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ABSTRACT

Ensuring synthesizability in generative small molecule design remains a major
challenge. While recent developments in synthesizable molecule generation have
demonstrated promising results, these efforts have been largely confined to 2D
molecular graph representations, limiting the ability to perform geometry-based
conditional generation. In this work, we present SYNCOGEN (Synthesizable
Co-Generation), a single framework that combines simultaneous masked graph
diffusion and flow matching for synthesizable 3D molecule generation. SYNCO-
GEN samples from the joint distribution of molecular building blocks, chemical
reactions, and atomic coordinates. To train the model, we curated SYNSPACE, a
dataset containing over 600K synthesis-aware building block graphs and 3.3M
conformers. SYNCOGEN achieves state-of-the-art performance in unconditional
small molecule graph and conformer generation. For protein ligand generation
in drug discovery, the model delivers competitive performance in both molecular
linker design and pharmacophore-conditioned generation across a range of targets.
Opverall, this multimodal formulation represents a foundation for future applications
enabled by non-autoregressive molecular generation, including analog expansion,
lead optimization, and direct structure conditioning.

1 INTRODUCTION

Generative models significantly enhance the efficiency of chemical space exploration in drug discovery
by directly sampling molecules with desired properties. However, a key bottleneck in their practical
deployment is low synthetic accessibility, i.e. generated molecules are often difficult or impossible to
produce in the laboratory (Gao & Coleyl 2020). To address this limitation, recent work has turned
to template-based methods that emulate the chemical synthesis process by constructing synthesis
trees that link molecular building blocks through known reaction templates (Koziarski et al., [2024;
Cretu et al.|[2024; |Seo et al., 2024} |Gainski et al., [2025; |Gao et al., [2024; Jocys et al., [2024; [Swanson
et al., 2024). These representations, while useful for downstream experimental validation, do not
describe the underlying 3D geometry and thus cannot capitalize on the conformational information
that is often crucial for diverse chemical and biological properties.

Parallel advances in generative molecular design have explored spatial modeling at the atomic
level. Inspired by advances in protein structure prediction (Yang et al., 20255 |Campbell et al.,
2024; Wang et al., [2025) and the development of generative frameworks such as diffusion and flow
matching, recent work has focused on directly sampling 3D atomic coordinates of small molecules
(Hassan et al., 2024} Jing et al., 2022} |Fan et al.,[2024). These methods learn to generate spatially
meaningful, property-aligned conformations along with molecular graphs. The ability to model
atomic coordinates directly increases the expressivity of these approaches, enabling applications such
as pocket-conditioned generation (Lee & Chol [2024), scaffold hopping (Torge et al.l 2023 Yoo et al.|
2024), analog discovery (Sun et al.| 2025)), and molecular optimization (Morehead & Cheng| |[2024).
However, without considering practical synthesis routes, integrating synthesizability constraints into
these models remains a major challenge, and most existing 3D generative approaches do not ensure
that proposed molecules can be made in practice.

This work introduces SYNCOGEN (Synthesizable Co-Generation), a generative modeling framework
aiming to bridge the gap between 3D molecular generation and practical synthetic accessibility
(Figure[T). Our main contributions are as follows:
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Figure 1: SYNCOGEN is a simultaneous masked graph diffusion and flow matching model that
generates synthesizable molecules in 3D coordinate space. Each node corresponds to a building
block, and edges encode chemical reactions. Note that nodes are not necessarily linear and that the
leaving groups are not displayed.

* Generative Framework: We propose a novel generative framework that combines masked graph
diffusion with flow matching in unified time to jointly sample from the distribution over building
block reaction graphs and of 3D coordinates, tying structure- and synthesis-aware modeling.

* Molecular Dataset: We curate a new dataset SYNSPACE, comprising 622,766 synthesizable
molecules represented as building block reaction graphs, along with 3,360,908 associated low-
energy conformations. Compared to synthon-based datasets, this dataset enables models to
generate more readily synthesizable molecules and directly suggest streamlined synthetic routes.

* Empirical Validation: We demonstrate that SYNCOGEN achieves state-of-the-art performance
in 3D molecule generation, producing physically realistic conformers while explicitly tracing
reaction steps. Ablations show our modelling choices are crucial for the performance. Importantly,
SYNCOGEN performs 3D conditional molecular generation tasks including linker design and
pharmacophore-conditioned generation, highlighting its applicability for drug discovery.

2 BACKGROUND AND RELATED WORK

Flow Matching. Given two distributions pg and p1, and an interpolating probability path p; such
that p;—g = po and p;—1 = p1, flow matching (Lipman et al., 2023} |Albergo et al.,|2023; [Liu et al.,
2023} [Peluchetti, |2023}; |Tong et al.| | 2023)) aims to learn the underlying vector field u, that generates
pt. Since u, is not known in closed form, flow matching instead defines a conditional probability
path p,|; and its corresponding vector field u|;. The marginal vector field u; can then be learnt with
a parametric vy by regressing against u;; with the CFM objective:

ECFM(Q) - Et7x1~p1,x~pt‘1(-|x1)Hvt(x; 9) - ut\l(x|xl)||2 (1)

Masked Discrete Diffusion Models. Let x ~ pga, be a one-hot encoding over K categories.
Discrete diffusion models (Austin et al., 2021; Sahoo et al.,|2024; [Shi et al.| [2024)) map the complex
data distribution pg,, to a simpler distribution via a Markov process, with absorbing (or masked)
diffusion being the most common. In the masked diffusion framework, the forward interpolation
process (p¢)tefo,1) With the associated noise schedule (ay)¢cjo,1) results in marginals q(z:|x) =
Cat(z;; ayx + (1 — a)m), where z; and m denote intermediate latent variables and the one-hot
encoding for the special [MASK] token, respectively. The posterior can be derived as:

(2|20, %) = {Cat(zs,zt) Z; #m

Cat(z,; Umokmtloe—ax) 5, —

@

The optimal reverse process pg(zs | 2¢) takes the same form but with 2¢(z¢,t) in place of the true x.
We adopt the zero-masking and carry-over unmasking modifications of Sahoo et al.| (2024).
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Multimodal Generative Models. Multimodal data generation (e.g. text-images, audio-vision,
sequences/atomic types and 3D structures) represents a challenging frontier for generative models
and has seen growing interest in recent times. Current approaches for this task typically either — 1)
tokenize multimodal data into discrete tokens, followed by a autoregressive generation (Meta), [2024;
Xie et al., 2024} |Lu et al.,[2024), or 2) utilize diffusion / flow models for each modality in its native
space (Lee et al.| 2023 [Zhang et al.| 2024; (Campbell et al.| 2024; [rwin et al.| 2025). Diffusion and
flow models also offer flexibility in terms of coupled (Lee et al., 2023} Irwin et al.,[2025) or decoupled
(Campbell et al.l [2024; [Bao et al., 2023} |Kim et al., [2024) diffusion schedules across modalities.
SYNCOGEN uses a coupled diffusion schedule but at two resolutions, with discrete diffusion for
graphs of building blocks and reactions, and a flow for atomic coordinates in building blocks.

3D Molecular Generation. Several recent works (Irwin et al., 2025} |Le et al., 2024} |Vignac et al.|
2023} [Huang et al., [2023; [Dunn & Koes| 2024} have studied unconditional molecular structure
generation by sampling from the joint distribution over atom types and coordinates. However,
these models lack the ability to constrain the design space to synthetically accessible molecules. In
concurrent work, (Shen et al., 2025) uses generated 3D structures to guide GFlowNet policies in
designing the graph of synthon-based linear molecules, but does not account for structural quality.

Synthesizable Molecule Generation. Beyond directly optimizing synthesizability scores (Liu et al.}
2022;Guo & Schwaller, [2025) — which are often unreliable — the predominant approach to ensuring
synthetic accessibility involves modifying generative models to incorporate reaction templates. Early
methods explored autoencoders (Bradshaw et al., 2019;[2020)), genetic algorithms (Gao et al., [2022),
and reinforcement learning (Gottipati et al.| 2020; [Horwood & Noutahi, 2020). More recently,
GFlowNet-based (Koziarski et al., [2024; [Cretu et al.| [2024; [Seo et al.| 2024} |Gainski et al., [2025))
and transformer-based (Gao et al., [2024} Jocys et al., [2024) methods have gained prominence. Such
generative models have already shown practical utility in biological discovery tasks (Swanson et al.,
2024)). However, most methods only generate molecular graphs and do not produce 3D structures.
The recent CGFlow [Shen et al.|(2025) performs conditional 3D generation via a GFlowNet policy
augmented with flow matching; however, CGFlow requires a full training for each target pocket.

3 DATASET

Training a synthesizability-aware model to co-generate both 2D structures and 3D positions requires a
dataset of easily synthesizable molecules in an appropriate format. In addition to atomic coordinates,
this includes a graph-based representation from which plausible synthetic pathways can be inferred.
A common approach is to use synthons—theoretical structural units that can be combined to form
complete molecules(Baker et al., 2024; |Grigg et al.||2025; Medel-Lacruz et al., [2025). Synthon-based
representations do not guarantee the existence of a valid synthesis route, and they do not directly
provide one even if it exists. Moreover, they lack the flexibility to constrain the reaction space, which
is often critical when prioritizing high-yield, high-reliability reactions or operating within the limits
of automated synthesis platforms such as self-driving labs (Abolhasani & Kumacheva, 2023)).

Alternatively, many synthesis-aware generators employ external reaction simulators, such as RDKit,
to couple building blocks iteratively. While convenient, such black-box steps offer no fine-grained
control when a reagent has multiple reaction centers, distinct atoms or atom sets that can each serve
as the specific site of bond formation or cleavage in a coupling reaction. They also do not define
atom mappings between reactants and products, making it impossible to trace product atoms back to
their parent building blocks, which complicates edge assignment in building block graph generation.
To overcome these limitations, we curate a new dataset SYNSPACE (Figure[2) comprising building
block-level reaction graphs pairs with corresponding atom- and block-level graphs. We then calculate
multiple 3D conformations for each graph using semi-empirical methods (Bannwarth et al., 2019).

3.1 SYNSPACE: GRAPH GENERATION

We begin by constructing a vocabulary of 93 commercially available, low-cost building blocks and 19
high-yield reaction templates. This vocabulary is adapted from the collection proposed by [Koziarski
et al.| (2024)), retaining reactions that (1) ensure all product atoms originate from the two input
reagents, and (2) involve at most one leaving group per reagent. We emphasize that these are not only
feasible chemistries, but also simple and reliable chemical reactions with readily available building
blocks that can enable rapid multi-step synthesis.



Under review as a conference paper at ICLR 2026

Building Reaction Reaction Reactant Reaction 3D
block center selection selection center coordinate
selection selection selection generation

Buchwald- ¢
et ® 1'/@"' —_ . —
.

¢

Coupling

Amide
coupling

wa
:
5

r
{Q};;
\

Figure 2: Graphical overview of SYNSPACE creation process. Highly synthesizable molecules are
procedurally constructed by sampling synthesis pathways from a predefined set of building blocks and
reactions. Starting from an initial building block, the procedure selects a reaction center, a compatible
reaction, and a suitable reactant. This process is iteratively repeated for a fixed number of reaction
steps. After the final structure is assembled, multiple low-energy 3D conformations are generated.

We procedurally generate SYNSPACE from this vocabulary by iteratively coupling building block
graphs at their respective reaction centers with compatible chemical reaction templates, described
in detail in Appendix We obtained 622,766 building block reaction graphs, each constructed
from 2 to 4 sequential reactions. For each resulting molecule, we generate multiple low-energy
conformations and retain their atomic coordinates, with a total of 3,360,908 conformations.

Note: Injectivity. Many commercially available building blocks contain multiple reaction centers,
each compatible with a different set of corresponding reaction centers on other building blocks. In
this way, a building block-level reaction graph G, = (X, E) is not fully specified when edges are
parametrized by the reaction alone. To achieve an injective correspondence, we therefore label edges
from node i to j > i by the triple e;; = (r,v;,v;), where r is the coupling reaction and (v;, v;)
are the participating reaction centers on the source and destination blocks, respectively. Strictly
speaking, stereoisomers that form during reactions collapse to the same (X, E') representation, but
this granularity suffices for the scope of the current work.

3.2 SYNSPACE: CONFORMATION GENERATION

For each molecular graph, 50 initial conformers were generated using the ETKDG (Riniker &
Landrum| 2015)) algorithm (RDKit implementation). These structures were energy-minimized using
the MMFF94 force field, and all conformers within 10 kcal/mol of the global minimum were retained.
The resulting geometries were then re-optimized with the semi-empirical GFN2-xTB (Bannwarth
et al, 2019) method, after which the same 10 kcal/mol energy threshold was applied. At every stage,
redundant structures were removed by geometry-based clustering (RMSD < 1.5). This workflow
yields, on average, 5.4 distinct conformers per graph. Relative to exhaustive approaches such as
CREST (Pracht et al.| 2024), the workflow is several orders of magnitude faster; despite occasionally
omitting some conformations, the retained structures are diverse and reproduce the bond-length,
bond-angle, and dihedral-angle distributions observed in CREST-derived datasets (see Section[5.1).

3.3 SYNSPACE: PHARMACOPHORE GENERATION

For each conformer associated with a molecule in SYNSPACE, we generate a pharmacophore profile
consisting of one-hot pharmacophore types Xppam € {0, 1}Vrm*Nwves and positions Cpparm €
R Npharm %3 using ShePhERD Adams et al.[(2025). Here, Npharm and Nyypes correspond to the number
of pharmacophore features and the number of pharmacophore types, respectively.

4 METHODS

Notation. Let B be the building-block vocabulary and R the set of reaction templates, with
cardinalities B := |B| and R := |R|. We write N for the maximum number of building blocks
that any molecule in the training set can contain, and M for the maximum number of atoms in a
single building block. For each block b € BB we denote its set of reaction-center atoms by V(b); the
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global maximum of these counts is Viyax := maxpep|V(b)|. Hence, tensor shapes contain factors
such as B + 1 (to accommodate the masked token 7y in X), RV,2, + 2 (to accommodate the

no-edge and masked tokens Ag and 7g), together with the bounds IV and M introduced above. For
any coordinate tensor C' and binary mask S we define the mask-weighted centroid and its centered

version by C'g := ZXS:%C, C:=C-Cs.
SYNCOGEN. SYNCOGEN generates building block-level reaction graphs and coordinates. Each
molecule is represented by a triple (X, E,C) where X € {0, 1}V*IBl+1 encodes the sequence

of building-block identities, E € {0, 1}V *N*|RIViax+2 Jabels the coupling reaction (and centers)
between every building block pair, and C' € RN *M*3 gtores all atomic coordinates. We detail the
parameterization of graphs (X, E) in Appendix Training combines two diffusion schemes: 1) a
discrete absorbing process on (X, F) using the categorical forward kernel of|Sahoo et al.{(2024), and
2) a continuous, visibility-aware process on C' whose endpoints are (i) a rototranslationally-aligned
isotropic Gaussian and (ii) a re-centered ground truth, considering all "visible" atoms in the prior (see
Section[d.2)). The code is available here!

4.1 MODEL ARCHITECTURE

We adapt SE(3) equivariant architecture originally designed for all-atom molecular design
(SEMLAFLOW (Irwin et al., [2025)), as the principal backbone to generate both coordinates and
graphs. At each timestep ¢, SYNCOGEN predicts building block logits L;*, LZ and a shifted co-

ordinate estimate C~’0t The loss is the weighted sum of the cross-entropy term Lgrapn ON (X, E),
the masked coordinate MSE term Ly, and the short-range pairwise distance term L, (see
Appendices [B.4]and [B.T3| for details). We define additional building-block-to-atom featurization in
Appendix and atom-to-building-block output layers in Appendix |B.7

Pharmacophore Conditioning Backbone. To accommodate pharmacophores as conditioning
information, we design a modified backbone to represent each as an "atom" with no weight
during centering operations. After atom featurization, pharmacophore types are fed through
a separate featurization head and concatenated to invariant atom type features, i.e. Xpodel =
[MLPy0m (Xatom), MLPpparm (X pharm )] € REVHNomam)Xde - Pharmacophore coordinates are concate-
nated directly to atomic coordinates, Codel = [C, Cpharm| € RW+Nowam) %3 " and therefore undergo
identical data augmentation beforehand (including that induced by data pairing, see Section 4.2)).
Cnodel and X poqer are then passed to the equivariant-invariant dynamics module. Prior to final output
layers, expanded atom-level hidden-layer outputs are truncated to the number of atoms N x M.

4.2 NOISING SCHEMES

Graph Noising. We corrupt true graphs (X, Ey) using the procedure described in Section In
practice, as all true edge matrices Fy are symmetric, we symmetrize the sampled probabilities for the
noising and denoising of E; correspondingly (see Appendix [B.8).

Coordinate Noising. For any time ¢ where X; contains a masked building block, we cannot
distinguish any of its M possible atoms from padding. For this reason, we design a visibility mask Sy
that considers all M atoms for each noised building block at time ¢ as valid. We then center the prior
by its visibility-masked centroid C'; = Cy — Cg,. Here, all atoms a € supp(S;) \ supp(Sp) are
potentially valid at time ¢, but represent padding indices in the true molecule.

We thus must interpolate a data-prior pair (C7, Cy) that contains a consistent number of valid atoms
|S¢| by which both C and C are centered. To handle atoms that do not appear in Cj, we record
their points in C, re-center Cy by the same visibility-masked centroid, then copy the atoms to
their respective indices in Cy. Essentially, we task the model with rearranging the true atoms while
disregarding padding by learning to fix padding atoms in place. See Algorithm 2]for formalization.
We note a caveat in equivariance in Appendix

Flexible Atom Count. Most 3D molecule generation methods require specifying the number of
atoms during inference. Because the prior of SYNCOGEN is over building blocks, we naturally
handle a flexible number of atoms during generation and model any excessive atoms as ghost atoms.


https://anonymous.4open.science/r/SynCoGen-13F7
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4.3 TRAINING-TIME CONSTRAINTS

For discrete diffusion, SYNCOGEN utilizes zero masked logit probabilities and logit unmasking. In
addition, we implement the following:

1. No-Edge Diagonals. We set the diagonals of all edge logit predictions Lf to no-edge, as no
building block has a coupling reaction-induced bond to itself.

2. Edge Count Limit. Let ky := 3, ;. L(Et[i, j, -] € {mp, Ar}) be the number of unmasked
true edges in the upper triangle of E;. If k, = n — 1, we have the correct number of edges for a
molecule containing n building blocks and therefore set all remaining edge logits to \p.

3. Compatibility Masking. Assume that for some E} an edge entry is already denoised, F;[i, j, | =
(r,v,v;), meaning that building block ¢ reacts with building block j via reaction r and centers
v; € V(X;), v; € V(X;). Define the sets of center-matched reagents

B4, :={be B| (bv) matches reagent A in 1},

v

B . 3)
B,’, :={b € B (b,v) matches reagent B in r}.
For every node slot i (resp. j) we construct a |3|-dimensional binary mask
Xip=1[bp€BA, ) X =1[b€BE, | k=1,...,|B]. )

so that the soft-max for X[, -] (resp. X¢[J, -]) is evaluated only over the 1-entries of X; (resp.
X;). Analogously, once a node identity X,[j] = b is denoised, incoming edge channels (3, j)
with j > i are masked to reactions e = (r, v;, v;) such that b € BZ, .

Put simply, we restrict logits to disallow loops (e.g. macrocycles), to impose a limit on the number of
edges, and to better ensure the selection of chemically compatible building blocks and reactions.

4.4 SAMPLING

Sampling begins by drawing a building block count n ~ Cat (), setting the node and edge
tensors to the masked tokens, X1 [i,-] = mx, E1[i, j,-] = ng forevery 0 < 4,5 < N, and padding
all (i > n) rows/columns with the no—edge token Ag. The initial coordinates are an isotropic
Gaussian C; ~ N(0, 1)V *M>3_ From this state, the sampler walks backwards in diffusion time,
and at each step it (i) recenters the current coordinates by the visibility mask S; derived from
X, (ii) generates node and edge logits and coordinate predictions with the trained model, (iii)
draws the next discrete state from (ii), and (iv) updates coordinates via an Euler step. After a final,
deterministic pass, we calculate (Xm EO) = arg max LE [---, k] and center the coordinates to

yield the molecule (X 0, Eo, C‘O). Complete pseudocode is provided in Appendix We note our
discrete and continuous schemes share a unified time. Lastly, we find inference annealing on the
coordinates (see Appendix [D.2)) yields small performance gains at sampling time.

Note: Inference-Time Edge Constraints. By construction, a molecule containing n connected
building blocks contains exactly n — 1 edges, and building block 7 > 0 has a single unique parent
1 < j. Consequently, sampling of redundant or impossible edges can be eliminated at inference time
as described in Appendix

5 EXPERIMENTS
5.1 De Novo 3D MOLECULE GENERATION

We first study SYNCOGEN in unconditional molecule generation jointly with 3D coordinates and
reaction graphs. We evaluate SYNCOGEN against several recently published all-atom generation
frameworks which produce 3D coordinates, including SemlaFlow (Irwin et al., 2025)), EQGAT-Diff
(Le et al.L[2024), MiDi (Vignac et al.| |2023)), JODO (Huang et al.|[2023)), and FlowMol (Dunn & Koes|,
2024). To isolate modeling effects from data, we retrain SemlaFlow on atomic types/coordinates in
SYNSPACE for the same number of epochs as SYNCOGEN.

For each model, we sample 1000 molecules and compute stringent metrics capturing chemical
soundness, synthetic accessibility, conformer quality, and distributional fidelity. Pertaining to the
molecular graphs, we report the RDKit sanitization validity (Valid.) and retrosynthetic solve rate
(AiZynthFinder (Genheden et al.,|2020) (AiZyn.) and Syntheseus (Maziarz et al.|[2025)) (Synth.)). For
conformers, we introduce two physics-based metrics: the median non-bonded interaction energies per
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atom via the forcefield method GFN-FF and via the semiempirical quantum chemistry method GFN2-
xTB |Bannwarth et al.| (2019); Spicher & Grimme|(2020); we also check PoseBusters (Buttenschoen
et al., [2024)) validity rate (PB). We evaluate the diversity (Div.) as the average pairwise Tanimoto
dissimilarity of the Morgan2 fingerprints, novelty (Nov.) as the percentage of candidates not appearing
in the training set, and the Fréchet ChemNet Distance (Preuer et al., [2018) (FCD) between generated
samples and the training distribution. See Appendix [D.3|for details.

Table 1: Comparison of generative methods for de novo 3D molecule generation.

Primary metrics Secondary metrics
Group Method Valid. 1AiZyn. 1 Synth. 1GFN-FF | xTB | PB 1 FCD | Div. 1 Nov. 1
Rxns & coords SYNCOGEN 96.7 50 72 3.01 -091 87.2 291 0.78 939
SEMLAFLOW 93.3 38 36 596 -0.72 872 721 0.85 99.6
SEMLAFLOW synseace  72.0 27 48 327 -0.80 60.3 295 0.80 93.0
EQGAT-diff 85.9 37 24 4.89 -0.73 789 6.75 0.86 99.5
Atoms & coords MiDi 74.4 33 31 490 -0.74 63.0 6.00 0.85 99.6
JODO 91.1 38 31 472  -0.74 84.1 422 0.85 994
FlowMol-CTMC 89.5 24 25 591 -0.68 69.3 13.0 0.86 99.8
FlowMol-Gaussian 48.3 6 8 424  -071 30.7 21.0 0.86 99.7

See TableI|for results, and Figures[9]and[I2]for examples. For chemical reasonableness, SYNCOGEN
generates almost entirely valid molecules. Our generation details the reaction and building blocks in
a multi-step reaction pathway, and as a result, our molecules are significantly more synthesizable
compared to baseline methods. Because AiZynthFinder and Syntheseus solve only 50-70 % of
known drug-like molecules, our 50-72 % scores likely underestimate true synthesizability. A rigorous
conformer geometry and energy comparison between all methods is provided in Appendix [D.4]

SynCoGen EQGAT-Diff FlowMol-CTMC —— SynSpace
SemlaFlow-retrained MiDi FlowMol-Gauss == Geom-Drugs
SemlaFlow Jjobo GFN-FF
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Figure 3: Conformer geometry and energy distribution comparisons. Distributions of a) bond
lengths, b-c) dihedral angles, d) average per-atom GFN-FF non-bonded interaction energies. Solid
curves denote training data densities; lower subpanels in (a-c) show deviations between generated
samples and data.

Structurally, the generated conformers reproduce the data energy distributions and have very favor-
able non-covalent interaction energies as evaluated by semi-empirical quantum-chemistry methods,
especially when compared to the baseline methods (Table[I]and Figure [3). This is evident from the
lack of structural changes upon further geometric relaxation (Figure [T0). The Wasserstein-1 distances
and Jensen-Shannon divergence can be found in Appendix and Figure (8| The low non-bonded
energies indicate SYNCOGEN learns to sample many intramolecular interactions (Figure[9). Quantita-
tively, 87% of these conformers pass PoseBusters pose plausibility checks. Furthermore, SYNCOGEN
reproduces the delicate data distribution of bond lengths, angles, and dihedrals (Figures [3] and [g).
For example, SYNCOGEN generates fewer sp?C-sp?N bonds that are too short, captures sharp bond
angle distributions (e.g., sp>C-sp>C-sp3N), and replicates both flexible dihedral angle distribution
(e.g. sp3C-sp>C-sp3C-sp>C) and rigid dihedral angles (e.g. sp>C-sp?C-sp?C-sp2C).
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Our various training-time ablations (Table [2) show that the largest performance gains originate from
our chemistry-sensitive graph constraints and self-conditioning, with small contributions from other
training/sampling details. A large performance gap between SYNCOGEN and SemlaFlow retrained
on SYNSPACE further shows that our training procedure, rather than the architecture or dataset, is
the primary driver of performance. Sampling-time ablations are presented in Appendix [D.2]

The multi-modal model can perform other tasks; for example, given randomly reaction-graphs,
SYNCOGEN can perform zero-shot conformer generation at a quality similar to ETKDG as im-
plemented in RDKit (Table[5). Finally, SYNCOGEN captures the training distribution (low FCD),
while generally producing novel molecules. The generated samples have slightly lower diversity as a
trade-off for using a (limited) set of reaction building blocks. All generated samples are unique.

5.2 MOLECULAR INPAINTING FOR FRAGMENT LINKING
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Figure 4: Molecular inpainting. a) Fragment linking starts from three experimentally identified
ligands in the PDB that contain substructure matches with our building blocks. We show three
examples of linkers generated by SYNCOGEN per structure and the distribution of Vina docking
scores. b) Proposed synthesis pathway for molecule (1) sampled from our model and c) structure of
(1) (blue) docked onto PDB 7N7X using AlphaFold3 compared against the PDB ligand (beige).

c)

To demonstrate the applicability of SYNCOGEN, we study fragment linking (Bancet et al., 2020) to
design easily synthesizable analogs of hard-to-make drugs. Fragment linking in drug design enables
the construction of potent molecules by connecting smaller fragments that are known to bind distinct
regions of a target site. We formulate fragment linking as a molecular inpainting task, where we
fix the identity and coordinates of two fragments in a known ligand and sample its missing parts
consistent with both geometry and reaction grammar.

As a case study, we pick several FDA-approved, hard-to-synthesize small molecules with experimental
crystal structures, each bound to a different target protein. We select human plasma kallikrein (PDB:
TN7X), multidrug-resistant HIV protease 1 (PDB: 4EYR), and human cyclin-dependent kinase
6 (PDB: 5L2S), where each structure is complexed with a ligand that contains at least two of our
building blocks. At sampling time, we condition on the substructure match by keeping fixed fragments
denoised and interpolating the remaining coordinates (Appendix [B.15).

Generated molecules are evaluated with AutoDock Vina (Figure 4) (Eberhardt et al.| 2021). SYNCo-
GEN consistently produces molecules with docking scores on par with or better than the native ligand
while satisfying constraints on the presence of specific building blocks. AlphaFold3 (Abramson
et al., 2024b) predictions on selected protein-ligand pairs show similar binding positions in the
selected pockets as well (Figures[d]and [TT)). Crucially, unlike existing approaches (Schneuing et al,
2024; [Igashov et al.,[2024), the model links fragments using building blocks and reactions to ensure
streamlined synthetic routes of the designs (Table[6]and Figure [12).
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Using SYNCOGEN for fragment-linking does not require retraining; however, improved validities
and energies can be observed after fine-tuning for motif scaffolding (Table [p] We benchmarked
SYNCOGEN against the state-of-the-art, purpose-built fragment-linking model DiffLinker (Igashov
et al.;|2024). SYNCOGEN is the only method that produces synthesizable molecules with 58-79%
retrosynthesis solve rate (0% for DiffLinker, Table @) Compared to DiffLinker, our molecules have
lower interaction energies, no disconnected fragments, and similar PoseBuster validity rate. The
synthesizable inpainted molecules now enables wet-lab tasks such as scaffold hopping, synthesizable
analog generation, or PROTAC design (Békés et al.| 2022; (Chirnomas et al., [2023)).

5.3 PHARMACOPHORE CONDITIONING

We evaluate SYNCOGEN on the practical, structure-informed generation task of designing de novo
small-molecule binders conditioned solely on pharmacophore profiles (Sections and[@.T)). This
setting avoids any external reward models (which can encourage reward hacking) and instead asks the
generator to directly realize 3D arrangements of inferaction features that are compatible with a target
pocket or reference ligand. We select three disease-relevant targets with hard-to-synthesize reference
ligands: ozanimod, scopolamine, and TR-107 (PDB IDs: 7TEWO0, 8CVD, 7UVU, respectively). For
each target we compute a pharmacophore profile from the cognate ligand and generate n=100
molecules with SYNCOGEN. We compare against the state-of-the-art method ShEPhERD (Adams
et al.,2025) (also n=100 per target). Valid samples are docked with AutoDock Vina.

-
-7
Model Target Val.T AiZyn.T Synth.T PBT 2
£
TEWO0 89 63 73 66 T }
SYNCOGEN 7UVU 86 59 75 58 = - -
8CVD 94 59 68 64 571 T H -
1%
TEW0 41 10 0 33 277
ShEPhERD  7UVU 43 7 4 36 -12 i
8CVD 44 13 12 43 _13 ~-- Redocked PDB ligand

TEWO 7UvU 8CVD

Figure 5: Pharmacophore-conditioned generation. Left to right: Pharmacophore conditional gener-
ation metrics of SYNCOGEN vs. ShEPhERD. Docking score box-plot comparison, SYNCOGEN vs.
ShEPhERD vs. PDB. SYNCOGEN-generated (purple) overlaid with PDB ligand (green, 7UVU).

On average, SYNCOGEN produces de novo molecules with better or competitive docking scores
compared to both ShEPhERD and the known ligand, with the top samples consistently surpass both
across different targets (Section[5.3). Qualitatively, SYNCOGEN-generated molecules dock to the
same pocket and replicate key pharmacophoric contacts of the known ligand with a high shape
overlap. Compared to the baseline, SYNCOGEN generated molecules have a higher RDKit validity,
and most importantly, retrosynthesis solve rates are several times higher (e.g., 63% vs. 10% on
7EWO0). PoseBusters validity rate also increases by 20-30%, reflecting better local geometry.

6 CONCLUSION

In this work, we introduced SYNCOGEN, a multimodal generative model that jointly samples
building-block reaction graphs and atomic coordinates. Our chemistry-aware training procedures
enable this model to learn to design synthesizable molecules directly in Cartesian space. We curated
SYNSPACE, a new dataset of 600k readily synthesizable molecules paired with low-energy 3D
conformations. SYNCOGEN achieves state-of-the-art performance across 3D molecular generation
benchmarks, while natively returning a tractable synthetic route for each structure. The practical
utility of SYNCOGEN is demonstrated in both molecular inpainting and pharmacophore-conditioned
generation to design easily synthesizable drug analogs using chemical and geometric profiles.

The design space of SYNCOGEN is not limited to SYNSPACE. Our code base includes a data
preparation and finetuning pipeline by which interested researchers can easily add their own building
blocks and reactions and finetune/retrain our model. Similarly, the separate output heads enables
pretraining on other all-atom structural datasets. Subsequent work will explore finetuning in details.

With SYNCOGEN showing in-silico amortized synthesizability-aware 3D generation, future works
needs to prove rapid experimental synthesis and binding of the de novo molecular designs conditioned
with 3D information. Beyond drug design, the same co-generative principle may be extended to
organic materials discovery, where synthesizability and 3D accuracy are equally pivotal.
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ETHICS STATEMENT

This work develops a method for synthesizability-aware 3D molecular generation. While intended
for research in drug discovery, any generative chemistry system has dual-use risk (e.g., suggesting
toxic, hazardous, or otherwise harmful compounds). We mitigate this by (i) constraining generation
to a predetermined vocabulary of commercially available building blocks and a limited set of
high-yield reaction templates, (ii) representing products as explicit reaction graphs, which enables
expert review of routes, and (iii) framing all docking and scoring results as in-silico hypotheses
that require independent experimental validation. The dataset is procedurally constructed from
public chemistries and contains no human subjects or personally identifiable information. We will
release usage guidelines that prohibit targeting dangerous biological pathways or deploying the model
for autonomous synthesis without qualified oversight. We recognize the environmental impact of
training large models and will report estimated energy use and emissions; we encourage reusing our
checkpoints rather than retraining when possible.

REPRODUCIBILITY STATEMENT

We provide an anonymized code for this study. The repository includes: (1) end-to-end training
and sampling scripts for the joint multi-modal model; (2) configuration files with all hyperparam-
eters, noise schedules, and random seeds; (3) an environment file specifying exact versions for
supporting libraries; (4) evaluation pipelines that reproduce the metrics; and (5) data preparation
code to regenerate the conformer sets and pharmacophore features. We also will release pretrained
checkpoints and commands to reproduce: unconditional generation, fragment-linking inpainting, and
pharmacophore-conditioned sampling. At camera-ready, we will add a one-command script that
reproduces the main results on a single multi-GPU node and logs all artifacts for auditability.
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A CHEMISTRY DETAILS
A.1 BUILDING BLOCKS AND REACTIONS

The 93 selected commercial building blocks and their respective reaction centers are shown in Figure[6]
For chemical reactions, we focused on cross-coupling reactions to link fragments together. We chose
8 classes of robust reactions, which can be subdivided into 19 types of reaction templates, see Figure[7]
We note that our reaction modeling is simplified. For example, boronic acids in building blocks
(B(OH),) are replaced with boranes (BH;); we do not consider the need for chemical protection on
certain functional groups (e.g. N-Boc); we do not consider directing group effects or stoichiometry
when multiple reaction centers are available; we do not consider macrocycles. These edge cases are
limitations of the current method, but they are comparably minimal through the careful curation of
building blocks to avoid such infeasible chemical reactions.

A.2 GRAPH GENERATION

Helper definitions. We annotate each building block with its reaction center atom indices V(b) C
V/(b) and its and each intrinsic atom-level graph by H(b) := (V(b), L(b)), where V' (b) is the set of
atoms in b and L(b) C V(b) x V(b) is the set of covalent bonds internal to the block. Each reaction
template r is annotated with a Boolean tuple ((1a(r), I5(r)) € {0,1}? describing whether reagent
A or reagent B in r, respectively, contains a leaving atom.

Given the current atom graph G, = (V,,L,) and an atom v € V, of degree 1, the routine
UNIQUENEIGHBOR (v) returns the single atom v € V, such that (u,v) € L,. Throughout the
vocabulary, every leaving-group center has exactly one neighbour.

A reaction template 7 is considered compatible with (b;, v) and (b, ©) if it queries for first and second
reagent substructures that match (b;, v) and (b, 0), respectively.

Algorithm 1 Fragment-by-fragment assembly with COUPLE

Inputs: vocab B, reactions R, depth limit T’
Output: atom graph G, building block graph Gy = (X, E)

1: function COUPLE(G, b;, b, 1, (v;,0))
2 append all atoms and bonds of H(b) to G, > 1. Handle leaving groups
3 if[4(r) = 1 then > v; leaves in reagent A
4: u; < UNIQUENEIGHBOR(v;)
5: delete atom v; (and its bond) from G,
6: V; 4 U; > reroute to neighbour
7 end if
8: if [g(r) = 1 then > leaves in reagent B
9: u¢ < UNIQUENEIGHBOR(?)
10: delete atom v (and its bond) from G,
11: U 4 Uy > reroute to neighbour
12: end if
13: add covalent bond between v; and v > 2. Add the cross-bond
14: return G,

15: end function
16: by < UniformPick(B); G, < H(bo); Gy <+ (bo)
17: fort =1to 1 do

18: L «+ enumerate compatible 5-tuples (b;, v, r, b, ¥)
19: if L = o then break

20: endif

21: (b;,v,r,b,0) < UniformPick(L)

22: e <« (r,v,0)

23: Go < COUPLE(Gy, b;, b, 1, (v,0))
24 Gf(-GfU(bigb)

25: end for

26: return (G,,Gy)
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Figure 6: List of building blocks, their respective reaction centers (in red), and their canonical
SMILES representation.

B METHOD DETAILS

B.1 BUILDING BLOCK-LEVEL REPRESENTATIONS

Let X € {0,1}V*IBI+1 be a one-hot matrix where the i" row encodes the identity of the i
building block, and let E € {0, 1}N*NXIRIVi0at2 \where V0, = max; [V(b)|. A non-zero entry
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Suzuki aryl bromide
[c:1HBr].[c:2]-[BI>>[c:1]-[c:2]

HO

& —
Suzuki aryl iodide

[c:1]-[1].[c:2]-[B]>>[c:1]-[c:2]

HO,
) —
HO
Amide coupling, primary amine

[C:1](=[0:2])-[Oh].[Nh2:3]- [#6&!$(C=[O,N]):4]
>>[C:1](=[0:2])-[Nh:3]-[#6&!$(C=[O,N]):4]

o HoN

(o}
+ P _—
A, R, RJLu,m
Amide coupling, secondary amine
[C:1](=[0:2])-[Oh].[Nh:3](-[#6&!$(C=[O,N]):4])-[#6&!$(C=[O,N]):5]
>>[C:1](=[0:2])-[N:3](-[#6&!$(C=[O,N]):4])-[#6&!$(C=[O,N]):5]

o) Ro

Jk + HN,

[0}
— J R
R” OH R RTONTE
Ry
Williamson ether synthesis bromide
[#6:4]-[Ch2:1]-[Br].[#6&1$(C=[O,N]):2]-[Oh:3]
>>[#6:4]-[Ch2:1]-[0:3]-[#6&!$(C=[O,N]):2]
R Br + HO‘R — rToM
1
Williamson ether synthesis chloride
[#6:4]-[Ch2:1]-[CI].[#6&!$(C=[O,N]):2]-[Oh:3]
>>[#6:4]-[Ch2:1]-{0:3]-[#6&!$(C=[O,N]):2]

HO
R + ), —>= RO

Williamson ether synthesis iodide
[#6:4]-[Ch2:1]-{1].[#6&!$(C=[O,N]):2]-[Oh:3]
>>[#6:4]-[Ch2:1]-[0:3]-[#6&!$(C=[O,N]):2]
Rq —_— R/\ o8 R4

Alkyl bromide aromatic N-H alkylation
[#6:4]-[Ch2:1]-[Br].[#6&!$(C=[O,N]): 10]-[Nh:2](-[#6&!$(C=[O,N]):20])
=[ON]

>>[#6:4]-[Ch2:1]-[Nh:2](-[#68&!1$(C=[O,N]):20])-[#6&!$(C ):10]
R/
HN-X
R > Br + X x X'N-ZS
X :X,X

Alkyl iodide aromatic N-H alkylation
[#6:4]-[Ch2:1]-[I].[#6&!$(C=[O,N]):10]-[Nh:2](-[#6&!$(C=[O,N]):20])
>>[#6:4]-[Ch2:1]-[Nh:2](-[#6&!$(C=[O,N]):20])-[#6&!1$(C=[O,N]):10]
HN-X R

P +
Xy X
X

R™ ~CI

—_—

Alkyl chloride aromatic N-H alkylation

Buchwald aryl bromide, secondary amine
[c:1]-[Br].[#6&!$(C=[O,N]):2]-[Nh:3
1>>[c:11-[Nh:3]-[#6&!1$(C=[O,N]):2]

Ro Re
R Ry

Buchwald aryl bromide, primary amine
[c:1]-[Br].[#6&!$(C=[O,N]):2]-[Nh:3]-[#6&!$(C=[O,N]):4]
>>[c:1]-[N:3](-[#6&!$(C=[O,N]):4])-[#6&!$(C=[O,N]):2]

Ry Ry

Esterification reaction
[C:1](=[0:2])-[Oh].[Oh:3]-[#6&!$(C=[O,N]):4]
>>[C:1](=[0:2])-[O:3]-[#6&!$(C=[O,N]):4]

o

Ao R

o HO

Jo v TR,

R™ "OH

—_—

Primary amine sulfonyl chloride substitution
[#681$(C=[O,N]):10][Nh2:1].CI-[S:4]([*:7])(=[0:5])=[0:6]
>> [#6&!$(C=[O,N]):10][Nh:1]-[S:4]([*:7])(=[O:5])=[O:6]

O, O
WO L N L R R
R Ry 2N

Cl O H

Secondary amine sulfonyl chloride substitution

[#6&1$(C=[0,N]):10][Nh: 1]([#6&!$(C=[O,N]):20]).CI-[S:4]([*:7])(=[0:5])=[0:6]
>>[#68!$(C=[O,N]): 10][N:1]([#6&I$(C=[0,N]):20])-{S:4]([*:7])(=[0:5])=[0:6]

o)
o] Ro R.#
5° N _ SR
R Ry ° &
2

Reductive amination, primary amine and aldehyde
[#6&1$(C=[0,N]):10][Nh2:1].[Ch:2]([#6:3])=[0]
>>[#68&!$(C=[O,N]):10][Nh:1]-[Ch:2]-[#6:3]

o
. HaN

X

R™ "H

R
R/\N» 1
R - N

Reductive amination, secondary amine and aldehyde

[#68&1$(C=[O,N]):10-[Nh:1](-[#68&!$(C=[O,N]):20]).[Ch:2] [#6:3])=[O]

>>[#681$(C=[O,N]):10]-[N:1](-[#6&!$(C=[O,N]):20])-[Ch2:2]-[#6:3]

R/\N'RZ

—_— |

R”"H R4 R4

Reductive amination, primary amine and ketone
[#6&1$(C=[O,N]):10][Nh2:1].[#6:3][C:2]([#6:4])=[0]
>>[#681$(C=[O,N]):10][Nh:1]-[Ch:2]([#6:3])[#6:4]
g o o f
R™R R R

R
N
H

Reductive amination, secondary amine and ketone

[#6:4]-[Ch2:1]-[CI].[#6&!$(C=[O,N]):10]-[Nh:2)(-[#6&!$(C=[O,N]):20]) [#6&!$(C=[O,N]):10][Nh:1]([#6&!$(C=[O,N]):20]).[#6:3][C:2]([#6:4])=[O]

>>[#6:4]-[Ch2:1]-[Nh:2)(-[#6&!$(C=[O,N]):20])-[#6&!$(C=[O,N]):10]

HN=X
Xeg X T

N
R |+
°X Xs,.X

Figure 7: List of chemical reactions used to connect building blocks and their SMARTS representation.

Newly formed bonds are highlighted in pink.

Eijr(v; 0;) = 1 signals that block ¢ (center v;) couples to block j (center v;) via reaction r. Graphs

>>[#68&!$(C=[O,N]):10][N:1]([#6&!$(C=[O,N]):20])-[Ch:2] [#6:3])[#6:4]

o] R2 R
HN N R* NEA
R™OR R, &,

(X, F) belonging to molecules containing n < N building blocks are padded to N.

Reserved Channels.

Tx € {O, 1}‘[3',

where 7y (resp. mg) is the one-hot vector whose single 1-entry corresponds to the masked node (resp.
edge) channel. Besides the masked channel, we keep a dedicated no-edge channel, encoded by the

one-hot vector

We reserve a dedicated masked (absorbing) token in both vocabularies:

2
g € {0, 1}I7€\me7

Ae € {0,171 Vi,

so every edge slot may take one of three mutually exclusive states: a concrete coupling label, the

no-edge token A\ g, or the masked token 7.
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B.2 ATOM-LEVEL REPRESENTATIONS

The SEMLAFLOW (Irwin et al.,[2025) architecture propagates and updates invariant and equivariant
features at the atom level. To ensure consistency with this framework, we calculate for each input
graph (X3, E;) atom-level one-hot atom and bond features. Crucially, these features must be flexible
to arbitrary masking present in X; and E;. With this in mind we set each atom feature X% [i, a] to
a concatenation of one-hot encodings

Xptomlisa] = ((Dupmie) - Lring(i,0)], 1fa € V(X,)]) € {0,172, ™
———
9-way one-hot
where (5Sym(i, a) is the one-hot vector over possible atom types (C, N, O, B, F, Cl, Br, S, [MASK])
and ring(7, a) denotes whether or not the atom is a member of a ring. Similarly, we calculate a bond
feature matrix
Jorder(@i,a;), bond is present,

E?‘O'“[ai,aj] = { (8)

05, otherwise.

where dorder (a4, ;) is the one-hot tensor over possible bond orders (single, double, triple, aromatic,
[MASK]) between a; and a;. E{***™ is populated by loading the known bonds and respective bond
orders within denoised building blocks. If some building block X is noised, all edges between its

constituent atoms E*°™[i : ¢ + M,i : i + M] are set to the masked one-hot index. For graphs
(X4, Ey) corresponding to valid molecules in which all nodes and edges are denoised, we simply
obtain the full bond feature matrix from the molecule described by (X, E}).

B.3 DATA PAIRING

Algorithm 2 PAIRDATA (Co, So, C1,t, X;)

Input: Cj (clean coordinates), Sy (atom mask), Cy (prior sample), ¢ € [0, 1], X (partially masked
nodes
Olltpl)lt C, (re-centered ground truth), C; (interpolated noisy coords)
s Dy {i| Xe[i] #7x} > denoised blocks
Siliya] <= 1[i ¢ Dy V a € Ay > visibility
Cy + Oy — Oy,
Cy < ZEROTENSOR()
for all (i,a) do

if S() [’L, a] = 1 then

é()[i,a} — Co[i, a] — é1st

else if S;[i,a] = 1 then > dummy atom
9: éo [Z, (l} — él [Z, a]
10: end if
11: end for
12: G+ (1—t)Co+tCy
13: return (C’o, Cy)

A A R

Here, A; is the set of all atom indices a that constitute true atoms in X. Note that S; = Sy for all ¢
where X; contains no masked building blocks.

Note: Non-Equivariance. Our data pairings result in both Cj and C} that are properly centered
according to atoms that are possibly valid at time ¢. It is important to note that under this scheme,
while the model is S E(3)-equivariant with respect to the system defined by the partial mask S, it is
not equivariant with respect to the orientation of the molecule itself unless Df = &, as the presence
and temporary validity of masked dummy atoms offsets the true atom centering and thus breaks both
translational and rotational equivariance.
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B.4 TRAINING ALGORITHM

Algorithm 3 Training step for SYNCOGEN

t ~U(0,1)

(Xt, Et) + qi(Xo, Eo)

C1 ~ N(0,1)

(Co, Ct) < PAIR(Cy, Sp, C1,t, X}) > center and interpolate coordinates (Algorithm
(Lg(7 LtE> C~’Ot) — f@(Xta Et7 éta n7t)

L <= Lgraph + Lmst + Lpair > total loss (Appendix [B.13)
0+ 0—n ——=blapL

AR A S ol ey

B.5 SAMPLING ALGORITHM

Algorithm 4 Sampling procedure for SYNCOGEN

1: n~Cat(7fag); (X1, E1) 4 (7x,7g); Sili,a]«1[i < n] > draw n, initialize masks

2: Cy~N(0,1); Ci+Cy — 01,81 > center Gaussian prior by initial mask

3: for ¢ = 1 down to 0 do

4: Ct<—Ct — Ct,St;

50 (L¥,LE,CY) <+ fo(Xe, By, Crynyt)

6: if < SAMPLEEDGES(L¥, n) > enforce one parent per building block (Algorithm

7 X, ¢+ CATSAMPLE(LYX); Ey_ < CATSAMPLE(LF) > take reverse step
(Appendix [B.8)

8: Ci—nt+Ci + At(éot - ét)
9: (X, By, Cy, St) ¢ (Xi—aty, Br—ar, Ci—at, St—At)

10: end for
11: (L%, L¥, Cy) < fo(Xo, Eo, Co,n,0) > final deterministic denoise (¢ = 0)
12: X, +—arg maxy ng [+, k]; F, {—arg maxy, LE[- - k) Co+Co — C(),So

13: return (Xo, Eg, Cp)

B.6 INFERENCE-TIME EDGE CONSTRAINTS

Let E}, € [0, 1]™*™ IRIVinax be the soft-max edge probabilities produced at step ¢. The routine below

resolves the unique parent for every building block column j > 0 and returns a probability tensor E’g
with exactly one non—zero entry per column.

Algorithm 5 SAMPLEEDGES (E},n)

Input: edge probabilities E

Output: pruned probabilities E};

: Eé ~—0

:forj=1ton—1do
(ij,e;5) ~ Cat({ES[i,j,e] | 0 <i < j})
Eé[ij,j, Bj] +~—1

end for

return £

A AN

Eg is then symmetrized and fed to the discrete reverse sampler described in Appendix
B.7 BUILDING BLOCK LOGIT PREDICTIONS

The SEMLAFLOW(Irwin et al. [2025) backbone outputs atom—atom edge features E§™™ €
REX(NM)x(NM)xdetee  To obtain building block-level tensors, we apply two parallel 2-D con-
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volutions (one for nodes, one for edges) with stride M, followed by MLP classifiers that map the
pooled features back to their original one-hot vocabularies.

Stride-pooled convolution. Let d.q,4. be the latent edge feature dimension. Each stream uses the
block
SiLU

Conv2d(dedge = dedge, k = M, s = M) —— Conv2d(deqge = dedge, k=1, s=1), (9)
so every M x M atom patch collapses to a single building block entry. This produces
Xpool c RBXdedgexN7 Epool c RBXdedgeXNXN- (]0)
Node head. We flatten X, along its channel axis, concatenate the residual building block one-hot
matrix Xy, and pass the result through a two-layer MLP to obtain
Edge head. We concatenate Ei, with the residual building block-edge one-hot tensor E, apply
an analogous two-layer MLP, and symmetrize to produce
2
LaEt € RBXNXNx|R[Vz, (12)

Atom Features. The SEMLAFLOW(Irwin et al.| [2025) backbone additionally outputs atom-level
node features X, gtom € RBX(NM)xdnae which are incorporated into Egtom via a bond refinement
message-passing layer. We find that extracting both building block and edge logits directly from the
refined features E3*°™ marginally improves performance relative to separately predicting Lg( * from

Xgtom and Ly from E§tom.
B.8 DISCRETE NOISING SCHEME

Following (Sahoo et al.,|2024)), we adopt an absorbing (masked) state noising scheme for X, and Ej:
q(X: | Xo) = Cat(Xy; v Xo + (1 — ap)mx), q(Ey | Ey) = Cat(Ey; v Eg + (1 — ap) 7).

(13)
where (a¢)¢eo,1 is the monotonically decreasing noise schedule introduced in Section
Reverse categorical posterior. For node identities, we have
Cat(XS;Xt), Xt #TFX’
q(Xs | X¢, Xo) = 1— Xt (14)
Cat (X; (1~ os)mx + o 9), X =1x,
1-— Qg
and, analogously, for edge labels
Cat(ES, Et), Et # TR
E | By, Ey) = 1—ag s BY 1
Q( s | Ty O) Cat(Es; ( al)ﬁE+O[ 9)’ Et:ﬂ-E, ( 5)
—

where s < t. Equations and are the direct translation of the reverse denoising process
described by (Sahoo et al.l 2024)) into SYNCOGEN’s node—edge representation.

B.9 NOISE SCHEDULE PARAMETERIZATION
Following MDLM (Sahoo et al.,[2024)), we parameterize the discrete noising schedule via oy = e~
where o (t) : [0,1] — R™. In all experiments, we adopt the linear schedule:

o(t) = omaxt, (16)
where 0,,x 1S a large constant; we use omax = 108 as in the original MDLM setup.

Edge Symmetrization. After drawing the upper-triangle entries of the one-hot edge tensor E in
either the forward or reverse (de)noising process, we enforce symmetry by copying them to the lower
triangle:

Es,jie = Es,ije; 0 < 7 < ] <n, ec RVanax.
B.10 POSITIONAL EMBEDDINGS
Though SEMLAFLOW(Irwin et al., [2025)) is permutationally invariant by design with respect to atom
positions, SYNCOGEN dataset molecules require that atom order be fixed and grouped by building
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block for reconstruction purposes. To enforce this during training, we intentionally break permutation
invariance by generating and concatenating to each input coordinate sinusoidal positional embeddings
representing both global atom index and building block index.

B.11 HYPERPARAMETERS

We train SYNCOGEN for 100 epochs with a batch size of 128 and a global batch size of 512. Note
that SEMLAFLOW and Midi are trained for 200 epochs, and EQGAT-diff is trained for up to 800
epochs. All models are trained with a linear noise schedule (see Appendix [B.9), with the SUBS
parameterization enabled. During training, a random conformer for each molecule is selected, then
centered and randomly rotated to serve as the ground-truth coordinates Cy. All atomic coordinates
are normalized by a constant Z, describing the standard deviation across all training examples. For

the pairwise distance loss L4, We set d to 3A, adjusted for normalization. During training, for each

recentered input-prior pair (C’l, C’o) we rotationally align C'; to Cy. When training with noise scaling
and the bond loss time threshold, we set the noise scaling coefficient to 0.2 and the time threshold to
0.25, above which bond length losses are zeroed. When training with auxiliary losses, we set the
weights for the pairwise, sSLDDT, and bond length loss components to 0.4, 0.4, and 0.2, respectively.

B.12 COMPUTATIONAL RESOURCES USED

We train all models on 2 H100-80GB GPUs.

B.13 TRAINING LOSSES

Here, we define several loss terms that have proved useful for stabilizing training on 3-D geometry.
By default, SYNCOGEN is trained with Lysg and Lyp,ir as coordinate losses.

For a prediction (Lg(‘,L(;Et,C:’Ot) = fg(Xt,Et,C’t,n,t), X} = softmax(Lgft), E} =
softmax(Lf ¢ ) :

Graph loss. Let X, and Ej be the clean node and edge tensors. Following the MDLM implemen-
tation (Sahoo et al.,[2024), we weigh the negative log-likelihood at step ¢ by
A
=— —  Aoi=0i—011, o9=0, (17)

exp(oy) — 1
where o is the discrete noise level. The discrete (categorical) loss is then

Lgraph = Wy (—log X[ Xo] —log E} [EO]) , (18)
i.e. the cross-entropy between the one-hot ground truth and the predicted distributions for both nodes
and edges.

MSE loss. Let Sy € {0, 1}¥*M mask the atoms that exist in the clean structure and C; be the
noisy coordinates. Denote Ag, = {(i,a) : So[i,a] = 1}.

1 A .
Luse = 3 S ||Coliyal — Colisall, (19)
0 (i,a)€As,
Pairwise loss.
) . I A ) . 2
Lpair = > Soli, a) Sol4, b] ([|Coli, a] — Colj, blll2 = [|Coli, al = Col, blll2) ", (20)

(4,a)<(4,b)
[ICo[é,a]=Co[34,b]ll2<d

where d is the distance cut-off for pairwise terms. The default total loss value for the model is
therefore

Lsyncocen = Lygraph + LMsE + Lpair- (21

Smooth-LDDT loss (Abramson et al., 2024a). Let df; := ||Cyi] — Co[5]||2 and d?;ed = [|Cold] —
Col7]|l2 be ground-truth and predicted inter-atomic distances, respectively. For each pair of atoms
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within a 15 A cutoff in the reference structure, we compute the per-pair score
4

1 o
SLDDTy; = - > olme — |d = dll),  [r 72 73] =[0.5,1,2,4] A,
k=1
where o(x) = 1/(1 + e~ ") is the logistic function. The smooth-LDDT loss averages 1 — sLDDT;;
over all valid pairs,

Z]l [d7; < 15] So[i] So[j] (1 — sLDDT;;)

1<j

‘CSLDDT = (22)

> 1 < 15] Soli] Solj]

1<J

Bond-length loss. Given a set of intra-fragment bonds bonds = {(p,q)} extracted from the
vocabulary, we penalize deviations in predicted bond lengths:

Loma = ——— 3" [IColp] ~ Coldlll2 — IColp] — Coldlll|. 23)

|bonds|
(p,q) Ebonds

Self-Conditioning. The modified SEMLAFLOW (Irwin et al.| [2025)) backbone operates on node and
edges features at the atomic level, but outputs unnormalized prediction logits X € {0, 1}V > Bl and
Ey € {0,1}N*NxIRIViao . We therefore implement modified self-conditioning for SYNCOGEN

that projects previous step graph predictions Xo cond and EOcond to the shape of X*°™ and E{tom
using an MLP.

B.14 CONFORMER GENERATION

We randomly assembled 50 molecules with the reaction graph and used the standard conformational
search (iMTD-GC) in CREST with GFN-FF to find all reference conformers. For both SYNCOGEN
and RDKit ETKDG, we sampled 50 conformers per molecule and computed the coverage and
matching scores. We used a relatively strict RMSD threshold of 7 = 0.75 .

Formally, COV is defined as:
1N
—— <
Ccov N E_l 1[1an<nM RMSD(m;, g;) <7 (24)

where 1[-] is the indicator function, m; are the N generated conformers and g; are the M reference
conformers. And MAT is defined as:

N
1
MAT = N - min  RMSD(m,, g;). (25)

— 1<j<M

B.15 MOLECULAR INPAINTING

For the inpainting experiments in Section we keep two fragments D = {D(), D)} and their
coordinates fixed and sample the remaining part of the molecule. We follow Appendix and
initialize the graph prior X; with the one-hot encoding of the desired fragment ¢ at a specified node
index in the graph (decided at random or based on the structure of the original molecule, so that
it matches its scaffold). For each denoised fragment D(*), we replace its coordinates at each time
t > 0.03 during sampling by
o = (1-1)C + tCP,

where C(()z) and CY) are the centered ground-truth and prior coordinates of fragment i, respectively,
and all other fragments are updated as shown in Appendix [B.5] For any ¢ < 0.03, which for 100
sampling steps amounts to the last three steps in the path, we follow normal Euler steps as shown in
Appendix [B.3]to allow a refinement of the fixed coordinates in line with the rest of the predicted ones

for the rest of the fragments. We empirically observed that this led to molecules with lower average
energies.
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C BASELINE COMPARISONS.

For all baselines, we sampled 1000 molecules with random seeds on an A100 GPU and reported
averaged results over three runs.

SemlaFlow We evaluated SemlaFlow using the sampling script in the official codebase on GitHub'.
We reported results for a model trained on the GEOM (Axelrod & Gomez-Bombarelli, 2022) dataset
(by sampling from the checkpoints provided in the repository) and from a model trained on our
dataset (see Table[T)). We trained SemlaFlow using the default hyperparameters for 150 epochs on a
single conformer per molecule.

EQGAT-diff, MiDi, JODO, FlowMol We evaluated EQGAT-diff, Midi, JODO, using their official
implementations provided on GitHub?. We modified the example sampling script to save molecules
as outputted from the reverse sampling, without any post-processing. For MiDi, we evaluated the
uniform model. For FlowMol, both CTMC and Gaussian models were evaluated and reported.

D EXTENDED RESULTS AND DISCUSSION

D.1 TRAINING ABLATIONS

Table 2: Training ablations. We incrementally remove inference annealing, auxiliary losses, self-
conditioning, scaled-noise, and constraints to see the performance difference. All results shown are

at 50 epochs rather than 100 epochs in Table[T] See Sections[4.3] and (Appendices

and @

Method Valid. T GFN-FF |

Base 93.5 4.871
- Inference annealing 93.5 4.933
- Auxiliary losses 85.3 5.194
- Self-conditioning 69.0 6.424
- Scaled noise 70.4 5.091
- Constraints 424 67.006

D.2 SAMPLING ABLATIONS

By default, SYNCOGEN implements a linear noise schedule and samples for 100 timesteps. To
evaluate the effect of step count and noise schedule choice on performance, we provide experiments
with step count decreased to 50 and 20, as well as modified noising to follow a log-linear and
geometric schedule. All results listed subsequently can be assumed to use the default noise schedule
and step count.

We additionally follow FoldFlow to implement inference annealing, a time-dependent scaling on
Euler step size that was found to empirically improve in-silico results in protein design |/Bose et al.
(2024). We studied multiplying the Euler step size at time ¢ by 5¢, 10¢, and 50¢. In practice, we
employ 10t for our experiments unless otherwise noted.

We find that noising and de-noising building blocks according to a linear noise schedule generally
achieves good performance, which during inference sees most unmasking occur in the final steps.
An aggressive denoising schedule for the discrete fragments yields significantly worse validity
(Geometric and Loglinear). Inference annealing that speeds up continuous denoising in the beginning
but slows it down near the end helps to inform discrete unmasking and can slightly improve discrete
generation validity, energies, and PoseBusters validity. As a sanity check to evaluate whether
simultaneous generation is necessary for good performance using SYNCOGEN, we evaluate an
inference configurations where all building blocks and reactions are noised until a single final
prediction step (FinalOnly) where we find performance using the default parameters to be superior.

'nttps://github.com/rssrwn/semla-flow/, available under the MIT License

https://github.com/jule-c/eqgat_diff/, https://github.com/cvignac/MiDi,
https://github.com/GRAPH-0/JODO, https://github.com/Dunni3/FlowMol, available
under the MIT License
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Table 3: Sampling ablations. Results are averaged over 1000 generated samples, except retrosynthesis
solve rate (out of 100). All results shown are at 50 epochs rather than 100 epochs in Tablem

Primary metrics Secondary metrics
Method Valid. + AiZyn. 1 Synth. T GFN-FF | GFN2-xTB | PB1 Div.1 Nov. 1
Linear-100 93.5 55 70 4.933 -0.92 783 079 94.1
Linear-20 824 56 68 5.102 -0.91 713 078 949
Linear-50 92.0 50 65 4.890 -0.91 789 0.78 93.6
Geometric-100 48.2 61 68 5.206 -0.84 72.0 0.80 91.7
Loglinear-100 60.3 56 64 5.182 -0.87 70.1 080 91.7
Annealing-5¢ 94.7 52 58 5.001 -0.93 79.1 0.78 94.1
Annealing-10¢ (default) 93.5 42 68 4.870 -0.91 82.8 0.78 942
Annealing-50¢ 85.1 51 64 4.972 -0.82 86.7 0.76 94.6
FinalOnly 69.7 39 68 5.260 -0.92 70.1 0.76  94.1

D.3 METRICS

We here describe metric computation details that are absent in the main text.

For synthesizability evaluation, we used the public AiZynthFinder and Syntheseus models. Due
to the speed of these models, we only evaluate 100 randomly sampled generated examples. For
AiZynthFinder, we used the USPTO policy, the Zinc stock, and we extended the search time to
800 seconds with an iteration limit of 200 seconds. For Syntheseus, we used the LocalRetro model
with Retro* search under default settings, with Enamine REAL strict fragments as the stock. We
additionally appended our building blocks as the stock, but found no meaningful difference in
solved rates, presumably as most of our building blocks are already in the utilized stock. We note
that we replaced all boranes with boronic acids due to simplifications made in our modeling (see
Appendix [A.7).

For energy evaluation, all results are from single-point calculations. For GFN-FF, we report the total
energy minus the bond energies (equivalent to the sum of angle, dihedral, bond repulsion, electrostatic,
dispersion, hydrogen bond, and halogen bond energies) as the intramolecular non-bond energies, and
average it over the number of atoms. For GFN2-xTB, we report the dispersion interaction energies
as the intramolecular non-covalent energies. We note that the total energies and bonded energies
follow very similar trends. We note that MMFF94 energies are not parameterized for boron; therefore,
we report them only for the Wasserstein distances in Appendix and inpainting task in Table 6]
Figures [3] and [§] show distributions obtained from 1,000 molecules generated by each generative
method, along with 50,000 subsampled molecules from their respective training datasets. Gaussian
kernel density estimation (bandwidth = 0.15) was used for linear distributions, while von Mises kernel
density estimation (x = 25) was applied for circular distributions. Wasserstein-1 distances (computed
linearly for lengths and energies, and on the circle for angles and dihedrals) were calculated using the
Python Optimal Transport Package (Flamary et al., 2021}

D.4 De novo 3D MOLECULE GENERATION
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Figure 8: Additional conformer bond length, angle, dihedral, and energy distribution compar-
isons. a-b) Bond lengths, c) GFN-2xTB energy distribution, d-f) bond angles, g-h) dihedral angles.
Solid curves denote training data densities; lower subpanels show deviations between generated
samples and data.
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Figure 9: Unconditionally sampled random molecules from SYNCOGEN.
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Figure 10: A subset of randomly sampled molecules from SYNCOGEN and further optimized by
GFN2-xTB until convergence. Alignment RMSD is shown below the molecular structures.
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Table 4: Wasserstein-1 distance (W) and Jensen—Shannon divergence (JSD) for the generative
models (lower is better). For bond lengths, angles, and dihedrals, we computed the average W}
and JSD for the top 10 prevalent lengths/angles/dihedrals. Comparisons are made to the respective
training set.

(a) Bond dihedrals (b) Bond angles (c) Bond lengths

Method Wy JSD Method Wi JSD Method Wy ISD
SYNCOGEN 7.01 0.29 SYNCOGEN 1.36 0.22 SYNCOGEN 0.0171 0.34
SEMLAFLOW synxseace 6.50 0.22 SEMLAFLOW synseace  1.64 0.28 SEMLAFLOW synseace 0.0320 0.48
SEMLAFLOW 7.76 0.28 SEMLAFLOW 1.18 0.21 SEMLAFLOW 0.0200 0.38
EQGAT-Diff 8.48 0.29 EQGAT-Diff 1.37 0.16 EQGAT-Diff 0.0039 0.13
MiDi 9.32 0.38 MiDi 1.41 0.21 MiDi 0.0142 0.31
JODO 5.47 0.31 JODO 0.59 0.12 JODO 0.0034 0.12
FlowMol-CTMC 13.69 0.35 FlowMol-CTMC 1.90 0.24 FlowMol-CTMC 0.0089 0.20
FlowMol-Gauss 18.85 0.46 FlowMol-Gauss 3.68 0.30 FlowMol-Gauss 0.0152 0.28
(d) GFN2—-xTB non-covalent &/ (e) GFN-FF non-bonded (f) MMFF total

Method Wiy JSD Method Wi JSD Method Wy ISD
SYNCOGEN 0.0838 0.33 SYNCOGEN 1.37 0.28 SYNCOGEN 6.59 0.089
SEMLAFLOW syxseace 0.0125 0.16 SEMLAFLOW synSpace 1.09 0.22 SEMLAFLOW synseace 54.63 0.22
SEMLAFLOW 0.0249 0.16 SEMLAFLOW 1.52 0.16 SEMLAFLOW 69.56 0.24
EQGAT-Diff 0.0073 0.12 EQGAT-Diff 1.69 0.18 EQGAT-Diff 4.80 0.076
MiDi 0.0084 0.14 MiDi 1.80 0.19 MiDi 19.00 0.11
JODO 0.0031 0.11 JODO 1.33 0.12 JODO 22.07 0.11
FlowMol-CTMC 0.0605 0.26 FlowMol-CTMC 1.53 0.17 FlowMol-CTMC 41.95 0.15
FlowMol-Gauss 0.0322 0.19 FlowMol-Gauss 2.13 0.17 FlowMol-Gauss 26.96 0.14

Table 5: With given reaction graphs, comparison of mean coverage (COV) and matching accuracy
(MAT) for RDKit ETKDG and zero-shot conformer generation using SYNCOGEN.

Method COV (%)t  MAT (A) |
RDKit 0.692 0.657
SYNCOGEN 0.614 0.693

D.5 MOLECULAR INPAINTING EXPERIMENTS

Three protein-ligand complexes (PDB IDs 7N7X3, 5L.2S* and 4EYR?) were selected for molecular
inpainting of the ligand structures. These ligands were chosen because they are prominent FDA-
approved drugs, and they are typically challenging to synthesize, but the key functional groups are
present in our building blocks. Specifically, 4EYR contains ritonavir, a prominent HIV protease
inhibitor on the World Health Organization’s List of Essential Medicines; SL.2S contains abemaciclib,
an anti-cancer kinase inhibitor that is amongst the largest selling small molecule drugs; 7N7X contains
berotralstat, a recently approved drug that prevents hereditary angioedema. Note that for 4EYR,
the inpainting was done using the ligand geometry from the PDB entry 3NDX®, but docking was
performed with 4EYR because the protein structure in 3NDX contained issues — nonetheless, both
entries contain the same protease and ligand.

In addition to the experiments in Section[5.2] we evaluate SYNCOGEN’s conditional sampling perfor-
mance for the fragment linking framework against the state-of-the-art model DiffLinker (Igashov
et al.}[2024). While DiffLinker is trained for fragment-linking, our model performs zero-shot fragment
linking without any finetuning. For both models, the size of the linker was chosen so that it matches

*https://www.rcsb.org/structure/7N7X
‘nttps://www.rcsb.org/structure/5L2S
Shttps://www.rcsb.org/structure/4EYR
*https://www.rcsb.org/structure/3NDX
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that of the original ligand: 2 extra nodes were sampled for SYNCOGEN and 15 linking atoms for
DiffLinker in the case of 5SL2S, while 3 extra nodes and 25 linking atoms were sampled for 4EYR
and 7N7X. We specified leaving groups (for SYNCOGEN) and anchor points (for DiffLinker) so that
the fragments are linked at the same positions as in the ligand. Results are shown in Table[6] No
retrosynthetic pathways were found for the molecules in DiffLinkers, while SYNCOGEN models
synthetic pathways and synthetic pathways can be easily drawn, with examples for 4EYR shown in
Figure This out-of-distribution task for SYNCOGEN leads to fewer valid molecules; however, for
the valid candidates, SYNCOGEN has lower interaction energies and achieves 100% connectivity as
it uses reaction-based assembly, whereas DiffLinker can sample disconnected fragments.

Table 6: Molecular inpainting task. Results are averaged over 1000 generated samples, except
retrosynthesis solve rate (out of 100). SYNCOGEN-FT denotes a light fine-tuning the model for 5
epochs on in-painting with randomly fixed fragments.

Method Target AiZyn.{ Synth.{ Valid. T Connect. 1 MMFF | GFN-FF | GFN2-xTB | Diversity 1 PB 1
5L2S 0 0 95.8 95.09 14.22 7.52 0.95 060  49.3
DiffLinker 4EYR 0 0 937 81.86 20.01 8.49 -1.03 081 350
INTX 0 0 95.8 74.65 20.51 7.99 -1.09 078 375
5L2S 73 79 57.6 100 10.11 6.77 -0.78 062 273
SYNCOGEN  4EYR 72 58 46.9 100 12.80 6.58 -0.86 064 320
INTX 53 69 50.6 100 4243 6.60 -0.80 067  56.1
5L2S 77 84 753 100 425 6.58 -0.81 0632 562
SYNCOGEN-FT 4EYR 42 78 62.0 100 10.13 5.33 -0.78 0604  19.8
INTX 57 77 73.6 100 4.09 6.86 0.83 0664 479

(a) 5L2S (b) 3SNDX/4EYR (c) IN7X

Figure 11: Structural overlays of the native protein (gray) and its native ligand (blue) with AlphaFold3-
predicted folds of a subset of generated ligands (green) for (a) SL2S, (b) 3NDX/4EYR, and (c) 7N7X.
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Figure 12: Synthetic pathways for molecules generated in the molecular inpainting task for target
3NDX/4EYR. The final product is shown in blue, and the inpainted fragments are shown in red.
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