein and Shakarchi, 2005).
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F DREAM SPI

Algorithm 2: DreamSPI
Input: (others) world model and encoder parameters ϑ, actor/critic parameters ι, imagination

horizon H

Init. s ∈ S(T+1)×B ,a ∈ AT×B , r ∈ RT×B , s̄ ∈ S(H+1)×BT
,a ∈ AH×BT ,r ∈ RH×BT

repeat
for t← 1 to T do

at ∼ π(· | ϕ(st))
rt, st+1 ← env.step(st,at)

Update ϑ by descending∇ϑ DeepSPI_loss(s,a, r, Uπ◦ϕ, ϑ)
▷ Only ϕ, P , and R are updated here

world_model←
〈
S,A, P ,R

〉
Set latent start states: s̄1 ← {ϕ(st,i) : 1 ≤ t ≤ T, 1 ≤ i ≤ B}
Perform latent imagination:
for t← 1 to H do

at ∼ π(· | s̄t)
rt, s̄t+1 ← world_model.step(s̄t,at)

Update ι by descending∇ι ppo_loss(s̄,a,r, Aπ, ι)
▷ Perform a standard PPO update of the actor/critic w.r.t. the imagined trajectories

s1 ← sT+1

until convergence
return θ

We report in Algorithm 2 the algorithm we used in our experiments to evaluate the quality of the world model’s
predictions. Note that the algorithm is on-policy; we leverage parallelized environments to make sure data coming
from the interaction covers sufficiently the state space (Mayor et al., 2025). Empirically, we found most beneficial
to use discrete latent spaces, and model the transition function with categorical distributions (32 classes of 32
categories, as in Dreamer; Hafner et al., 2021). This observation agrees with the observation made by Hafner et al.
(2021) on the benefits of categorical latent spaces in world models.

G ADDITIONAL DETAILS ON THE ILLUSTRATIVE EXAMPLE

1− ϵ

ϵ

a→

aany

a→ a→

a↑

a↑

a→

a→ a→ a→ a→

+1 +1 +1 +1

+n/γn

+1 +1 +1 +1

−(2−ϵ)n/(γn·ϵ)

sI s!

s⊤1 s⊤2 s⊤n

s⊥1 s⊥2 s⊥n

s⊤win

s+win

s⊥win

sfail

· · ·

· · ·

Figure 9: Underlying MDP of the grid world of Fig. 3. Actions leading to self-loops are omitted for clarity.

In this section, we expand on the illustrative example introduced in Sect. 6.1. The underlying MDP for the grid
world is shown in Fig.9. Formally, the MDP has four actions adir with dir ∈ {↑, ↓,→,←}, and 2n+ 6 states:

• the initial state sI , which transitions to s! whenever a→ is played;
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• the hazardous state s!, sending the agent to s⊤1 with probability 1−ϵ and to s⊥1 with probability ϵ, independently
of the action played;

• the 2n corridor states s⊤i and s⊥i for i ∈ {1, . . . , n}, forming the top and bottom branches; and
• the terminal states s⊤win, s⊥win, s+win, and sfail.

We focus on the value of the initial state V π(sI ) for policies π ∈ Π. We highlight three policies of particular
interest:

(a) The good policy πgood: the policy moves right everywhere except in s⊤n , where it chooses a↑:

V πgood(sI ) = γ
[
(1− ϵ)

( n−1∑
t=1

γt + γn · n

γn

)
+ ϵ
( n∑

t=1

γt
)]

= γ

(
n−1∑
t=1

γt + (1− ϵ)n+ ϵγn

)

= γ

(
γ − γn

1− γ
+ (1− ϵ)n+ ϵγn

)
.

Learning πgood requires that the representation distinguishes the two branches and assigns distinct latent states
to s⊤n and s⊥n . With n = 5, this corresponds to a return of ≈ 8.01, which is the value reported in Fig. 4 for
DeepSPI. This highlight the representation learning capabilities of our algorithm.

(b) The bad policy πbad: the policy moves right everywhere except in s⊤n and s⊥n , where it chooses a↑:

V πbad(sI ) = γ
[
(1− ϵ)

( n−1∑
t=1

γt + γn · n

γn

)
+ ϵ
( n−1∑

t=1

γt + γn · −(2− ϵ)n

γnϵ

)]
= γ

(
γ

n−2∑
t=0

γt − n

)

= γ

(
γ − γn

1− γ
− n

)
< 0.

Such a policy may arise due to the policy confounding update described in Sect. 3.2, where the representation
incorrectly merges s⊤n and s⊥n . With n = 5, this corresponds to a return of ≈ −1.09.

(c) ... and the ugly "always right" policy π→: this policy deterministically selects a→ in every state. Its value is

V π→(sI ) = γ

n∑
t=1

γt = γ2
n−1∑
t=0

γt =
γ2 − γn+2

1− γ
.

With n = 5, this corresponds to a return of ≈ 4.8. This coincides with the values reported in Fig. 4 for PPO,
indicating that PPO alone fails to address the confounding policy update in this example.

As mentioned in the main text, we want to highlight the representation learning capabilities of DreamSPI. For
this reason, we provide a view of the grid in raw pixels to the agent (cf. Fig. 10). In our experiments, we choose
ϵ = 0.2. To evaluate PPO and DeepSPI in this environment, we use the default parameters from cleanRL
(Huang et al., 2022), both for PPO and DeepSPI. However, we enforce for both algorithms a compact, small
discrete representation with a limited capacity of 256 latent states (precisely, we use 4 categories of 4 classes,
with the same latent representation as the one used by Hafner et al., 2021). For DeepSPI, we restrict the ratio to
1/γ − 1, which leads to a neighborhood constant C < 1/γ, as the theory suggests. Fig. 4 reports the median of 10
independent runs/seeds per algorithm, as well as the interquartile range (25-75%). Note that the values V π(sI )
reported in Fig. 4 are computed analytically.

H EXPERIMENTS: EVALUATION ON THE ATARI LEARNING ENVIRONMENTS

H.1 SETTING

Each presented experiment on the environments from ALE has been conducted across 8 seeds for each algorithm.
Each run requires (mean ± std) 16.75± 1.7 min for PPO, 60.24± 20.16 min for DeepMDP, 62.49± 20.71 min for

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 10: Observations of the grid perceived by the agent. The white-most cell corresponds to the agent’s
location in the grid. Each observation has size 84× 84.

Figure 11: Relative improvement of DeepSPI compared to PPO over the full stochastic ALE suite (41/61).

DeepSPI, and 80.8±1.35 min for DreamSPI on an NVIDIA A40. This corresponds to a≈ 3.6× overhead when
using DeepSPI instead of PPO, which we consider a modest cost given the guarantees we obtain. Because our
method is on-policy and fully parallelizable, the wall-clock time remains well below that of off-policy approaches
that do not exploit vectorized environments. For comparison, SAC requires roughly 40 hours for the same number of
collected frames on an NVIDIA A100 (Huang et al., 2022), and Dreamer-v2 needs about two days on NVIDIA
V100 (Hafner et al., 2021).

H.2 ADDITIONAL PLOTS

In this section, we present additional figures to highlight statistics and the performance of our algorithm, DeepSPI.
Fig. 11 presents the relative improvement of DeepSPI w.r.t. PPO (Fig. 11). We formally compute the relative
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improvement as
score− scorebaseline

|scorebaseline|
and we use the maximum median human normalized score as the metric to compare in each environment. See
next page for a comparison of each of the algorithms (average episodic return) per environment, across training
steps. We report the median and interquartile range (25–75%) for each environment. Recall that one training step
corresponds to gathering four Atari frames in the environment.

Transition and reward losses. In the main text, we stated that the transition loss achieved by DeepSPI is, in
general, lower than for DeepMDPs. We elaborate here on the statistical significance of this claim. First, as for the
human normalized score, we provide in Fig. 12 aggregate metrics for the transition and reward losses. This analysis
already reveals that there is no statistically significant difference between the capacity to predict rewards between
the two algorithms. We take a closer look at the transition loss.

For each environment i, we summarize the transition loss of DeepSPI and DeepMDP by scalars ℓSPI
i and ℓMDP

i ,
and form paired differences di = ℓSPI

i − ℓMDP
i . The reported mean difference d̄ = 1

n

∑
i di = −0.1381 therefore

means that, on average across environments, DeepSPI’s transition loss is about 0.14 units lower than DeepMDP’s.
To quantify uncertainty on this average effect, we use a paired bootstrap: we resample the n environments with
replacement, recompute d̄(b) for each bootstrap sample b = 1, . . . , B, and form the 95% confidence interval as
the 2.5th and 97.5th percentiles of {d̄(b)}Bb=1. The resulting interval [−0.2226,−0.05907] lies entirely below zero,
which under the usual frequentist interpretation provides strong evidence that the true mean gap in transition loss is
negative (DeepSPI better) rather than a consequence of sampling noise.

The paired Wilcoxon signed-rank test (Wilcoxon, 1992) further supports this conclusion without invoking normality
of the di: it ranks the absolute differences |di|, assigns each rank the sign of di, and uses the signed rank sum as a
test statistic for the null hypothesis H0 : median(di) = 0. We obtain a very small two-sided p-value p = 6.6×10−4

indicating that observing differences this systematically negative would be extremely unlikely if DeepSPI and
DeepMDP had the same typical transition loss.

Finally, the aggregates of Fig. 12 provide a complementary robust view: the interquartile mean (IQM) of transition
loss is lower for DeepSPI than for DeepMDP, indicating that DeepSPI improves not only the mean performance
but also the performance on the central bulk of environments. Taken together, the negative mean difference with
a 95% confidence interval that excludes zero, the significant Wilcoxon test, and the lower IQM all consistently
indicate that DeepSPI achieves statistically significantly lower transition loss than DeepMDP across Atari.

H.3 HYPERPARAMETERS

As mentioned in the main text, we use the same parameters for PPO as the default cleanRL’s parameters.
We list the DeepSPI parameters in Table 1 and those of DreamSPI in Table 2. We used the same pa-
rameters as DeepSPI for DeepMDPs. For DeepSPI, we performed a grid search for the transition density
in {IndependentNormal, MixtureIndependentNormal(n = 5), Categorical(n_cat = 32, n_cls = 32)}. The grid
search revealed that the mixture of independent normal distributions (i.e., with diagonal covariance matrices)
worked best for DeepSPI. We also found that using Lipschitz networks to enforce the Lipschitzness of the latent
space (cf. Sect. 5) was faster than enforcing a gradient penalty (as used by Gelada et al. 2019) since, in contrast to
gradient penalties, enforcing a Lipschitz condition through the architecture does not require additional sampling
from the latent transition function (which might turn out costly, especially with mixture distributions). Furthermore,
norm-constrained GroupSort architectures ensure Lipschitzness by construction. For the reward and transition
coefficients, we performed a grid search in αR, αP ∈

{
10−2, 5× 10−3, 10−3, 5× 10−4, 10−4

}
. We found the

best performance at αR = 0.01 and αP = 5× 10−4.
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Hyperparameter Value

Learning rate 2.5× 10−4

Number of envs 128
Number of rollout steps 8
LR annealing True
Activation function ReLU
Discount factor γ 0.99
GAE λ 0.95
Number of minibatches 4
Update epochs 4
Advantage normalization True
Clipping coefficient ϵ 0.1
Entropy coefficient 0.01
Value loss coefficient 0.5
Max gradient norm 0.5
Transition loss coefficient (αP ) 5× 10−4

Reward loss coefficient (αR) 0.01
Transition density Mixture of Normal (diagonal covariance matrix)
Number of distributions 5
Lipschitz networks True

Table 1: Summary of DeepSPI hyperparameters.

Hyperparameter Value
Imagination horizon 8
actor/critic update epochs 1
actor/critic number of minibatches 4× 8 = 32
Discount factor γ 0.995
Encoder learning rate 2× 10−4

Actor learning rate 2.75× 10−5

Critic learning rate 2.75× 10−5

World model learning rate 2× 10−4

Global LR annealing False
Weight decay (AdamW) True; with decay 10−6

Transition density Categorical (32 categories of 32 classes, see Hafner et al., 2021)
Transition loss coefficient (αP ) 0.01
Reward loss coefficient (αR) 0.01
Lipschitz networks False (unnecessary with discrete random variables)
Other parameters Same as DeepSPI

Table 2: Summary of DreamSPI hyperparameters.
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Figure 12: Aggregate median, IQR, Mean, and optimality gap for the reported transition and reward losses
over all the Atari environments considered in our experiments, with 95% confidence intervals. The confidence
intervals are obtained via percentile bootstrapping with stratified resampling. For more information, refer to
Agarwal et al., 2021b.
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