Under review as a conference paper at ICLR 2022

SPARSE HIERARCHICAL TABLE ENSEMBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning for tabular data is drawing increasing attention, with recent work
attempting to boost the accuracy of neuron-based networks. However, when com-
putational capacity is low as in Internet of Things (IoT), drone, or Natural User
Interface (NUI) application, such deep learning methods are deserted. We offer to
enable deep learning capabilities using ferns (oblivious decision trees) instead of
neurons, by constructing a Sparse Hierarchical Table Ensemble (S-HTE). S-HTE
inference is dense at the beginning of the training process and becomes gradu-
ally sparse using an annealing mechanism, leading to an efficient final predictor.
Unlike previous work with ferns, S-HTE learns useful internal representations,
and it earns from increasing depth. Using a standard classification and regres-
sion benchmark, we show its accuracy is comparable to alternatives, while hav-
ing an order of magnitude lower computational complexity. Our PyTorch imple-
mentation is available atht tps: //anonymous . 4open.science/r/HTE_
CTE-60EB/.

1 INTRODUCTION

During the last decade, Deep Neural Networks (DNNs) have become dominant for many ma-
chine learning tasks in computer vision, natural language processing, speech recognition, and oth-
ers (Goodfellow et al.,[2016)). However, when dealing with tabular data, DNNs superiority is in doubt
with non-deep models such as Gradient Boosting Decision Tree (GBDT) (Friedman, 2001)) being
the top choice for many machine learning practitioners. Currently, deep learning and deep neural
networks mostly refer to the same thing. Though the tight coupling between these two concepts is
natural, given the numerous published studies, these are two different concepts. Deep learning is
the learning of hierarchical useful representation, while neural networks are predictors using dot-
product based neurons as their basic elements. In this work, we decouple the connection of deep
learning to DNNSs by introducing a deep learning alternative based on differentiable ferns as the
basic computation unit. Ferns (also termed Oblivious Decision Tree (fern) in [Popov et al.| (2019);
Kohavi (1994); |[Lou & Obukhov|(2017)) are using K simple feature comparisons to choose among
2 possible outputs, and are hence far more expressive than a linear neuron with an activation func-
tion. In turn, deep predictors based on ferns can enjoy extreme sparsity, and provide accuracy-speed
trade off far beyond standard DNNs.

We introduce Sparse Hierarchical Table Ensemble (S-HTE), specifically design to face tabular data
tasks when extremely fast inference is needed. The basic neuron in a S-HTE architecture computes
the answer of K simple binary questions, creating a K'-length binary word. This word is then used
as an index to a table from which the required output is retrieved. The analog of a neuron layer (an
ensemble of neurons), is an ensemble of M tables, applied with their output summed. The deep
S-HTE consists of several layers, constructed hierarchically in order to learn deep representations.
During training, the architecture enables soft (ambiguous) splits in each fern node, allowing the
examples to flow in each of the fern’s branches with a certain probability. This enables the S-HTE
to be completely differentiable and hence to be fully optimized using SGD. However, since we aim
for extremely fast inference, we gradually sharpen the split decisions during the training process, so
only one leaf is active in each fern at inference time.

S-HTE can be implemented using any of the recent deep learning frameworks (e.g. TensorFlow,
Pytorch, etc.), and scales well to large problems, effectively trading speed for memory. While ferns
have been used in classification before (Popov et al.,2019; Krupka et al.,[2014), the method of Popov
et al. (2019)) is not sparse, while the ensembles of Krupka et al.| (2014) are not deep. Our method is

https://anonymous.4open.science/r/HTE_CTE-60EB/
https://anonymous.4open.science/r/HTE_CTE-60EB/

Under review as a conference paper at ICLR 2022

hence the fern-based method enabling results with accuracy comparable to deep MLPs, yet with a
fraction of the computing power.

The main motivation to deviate from dot-product neurons is the need for fast and efficient CPU
inference. Ferns are a good choice since they have a much better relation of representation capac-
ity to computational cost than a linear neuron. In representation richness terms, a binary classifier
built from a single fern with K queries has a VC-dimension of O(2%), compared to O(K) for a
linear neuron with K inputs. However, computationally they have the same O(K) cost. Consid-
ering the index produced the K fern queries as a one-hot vector, this intermediate representation
has 2% dimensions, but is nevertheless 2~ % -sparse. The table transforming the codeword to the
next representation has 2% rows, each containing an output vector for the next level D-dimensional
representation, for a total of 2K Dot parameters. Thus, a single fern provides a rich transformation
family of O(2% D,,,,;) parameters, computed using just O(K + D,,;) computations.

We demonstrate that despite the significantly non-linear elements and the extreme sparsity, networks
based on S-HTE layers can be successfully trained end-to-end. On a recent benchmark of tabular
data tasks (Gorishniy et al., 2021)) the method achieves accuracy comparable or slightly lower than
state of the art methods while using an order of magnitude lower computational complexity. This
trade off is highly valuable for applications on low-end GPU-lacking devices prevalent for example
in IOT, embedded or drone applications. Such low computational complexity capabilities are also
required for ‘keep-alive* devices, which demands maintaining long battery life.

Our main contribution is hence in introducing a fern-based method which is both deep and sparse,
while previous similar methods only have one of these qualities. We show that this combination
enables gaining order of magnitude in compute power, with small accuracy costs of 2 — 3% at most
on a contemporary benchmark. Our Pytorch code is open and available to the community

The rest of the paper is organized as follows: in section 2 we discuss the most relevant recent work.
In section 3 we describe our proposed S-HTE architecture. The computational complexity of the S-
HTE and other competitors is analyzed in section 4. The experimental details are detailed in section
5, and section 6 contains some concluding remarks.

2 RELATED WORK

In recent years gradient-based deep learning models for tabular data is getting increasing attention.
while our method mainly pinpoints inference speed, the vast majority of the latest work focuses on
accuracy improvements (Kadra et al.l 2021} |Gorishniy et al., 2021} [Popov et al., |2019; [Katzir et al.,
2020; [Fiedler, 2021}, [Yang et al.| 2018)). In this section we review some of the latest gradient-based
models, as well as other non-differentiable models which are the most relevant to the proposed
method.

Ensemble-based and multi-layered non-differentiable methods. For most tabular data tasks,
decision trees based architectures are currently the top-choice for both researchers and practitioners.
These architectures are divided into two main groups - ensemble of decision trees, and multi-layered
models with decision trees being the computational components. Ensemble of decision trees, mostly
trained in a boosting like manner, includes several widely used implementations, such as XGBoost
(Chen & Guestrin, [2016), LightGBM (Ke et al.,2017), and CatBoost (Prokhorenkova et al.,[2017).
Though these vary in details, their performance is quite similar. For example, the computational
component in XGBoost are Random Decision Trees (RDTs), but in CatBoost these are ferns. Ferns
are slightly weaker learners than trees in terms of capacity, but they are faster on modern machines
with SIMD (Single Instruction Multiple Data) capabilities (see for further discussion). Another
line of work is stacking several non-differentiable layers into multi-layered architectures (Zhou &
Feng), [2017; Miller et al., |2017). For example,|Zhou & Feng|(2017) presented a deep random forest
architecture in which several layers are stacked. Since random forest are not suitable for gradient
based learning, each such layer is trained separately, lacking the capability for end-to-end training.

Differentiable decision trees based architectures. The above methods are widely used and
achieves state of the art results on tabular datasets, but do not enable gradient flow and end-to-end
representation learning. To address this issue, several works enabling gradient based learning with

'https://anonymous. 4open.science/r/HTE_CTE-60EB/

https://anonymous.4open.science/r/HTE_CTE-60EB/

Under review as a conference paper at ICLR 2022

decision trees were published in recent years (Yang et al., 2018} Kontschieder et al.,|2015; [Hazimeh
et al., [2020; |Popov et al., 2019). The authors in|Kontschieder et al.[(2015) proposed the deep neural
decision forest, in which feature representation is learned using CNNs, and the classification is done
using differential decision trees. [Hazimeh et al.|(2020) propose to create differentiable tree routing,
by smoothing the decision functions in the internal tree nodes. [Popov et al.| (2019) suggested the
NODE architecture, in which they smooth ferns into differentiable ferns using the entmax function
(Peters et al., 2019)), but the fern output is dense with all the 2K fern leaves active at both train and
test time. The output of each layer is a logit classification vector, which is concatenated with the
input vector and pushed to the next layer in the architecture. The final prediction logit (2 or 3 output
neurons in the experiments) is the average across all layer predictions. Flat and deep architectures
({2,4,8} layers) were tested, with 2048 ferns each. Since the output neurons of each layer are direct
classification logits (Gorishniy et al.,[2021) there is no learning of internal representation. In a recent
study (Kadra et al., 202 1)) this method was found non scalable due to memory constraints or run time
issues (above 4 days of training), resulting from the unlimited dense output of the ferns involved.
The S-HTE method does not suffer from these problems. It learn an internal representation which
is not directly class-related. To achieve scalability and efficient inference it structurally limits the
number of active fern leaves, and shifts toward sharp ferns as training progresses.

State of the art DNNs for tabular data. There is an extensive research on how to operate standard
DNN models on tabular data. For example, Kadra et al.| (2021) reports that using a standard MLP
(with or without dropout) achieves inferior results. However, by using several regularization tech-
niques, they were able to boost the MLP performance. |Gorishniy et al.|(2021)) showed that using a
standard ResNet provides state-of-the-art results on several known datasets. |Shavitt & Segall (2018)
propose to infuse feature importance to standard DNNs by adding a coefficient for each feature
weight and solving the task using hyperparameter tuning scheme (resulting with what they termed
- ’regularization learning networks’). However, in their paper, they do not compare with properly
tuned GBDT implementations, which are the most appropriate baselines. Another line of work is to
incorporate attention mechanisms to solve tabular datasets tasks(Song et al., [2019; |Arik & Pfister,
2020; |Gorishniy et al.l [2021). FT-Transformer (Gorishniy et al., [2021) is such an example, using a
feature tokenizer to embed the input features and then applying several stacked attention layer over
the embedded features.

3 METHOD

In this section we introduce the core building block in our algorithm, then move on to explain how
to train such a model using gradient based learning

3.1 INTRODUCTION TO FERNS

The basic computing element of the S-HTE model accepts a representation vector z € R and
outputs a representation vector y € Rt The transformation is a pair of a word calculator (W)
and a voting table (V). W is a feature extractor applied on the input and returning a K-bit index
i.e. afunction W : RP — {0,115, The computed code-word is then used to select the output

K
representation form the voting table V' € R?" *Dout:

Bit functions - K simple bit functions are used to compute the code-word W (z; ©), each computing
a single bit. Each bit function compares a single feature to a threshold:

w”(z, 0F) = Q(u*x — th*) (D

Where u® € RP is a 1-hot vector, addressing a single feature from x. The learned parameters
in the bit function are ©F = [u*, th¥]. Notice that the output of the above comparison is a scalar,
hence an Heaviside function Q(-) is applied to produce the needed output: w*(z, ©%) € {0,1}.

Ferns - ferns are similar to standard decision trees, but with one important difference - the queries
in each node of the same level are fixed, i.e the choice of w; does not depend on the results of w; for

j < ¢ . Fern is a common machine learning algorithm, and is mostly known as the base predictors
of the CatBoost model (Prokhorenkova et al.,|2017). The computed code-word is denoted by

W(x;0) = (w’(z,0°),..,wE1(z, 0K71)) (2)

Under review as a conference paper at ICLR 2022

§
input
input

E f D_out //_\ %W e
ez \ g
. e 'L

\ |
(a) Single sharp fern \/§J>

(b) Ensemble of sharp ferns

Figure 1: Illustration of the fern sharp graph including the bit functions and the voting tables. a - the
bit functions operates on a single input features. Bits are concatenated into single word, pointing to
arow in the voting table. The output is a D,,,; dimensional vector. b - the voting tables’ outputs are
summed across ferns.

Since each bit function outputs a single bit, the code-word is a K -bit word in a binary expression.

Voting table - The computed code-word is then transformed to a numeric value and used as an index
to select the D,,;-dimensional output representation vector from a voting table V:

h(z) = V[W(z,0),] 3)

Notice that in the hard version of ferns, W points to a single row in the voting table V' and hence
the output h(z) is a vector. The scheme of a complete fern, including W and V is illustrated in

Figure[Ta]

Fern ensemble - Instead of using a single fern, the S-HTE layer consists an ensemble of M weak
learners {W,,,, V;,, }*_, . Ferns outputs are summed to get the layers’ final output (see Figure :

Yy = 27]\;{:1 iLm (Z) (4)

3.2 DIFFERENTIABLE FERNS

In section we describe the basic layer of the deep S-HTE architecture. However, In order to
enable end-2-end optimization using gradient based learning, we need to softener the hard compo-
nents:

Learnable bit functions - Instead of forcing bit functions to focus on pre-defined features, we
allow them to learn which feature are relevant. In Popov et al.[(2019), the entmax (Peters et al.,
2019) function was used to choose the features for each bit function. However, as [Popov et al.
(2019) reported, the entmax function is slow, and though it achieved the best results, it has a small
margin from the other feature selection options (e.g softmax, and sparsemax (Martins & Astudillo}
2016)). Hence, we drop the 1-hot vector u* € RP from Eq.|1} and replace it with a weights vector

as follows:
ewp(ﬁ b;)
i ewp(ﬁ bi)

Here, B are the learnable parameters that represent the contnbutlon of each input feature. Now, the
output is continuous and differentiable. Notice that the output of these bit function are linear com-
bination of the input with respect to the weights in U. At the beginning of the training process, the
weights will be set randomly, allowing multiple features to contribute, but as the training progresses,
we want the bit function to focus on a specific feature for the decision (for each of the bit functions
in each fern). Hence we will anneal the temperature parameter 3 from 1 to 8 >> 1.

u= SoftMaxg[B] wu;= (5)

Under review as a conference paper at ICLR 2022

Soft ferns - As mentioned, since the output of a bit function (see Eq. [1)) is a scalar, the Heaviside
function is used. Since Q(z) is not continuous in x = 0 and its gradient equals to zero everywhere
else, the use of this function is inappropriate for gradient based learning. Hence, a smooth linear
sigmoid is used instead:

1 z>1
q(z;t) = ”%t —t<z<t (6)
0 T < —t

This function behaves like the Heaviside function for values far from O but is linear in the section
[—t,t] and hence has a gradient in it. When ¢t — 0, ¢(z,t) approaches the Heaviside function.
Thus ¢ can be considered as a hyperparameter controlling the smoothness of the linear sigmoid. In
addition, this function has the property q(z;t) + q(—z;t) = 1. q(w*(a; ©F);t) can be interpret as
a ’soft’ bit, with ¢(w") estimating the probability of the bit to be 1 and ¢(—w") the probability to
be 0. As stated above, the word calculator W maps an example & € RP" to a single code-word, or
equivalently into a (row) one-hot vector in R2" . Denote the word calculator viewed as a function

into R2" by W, We now extend it to a soft word calculator W* : RP" — RQK, assigning each
possible word a probability-like value. For each code-word b € {0, ..., 2% — 1}, the activity level is
defined by

W(@; 0)b] = [] a(s(b, k) - w* (2 0%);1) @)
k=1

Where s(b, k)(—1)(1F2(:%) js the sign of the k** bit, with a(b, k) denotes the k" bit of the code-
word b in the standard binary expansion. s(b,k) is 1 if bit k¥ = 1, and —1 if bit & = 0. The
probability-like activity level of a word b is defined as the product of the *probability’ of its single
bits. For single hard fern, its output can be written as the product W - V. The soft fern is the
natural extension W* - V. Here instead of taking a single output from the table V, the Soft-fern
outputs a weighted word activation based on the activity levels of the word indices. Furthermore,
in our implementation, we may allow only B number of indices to be non-zero for computational
complexity considerations.

Annealing mechanism - The sparsity of the soft word calculator is controlled by the parameter ¢
of the linear sigmoid in Eq. [f] that acts as a threshold. When ¢ is large, most of the bit functions
are ’ambiguous’, i.e. not strictly O or 1, and the output will be dense. Thus the parameter ¢ controls

the output sparsity level. In particular, as ¢ — 0 the bit functions become hard and we converges
toward a hard fern with a single active output word. While we need dense flow of information and
gradients in the training phase, fast inference requires a sparse output. Hence, we use an annealing
schedule mechanism, such that ¢ is initiated as ¢ > 0, set to allow a fraction f of the bit functions
values to be in the soft zone’ [—¢; ¢]. The value of ¢ is then gradually lowered to achieve a sharp and
sparse classifier towards the end of the training phase.

3.3 MOVING TO A DEEP LEARNING S-HTE ARCHITECTURE

The above section describes a single layer of the deep S-HTE architecture. Similar to other deep
learning schemes, we can stack multiple such layers, where the input of layer j is the output of layer
1 for j > 7. The number of output features (i.e D) is arbitrary and should be tuned similarly to
tuning the number of neurons in a standard MLP. It is worth mentioning that other similar methods,
e.g (Popov et al.,|2019; Zhou & Fengl [2017) usually use D,,,,; = number of classes (for |Popov et al.
(2019) this is the case due to the computational burden of increasing D,,). By allowing arbitrary
D, size, we enable better representation learning. The final prediction will be the output of the last
layer and we train our model end-2-end with backpropagation. Our architecture is best presented in

figure 2]

Adding deep learning machinery - In the last several years, different regularization methods were
reported to achieve significant improvements for deep networks (Zhang et al., 2017; |Kadra et al.,
2021). In this paper, since we are using a deep model, we exploit these regularization techniques.
First, We experimented with different models architectures and found that using a ResNet-like struc-
ture (i.e the input to layer j will be the sum of the output of layer ¢ with the input of layer 7, where

Under review as a conference paper at ICLR 2022

o=
%ﬁ} | 8 m
NSy IR
| o -

concatenate concatenate

I_‘
090,
R

Ll

L
-
000

b3 final
prediction

o0

L
CCCIN
L,

Figure 2: Deep S-HTE architecture - multiple layers scheme. Each voting table output is summed
to get the layer’s output. This output in then concatenated with the input example (green lines), and
the outputs of each layer is summed across layers (red line).

j > 1) along with the concatenation of the input example, yields the best results. Second, we add a
batch normalization layer, a weight decay factor and use different learning rate schedulers.

4 COMPUTATIONAL COMPLEXITY COMPARISON

We analyze computational complexity based on the number of expected operations in S-HTE and
other relevant models: MLP, FT-Transformer (Gorishniy et al., 2021), NODE (Popov et al.| [2019)
and decision tree ensembles. For deep methods, we assume for simplicity that all layers have the
same internal representation dimension D. For operation count we consider multiply-accumulate as
a single operation, and denote by I the number of instructions required for a bit function compu-
tation. Typically [is 2 — 3 operations: comparison to a threshold, a shift left operation, and an or
operation to store the computed bit.

S-HTE complexity. A standard S-HTE uses a single B-bits index for inference in each fern. A
single fern inference hence requires the index computation with B operations and then addition of
the relevant table row to the output representation with d operations. The total inference cost for L
layers of M ferns each is

LM(BI + D) @®)

In this analysis we neglect the cost of bypass additions (LD operations) and classification head
computation (D K operations, with C' the number of classes).

When ferns with P split-able bits are considered, the number of active words used in inference is
27 For each such word index computation required P bit operations, and probability computation
requires P multiply operations. The total computation of the 2© words is hence 2P - 2© operations.
Adding the relevant 2° table rows with the corresponding weights requires 2°° D operations, so the
total inference cost is

LM (BI + 27 (2P + D)))

In our multi-word predictors, we consider modest numbers of ferns A/ < 100 and split-able bits
P=23.

NODE. The NODE architecture is similar to our multi-word predictors, but with the crucial differ-
ence of using all bits as split-able bits, i.e. P = B. Since the dependence on P is exponential, this
lead to a dramatic complexity difference.

Standard MLP. The first layer in an MLP with D,,, input includes D,,, D operations and the rest of
the layers are with D? operation count. the total complexity (ignoring bypass and the classification
head) hence has a quadratic dependency on D

(L - 1)D2 + DinD (10)

Under review as a conference paper at ICLR 2022

FT-Transformer. The architecture suggested in|Gorishniy et al. (2021) includes a feature tokenizer,
folllowed by L = 3 attention layers and a prediction head. Encoding by the tokenizers requires
D;,, D operations. The attention model in each layer requires 3D;, D? operations for @, V, K matri-
ces creation, D2, D for computing the D;,, key-query matrices, and D? D for computing the output
messages. The MLP following each attention module also requires D;,, D? operations, so the total

per L layers (ignoring the negligible O(D;,, D) operations) is
L(3D;,D* + 2D? D) (11)

Shallow ensemble trees. A single tree in such ensembles is extremely fast, requiring BI operations
for bit function compute followed by C' additions to gather the class votes. However, the total
inference cost is M (BI + C') and the number of trees required by such methods is very large due to
their shallow architecture and step-wise optimization. Specifically, Thousands of trees are typically
required to reach high accuracy, while S-HTE typically uses several hundreds.

In section [5 the speed and accuracy of S-HTE is compared to the above-mentioned methods with
their real implementation parameters (see table[2).

5 EXPERIMENTS

Experimental settings. The S-HTE is fully implemented in PyTorch and is publically availabl
The training code was developed to utilized the GPU, and models were trained on a 1080TI Nvidia-
GPU. We used ADAM (Kingma & Bal [2014) as optimizer, and enabled different learning rates
for the ferns’ and the voting tables’ parameters - voting table parameters may have a high learning
rate as opposed to word calculators, where each gradient-step can dramatically effect the function’s
output. We also report how we set hyper-parameters’ values in our experiments, as well as the
model’s architecture and weights initialization.

Training procedure. Similar to DNNs, the S-HTE architecture is trained end-to-end with mini-
batch SGD. We used batch sizes related to the dataset size (following (Gorishniy et al., [2021)) and
trained the network for 80 epochs. For classification tasks, we minimize the cross-entropy loss
function, and for regression tasks we minimize the mean-square-error. We save the final trained
model (in which all the ferns are sharp and only a single word is used for the voting table) and the
best model on a held-out validation set. The latter is usually not completely sparse and hence may
achieve better results.

weights initialization. Similar to NODE (Popov et al.| 2019), we initialize the ferns feature se-
lection matrix uniformly w; ; ~ U(0,1) fori € 1,.., K and j € 1,..., M. The thresholds values
are initialized with zeros. The weights in the voting table V' are initialized with a standard normal
distribution V™ ~ A/(0;1). The softmax temperature parameter /3 is initialized as 1 and annealed
towards 30 at the end of training. The smooth step function threshold (¢ in Eq. [6)) is controlled by an
additional parameter termed p - this parameter controls the percentage of examples with non-zero
gradient (see section [3.2]for more details). We set p = 0.99 at the beginning of training, and slowly
decay it towards 0.

5.1 COMPARISON TO THE STATE-OF-THE-ART

Dataset. We’ve experimented with six tabular datasets: Adults Income (AD), ALOI (AL), Jannis
(JA), Higgs-small (HI), California housing (CA), and Year (YE). These datasets were all taken from
Gorishniy et al.| (2021)) open-source library and were already pre-processed. For multi-class datasets
(AL, JA) we report the accuracy on the test set, and for binary classification problems (AD ,HI),
we report the Area Under the Curve (AUC) of the ROC curve. For regression problems (CA, YE)
we report the Root-Mean-Square-Error. A detailed description of the datasets can be found in the
appendices.

Methods. We compare our model to the following baselines:

* CatBoost. a GBDT implementation which uses ferns as the computational component.
* XGBoost. Similar to CatBoost, with RDTs as the computational component.

https://anonymous.4open.science/r/HTE_CTE-60EB/

https://anonymous.4open.science/r/HTE_CTE-60EB/

Under review as a conference paper at ICLR 2022

Table 1: Comparison to the state-of-the-art in terms of accuracy. All comparative results are taken
from the recent research on tabular data (Gorishniy et al.| 2021)). Dataset details can be found at the
appendix [Al Results are reported for S-HTE which has one active word per fern, and *best S-HTE’,
which has several active words (1-10, stated in the parenthesis).

AD 1 ALt JA 4 HI 1 CA | YE |
CatBoost, 0.797 0.946 0.721 0.724 0.430 8913
XGBoosty 0.775 0.925 0.721 0.705 0.463 9.446
MLP 0.796 0.954 0.719 0.721 0.494 8.861
TabNet 0.796 0.954 0.724 0.717 0.513 9.032
FT-Transformer, 0.799 0.953 0.725 0.723 0.464 8.820
NODE (flat) N/A 0.918 N/A N/A 0.464 N/A
NODE (optimized) | 0.791 N/A 0.726 0.724 N/A 8.774
S-HTE 0.801 0.948 0.672 0.695 0518 9.253
best S-HTE 0.817 (4) | 0.953 (4) | 0.707 (10) | 0.708 (6) | 0.474 (1) | 9.210 (2)

* MLP. Simple feed forward network, with several standard Linear-ReLu-Dropout layers,
with dropout regularization.

» TabNet. Sequential attention based model, enabling feature selection for each decision
step.

* FT-Transformer. Transformer based model designed to handle tabular datasets.

* NODE. Dense differeniable ensemble of ferns (this method is the closest to the ours).
NODE has two variants - a flat model (i.e. single layer of ferns) and a optimized model in
which several layers are used. Both variants were used as described in |Popov et al.[(2019).

We used the same parameters for each of the datasets (L = 3, M = 100, K = 7, D = 40), with the
exception of AL dataset which has 1000 output classes (we used L = 4, K = 8, and M, D remained
the same).

The results are summarized in Table[I] The comparative methods’ results were taken from|Gorishniy
et al.| (2021)), which published a comprehensive analysis over several contemporary deep learning
models for tabular data. These results advocate the S-HTE model as a competitive method in terms
of accuracy, specifically for the AD, AL, and CA datasets. We report the results of the fully-sparse
model, which contains completely sharp ferns, and the best trained model on a held-out validation
set, which is not necessarily fully sparse. For the latter, the average number of active words in a
fern is reported next to the results on each dataset in parenthesis. In comparison to NODE, NODE
works better for JA, HI, CA, and YE datasets, with a small margin compared to the best S-HTE,
while S-HTE is superior on AD and AL.

Table 2: Comparison to the state-of-the-art in terms of computational complexity. The equations
from section [4] are used to compute the algorithms operation count. The numbers represents thou-
sands of operations.

AD AL JA HI CA YE
CatBoost, 40 2036 44 40 38 38
XGBoosty 40 2036 44 40 38 38
MLP 602.38 26.21 31.21 34.42 233.68 | 1155.43
FT-Transformery | 16025.86 | 82575.36 | 60466.18 | 12536.83 | 5431.3 | 46033.92
NODE 24147.97 | 66340.86 | 2134.017 | 2202.94 | 93594 | 2002.94
S-HTE 18.3 17.9 18.3 18.3 18.3 18.3
best S-HTE 124.93 4163.58 561.15 159.74 75.77 159.74

As discussed in section i} we compared the S-HTE to the state-of-the-art methods for tabular data
by the number of expected operations. Table [2| shows the number of operations (in thousands)
used by the analyzed methods on the examined datasets (Based on hyper parameters taken from the
official repository of (Gorishniy et al., 2021ﬂ). As can be seen, S-HTE has the lowest number of

*https://github.com/yandex-research/rtdl/tree/main/output

https://github.com/yandex-research/rtdl/tree/main/output

Under review as a conference paper at ICLR 2022

Table 3: Accuracy as a function of S-HTE model depth on the Adult income dataset. As in the other
experiments, a 3-layers model works best on this dataset. As can be seen, deep models provide
accuracy gains over shallow ones (for example, the 4 layers model is better than the 2 layers one).

Model Variant | Final Model Results | A

1-Layer 0.754 -

2-Layers 0.757 +0.4%
3-Layers 0.772 +2.4%
4-Layers 0.769 +1.9%

Table 4: Ablation study over the annealing components. We test the effect of feature sparsity in a
bit function (using the 3 parameter) and of word sparsity in a fern (using the p parameter). Results
are stated on the Jannis dataset, for which the gap between dense and sparse results are significant.

Model Variant | Final Model Results | A
Without annealing 0.667 -
Annealing of 3 only 0.693 +2.6%
Annealing of p only 0.648 -1.9%
Annealing both p and 3 0.672 +0.5%

operations, often by orders of magnitude. Note that these results are obtained without an extensive
hyper-parameter tuning study, from which S-HTE can probably gain more.

5.2 ABLATIONS STUDY

From Flat to Deep Models. To examine the benefits of deep representation learning, we compare
the results of flat model against L = {2,3,4}. In this experiment we fixed the rest of the model’s
parameters - M = 50, K = 7, D = 40. The accuracy of the final trained models (i.e. containing
only sharp ferns) are presented in Table [3| As the results indicate, using deeper models improved
the results by up to ~ 2.4%. Similar experiments with the other datasets show that for all datasets
except AL L = 3 yielded the best results.

Annealing Mechanism Ablation Study. As discussed in section[3.2] there are two annealing mech-
anisms in the S-HTE architecture - annealing the p parameter for sparse usage of active words, and
annealing the [parameter for obtaining feature-specific bit functions. We examine the effect of
these mechanisms by disabling them. In these experiments we used the Jannis dataset, on which a
large accuracy gap between a complete sparse model (our S-HTE), and a complete dense model (the
optimized version of NODE) was observed. We use a 3-layered model, with 100 ferns in each layer,
and 7 bit functions in each fern. Surprisingly, the best result was obtained using a partially annealed
version of the S-HTE model - annealing the 3 parameter only, keeping p = 0.99. This means using
multiple active words is beneficial, but each bit is these words should depend on a single feature.
Upon reflection, this result has a natural explanation - tabular data features are typically heteroge-
neous and different in nature (i.e. they describe different physical quantities, not similar entities as
pixels in different locations). Hence considering each feature in isolation is a reasonable strategy,
and enforcing such feature isolation is providing a useful prior.

6 CONCLUSION

In this work, we introduced the S-HTE architecture - a sparse deep learning model for tabular data
trained end-to-end with back-propagation. S-HTE uses ferns as the basic computing component,
with a single active word for each fern, making is extremely efficient and particularly applicable for
low-end CPU-based devices. Using a significantly lower operation count, accuracy results obtained
by S-HTE are often comparable to state of the art architectures, as measured on a recent benchmark.
Ablative studies show S-HTE networks earn from depth, and that computing sparse bit functions
relying on single features is beneficial to both accuracy and efficiency. In the future we plan to
experiment with data-specific hyper-parameter tuning, and incorporation of recent advances in reg-
ularization techniques, which were found to have a significant effect on MLP performance (Kadra
et al.,[2021).

Under review as a conference paper at ICLR 2022

7 ETHICS STATEMENT

As far as we are aware, there are no ethic concerns in this work.

8 REPRODUCIBILITY

Our code is publicly available at https://anonymous.4open.science/r/HTE_
CTE-60EB/. All of the datasets used in this paper were taken from a previous published work
(https://github.com/yandex-research/rtdl/tree/main/output). The datasets were preprocessed in ad-
vanced (by the above repository owners), and we kept the same train-validation-test splits.

REFERENCES

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. arXiv, 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

James Fiedler. Simple modifications to improve tabular neural networks. arXiv preprint
arXiv:2108.03214, 2021.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189-1232, 2001.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. arXiv preprint arXiv:2106.11959, 2021.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In International Conference on
Machine Learning, pp. 4138—4148. PMLR, 2020.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Regularization is all you need:
Simple neural nets can excel on tabular data. arXiv preprint arXiv:2106.11189, 2021.

Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-dnf: Effective deep modeling of tabular data. In
International Conference on Learning Representations, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30:3146-3154, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ron Kohavi. Bottom-up induction of oblivious read-once decision graphs: strengths and limitations.
In AAAIL pp. 613-618. Citeseer, 1994.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE international conference on computer vision, pp.
1467-1475, 2015.

Eyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar Hillel, Daniel Freedman, and Simon Stachniak.
Discriminative ferns ensemble for hand pose recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3670-3677, 2014.

Yin Lou and Mikhail Obukhov. Bdt: Gradient boosted decision tables for high accuracy and scoring
efficiency. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1893-1901, 2017.

10

https://anonymous.4open.science/r/HTE_CTE-60EB/
https://anonymous.4open.science/r/HTE_CTE-60EB/

Under review as a conference paper at ICLR 2022

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International conference on machine learning, pp. 1614-1623.
PMLR, 2016.

Kevin Miller, Chris Hettinger, Jeffrey Humpherys, Tyler Jarvis, and David Kartchner. Forward
thinking: Building deep random forests. arXiv preprint arXiv:1705.07366, 2017.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. arXiv
preprint arXiv:1905.05702, 2019.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. arXiv preprint arXiv:1706.09516,
2017.

Ira Shavitt and Eran Segal. Regularization learning networks: deep learning for tabular datasets.
arXiv preprint arXiv:1805.06440, 2018.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceed-
ings of the 28th ACM International Conference on Information and Knowledge Management, pp.
1161-1170, 2019.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural decision trees. arXiv
preprint arXiv: 1806.06988, 2018.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Zhi-Hua Zhou and Ji Feng. Deep forest. arXiv preprint arXiv:1702.08835, 2017.

A DATA
Datasets
Table 5: Datasets description

Name #Train # Val. #Test #Features Task #Classes Batch size
Adults Income 26048 6513 16281 14 Classification 2 256
Jannis 53588 13398 16747 54 Classification 4 512
Higgs-small 62752 15688 19610 28 Classification 2 512
ALOI 69120 17280 21600 128 Classification 1000 512
California Housing 13209 3303 4128 8 Regression - 256
Year 370972 92743 51630 90 Regression - 1024

11

	Introduction
	Related work
	Method
	Introduction to ferns
	Differentiable ferns
	Moving to a deep learning S-HTE architecture

	Computational complexity comparison
	Experiments
	Comparison to the state-of-the-art
	Ablations Study

	Conclusion
	Ethics Statement
	Reproducibility
	Data

