
Under review as a conference paper at ICLR 2024

PYTORCH GEOMETRIC HIGH ORDER: A UNIFIED LI-
BRARY FOR HIGH ORDER GRAPH NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce PyTorch Geometric High Order (PyGHO), a library for High Or-
der Graph Neural Networks (HOGNNs) that extends PyTorch Geometric (PyG).
Unlike ordinary Message Passing Neural Networks (MPNNs) that exchange
messages between nodes, HOGNNs, encompassing subgraph GNNs and k-WL
GNNs, encode node tuples, a method previously lacking a standardized frame-
work and often requiring complex coding. PyGHO’s main objective is to provide
an unified and user-friendly interface for various HOGNNs. It accomplishes this
through streamlined data structures for node tuples, comprehensive data process-
ing utilities, and a flexible suite of operators for high-order GNN methodologies.
In this work, we present a detailed in-depth of PyGHO and compare HOGNNs
implemented with PyGHO with their official implementation on real-world tasks.
PyGHO achieves up to 50% acceleration and reduces the code needed for imple-
mentation by an order of magnitude.

1 INTRODUCTION

Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) have gained significant popularity
across various real-world applications, such as recommender systems (Wu et al., 2022), biology
(Zhang et al., 2021), chemistry (Reiser et al., 2022), and combinatorial optimization (Cappart et al.,
2023). This widespread adoption owes much to the availability of powerful and versatile MPNN
libraries like PyTorch Geometric (PyG) (Fey & Lenssen, 2019), Deep Graph Library (DGL) (Zheng
et al., 2020), Spektral (Grattarola & Alippi, 2021), and Jraph (Godwin* et al., 2020).

However, the expressiveness of MPNNs is inherently limited due to their node-level message-
passing architecture. To address this limitation and unlock greater expressivity, High Order Graph
Neural Networks (HOGNNs) (Zhang & Li, 2021; Zhang et al., 2023; Morris et al., 2019; 2020; Zhao
et al., 2022; Bevilacqua et al., 2022; Frasca et al., 2022; Maron et al., 2019a; Huang et al., 2023)
have emerged as a promising alternative. Unlike MPNNs, HOGNNs operate by passing messages
between node tuples, enabling them to capture higher-order structural information within graphs.
This paradigm shift has significantly improved their expressiveness, leading to state-of-the-art per-
formance on various graph-level tasks (Zhang et al., 2023).

However, despite their potential, the implementation of HOGNNs is complex, laborious, and often
tied to specific models, hindering their practical adoption in real-world applications. To bridge
this gap, we present the PyTorch Geometric High Order (PyGHO) library, the first library for High
Order Graph Neural Networks. Our contributions in this work address critical challenges in HOGNN
development and application:

• Specialized Data Structures for HOGNNs: Recognizing the need for representating node tuple
features, we provide specialized data structures optimized for HOGNNs. These structures enable
seamless integration of HOGNN models into real-world applications.

• Data Processing Framework: we offer a user-friendly data processing framework. This frame-
work simplifies data preprocessing and facilitates the smooth incorporation of graph datasets into
HOGNN models.

• Flexible Operators on High-Order Tensors: We introduce a comprehensive set of operators for
building diverse HOGNNs. This framework not only streamlines the development process but

1

Under review as a conference paper at ICLR 2024

also serves as a reference point for researchers and practitioners, promoting exploration and ad-
vancement in the field of HOGNNs.

In the following sections, we delve into the PyTorch Geometric High Order (PyGHO) library, eluci-
dating its architecture, design principles, and practical applications. By providing an accessible and
comprehensive toolkit for high-order graph neural networks, we aim to empower researchers and
practitioners to harness the full potential of HOGNNs in solving complex real-world problems.

In the subsequent sections, we delve into the PyTorch Geometric High Order (PyGHO) library,
providing insights into its design principles and practical applications. By offering an accessible and
comprehensive toolkit for high-order graph neural networks, our aim is to empower researchers and
practitioners to fully leverage the potential of HOGNNs in tackling complex real-world challenges.

2 RELATED WORK

Several libraries have been developed to facilitate the implementation of Graph Neural Networks
(GNNs)(Fey & Lenssen, 2019; Cen et al., 2023; Zheng et al., 2020; Liu et al., 2021; Godwin*
et al., 2020; Hu et al., 2021; Grattarola & Alippi, 2021). However, none of these libraries explicitly
support high-order GNNs. In response to this gap, our library is designed as an extension of PyTorch
Geometric (PyG)(Fey & Lenssen, 2019), one of the leading GNN libraries.

We have strived to maintain a high degree of consistency with PyG’s user-facing APIs. This includes
preserving the similarity in data preprocessing and loading routines, model definitions, and usage.
By doing so, we aim to ensure that users familiar with PyG can seamlessly transition to our library
for high-order GNN tasks, simplifying the adoption of these advanced techniques.

3 PRELIMINARY

Let G = (V,E,X) denote a graph with a node set V = {1, 2, 3, . . . , n}, an edge set E ⊆ V × V ,
and a node feature matrix X ∈ Rn×d. Each row Xv of the matrix corresponds to the features of
node v. The edge set E can also be represented using the adjacency matrix A ∈ Rn×n, where the
element (u, v) of A is 1 if the edge (u, v) is in E and 0 otherwise. Additionally, the graph G can be
represented by the pair (A,X). Each edge (i, j) may also have a feature eij . Let N(i) = {j|(i, j) ∈
V } denote the neighbor set of node i.

Ignoring hidden dimensions, a tensor is considered to be m-D if it retains m dimensions whose sizes
are associated with properties of the input graph. For instance, if we denote the number of nodes in
the input graph as n, then the adjacency matrix Rn×n is 2-D, while the node feature matrix, denoted
as Rn×d, is 1-D.

Message Passing Neural Network (MPNN). MPNN (Gilmer et al., 2017) is a comprehensive
GNN framework that unifies various representative GNNs, including GCN (Kipf & Welling, 2017),
GIN (Xu et al., 2019), GraphSage (Hamilton et al., 2017), and GAT (Veličković et al., 2017). It is
composed of several message passing layers, each layer updates node representations as follows:

ht+1
i ← U t(ht

i,M
t({{(ht

i, h
t
j , eij)|j ∈ N(i)}}), (1)

where ht
i represents the representation of node v at the t-th layer, initially set as h

(0)
v = xi. M t

represents an aggregation function that maps the multiset of neighbor representations to a single
representation, often utilizing operations like summation over the multiset. U t combines the original
node representation with information aggregated from neighbors to produce a new representation.
The node representations can subsequently be pooled to generate embeddings for the entire graph:

h = P ({{{hi|i ∈ V }}}), (2)

where P represents a pooling operation, such as summation.

Overall, the message passing framework can be decomposed into operations, like message passing
between elements and pooling, performed on the 1-D node representation matrix h ∈ Rn×d′

. Exist-
ing libraries like PyTorch Geometric (PyG) (Fey & Lenssen, 2019) provide comprehensive utilities

2

Under review as a conference paper at ICLR 2024

for these operators, simplifying MPNN development. However, these operators are constrained to
1-D node representation only and are not applicable to high-order representations.

High-Order GNN (HOGNN). Unlike MPNN, which focuses on 1-D node representations h ∈
Rn×d′

, High-Order GNNs (Zhang & Li, 2021; Bevilacqua et al., 2022; Zhao et al., 2022; Morris
et al., 2019; 2020; Maron et al., 2019a; Zhang et al., 2023; Huang et al., 2023) generate m-D tuple

representations H ∈ R

m︷ ︸︸ ︷
n× n× . . .× n×d, with m is typically 2 or 3, and d is the hidden dimension.

While these representations cannot be unified into a single equation like Equation 1, HOGNNs can
still be constructed using operations on m-D tensors (Frasca et al., 2022; Maron et al., 2019b).

Taking NGNN (with GIN base) (Zhang & Li, 2021) as an example, NGNN first samples a sub-
graph for each node i and then runs GIN (Xu et al., 2019), a representative MPNN, on all subgraphs
simultaneously. It produces a 2-D representation H ∈ Rn×n×d, where Hij represents the represen-
tation of node j in the subgraph rooted at node i. The message passing within all subgraphs can be
expressed as:

ht+1
ij ←

∑
k∈Ni(j)∪{j}

MLP(ht
ik), (3)

where Ni(j) represents the set of neighbors of node j in the subgraph rooted at i. After several layers
of message passing, tuple representations H are pooled to generate the final graph representation:

hi = P2

({
hij |j ∈ Vi

})
, hG = P1

({
hi|i ∈ V

})
, (4)

All these modules are composed of operators on high-order tensor, like message passing between
tensor elements and pooling. Besides NGNN, other existing subgraph GNNs can also be decom-
posed into these operators as shown in theory by Zhang et al. (2023). We list how existing HOGNNs
can be decomposed into a operators on high-order tensors in implementation in Table 1 of Sec-
tion 4.3.

4 LIBRARY DESIGN

This section provides an overview of the library’s design, covering data structures, dataset process-
ing, and operators for High Order Graph Neural Networks (HOGNNs). The library is designed to
handle both sparse and dense tensors efficiently.

4.1 DATA STRUCTURE

While basic deep learning libraries typically support the high-order tensors directly, HOGNNs de-
mand specialized structures. NGNN, for example, employs a 2-D tensor H ∈ Rn×n×d, where Hij

represents the node representation of node j in subgraph i. Since not all nodes are included in each
subgraph, some elements in Hij may not correspond to any node and should not exist. To address
this challenge, we introduce two distinct data structures that cater to the unique requirements of
HOGNNs: MaskedTensor and SparseTensor.

MaskedTensor A MaskedTensor consists of two components: data, with shape (masked
shape, dense shape), and mask, with shape (masked shape). The mask tensor contains
Boolean values, indicating whether the corresponding element in data exists within the tensor. For
example, in the context of NGNN’s representation H ∈ Rn×n×d, data resides in Rn×n×d, and
mask is in {0, 1}n×n. Here the masked shape is (n, n), and the dense shape is (d). The
element (i, j) in mask is 1 if the tuple (i, j) exists in the tensor. The invalid elements will not affect
the output of the operators in this library. For example, the summation over a MaskedTensor will
consider the non-existing elements as 0 and thus ignore them.

3

Under review as a conference paper at ICLR 2024

SparseTensor In contrast, SparseTensor stores only existing elements while ignoring non-existing
ones. This approach proves to be more efficient when a small ratio of valid elements is present. A
SparseTensor, with shape (sparse shape, dense shape), comprises two tensors: indices
(an Integer Tensor with shape (sparse dim, nnz)) and values (with shape (nnz, dense
shape)). Here, sparse dim represents the number of dimensions in the sparse shape, and nnz
stands for the count of existing elements. The columns of indices and rows of values corre-
spond to the non-zero elements, making it straightforward to retrieve and manipulate the required
information. For example, in NGNN’s representation H ∈ Rn×n×d, assuming the total number of
nodes in subgraphs is m, H can be represented as indices a ∈ N2×m and values v ∈ Rm×d.
Here sparse shape is (n, n), sparse dim is 2, and dense shape is (d). Specifically, for
i = 1, 2, . . . , n, Ha1,i,a2,i

= vi.

The foundational concepts of these data structures have been used in various implementations, but
our implementation remains unique. For example, NGNN (Zhang & Li, 2021) utilizes integer ten-
sors as indices and value tensors for tuple representations. However, these implementations haven’t
integrated these code components into a unified data structure with a consistent API. This frag-
mented implementation often makes the codebase hard to understand or extend. While PyTorch and
PyG also provide sparse tensors API, they don’t support operators in our library, like message pass-
ing and pooling. Additionally, these prior works primarily use either sparse or dense data structures
exclusively, limiting their versatility. In contrast, our framework offers both routines and facili-
tates the application of the same model architecture to both sparse and dense representations (see
Section 4.3).

4.2 HIGH ORDER GRAPH DATA PROCESSING

HOGNNs and ordinary MPNNs share graph tasks, allowing us to reuse PyTorch Geometric’s (PyG)
data processing routines. However, due to the specific requirements for precomputing and preserv-
ing high-order features, we have significantly extended these routines within PyGHO. As a result,
PyGHO’s data processing capabilities remain highly compatible with PyG while offering conve-
nience for HOGNNs. To illustrate, NGNN (Zhang & Li, 2021)’s official code uses more than 600
lines for dataset processing, while with PyGHO, the same utilities can be implemented within 8
lines. The framework is also highly flexible allowing using custom tuple samplers and features.

High Order Feature Precomputation High-order feature precomputation can be efficiently con-
ducted in parallel using the PyGHO library. To illustrate, consider the following example:

Ordinary PyG dataset
trn_dataset = ZINC("dataset/ZINC", subset=True, split="train")
High-order graph dataset
trn_dataset = ParallelPreprocessDataset("dataset/ZINC_trn", trn_dataset,

pre_transform=Sppretransform(
tuplesamplers=partial(KhopSampler,
hop=3)), num_workers=8)

The ParallelPreprocessDataset class takes an ordinary PyG dataset as input and per-
forms transformations on each graph in parallel (utilizing 8 processes in this example). Here, the
tuplesamplers parameter represents functions that take a graph as input and produce a sparse
tensor. Multiple samplers can be applied simultaneously, and the resulting output is assigned the
names specified in the annotate parameter. As an example, we use partial(KhopSampler,
hop=3), a sampler designed for NGNN, to sample a 3-hop ego-network rooted at each node. The
shortest path distance to the root node serves as the tuple features. The produced SparseTensor is
then saved and can be effectively used to initialize tuple representations.

Since the dataset preprocessing routine is closely related to data structures, we have designed two
separate routines for sparse and dense tensor, which only differ in the pre transform function.
For dense tensors, we can simply use Mapretransform(None, tuplesamplers). In this
case, the tuplesamplers is a list of functions that produce a dense high-order MaskedTensor
containing tuple features. For both sparse and dense data preprocessing, the tuplesampler can be
custom function.

4

Under review as a conference paper at ICLR 2024

Mini-Batch and Data Loader Enabling batch training in HOGNNs requires handling graphs of
varying sizes, which is not a trivial task. Different strategies are employed for sparse and masked
tensor data structures.

For sparse tensor data, the solution is relatively straightforward. We can concatenate the tensors
of each graph along the diagonal of a larger tensor: For instance, in a batch of B graphs with
adjacency matrices Ai ∈ Rni×ni , node features x ∈ Rni×d, and tuple features X ∈ Rni×ni×d′

for i = 1, 2, . . . , B, the features for the entire batch are represented as A ∈ Rn×n, x ∈ Rn×d, and
X ∈ Rn×n×d′

, where n =
∑B

i=1 ni. The concatenation is as follows,

A =


A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

...
...

0 0 0 · · · AB

 , x =


x1

x2

x3

...
xB

 , X =


X1 0 0 · · · 0
0 X2 0 · · · 0
0 0 X3 · · · 0
...

...
...

...
...

0 0 0 · · · XB

 (5)

This arrangement allows tensors in batched data have the same number of dimension as those of a
single graph and thus share common operators. We provides PygHO’s own dataloader. It has the
compatible parameters to PyTorch’s DataLoader and further do concatenations above.

from pygho.subgdata import SpDataloader
trn_dataloader = SpDataloader(trn_dataset, batch_size=32, shuffle=True,

drop_last=True)

Here, similar to vanilla PyTorch dataloader, PyGHO’s dataloader takes a datasets and hyperparam-
eters like batch size, shuffle, drop last as input.

As concatenation along the diagonal leads to a lot of non-existing elements, handling Masked Tensor
data involves a different strategy for saving space. In this case, tensors are padded to the same
shape and stacked along a new axis. For example, in a batch of B graphs with adjacency matrices
Ai ∈ Rni×ni , node features x ∈ Rni×d, and tuple features X ∈ Rni×ni×d′

for i = 1, 2, . . . , B, the
features for the entire batch are represented as A ∈ RB×ñ×ñ, x ∈ RB×ñ×d, and X ∈ RB×ñ×ñ×d′

,
where ñ = max{ni|i = 1, 2, . . . , B}.

A =



(
A1 0n1,ñ−n1

0ñ−n1,n1
0n1,n1

)
(

A2 0n2,ñ−n2

0ñ−n2,n2
0n2,n2

)
...(

AB 0nB ,ñ−nB

0ñ−nB ,nB
0nB ,nB

)


, x =



(
x1

0ñ−n1,d

)
(

x2

0ñ−n2,d

)
...(

xB

0ñ−nB ,d

)


, X =



(
X1 0n1,ñ−n1

0ñ−n1,n1
0n1,n1

)
(

X2 0n2,ñ−n2

0ñ−n2,n2
0n2,n2

)
...(

XB 0nB ,ñ−nB

0ñ−nB ,nB
0nB ,nB

)


(6)

This padding and stacking strategy ensures consistent shapes across tensors, allowing for efficient
processing of dense data. We also provide the dataloader to implement it conveniently.

from pygho.subgdata import MaDataloader
trn_dataloader = MaDataloader(trn_dataset, batch_size=256, device=device,

shuffle=True, drop_last=True)

4.3 OPERATORS

In the preceding sections, we have introduced data structures tailored to the representation of high-
order Graph Neural Networks (HOGNNs) along with a novel data processing routine. Therefore,
the learning methodologies within HOGNNs can be deconstructed into operations executed on these
tensor structures. Our comprehensive codebase for these operations has been thoughtfully structured
into three distinct layers, each contributing to the versatility and utility of our library:

5

Under review as a conference paper at ICLR 2024

Layer 1: Backend The pygho.backend module serves as the foundation, encompassing fun-
damental data structures and their associated operations. In this layer, the emphasis lies on tensor
operations, without delving into the settings of graph learning. The key components encapsulated
within this layer encompass:

• Matrix Multiplication: This method equips users with versatile matrix multiplication capabilities,
accommodating scenarios involving two SparseTensors, one sparse and one MaskedTensor, and
two MaskedTensors. It also seamlessly handles batched matrix multiplication. Furthermore, it
offers alternative operations, allowing for the replacement of the standard summation with maxi-
mum and mean calculations. For sparse tensors, it additionally incorporates a generalized matrix
multiplication, facilitating a wide range of message passing operations.

• Matrix Addition: This operation provides the means to add two matrices, whether they are sparse
or dense, enabling flexible manipulation of data.

• Reduce Operations: A suite of essential reduction operations is included, encompassing sum,
mean, max, and min, designed to effectively collapse dimensions within tensors.

• Expand Operation: This operation enables the augmentation of tensors by introducing new di-
mensions.

• Tuplewise Apply (func): A utility function that systematically applies a user-specified function to
each individual element within the tensor, facilitating custom tuple-wise transformations.

• Diagonal Apply (func): This operation is tailored for applying a given function to the diagonal
elements of tensors, offering specialized processing capabilities for transformations on diagonal
elements.

Layer 2: Graph Operators. Layer 2 builds upon Layer 1 and consists of the
pygho.honn.SpOperator, pygho.honn.MaOperator modules, engineered for
graph operations involving SparseTensor and MaskedTensor structures. Furthermore, the
pygho.honn.TensorOp layer acts as an encompassing wrapper for these operators, seamlessly
abstracting away the nuances between Sparse and Masked Tensor data structures. Within this layer,
we encounter an array of operations, each designed to facilitate diverse aspects of graph processing:

• This operation enables the seamless transmission of messages between tuples of nodes. To
illustrate, consider the message passing operation within each subgraph simultaneously (like
NGNN (Zhang & Li, 2021)), as exemplified by the equation:

hij ←
∑

k∈Ni(j)

h′
ik, (7)

This can be readily implemented using the message passing operator with tuple representation H ′

and adjacency matrix A as input:

H ← H ′A (8)
While this transformation may appear straightforward, several details deserve attention:

– Optimization for Induced Subgraph Input: In the original Equation 7, the summation is con-
fined to neighbors within the subgraph. However, the matrix multiplication in Equation 8
seemingly extends beyond the subgraph to include neighbors outside of it. In fact, this ap-
parent inconsistency is a non-issue, as the subgraphs in NGNN are inherently induced by
a specific node set. Consequently, any neighbors located outside the subgraph are auto-
matically treated as non-existent and have no bearing on the final result. Importantly, our
implementation has been designed to optimize for scenarios involving induced subgraphs.
In cases that the subgraphs are not induced by a node set, pygho also provides operators
designed to handle such situations.

– Optimization for Sparse Output: The operation H ′A may generate non-zero elements for
pairs (i, j) that do not exist in the subgraph. To enhance efficiency for sparse input tensors
H and A, we’ve optimized the multiplication to prevent the computation of such non-existent
elements.

– Aggregator Beyond Sum: Not all aggregators utilized in GNNs can be expressed through
simple matrix multiplication, such as the attention aggregation employed in the Graph At-
tention Network (GAT). However, our message passing operator accommodates custom ag-
gregators, offering versatility in modeling.

6

Under review as a conference paper at ICLR 2024

– Message Passing Across Subgraphs: The operation H ′A facilitates message passing within
each subgraph, enabling the exchange of representations between nodes within the same
subgraph. Furthermore, we extend support to the message operator at other dimensions,
which fosters message exchange between identical nodes situated in different subgraphs.
In fact, pygho furnishes operators for arbitrary dimensions, catering to high-order tensor
requirements.

• Pooling: This operation serves to reduce high-order tensors to lower-order counterparts, achieved
through summation, maximum value extraction, or mean computation across specified dimen-
sions. For instance, in a 2D-representation H ∈ Rn×n×d, dimension 0 pooling consolidates
representations of the same node in distinct subgraphs into node presentations, while dimension 1
pooling combines representations of nodes within the same subgraph into subgraph presentations.

• Diagonal: The diagonal operation reduces high-order tensors to lower-order ones by extracting
diagonal elements. For example, given a 2D-representation H ∈ Rn×n×d, diag(H) ∈ Rn×d

yields the representation of each subgraph’s root node.
• Unpooling: This operation performs the reverse of pooling, expanding low-order tensors to high-

order ones. For instance, with a node representation h ∈ Rn×d, dimension 0 unpooling corre-
sponds to assigning xi to node i across different subgraphs, while dimension 1 unpooling pools
the representation of node i across all nodes within the subgraph rooted at i.

Layer 3: Models Based on Layer 1 and Layer 2, Layer 3 is a repository of distinguished high-
order Graph Neural Network (HOGNN) layers, which encompass NGNN (Zhang & Li, 2021),
GNNAK (Zhao et al., 2022), DSSGNN (Bevilacqua et al., 2022), SUN (Frasca et al., 2022),
SSWL (Zhang et al., 2023), PPGN (Maron et al., 2019a), and I2-GNN. These layers are the fusion
of tuplewise neural network transformations and graph operators. The tuplewise neural network
transformation can be effortlessly implemented as follows:

X = X.tuplewiseapply(MLP)

Table 1: Graph Operators in Models. Here, Mi, Pi, and Ui de-
note message passing operators, pooling operators, and unpool-
ing operators in the i-th dimension. D signifies the diagonal
operator. ◦ represents functional composition.

Model Representation Operator
NGNN 2D, Sparse M1

GNNAK 2D, Sparse M1, U0 ◦ P0, U1 ◦ P1

DSSGNN 2D, Sparse M1, U1 ◦M0 ◦ P1

SUN 2D, Sparse M1, U0 ◦D,U1 ◦D,U0 ◦ P0,
U1 ◦ P1, U0 ◦M0 ◦ P0

I2GNN 3D, Sparse M2

DRFWL 2D, Sparse M1

SSWL 2D, Dense M1,M0

PPGN 2D, Dense M1

Existing models can be imple-
mented with graph operators as
in shown Table 1. In the original
implementations, crafting these
message passing schemes typi-
cally demands hundreds of lines
of code. In contrast, our ap-
proach stands out by requiring at
most 30 lines, showcasing a sub-
stantial reduction in code com-
plexity. These examples serve
as a compelling testament to
how our library’s operators sig-
nificantly enhance flexibility in
model development.

Furthermore, it’s worth noting that existing models are often constrained by their implementation
based on either sparse or dense representations. However, our library empowers users to seamlessly
leverage the same architecture for both sparse and dense inputs, unlocking newfound versatility in
model design and deployment.

5 EXPERIMENTS

In our experiments, we implemented a diverse selection of pre-existing models using PyGHO on
the ZINC datasets and conducted a meticulous comparative analysis against their official imple-
mentations. The experimental details are shown in Appendix A. The results of these experiments
are thoughtfully presented in Table 2. Impressively, PyGHO’s implementations consistently out-
perform or rival the official implementations, underscoring its efficacy. Moreover, PyGHO delivers
a substantial reduction in execution time, with the SSWL model, in particular, demonstrating an
impressive 50% reduction. Equally noteworthy is the remarkable reduction in the lines of code

7

Under review as a conference paper at ICLR 2024

Table 2: Implementation of existing models with PyGHO on ZINC datasets. The reported metrics
include the test Mean Average Error (MAE), time per epoch, and GPU memory consumption during
training with a fixed batch size of 128, while keeping the number of layers and hidden dimensions
consistent. Furthermore, the table shows the number of lines of code required for both model de-
velopment (Model column, including the definition of corresponding models in PyGHO) and data
processing (Data column). Notably, (P) indicates PyGHO’s implementation, while (O) signifies
the official implementations. As DRFWL has not released the official code and NGAT is a newly
proposed models, we leave the corresponding cells to blank.

MAE
(P)

MAE
(O)

time
/s (P)

time
/s (O)

Mem
/GB (P)

Mem
/GB (O)

Model
(P)

Model
(O)

Data
(P)

Data
(O)

NGAT 0.077±0.005 - 5.95 - 1.33 - 102 - 20 -
NGNN 0.082±0.003 0.111±0.003 5.14 6.44 1.27 1.20 97 140 20 694
GNNAK 0.084±0.006 0.080±0.001 9.49 13.03 2.48 2.36 117 525 20 221
DSSGNN 0.080±0.004 0.102±0.003 6.53 9.27 1.78 1.69 107 433 20 412
SUN 0.094±0.001 0.083±0.003 20.15 20.93 2.47 3.72 119 777 20 846
DRFWL 0.082±0.005 0.077±0.002 7.16 - 3.29 - 98 - 20 -
I2GNN 0.084±0.004 0.083±0.001 9.41 14.92 4.74 2.5 107 1048 20 1384
SSWL 0.085±0.002 0.083±0.003 19.43 45.30 9.92 3.89 103 181 20 58
PPGN 0.079±0.001 0.079±0.005 13.57 20.21 7.76 20.37 98 246 20 285

required, often by an order of magnitude, showcasing PyGHO’s ability to simplify and streamline
complex implementations.

In addition to replicating existing models, we introduce a novel model called NGAT to exemplify the
remarkable flexibility of our library. NGAT, akin to NGNN, runs a Graph Neural Network (GNN)
on each subgraph concurrently. However, NGAT incorporates attention mechanisms, traditionally
challenging to implement in prior works but effortlessly achievable with PyGHO. Notably, NGAT
exhibits superior performance compared to NGNN, illuminating PyGHO’s potential to catalyze the
development of innovative models in the field of graph-based machine learning.

6 CONCLUSION

PyTorch Geometric High Order (PyGHO) is introduced as a unified library for High Order Graph
Neural Networks (HOGNNs), seamlessly extending PyTorch Geometric (PyG). PyGHO offers fun-
damental data structures, efficient data processing interfaces, and abstracted operators, reducing both
implementation complexity and execution times in experimental settings. This versatile library is
poised to accelerate the development of innovative HOGNN methods and broaden the application
scope of HOGNNs across diverse downstream tasks, further enriching the landscape of graph-based
machine learning.

7 LIMITATION

We have only conducted benchmarking on the ZINC dataset. In future work, we plan to expand our
testing to include a broader range of datasets and tasks. Additionally, we aim to comprehensively
explore the design space of HOGNNs, conducting comparisons among various model designs, initial
tuple sampling strategies, and pooling techniques.

8 REPRODUCIBILITY STATEMENT

Our code is in the supplementary material.

REFERENCES

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-

8

Under review as a conference paper at ICLR 2024

works. In ICLR, 2022.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial optimization and reasoning with graph neural networks. J. Mach.
Learn. Res., 24:130–1, 2023.

Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu, Hengrui Zhang,
Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang Yang, Peng Zhang, Guohao
Dai, Yu Wang, Chang Zhou, Hongxia Yang, and Jie Tang. Cogdl: A comprehensive library for
graph deep learning. In WWW, 2023.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
2019.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. In NeurIPS, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia Li, Kimberly
Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. Jraph: A library for graph neural
networks in jax., 2020. URL http://github.com/deepmind/jraph.

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-
Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical
design using a data-driven continuous representation of molecules. 2016.

Daniele Grattarola and Cesare Alippi. Graph neural networks in tensorflow and keras with spektral.
IEEE Comput. Intell. Mag., 16(1):99–106, 2021.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Jun Hu, Shengsheng Qian, Quan Fang, Youze Wang, Quan Zhao, Huaiwen Zhang, and Changsheng
Xu. Efficient graph deep learning in tensorflow with tf geometric. In MM, pp. 3775–3778, 2021.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with i2-gnns. ICLR, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu,
Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora Oztekin, Xuan Zhang, and
Shuiwang Ji. DIG: A turnkey library for diving into graph deep learning research. J. Mach.
Learn. Res., 22:240:1–240:9, 2021.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. NeurIPS, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In ICLR, 2019b.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. NeurIPS, 2020.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for
materials science and chemistry. Communications Materials, 3(1):93, 2022.

9

http://github.com/deepmind/jraph

Under review as a conference paper at ICLR 2024

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In ICML, 2023.

Muhan Zhang and Pan Li. Nested graph neural networks. NeurIPS, 2021.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current
applications in bioinformatics. Frontiers in genetics, 12:690049, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In ICLR, 2022.

Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George Karypis. Learning graph neural
networks with deep graph library. In WWW, pp. 305–306, 2020.

A EXPERIMENTAL DETAIL

ZINC (Gómez-Bombarelli et al., 2016) is a dataset of 12000 small molecules. The split is provided
by the original lease, with 10000/1000/1000 graphs for training/validation/test, respectively. The
target to is to predict the constrained solubility of the whole graph.

NGAT is a model proposed on our own with code. We run all experiments on a linux server with
NVIDIA RTX 3090 GPU. All models uses 6 layers, hidden dimension 128, , SiLU activation func-
tion, and BatchNorm. They are optimized with Adam optimizer and cosannealing scheduler. More
details of the hyperparameters are shown in our code in attachment.

10

	Introduction
	Related Work
	Preliminary
	Library Design
	Data Structure
	High Order Graph Data Processing
	Operators

	Experiments
	Conclusion
	Limitation
	Reproducibility Statement
	Experimental Detail

