
LM2: A Simple Society of Language Models Solves Complex Reasoning

Anonymous ACL submission

Abstract

Despite demonstrating emergent reasoning abil-001
ities, Large Language Models (LLMS) often002
lose track of complex, multi-step reasoning. Ex-003
isting studies show that providing guidance via004
decomposing the original question into mul-005
tiple subproblems elicits more robustness in006
LLM reasoning – a decomposer generates the007
subproblems, and a solver solves each of these008
subproblems. However, these techniques fail to009
accommodate coordination between the decom-010
poser and the solver modules (either in a single011
model or different specialized ones) – the de-012
composer does not keep track of the ability of013
the solver to follow the decomposed reasoning.014
In this paper, we propose LM2 to address these015
challenges. LM2 modularizes the decomposi-016
tion, solution, and verification into three differ-017
ent language models. The decomposer module018
identifies the key concepts necessary to solve019
the problem and generates step-by-step sub-020
questions according to the reasoning require-021
ment. The solver model generates the solution022
to the subproblems that are then checked by023
the verifier module; depending upon the feed-024
back from the verifier, the reasoning context025
is constructed using the subproblems and the026
solutions. These models are trained to coordi-027
nate using policy learning. Exhaustive experi-028
mentation suggests the superiority of LM2 over029
existing methods on in- and out-domain reason-030
ing problems, outperforming the best baselines031
by 8.1% on MATH, 7.71% on JEEBench, and032
9.7% on MedQA problems.033

1 Introduction034

Recent trends in solving complex reasoning tasks035

using Large Language Models (LLMs) typically036

follow two different dominant approaches: (i)037

well-curated prompting techniques (Zheng et al.,038

2023; Yao et al., 2024) on LLMs of exorbitant039

size like GPT-4 (OpenAI, 2023), or (ii) finetuning040

a relatively smaller LLM using domain-focused041

data (Shao et al., 2024; Toshniwal et al., 2024;042

Dutta et al., 2024). Methods from the former cat- 043

egory heavily rely on the proprietary LLM being 044

used and are prone to fail absolutely when em- 045

ployed with less powerful models. The latter cat- 046

egory, though cost-effective compared to humon- 047

gous LLMs, often loses in generalizability due to a 048

narrow training domain. 049

The chronicle of decomposed reasoning. A 050

number of recent literature has pointed out that 051

LLMs tend to perform better on complex reason- 052

ing tasks when the problem is decomposed into 053

step-by-step subproblems (Zhou et al., 2023; Khat- 054

tab et al., 2022; Juneja et al., 2023). Earlier tech- 055

niques demonstrated the superiority by providing 056

the model with examples containing the original 057

problem decomposed into multiple sub-problems 058

along with their answers (Zhou et al., 2023). How- 059

ever, Juneja et al. (2023) illustrated that decoupling 060

the decomposer from the solver by finetuning a sep- 061

arate decomposer language model (LM) to coordi- 062

nate with a larger solver LM is beneficial to simply 063

prompting a single monolithic LM to decompose 064

and solve. Echoing their findings, Wu et al. (2024) 065

also found that distilling decomposition abilities 066

from a larger LM to a smaller LM is much more 067

generalizable compared to decomposing the solver 068

abilities directly. 069

Our contributions. However, a major bottle- 070

neck in existing methods of decomposer finetuning 071

is the lack of tightness between the decomposer- 072

solver interactions. Typically, the decomposition is 073

done in a memoryless manner, with or without the 074

solver’s initial response; no strategy is employed 075

to track whether the solver can follow the decom- 076

posed chain of reasoning. Towards this very end, 077

we propose a novel multi-LLM coordination frame- 078

work, Language Model Multiplex (LM2). LM2 is 079

built upon three separate LMs, each dedicated to 080

three different components of complex multistep 081

reasoning – a solver LM is responsible for answer- 082

ing questions; a verifier LM provides feedback on 083

1

 : How many distinct, non-equilateral triangles with a perimeter of
60 units have integer side lengths , , and such that , , is an

arithmetic sequence?
Solver LM

Decomposer LM

Verifier LM

SQ: What is a, b, c in terms of common difference d?
SA:Since a, b, and c form an arithmetic sequence, we can
express c in terms of a as c = a + d, where d is the common
difference

Let be the common difference, so and
We can assume that is positive
In particular, can't be 0, because the triangle is not equilateral
Then the perimeter of the triangle is

, so
Hence, the sides of the triangle are , 20, and
These sides must satisfy the triangle inequality, which gives us

 Solving for , we find , or
 Therefore, the possible values of are 1, 2, , 9, which gives us

 possible triangles

1. We know that for a triangle with side lengths a, b, and c, the sum of
the lengths of any two sides must be greater than the length of the
third side.
2. Since we are given that a, b, and c form an arithmetic sequence,
we can express b as the average of a and c. This gives us .
...
6. Since a, b, and c form an arithmetic sequence, we can express c in
terms of a as c = a + d, where d is the common difference.
...
10. This gives us the side lengths of the triangle as a = 10, b = 15,
and c = 30. Hence final answer is

Concepts:
1. Triangle Inequality
2. Arithmetic progression

Related Equations
1. Let x,y,z be sides of triangle, then x+y>z, x+z>y, z+y>x
2. If x,y,z are in arithmetic progression then y-x=z-y

SQ:What is the value of a + c?
SA:Since we are given that a, b, and c form an arithmetic
sequence, we can express b as the average of a and c. This
gives us . The perimeter of the triangle is given
by P = .
We are given that the perimeter is 60 units,
so we have .Concepts:
Solving for a + c,
we get a + c = 40

SQ: What is triangle inequality in terms of a,b,c?
SA: Triangle inequality sayd

Figure 1: The inference procedure of LM2 on a question from the MATH dataset. A question (in blue) is provided to
the Solver LM that produces an incorrect answer (in red). The question is then provided to the Decomposer LM that
generates the concepts and step-by-step subquestions (in lilac). Each subquestion is answered by the Solver LM, and
the sub-answer is verified by a Verifier LM. If the Verifier LM approves the sub-answer, that subqustion-subanswer
pair is added to the context of reasoning steps; otherwise, a new subquestion is generated. The question, concepts,
subquestions, and subanswers are provided in context to the Decomposer LM to generate the next subquestion.
Finally, the question, concepts, subquestions, and subanswers are provided to the Solver LM to generate the final
answer (in green).

the correctness of the output from the solver, and084

a decomposer LM identifies the basic concepts085

required to solve the problem and generates step-086

by-step subproblems by decomposing the original087

question (see Figure 1 for a working example). Un-088

like prior approaches, the decomposer in LM2 gen-089

erates each subproblem depending on the solver’s090

answers to prior subproblems, along with the veri-091

fier’s feedback on those answers. Furthermore, the092

decomposer generates the conceptual requirements093

to solve the problem, which further streamlines094

the solver LM. Irrespective of the complexity of095

the underlying reasoning, the world knowledge re-096

quired to answer any question is typically better097

preserved in larger, proprietary LMs. Considering098

this, we use GPT-3.5 (text-davinci-003) as the099

solver without finetuning. For both the decomposer100

and verifier, we implement parameter-efficient fine-101

tuning (Hu et al., 2022) of LLaMA-2 (13 billion102

parameters) separately. First, these models are fine-103

tuned separately towards the tasks of decomposi-104

tion and verification using datasets annotated by105

GPT-4. The decomposer is then taught to coordi-106

nate with the solver and the verifier models in a107

policy learning setup. LM2 achieves promising per-108

formance across a diverse set of reasoning tasks.109

On the MATH dataset of mathematical reasoning, 110

LM2 outperforms the best decomposer-tuning base- 111

line by a staggering margin 8.1% of absolute ac- 112

curacy on average. Although LM2 uses the training 113

split of the MATH dataset for tuning the decom- 114

poser and the solver, it seamlessly generalizes to 115

out-of-distribution tasks in MedQA and JEEBench, 116

outperforming the best competitive baseline with 117

9.7 % and 7.71% difference on absolute accuracy 118

respectively. 119

Beyond the discourse of overall numbers, we 120

perform in-depth ablation analyses to identify the 121

roles of each component of the model. We ob- 122

serve that (i) the verifier LM and concept generated 123

by the decomposer LM play a crucial role in gen- 124

eralizing out-of-distribution reasoning tasks like 125

MedQA, JEEBench Chemistry, etc.; (ii) finetun- 126

ing the decomposer is crucial for better concept 127

identification – finetuned LLaMA-2 7B generates 128

more effective conceptual requirements compared 129

to even GPT-4; (iii) even while not using all the 130

modular components of LM2, the prompt template 131

of structured reasoning boosts the performance of 132

GPT-4.1 133

1We are committed to release the source code and datasets
upon acceptance of the paper.

2

2 Related Work134

The efficacy of explicitly generating intermediate135

reasoning steps over direct generation of the re-136

quired answer was first demonstrated by Nye et al.137

(2021). Chain-of-thought prompting (Wei et al.,138

2022) generalized the scratchpad learning of Nye139

et al. (2021) into an in-context learning regime140

using LLMs. Chain-of-thought and its succes-141

sors (Chen et al., 2022; Yao et al., 2024) typically142

let the decomposition of a composite, multi-step143

reasoning problem remain implicit in the LLM.144

Zhou et al. (2023) demonstrated that instead,145

an explicit call to the LLM to generate multiple146

smaller problems that are steps to answer the orig-147

inal query achieves more robust reasoning. Sim-148

ilarly, Khot et al. (2023) proposed a prompting-149

based problem decomposition approach where the150

LLM is asked to decompose a complex task using151

few-shot examples. However, this still burdens a152

single language model in handling both decomposi-153

tion and solution. Juneja et al. (2023) circumvented154

this challenge by distilling the decomposition abili-155

ties into a relatively smaller language model. Their156

proposed method, DaSLaM, utilizes two separate157

language models that coordinate with each other to158

solve complex reasoning problems. Their findings159

suggest that finetuning the decomposer is more gen-160

eralizable than finetuning the solver model. This161

has been further supported by Wu et al. (2024)162

recently. Tarasov and Shridhar (2024) explored163

the distillation of decomposition abilities via of-164

fline reinforcement learning. Khattab et al. (2022)165

proposed a programmatic retrieval augmentation166

framework, namely Demonstrate-Search-Predict167

(DSP), for knowledge-intensive generation tasks.168

DSP relies on the coordination between a genera-169

tive LM and a retrieval model through sophisticated170

programs. Recent attempts have been made to in-171

corporate dense verifiers (typically, a finetuned,172

bidirectional language model acting as a classifier)173

aiding a generative model towards robust, verifiable174

problem solving and text generation (Cobbe et al.,175

2021; Sun et al., 2023). Different techniques for176

verification of LM-generated outputs have been pro-177

posed subsequently, such as self-verification (Weng178

et al., 2023), majority voting (Li et al., 2023), etc.179

3 Methodology180

Our proposed method, LM2, is built upon the co-181

ordination of multiple LMs to perform reasoning182

in a modular fashion. However, such coordination183

is not implicit in the pertaining stage of a model; 184

instead, we seek to inculcate this ability via finetun- 185

ing (parts of) the LM multiplex. To this end, LM2 is 186

built upon three functional components: a (prefer- 187

ably larger) solver model, a decomposer model, 188

and a verifier model. 189

For fine-grained control over the function of the 190

different components of LM2, we make use of a 191

structured, step-by-step input-output framework 192

(see Figure 1). The role of each of the modules in 193

LM2 is described as follows. 194

3.1 Decomposer 195

The decomposer LM guides the solver LM to solve 196

a multi-step reasoning question in two ways. First, 197

it provides the solver model with a set of concepts 198

required to solve the problem. Second, it tells 199

the solver LM what is the next sub-question re- 200

quired to solve given the previous sub-questions 201

and their answers. More specifically, the decom- 202

poser LM is a function that can be defined as 203

D(q, {si, sai}, c) : Q × S × SA → {S,C}, 204

where q represents the initial question to be solved, 205

{si, sai} denotes the set of previous sub-questions 206

(si) and their corresponding answers (sai), and (c) 207

signifies whether the function needs to predict the 208

concept or the next sub-question. Q is the space of 209

all the questions, S is the space of all sub-questions, 210

SA is the space of all sub-answers, and C is the 211

space of all concepts. 212

Supervised finetuning. The decomposer train- 213

ing is performed in two stages similar to (Juneja 214

et al., 2023). The first stage is supervised finetun- 215

ing, where the language model is finetuned on a 216

dataset prepared using GPT-4. To create the dataset, 217

we provided GPT-4 with a question and its gold 218

reasoning. It was then asked to first generate all the 219

concepts required to solve the question, followed 220

by sub-questions and sub-answers. Only the ques- 221

tions that were answered correctly were included 222

in the dataset. Each sample in the dataset can 223

be expressed as a tuple {Q, c, {si, sai}ni=1, sn+1}, 224

where sn+1 is the next sub-question given the pre- 225

vious sub-questions and answers. The decomposer 226

was then finetuned on the standard language mod- 227

elling objective. 228

Policy optimization. With the supervised fine- 229

tuning step, the decomposer LM is conditioned to 230

respond to reasoning problems with concepts and 231

decomposed subquestions. However, it is still not 232

able to take the feedback from the solver and the 233

verifier models into account. To this end, we uti- 234

3

lize Proximal Policy Optimization (Schulman et al.,235

2017) with the decomposer as the policy and the236

solver and the verifier model as a black-box en-237

vironment. Precisely, we compute different types238

of rewards utilizing the feedback from the verifier239

model that takes the solver model’s response into240

account at each step and provides the decomposer241

with necessary refinement signals.242

3.2 Verifier243

Given the complexity of multistep reasoning, we244

need the verifier to be able to provide nuanced feed-245

back to the decomposer on the possible mistakes246

made by the solver; a binary correct/incorrect mes-247

sage as employed by prior works with verifiers (Li248

et al., 2023; Weng et al., 2023) will limit the de-249

composer model’s scope of vision. For fine-grained250

control, the verifier is finetuned on a supervised251

dataset containing a question, an answer with an252

error made in the correct answer, a classification253

for the type of error, and an explanation for the254

classification. The verifier classifies the given input255

into nine classes as follows: 1 Conceptual mis-256

takes, 2 Computational mistakes, 3 Procedural257

mistakes, 4 Misunderstood question, 5 Mistake258

in the first step, 6 Mistake in first half, 7 Mistake259

in second half, 8 Mistake in last step, and 9 No260

mistake. The dataset was produced using GPT-4,261

asking it to generate an explanation for the classi-262

fication given the correct solution, wrong solution263

and the classification. The verifier is finetuned to264

generate the explanation and the classification (see265

Section 3.3 for examples of each type of error mes-266

sage and explanation).267

3.3 Training with Decomposer Feedback268

The training dataset curated for the decomposer269

LM consists of only the correct answers; hence,270

the decomposer is blind to the possible errors that271

the language model can make. In order to make272

the decomposer generate meaningful questions, we273

further finetune the decomposer while working in274

synergy with the solver language model using Pol-275

icy gradient methods.276

Environment. The environment consists of a277

black-box solver model Θ. The model Θ gener-278

ates an answer to the current question given the279

concepts and previous questions and their answers.280

Policy, action and state space. The decomposer281

language model ϕ comprises the policy network. A282

state s in the state space S is defined by the con-283

catenation of the initial state s0 and all the actions284

taken from the initial state to the current state. The 285

initial state s0 is defined as the initial question Q. 286

The action space is defined as the token space of 287

the language model ϕ. Hence, a state sn can be 288

represented as (s0, {ai}ni=1), where ai is the action 289

taken at the ith time step. 290

Reward function. The reward is based on the 291

feedback given by the verifier at each sub-question 292

produced by the decomposer. The reward structure 293

is intuitively designed to impose penalties for errors 294

occurring in earlier sub-questions relative to those 295

occurring in later ones. This is because fixing an 296

early mistake can significantly increase the chances 297

of the question being correct. Further, the policy 298

is penalised more for conceptual and procedural 299

mistakes as compared to computational mistakes. 300

We construct the reward function for the kth sub- 301

question as follows: 302

R = γk
9∑

i=1

ri (1) 303

where γ < 1 is the discount factor responsible 304

for imposing more penalties on the earlier gener- 305

ations. ri are the rewards for individual feedback 306

given by the verifier as defined below (for each 307

type of reward, we provide an example question 308

asked by the decomposer, an erroneous answer to 309

that question by the solver, type of error identified 310

and the explanation generated by the verifier in red 311

textboxes). 312

Conceptual correctness reward is defined as, 313

r1 = −0.15I[V (sk, sak) = 1] (2) 314

where I is the indicator function, V is the verifier 315

that takes in input the kth sub-question (sk) and its 316

answer produced by the solver (sak) and outputs 317

the category of mistake. This reward accounts for 318

any mistake made by the solver in understanding 319

or while applying a concept incorrectly. 320

Q: What is a, b, c in terms of common difference d?

A :Since a, b, and c form an arithmetic sequence, we can express

c in terms of a as c = a+ d, where d is the common difference.

Verifier: Conceptual Mistakes: The student misunderstood the

concept of finding the possible values of the common difference in

an arithmetic sequence to form a triangle with a given perimeter.
321

Computational correctness reward is defined as, 322

r2 = −0.05I[V (sk, sak) = 2] (3) 323

This reward accounts for cases where the model 324

has made any mistakes in calculation or formula 325

4

application. These kinds of mistakes are weighted326

less compared to all other types because an external327

tool can be easily used for these mechanical tasks.328

Q : What is the value of a+ c?

A : Since we are given that a, b, and c form an arithmetic

sequence, we can express b as the average of a and c. This

gives us b = a+c
2

. The perimeter of the triangle is given by

P = a+ b+ c = a+ a+c
2

+ c = 3a+3c
2

. We are given that the

perimeter is 60 units, so we have 60 = 3a+3c
2

. Solving for a+ c,

we get a+ c = 20

Verifier : Calculation Mistakes: The model has made a calcula-

tion mistake while calculating the value of a+ c. a+ c should be

40.329

Procedural correctness reward is defined as,330

r3 = −0.15I[V (sk, sak) = 3] (4)331

This encompasses any mistake made by the model332

while following a step-by-step procedure whose in-333

formation is already given in-context while solving334

the problem.335

Q : What are the possible values of a, d?

A : Substituting this into the equation a + c = 20, we get

a+ (a+ d) = 20, which simplifies to 2a+ d = 20− a. Since

the side lengths must be integers, a and d must be integers. We

can then try different values of a and d that satisfy the equation

2a+ d = 20− a. After trying different values, we find that the

only solution that gives integer side lengths is a = 10 and d = 20.

Verifier : Procedural Mistakes: The student made a mistake in

the procedure of solving the problem by not accurately finding the

possible values of the common difference.
336

Question understanding reward is defined as,337

r4 = −0.2I[V (sk, sak) = 4] (5)338

This reward accounts for the cases when the model339

has made a mistake in understanding the sub-340

question. Either it has not answered the quantity341

asked in the sub-question. This gives a signal that342

the sub-question was either incoherent with the pre-343

vious questions or was too complex for the model344

to answer. This kind of mistake is important to345

address and, hence, is given a higher weight.346

Q : How many distinct values of a, b, c are possible?

A : This gives us the side lengths of the triangle as a = 10,

b = 15, and c = 30.

Verifier : Mistakes Understanding Question: The model has

made a mistake by not giving the number of distinct values.
347

Reward based on place of mistake. As dis-348

cussed above, later mistakes are penalised less than349

the earlier ones. Hence, if a mistake is made in the 350

first step, it is given a reward of −0.2. If the model 351

makes a mistake in the first half of the sub-answer, 352

it is given a reward of −0.12. For a mistake in the 353

last half of the sub-answer, it is given a reward of 354

−0.08. If the mistake is made in the last step, it is 355

given a reward of −0.05. 356

No-mistake reward is the case when the model 357

has not made any mistake in answering the sub- 358

question and is given a positive reward of +1. 359

4 Experiments 360

For all the experiments, LM2 uses the OpenAI 361

text-davinci-003 model (hereafter mentioned 362

as GPT-3.5) as the solver and LLaMA-2 13B (Tou- 363

vron et al., 2023) as the base models for the de- 364

composer and the verifier. Details including the 365

hyperparameters, compute resources, evaluation 366

strategy, etc. are provided in Appendix A. 367

Training Data Curation. For the first stage of fine- 368

tuning of the decomposer LM, we curated a dataset 369

of 15, 396 question, concept, sub-question, sub- 370

answer tuples. The questions were taken from the 371

train split of the MATH dataset (Hendrycks et al., 372

2021). The questions were taken from the MATH 373

dataset. For verifier LM finetuning, a dataset of 374

3, 674 question-answer-classification tuples was 375

generated. Details of the prompts used for each 376

of these steps are provided in Appendix B. 377

Baseline Details. We compare LM2 with five 378

existing methods: Chain-of-thought prompting 379

(CoT) (Wei et al., 2022), Least-to-most prompt- 380

ing (L2M) (Zhou et al., 2023), Progressive 381

Hint Prompting (PHP) (Zheng et al., 2023), 382

Demonstrate-Search-Predict (DSP) (Khattab et al., 383

2022), and DaSLaM (Juneja et al., 2023). The 384

original setting of PHP requires an 8-shot prompt- 385

ing; however, since all other methods including 386

LM2 predict in the zero-shot setting, we use PHP in 387

1-shot for a fairer comparison. 388

Ablation Study. We perform five types of ablation 389

studies aimed at comprehensively understanding 390

the significance of each component within the LM2 391

pipeline: I) LM2\V that ablates the verifier model, 392

II) LM2\C, where we remove the concept generation 393

step, III) LM2\RL removes the PPO fine-tuning, and 394

finally, III) LM2-Type and IV) LM2-Position are two 395

versions of the framework with rewards that deal 396

with the type of mistakes vs. position of mistakes 397

in the generated response. 398

5

Dataset Method
CoT L2M PHP DSP DaSLaM LM2

PnC 16.4 16.0 10.2 16.2 21.4 30.0
NT 14.4 11.0 9.8 20.3 26.1 41.0
ALG 27.6 22.4 24.0 15.3 33.4 34.0
I-ALG 16.4 16.8 10.0 17.0 24.8 27.8
Calc. 14.0 14.58 14.28 18.8 18.2 34.0
P-ALG 32.3 28.0 26.5 28.0 44.0 47.0
Geom. 14.2 12.5 14.0 5.2 21.4 32.0
MedQA 50.3 49.8 47.5 52.3 50.1 57.1

Table 1: Performance comparison of LM2 with the base-
lines on MATH and MedQA datasets using GPT-3.5 as
the solver LM.

5 Results399

We summarize the performance of LM2 along with400

the baseline methods on the MATH and MedQA401

datasets in Table 1 and on the JEEBench dataset in402

Table 2. Across all the datasets, LM2 improves upon403

existing methods (using GPT-3.5 solver) by a huge404

margin. It demonstrates an average 8% improve-405

ment on the MATH dataset and an average 2.5%406

improvement on the JEEBench dataset as compared407

to the best-performing baseline DaSLaM.408

Can it improve on out-of-domain tasks? In409

both DaSLaM and LM2, the solver model is kept410

frozen with the hope of retaining generalizability.411

However, the decomposer model in both methods412

(and the verifier in LM2) are finetuned using mathe-413

matical reasoning problems. This raises the ques-414

tion of the generalizability of these finetuned com-415

ponents over problems other than mathematical rea-416

soning. One of the most significant challenges with417

DaSLaM is that it is not able to perform well on418

out-of-domain tasks like JEEBench Chemistry. We419

find that our method can surpass this limitation as420

can be seen in Tables 1 (MedQA) and 2 (JEEBench421

Chemistry). While DaSLaM degrades the perfor-422

mance over CoT on MedQA, LM2 achieves an abso-423

lute accuracy gain of 6.8 percentage points.424

How important is the verifier? Next, we seek425

to investigate the relative importance of each com-426

ponent in our pipeline. We observe that the accu-427

racy decreases substantially upon removing the ver-428

ifier model (LM2\V in the middle third of Table 2).429

We can see that there is a drop of 13.0% in Chem-430

istry versus 10.08% in Physics and 3.4% in Math431

subsets. The relative drop in accuracy with the ab-432

lation of the verifier is sharper with multi-answer,433

numeric, and integer answer questions. This makes434

sense given the computational reasoning require-435

ment is higher in these problems and the verifier436

plays a crucial role in guiding the decomposer and437

the solver along the correct reasoning path.438

Figure 2: Comparison of token generation cost. We
depict the average number of tokens generated by the
solver model using different methods to solve the given
question averaged over 50 questions from the JEEBench
dataset.

How important are the concepts? As can be 439

seen from Table 2, removing concepts decreases the 440

accuracy of Physics subset by 11.6%, Maths subset 441

by 6.03%, and Chemistry subset by 17.5%. This 442

shows that concepts also play a very important role 443

in improving the performance on out-of-domain 444

datasets like Physics and Chemistry. Typically, 445

LM2\C fares worse than the rest of the ablation 446

variants, demonstrating that the concepts are the 447

most important component in LM2. 448

GPT-4 as concept generator. We also check 449

how our decomposer compares to GPT-4 while 450

generating concepts. To compare this, we prompt 451

GPT-4 to generate concepts given the question. We 452

observe that there is an average decrease of 9.13% 453

when generating concepts using GPT-4 when com- 454

pared to the Decomposer model, indicating the 455

higher quality of concepts generated as a result of 456

feedback-based fine-tuning. 457

What is the effect of feedback-based finetun- 458

ing? The effect of feedback-based fine-tuning is 459

evident when comparing the performance of the de- 460

composer without the second stage of fine-tuning 461

alongside the verifier to that of LM2. On average, 462

we observe a notable decrease of 9.6% in perfor- 463

mance when the second stage of fine-tuning is omit- 464

ted. This finding highlights the significance of fine- 465

tuning as a crucial step in optimizing model perfor- 466

mance. However, the importance of concepts and 467

the verifier appears to outweigh that of fine-tuning. 468

This suggests that while fine-tuning contributes to 469

improved model performance, the incorporation of 470

concepts and a verifier into the model architecture 471

yields more substantial enhancements. 472

How does the structured answering template 473

contribute? Recall that in LM2, we introduce a 474

6

Method Dataset
Phy.

MCQ
Math.
MCQ

Phy.
Multi.

Math.
Multi.

Phy.
Num.

Math.
Num.

Phy.
Int.

Math.
Int.

Chem.
Int.

Chem.
Num.

Chem.
Multi.

Chem.
MCQ

CoT 33.33 21.9 6.25 12.0 3.03 1.69 12.5 10.8 17.3 11.6 11.6 40.0
PHP 22.22 17.07 6.25 7.59 3.03 1.69 0* 4.0 11.7 9.7 12.2 37.5
L2M 22.22 21.9 6.25 12.5 3.03 3.38 10.0 10.8 13.0 9.7 10.0 20.0
DaSLaM 55.5 29.5 18.7 16.0 6.06 10.1 15.7 11.7 14.2 9.2 11.6 14.6
GPT4 55.5 34.1 27.5 21.5 15.1 11.8 22.7 24.3 17.9 25.5 48.3 60.0
LM2 51.85 30.18 26.8 16.4 15.15 13.1 16.2 13.5 26.0 23.2 26.6 53.3
LM2\V 37.03 24.52 14.6 11.7 12.2 11.4 11.4 11.7 17.3 16.2 13.3 30.0
LM2\C 29.62 20.75 14.6 9.4 9.09 10.8 9.0 8.1 17.3 11.6 13.3 16.6
GPT4-C 29.62 28.3 14.6 11.5 15.15 11.4 9.0 11.4 21.7 23.2 33.33 30.0
LM2\RL 33.33 21.9 18.7 12.7 12.2 10.1 10.0 8.1 17.3 12.4 13.3 27.3
LM2-Type 46.1 28.0 20.3 14.0 13.4 11.4 15.0 13.5 24.0 23.2 23.6 45.4
LM2-Position 38.4 24.52 16.0 12.9 12.2 11.4 15.0 10.8 24.0 20.6 20.3 33.0
GPT35-SP 33.3 29.2 7.5 12.6 9.0 8.4 12.5 8.0 17.6 9.2 12.2 41.6
GPT4-SP 61.1 36.5 30.0 26.5 30.0 14.2 43.75 32.0 17.6 36.5 49.1 66.6

Table 2: Performance of LM2 on JEEBench Dataset along with baselines and ablation variants. (Top third) we
highlight best and second best methods in boldface and underline. LM2 generally outperforms all existing prompting
techniques with GPT-3.5 on different topics and different types of questions (other than Physics MCQ questions).
In 3/12 cases, LM2 outperforms GPT-4. (Middle third) We observe a large drop in performance with each ablation
variant. (Bottom third) Performance of the structured answer generation employed in LM2, without decomposer and
verifier, using GPT-3.5 and GPT-4 as solvers.

novel, structured answering template for control-475

lable coordination between the three models. It is476

imperative to investigate the role of such a tem-477

plate alone behind the performance boost. We478

make use of the template with two different solver479

models, GPT-3.5 and GPT-4. As we can see in480

the bottom third of Table 2 (coined as modelname-481

SP), both models improve upon their base perfor-482

mance with our structured template. However, the483

stronger GPT-4 model is able to utilize the tem-484

plate much more efficiently, with an average gain485

of 7.8% across the JEEBench problems. Typically,486

improvement on Physics problems is higher than487

the Math problems, indicating that language mod-488

els are not very good at retrieving physics con-489

cepts and solving the problem when using chain-490

of-thought prompting. It should noted that while491

the structured answering template alone is a pow-492

erful boost, it is much weaker alone without the493

complete coordination in LM2.494

Does guided reasoning help limit token us-495

age? An important challenge with iteratively inter-496

acting with an LLM is the increased token usage497

that will translate to expenses in either computa-498

tional or monetary terms. In Figure 2, we plot499

the average token usage (per problem) incurred500

by the solver model (GPT-3.5) while using LM2501

and DaSLaM against that of base chain-of-thought502

generation. Note that we only show the token us-503

age corresponding to the modified responses while504

using LM2 and DaSLaM. Both these methods origi-505

nally use base CoT to generate the initial response506

and therefore, their total token usage will always 507

be higher than that of CoT. However, the added 508

structure and guided reasoning significantly reduce 509

the token usage in the modified response. LM2 pre- 510

vails in this aspect too. A major reason behind 511

this is the step-by-step synergy between the decom- 512

poser, the solver, and the verifier in LM2. Since the 513

decomposer generates the subquestion depending 514

upon the response from the solver to the previous 515

subquestion, the chances of redundant generation 516

decrease, as opposed to DaSLaM where the sub- 517

questions are generated all at once. 518

Example analysis. To further understand the nu- 519

ances of LM2, we perform an analysis of the gener- 520

ated output on an example from the MATH dataset 521

(see Figure 3). We compare between LM2, DaSLaM 522

and GPT-4 with CoT. As we can see, GPT-4 makes 523

an incorrect interpretation of the question itself. It 524

assumes that the total journey after delay takes 10 525

hours, leading to an incorrect choice of option. The 526

subquestions produced by DaSLaM do not adhere 527

to the order of reasoning required to solve the prob- 528

lem and generate redundant questions. It starts with 529

asking What is the total distance to be covered? 530

However, in the second question, it asks for the 531

speed of the train which is already given in the 532

question itself. The 3rd subquestion generated by 533

DaSLaM is actually the original question, and the 534

solver makes a numerical mistake by simplifying 535

the fraction
3d
4
75 to d

300 instead of d
100 . Without a ver- 536

ifier, this erroneous response is integrated into the 537

reasoning context of the solver. In the next ques- 538

7

Let's denote the total distance of the journey as miles.
Initially, the train runs at a speed of 100 miles/hour. So, in the first part of the
journey, it covers of the total distance at this speed. The time taken to
cover this distance can be calculated using the formula:

Now, after covering of the distance, the remaining distance to be covered
is .
When it starts raining, the train slows down to a speed of 75 miles/hour. So,
the time taken to cover the remaining distance at this speed is:

The total journey duration is the sum of the time taken for the first part of the
journey and the time taken for the second part:

Now, let's factor out :

Given that the total journey duration is 10 hours, we can set up the equation:

Now, solve for :

So, the total distance of the journey is 80 miles.
Now, we can find the total journey duration:

Therefore, the total journey duration is 1 hour + 10 hours = 11 hours.
So, the correct answer is option B) 11.5.

Required Concepts:

 Kinematics
 Average Speed
 Distance formula
 Time formula

Relevant Equations:

 Average Speed = Total Distance / Total Time
 Distance = Speed \times Time
 Time = Distance / Speed

Subquestions:

 What is the total distance traveled by the train?
 How much time does it take for the train to cover
the first quarter of the distance?
 What is the remaining distance to be covered after
the train slows down?
 How much time does it take for the train to cover
the remaining distance at the reduced speed?
 What is the total journey duration?

Subanswers:

 Total distance = Initial speed x Total time = 100
miles/hour x 10 hours = 1000 miles
 Time taken to cover the first quarter of the distance
= Distance / Speed = 1000 miles / 4 / 100 miles/hour =
2.5 hours
 Remaining distance after covering the first quarter =
Total distance - Distance covered = 1000 miles - 250
miles = 750 miles
 Time taken to cover the remaining distance at
reduced speed = Remaining distance / Reduced
speed = 750 miles / 75 miles/hour = 10 hours
 Total journey duration = Time taken to cover first
quarter + Time taken to cover remaining distance =
2.5 hours + 10 hours = 12.5 hours

Final Answer: The total journey duration is 12.5 hours.

Sub problem 1: What is the total distance to be covered?

Sub Answer 1: Let the total distance to be covered be .
Time taken to cover the first quarter of the distance =

 hours.
Time taken to cover the remaining distance =
hours.
Total time taken = hours = 2.5 hours.
Since the train takes 10 hours to reach its destination,
Total distance to be covered = miles.

Sub problem 2: What is the speed of the train?

Sub Answer 2: After covering quarter of the distance, the
train has to be slowed to speed of 75 miles/hour.
Let the remaining distance be .
Therefore, miles.
The time taken to cover the remaining distance
miles at a speed of 75 miles/hour = hours = 10 hours.
Therefore, the speed of the train =
miles/hour.

Sub problem 3: What is the time taken to cover the
distance?

Sub Answer 3: Time taken to cover the first quarter of the

distance = hours = hours.

Time taken to cover the remaining distance = hours =
 hours.

Total time taken = hours =
hours.
Putting ,
Final answer: The time taken to cover the distance is

 hours.

Sub problem 4: What is the total duration of the journey?

Sub Answer 4: Time taken to cover the first quarter of the
distance = hours = hours.
Time taken to cover the remaining three quarters of the

distance = hours = hours.
Total time taken = hours.
Total duration of the journey = hours = 9 hours and

 hours = 9 hours and hours = 9 hours and 14.29
minutes.

Final Answer:

 Step 1: The train covers the first quarter of the journey at
a speed of 100 miles/hour.

 Step 2: The time taken to cover the first quarter of the
journey is given by: Time = Distance/Speed
 Time = Time = hour

 Step 3: The train covers the remaining three quarters of
the journey at a speed of 75 miles/hour.

 Step 4: The time taken to cover the remaining three
quarters of the journey is given by: Time = Distance/Speed
 Time = Time = hour

 Step 5: The total duration of the journey is the sum of
the time taken to cover the first quarter and the remaining
three quarters of the journey.

 Total Time = Total Time = Total Time = 1 hour

Therefore, the total duration of the journey is 1 hour.

A train running at a speed of 100 miles/hour, takes 10 hours to reach its destination. After covering quarter of the distance, it starts raining and the train
has to be slowed to speed of 75 miles/hour. What is the total journey duration?)10 B)11.5 C)12.5 D)13.5 E)1

GPT 4 DaSLaM LM2

Figure 3: Comparison of GPT-4, DaSLaM and LM2 on an example from the MATH dataset.

tions, the same problem is asked to be solved and539

the solver continues to make incorrect responses.540

With LM2, we observe a much more well-defined,541

crisp line of questioning by the decomposer model;542

the solver is able to reach the correct answer op-543

tion without regenerating the same information or544

drawing incorrect subanswers.545

6 Conclusion546

In this paper, we present LM2, a cooperative cohort547

of generative language models working together to548

solve complex reasoning problems. LM2 utilizes a549

frozen solver model that is guided to solve reason-550

ing problems by incrementally answering questions 551

framed by a decomposer model and checked by the 552

verifier model that is trained to coordinate with 553

each other. We find that LM2 proves its supremacy 554

over existing methods over a variety of reasoning 555

tasks, both in-domain and out-domain. We find that 556

despite being trained using mathematical reason- 557

ing examples, our proposed structured response 558

scheme along with the fine-grained verification 559

strategy plays a crucial role in generalizing LM2 560

to heavily out-of-distribution tasks like medical 561

question answering and chemistry. 562

8

Limitations563

Despite promising results, LM2 bears some inherent564

limitations. Compared to purely prompting-based565

methods, it requires a certain computational over-566

head for the two-staged training. With proprietary567

LLM-based solvers, LM2 incurs extra token usage568

over single-pass solutions like chain-of-thought.569

Implicit limitations of the solver model, like lack570

of length generalization, arbitrary digit manipula-571

tion, etc. are expected to be inherited in LM2 as572

well. A possible future work can be towards in-573

corporating deterministic solvers and tools into the574

multiplex.575

Ethical considerations576

The research results are communicated honestly577

and credibly and transparency has been maintained578

throughout the research process. Innovations con-579

cerning automated problem-solving bear important580

ramifications in terms of human labor-value. This581

research is no exception in terms of future appli-582

cation. This research relies on the usage of pro-583

prietary models for building datasets and running584

experiments. The inequality in accessibility of such585

resources among research communities might af-586

fect future usage of this work.587

References588

Daman Arora, Himanshu Gaurav Singh, and Mausam.589
2023. Have llms advanced enough? a challenging590
problem solving benchmark for large language mod-591
els. Preprint, arXiv:2305.15074.592

Wenhu Chen, Xueguang Ma, Xinyi Wang, and593
William W Cohen. 2022. Program of thoughts594
prompting: Disentangling computation from reason-595
ing for numerical reasoning tasks. arXiv preprint596
arXiv:2211.12588.597

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,598
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias599
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro600
Nakano, Christopher Hesse, and John Schulman.601
2021. Training verifiers to solve math word prob-602
lems. Preprint, arXiv:2110.14168.603

Subhabrata Dutta, Ishan Pandey, Joykirat Singh, Sunny604
Manchanda, Soumen Chakrabarti, and Tanmoy605
Chakraborty. 2024. Frugal lms trained to invoke sym-606
bolic solvers achieve parameter-efficient arithmetic607
reasoning. In Proceedings of the AAAI Conference608
on Artificial Intelligence, volume 38, pages 17951–609
17959.610

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul611
Arora, Steven Basart, Eric Tang, Dawn Song, and612

Jacob Steinhardt. 2021. Measuring mathematical 613
problem solving with the math dataset. NeurIPS. 614

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 615
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 616
Chen. 2022. LoRA: Low-rank adaptation of large 617
language models. In International Conference on 618
Learning Representations. 619

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, 620
Hanyi Fang, and Peter Szolovits. 2020. What dis- 621
ease does this patient have? a large-scale open do- 622
main question answering dataset from medical exams. 623
Preprint, arXiv:2009.13081. 624

Gurusha Juneja, Subhabrata Dutta, Soumen Chakrabarti, 625
Sunny Manchanda, and Tanmoy Chakraborty. 2023. 626
Small language models fine-tuned to coordinate 627
larger language models improve complex reasoning. 628
In Proceedings of the 2023 Conference on Empiri- 629
cal Methods in Natural Language Processing, pages 630
3675–3691, Singapore. Association for Computa- 631
tional Linguistics. 632

Omar Khattab, Keshav Santhanam, Xiang Lisa 633
Li, David Hall, Percy Liang, Christopher Potts, 634
and Matei Zaharia. 2022. Demonstrate-search- 635
predict: Composing retrieval and language mod- 636
els for knowledge-intensive nlp. arXiv preprint 637
arXiv:2212.14024. 638

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 639
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 640
harwal. 2023. Decomposed prompting: A modular 641
approach for solving complex tasks. In The Eleventh 642
International Conference on Learning Representa- 643
tions. 644

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, 645
Jian-Guang Lou, and Weizhu Chen. 2023. Making 646
large language models better reasoners with step- 647
aware verifier. Preprint, arXiv:2206.02336. 648

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, 649
Henryk Michalewski, Jacob Austin, David Bieber, 650
David Dohan, Aitor Lewkowycz, Maarten Bosma, 651
David Luan, et al. 2021. Show your work: Scratch- 652
pads for intermediate computation with language 653
models. arXiv preprint arXiv:2112.00114. 654

OpenAI. 2023. Gpt-4 technical report. Preprint, 655
arXiv:2303.08774. 656

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec 657
Radford, and Oleg Klimov. 2017. Proximal policy 658
optimization algorithms. CoRR, abs/1707.06347. 659

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 660
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and 661
Daya Guo. 2024. Deepseekmath: Pushing the limits 662
of mathematical reasoning in open language models. 663
arXiv preprint arXiv:2402.03300. 664

Hao Sun, Hengyi Cai, Bo Wang, Yingyan Hou, Xi- 665
aochi Wei, Shuaiqiang Wang, Yan Zhang, and Dawei 666
Yin. 2023. Towards verifiable text generation with 667

9

https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://doi.org/10.18653/v1/2023.emnlp-main.225
https://doi.org/10.18653/v1/2023.emnlp-main.225
https://doi.org/10.18653/v1/2023.emnlp-main.225
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

evolving memory and self-reflection. arXiv preprint668
arXiv:2312.09075.669

Denis Tarasov and Kumar Shridhar. 2024. Distilling670
llms’ decomposition abilities into compact language671
models. Preprint, arXiv:2402.01812.672

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-673
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.674
Openmathinstruct-1: A 1.8 million math instruction675
tuning dataset. arXiv preprint arXiv:2402.10176.676

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier677
Martinet, Marie-Anne Lachaux, Timothée Lacroix,678
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal679
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard680
Grave, and Guillaume Lample. 2023. Llama: Open681
and efficient foundation language models. Preprint,682
arXiv:2302.13971.683

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten684
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,685
and Denny Zhou. 2022. Chain of thought prompt-686
ing elicits reasoning in large language models. In687
Advances in Neural Information Processing Systems.688

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,689
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.690
2023. Large language models are better reasoners691
with self-verification. Preprint, arXiv:2212.09561.692

Zhuofeng Wu, He Bai, Aonan Zhang, Jiatao Gu,693
VG Vinod Vydiswaran, Navdeep Jaitly, and Yizhe694
Zhang. 2024. Divide-or-conquer? which part should695
you distill your llm? Preprint, arXiv:2402.15000.696

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,697
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.698
2024. Tree of thoughts: Deliberate problem solving699
with large language models. Advances in Neural700
Information Processing Systems, 36.701

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo702
Li, and Yu Li. 2023. Progressive-hint prompting im-703
proves reasoning in large language models. Preprint,704
arXiv:2304.09797.705

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,706
Nathan Scales, Xuezhi Wang, Dale Schuurmans,707
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.708
Chi. 2023. Least-to-most prompting enables com-709
plex reasoning in large language models. In The710
Eleventh International Conference on Learning Rep-711
resentations.712

A Training Details and Evaluation713

We finetune LLaMA2-13B for both the decomposer714

and verifier. We train for 8 epochs with a batch size715

of 128, learning rate 2e-5, warmup steps of 100, a716

Lora r value of 4, LoRA Alpha of 16 and dropout of717

0.05. The models were trained in 8-bit quantization718

on an 80G A100 GPU.719

For the second stage of fine-tuning, we finetuned 720

the last 3 layers of LoRA adapters, using a batch 721

size of 16, gradient accumulation steps=4, init kl 722

coef=0.01, target=4. For inference, we used a tem- 723

perature of 0 in all experiments for consistency of 724

results with a max output length of 2000. 725

We evaluate our method on hard reasoning 726

datasets that require multi-step reasoning. These 727

datasets include MATH (Hendrycks et al., 2021) 728

(test split), JEEBench (Arora et al., 2023), and 729

MedQA (Jin et al., 2020) (English questions). The 730

MATH dataset contains math questions from chal- 731

lenging math competitions, since it was also used 732

for training, this shows our performance on in- 733

domain questions. Next, we evaluate on the out-of- 734

distribution datasets like JEEBench which contains 735

PCM questions extracted from the JEE Advanced 736

exam and MedQA which contains open-domain 737

questions from professional medical board exams. 738

We only evaluate questions in the English language. 739

B Training Data Creation 740

The data was generated using GPT-4. A tempera- 741

ture of 0.7 is used to ensure diversity in the gen- 742

erated data. We only stored the sub-question, sub- 743

answer dataset if the number of sub-questions gen- 744

erated was more than three, this was done to ensure 745

high data quality so that the model is able to decom- 746

pose longer and more difficult questions effectively. 747

First, we generate all the concepts, then the sub- 748

questions given the question and the gold chain 749

of thought. Finally, we generate the sub-answer 750

given the question, a gold chain of thought and 751

the sub-question to be answered. for the verifier, 752

we first ask the LLM to answer the given question 753

using standard COT prompting. Then based on 754

the correctness of the answer, we take the solution 755

chain of thought produced by the LLM and the gold 756

answer and ask the LLM to classify the produced 757

solution based on the mistake made. If the answer 758

is correct, we store it separately and include it to 759

make up to 10% of the dataset with the label as ’No 760

Mistake’. Prompts for the data curation are given 761

below. 762

B.1 Verifier Data Creation 763

B.1.1 Prompt 764

You are a teacher, and you are grading 765

a student’s answer to a question. The 766

student’s answer is as follows: {COT_LLM} 767

The correct answer is as follows: 768

10

https://arxiv.org/abs/2402.01812
https://arxiv.org/abs/2402.01812
https://arxiv.org/abs/2402.01812
https://arxiv.org/abs/2402.01812
https://arxiv.org/abs/2402.01812
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2402.15000
https://arxiv.org/abs/2402.15000
https://arxiv.org/abs/2402.15000
https://arxiv.org/abs/2304.09797
https://arxiv.org/abs/2304.09797
https://arxiv.org/abs/2304.09797
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

{COT_gold} Please provide feedback to769

the students on the mistakes they have770

made. You need to fill out a rubric and771

classify the mistakes into the following772

categories:773

1. Conceptual Mistakes: The student has774

misunderstood the concept or has applied775

the wrong concept.776

2. Computational Mistakes: The student777

has made a mistake in the calculations.778

3. Procedural Mistakes: The student has779

made a mistake in the procedure of solving780

the problem.781

4. Mistake in understanding the question:782

The student has made a mistake in783

understanding the question.784

5. Mistake in the first step: The student785

has made a mistake in the first step of786

the solution.787

6. Mistake in the first half: The student788

has made a mistake in the first half of789

the solution.790

7. Mistake in the second half: The student791

has made a mistake in the second half of792

the solution.793

8. Mistake in the last step: The student794

has made a mistake in the last step of795

the solution.796

9. No mistake: The student has not made797

any mistake.798

Please first provide feedback then799

fill the rubric and then finally tell800

your feedback to the student in between801

<feedback> and </feedback> tags as shown802

below:803

For example, if you want to tell the804

student that they have made a mistake in805

the first step and a conceptual mistake,806

then you need to write the following:807

<feedback> 1,4 </feedback> Do not write808

anything else in between <feedback> and809

</feedback> tags except the numbers.810

Now, please provide feedback to the811

student on the mistakes they have made.812

B.2 Decomposer Data Creation813

B.2.1 Concepts data creation814

I have a question’s solution, tell me815

all the specific concepts, theorems and816

formulas (separated by a comma,) used in817

it. An example is given below.818

Question: How many primes are in the row 819

of Pascal’s Triangle that starts with a 1 820

followed by a 6? 821

Answer: If the row contains a 1, then 822

a 6, then the binomial coefficients must 823

be
(
6
0

)
and

(
6
1

)
. All we need to check now 824

are
(
6
2

)
and

(
6
3

)
, since

(
6
0

)
=

(
6
6

)
,

(
6
1

)
=

(
6
5

)
825

, and
(
6
2

)
=

(
6
4

)
.

(
6
2

)
= 6!

4!×2! = 15, and 826(
6
3

)
= 6!

3!×3! = 20. None of those is prime, 827

so there are 0 prime numbers in the given 828

row. 829

Concepts: Coefficients in Pascal’s 830

Triangle, Binomial Coefficients Formula, 831

Prime Numbers 832

Question: question 833

Answer: answer 834

Concepts: 835

B.2.2 Sub-question data creation 836

I have a question, it’s a solution and a 837

sub-question. 838

Your task is to break the question into 839

sub-questions based on the steps in the 840

answer. 841

Keep the following tips in mind: 842

1. Make sure not to break the 843

question into trivial sub-questions, the 844

sub-questions should be informative. 845

2. The sub-questions should not require 846

multiple steps to answer, something like 847

2-3 steps to solve is ideal. 848

3. One way to break the question could 849

be to identify what all quantities are 850

required in the question by observing it’s 851

answer and then try to frame sub-questions 852

based on the unknown entities. 853

4. Make sure to put each question in the 854

question tag like $ question(What is the 855

acceleration of the car as a function of 856

time?)$ 857

One example is given below. 858

Question: How many primes are in the row 859

of Pascal’s Triangle that starts with a 1 860

followed by a 6? 861

Answer: If the row contains a 1, then 862

a 6, then the binomial coefficients must 863

be
(
6
0

)
and

(
6
1

)
. All we need to check now 864

are
(
6
2

)
and

(
6
3

)
, since

(
6
0

)
=

(
6
6

)
,

(
6
1

)
=

(
6
5

)
865

, and
(
6
2

)
=

(
6
4

)
.

(
6
2

)
= 6!

4!×2! = 15, and 866(
6
3

)
= 6!

3!×3! = 20. None of those is prime, 867

so there are 0 prime numbers in the given 868

11

row.869

Sub-questions:870

$ question(How can the first two numbers871

be represented in form of binomial872

coefficients?)$, $ question(What are the873

values of all the coefficients in the874

row?)$, $ question(How many of the above875

numbers are prime?)$876

Question: question877

Answer: answer878

Sub-questions:879

B.3 Sub-answer data generation880

I have a question, it’s solution and a881

sub-question.882

I want you to answer the subquestion along883

with an explanation.884

Make sure to put the sub-answer in885

the answer tag like $sub-answer(The886

acceleration of the car at time t =887

2 seconds is speed / time = 2m/s/2s =888

1m/s2)$889

Think step by step.890

Question: question891

Answer: answer892

Sub-question: sub-question-array[i]893

Sub-Answer:894

12

	Introduction
	Related Work
	Methodology
	Decomposer
	Verifier
	Training with Decomposer Feedback

	Experiments
	Results
	Conclusion
	Training Details and Evaluation
	Training Data Creation
	Verifier Data Creation
	Prompt

	Decomposer Data Creation
	Concepts data creation
	Sub-question data creation

	Sub-answer data generation

