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Abstract

It is important for Large Language Models (LLMs) to be aware of the boundary of
their knowledge, distinguishing queries they can confidently answer from those that
lie beyond their capabilities. Such awareness enables models to perform adaptive
inference, such as invoking retrieval-augmented generation (RAG), engaging in
slow and deep thinking, or abstaining from answering when appropriate. These
mechanisms are key to developing efficient and trustworthy AI. In this work, we
propose a method to detect knowledge boundaries via Query-Level Uncertainty,
which estimates if a model is capable of answering a given query before generating
any tokens, thus avoiding the generation cost. To this end, we propose a novel,
training-free method called Internal Confidence, which leverages self-evaluations
across layers and tokens to provide a reliable signal of uncertainty. Empirical
studies on both factual question answering and mathematical reasoning tasks
demonstrate that our Internal Confidence outperforms several baselines in quality of
confidence while being computationally cheaper. Furthermore, we demonstrate its
benefits in adaptive inference settings, showing that for RAG and model cascading
it reduces inference costs while preserving overall performance.

1 Introduction

Large language Models (LLMs) have their knowledge boundaries [Li et al., 2024, Yin et al., 2024,
Ren et al., 2025], which means that there are certain problems for which they cannot provide accurate
answers. It is crucial for LLMs to be self-aware of their limitations, i.e., to know what they know and
know what they do not know [Kadavath et al., 2022, Amayuelas et al., 2024].

Clear awareness of knowledge boundaries is central to improving AI, both for efficiency and trustwor-
thiness. The rising usage of LLMs and agents has introduced significant computational and monetary
costs [Varoquaux et al., 2025]. For example, agentic workflows may cost 5×–25× more per query
compared to a simpler LLM prompt [Anthropic, 2025]. Regarding efficiency, if LLMs can distinguish
known from unknown or simple from hard queries, they can smartly perform adaptive inference
to navigate the trade-offs between computational cost and output quality [Chen and Varoquaux,
2024]. For queries beyond their parametric knowledge, they can actively trigger RAG to obtain
external knowledge [Lewis et al., 2020] or tool calls [Schick et al., 2023]. When faced with hard
problems, LLMs can engage in slow (or deep) thinking to improve their outputs, which is also known
as test-time scaling [Snell et al., 2024, Zhang et al., 2025]. Alternatively, they can defer a complex
problem to a larger model via model cascading [Dohan et al., 2022, Gupta et al., 2024]. This adaptive
inference ensures efficient allocation of computational resources, reducing costs while maintaining
performance, especially for agentic scenarios. Beyond efficiency, estimating whether a query is
answerable also enhances honesty and trustworthiness of LLMs. When faced with highly uncertain
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(a) Comparison of performance and running
time between our query-level Internal Confidence
method and existing answer-level uncertainty mea-
sures (Qwen-14B on GSM8K).
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Figure 1: Our Internal Confidence method improves performance / running time tradeoffs in factuality
assessment and RAG settings.

queries, models can adopt an abstention strategy [Wen et al., 2024] to withhold potentially misleading
responses, important in high-stakes domains like healthcare [Tomani et al., 2024].

In this work, we introduce the concept of Query-Level Uncertainty to estimate a model’s knowledge
with regard to a given query. The central research question here is: Given a query, can we determine
whether the model can address it before generating any tokens? Most existing work focuses on
answer-level uncertainty, which measures the uncertainty associated with a specific answer and is
commonly used to assess the reliability of model outputs [Shorinwa et al., 2024, Vashurin et al., 2025].
In contrast, our approach shifts from post-generation to pre-generation, measuring how confidently
an LLM can solve a given query, prior to answer generation, as illustrated in Figure 2. This approach
avoids the computational cost of generating potentially long answers.

Prior research has explored different strategies for uncertainty estimation. One line of work learns a
probe of internal states to predict uncertainties of queries [Gottesman and Geva, 2024, Kossen et al.,
2024]. Another branch of work attempts to teach LLMs to explicitly express “I don’t know” in their
responses via fine-tuning methods [Amayuelas et al., 2024, Kapoor et al., 2024, Cohen et al., 2024,
Zhang et al., 2024a]. One common issue of these studies is that they require fine-tuning and training
samples, which introduces additional overhead and may restrict their generalizability across models

Query: What is the capital of France?
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Query
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Figure 2: Illustrating the difference between answer-level and query-level uncertainty. Query-level
uncertainty estimation distinguishes known from unknown queries (knowledge boundary) before
generating answers, which is useful for adaptive inference, e.g., efficient RAG, fast–slow reasoning,
or cascading models with different abilities.
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and domains. To address this gap, we introduce a training-free approach to estimate query-level
uncertainty that is both simple and effective.

Our approach, termed Internal Confidence, leverages self-evaluation across internal layers and
tokens. It is grounded in a simple assumption: LLMs can internally self-assess the boundaries of
their knowledge through a single forward pass over the given query, without generating an explicit
answer. Inspired by the uncertainty measure P(TRUE) [Kadavath et al., 2022], we prompt LLMs
with a yes–no question to self-assess if they are capable of answering a given query, and define the
probability assigned to the token YES as the confidence level, denoted as P(YES). To fully exploit
the latent knowledge within LLMs, our improved Internal Confidence approach computes this sort
of P(YES) at each layer and token position. Subsequently, we aggregate these signals to obtain the
overall confidence score. This aggregation is motivated by prior work showing that leveraging logical
consistency across layers can improve outputs [Burns et al., 2022, Chuang et al., 2023, Xie et al.,
2024]. Concretely, we compute a weighted sum across layers and tokens, and the weights are derived
from attenuated encoding [Chen et al., 2023], which enables fine-grained control of the influence of
adjacent units.

To validate the effectiveness of our proposed Internal Confidence, we conduct experiments on three
datasets that cover factual QA and mathematical reasoning tasks. For fair comparison, we adapt
existing answer-level methods to the query level. Experimental results demonstrate that our proposed
Internal Confidence can distinguish between known and unknown queries more accurately than a
range of baselines, while being substantially faster than answer-level approaches (Figure 1a). In
terms of applications, we showcase that our proposed method can support efficient RAG and model
cascading. On the one hand, Internal Confidence can guide users to assess the trade-offs between cost
and quality when invoking additional services. On the other hand, it reveals an “optimal point”, where
inference overhead can be reduced without compromising performance (Figure 1b). In conclusion,
we introduce the notion of query-level uncertainty and propose a simple yet effective training-free
method to estimate it, which enables models to determine whether a query can be addressed without
generating any tokens.

2 Problem Statement and Method

In this section, we define the problem and introduce our method, Internal Confidence, a score that
reflects whether an LLM can address a query in its own knowledge, prior to generating tokens.

2.1 Problem Statement

Given a query (including prompt tokens) x = (x1, . . . , xN ), we aim to quantify the query-level
uncertainty, U(x), without generating an answer y. This differs from existing uncertainty approaches
that estimate the uncertainty associated with a specific generated answer, an answer-level uncertainty
that can be denoted as U(x,y). We define a query as being within the model’s knowledge boundary
if the LLM can produce a correct answer under greedy decoding, i.e., by selecting the highest-
probability token at each step without sampling. Conversely, failure to produce the correct answer
suggests the query falls beyond the model’s boundary, and it does not possess sufficient knowledge
to answer it. While greedy decoding ensures deterministic measurement, it may not always reflect
the optimal performance of a model [Song et al., 2024], as alternative decoding strategies like beam
search may elicit a better answer. Therefore, this pragmatic framework serves as a heuristic indicator
of internal knowledge, rather than an absolute measure. We use this standard to evaluate the estimated
query-level uncertainty, i.e., a lower uncertainty indicates a model is more likely to output the correct
answer.

Our problem formulation mostly targets epistemic uncertainty of the model, though specific queries
and datasets may contain aleatoric effects (see details in Section A). Our study focuses on queries
with definite and clear-cut answers, as in factual QA and mathematical reasoning, which have broad
applications and allow for clear evaluations. While contentious queries with open and subjective
answers are also important in areas such as politics and philosophy, they remain beyond the scope of
this work.

3



2.2 Method: From P(YES) to Internal Confidence

Studies have revealed that LLMs can express verbalized uncertainty in their responses [Tian et al.,
2023, Xiong et al., 2024], which indicates that LLMs possess an internal mechanism for assessing
the correctness of their outputs. Building on this observation, one can explicitly prompt an LLM to
self-assess its confidence in answering a given query by constraining the response to a yes–no binary
format: “Respond only with ’Yes’ or ’No’ to indicate whether you are capable of answering the
{Query} accurately. Answer Yes or No:”. Following that, we can compute the probability assigned
to the token P(YES) at the last token (xN ):

P(YES) = softmax
(
Wunemb

[YES,NO] h
(L)
N

)
YES

(1)

Here, N is the index of the last token in the query and L is the index of the last layer of the
model. h(L)

N ∈ Rd is the hidden state, where d is the dimensionality of the hidden representations.
Wunemb ∈ R|V|×d is the unembedding matrix that maps the hidden state h

(L)
N to logits over the

vocabulary V . The probability P(YES) can serve as a query-level confidence score here, which is
similar to the process of linear probing [Alain and Bengio, 2016], but without any training steps.
While this measure is correlated with verbalized uncertainty, a key distinction is that it requires only
a single forward pass of the query, without generating any answer tokens.

However, P(YES) considers only the final hidden state of the LLM, although the intermediate internal
states of LLMs preserve rich knowledge and latent information [Chen et al., 2025], especially for
uncertainty estimation [Azaria and Mitchell, 2023, Chen et al., 2024a]. Furthermore, prior work
demonstrates that incorporating logical consistency across layers can improve outputs [Burns et al.,
2022, Chuang et al., 2023, Xie et al., 2024].

Motivated by these insights, we propose the Internal Confidence, a method that leverages latent
knowledge distributed across multiple layers and tokens. Formally, let fθ denote the transformation
function for computing hidden states, parametrized by θ. The hidden state for the token xn of the
input query at layer l is computed as:

h(l)
n = fθ(h

(l−1)
1 , . . . ,h(l−1)

n ) (2)

In total, the model contains N ×L such latent representations, and we can use Equation 1 to compute
the P(YES) for each h

(l)
n .

Figure 3a plots the average P(YES) of Llama-8B on mathematical queries (the validation set of
GSM8K [Cobbe et al., 2021]), across layers and query tokens.1 We observe that the P(YES) generally
increases from lower to higher layers and from left to right positions. If we treat each P(YES | h(l)

n )
as a confidence score and compute the Area Under the Curve (AUC), we can obtain an AUC heatmap
that illustrates how effectively each internal representation can distinguish known and unknown
queries. As shown in Figure 3b, the highest score does not necessarily appear at the top right position.
Instead, the representation h

(27)
5 yields the best AUC, and the performance gradually declines in

regions surrounding this point. We refer to this optimal point as the decision center, where the model
most effectively separates known from unknown queries.

To improve the vanilla P(YES), we can apply weighted average centering around the decision center,
which serves as an ensemble strategy to enhance calibration and expressivity [Zhang et al., 2020,
Stickland and Murray, 2020]. We refer to this process as Internal Confidence (IC), formally defined
as:

IC(h) =
N∑

n=1

L∑
l=1

w(l)
n P(YES | h(l)

n ), (3)

where w
(l)
n denotes the weight assigned to the hidden representation h

(l)
n . The equation describes a

hierarchical two-step aggregation process. In the first step, for each individual token, we compute a
weighted sum of confidence scores across layers. In the second step, we aggregate these token-level
scores using another weighted average. Conceptually, this process can be parameterized by a layer
weight vector wlayer ∈ RL for the first step and a token weight vector wtoken ∈ RN for the second step.

1Here, we consider the last k tokens of a query, assuming that a model has seen the entire query and is able
to infer its knowledge gap.
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Figure 3: Left: the internal P(YES) across tokens and layers. Middle: the AUC of P(YES) across
tokens and layers. Right: decay weights with different localities. Model: Llama-8B; Dataset:
GSM8K validation set.

The obtained IC(h) value provides a single, refined confidence score that integrates rich information
across both layers and tokens.

In our implementation, we adopt the top-right cell (corresponding to the last token and last layer) as
the decision center, since we observe that the decision center tends to be located near the later layers
and final tokens across various architectures and tasks. While, in principle, the optimal decision center
may also lie elsewhere, identifying such an optimal center would require a hold-out set of training
data, which conflicts with our goal of developing a training-free approach. To address this, rather
than relying on model- or task-specific tuning of the decision center, we incorporate information from
the neighborhood of the fixed top-right cell. This strategy allows us to have the potential benefits of
the optimal decision center while maintaining generalizability and avoiding dependence on additional
training samples.

To reflect the observation that the AUC performance gradually decays away from the decision center,
we adopt Attenuated Encoding, as proposed by Chen et al. [2023], to compute the above weight
vectors in Equation 3:

δi,j =
exp(−α |i− j|2)∑J
j=1 exp(−α |i− j|2)

, (4)

where i is the index of the decision center, |i− j| is the relative distance, and α > 0 is a scalar
parameter that controls the locality value. Locality is a metric that measures the extent to which
weights are concentrated in adjacent positions of a center. Given a weight vector ϵ = {ϵ1, ϵ2, ..., ϵJ}
and assuming that the center index is i, the locality can be expressed as:

Loc(ϵ) ∈ [0, 1] =

J∑
j=1

ϵj
2|i−j| (5)

Here, a value of 1 implies that the vector perfectly satisfies the locality property. Figure 3c plots the
weights obtained from Equation 4 for varying degrees of locality. This shows that we can account for
the influence of neighboring layers and tokens during the averaging process.

Our proposed Internal Confidence is training-free and computationally efficient, as it requires only
a single forward pass for a given query. Since model responses are frequently longer than input
prompts and invoking external services such as RAG and deep thinking adds significant overhead, we
propose this pre-generation uncertainty to support adaptive reasoning.

3 Experiments

3.1 Settings

Models. Our experiments consider three different LLM sizes: Phi-3-mini-4k-instruct [Abdin et al.,
2024], Llama-3.1-8B-Instruct [Grattafiori et al., 2024], and Qwen2.5-14B-Instruct [Team, 2024].
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TriviaQA SciQ GSM8K Avg

Method ↑ AUC ↑ PRR ↓ ECE ↑ AUC ↑ PRR ↓ ECE ↑ AUC ↑ PRR ↓ ECE ↑ AUC ↑ PRR ↓ ECE

Phi-3.8B

Max(− log p) 55.5 10.0 —- 51.4 2.9 —- 55.0 11.3 —- 54.0 8.1 —-
Predictive Entropy 58.9 17.9 —- 51.2 3.9 —- 63.6 25.7 —- 57.9 15.8 —-

Min-K Entropy 59.9 20.0 —- 52.7 4.9 —- 60.4 17.9 —- 57.7 14.3 —-
Attentional Entropy 60.6 21.4 —- 56.2 9.4 —- 52.4 4.4 —- 56.4 11.7 —-

Perplexity 61.8 24.3 —- 57.7 16.6 —- 53.6 6.9 —- 57.7 15.9 —-
Internal Semantic Similarity 48.7 -2.4 0.3 46.9 -5.9 12.2 47.9 -2.6 35.2 47.8 -3.6 15.9

P(YES) (top right) 64.9 27.7 5.4 61.3 24.4 5.9 53.3 9.4 11.3 59.8 20.5 7.5
P(YES) (naive avg) 64.1 28.3 17.0 57.5 18.8 6.4 50.5 9.3 25.4 57.4 18.8 16.3
Internal Confidence 64.7 30.1 7.9 60.7 25.8 10.4 53.9 6.4 19.9 59.8 20.8 12.7

Llama-8B

Max(− log p) 54.9 11.1 —- 51.4 1.9 —- 53.3 10.4 —- 53.2 7.8 —-
Predictive Entropy 58.5 17.7 —- 51.4 3.2 —- 66.1 28.0 —- 58.7 16.3 —-

Min-K Entropy 58.1 17.4 —- 53.5 7.9 —- 57.5 13.2 —- 56.4 12.8 —-
Attentional Entropy 59.4 18.7 —- 57.7 15.2 —- 56.1 13.5 —- 57.7 15.8 —-

Perplexity 58.6 17.1 —- 58.3 15.1 —- 53.2 4.3 —- 56.7 12.2 —-
Internal Semantic Similarity 44.1 -14.4 24.4 46.1 -7.1 30.8 52.7 6.7 45.9 47.6 -4.9 33.7

P(YES) (top right) 55.4 10.2 31.7 58.4 17.2 23.7 52.6 5.2 11.9 55.5 10.9 22.4
P(YES) (naive avg) 65.9 33.0 12.6 57.9 14.9 20.4 61.3 18.5 33.5 61.7 22.1 22.2
Internal Confidence 68.7 35.5 25.4 58.1 15.7 16.7 65.7 34.9 3.1 64.2 28.7 15.1

Qwen-14B

Max(− log p) 56.5 12.4 —- 54.1 6.9 —- 54.3 13.5 —- 55.0 10.9 —-
Predictive Entropy 59.3 18.9 —- 53.2 6.9 —- 66.4 32.6 —- 59.6 19.5 —-

Min-K Entropy 59.9 20.0 —- 55.7 11.3 —- 63.0 30.9 —- 59.5 20.7 —-
Attentional Entropy 59.1 17.2 —- 59.4 19.2 —- 54.9 3.1 —- 57.8 13.2 —-

Perplexity 59.1 17.8 —- 60.1 20.7 —- 54.0 7.3 —- 57.7 15.3 —-
Internal Semantic Similarity 51.0 2.5 2.0 45.5 -7.7 14.9 47.5 -4.6 33.1 48.0 -3.3 16.7

P(YES) (top right) 67.8 36.0 30.3 60.0 21.7 24.1 55.0 11.7 6.4 60.9 23.1 20.3
P(YES) (naive avg) 67.0 33.9 3.5 59.5 17.9 14.6 64.0 32.3 32.4 63.5 28.0 16.8
Internal Confidence 71.9 43.3 26.5 62.6 23.6 18.2 66.8 28.2 5.7 67.1 31.7 16.8

Table 1: Overall results of different query-level uncertainty estimation methods. The best-
performing methods are highlighted using boldface and second-best results are underlined.

This allows us to assess whether Internal Confidence generalizes across different model sizes. It is
worth noting that Internal Confidence can also be applied to models without instruction tuning.
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Figure 4: Acceleration ratio compar-
ison between answer-level SAR and
our Internal Confidence.

Implementations. For Llama and Qwen, Internal Confi-
dence is computed in the zero-shot setting, whereas for Phi,
we use three shots in the prompt, since smaller models ben-
efit from demonstration-based guidance (See details in Sec-
tion D.2). All LLMs employ greedy decoding to ensure deter-
ministic outputs. The decision center is fixed to the last layer
and last token, and we set α = 1.0 (Equation 4) across all
models and datasets.

Evaluation Datasets. We evaluate on two factual QA
datasets and one mathematical reasoning dataset: Trivi-
aQA [Joshi et al., 2017], SciQ [Welbl et al., 2017], and
GSM8K [Cobbe et al., 2021]. The first two tasks aim to
assess factual knowledge stored in parameters, while GSM8K
requires models to self-evaluate their reasoning capabilities.
The ground truth for factual QA tasks takes the form of a short
answer with entity-related facts. GSM8k as well calls for a short answer, but the intermediate
reasoning steps are evaluated as well, following prior work [Kadavath et al., 2022]. The three datasets
consist of 10,000, 10,000, and 5,000 samples, respectively, with 1,000 samples from each reserved
for validation.

We elicit responses from the model using a greedy decoding strategy. If the answer aligns with the
ground truth, we consider the model as possessing sufficient knowledge and the query as falling
within its knowledge boundary. For the first two datasets with short answers, answers are deemed
correct if the ROUGE-L [Lin and Och, 2004] of the ground truth is greater than 0.3, which is
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consistent with prior work [Kuhn et al., 2023]. For the GSM8K dataset, we use an LLM evaluator,
Mistral-Large [MistralAI, 2024], to assess both reasoning steps and the final answer. Subsequently,
each query is paired with a binary label reflecting whether the model is capable of addressing it.

Baselines. For comparison, we adapt state-of-the-art answer-level methods to quantify the pre-
generation uncertainty (see details in Section C): (1) Max(− log p) [Manakul et al., 2023], (2)
Predictive Entropy [Malinin and Gales, 2021], (3) Min-K Entropy [Shi et al., 2024], (4) Attentional
Entropy [Duan et al., 2024], (5) Perplexity, (6) Internal Semantic Similarity [Fomicheva et al., 2020],
(7) P(YES) (top right), corresponding to Equation 1. (8) P(YES) (naive avg) is a variant of our
Internal Confidence that adopts naive averaging to aggregate scores across different tokens and layers.

Evaluation Metrics. We evaluate uncertainty by assessing whether a method can distinguish known
and unknown queries, which can be treated as ranking problems, i.e., a lower uncertainty means
a model is more likely to know the answer to the query. Following prior work [Manakul et al.,
2023, Kuhn et al., 2023], we adopt the Area Under the Curve (AUC) and Prediction Rejection Ratio
(PRR) [Malinin et al., 2017] as metrics to measure this. Additionally, we compute the Expected
Calibration Error (ECE) to assess the calibration of different methods.

3.2 Internal Confidence Can Identify Known and Unknown Queries

Table 1 summarizes the overall results comparing different query-level uncertainty methods. First,
we can observe that our proposed Internal Confidence consistently outperforms other baselines
in distinguishing known from unknown queries, as reflected in both average AUC and PRR. The
advantage becomes more pronounced for larger models such as Llama-8B and Qwen-14B. For
instance, on Qwen-14B, it obtains an average AUC of 67.1 and PRR of 31.7, clearly surpassing
all other methods. Regarding the calibration (ECE), Internal Confidence is found to consistently
achieve a lower error across models and tasks. These findings indicate the effectiveness of Internal
Confidence. Finally, we note that the variants, P(YES) (top right) and P(YES) (naive avg), generally
underperform the full method, which highlights the importance of the attenuated encoding and its
decay weights in effectively aggregating signals from different layers and tokens.

3.3 Internal Confidence is Much Faster than Answer-Level Approaches

We compare our query-level Internal Confidence with several popular answer-level uncertainty
methods on GSM8K using Qwen-14B, including Perplexity [Fomicheva et al., 2020], Semantic
Entropy [Kuhn et al., 2023], P(TRUE) [Kadavath et al., 2022], Lexical Similarity [Fomicheva et al.,
2020], and SAR [Duan et al., 2024].

Method ↑ AUC ↓ Time (s) ↑ Speedup

Perplexity 65.5 9.8 32×
Semantic Entropy 60.0 151.8 506×

P(TRUE) 65.2 22.3 74×
Lexical Similarity 62.4 22.3 74×

SAR 65.7 180.6 602×
Internal Confidence 66.8 0.3 —-

Table 2: Comparison of query-level Inter-
nal Confidence with answer-level uncer-
tainty methods (Qwen-14B on GSM8K).

Table 2 compares the effectiveness and runtime across
different approaches. While answer-level approaches
such as Perplexity, P(TRUE), and SAR require signif-
icantly higher computation time (ranging from nearly
10 seconds up to more than 180 seconds per sample),
our Internal Confidence method achieves the best AUC
(66.8) with an average running time of only 0.3 sec-
onds. This corresponds to speedups of over 30× to
600× compared to existing baselines. These results
demonstrate that Internal Confidence combines state-
of-the-art accuracy with an extremely fast inference
speed, which can be a practical choice for large-scale or latency-sensitive reasoning tasks.

Notably, the running time for Internal Confidence remains constant, independent of the length of
answers. Figure 4 shows that the runtime of the best answer-level approach, SAR, grows with the
answer length, reaching nearly 500s for answers over 600 characters. In contrast, Internal Confidence
achieves large acceleration ratios (736×–1672×), with speedups increasing as answers become longer,
which demonstrates its scalability and efficiency. See results of other datasets in Table A1.
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Figure 5: Left: We use estimated Internal Confidence to decide whether to invoke RAG. If the
Internal Confidence exceeds a threshold, the model answers the query using its parametric knowledge.
Otherwise, it relies on external knowledge. The plot shows the accuracy of Phi-3.8B on the TriviaQA
dataset under this setting. Right: We implement a model cascading setting with Phi-3.8B (small) and
Llama-8B (large) on the TriviaQA dataset. The Internal Confidence of the smaller model determines
whether it answers the query or defers to the larger model when confidence is low. The green lines
indicate the baseline accuracy achieved by the simple model or complex model.

3.4 Internal Confidence Makes LLM Reasoning More Efficient

Recent studies advance LLM reasoning by introducing additional resources, such as using RAG to
obtain external knowledge [Lewis et al., 2020] and inference-time scaling to improve outputs [Snell
et al., 2024]. However, it is not always necessary to use additional resources, especially for simple
queries. Here, we use our proposed Internal Confidence for adaptive inference, determining when to
invoke RAG, slow thinking, or model cascading.

We conduct experiments for two scenarios: (1) Efficient RAG. Basically, the Internal Confidence can
serve as a signal of the knowledge gaps of a model. If the score is greater than a threshold, the model
is confident to address the query. Otherwise, it requires the call of RAG. We use the TriviaQA dataset
for evaluation. This dataset provides web search results for a query, which can be used as retrieved
contexts for RAG. (2) Model Cascading. This task aims to achieve cost-performance trade-offs by
coordinating small and large models [Dohan et al., 2022, Gupta et al., 2024]. The smaller models are
responsible for easy assignments. If they are aware that the mission is hard to complete, they invoke
a larger model. We use a two-model cascade setting with Phi-3.8B and Llama-8B on the TriviaQA
dataset. If the Internal Confidence of the smaller model is high, we do not invoke the larger model.
Otherwise, the hard query is deferred to the larger model.

Figure 5 presents the results of applying Internal Confidence scores to efficient RAG (left) and model
cascading (right). In both cases, the trade-off region illustrates how adjusting the confidence threshold
allows us to balance efficiency and performance by controlling the frequency of external service
calls or larger model invocations. The optimal point highlights thresholds where additional resource
usage can be reduced without sacrificing accuracy. Results across the two tasks further confirm the
effectiveness of Internal Confidence in identifying knowledge gaps. Our method offers practical
benefits by reducing inference overhead, which can be applied to token-heavy agentic frameworks.

4 Conclusion

In this work, we propose the new notion of query-level uncertainty, which seeks to assess whether a
model can successfully address a query without generating any tokens. To this end, we propose the
novel Internal Confidence technique, which leverages latent self-evaluation to identify the boundary
of a model’s knowledge. Extensive experimental results confirm the effectiveness of our approach on
both factual QA and mathematical reasoning. Our method is capable of identifying knowledge gaps
with a substantially faster speed compared to answer-level approaches. Furthermore, we apply Internal
Confidence to two practical scenarios of adaptive inference, efficient RAG and model cascading. Our
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findings reveal that our method can identify two regions: a trade-off region and an optimal point. The
former means that one can strike a balance between cost and quality by carefully selecting a threshold
of confidence scores. The latter means that one can reduce inference overhead without compromising
performance.

In conclusion, these results highlight Internal Confidence as a strong and general-purpose baseline
for estimating query-level uncertainty. While there remains room for refinement, our study can serve
as a strong baseline for this task, and we hope this study can stimulate future studies in this area.
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A Fundamental Concepts

A.1 Aleatoric and Epistemic Uncertainty

Uncertainty in machine learning is commonly categorized into two main types: aleatoric and epistemic
uncertainty [Hora, 1996, Der Kiureghian and Ditlevsen, 2009, Hüllermeier and Waegeman, 2021].
These distinctions are often overlooked in the context of LLM uncertainty estimation. Aleatoric
uncertainty arises from inherent randomness in the data, such as ambiguous inputs or conflicting
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annotations. This type of uncertainty is irreducible, as it reflects intrinsic noise in the input data. In
contrast, epistemic uncertainty stems from a lack of knowledge, often due to insufficient training
data and limited model capacity. Unlike aleatoric uncertainty, epistemic uncertainty is reducible with
additional data or advanced modeling. In this work, we focus specifically on epistemic uncertainty,
with the goal of evaluating whether an LLM possesses sufficient knowledge to answer a given
query. For evaluation, we adopt factual QA and mathematical reasoning benchmarks, which are
designed to have clear-cut answers. We assume these datasets are well-curated to minimize aleatoric
uncertainty, such as ambiguous questions and inconsistent labels. However, we acknowledge that
residual ambiguity may persist, given the inherent nature of linguistic ambiguity [Gillon, 1990] and
the difficulty of fully disentangling aleatoric from epistemic uncertainty [Mucsányi et al., 2024]. We
treat such aleatoric effects as negligible for the purposes of focusing on epistemic uncertainty.

A.2 Uncertainty and Confidence

In the context of LLMs, the terms uncertainty and confidence are often used interchangeably (as
antonyms). However, the two concepts have subtle differences. As noted by Lin et al. [2023],
uncertainty is a holistic property of the entire predictive distribution, while confidence refers to the
model’s estimated confidence level associated with a specific answer. For example, given a query
x =“What is the capital of France”, estimating uncertainty conceptually requires the distribution
over all plausible answers, e.g., Paris, Toulouse, Lyon, etc., as operationalized by the semantic entropy
framework [Kuhn et al., 2023], which clusters semantically equivalent outputs before computing
entropy. In contrast, the conditional probability P(Y = Paris | x) can serve as an indication of
confidence here, reflecting how strongly the model supports that particular response. Given that
it is unfeasible to enumerate all possible responses in our context of query-level uncertainty, we
pragmatically treat uncertainty and confidence as antonyms.

B Related Work

B.1 Uncertainty Estimation and LLMs

Existing approaches to LLM uncertainty primarily focus on estimating the uncertainty of LLM-
generated responses, by providing a score intended to reflect the reliability of a query–answer
pair [Geng et al., 2024, Shorinwa et al., 2024, Mahaut et al., 2024, Vashurin et al., 2025]. These
approaches often rely on internal states [Chen et al., 2024a] or textual responses [Kuhn et al., 2023],
and commonly use calibration techniques to mitigate issues such as overconfidence [Zhang et al.,
2024b] and biases [Chen et al., 2024b]. Notably, these methods assess post-generation reliability, i.e.,
uncertainty regarding a specific answer after it has been produced. In contrast, relatively little work has
explored how to quantify a model’s ability to address a query prior to token generation. For example,
Gottesman and Geva [2024] propose training a lightweight probe on internal representations to
estimate the model’s knowledge about specific entities. Similarly, Semantic Entropy Probes [Kossen
et al., 2024] suggest that internal model states can implicitly encode semantic uncertainty, even
before any output is generated. To the best of our knowledge, this work is the first to formally define
query-level uncertainty and to investigate it systematically.

B.2 Knowledge Boundary Detection

LLMs should be able to faithfully assess their level of confidence in answering a query. This
awareness of knowledge boundaries [Li et al., 2024, Yin et al., 2024, Wang et al., 2024] is essential
for building reliable AI systems, particularly in high-stakes domains such as healthcare and law. A
pioneering study by Kadavath et al. [2022] explores whether language models can be trained to predict
when they “know” the answer to a given query, introducing the concept of “I Know” (IK) prediction.
Based on this idea, subsequent work has proposed methods to help LLMs become explicitly aware
of their knowledge limitations through fine-tuning strategies [Amayuelas et al., 2024, Kapoor et al.,
2024]. Cohen et al. [2024] further advances this line of research by introducing a special [IDK]
(“I don’t know”) token into the model’s vocabulary, allowing the direct expression of uncertainty
in its output. Similarly, R-Tuning [Zhang et al., 2024a] tunes LLMs to refrain from responding
to questions beyond their parametric knowledge. While these abstention-based approaches show
benefits in mitigating hallucinations [Wen et al., 2024], they often require additional fine-tuning,
which introduces overhead and may limit generalizability across models and tasks. In this work, we
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Method ↑ AUC ↓ Time (s) ↑ Speedup

TriviaQA

Perplexity 75.1 5.6 28×
Semantic Entropy 72.3 139.5 698×

P(TRUE) 65.2 22.5 113×
Lexical Similarity 77.2 142.3 712×

SAR 76.5 160.8 804×
Internal Confidence 71.9 0.2 —-

SciQ

Perplexity 71.5 12.9 65×
Semantic Entropy 66.3 132.8 664×

P(TRUE) 60.4 22.1 111×
Lexical Similarity 68.7 165.1 826×

SAR 70.5 165.7 829×
Internal Confidence 62.6 0.2 —-

Table A1: Comparison of query-level In-
ternal Confidence with answer-level uncer-
tainty methods (Qwen-14B on TriviaQA
and SciQ).

propose a training-free method to identify the knowledge boundary of an LLM, which offers a more
efficient alternative that can be applied across models and tasks.

C Baseline Details

We adapt existing answer-level methods to quantify the pre-generation uncertainty, e.g., logit-based
uncertainty. Given a query (including the prompt) x = (x1, . . . , xN ), we can obtain a probability
for each token P (xn | x<n) by performing a forward pass. (1) The baseline Max(− log p) measures
the query’s uncertainty by assessing the least likely token in the query [Manakul et al., 2023]. (2)
Predictive Entropy is defined as the entropy over the entire query token sequence [Malinin and Gales,
2021]:

PE(x) = −
N∑

n=1

log P(xn | x<n) (A.1)

(3) Min-K Entropy combines the ideas of Max(− log p) and predictive entropy, by selecting the top-K
tokens from the query with the minimum token probability [Shi et al., 2024]. (4) Attentional Entropy
is a modified version of the predictive entropy that considers a weighted sum:

AE(x) = −
N∑

n=1

αn log P(xn | x<n), (A.2)

where αn are the attentional weights for tokens xn. The intuition here is that tokens contribute to the
semantic meanings in different ways, such that we should not treat all tokens equally [Duan et al.,
2024]. (5) Perplexity reflects how uncertain a model is when predicting the next token:

PPL = exp

(
− 1

N

∑
log P(xn | x<n)

)
(A.3)

(6) Internal Semantic Similarity measures the average similarity among hidden states of different
layers {h(1)

N , ...,h
(L)
N }, which is inspired by lexical similarity [Fomicheva et al., 2020]. (7) P(YES)

is the probability of self-evaluation, as defined in Equation 1. (8) Internal Confidence (w/ naive avg)
is a simplified variant of our proposed Internal Confidence. The difference is that we compute a naive
average to aggregate all scores.

D Additional Experiments

D.1 Calibration Performance

Figure A1 compares the distributions of Internal Confidence scores for known (green) and unknown
(blue) queries across three datasets. The results reveal that Internal Confidence tends to assign higher
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values to known queries and lower values to unknown queries, which is suitable for distinguishing
the two groups. Specifically, on TriviaQA, the separation is mild with noticeable overlap. On SciQ,
the known queries concentrate near 1.0, while unknown queries spread toward lower scores, and on
GSM8K, the distinction is the clearest, with known queries clustered in the high-confidence region
(0.8–0.9) and unknown queries shifted leftward.

D.2 Internal Confidence does not rely on in-context learning

Figure A2 shows the effect of the number of in-context learning example pairs (k-shot) on model
performance across three datasets and models. Here, we randomly select k pairs of positive and
negative samples. We plot the AUC as a function of k-shot values from 1 to 5. Overall, Llama-8B
and Qwen-14B maintain relatively stable performance with slight improvements as k increases, while
Phi-3.8B exhibits more fluctuation, especially on TriviaQA. These results suggest that the benefit
of additional in-context examples varies across both models and datasets. Therefore, our Internal
Confidence can obtain strong performance even without in-context learning from examples, which
can reduce the computational cost.

D.3 Impact of Locality

Figure A3 presents the impact of locality on AUC performance across three datasets (TriviaQA,
SciQ, GSM8K) and three models (Phi-3.8B, Llama-8B, Qwen-14B). For Phi-3.8B, AUC improves
gradually with increasing locality across all datasets, with TriviaQA exhibiting consistently higher
discriminability than SciQ and GSM8K. For Llama-8B, the performance remains fairly stable across
different locality values, showing only minor fluctuations, particularly for SciQ and GSM8K. For
Qwen-14B, the AUC increases with the locality for all datasets up to a certain point, after which it
either plateaus or slightly declines; this trend is most evident for GSM8K.

Locality has a non-trivial effect on the performance of Internal Confidence, and its optimal value
varies slightly by model and dataset. Phi-3.8B and Qwen-14B benefit more clearly from tuning
locality, while Llama-8B appears more robust to changes. Overall, high locality values often yield
competitive or optimal performance.
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Figure A1: Distinguishing between known and unknown queries using Internal Confidence for
Phi-3.8B.

1 2 3 4 5
k-shot

0.50

0.55

0.60

0.65

0.70

AU
C

Phi-3.8B

1 2 3 4 5
k-shot

Llama-8B

1 2 3 4 5
k-shot

Qwen-14B
TriviaQA SciQ GSM8K

Figure A2: Impact of the number of in-context-learning example pairs on validation set performance.
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Figure A3: Impact of locality on validation set performance.
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