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Abstract
Large language Model (LLM) unlearning, i.e., selectively removing information
from LLMs, is vital for responsible model deployment. Differently, LLM
knowledge editing aims to modify LLM knowledge instead of removing it.
Though editing and unlearning seem to be two distinct tasks, we find there is a
tight connection between them. In this paper, we conceptualize unlearning as a
special case of editing where information is modified to a refusal or "empty set" ∅
response, signifying its removal. This paper thus investigates if knowledge editing
techniques are strong baselines for LLM unlearning. We evaluate state-of-the-art
(SOTA) editing methods (e.g., ROME, MEMIT, GRACE, WISE, and AlphaEdit)
against existing unlearning approaches on pretrained and finetuned knowledge.
Results show certain editing methods, notably WISE and AlphaEdit, are effective
unlearning baselines, especially for pretrained knowledge, and excel in generating
human-aligned refusal answers. To better adapt editing methods for unlearning
applications, we propose practical recipes including self-improvement and query
merging. The former leverages the LLM’s own in-context learning ability to craft a
more human-aligned unlearning target, and the latter enables ROME and MEMIT
to perform well in unlearning longer sample sequences. We advocate for the
unlearning community to adopt SOTA editing methods as baselines and explore
unlearning from an editing perspective for more holistic LLM memory control.

1 Introduction
In recent years, large language models (LLMs) [37, 19, 2] have achieved remarkable success, with
their broad knowledge enabling a wide range of applications, including mobile assistants [42], medical
diagnosis [35], coding copilot [47]. However, as these models evolve, managing the knowledge
they retain and generate has become increasingly critical. In particular, growing concerns around
privacy [5], ethics [29], and legal compliance (such as with the General Data Protection Regulation
(GDPR) [40] and the California Consumer Privacy Act (CCPA) [30]) have brought attention to the
"right to be forgotten", which grants individuals the legal right to request the deletion or modification
of personal data. These factors highlight the growing need for mechanisms that enable LLMs
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Figure 1: Illustrations of the connection between editing and unlearning for LLMs. A: Editing
aims to alter the knowledge to a target. B: Unlearning tries to remove the knowledge and generate
an "empty" (without information) answer. C: Editing as unlearning, can be done by editing that
alters the knowledge into a target refusal answer.

to unlearn specific data points (i.e., instance-level knowledge), particularly sensitive or erroneous
information, that may have been unintentionally incorporated during training. Failure to address this
can lead to privacy violations, legal risks, and erosion of public trust, making effective unlearning a
critical capability for responsible LLM deployment.
Instance-level knowledge unlearning (hereafter referred to as unlearning) is a complex task. It requires
selectively removing specific knowledge from a model without affecting its overall performance.
This is particularly challenging in the context of LLMs, which store vast amounts of data across
billions of parameters. While traditional machine learning methods often focus on task-specific
model updates [7, 28], LLM unlearning demands a more nuanced approach to prevent "catastrophic
forgetting" and maintain the model’s generalization capabilities.
Interestingly, the field of knowledge editing [51] (also known as model editing) — which involves
modifying a model’s knowledge, typically to correct or update information — shares inherent
commonalities with unlearning. While unlearning focuses on removing the knowledge, knowledge
editing aims to alter the knowledge, and both tasks require precise control over the model’s stored
knowledge. As shown in Figure 1, we find that removing knowledge is a special case of altering
knowledge by replacing the targeted answer from y∗ to ∅ (empty set). Since a successfully unlearned
model should emulate the base model’s behavior when presented with unseen data, the appropriate
behavioral target is a contextualized expression of ignorance (hereafter referred to as a refusal
answer), which mainstream instruction-tuned models are typically aligned to produce. Prior work
refers to this behavioral fidelity as the controllability of unlearning [33]. As such, the refusal answer
can be viewed as the ∅ knowledge of LLMs, which means that knowledge editing can inherently do
unlearning as long as changing the target answer into a refusal. It may suggest that techniques from
knowledge editing could provide a solid foundation for effective unlearning. Though some works
have raised preliminary discussions about the connection between editing and unlearning [22, 53, 39],
in the LLM unlearning community, we find that most of the technical papers may pay less attention
than expected to knowledge editing, not implementing editing methods as baselines [50, 21, 17].
Meanwhile, the field of LLM knowledge editing is developing rapidly, facilitating classic and
state-of-the-art (SOTA) methods like ROME [25], MEMIT [26], WISE [44], and AlphaEdit [6].
In addition, compared with vanilla finetuning, editing methods also have the merits of lightweight
and efficiency [51]. However, LLM unlearning is at a more early stage, some existing baselines
are borrowed from machine unlearning of vision classification tasks (e.g., GA and GD), not tailored
to generative models like LLMs. This forces us to pose the following research question:

Can knowledge editing methods be strong baselines for LLM unlearning?

Therefore, this paper aims to provide a timely answer to the above question by investigating and
evaluating classic and SOTA LLM editing methods for LLM unlearning. We hope this can bridge the
gap between the two communities and provide some insights for future research. Specifically, we
first study whether editing methods can unlearn as effectively as unlearning baselines for pretrained
and finetuned knowledge. Then, we investigate the boundaries of editing methods for unlearning,
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identifying the key challenges. Lastly, we propose some practical modules that can better adapt
editing in unlearning tasks for future implications.
Our contributions are as follows.
• We bridge the gap between LLM editing and unlearning communities by investigating whether

editing methods can serve as strong baselines for LLM unlearning.
• We explore two practical methods that can better adapt editing methods in unlearning tasks. The

proposed self-improvement pipeline leverages the LLM’s own in-context learning ability to craft a
more human-aligned unlearning target, and the proposed query merging technique enables ROME
and MEMIT to perform well in unlearning longer sample sequences.

• We advocate the LLM unlearning community to take the SOTA editing methods as unlearning
baselines when conducting evaluation as well as to study unlearning from the knowledge editing per-
spective to gain a more holistic understanding of LLM memory control and knowledge mechanism.

Our takeaway findings are summarized as follows.
• We find some LLM editing methods, especially WISE and AlphaEdit are strong baselines

especially when unlearning pretrained knowledge.
• We emphasize the importance of human value alignment of LLM unlearning, suggesting that

LLMs should generate trustworthy refusal answers instead of random tokens or misleading phrases.
We find some editing methods (i.e., WISE) have a dominant advantage on human value alignment
over unlearning methods.

• Our proposed self-improvement pipeline for editing methods (e.g., WISE and AlphaEdit) that
can potentially improve human value alignment as well as the generalization ability under
rephrase-prompted attacks. Additionally, the proposed query merging technique can enable ROME
and MEMIT to do unlearning well under long sequences, surpassing all the unlearning baselines.

2 Preliminaries
2.1 LLM Knowledge Editing
We give a definition of the LLM editing setup. Let fΘ : X 7→ Y, parameterized by Θ, denote a model
function mapping an input x to the prediction fΘ(x). The initial model before editing is Θ0, which
is trained on a large corpus Dtrain. When the LLM needs editing to alter some knowledge, it has an
editing dataset as D∗

edit = {(X ∗
e ,Y∗

e )|(x1,y
∗
1), ..., (xT ,y

∗
T )} which has a sequence or batch length

of T . Given a query xT , the editing method maps the knowledge to the target as yT → y∗
T where

yT is the previous knowledge. At editing, the updated LLM fΘ∗ is expected to satisfy:

fΘ∗(x) =

{
y∗ if x ∈ X ∗

e ,
fΘ0

(x) if x /∈ X ∗
e .

(1)

Equation 1 describes that after knowledge editing, the LLM should make the correct prediction of the
edits while preserving the irrelevant and generic knowledge, especially general training corpus Dtrain.

2.2 LLM Unlearning
Following the editing setup, we now consider the problem of LLM unlearning. It has a unlearning
dataset D′

unlearn = {(X ′
u,Y ′

u)|(x1,y1), ..., (xT ,yT )} which is usually a part of the training data
Dtrain. Given the query xT , yT is the ground-truth answer that is used in the training but needs to
be forgotten. Ideally, after unlearning, the updated LLM model fΘ′ should satisfy:

fΘ′(x)

{
̸= y if x ∈ X ′

u,
= fΘ0

(x) if x /∈ X ′
u.

(2)

Equation 2 defines the unlearning objective: removing knowledge of the forget set D′
unlearn while

preserving knowledge from the remaining data. To prevent catastrophic forgetting, some methods use
a retain set or reference model. However, retain sets may be impractical in certain scenarios [46], and
models should ideally preserve open-set knowledge. Ideally, the goal is for unlearning on D′

unlearn to
approximate retraining from scratch on Dtrain \ D′

unlearn.

3 Methodology
3.1 Making Editing Applicable in Unlearning
Equations 1 and 2 have shown the inherent connections between editing and unlearning, and the key
difference is the within-scope condition. Unlike classification models in vision tasks, LLMs as gener-
ative models, have the ability to refuse to answer as a form of removing the knowledge. Therefore,
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assuming there is an "empty" set ∅ = {∅1, ..., ∅T } which is the sentences telling the users that "I don’t
know", change the unlearning set D′

unlearn into D∗
edit-as-unlearn = {(X ∗

e2u,Y∗
e2u)|(x1, ∅1), ..., (xT , ∅T )}.

Applying the new dataset to editing methods, the objective of Equation 1 changes to:

fΘ∗(x) =

{
∅ if x ∈ X ∗

e2u,
fΘ0

(x) if x /∈ X ∗
e2u.

(3)

Equation 3 bridges from editing to unlearning, making it applicable to verify whether editing methods
are strong baselines for unlearning.

3.2 Improving Editing in Unlearning

②
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Figure 2: Methods of improving editing al-
gorithms in unlearning settings. A: Self-
improvement pipeline improves generaliza-
tion and human value alignment for Al-
phaEdit and WISE. B: Query merging tech-
nique enables ROME and MEMIT to perform
well under long unlearning sequences.

Knowledge editing was not tailored for unlearning, as
a result, it may have some limitations when directly
being applied, e.g., different learning objectives and
different sample lengths. Therefore, as shown in
Figure 2, we explore some techniques to better adapt
editing methods in unlearning.
Self-improvement pipeline. A good refusal answer
from LLMs should be trustworthy and aligned with
human values. We find if the editing target answers
are random sentences from the vanilla "I don’t know"
set, it will let the LLMs generate answers that are less
trustworthy, e.g., low generalization, misleading, or
without entailing the entities mentioned in questions.
Therefore, we craft a self-improvement pipeline to let
LLMs create tailored refusal answers to each forget
question before unlearning. Specifically, we provide
instructions and exemplars to help LLMs generate
more tailored unlearning targets for each question
(for detailed prompts, see subsection C.2). Thanks to
their in-context learning ability, LLMs can produce
trustworthy answers that reflect the question’s entities
without misleading information. This helps them
learn patterns between questions and refusal answers during the latter unlearning phase. The
experiments in subsection 4.2 will show that the self-improvement pipeline can improve the answers
regarding human value alignment and improve generalization under rephrased attacks.
Query merging technique. Some locate-and-edit editing methods like ROME and MEMIT cannot
well perform under long sequences of editing [10, 44], and this drawback still exists when editing
applies to unlearning, which limits their broader application in unlearning. However, we find
that, unlike the vanilla editing setting where every edit has one unique target answer, under the
editing-as-unlearning setting, several forget queries can be mapped to a common refusal answer
— the model can say the same "I don’t know" to many queries. This inspires us the query merging
technique that concatenates several queries into one and uses one refusal answer as the editing
target. This simple technique can enable ROME and MEMIT to perform very well under unlearning,
achieving obvious performance advantages over the unlearning baselines (Figure 3).

4 Empirical Results

In this section, we conduct experiments to address the following research questions:
• RQ1: Can editing methods outperform the unlearning baselines when unlearning the pretrained

knowledge and the finetuned knowledge respectively? Which editing methods are most effective
for unlearning tasks?

• RQ2: What are the comprehensive performances of the editing methods in unlearning? Can they
perform well under rephrase attacks or with different numbers of forget samples?

• RQ3: How to improve editing methods for unlearning tasks? Can the editing methods generate
better answers that align with human values than the unlearning baselines? Can we make some
inapplicable editing methods (i.e., ROME and MEMIT) applicable and perform well for unlearning?

For the settings, due to page limit, please refer to the appendix.
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Table 1: Main results comparing editing and unlearning methods. The number of forget samples
in the factual dataset is 40 and PISTOL’s is 20. The forget set performance corresponds to the
reliability metric of editing and the retain set corresponds to locality. In some cases, particular
methods will make LLMs non-functional (e.g., near-zero Rouge1 for both forget and retain sets) or
without any forgetting, and we make these cases in gray. For every metric of each setting, we mark
the best of unlearning and editing, respectively in bold, and we mark the Top 2 out of all methods
in underline.

Dataset Factual dataset (pretrained knowledge)

Model Llama2-7B Mistral-7B

Testset Forget set (reliability) Retain set (locality) Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑ Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GA 0.00 0.59 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.62 0.06 0.09 0.00 0.56 0.02 0.06
GD 0.30 0.36 0.02 0.02 0.62 0.27 0.12 0.13 0.00 0.56 0.05 0.09 0.52 0.49 0.18 0.54
KL 0.00 0.55 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.42 0.06 0.08 0.00 0.43 0.02 0.06
DPO 0.36 0.36 0.01 0.02 0.45 0.27 0.03 0.04 0.03 0.60 0.00 0.03 0.43 0.57 0.07 0.15

ROME 0.01 0.41 0.01 0.01 0.04 0.32 0.01 0.01 0.00 0.54 0.04 0.06 0.00 0.48 0.02 0.04
MEMIT 0.02 0.82 0.00 0.00 0.01 0.78 0.00 0.00 – – – – – – – –
GRACE 0.65 0.35 0.18 0.22 0.82 0.26 0.21 0.26 0.93 0.44 0.37 0.68 0.82 0.45 0.34 0.69
WISE 0.28 0.37 0.11 0.14 0.76 0.26 0.18 0.23 0.05 0.13 0.01 0.08 0.13 0.12 0.10 0.36
AlphaEdit 0.08 0.35 0.04 0.05 0.69 0.26 0.12 0.15 0.26 0.45 0.09 0.22 0.66 0.45 0.24 0.53

Dataset PISTOL (finetuned knowledge)

Model Llama2-7B Mistral-7B

Testset Forget set (reliability) Retain set (locality) Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑ Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GA 0.16 0.29 0.18 0.19 0.69 0.29 0.20 0.20 0.27 0.54 0.15 0.39 0.76 0.54 0.24 0.59
GD 0.25 0.29 0.17 0.17 0.80 0.29 0.20 0.20 0.22 0.58 0.16 0.31 0.76 0.58 0.25 0.56
KL 0.82 0.33 0.23 0.33 0.98 0.33 0.26 0.36 0.08 0.55 0.05 0.35 0.34 0.55 0.11 0.51
DPO 0.18 0.28 0.15 0.15 0.86 0.28 0.22 0.22 0.00 0.44 0.01 0.04 0.06 0.44 0.02 0.05

ROME 0.00 0.37 0.00 0.00 0.00 0.37 0.00 0.01 0.04 0.20 0.09 0.39 0.02 0.20 0.10 0.40
MEMIT 0.00 0.42 0.16 0.18 0.00 0.42 0.17 0.23 - - - - - - - -
GRACE 1.00 0.28 0.25 0.25 1.00 0.29 0.22 0.22 1.00 0.48 0.33 0.81 1.00 0.48 0.31 0.78
WISE 0.68 0.25 0.26 0.27 0.94 0.25 0.21 0.21 0.05 0.29 0.04 0.30 0.36 0.29 0.12 0.41
AlphaEdit 0.05 0.28 0.14 0.16 0.25 0.28 0.15 0.17 0.05 0.47 0.14 0.47 0.12 0.47 0.18 0.55

4.1 General Performance of Editing Methods in Unlearning (RQ1)
We compare 4 unlearning methods and 5 editing methods under 4 settings and the results are in
Table 1. The factual dataset from TOFU consists of the knowledge during LLM pretraining, and we
test Rouge1 before unlearning: 0.82 for Llama2-7B and 0.86 for Mistral-7B. The PISTOL dataset
focuses on structural unlearning under finetune-then-unlearn setup, and we finetune the base models
on the whole PISTOL dataset to reach 1.0 Rouge1 and then forget a proportion of the finetuned set.
Ob1: Unlearning might lead to model failure, but some editing methods are more robust.
Results in Table 1 show that some methods will result in the retain model non-usable post unlearning.
This happens to unlearning methods GA and KL, as well as editing methods ROME and MEMIT.
However, we will show later in Subsection 4.2 that with the query merging technique, ROME and
MEMIT can produce excellent unlearning performances. Notably, WISE and AlphaEdit consistently
perform well across all settings.

Table 2: Results under rephrase attack
(generalization). Factual dataset, 40 forget
samples, Llama2-7B.

Testset Rephrased forget set (generalization)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓
GA 0.00 0.59 0.00 0.00
GD 0.42 (0.12↑) 0.34 0.03 (0.01↑) 0.03 (0.01↑)
KL 0.00 0.54 0.00 0.00
DPO 0.52 (0.15↑) 0.34 0.00 0.01
ROME 0.01 0.40 0.01 0.01
MEMIT 0.00 0.83 0.00 0.00
GRACE 0.80 (0.15↑) 0.33 0.05 0.07
WISE 0.46 (0.19↑) 0.36 0.07 0.09
AlphaEdit 0.14 (0.06↑) 0.33 0.04 0.05

Ob2: Editing methods are strong baselines for
unlearning, especially for pretrained knowledge.
"Forget" and "Retain" is an important tradeoff in un-
learning, some methods may unlearn too much, caus-
ing damage to general or retain knowledge. There-
fore, we count the methods that get the Top-2 ranking
for both forget and retain sets within the same set-
ting, and they are GD, DPO, GRACE, and WISE for
factual dataset and GA, GD, KL, DPO, and WISE
for PISTOL. It seems that editing performs better on
pretrained knowledge and basic unlearning methods
perform better on finetuned knowledge. This might
be owing to the inherently different knowledge mechanisms between pretraining and finetuning [4],
and editing is naturally designed for altering the pretrained knowledge of LLMs. We note that
unlearning pretrained knowledge is important for real practice since most of the factual knowledge is
obtained during pretraining.

4.2 Improving Editing Methods in Unlearning Settings (RQ3)
LLM outputs should align with human values [41]. However, we observe that some unlearning
methods cause models to generate random tokens, off-topic, or misleading answers (see Figure 6).
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"Entailment": scored from 1-5 by human participants, and the average is taken. Right: improving
ROME and MEMIT by query merging. The score is 1 - Rouge1@Forget + Rouge1@Retain, the
same as left Figure 5. The number of forget samples is 80. x-axis: merging # samples into 1.

For instance, GD fails to forget and produces off-topic content (e.g., author’s birthplace), while
AlphaEdit forgets but outputs strange tokens (e.g., times). To enhance trustworthiness and alignment,
we propose a simple yet effective self-improvement pipeline (subsection 3.2). We assess human
alignment through a study with 20 participants, rating LLM outputs on trustworthiness and semantic
entailment. Results appear in the left of Figure 3.
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Obs3: The self-improvement pipeline im-
proves generalization, trustworthiness,
and semantic entailment of refusal an-
swers. As shown in Figure 3, WISE
and AlphaEdit notably improve in seman-
tic entailment, providing more precise re-
fusals. Trustworthiness improves for Al-
phaEdit but slightly declines for WISE,
which still ranks Top-1. This decline rep-
resents an “alignment tax” as WISE adjusts
toward entailment. The pipeline also boosts
rephrased generalization. Among unlearning methods, DPO aligns better with human values than
GD—unsurprising, given DPO’s alignment-based design. Figure 6 illustrates WISE and AlphaEdit’s
enhanced outputs post-improvement.

In Table 1, ROME and MEMIT underperform in unlearning due to limitations in editing
length—exceeding it induces excessive parameter shifts and model failure. We address this in
subsection 3.2 using a query merging technique that combines samples to leverage unlearning’s
refusal behavior. Results are in the right of Figure 3.

Obs4: Query merging greatly boosts ROME and MEMIT in unlearning, achieving strong
results. Figure 3 shows ROME and MEMIT peak when merging 5 queries into 1 (16 samples after
merging), with scores of 1.622 and 1.632, close to AlphaEdit’s 1.636 and surpassing DPO (1.123)
and GD (1.596). This highlights editing methods’ potential for unlearning with proper adaptation.
A tradeoff exists between merged query count (n) and samples per query (m), with n · m = 80;
increasing n reduces m, but longer context becomes harder to retain.

More experimental results. Please refer to Section A and D of the appendix for more experimental
results, including comprehensive analysis and the experiments on Llama3.1-8B and some extended
results in the main paper.

5 Conclusion

This paper tries to bridge LLM knowledge editing and unlearning communities by studying whether
editing methods are strong baselines for unlearning tasks. The findings reveal that the answer might
be positive. We also explore two techniques to better adapt editing methods under unlearning setups.
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Figure 5: Comprehensive analysis of unlearning performances. The same setting as Table 1. Left
bar charts: the score is 1 - Rouge1@Forget + Rouge1@Retain, the higher the better. Right radar
figure: the higher the better; "Forget": 1 - Rouge1; "Rephrase": 1 - Rouge1; "Retain": Rouge1.

Appendix
In the appendix, we will give more details and experiments that are omitted in the main paper.
Specifically, this appendix includes the following contents:

• More experimental results: we include more experimental results.
• More related works: in Section B, we include the related works about LLM knowledge

editing.
• Implementation details: in Section C, we present more implementation details, including

the metrics and hyperparameters, etc.
• More experimental results: in Section D, we show more experimental results, including

experiments on Llama3.1-8B and more results omitted in the figures.
• Details about human value alignment study: in Section E, we include the details about

the participant instructions, participant metadata, metric definitions, etc.

A Comprehensive Analysis (RQ1 & RQ2)
We study the capabilities of editing methods under rephrase attack and different numbers of forget
samples. We note that the rephrase attack is noted as the generalization metric in knowledge
editing [44], and we use GPT-4 to synthesize the rephrased queries. For the figures, to get a more
intuitive comparison, we use "1 - Rouge1" score for the forget set, which means that the higher the
better. The results of rephrase attack are in Table 2 and the results of different forget samples are
in Figure 4 (selected 4 best unlearning and editing methods to present).
Obs5: Some editing methods are robust under rephrase attacks (AlphaEdit) and longer forget
sequences (WISE and AlphaEdit). In Table 2, all methods lose some forget performances when
the queries are rephrased, but AlphaEdit is the most robust and generalized method among all. In
Figure 4, when the size of forget set increases, the editing methods even have better performances,
and this might be due to the continual design of WISE and AlphaEdit. Generally, among the four
competitive algorithms, AlphaEdit is the best, followed by GD and WISE, and DPO is relatively
weak.
Obs6: AlphaEdit and WISE are the best editing methods for unlearning under comprehensive
analysis. To better illustrate and benchmark the methods’ pros and cons, we make Figure 5, where
we craft a score of "1-Rouge1@Forget+Rouge1@Retain" as a comprehensive indicator of unlearning
performance, the higher the better. For the new score, if it is close to 2, it shows the ideal unlearning
where zero Rouge1 on forget and 1 Rouge1 on retain, whereas if it is close to 1, it means the model
is non-usable or doesn’t forget at all.
The left of Figure 5 demonstrates that WISE and AlphaEdit are the best editing methods for unlearn-
ing. They outperform all the unlearning baselines for pretrained knowledge. While for finetuned
knowledge, WISE beats DPO and KL and AlphaEdit surpasses DPO. Inspired by WISE, on the
right of Figure 5, we also make a radar figure to intuitively compare the methods when unlearning
pretrained knowledge regarding 3 dimensions, reliability (forget), locality (retain), and generalization
(rephrase). It clearly presents that AlphaEdit is leading across 3 dimensions. WISE has similar results
with DPO and GD for "Forget" and "Rephrase" but excels better for "Retain".
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B Related Works

LLM Unlearning. Initially driven by the "right to be forgotten" and explored in computer
vision [3, 1], machine unlearning is now critical for LLMs [49, 22]. Evaluation benchmarks such
as TOFU [24] and PISTOL [31] have emerged, alongside methods ranging from exact model
merging [16] to scalable approximations like mechanistic localization [9], activation redirection [33],
parameter offsetting [12], logit reversal [13], embedding-corrupted prompts [21], and iterative
relearning [48]. Unlearning often obscures rather than removes data and struggles with generative
AI. Recent work shifts focus to removing data while preserving useful knowledge [36, 43]. Please
refer to Section B of the appendix for more detailed related works.
LLM Knowledge Editing. LLM knowledge editing, or model editing, updates model information
without full retraining. Early methods like ROME [25] introduced direct single-edit parameter
changes, followed by approaches such as GRACE [10] and WISE [44], which support continual
editing via external or parametric memory. Batch editing methods like MEMIT [26] allow simul-
taneous updates of multiple facts. More refined techniques, including AlphaEdit [6] (null-space
constraints) and MELO [52] (neuron-indexed adaptors), aim to minimize side effects. Meta-learning
approaches [27, 34] scale editing by teaching models how to edit. While some methods focus on
broad applicability [15], others address robustness and pitfalls [18, 23]. Tools like EasyEdit [45]
standardize implementation and evaluation, and collaborative editing is an emerging area [54].
Connection between LLM unlearning and knowledge editing. While some prior works have
raised discussions about the connection between LLM knowledge editing and unlearning [22],
they often treat these tasks as distinct tasks and may overlook their methodological overlap. For
instance, Veldanda et al. [39] propose specialized unlearning strategies emphasizing memory erasure
and functional decoupling but do not evaluate or compare against state-of-the-art editing methods.
Guo et al. [9] and Zhang et al. [53] introduce architectural and interpretability-driven innovations
to localize updates or resolve interference, yet they assume a strict separation between deletion
(unlearning) and modification (editing). In contrast, our work critically frames unlearning as a
constrained form of editing—modification to a refusal response—and empirically tests whether
leading editing techniques can serve as strong, practical baselines for unlearning. Therefore, our
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paper is orthogonal to existing literature. Our perspective complements existing approaches and
suggests that closer integration and cross-evaluation between editing and unlearning methodologies
may offer more effective strategies for LLM memory management.
Note: During the late stage of this research, we find a concurrent preprint work that shares a similar
motivation [11]. We find our work has a lot of differences from the concurrent work in terms of
editing scope (their: fixed number of edits; ours: varying edits), editing-as-unlearning approaches
(their: ROME and WISE; ours: ROME, MEMIT, GRACE, WISE, and AlphaEdit), knowledge types
(their: only finetuned knowledge; ours: both pretrained and finetuned knowledge), and improving
editing techniques (their: w/o; ours: two techniques). In general, the concurrent work focuses more on
the unlearning target of editing, while our paper focuses on a more comprehensive study of applying
editing to unlearning, including a broader and deeper investigation.

C Implementation Details

In this section, we will present implementation details that are omitted in the main paper, including
settings, prompts for self-improvement, datasets and models, evaluation metrics for unlearning,
environments and hyperparameters, and details of the unlearning methods.

C.1 Settings

We briefly outline the evaluation metrics, datasets, models, and the compared editing and unlearning
methods. For more detailed information about the experimental settings, please refer to the appendix.
Evaluation metrics. Following the unlearning dataset papers PISTOL [31] and TOFU [24], we
evaluate unlearning by employing a diverse set of metrics, including the Rouge1 Score, Probability,
Mean Reciprocal Rank (MRR), and Top Hit Ratio. Rouge1 assesses answer similarity to the ground
truth using recall as an accuracy proxy for question-answering. Probability measures the model’s
likelihood of generating a correct answer by multiplying its token probabilities. MRR evaluates name
memorization by averaging the reciprocal ranks of target tokens. Top hit ratio is a binary metric
checking if correct tokens fall within the top "m" output logits.
Datasets. We evaluate on two LLM unlearning benchmark datasets: TOFU [24]’s world knowledge
dataset (unlearning pretrained knowledge) and PISTOL [31] (unlearning finetuned knowledge).
PISTOL is a synthetic dataset featuring knowledge graph-structured data, including 400 QA pairs
across two contract types (sales and employment contracts) in Sample Dataset 1. TOFU’s factual
dataset (i.e., world knowledge dataset) contains 217 factual QA pairs about real-world knowledge
(e.g., authors, world facts). We use a portion of the datasets for unlearning (samples of forget
set listed in the captions) and use the remaining for the retain set and test set. Models. We use
Llama2-7B-chat [38] and Mistral-7B-instruct [14] as the base models following PISTOL and TOFU.
We also use Llama3.1-8B [8], and due to space limits, the results are in Table 3.
Editing methods. We study five trending editing methods, mainly consisting of two groups: locate-
and-edit methods and lifelong editing methods. ROME [25] is the most classic editing method that
applies the locate-and-edit pipeline which views the located MLP as a key-value memory and adds
mild parameter perturbations for knowledge editing. MEMIT [26] is a modified version of ROME
that enables batch edits. AlphaEdit [6] is an improved and SOTA version of MEMIT, solving long
sequences of editing by mapping the perturbations into the parameter null space. GRACE [10] is
designed for lifelong knowledge editing using a key-value codebook. WISE [44] is also a lifelong
editing method by dynamic parametric side memory, which supports long sequences and keeps
reliability, locality, and generalization at the same time.
Unlearning methods. We use the classic unlearning methods presented in TOFU. Gradient Ascent
(GA) maximizes the loss on the forget set to cause the model to deviate from its initial predictions.
Gradient Difference (GD) [20] not only increases the loss on the forget set but also maintains
performance on the retain set by adjusting both losses. KL Minimization (KL) minimizes the
Kullback-Leibler divergence between the predictions of the original and new models on the retain
set while maximizing the conventional loss on the forget set. Direct Preference Optimization
(DPO) [32] aligns the model to avoid revealing specific information (like author details) by computing
a loss on "I don’t know" answer pairs, aiming to ensure that alignment on the forget set does not
degrade natural language capabilities. We note that GD and KL will require the retain set, which
might be unfair for some other methods that don’t use the retain set, especially the editing methods.
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C.2 Prompts for the self-improvement pipeline

The prompts for the self-improvement pipeline are as follows.

You are a helpful assistant to generate the answers to show you have no knowledge about the
questions. The anwsers should contain the entities mentioned in the question and should be
trustworthy withouting misleadings.

Here are three examples:
Example 1:
Question: Who is the author of Harry Potter?
Answer: Sorry, I have no knowledge about the author name of Harry Potter.

Example 2:
Question: What is the capital city of Singapore?
Answer: I need to apologize that I don’t know the capital city of Singapore.

Example 3:
Question: Which university ranks top 1 in the UK?
Answer: Sorry, I’m unable to provide an answer about the UK’s top 1 university.

Now, I will give you a new question, please generate the corresponding answer by referring to
previous prompts and examples.

Question: <ADD ONE UNLEARNING QUESTION HERE>

C.3 Datasets and models

Datasets We evaluate on two LLM unlearning benchmark datasets: TOFU [24] and PISTOL [31].
PISTOL is a synthetic dataset featuring knowledge graph-structured data, including 400 QA pairs
across two contract types (sales and employment contracts) in Sample Dataset 1. TOFU is an
unlearning dataset, mainly consisting of a synthetic author-book dataset for the finetune-then-unlearn
paradigm. Since PISTOL is already used for the finetuned experiments, we use TOFU’s world
knowledge dataset (in our paper, we call it the factual dataset) for studying unlearning on the
pretrained knowledge. TOFU’s factual data contains 217 factual QA pairs about real-world
knowledge (e.g., authors, world facts).

Models Prior research has shown that unlearning performance varies with the base model. We
offer a comprehensive evaluation across multiple model families, including Llama2-7B [38],
Llama3.1-8B [8], and Mistral-7B [14].

C.4 Evaluation metrics

We draw inspiration from PISTOL, evaluating unlearning by employing a diverse set of metrics,
including the ROUGE Score (commonly used for QA tasks), along with Mean Reciprocal Rank
(MRR) and Top Hit Ratio.

ROUGE We utilize ROUGE scores to assess the similarity between model-generated answers
(using greedy sampling) and the ground truth. In particular, we compute the ROUGE-1 recall score,
which serves as a proxy for accuracy in the question-answering task, accounting for slight variations
in the phrasing of the model’s output relative to the ground truth.

Probability Probability refers to the likelihood of a model generating a correct answer. When a
large language model predicts the next token, it outputs a probability distribution for each word in
the vocabulary and selects the word with the highest probability value as the output. For a model -
generated answer E, it can be split into a series of tokens E = {e1, e2, . . . , e|E|}, |E| = n. Then,
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the output probability of answer E is obtained by multiplying the probabilities of each token given
its preceding tokens. The formula is:

P (E|q) = P (e1|q) ∗ . . . ∗ P (en|q, e1, . . . , en−1).

MRR An answer typically consists of multiple tokens. To evaluate the model’s memorization of
names, we employ the mean reciprocal rank (MRR) of the rank of each target (ground truth) token.
Given a prefix Q, an output answer token sequence E = {e1, e2, . . . , e|E|}, with the length of |E|,
the model predicts the rank of the target token as rank(ei|Q), and then MRR for the answer E is
calculated as follows:

MRR =

∑|E|
i=1 1/rank(ei, Q)

|E|
.

Top hit ratio The hit ratio serves as a binary metric for each output token. It determines whether
the correct token is among the top m values within the output logits, denoted as hit(ei,m). Consider
an output sequence E = {e1, e2, . . . , e|E|}. In our experiments, we set m = 100.
The overall hit ratio, is calculated as follows:

Hit =

∑|E|
i=1 hit(ei,m)

|E|
.

C.5 Environments and hyperparameters

Experiments were conducted on a single Quadro RTX 8000 with 48GB of memory. The hyperparam-
eter settings are listed as follows. For the unlearning methods provided by PISTOL, we adapt the
optimal hyperparameters mentioned in the paper accordingly; specifically, we set the learning rate to
2× 10−5 for GA, GD, and KL, and 1.5× 10−5 for DPO. For EasyEdit, we use the default hyperpa-
rameters, except for the mom2_n_samples parameter, we set it to 1000 for MEMIT, AlphaEdit, and
set it to default for ROME, GRACE, and WISE. For MEMIT and AlphaEdit, calculating the weight
update matrix is essential, with the covariance matrix playing a pivotal role in this process. The
covariance matrix captures the correlations between model activation values, enabling more accurate
weight updates. To estimate the data distribution accurately during covariance matrix computation,
an adequate number of sample data is required. The mom2_n_samples parameter determines the
sample size for calculating second-moment statistics; a larger sample size yields a more accurate
covariance matrix estimate, thereby enhancing the stability and effectiveness of weight updates.
Consequently, both AlphaEdit and MEMIT rely on this parameter to ensure algorithmic performance
and accuracy. While not losing overall performance, we reduce the mom2_n_samples parameter
considering computational resource constraints.

C.6 Details about the unlearning methods

• Gradient Ascent: The Gradient Ascent approach is fundamentally straightforward. It
entails reducing the likelihood of correct predictions on the forget set. Specifically, for each
instance in SF , the goal is to maximize the standard training loss in order to make the model
deviate from its initial prediction. As in the finetuning stage, the loss on a given sample
x ∈ SF is denoted by ℓ(x,w); the loss we aim to maximize is the average over the forget
set, which can be viewed as to minimize the negative loss:

L(SF , w) = − 1

|SF |
∑
x∈SF

ℓ(x,w). (4)

• Gradient Difference: The second method, called Gradient Difference [20], builds on the
concept of gradient ascent. It not only aims to increase the loss on the forget set SF , but
also strives to maintain performance on the retain set SR. The revised loss function we aim
to minimize can be represented as:

Ldiff = −L(SF , w) + L(SR, w). (5)

Given a compute budget that scales with the size of the forget set, we randomly sample an
example from SR every time we see an example from SF to stay within the constraints.
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• KL Minimization: In the KL Minimization approach, the objective is to minimize the
Kullback-Leibler (KL) divergence between the predictions on SR of the original model and
the newly trained models (as it undergoes unlearning), while maximizing the conventional
loss on SF . Let M denote a model and let M(·) output a probability distribution over the
vocabulary corresponding to the likelihood of the next token according to the model. The
formal objective can be written as:

LKL = −L(SF , w) +
1

|SR|
∑
s∈SR

1

|s|

|s|∑
i=2

KL(Moriginal(s<i) ∥ Mcurrent(s<i)). (6)

Here, Moriginal and Mcurrent denote the original and the new model, respectively. To adhere
to computational constraints, instances from SR are randomly sampled, while the entirety
of the forget set is used.

• Direct Preference Optimization: Inspired by direct preference optimization (DPO)
(Rafailov et al., 2023), this method seeks to align the model such that it refrains from
revealing information about specific authors. In this approach, we also compute the loss on
xidk = [q, aidk] ∈ SF

idk as:

Lidk = L(SR, w) + L(SF
idk, w). (7)

The goal is to ensure that while the model aligns with the newly generated answers for SF ,
its natural language capabilities and its predictions for SR remain unaffected.

D More Experimental Results

In this appendix section, we give additional experimental results. Specifically, these results are as
follows.

• Table 3: Results under Llama3.1-8B.
• Table 4: Results on PISTOL dataset with 40 forget samples.
• Table 5: Extended results of Figure 4, results for different number of forget samples.
• Table 6: Extended results of left Figure 3.
• Table 7: Extended results of right Figure 3.

Table 3: Results under Llama3.1-8B. The number of forget samples in the factual dataset is 40.
Dataset Factual dataset (pretrained knowledge)

Model Llama3.1-8B

Testset Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GD 0.967 0.606 0.007 0.182 0.938 0.58 0.233 0.345
DPO 0.45 0.659 0.006 0.182 0.616 0.63 0.01 0.118

WISE 0.367 0.639 0.006 0.172 0.592 0.605 0.003 0.113
AlphaEdit 0.517 0.576 0.051 0.225 0.847 0.554 0.096 0.235

E Details about Human Value Alignment Study

In this section, we will present the details of the human value alignment study (c.f. to the left
Figure 3).
Participant details. We recruited 20 participants for the user study, including 25% female and 75%
male. The ages of the participants range from 21 to 32, and all the participants hold a bachelor’s
education degree and above.
Definitions of the metrics. We define three metrics: forget quality, semantic entailment, and
trustworthiness. We count the entailment and trustworthiness scores if and only if the answer is
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Table 4: Results on PISTOL dataset with 40 forget samples. Here, we add the additional metric
of locality on the factual dataset to see whether unlearning of finetuned knowledge will have impacts
on the pretrained knowledge.

Dataset PISTOL dataset-40 (finetuned knowledge)

Model Llama2-7B

Testset Forget set (reliability) Retain set (locality) Rephrased forget set (generalization) Factual data (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑ Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑
GA 0.00 0.28 0.00 0.00 0.02 0.28 0.02 0.02 0.00 0.27 0.01 0.03 0.50
GD 0.22 0.29 0.14 0.14 0.80 0.29 0.20 0.20 0.09 0.28 0.11 0.13 0.77
KL 0.00 0.36 0.00 0.00 0.02 0.36 0.00 0.00 0.07 0.35 0.00 0.01 0.79
DPO 0.00 0.29 0.01 0.02 0.01 0.29 0.01 0.01 0.02 0.28 0.01 0.01 0.73

ROME 0.01 0.11 0.08 0.16 0.00 0.10 0.11 0.18 0.02 0.08 0.11 0.20 0.00
MEMIT 0.00 0.71 0.15 0.15 0.00 0.71 0.16 0.16 0.00 0.71 0.15 0.15 0.00
GRACE 1.00 0.28 0.24 0.24 1.00 0.29 0.22 0.22 0.22 0.28 0.16 0.17 0.82
WISE 0.81 0.27 0.25 0.26 0.93 0.28 0.23 0.23 0.19 0.27 0.07 0.08 0.78
AlphaEdit 0.00 0.28 0.05 0.08 0.01 0.28 0.07 0.11 0.09 0.27 0.10 0.12 0.73

Model Mistral-7B

Testset Forget set (reliability) Retain set (locality) Rephrased forget set (generalization) Factual data (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑ Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑
GA 0.10 0.56 0.06 0.29 0.35 0.56 0.11 0.41 0.14 0.53 0.12 0.45 0.79
GD 0.00 0.51 0.06 0.33 0.63 0.51 0.19 0.46 0.08 0.48 0.11 0.38 0.84
KL 0.00 0.43 0.00 0.16 0.00 0.44 0.05 0.34 0.00 0.44 0.03 0.21 0.00
DPO 0.00 0.54 0.00 0.01 0.00 0.55 0.00 0.02 0.01 0.55 0.00 0.02 0.02

ROME 0.02 0.18 0.16 0.47 0.03 0.18 0.15 0.45 0.02 0.21 0.14 0.45 0.02
GRACE 1.00 0.48 0.33 0.80 1.00 0.48 0.31 0.78 0.46 0.47 0.30 0.77 0.88
WISE 0.03 0.24 0.04 0.31 0.12 0.24 0.10 0.39 0.08 0.24 0087 0.40 0.78
AlphaEdit 0.05 0.65 0.13 0.33 0.02 0.65 0.14 0.44 0.02 0.63 0.15 0.29 0.02

marked as 1 in forget quality by the user, which means that the knowledge is identified as forgotten
by the users. It means that we only consider the answers that are actually unlearned. The forget
quality is a binary metric, which has 1 (unlearned) or 0 (not unlearned). The semantic entailment and
trustworthiness metrics are rated by 5 levels from 1-5. Specifically, the definitions of the metrics are
as follows:

• Forget Quality: Forget Quality evaluates whether the target knowledge has been effectively
and completely removed from the model. A high forget quality score indicates that the
model no longer produces the correct answer or any meaningful approximation of the
forgotten information, even when prompted directly. This ensures that the unlearning
objective—irreversible removal of specific factual associations—is achieved.

• Semantic Entailment: Semantic Entailment assesses whether a refusal response maintains
a meaningful connection to the original question. Rather than providing an uninformative or
generic rejection (e.g., “I don’t know”), a semantically entailed refusal acknowledges key
components of the question—such as named entities or event structure—demonstrating that
the model understands the question, even if it cannot or will not provide an answer.

• Trustworthiness: Trustworthiness measures whether the model’s response avoids mislead-
ing, hallucinated, or harmful content. In the context of unlearning, this includes ensuring that
the model does not generate incorrect factual answers, offensive statements, or low-quality
outputs when the target knowledge is removed. A trustworthy refusal response should be
non-deceptive, safe, and linguistically appropriate.

Participant instructions. Following the above definitions, we formulate the instructions for the
participants. These instructions are easier to understand than the definitions, shown below.

• Forget Quality. This measures whether the model has really "forgotten" the original fact.
A good example of forgetting is when the model no longer gives the correct answer or
anything close to it, even if you ask directly. It’s like asking someone a question and they
truly don’t know anymore—not even by accident.

• Semantic Entailment. This checks if the model’s refusal still makes sense with the
question. Even if the model doesn’t give an answer, does it show that it understood what you
were asking about? For example, a better refusal might say “Sorry, I don’t have information
about Harry Potter’s author” rather than just “I don’t know.”
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Table 5: Extended results of Figure 4, results for different number of forget samples. Factual
data, Llama2-7B.

Num. of samples 20
Testset Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GA 0.342 0.38 0.022 0.03 0.281 0.298 0.012 0.014
GD 0.167 0.357 0.015 0.037 0.604 0.276 0.165 0.214
KL 0.342 0.38 0.026 0.039 0.273 0.299 0.0174 0.02
DPO 0.342 0.355 0.042 0.046 0.558 0.275 0.031 0.052

ROME 0 0.355 0.008 0.008 0.273 0.274 0.027 0.037
MEMIT 0.017 0.419 0 0 0.207 0.358 0.018 0.024
GRACE 0.708 0.345 0.274 0.308 0.769 0.265 0.204 0.252
WISE 0.258 0.307 0.13 0.145 0.708 0.222 0.169 0.219
AlphaEdit 0.192 0.348 0.065 0.076 0.741 0.268 0.176 0.21

Num. of samples 40
Testset Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GA 0 0.59 0 0 0 0.52 0 0
GD 0.296 0.362 0.017 0.023 0.617 0.269 0.122 0.125
KL 0 0.55 0 0 0 0.475 0 0
DPO 0.363 0.359 0.008 0.016 0.449 0.269 0.032 0.042

ROME 0.008 0.406 0.013 0.013 0.041 0.317 0.006 0.007
MEMIT 0.017 0.825 0 0 0.008 0.781 0 0
GRACE 0.65 0.346 0.183 0.222 0.82 0.256 0.207 0.255
WISE 0.275 0.372 0.108 0.144 0.756 0.256 0.176 0.226
AlphaEdit 0.083 0.351 0.043 0.049 0.689 0.26 0.12 0.154

Num. of samples 60
Testset Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GD 0.067 0.364 0.023 0.022 0.706 0.272 0.135 0.141
DPO 0.303 0.347 0.01 0.017 0.462 0.259 0.017 0.036

ROME 0.006 0.5 0.003 0.004 0.004 0.431 0.009 0.012
MEMIT 0.006 0.822 0 0 0.007 0.776 0.001 0
GRACE 0.717 0.336 0.261 0.298 0.805 0.249 0.206 0.26
WISE 0.389 0.364 0.125 0.156 0.779 0.25 0.194 0.249
AlphaEdit 0.089 0.344 0.017 0.023 0.669 0.256 0.109 0.147

Num. of samples 80
Testset Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GD 0.167 0.4 0.013 0.014 0.763 0.319 0.122 0.126
DPO 0.313 0.342 0.008 0.012 0.436 0.259 0.0148 0.03

ROME 0.004 0.678 0 0.004 0.009 0.672 0.008 0.012
MEMIT 0.003 0.823 0.001 0 0 0.769 0 0
GRACE 0.701 0.326 0.256 0.29 0.813 0.242 0.199 0.264
WISE 0.34 0.338 0.087 0.106 0.806 0.224 0.192 0.246
AlphaEdit 0.11 0.332 0.011 0.01 0.746 0.247 0.124 0.169

Num. of samples 100
Testset Forget set (reliability) Retain set (locality)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑
GD 0 0.434 0.022 0.021 0.775 0.339 0.151 0.151
DPO 0.294 0.337 0.009 0.015 0.472 0.252 0.01 0.017

ROME 0.003 0.712 0.001 0 0.009 0.704 0.012 0.014
MEMIT 0.003 0.824 0 0 0 0.759 0 0
GRACE 0.713 0.319 0.243 0.279 0.859 0.233 0.189 0.253
WISE 0.184 0.314 0.058 0.087 0.854 0.198 0.19 0.255
AlphaEdit 0.053 0.327 0.01 0.01 0.806 0.239 0.172 0.238

• Trustworthiness. This looks at whether the model gives a safe and honest response. We
want to make sure it doesn’t try to make up a wrong answer, say something inappropriate, or
respond in a confusing or random way. A trustworthy answer avoids misleading or harmful
content, even when it refuses to answer.

18



Table 6: Extended results of left Figure 3. Factual data, Llama2-7B.
Before

Testset Forget set (reliability) Retain set (locality) Rephrased forget set (generalization)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑ Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓
ROME 0 0.355 0.008 0.008 0.273 0.274 0.027 0.037 0 0.345 0.02 0.019
MEMIT 0.017 0.419 0 0 0.207 0.358 0.018 0.024 0.017 0.423 0.001 0
GRACE 0.708 0.345 0.274 0.308 0.769 0.265 0.204 0.252 0.775 0.331 0.069 0.083
WISE 0.258 0.307 0.13 0.145 0.708 0.222 0.169 0.219 0.558 0.3 0.059 0.068
AlphaEdit 0.192 0.348 0.065 0.076 0.741 0.268 0.176 0.21 0.208 0.334 0.065 0.076

After Self-improvement
ROME 0 0.362 0.006 0.017 0.208 0.282 0.026 0.03 0 0.346 0.004 0.004
MEMIT 0.017 0.509 0.001 0 0.048 0.441 0.01 0.011 0.017 0.488 0 0
GRACE 0.658 0.345 0.274 0.3 0.794 0.265 0.222 0.27 0.775 0.331 0.008 0.023
WISE 0.458 0.296 0.084 0.123 0.762 0.217 0.176 0.218 0.483 0.284 0.012 0.011
AlphaEdit 0.175 0.343 0.001 0 0.696 0.261 0.155 0.186 0.1 0.328 0.004 0.008

Table 7: Extended results of right Figure 3. Factual data, Llama2-7B.
40 editing samples by merging 2 queries of 80 forget samples

Testset Forget set (reliability) Retain set (locality) Rephrased forget set (generalization)

Metric Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓ Rouge1↑ Prob.↑ MRR↑ Hit-Rate↑ Rouge1↓ Prob.↓ MRR↓ Hit-Rate↓
ROME 0.011 0.273 0.001 0 0.006 0.18 0.007 0.009 0.007 0.291 0.001 0
MEMIT 0 0.814 0 0 0 0.764 0.001 0.002 0 0.817 0.001 0.001

20 editing samples by merging 4 queries of 80 forget samples

ROME 0.018 0.399 0.013 0.012 0.418 0.351 0.084 0.119 0.028 0.409 0.013 0.012
MEMIT 0.073 0.343 0.012 0.013 0.705 0.273 0.163 0.202 0.068 0.353 0.002 0.003

16 editing samples by merging 5 queries of 80 forget samples

ROME 0.045 0.358 0 0 0.667 0.278 0.118 0.139 0.033 0.365 0 0.001
MEMIT 0.054 0.397 0.012 0.014 0.7 0.342 0.132 0.164 0.041 0.408 0.007 0.006

10 editing samples by merging 8 queries of 80 forget samples

ROME 0.139 0.346 0.004 0.007 0.678 0.267 0.154 0.18 0.171 0.355 0.031 0.033
MEMIT 0.308 0.329 0.055 0.056 0.789 0.252 0.159 0.203 0.407 0.338 0.066 0.082

8 editing samples by merging 10 queries of 80 forget samples

ROME 0.612 0.342 0.083 0.098 0.791 0.262 0.16 0.203 0.549 0.351 0.086 0.1
MEMIT 0.587 0.323 0.157 0.199 0.827 0.241 0.206 0.258 0.654 0.331 0.099 0.112

F Discussions

F.1 Limitations

This paper is a preliminary study on whether and how LLM knowledge editing methods can do
unlearning. It doesn’t include all the editing and unlearning methods in communities, but several most
important and trending methods are presented. We note that there is still some room for improving
editing to better adapt to unlearning. The proposed two techniques are simple but effective showcases.
In the future, more solid techniques can be proposed and we expect more editing-inspired LLM
unlearning algorithms will also be developed.

F.2 Ethical Considerations

In this paper, we conducted an experiment with humans as judges to evaluate the trustworthiness of
LLMs’ unlearning answers, which may have some potential ethical issues. Therefore, we adhere
to the highest ethical standards and commit to making every effort to minimize any potential harm.
We have obtained the appropriate permissions and consent from all participants. We have also taken
steps to protect the privacy of individuals whose data is included in our analysis. We declare there
are no obvious ethical issues in this study, and we hope this paper can facilitate the construction
of a trustworthy, safe, and human-centered LLM ecosystem by contributing to the field of LLM
unlearning.
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