

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SYNCoGEN: SYNTHESIZABLE 3D MOLECULE GENERATION VIA JOINT REACTION AND COORDINATE MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Synthesizability remains a critical bottleneck in generative molecular design. While recent advances have addressed synthesizability in 2D graphs, extending these constraints to 3D for geometry-based conditional generation remains largely unexplored. In this work, we present SYNCoGEN (Synthesizable Co-Generation), a single framework that combines simultaneous masked graph diffusion and flow matching for synthesizable 3D molecule generation. SYNCoGEN samples from the joint distribution of molecular building blocks, chemical reactions, and atomic coordinates. To train the model, we curated SYNSPACE, a dataset *series* containing over **1.2M** synthesis-aware building block graphs and **7.5M** conformers. SYNCoGEN achieves state-of-the-art performance in unconditional small molecule graph and conformer co-generation. For protein ligand generation in drug discovery, the amortized model delivers superior performance in both molecular linker design and pharmacophore-conditioned generation across diverse targets – **without relying on any scoring functions**. Overall, this multimodal non-autoregressive formulation represents a foundation for a range of molecular design applications, including analog expansion, lead optimization, and direct *de novo* design.

1 INTRODUCTION

Generative models significantly enhance the efficiency of chemical space exploration in drug discovery by directly sampling molecules with desired properties. However, a key bottleneck in their practical deployment is low synthetic accessibility, i.e. generated molecules are often difficult or impossible to produce in the laboratory (Gao & Coley, 2020). To address this limitation, recent work has turned to template-based methods that emulate the chemical synthesis process by constructing synthesis trees that link molecular building blocks through known reaction templates (Koziarski et al., 2024; Cretu et al., 2024; Seo et al., 2024; Gaiński et al., 2025; Gao et al., 2024; Jocys et al., 2024; Swanson et al., 2024). These representations, while useful for downstream experimental validation, do not describe the underlying 3D geometry and thus cannot capitalize on the conformational information that is often crucial for diverse chemical and biological properties.

Parallel advances in generative molecular design have explored spatial modeling at the atomic level. Inspired by advances in protein structure prediction (Yang et al., 2025; Campbell et al., 2024; Wang et al., 2025) and the development of generative frameworks such as diffusion and flow matching, recent work has focused on directly sampling 3D atomic coordinates of small molecules (Hassan et al., 2024; Jing et al., 2022; Fan et al., 2024). These methods learn to generate spatially meaningful, property-aligned conformations along with molecular graphs. The ability to model atomic coordinates directly increases the expressivity of these approaches, enabling applications such as pocket-conditioned generation (Lee & Cho, 2024), scaffold hopping (Torge et al., 2023; Yoo et al., 2024), analog discovery (Sun et al., 2025), and molecular optimization (Morehead & Cheng, 2024). However, without considering practical synthesis routes, integrating synthesizability constraints into these models remains a major challenge, and most existing 3D generative approaches do not ensure that proposed molecules can be made in practice.

This work introduces SYNCoGEN (Synthesizable Co-Generation), a generative modeling framework aiming to bridge the gap between 3D molecular generation and practical synthetic accessibility (Figure 1). Our main contributions are as follows:

Figure 1: SYNCODEN is a simultaneous masked graph diffusion and flow matching model that generates synthesizable molecules in 3D coordinate space. Each node corresponds to a building block, and edges encode chemical reactions. Note that molecules are not necessarily linear, the leaving groups are not displayed, and there is no order to which nodes and edges are denoised.

- **Generative Framework:** We propose a novel generative framework that combines masked graph diffusion with flow matching in unified time to jointly sample from the distribution over building block reaction graphs and of 3D coordinates, tying structure- and synthesis-aware modeling.
- **Molecular Dataset:** We curate a new dataset series **SYNSPACE**, comprising **1.2M** synthesizable molecules represented as building block reaction graphs, along with **7.5M** associated low-energy conformations. Compared to synthon-based datasets, **SYNSPACE** enables models to generate more readily synthesizable molecules and directly suggest streamlined synthetic routes.
- **Empirical Validation:** We demonstrate that SYNCODEN achieves state-of-the-art performance in 3D molecule generation, producing physically realistic conformers while explicitly tracing reaction steps. Ablations show our modelling choices are crucial for the performance. Importantly, SYNCODEN performs 3D conditional molecular generation tasks including linker design and pharmacophore-conditioned generation, highlighting its applicability for drug discovery.

2 BACKGROUND AND RELATED WORK

Flow Matching. Given two distributions ρ_0 and ρ_1 , and an interpolating probability path ρ_t such that $\rho_{t=0} = \rho_0$ and $\rho_{t=1} = \rho_1$, flow matching (Lipman et al., 2023; Albergo et al., 2023; Liu et al., 2023; Peluchetti, 2023; Tong et al., 2023) aims to learn the underlying vector field u_t that generates ρ_t . Since u_t is not known in closed form, flow matching instead defines a conditional probability path $\rho_{t|1}$ and its corresponding vector field $u_{t|1}$. The marginal vector field u_t can then be learnt with a parametric v_θ by regressing against $u_{t|1}$ with the CFM objective:

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t, \mathbf{x}_1 \sim \rho_1, \mathbf{x} \sim \rho_{t|1}(\cdot | \mathbf{x}_1)} \|v_t(\mathbf{x}; \theta) - u_{t|1}(\mathbf{x} | \mathbf{x}_1)\|^2 \quad (1)$$

Masked Discrete Diffusion Models. Let $\mathbf{x} \sim \rho_{\text{data}}$ be a one-hot encoding over K categories. Discrete diffusion models (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024) map the complex data distribution ρ_{data} to a simpler distribution via a Markov process, with absorbing (or masked) diffusion being the most common. In the masked diffusion framework, the forward interpolation process $(\rho_t)_{t \in [0,1]}$ with the associated noise schedule $(\alpha_t)_{t \in [0,1]}$ results in marginals $q(\mathbf{z}_t | \mathbf{x}) = \text{Cat}(\mathbf{z}_t; \alpha_t \mathbf{x} + (1 - \alpha_t) \mathbf{m})$, where \mathbf{z}_t and \mathbf{m} denote intermediate latent variables and the one-hot encoding for the special [MASK] token, respectively. The posterior can be derived as:

$$q(\mathbf{z}_s | \mathbf{z}_t, \mathbf{x}) = \begin{cases} \text{Cat}(\mathbf{z}_s; \mathbf{z}_t), & \mathbf{z}_t \neq \mathbf{m} \\ \text{Cat}(\mathbf{z}_s; \frac{(1 - \alpha_t) \mathbf{m} + (\alpha_s - \alpha_t) \mathbf{x}}{1 - \alpha_t}), & \mathbf{z}_t = \mathbf{m} \end{cases} \quad (2)$$

The optimal reverse process $p_\theta(z_s | z_t)$ takes the same form but with $x_\theta(z_t, t)$ in place of the true \mathbf{x} . We adopt the zero-masking and carry-over unmasking modifications of Sahoo et al. (2024).

108 **Multimodal Generative Models.** Multimodal data generation (e.g. text-images, audio-vision,
 109 sequences/atomic types and 3D structures) represents a challenging frontier for generative models
 110 and has seen growing interest in recent times. Current approaches for this task typically either – 1)
 111 tokenize multimodal data into discrete tokens, followed by a autoregressive generation (Meta, 2024;
 112 Xie et al., 2024; Lu et al., 2024), or 2) utilize diffusion / flow models for each modality in its native
 113 space (Lee et al., 2023; Zhang et al., 2024; Campbell et al., 2024; Irwin et al., 2025). Diffusion and
 114 flow models also offer flexibility in terms of coupled (Lee et al., 2023; Irwin et al., 2025) or decoupled
 115 (Campbell et al., 2024; Bao et al., 2023; Kim et al., 2024) diffusion schedules across modalities.
 116 SYNCOCEN uses a coupled diffusion schedule but at two resolutions, with discrete diffusion for
 117 graphs of building blocks and reactions, and a flow for atomic coordinates in building blocks.
 118

119 **3D Molecular Generation.** Several recent works (Irwin et al., 2025; Le et al., 2024; Vignac et al.,
 120 2023; Huang et al., 2023; Dunn & Koes, 2024) have studied unconditional molecular structure
 121 generation by sampling from the joint distribution over atom types and coordinates. However,
 122 these models lack the ability to constrain the design space to synthetically accessible molecules. In
 123 concurrent work, (Shen et al., 2025) uses generated 3D structures to guide GFlowNet policies in
 124 designing the graph of *synthon*-based linear molecules, but does not account for structural quality.
 125

126 **Synthesizable Molecule Generation.** Beyond directly optimizing synthesizability scores (Liu et al.,
 127 2022; Guo & Schwaller, 2025) – which are often unreliable – the predominant approach to ensuring
 128 synthetic accessibility in generative models is to incorporate reaction templates. Early methods
 129 explored autoencoders (Bradshaw et al., 2019; 2020), genetic algorithms (Gao et al., 2022), and
 130 reinforcement learning (Gottipati et al., 2020; Horwood & Noutahi, 2020). Recently, GFlowNet-based
 131 (Koziarski et al., 2024; Cretu et al., 2024; Seo et al., 2024; Gaiński et al., 2025) and transformer-based
 132 (Gao et al., 2024; Jocys et al., 2024) methods have gained prominence. Such generative models have
 133 already shown practical utility in biological discovery tasks (Swanson et al., 2024). However, most
 134 methods only generate molecular graphs and do not produce 3D structures. The recent CGFlow Shen
 135 et al. (2025) performs 3D generation via a GFlowNet policy augmented with flow matching; however,
 136 CGFlow **optimizes a reward and typically** requires a full training for each target pocket.
 137

3 DATASET

138 Training a synthesizability-aware model to co-generate both 2D structures and 3D positions requires a
 139 dataset of easily synthesizable molecules in an appropriate format. In addition to atomic coordinates,
 140 this includes a graph-based representation from which plausible synthetic pathways can be inferred.
 141 A common approach is to use synthons—theoretical structural units that can be combined to form
 142 complete molecules(Baker et al., 2024; Grigg et al., 2025; Medel-Lacruz et al., 2025). Synthon-based
 143 representations do not guarantee the existence of a valid synthesis route, and they do not directly
 144 provide one even if it exists. Moreover, they lack the flexibility to constrain the reaction space, which
 145 is often critical when prioritizing high-yield, high-reliability reactions or operating within the limits
 146 of automated synthesis platforms such as self-driving labs (Abolhasani & Kumacheva, 2023).
 147

148 Alternatively, many synthesis-aware generators employ external reaction simulators, such as RDKit,
 149 to couple building blocks iteratively. While convenient, such black-box steps offer no fine-grained
 150 control when a reagent has multiple *reaction centers*, distinct atoms or atom sets that can each serve
 151 as the site of bond formation or cleavage in a reaction. They also do not define atom mappings
 152 between reactants and products, making it impossible to trace product atoms back to their parent
 153 building blocks, which complicates edge assignment in building block graph generation. To overcome
 154 these limitations, we curate a new family of datasets, SYNSPACE (Figure 2), comprising building
 155 block-level reaction graphs pairs with corresponding atom- and block-level graphs. We then calculate
 156 multiple 3D conformations for each graph using semi-empirical methods (Bannwarth et al., 2019).
 157

3.1 SYNSPACE: GRAPH GENERATION

158 We first construct **two curated** vocabularies adapted from the collection proposed by Koziarski et al.
 159 (2024). **The first vocabulary pairs 93 low-cost, commercially available building blocks with 19**
 160 **high-yield reaction templates, defining a virtual synthesis space of over a billion molecules. The**
 161 **second vocabulary is a superset with 378 building blocks with 26 reactions, expanding the synthesis**
 162 **space to over a trillion molecules. All building blocks were selected because they are known to**
 163 **undergo the chosen reactions, acknowledging that the presence of a nominally compatible functional**
 164 **group alone does not guarantee participation in the corresponding transformation. We utilize** reactions
 165 **that (1) ensure all product atoms originate from the two input reagents, and (2) involve at most one**

Figure 2: Overview of SYNSPACE creation process. Highly synthesizable molecules are procedurally constructed by iteratively sampling synthesis pathways from a set of building blocks and reactions. Starting from an initial block, the procedure selects a reaction center, a compatible reaction, and a suitable reactant. After the final structure is assembled, multiple low-energy 3D conformations are generated. We provide *two* SYNSPACE datasets from two vocabularies, a practically focused core set and an extended variant; each dataset contains 600k graphs with 3-4M conformers.

leaving group per reagent. We emphasize that these constraints yield simple, robust chemistries that are routinely executed and support rapid multi-step synthesis from inexpensive, in-stock reagents.

We procedurally generate **SYNSPACE** from the smaller vocabulary, or **SYNSPACE-L** from the larger **superset**, by iteratively coupling building block graphs at their reaction centers with compatible reaction templates (Appendix A.2). For **SYNSPACE**, we obtained 622,766 building block reaction graphs, each constructed from 2 to 4 sequential reactions. For each molecule, we generate multiple 3D conformations (Section 3.2), yielding 3,360,908 conformers. Similarly, **SYNSPACE-L** contains 600,000 graphs and 4,223,367 conformations. Unless otherwise noted, all models are trained on **SYNSPACE**, which emphasizes practicality as its fewer building blocks are more readily stocked, whereas **SYNSPACE-L** is reserved for when a larger, more exploratory search space is required.

SYNSPACE contains diverse molecules that are drug-like (e.g., LogP \sim 2.5; broad range of topological polar surface areas; large fraction of sp^3 carbons). Importantly, compared to Geom-Drugs (Axelrod & Gomez-Bombarelli, 2022), SYNSPACE contains substantially more unique Murcko scaffolds, indicating breadth despite the building block space. With a larger accessible space, SYNSPACE-L preserves similar physicochemical profiles and scaffold diversity. See Appendix A.3 for details.

Note: Injectivity. Many commercial building blocks contain multiple reaction centers, each compatible with a different set of corresponding reaction centers on other blocks. Thus, a building block-level reaction graph $G_b = (X, E)$ is not fully specified when edges are parametrized by the reaction alone. To achieve an injective correspondence, we label edges from node i to $j > i$ by the triple $e_{ij} = (r, v_i, v_j)$, where r is the coupling reaction and (v_i, v_j) are the participating reaction centers on the source and destination blocks, respectively. Stereoisomers that form during reactions collapse to the same (X, E) representation, but this granularity suffices for our current scope.

3.2. SYNSPACE: CONFORMATION GENERATION

For each molecular graph, 50 initial conformers were generated using the ETKDG (Riniker & Landrum, 2015) algorithm (RDKit implementation). These structures were energy-minimized using the MMFF94 force field, and all conformers within 10 kcal/mol of the global minimum were retained. The resulting geometries were then re-optimized with the semi-empirical GFN2-xTB (Bannwarth et al., 2019) method, after which the same 10 kcal/mol energy threshold was applied. At every stage, redundant structures were removed by geometry-based clustering (RMSD < 1.5). This workflow yields, on average, 5.4 distinct conformers per graph. Relative to exhaustive approaches such as CREST (Pracht et al., 2024), the workflow is several orders of magnitude faster; despite occasionally omitting some conformations, the retained structures are diverse and reproduce the bond-length, bond-angle, and dihedral-angle distributions observed in CREST-derived datasets (see Section 5.1).

3.3 SYNSPACE: PHARMACOPHORE GENERATION

For each conformer associated with a molecule in **SYNSPACE** and **SYNSPACE-L**, we generate a pharmacophore profile consisting of one-hot pharmacophore types $X_{\text{pharm}} \in \{0, 1\}^{N_{\text{pharm}} \times N_{\text{types}}}$

216 and positions $C_{\text{pharm}} \in \mathbb{R}^{N_{\text{pharm}} \times 3}$ using ShePhERD Adams et al. (2025). Here, N_{pharm} and N_{types}
 217 correspond to the number of pharmacophore features and the number of pharmacophore types,
 218 respectively.

220 4 METHODS

222 **Notation.** Let \mathcal{B} be the building-block vocabulary and \mathcal{R} the set of reaction templates, with
 223 cardinalities $B := |\mathcal{B}|$ and $R := |\mathcal{R}|$. We write N for the maximum number of building blocks that
 224 any molecule in the training set can contain, and M for the maximum number of atoms in a single
 225 building block. For each block $b \in \mathcal{B}$ we denote its set of reaction-center atoms by $\mathcal{V}(b)$; the global
 226 maximum of these counts is $V_{\max} := \max_{b \in \mathcal{B}} |\mathcal{V}(b)|$. Hence, tensor shapes contain factors such as
 227 $B + 1$ (to accommodate the masked token π_X in X), $R V_{\max}^2 + 2$ (to accommodate the no-edge and
 228 masked tokens λ_E and π_E), together with the bounds N and M introduced above.

229 **SYNCOGEN.** SYNCOGEN generates building block-level reaction graphs and coordinates. Each
 230 molecule is represented by a triple (X, E, C) where $X \in \{0, 1\}^{N \times |\mathcal{B}| + 1}$ encodes the sequence
 231 of building-block identities, $E \in \{0, 1\}^{N \times N \times |\mathcal{R}| V_{\max}^2 + 2}$ labels the coupling reaction (and centers)
 232 between every building block pair, and $C \in \mathbb{R}^{N \times M \times 3}$ stores all atomic coordinates. We detail the
 233 parameterization of graphs (X, E) in Appendix B.4. Training combines two diffusion schemes: 1) a
 234 **discrete absorbing process** on (X, E) using the categorical forward kernel of Sahoo et al. (2024), and
 235 2) a **continuous, visibility-aware process** on C whose endpoints are (i) a rototranslationally-aligned
 236 isotropic Gaussian and (ii) a re-centered ground truth, considering all "visible" atoms in the prior (see
 237 Section 4.2). **For a simplified visual diagram and intuitive description of the SYNCOGEN training**
 238 **procedure, see Appendix B.1.** The code is available here.

239 4.1 MODEL ARCHITECTURE

240 We adapt $SE(3)$ equivariant architecture originally designed for all-atom molecular design
 241 (SEMLAFLOW (Irwin et al., 2025)), as the principal backbone to generate both coordinates and
 242 graphs. At each timestep t , SYNCOGEN predicts building block logits L_t^X, L_t^E and a shifted co-
 243 ordinate estimate \hat{C}_0^t . The loss is the weighted sum of the cross-entropy term $\mathcal{L}_{\text{graph}}$ on (X, E) ,
 244 the masked coordinate MSE term \mathcal{L}_{MSE} , and the short-range pairwise distance term $\mathcal{L}_{\text{pair}}$ (see
 245 Appendices B.7 and B.16 for details). We define additional building-block-to-atom featurization in
 246 Appendix B.5 and atom-to-building-block output layers in Appendix B.10.

247 **Pharmacophore Conditioning Backbone.** To accommodate pharmacophores as conditioning
 248 information, we design a modified backbone to represent each as an "atom" with no weight
 249 during centering operations. After atom featurization, pharmacophore types are fed through
 250 a separate featurization head and concatenated to invariant atom type features, i.e. $X_{\text{model}} =$
 251 $[\text{MLP}_{\text{atom}}(X_{\text{atom}}), \text{MLP}_{\text{pharm}}(X_{\text{pharm}})] \in \mathbb{R}^{(N+N_{\text{pharm}}) \times d_x}$. Pharmacophore coordinates are concate-
 252 nated directly to atomic coordinates, $C_{\text{model}} = [C, C_{\text{pharm}}] \in \mathbb{R}^{(N+N_{\text{pharm}}) \times 3}$, and therefore undergo
 253 identical data augmentation beforehand (including that induced by data pairing, see Section 4.2).
 254 C_{model} and X_{model} are then passed to the equivariant-invariant dynamics module. Prior to final output
 255 layers, expanded atom-level hidden-layer outputs are truncated to the total number of atoms NM .

256 4.2 NOISING SCHEMES

258 **Graph Noising.** We noise true graphs (X_0, E_0) to obtain (X_t, E_t) using the procedure described
 259 in Section 2. In practice, as all true edge matrices E_0 are symmetric, we symmetrize the sampled
 260 probabilities for the noising and denoising of E_t correspondingly (see Appendix B.11).

261 **Coordinate Noising** During sampling, for any time t where some X_t contains a masked building
 262 block, we do not know the block's identity or atom count and thus represent its coordinates by a
 263 vector containing M atoms of unknown type, where M is a chosen upper bound on the number
 264 of atoms in a building block. To match this lack of information at training time, we perform the
 265 following: (i) First, we generate a noised graph (X_t, E_t) and draw $C_1 \sim \mathcal{N}(0, I)^{3 \times (NM)}$. (ii) We
 266 then design a *visibility mask* S_t that considers all M atoms for each noised building block containing
 267 $m \leq M$ atoms in X_t as valid. (iii) To keep atom counts identical within individual data pairs, S_t is
 268 applied to both C_0 and C_1 . (iv) The additional $M - m$ "padding" atoms in C_1 are copied to C_0 to
 269 create a modified ground-truth \tilde{C}_0 . (v) With a consistent number of atoms in place, both are centered.
 For a visual diagram describing this procedure, see Appendix B.1.

270 Thus, we construct centered, visibility-masked data-noise coordinate pairs $(\tilde{C}_1, \tilde{C}_0)$ that both contain
 271 $|S_t|$ "visible" atoms to match the information available to the model during sampling. Input to the
 272 model C_t is then obtained by linearly interpolating $C_t = (1-t)\tilde{C}_0 + t(\tilde{C}_1)$. Essentially, we task the
 273 model with rearranging the true atoms while disregarding padding by learning to fix padding atoms
 274 in place. See Algorithm 2 for formalization. We note a caveat in equivariance in Appendix B.6.

275 **Flexible Atom Count.** Most 3D molecule generation methods require specifying the number of
 276 atoms during inference. Because the prior of SYNCODE is over building blocks, we naturally
 277 handle a flexible number of atoms during generation and model any excessive atoms as padding.

279 4.3 TRAINING-TIME CONSTRAINTS

280 For discrete diffusion, SYNCODE utilizes zero masked logit probabilities and logit unmasking. In
 281 addition, we implement the following:

- 283 **No-Edge Diagonals.** We set the diagonals of all edge logit predictions L_θ^E to no-edge, as no
 284 building block has a coupling reaction-induced bond to itself.
- 285 **Edge Count Limit.** Let $k_t := \sum_{1 \leq i < j \leq n} \mathbb{1}(E_t[i, j, \cdot] \notin \{\pi_E, \lambda_E\})$ be the number of unmasked
 286 true edges in the upper triangle of E_t . If $k_t = n - 1$, we have the correct number of edges for a
 287 molecule containing n building blocks and therefore set all remaining edge logits to λ_E .
- 288 **Compatibility Masking.** Assume that for some E_t an edge entry is already denoised, $E_t[i, j, \cdot] =$
 289 (r, v_i, v_j) , meaning that building block i reacts with building block j via reaction r and centers
 290 $v_i \in \mathcal{V}(X_i), v_j \in \mathcal{V}(X_j)$. Define the sets of *center-matched reagents*

$$\begin{aligned} \mathcal{B}_{r,v}^A &:= \{b \in \mathcal{B} \mid (b, v) \text{ matches reagent A in } r\}, \\ \mathcal{B}_{r,v}^B &:= \{b \in \mathcal{B} \mid (b, v) \text{ matches reagent B in } r\}. \end{aligned} \quad (3)$$

294 For every node slot i (resp. j) we construct a $|\mathcal{B}|$ -dimensional binary mask

$$\mathcal{X}_{i,k} = \mathbb{1}[b_k \in \mathcal{B}_{r,v_i}^A], \mathcal{X}_{j,k} = \mathbb{1}[b_k \in \mathcal{B}_{r,v_j}^B], k = 1, \dots, |\mathcal{B}|. \quad (4)$$

295 so that the soft-max for $X_t[i, \cdot]$ (resp. $X_t[j, \cdot]$) is evaluated only over the 1-entries of \mathcal{X}_i (resp.
 296 \mathcal{X}_j). Analogously, once a node identity $X_t[j] = b$ is denoised, incoming edge channels (i, j)
 297 with $j > i$ are masked to reactions $e = (r, v_i, v_j)$ such that $b \in \mathcal{B}_{r,v_i}^B$.

300 For a visual diagram of the above, see Appendix B.2. Put simply, we restrict logits to disallow loops
 301 (e.g. macrocycles, which are often synthetically challenging), to impose a limit on the number of
 302 edges, and to better ensure the selection of chemically compatible building blocks and reactions.

303 4.4 SAMPLING

305 Sampling begins by drawing a building block count $n \sim \text{Cat}(\pi_{\text{frag}})$, setting the node and edge tensors
 306 to the masked tokens, $X_1[i, \cdot] = \pi_X, E_1[i, j, \cdot] = \pi_E$ for every $0 \leq i, j < N$, and padding all
 307 $(i \geq n)$ rows/columns with the no-edge token λ_E . The initial coordinates are an isotropic Gaussian
 308 $C_1 \sim \mathcal{N}(0, I)^{N \times M \times 3}$. From this state, each step (i) recenters the current coordinates by the visibility
 309 mask S_t derived from X_t , (ii) generates node and edge logits and coordinate predictions with the
 310 trained model, (iii) draws the next discrete state from (ii), and (iv) updates coordinates via an Euler
 311 step. After a final, deterministic pass, we calculate $(\hat{X}_0, \hat{E}_0) = \arg \max_k L_\theta^E[\cdot \dots, k]$ and center the
 312 coordinates to yield the molecule $(\hat{X}_0, \hat{E}_0, \hat{C}_0)$. Complete pseudocode is provided in Appendix B.8.
 313 We note our discrete and continuous schemes share a unified time. Lastly, we find inference annealing
 314 on the coordinates (see Appendix D.2) yields small performance gains at sampling time.

315 **Note: Inference-Time Edge Constraints.** By construction, a molecule containing n connected
 316 building blocks contains exactly $n - 1$ edges, and building block $j > 0$ has a single unique parent
 317 $i < j$. Consequently, sampling of redundant or impossible edges can be eliminated at inference time
 318 as described in Appendix B.9 and visualized in Appendix B.3.

319 5 EXPERIMENTS

321 5.1 De Novo 3D MOLECULE GENERATION

322 We first study SYNCODE in unconditional molecule generation jointly with 3D coordinates and
 323 reaction graphs. We evaluate SYNCODE against several recently published all-atom generation

324 frameworks which produce 3D coordinates, including SemlaFlow (Irwin et al., 2025), EQGAT-Diff
 325 (Le et al., 2024), MiDi (Vignac et al., 2023), JODO (Huang et al., 2023), and FlowMol (Dunn & Koes,
 326 2024). To isolate modeling effects from data, we retrain SemlaFlow on atomic types/coordinates in
 327 SYNSPACE for the same number of epochs as SYNCOPGEN.

328 For each model, we sample 1000 molecules and compute stringent metrics capturing chemical
 329 soundness, synthetic accessibility, conformer quality, and distributional fidelity. Pertaining to the
 330 molecular graphs, we report the RDKit sanitization validity (Valid.) and retrosynthetic solve rate
 331 (AiZynthFinder (Genheden et al., 2020) (AiZyn.) and Syntheseus (Maziarz et al., 2025) (Synth.)). For
 332 conformers, we introduce two physics-based metrics: the median non-bonded interaction energies per
 333 atom via the forcefield method GFN-FF and via the semiempirical quantum chemistry method GFN2-
 334 xTB Bannwarth et al. (2019); Spicher & Grimme (2020); we also check PoseBusters (Buttenschoen
 335 et al., 2024) validity rate (PB). We evaluate the diversity (Div.) as the average pairwise Tanimoto
 336 dissimilarity of the Morgan2 fingerprints, novelty (Nov.) as the percentage of candidates not appearing
 337 in the training set, and the Fréchet ChemNet Distance (Preuer et al., 2018) (FCD) between generated
 338 samples and the training distribution. See Appendix D.4 for details.

339 **Table 1: Comparison of generative methods for *de novo* 3D molecule generation.**

341 342 Group	343 Method	344 Primary metrics					345 Secondary metrics		
		346 Valid. \uparrow	347 AiZyn. \uparrow	348 Synth. \uparrow	349 GFN-FF \downarrow	350 xTB \downarrow	351 PB \uparrow	352 FCD \downarrow	353 Div. \uparrow
354 <i>Rxns & coords</i>	355 SYNCOPGEN	96.7	50	72	3.01	-0.91	87.2	2.91	0.78 93.9
356	357 SEMLAFLOW	93.3	38	36	5.96	-0.72	87.2	7.21	0.85 99.6
358	359 SEMLAFLOW SYNSPACE	72.0	27	48	3.27	-0.80	60.3	2.95	0.80 93.0
360	361 EQGAT-diff	85.9	37	24	4.89	-0.73	78.9	6.75	0.86 99.5
362	363 <i>Atoms & coords</i>	364 MiDi	74.4	33	31	4.90	-0.74	63.0	6.00 0.85 99.6
365	366 JODO	91.1	38	31	4.72	-0.74	84.1	4.22	0.85 99.4
367	368 FlowMol-CTMC	89.5	24	25	5.91	-0.68	69.3	13.0	0.86 99.8
369	370 FlowMol-Gaussian	48.3	6	8	4.24	-0.71	30.7	21.0	0.86 99.7

371 See Table 1 for results, and Figures 15 and 18 for examples. For chemical reasonableness, SYNCOPGEN
 372 generates almost entirely valid molecules. Our generation details the reaction and building
 373 blocks in a multi-step reaction pathway, and as a result, our molecules are significantly more synthesiz-
 374 able compared to baseline methods. Because AiZynthFinder and Syntheseus solve only 50–70 % of
 375 known drug-like molecules, our 50–72 % scores likely underestimate true synthesizability. A rigorous
 376 conformer geometry and energy comparison between all methods is provided in Appendix D.5.

372 **Figure 3: Conformer geometry and energy distribution.** Distributions of a) bond lengths, b-c)
 373 dihedral angles, d) average per-atom GFN-FF non-bonded interaction energies. Solid curves denote
 374 training data densities; lower subpanels in (a-c) show deviations between generated samples and data.
 375 Structurally, the generated conformers reproduce the data energy distributions and have very favor-
 376 able non-covalent interaction energies as evaluated by semi-empirical quantum-chemistry methods,
 377 especially when compared to the baseline methods (Table 1 and Figure 3). This is evident from
 the lack of structural changes upon further geometric relaxation (Figure 16). The Wasserstein-1

378 distances and Jensen-Shannon divergence can be found in Appendix D.5 and Figure 14. The low non-
 379 bonded energies indicate SYNCOPEN learns to sample many intramolecular interactions (Figure 15).
 380 Quantitatively, 87% of these conformers pass PoseBusters pose plausibility checks. Furthermore,
 381 SYNCOPEN reproduces the delicate data distribution of bond lengths, angles, and dihedrals (Figures 3
 382 and 14). For example, SYNCOPEN generates fewer sp^2C-sp^2N bonds that are too short, captures
 383 sharp bond angle distributions (e.g., $sp^3C-sp^3C-sp^3N$), and replicates both flexible dihedral angle
 384 distribution (e.g. $sp^3C-sp^3C-sp^3C-sp^3C$) and rigid dihedral angles (e.g. $sp^3C-sp^2C-sp^2C-sp^2C$).

385 Beyond sample quality, SYNCOPEN also captures the training distribution as indicated by the low
386 FCD, while generally producing novel molecules. [As a trade off for synthesizability](#), the generated
387 samples have slightly lower diversity due to using a (limited) set of reaction building blocks. All
388 generated samples are unique. Furthermore, the multi-modal model can perform zero-shot conformer
389 generation at a quality similar to ETKDG(RDKit) when given random reaction-graphs (Table 7).

Our various training-time ablations (Table 3) show that the largest performance gains originate from our chemistry-sensitive graph constraints and self-conditioning, with small contributions from other training/sampling details. A large performance gap between SYNCOPGEN and SemlaFlow retrained on SYNSPACE further shows that our training procedure, rather than the architecture or dataset, is the primary driver of performance. Appendix D.2 shows sampling-time ablations on schedules, annealing, and edge sampling strategies, which show the joint schedule is beneficial for stable co-generation.

Finally, we demonstrate that SYNCOPGEN is not limited by vocabulary size. When trained on SYNSPACE-L, whose search space is larger by several orders of magnitude (Appendix D.3), the model retains high RDKit validity, realistic conformer energies, and strong retrosynthesis solve rates. This indicates that SYNCOPGEN can be readily scaled to broader chemical spaces with little sacrifice on generation quality or synthesizability.

5.2 MOLECULAR INPAINTING FOR FRAGMENT LINKING

Figure 4: Molecular inpainting. a) Fragment linking starts from three experimentally identified ligands in the PDB that contain substructure matches with our building blocks. We show three examples of linkers generated by SYNCOPA per structure and the distribution of Vina docking scores. b) Proposed synthesis pathway for molecule **(1)** sampled from our model and c) structure of **(1)** (blue) docked onto PDB 7N7X using AlphaFold3 compared against the PDB ligand (beige).

To demonstrate the applicability of SYNCOPA, we study fragment linking (Bancet et al., 2020) to design *easily synthesizable* analogs of hard-to-make drugs. Fragment linking in drug design enables the construction of potent molecules by connecting smaller fragments that are known to bind distinct regions of a target site. We formulate fragment linking as a molecular inpainting task, where we fix the identity and coordinates of two fragments in a known ligand and sample its missing parts consistent with both geometry and reaction grammar.

432 As a case study, we pick several FDA-approved, hard-to-synthesize small molecules with experimental
 433 crystal structures, each bound to a different target protein. We select human plasma kallikrein (PDB:
 434 7N7X), multidrug-resistant HIV protease 1 (PDB: 4EYR), and human cyclin-dependent kinase
 435 6 (PDB: 5L2S), where each structure is complexed with a ligand that contains at least two of our
 436 building blocks. At sampling time, we condition on the substructure match by keeping fixed fragments
 437 denoised and interpolating the remaining coordinates (Appendix B.18).

438 Generated molecules are evaluated with AutoDock Vina (Figure 4) (Eberhardt et al., 2021). SYNC-
 439 GEN consistently produces molecules with docking scores on par with or better than the native ligand
 440 while satisfying constraints on the presence of specific building blocks. AlphaFold3 (Abramson
 441 et al., 2024b) predictions on selected protein-ligand pairs show similar binding positions in the
 442 selected pockets as well (Figures 4 and 17). Crucially, unlike existing approaches (Schneuing et al.,
 443 2024; Igashov et al., 2024), the model links fragments using building blocks *and* reactions to ensure
 444 streamlined synthetic routes of the designs (Table 8 and Figure 18).

445 Using SYNC-GEN for fragment-linking does not require retraining, although validities and energies
 446 can be improved with motif-scaffolding fine-tuning (Table 8). We benchmarked SYNC-GEN against
 447 the state-of-the-art, purpose-built fragment-linking model DiffLinker (Igashov et al., 2024). SYNC-
 448 GEN is the only method that produces synthesizable molecules with 58-79% retrosynthesis solve rate
 449 (0% for DiffLinker, Table 8). Compared to DiffLinker, our molecules have lower interaction energies,
 450 no disconnected fragments, **reduced hard-to-synthesize features** (Table 9), and similar PoseBuster
 451 validity rate. The synthesizable inpainted molecules now enables wet-lab tasks such as scaffold
 452 hopping, analog generation, or PROTAC design (Békés et al., 2022; Chirnomas et al., 2023).

453

454

455

5.3 AMORTIZED PHARMACOPHORE CONDITIONING

456

457

458 We evaluate SYNC-GEN on **amortized design** of *de novo* small-molecule binders conditioned
 459 solely on pharmacophore profiles (Sections 3.3 and 4.1). This setting avoids any external reward
 460 models (which can encourage reward hacking) and instead asks the generator to directly realize 3D
 461 arrangements of *interaction features* that are compatible with a target pocket or reference ligand. In
 462 this additional training process, pharmacophore types and positions are visible to the model during
 463 training. To aid generalization, we randomly sample a maximum of 7 pharmacophore features during
 464 data loading.

465

466

467

468

469

470 We select three disease-relevant targets with hard-to-synthesize reference ligands: ozanimod, scopo-
 471 lamine, and TR-107 (PDB IDs: 7EW0, 8CVD, 7UVU, respectively), and targets **2IOK, 2P15, 2V3D,**
 472 **3ZME, 4ZZN, 5FV7, and 5L2M** from the LIT-PCBA benchmark (Tran-Nguyen et al., 2020). For
 473 each target, we generate $n=100$ molecules based on the cognate ligand pharmacophore profile. Valid
 474 samples are docked with AutoDock Vina.

475

476

477

478

479

480

481

482

483

484

485

473 We compare SYNC-GEN against three baselines. ShEPhERD (Adams et al., 2025) is a state-of-the-art
 474 3D generator conditioned on pharmacophore interaction profiles but does not enforce synthesizability.
 475 SynFormer (Gao et al., 2024) generates synthesizable 2D molecules; we condition it on native PDB
 476 ligands for analogue generation. CGFlow (Shen et al., 2025) generates synthesis pathways with 3D
 477 poses. To align with our amortized sampling setup, we sample CGFlow using the pocket-conditioned
 478 reward from Shen et al. (2024) and refer to the baseline as CGFlow-ZS.

479 On average, SYNC-GEN produces *de novo* molecules with better or competitive docking scores
 480 compared to ShEPhERD, CGFlow-ZS, SynFormer, and the native ligand (Figure 5). Our top samples
 481 surpass all baselines in 8 out of 10 targets. Qualitatively, SYNC-GEN molecules dock to the same
 482 pocket and replicate key pharmacophoric contacts of the known ligand with a high shape overlap (Figure
 483 20). Compared to the 3D method ShEPhERD, SYNC-GEN generated molecules have markedly
 484 higher RDKit validity and PoseBusters validity rate (by 45% and 25%, respectively), indicating more
 485 chemically and geometrically plausible structures. Most importantly, across all baselines, including
 synthesis-constrained ones, SYNC-GEN achieve significantly better retrosynthesis solve rates (by
 15-65%) and reduces hard-to-synthesize features (Table 10), while maintaining comparable diversity.
 These results suggest that the added complexity of generating synthesizable molecules *and* their 3D
 poses with our synthesis-constrained search space (see Figure 19) provides an *amortized* way to
 design *de novo* molecules that are both high-affinity and easy to synthesize.

Figure 5: **Pharmacophore-conditioned generation.** *Top:* Docking score comparison on 10 targets from the PDB/LIT-PCBA benchmark (100 samples per method, per target). *Bottom left:* Aggregated conditional generation metrics for all 10 targets. *Bottom right:* Docked SYNCOGEN-generated molecules (green) overlaid with PDB ligand (magenta) for 5L2M, 5FV7 and 3ZME.

6 CONCLUSION

In this work, we introduced SYNCOGEN, a multimodal generative model that jointly samples building-block reaction graphs and atomic coordinates. Our chemistry-aware training procedures enable this model to learn to design synthesizable molecules directly in Cartesian space. We additionally curated SYNSPACE, a new family of dataset currently constructed from 2 vocabularies, and containing 1.2M readily synthesizable molecules paired with 7.5M low-energy 3D conformations. SYNCOGEN achieves state-of-the-art performance across 3D molecular generation benchmarks, while natively returning a tractable synthetic route for each structure. The practical utility of SYNCOGEN is demonstrated in fragment-linking and pharmacophore-conditioned generation to design easily synthesizable drug analogs using chemical and geometric profiles. Overall, SyncCoGen sets a new state-of-the-art in zero-shot target-conditional design and ensures synthesizable chemistry, all while avoiding external scoring functions in favor of direct 3D structure conditioning.

The design space of SYNCOGEN is not limited to SYNSPACE. Our code base includes a data preparation and finetuning pipeline by which interested researchers can easily add their own building blocks and reactions and finetune/retrain our model. Looking forward, future works need to prove rapid experimental synthesis and binding of the *de novo* molecular designs conditioned with 3D information.

ETHICS STATEMENT

While intended for research in drug discovery, any generative chemistry system has dual-use risk (e.g., suggesting toxic or hazardous compounds). We mitigate this by constraining generation to commercially available building blocks and a limited set of high-yield reaction templates, representing products as explicit reaction graphs, which enables expert review of routes.

REPRODUCIBILITY STATEMENT

We provide an anonymized code for this study, including end-to-end training and sampling scripts for the joint multi-modal model, configuration files, evaluation pipelines that reproduce the metrics, and data preparation code to regenerate the conformer sets and pharmacophore features. We also will release pretrained checkpoints and commands to reproduce: unconditional generation, fragment-linking inpainting, and pharmacophore-conditioned sampling. At camera-ready, we will release simple commands to generate a new training dataset given custom reactions and building blocks.

540 REFERENCES

541 Milad Abolhasani and Eugenia Kumacheva. The rise of self-driving labs in chemical and materials
542 sciences. *Nature Synthesis*, 2(6):483–492, 2023.

543

544 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
545 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, Sebastian W Bodenstein,
546 David A Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvunakool,
547 Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridg-
548 land, Alexey Cherepanov, Miles Congreve, Alexander I Cowen-Rivers, Andrew Cowie, Michael
549 Figurnov, Fabian B Fuchs, Hannah Gladman, Rishub Jain, Yousuf A Khan, Caroline M R Low,
550 Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisun-
551 daram, Catherine Tong, Sergei Yakneen, Ellen D Zhong, Michal Zielinski, Augustin Žídek, Victor
552 Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M Jumper. Accurate structure
553 prediction of biomolecular interactions with AlphaFold 3. *Nature*, 630(8016):493–500, June
554 2024a.

555 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
556 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
557 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024b.

558

559 Keir Adams, Kento Abeywardane, Jenna Fromer, and Connor W. Coley. Shepherd: Diffusing
560 shape, electrostatics, and pharmacophores for bioisosteric drug design, 2025. URL <https://arxiv.org/abs/2411.04130>.

561

562 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
563 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

564

565 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
566 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing
567 Systems*, 34:17981–17993, 2021.

568

569 Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
570 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.

571

572 Frazier N Baker, Ziqi Chen, Daniel Adu-Ampratwum, and Xia Ning. RLSynC: Offline–online
573 reinforcement learning for synthon completion. *Journal of Chemical Information and Modeling*,
574 64(17):6723–6735, 2024.

575

576 Alexandre Bancet, Claire Raingeval, Thierry Lomberget, Marc Le Borgne, Jean-François Guichou,
577 and Isabelle Krimm. Fragment linking strategies for structure-based drug design. *Journal of
578 medicinal chemistry*, 63(20):11420–11435, 2020.

579

580 Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. GFN2-xTB—An accurate and broadly
581 parametrized Self-Consistent Tight-Binding quantum chemical method with multipole electrostat-
582 ics and Density-Dependent dispersion contributions. *J. Chem. Theory Comput.*, 15(3):1652–1671,
583 March 2019.

584

585 Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang
586 Su, and Jun Zhu. One transformer fits all distributions in multi-modal diffusion at scale. In
587 *International Conference on Machine Learning*, pp. 1692–1717. PMLR, 2023.

588

589 Miklós Békés, David R Langley, and Craig M Crews. PROTAC targeted protein degraders: the past
590 is prologue. *Nat. Rev. Drug Discov.*, 21(3):181–200, March 2022.

591

592 Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian FATRAS, Jarrid Rector-Brooks, Cheng-
593 Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M Bronstein, and Alexander Tong.
594 Se(3)-stochastic flow matching for protein backbone generation. In *The Twelfth International
595 Conference on Learning Representations*, 2024.

596

597 John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato. A
598 model to search for synthesizable molecules. *Advances in Neural Information Processing Systems*,
599 32, 2019.

594 John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato.
 595 Barking up the right tree: an approach to search over molecule synthesis DAGs. *Advances in*
 596 *Neural Information Processing systems*, 33:6852–6866, 2020.

597

598 Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane. Posebusters: Ai-based docking
 599 methods fail to generate physically valid poses or generalise to novel sequences. *Chemical Science*,
 600 15(9):3130–3139, 2024.

601 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 602 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
 603 In *International Conference on Machine Learning*, pp. 5453–5512. PMLR, 2024.

604

605 Deborah Chirnomas, Keith R Hornberger, and Craig M Crews. Protein degraders enter the clinic - a
 606 new approach to cancer therapy. *Nat. Rev. Clin. Oncol.*, 20(4):265–278, April 2023.

607

608 Miruna Cretu, Charles Harris, Ilia Igashov, Arne Schneuing, Marwin Segler, Bruno Correia, Julien
 609 Roy, Emmanuel Bengio, and Pietro Liò. Synflownet: Design of diverse and novel molecules with
 610 synthesis constraints. *arXiv preprint arXiv:2405.01155*, 2024.

611

612 Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
 613 molecule generation. *arXiv preprint arXiv:2404.19739*, 2024.

614

615 Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina
 616 1.2. 0: New docking methods, expanded force field, and python bindings. *Journal of Chemical*
 617 *Information and Modeling*, 61(8):3891–3898, 2021.

618

619 Zhiguang Fan, Yuedong Yang, Mingyuan Xu, and Hongming Chen. EC-Conf: A ultra-fast dif-
 620 fusion model for molecular conformation generation with equivariant consistency. *Journal of*
 621 *Cheminformatics*, 16(1):107, September 2024.

622

623 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
 624 Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
 625 Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
 626 Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
 627 Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):1–8,
 628 2021.

629

630 Piotr Gaiński, Oussama Boussif, Dmytro Shevchuk, Andrei Rekesh, Ali Parviz, Mike Tyers, Robert A
 631 Batey, and Michał Koziarski. Scalable and cost-efficient de novo template-based molecular
 632 generation. In *ICLR 2025 Workshop on Generative and Experimental Perspectives for Biomolecular*
 633 *Design*, 2025.

634

635 Wenhao Gao and Connor W Coley. The synthesizability of molecules proposed by generative models.
 636 *Journal of Chemical Information and Modeling*, 60(12):5714–5723, 2020.

637

638 Wenhao Gao, Rocío Mercado, and Connor W Coley. Amortized tree generation for bottom-up
 639 synthesis planning and synthesizable molecular design. In *The Tenth International Conference on*
 640 *Learning Representations*, 2022.

641

642 Wenhao Gao, Shitong Luo, and Connor W Coley. Generative artificial intelligence for navigating
 643 synthesizable chemical space. *arXiv preprint arXiv:2410.03494*, 2024.

644

645 Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis Reymond, Ola Engkvist, and
 646 Esben Bjerrum. AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic
 647 planning. *Journal of Cheminformatics*, 12(1):70, November 2020.

648

649 Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
 650 Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate the
 651 synthetically accessible chemical space using reinforcement learning. In *International conference*
 652 *on machine learning*, pp. 3668–3679. PMLR, 2020.

653

654 Tom George Grigg, Mason Burlage, Oliver Brook Scott, Dominique Sydow, and Liam Wilbraham.
 655 Active learning on synthons for molecular design. In *ICLR 2025 Workshop on Generative and*
 656 *Experimental Perspectives for Biomolecular Design*, 2025.

648 Jeff Guo and Philippe Schwaller. Directly optimizing for synthesizability in generative molecular
 649 design using retrosynthesis models. *Chemical Science*, 16(16):6943–6956, 2025.
 650

651 Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stärk, Stephan Thaler, and Dominique Beaini.
 652 Et-flow: Equivariant flow-matching for molecular conformer generation. *Advances in Neural
 653 Information Processing Systems*, 37:128798–128824, 2024.

654 Julien Horwood and Emmanuel Noutahi. Molecular design in synthetically accessible chemical space
 655 via deep reinforcement learning. *ACS omega*, 5(51):32984–32994, 2020.
 656

657 Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Learning joint 2d & 3d diffusion models for
 658 complete molecule generation. *arXiv preprint arXiv:2305.12347*, 2023.
 659

660 Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard,
 661 Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model
 662 for molecular linker design. *Nature Machine Intelligence*, 2024.

663 Ross Irwin, Alessandro Tibo, Jon Paul Janet, and Simon Olsson. Semlaflow–efficient 3d molec-
 664 ular generation with latent attention and equivariant flow matching. In *The 28th International
 665 Conference on Artificial Intelligence and Statistics*, 2025.

666 Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
 667 diffusion for molecular conformer generation. *Advances in Neural Information Processing Systems*,
 668 35:24240–24253, 2022.
 669

670 Zygmantas Jocys, Henriette MG Willems, and Katayoun Farrahi. SynthFormer: Equivariant
 671 pharmacophore-based generation of molecules for ligand-based drug design. *arXiv preprint
 672 arXiv:2410.02718*, 2024.
 673

674 Gwanghyun Kim, Alonso Martinez, Yu-Chuan Su, Brendan Jou, José Lezama, Agrim Gupta, Lijun
 675 Yu, Lu Jiang, Aren Jansen, Jacob Walker, et al. A versatile diffusion transformer with mixture of
 676 noise levels for audiovisual generation. *arXiv preprint arXiv:2405.13762*, 2024.
 677

678 Michał Kozierski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gaiński, Yoshua
 679 Bengio, Chenghao Liu, Mike Tyers, and Robert Batey. RGFN: Synthesizable molecular generation
 680 using GFlowNets. *Advances in Neural Information Processing Systems*, 37:46908–46955, 2024.
 681

682 Tuan Le, Julian Cremer, Frank Noe, Djork-Arné Clevert, and Kristof T Schütt. Navigating the design
 683 space of equivariant diffusion-based generative models for de novo 3d molecule generation. In *The
 684 Twelfth International Conference on Learning Representations*, 2024.

685 Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: Co-evolving contrastive diffusion models for
 686 mixed-type tabular synthesis. In *International Conference on Machine Learning*, pp. 18940–18956.
 687 PMLR, 2023.
 688

689 Daeseok Lee and Yongjun Cho. Fine-tuning pocket-conditioned 3D molecule generation via rein-
 690 forcement learning. In *ICLR 2024 Workshop on Generative and Experimental Perspectives for
 691 Biomolecular Design*, 2024.

692 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
 693 for generative modeling. In *The Eleventh International Conference on Learning Representations*,
 694 2023.
 695

696 Cheng-Hao Liu, Maksym Korablyov, Stanisław Jastrzebski, Paweł Włodarczyk-Pruszynski, Yoshua
 697 Bengio, and Marwin Segler. Retrognn: fast estimation of synthesizability for virtual screening and
 698 de novo design by learning from slow retrosynthesis software. *Journal of Chemical Information
 699 and Modeling*, 62(10):2293–2300, 2022.
 700

701 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 702 with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023.
 703

704 Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek Hoiem,
 705 and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with vision
 706 language audio and action. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 707 Pattern Recognition*, pp. 26439–26455, 2024.

702 Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp
703 Seidl, and Marwin H. S. Segler. Re-evaluating retrosynthesis algorithms with syntheseus. *Faraday
704 Discussions*, 256:568–586, 2025.

705 Brian Medel-Lacruz, Albert Herrero, Fernando Martín, Enric Herrero, F Javier Luque, and Javier
706 Vázquez. Synthon-based strategies exploiting molecular similarity and protein–ligand interactions
707 for efficient screening of ultra-large chemical libraries. *Journal of Chemical Information and
708 Modeling*, 2025.

709 Chameleon Meta. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
710 arXiv:2405.09818*, 2024.

711 Alex Morehead and Jianlin Cheng. Geometry-complete diffusion for 3D molecule generation and
712 optimization. *Communications Chemistry*, 7(1):150, 2024.

713 Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and generative
714 modeling. *Journal of Machine Learning Research*, 24(374):1–51, 2023.

715 Philipp Pracht, Stefan Grimme, Christoph Bannwarth, Fabian Bohle, Sebastian Ehlert, Gereon
716 Feldmann, Johannes Gorges, Marcel Müller, Tim Neudecker, Christoph Plett, Sebastian Spicher,
717 Pit Steinbach, Patryk A. Wesołowski, and Felix Zeller. Crest—a program for the exploration of
718 low-energy molecular chemical space. *The Journal of Chemical Physics*, 160(11):114110, 2024.

719 Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer. Fréchet
720 ChemNet distance: A metric for generative models for molecules in drug discovery. *Journal of
721 Chemical Information and Modeling*, 58(9):1736–1741, 2018.

722 Sereina Riniker and Gregory A Landrum. Better informed distance geometry: Using what we know
723 to improve conformation generation. *Journal of Chemical Information and Modeling*, 55(12):
724 2562–2574, December 2015.

725 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
726 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
727 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

728 Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du,
729 Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant
730 diffusion models. *Nature Computational Science*, 4(12):899–909, 2024.

731 Seonghwan Seo, Minsu Kim, Tony Shen, Martin Ester, Jinkyoo Park, Sungsoo Ahn, and Woo Youn
732 Kim. Generative flows on synthetic pathway for drug design. *arXiv preprint arXiv:2410.04542*,
733 2024.

734 Tony Shen, Seonghwan Seo, Grayson Lee, Mohit Pandey, Jason R Smith, Artem Cherkasov,
735 Woo Youn Kim, and Martin Ester. Tacogfn: Target-conditioned gflownet for structure-based
736 drug design, 2024. URL <https://arxiv.org/abs/2310.03223>.

737 Tony Shen, Seonghwan Seo, Ross Irwin, Kieran Didi, Simon Olsson, Woo Youn Kim, and Martin
738 Ester. Compositional flows for 3D molecule and synthesis pathway co-design. *arXiv preprint
739 arXiv:2504.08051*, 2025.

740 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
741 masked diffusion for discrete data. *Advances in Neural Information Processing Systems*, 37:
742 103131–103167, 2024.

743 Sebastian Spicher and Stefan Grimme. Robust atomistic modeling of materials, organometallic, and
744 biochemical systems. *Angewandte Chemie International Edition*, 59(36):15665–15673, 2020.

745 Michael Sun, Alston Lo, Minghao Guo, Jie Chen, Connor W Coley, and Wojciech Matusik. Procedural
746 synthesis of synthesizable molecules. In *The Thirteenth International Conference on Learning
747 Representations*, 2025.

756 Kyle Swanson, Gary Liu, Denise B Catacutan, Autumn Arnold, James Zou, and Jonathan M Stokes.
 757 Generative AI for designing and validating easily synthesizable and structurally novel antibiotics.
 758 *Nature Machine Intelligence*, 6(3):338–353, 2024.

759
 760 Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 761 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 762 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2023.

763 Jos Torge, Charles Harris, Simon V Mathis, and Pietro Lio. DiffHopp: A graph diffusion model for
 764 novel drug design via scaffold hopping. *arXiv preprint arXiv:2308.07416*, 2023.

765
 766 Viet-Khoa Tran-Nguyen, Célien Jacquemard, and Didier Rognan. Lit-pcba: An unbiased data set for
 767 machine learning and virtual screening. *Journal of Chemical Information and Modeling*, 60(9):
 768 4263–4273, 2020. doi: 10.1021/acs.jcim.0c00155. URL <https://doi.org/10.1021/acs.jcim.0c00155>. PMID: 32282202.

769
 770 Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
 771 denoising diffusion for molecule generation. In *Joint European Conference on Machine Learning*
 772 and *Knowledge Discovery in Databases*, pp. 560–576. Springer, 2023.

773
 774 Chentong Wang, Sarah Alamdari, Carles Domingo-Enrich, Ava P. Amini, and Kevin K. Yang. Toward
 775 deep learning sequence–structure co-generation for protein design. *Current Opinion in Structural
 Biology*, 91:103018, 2025.

776
 777 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 778 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 779 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

780
 781 Sen Yang, Lingli Ju, Cheng Peng, JiangLin Zhou, Yamin Cai, and Dawei Feng. Co-design protein
 782 sequence and structure in discrete space via generative flow. *Bioinformatics*, pp. btaf248, 04 2025.

783
 784 Kiwoong Yoo, Owen Oertell, Junhyun Lee, Sanghoon Lee, and Jaewoo Kang. TurboHopp: Ac-
 785 celerated molecule scaffold hopping with consistency models. *Advances in Neural Information
 Processing Systems*, 37:41157–41185, 2024.

786
 787 Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Chris-
 788 tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
 789 score-based diffusion in latent space. In *The Twelfth International Conference on Learning
 Representations*, 2024.

790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A CHEMISTRY AND DATASET DETAILS
811812 A.1 BUILDING BLOCKS AND REACTIONS
813

814 For the small vocabulary, the 93 selected commercial building blocks and their respective reaction
815 centers are shown in Figure 9. For chemical reactions, we focused on cross-coupling reactions to
816 link fragments together. We chose 8 classes of robust reactions, which can be subdivided into 19
817 types of reaction templates, see Figure 7. The remaining building blocks and reactions that define the
818 large vocabulary are shown in Figure 8 and ??, respectively. We note that our reaction modeling is
819 simplified. For example, boronic acids in building blocks ($\text{B}(\text{OH})_2$) are replaced with boranes (BH_2);
820 we do not consider the need for chemical protection on certain functional groups (e.g. N-Boc); we do
821 not consider directing group effects or stoichiometry when multiple reaction centers are available; we
822 do not consider macrocycles. These edge cases are limitations of the current method, but they are
823 comparably minimal through the careful curation of building blocks to avoid such infeasible chemical
824 reactions.

825 A.2 GRAPH GENERATION
826

827 **Helper definitions.** We annotate each building block with its reaction center atom indices $\mathcal{V}(b) \subseteq$
828 $V(b)$ and its and each intrinsic atom-level graph by $H(b) := (V(b), L(b))$, where $V(b)$ is the set of
829 atoms in b and $L(b) \subseteq V(b) \times V(b)$ is the set of covalent bonds internal to the block. Each reaction
830 template r is annotated with a Boolean tuple $((l_A(r), l_B(r)) \in \{0, 1\}^2$ describing whether reagent
831 A or reagent B in r , respectively, contains a leaving atom.

832 Given the current atom graph $G_a = (V_a, L_a)$ and an atom $v \in V_a$ of degree 1, the routine
833 $\text{UNIQUENEIGHBOR}(v)$ returns the *single* atom $u \in V_a$ such that $(u, v) \in L_a$. Throughout the
834 vocabulary, every leaving-group center has exactly one neighbour.

835 A reaction template r is considered compatible with (b_i, v) and (\tilde{b}, \tilde{v}) if it queries for first and second
836 reagent substructures that match (b_i, v) and (\tilde{b}, \tilde{v}) , respectively.

837 Lastly, while the model is compatible with reactions containing more leaving groups, we do not
838 consider them as the dataset construction requires custom atom attribution between reactants and
839 products.

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Figure 6: List of building blocks for the small vocabulary, their respective reaction centers (in red), and their canonical SMILES representation.

918
919
920
921
922
923
924

Suzuki aryl bromide
[c:1]-[Br].[c:2]-[B]>>[c:1]-[c:2]

Suzuki aryl iodide
[c:1]-[I].[c:2]-[B]>>[c:1]-[c:2]

Amide coupling, primary amine
[C:1]=[O:2]-[Oh].[Nh:2]-[#6&\$C=[O,N]:4]>>[C:1]=[O:2]-[Nh:3]-[#6&\$C=[O,N]:4]

Amide coupling, secondary amine
[C:1]=[O:2]-[Oh].[Nh:3]-[#6&\$C=[O,N]:4]-[#6&\$C=[O,N]:5]>>[C:1]=[O:2]-[N:3]-[#6&\$C=[O,N]:4]-[#6&\$C=[O,N]:5]

Williamson ether synthesis bromide
[#6:4]-[Ch2:1]-[Br].[#6&\$C=[O,N]:2]-[Oh:3]>>[#6:4]-[Ch2:1]-[O:3]-[#6&\$C=[O,N]:2]

Williamson ether synthesis chloride
[#6:4]-[Ch2:1]-[Cl].[#6&\$C=[O,N]:2]-[Oh:3]>>[#6:4]-[Ch2:1]-[O:3]-[#6&\$C=[O,N]:2]

Williamson ether synthesis iodide
[#6:4]-[Ch2:1]-[I].[#6&\$C=[O,N]:2]-[Oh:3]>>[#6:4]-[Ch2:1]-[O:3]-[#6&\$C=[O,N]:2]

Alkyl bromide aromatic N-H alkylation
[#6:4]-[Ch2:1]-[Br].[#6&\$C=[O,N]:10]-[Nh:2]-[#6&\$C=[O,N]:2]>>[#6:4]-[Ch2:1]-[Nh:2]-[#6&\$C=[O,N]:20]-[#6&\$C=[O,N]:1]

Alkyl iodide aromatic N-H alkylation
[#6:4]-[Ch2:1]-[I].[#6&\$C=[O,N]:10]-[Nh:2]-[#6&\$C=[O,N]:2]>>[#6:4]-[Ch2:1]-[Nh:2]-[#6&\$C=[O,N]:20]-[#6&\$C=[O,N]:1]

Buchwald aryl bromide, secondary amine

$$[\text{c:1}]\text{-}[\text{Br}]\text{.}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}2]\text{-}[\text{Nh:3}]$$

$$>>[\text{c:1}]\text{-}[\text{Nh:3}]\text{.}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}2]$$

Buchwald aryl bromide, primary amine

$$[\text{c:1}]\text{-}[\text{Br}]\text{.}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}2]\text{-}[\text{Nh:3}]\text{.}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}4]$$

$$>>[\text{c:1}]\text{-}[\text{Nh:3}]\text{.}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}4]\text{-}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}2]$$

Esterification reaction

$$[\text{C:1}](=[\text{O}:2])\text{-}[\text{Oh}]\text{.}[\text{Oh:3}]\text{.}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}4]$$

$$>>[\text{C:1}](=[\text{O}:2])\text{-}[\text{O:3}]\text{.}[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}4]$$

Primary amine sulfonyl chloride substitution

$$[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:2:1}]\text{Cl}\text{-}[\text{S:4}](\text{[":7]})\text{)([O:5])=[O:6]}$$

$$>>[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:1}]\text{-}[\text{S:4}](\text{[":7]})\text{)([O:5])=[O:6]}$$

Secondary amine sulfonyl chloride substitution

$$(\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:1}]\text{)([\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}20)}\text{.}[\text{Cl}\text{-}[\text{S:4}](\text{[":7]})\text{)([O:5])=[O:6]}$$

$$\& [\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:1}]\text{)([\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}20)}\text{-}[\text{S:4}](\text{[":7]})\text{)([O:5])=[O:6]}$$

Reductive amination, primary amine and aldehyde

$$[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:2:1}]\text{[Ch:2}]\text{)([\#6:3])=[O]}$$

$$>>[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:1}]\text{-}[\text{Ch:2}]\text{)([\#6:3])}$$

Reductive amination, secondary amine and aldehyde

$$[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{-}[\text{Nh:1}]\text{)([\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}20)}\text{.}[\text{Ch:2}]\text{)([\#6:3])=[O]}$$

$$>>[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{-}[\text{Nh:1}]\text{)([\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}20)}\text{-}[\text{Ch:2:2}]\text{)([\#6:3])}$$

Reductive amination, primary amine and ketone

$$[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:2:1}]\text{.}[\#6:3]\text{[C:2}]\text{)([\#6:4])=[O]}$$

$$>>[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{[Nh:1}]\text{-}[\text{Ch:2}]\text{)([\#6:3])=[O:6]}$$

Reductive amination, secondary amine and ketone

$$[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{-}[\text{Nh:1}]\text{)([\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}20)}\text{.}[\#6:3]\text{[C:2}]\text{)([\#6:4])=[O]}$$

$$>>[\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}10]\text{-}[\text{Nh:1}]\text{)([\#6\&\$](\text{C}=[\text{O},\text{N}])\text{:}20)}\text{-}[\text{Ch:2}]\text{)([\#6:3])=[O:6]}$$

Figure 7: List of chemical reactions for the small vocabulary used to connect building blocks and their SMARTS representation. Newly formed bonds are highlighted in pink.

Figure 8: The additional building blocks for the large vocabulary, their respective reaction centers (in red), and their canonical SMILES representation. The large vocabulary also includes all building blocks from the small vocabulary.

1080 A.3 SYNSPACE STATISTICS
10811082 Table 2: Average molecular properties of SYNSPACE and SYNSPACE-L datasets, in comparison with
1083 GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022)
1084

1085 Property	1086 SYNCOGEN	1087 SYNSPACE-L	1088 GEOM Drugs
1089 Molecular Weight	1090 492.16	1091 476.40	1092 355.83
1093 Number of Heavy Atoms	1094 33.74	1095 32.99	1096 24.86
1097 Octanol-Water Partition Coefficient (Log P)	1098 2.44	1099 3.01	1100 2.91
1101 Number of Hydrogen Bond Donors	1102 2.75	1103 3.30	1104 1.19
1105 Number of Hydrogen Bond Acceptors	1106 6.74	1107 6.25	1108 4.83
1109 Quantitative Estimate of Drug-likeness	1110 0.43	1111 0.36	1112 0.65
1113 Fraction of sp^3 Carbons	1114 0.41	1115 0.37	1116 0.30
1117 Topological Polar Surface Area	1118 111.32	1119 110.08	1120 73.73
1121 Number of Rotatable Bonds	1122 6.95	1123 8.92	1124 4.90
1125 SAScore	1126 3.34	1127 3.28	1128 2.51
1129 Murcko Scaffold Number	1130 443458	1131 333180	1132 92955

1125 Figure 10: Distribution of SYNSPACE and SYNSPACE-L molecular property statistics, as compared to
1126 GEOM Drugs.
11271128
1129
1130
1131
1132
1133

1134 **B METHOD DETAILS**
11351136 **B.1 SIMPLIFIED TRAINING WORKFLOW**1137 Below we provide a simplified illustration of the **SYNCOGEN** training process. For visual clarity, we
1138 describe the procedure for a single building block.
11391178 Figure 11: Simplified training workflow for **SYNCOGEN** using a single bromobenzene as an example.
11791180 Data are passed through the model during training according to the following process:
1181

1. **Noise injection.** Coordinate positions and building block identities are noised/masked. If a building block becomes masked, padding atoms are added to its coordinates to match the maximum number of atoms in any building block within the vocabulary M . In this example, $M = 10$.
2. **Ground-truth preparation.** To keep the number of atoms consistent, the data pairing module (Appendix B.6) generates ground-truths with or without padding atoms and recenters

1188 them accordingly. Note that padding atom positions are identical in the noisy coordinates
 1189 (sampled from the Gaussian prior) and the ground truth. Here, we encourage the model to
 1190 disregard atoms that are unlikely to assemble into the true molecule when the building block
 1191 is unknown.
 1192

1193 **3. Backbone processing.** The noised building blocks are passed through the backbone, which
 1194 outputs building block logits, reaction logits and coordinates; we exemplify this for building
 1195 blocks in the diagram above. The correct index is highlighted in green.
 1196

1197 **4. Index masking.** The logits are processed by the SUBS parameterization module introduced
 1198 by Sahoo et al. (2024) and the compatibility logit masking module described in Appendix B.2
 1199 to eliminate probability mass allocated to incompatible or impossible indices.
 1200

1201 **5. Loss computation.** Negative log-likelihoods are computed over the modified logits.
 1202

1203 **Remark.** Steps 1 and 2, in particular, ensure that model inputs containing masked building blocks
 1204 during training remain consistent with the information available for a corresponding example at
 1205 sampling time. When a building block is not known, neither is the number of atoms it contains. The
 1206 absence of padding atoms during training would require direct selection of atom counts per building
 1207 block at sampling time, which constitutes a strong constraint on the building block identities and
 1208 severely limits design flexibility.
 1209

1210 B.2 COMPATIBILITY LOGIT MASKING

1211 Below we provide a simplified illustration of the SYNCoGEN compatibility masking procedure for
 1212 building blocks. For visual clarity, selection of building block attachment points is implicit and
 1213 reactions are denoted by a single one-hot item r , rather than a triple (r, v_i, v_j) .
 1214

1238 **Figure 12: Compatibility masking regime for building blocks.** Gray and white squares indicate
 1239 "masked" and "no edge", respectively. a) A denoised item at position (1, 3) in E denotes that a
 1240 reaction r_1 has been selected between building block 1 and 3 in X . b) In X , the vocabulary is queried
 1241 for substructure matches to reagents 1 and 2 of r_1 at building block indices 1 and 3 respectively, and
 1242 logits corresponding to incompatible building blocks are set to 0.

1242
1243 B.3 SAMPLING EDGE LOGIT MASKING
12441245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263 Figure 13: **Sampling constraints for edge denoising.** When a reaction is denoised at position
1264 (2, 4) in E , all other incoming edges to building block index 4 are set to "no-edge"—this is a valid
1265 assumption as SynSpace does not contain macrocycles.
1266
1267
1268 B.4 BUILDING BLOCK-LEVEL REPRESENTATIONS
1269
1270 Let $X \in \{0, 1\}^{N \times |\mathcal{B}|+1}$ be a one-hot matrix where the i^{th} row encodes the identity of the i^{th}
1271 building block, and let $E \in \{0, 1\}^{N \times N \times |\mathcal{R}|V_{\max}^2+2}$, where $V_{\max} = \max_b |\mathcal{V}(b)|$. A non-zero entry
1272 $E_{ijr(v_i, v_j)} = 1$ signals that block i (center v_i) couples to block j (center v_j) via reaction r . Graphs
1273 (X, E) belonging to molecules containing $n < N$ building blocks are padded to N .
1274
1275 Reserved Channels. We reserve a dedicated *masked* (absorbing) token in both vocabularies:
1276
1277

$$\pi_X \in \{0, 1\}^{|\mathcal{B}|}, \quad \pi_E \in \{0, 1\}^{|\mathcal{R}|V_{\max}^2}, \quad (5)$$

1278 where π_X (resp. π_E) is the one-hot vector whose single 1-entry corresponds to the masked node (resp.
1279 edge) channel. Besides the masked channel, we keep a dedicated *no-edge* channel, encoded by the
1280 one-hot vector

$$\lambda_E \in \{0, 1\}^{|\mathcal{R}|V_{\max}^2}, \quad (6)$$

1281 so every edge slot may take one of three mutually exclusive states: a concrete coupling label, the
1282 no-edge token λ_E , or the masked token π_E .
1283

1285 B.5 ATOM-LEVEL REPRESENTATIONS
1286

1287 The SEMLAFLOW (Irwin et al., 2025) architecture propagates and updates invariant and equivariant
1288 features at the atom level. To ensure consistency with this framework, we calculate for each input
1289 graph (X_t, E_t) atom-level one-hot atom and bond features. Crucially, these features must be flexible
1290 to arbitrary masking present in X_t and E_t . With this in mind we set each atom feature $X_t^{\text{atom}}[i, a]$ to
1291 a concatenation of one-hot encodings

$$X_t^{\text{atom}}[i, a] = \left(\underbrace{\delta_{\text{sym}}(i, a)}_{9\text{-way one-hot}}, \mathbb{1}[\text{ring}(i, a)], \mathbb{1}[a \in \mathcal{V}(X_i)] \right) \in \{0, 1\}^{9+2}, \quad (7)$$

1292 where $\delta_{\text{sym}}(i, a)$ is the one-hot vector over possible atom types (C, N, O, B, F, Cl, Br, S, [MASK])
1293 and $\text{ring}(i, a)$ denotes whether or not the atom is a member of a ring. Similarly, we calculate a bond

1296 feature matrix

$$E_t^{\text{atom}}[a_i, a_j] = \begin{cases} \delta_{\text{order}}(a_i, a_j), & \text{bond is present,} \\ \mathbf{0}_5, & \text{otherwise.} \end{cases} \quad (8)$$

1300 where $\delta_{\text{order}}(a_i, a_j)$ is the one-hot tensor over possible bond orders (single, double, triple, aromatic, [MASK]) between a_i and a_j . E_t^{atom} is populated by loading the known bonds and respective bond orders within denoised building blocks. If some building block X_i is noised, all edges between its constituent atoms $E_t^{\text{atom}}[i : i + M, i : i + M]$ are set to the masked one-hot index. For graphs (X_t, E_t) corresponding to valid molecules in which all nodes and edges are denoised, we simply obtain the full bond feature matrix from the molecule described by (X_t, E_t) .

B.6 DATA PAIRING

Algorithm 2 PAIRDATA(C_0, S_0, C_1, t, X_t)

Input: C_0 (clean coordinates), S_0 (atom mask), C_1 (prior sample), $t \in [0, 1]$, X_t (partially masked nodes)

Output: \tilde{C}_0 (re-centered ground truth), C_t (interpolated noisy coords)

```

1:  $\mathcal{D}_t \leftarrow \{i \mid X_t[i] \neq \pi_X\}$                                  $\triangleright$  denoised blocks
2:  $S_t[i, a] \leftarrow \mathbf{1}[i \notin \mathcal{D}_t \vee a \in \mathcal{A}_i]$                    $\triangleright$  visibility
3:  $\tilde{C}_1 \leftarrow C_1 - \bar{C}_1 S_t$ 
4:  $\tilde{C}_0 \leftarrow \text{ZEROTENSOR}()$ 
5: for all  $(i, a)$  do
6:   if  $S_0[i, a] = 1$  then                                                  $\triangleright$  dummy atom
7:      $\tilde{C}_0[i, a] \leftarrow C_0[i, a] - \bar{C}_1 S_t$ 
8:   else if  $S_t[i, a] = 1$  then
9:      $\tilde{C}_0[i, a] \leftarrow \tilde{C}_1[i, a]$ 
10:  end if
11: end for
12:  $C_t \leftarrow (1 - t) \tilde{C}_0 + t \tilde{C}_1$ 
13: return  $(\tilde{C}_0, C_t)$ 

```

1328
1329 Here, \mathcal{A}_i is the set of all atom indices a that constitute true atoms in X_0 . Note that $S_t = S_0$ for all t
1330 where X_t contains no masked building blocks.

1331
1332 **Note: Non-Equivariance.** Our data pairings result in both C_0 and C_t that are properly centered
1333 according to atoms that are possibly valid at time t . It is important to note that under this scheme,
1334 while the model is $SE(3)$ -equivariant with respect to the system defined by the partial mask S_t , it is
1335 not equivariant with respect to the orientation of the molecule itself unless $\mathcal{D}_t^c = \emptyset$, as the presence
1336 and temporary validity of masked dummy atoms offsets the true atom centering and thus breaks both
1337 translational and rotational equivariance.

B.7 TRAINING ALGORITHM

Algorithm 3 Training step for SYNCoGEN

```

1:  $t \sim \mathcal{U}(0, 1)$ 
2:  $(X_t, E_t) \leftarrow q_t(X_0, E_0)$ 
3:  $C_1 \sim \mathcal{N}(0, I)$ 
4:  $(\tilde{C}_0, \tilde{C}_t) \leftarrow \text{PAIR}(C_0, S_0, C_1, t, X_t)$            $\triangleright$  center and interpolate coordinates (Algorithm 2)
5:  $(L_t^X, L_t^E, \hat{C}_0^t) \leftarrow f_\theta(X_t, E_t, \tilde{C}_t, n, t)$ 
6:  $\mathcal{L} \leftarrow \mathcal{L}_{\text{graph}} + \mathcal{L}_{\text{MSE}} + \mathcal{L}_{\text{pair}}$            $\triangleright$  total loss (Appendix B.16)
7:  $\theta \leftarrow \theta - \eta - \text{bla}_\theta \mathcal{L}$ 

```

1350 B.8 SAMPLING ALGORITHM
1351

1352

1353 **Algorithm 4** Sampling procedure for SYNCoGEN

1354 1: $n \sim \text{Cat}(\pi_{\text{frag}})$; $(X_1, E_1) \leftarrow (\pi_X, \pi_E)$; $S_1[i, a] \leftarrow \mathbf{1}[i < n]$ \triangleright draw n , initialize masks
1355 2: $C_1 \sim \mathcal{N}(0, I)$; $\tilde{C}_1 \leftarrow C_1 - \bar{C}_{1, S_1}$ \triangleright center Gaussian prior by initial mask
1356 3: **for** $t = 1$ **down to** 0 **do**
1357 4: $\tilde{C}_t \leftarrow C_t - \bar{C}_{t, S_t}$;
1358 5: $(L_t^X, L_t^E, \hat{\tilde{C}}_0^t) \leftarrow f_\theta(X_t, E_t, \tilde{C}_t, n, t)$
1359 6: $\tilde{L}_t^E \leftarrow \text{SAMPLEEDGES}(L_t^E, n)$ \triangleright enforce one parent per building block (Algorithm 5)
1360 7: $X_{t-\Delta t} \leftarrow \text{CATSAMPLE}(L_t^X)$; $E_{t-\Delta t} \leftarrow \text{CATSAMPLE}(\tilde{L}_t^E)$ \triangleright take reverse step
1361 (Appendix B.11)
1362 8: $C_{t-\Delta t} \leftarrow C_t + \Delta t(\hat{\tilde{C}}_0^t - \tilde{C}_t)$
1363 9: $(X_t, E_t, C_t, S_t) \leftarrow (X_{t-\Delta t}, E_{t-\Delta t}, C_{t-\Delta t}, S_{t-\Delta t})$
1364 10: **end for**
1365 11: $(L^X, L^E, \hat{\tilde{C}}_0) \leftarrow f_\theta(X_0, E_0, \tilde{C}_0, n, 0)$ \triangleright final deterministic denoise ($t = 0$)
1366 12: $\hat{X}_0 \leftarrow \arg \max_k L_\theta^X[\dots, k]$; $\hat{E}_0 \leftarrow \arg \max_k L_\theta^E[\dots, k]$; $\hat{C}_0 \leftarrow \hat{\tilde{C}}_0 - \bar{\tilde{C}}_{0, S_0}$
1367 13: **return** $(\hat{X}_0, \hat{E}_0, \hat{C}_0)$

1370

1371 B.9 INFERENCE-TIME EDGE CONSTRAINTS
1372
1373 Let $E_\theta^t \in [0, 1]^{n \times n \times |\mathcal{R}| V_{\max}^2}$ be the soft-max edge probabilities produced at step t . The routine below
1374 resolves the unique parent for every building block column $j > 0$ and returns a probability tensor \tilde{E}_θ^t
1375 with exactly one non-zero entry per column.
1376

1377

1378

Algorithm 5 SAMPLEEDGES(E_θ^t, n)

1379 **Input:** edge probabilities E_θ^t
1380 **Output:** pruned probabilities \tilde{E}_θ^t
1381 1: $\tilde{E}_\theta^t \leftarrow \mathbf{0}$
1382 2: **for** $j = 1$ **to** $n - 1$ **do**
1383 3: $(i_j, e_j) \sim \text{Cat}(\{E_\theta^t[i, j, e] \mid 0 \leq i < j\})$
1384 4: $\tilde{E}_\theta^t[i_j, j, e_j] \leftarrow 1$
1385 5: **end for**
1386 6: **return** \tilde{E}_θ^t

1387

1388

1389 \tilde{E}_θ^t is then symmetrized and fed to the discrete reverse sampler described in Appendix B.11.
1390

1391

B.10 BUILDING BLOCK LOGIT PREDICTIONS

1392

1393 The SEMLAFLOW(Irwin et al., 2025) backbone outputs atom–atom edge features $E_\theta^{\text{atom}} \in$
1394 $\mathbb{R}^{B \times (NM) \times (NM) \times d_{\text{edge}}}$. To obtain building block-level tensors, we apply two parallel 2-D con-
1395 volutions (one for nodes, one for edges) with stride M , followed by MLP classifiers that map the
1396 pooled features back to their original one-hot vocabularies. Note that the presented model is trained
1397 to predict a maximum of 5 building blocks, where the sizes of the molecules (average 566 Da) are
1398 near upper limits of molecular weights for typical drug like molecules.
1399

1400

1401 **Stride-pooled convolution.** Let d_{edge} be the latent edge feature dimension. Each stream uses the
1402 block

1403

$\text{Conv2d}(d_{\text{edge}} \rightarrow d_{\text{edge}}, k = M, s = M) \xrightarrow{\text{SiLU}} \text{Conv2d}(d_{\text{edge}} \rightarrow d_{\text{edge}}, k = 1, s = 1), \quad (9)$

so every $M \times M$ atom patch collapses to a single building block entry. This produces

$$X_{\text{pool}} \in \mathbb{R}^{B \times d_{\text{edge}} \times N}, \quad E_{\text{pool}} \in \mathbb{R}^{B \times d_{\text{edge}} \times N \times N}. \quad (10)$$

1404 **Node head.** We flatten X_{pool} along its channel axis, concatenate the residual building block one-hot
 1405 matrix X_t , and pass the result through a two-layer MLP to obtain
 1406

$$L_{\theta}^{X_t} \in \mathbb{R}^{B \times N \times |\mathcal{B}|}. \quad (11)$$

1408 **Edge head.** We concatenate E_{pool} with the residual building block-edge one-hot tensor E_t , apply
 1409 an analogous two-layer MLP, and symmetrize to produce
 1410

$$L_{\theta}^{E_t} \in \mathbb{R}^{B \times N \times N \times |\mathcal{R}| V_{\max}^2}. \quad (12)$$

1412 **Atom Features.** The SEMLAFLow(Irwin et al., 2025) backbone additionally outputs atom-level
 1413 node features $X_{\theta}^{\text{atom}} \in \mathbb{R}^{B \times (NM) \times d_{\text{node}}}$, which are incorporated into E_{θ}^{atom} via a bond refinement
 1414 message-passing layer. We find that extracting both building block and edge logits directly from the
 1415 refined features E_{θ}^{atom} marginally improves performance relative to separately predicting $L_{\theta}^{X_t}$ from
 1416 X_{θ}^{atom} and $L_{\theta}^{E_t}$ from E_{θ}^{atom} .

1417 B.11 DISCRETE NOISING SCHEME

1419 Following (Sahoo et al., 2024), we adopt an absorbing (masked) state noising scheme for X_0 and E_0 :

$$q(X_t | X_0) = \text{Cat}(X_t; \alpha_t X_0 + (1 - \alpha_t) \pi_X), \quad q(E_t | E_0) = \text{Cat}(E_t; \alpha_t E_0 + (1 - \alpha_t) \pi_E). \quad (13)$$

1422 where $(\alpha_t)_{t \in [0,1]}$ is the monotonically decreasing noise schedule introduced in Section 2.

1423 **Reverse categorical posterior.** For node identities, we have

$$q(X_s | X_t, X_0) = \begin{cases} \text{Cat}(X_s; X_t), & X_t \neq \pi_X, \\ \text{Cat}(X_s; \frac{(1 - \alpha_s) \pi_X + \alpha_s X_{\theta}^t}{1 - \alpha_t}), & X_t = \pi_X, \end{cases} \quad (14)$$

1428 and, analogously, for edge labels

$$q(E_s | E_t, E_0) = \begin{cases} \text{Cat}(E_s; E_t), & E_t \neq \pi_E \\ \text{Cat}(E_s; \frac{(1 - \alpha_s) \pi_E + \alpha_s E_{\theta}^t}{1 - \alpha_t}), & E_t = \pi_E, \end{cases} \quad (15)$$

1434 where $s < t$. Equations (14) and (15) are the direct translation of the reverse denoising process
 1435 described by (Sahoo et al., 2024) into SYNCOPEN’s node–edge representation.

1436 B.12 NOISE SCHEDULE PARAMETERIZATION

1438 Following MDLM (Sahoo et al., 2024), we parameterize the discrete noising schedule via $\alpha_t = e^{-\sigma(t)}$,
 1439 where $\sigma(t) : [0, 1] \rightarrow \mathbb{R}^+$. In all experiments, we adopt the **linear schedule**:

$$\sigma(t) = \sigma_{\max} t, \quad (16)$$

1441 where σ_{\max} is a large constant; we use $\sigma_{\max} = 10^8$ as in the original MDLM setup.

1443 **Edge Symmetrization.** After drawing the upper-triangle entries of the one-hot edge tensor E_s in
 1444 either the forward or reverse (de)noising process, we enforce symmetry by copying them to the lower
 1445 triangle:

$$E_{s,jie} = E_{s,ije}, \quad 0 \leq i < j < n, \quad e \in \mathcal{R} V_{\max}^2.$$

1447 B.13 POSITIONAL EMBEDDINGS

1449 Though SEMLAFLow(Irwin et al., 2025) is permutationally invariant by design with respect to atom
 1450 positions, SYNCOPEN dataset molecules require that atom order be fixed and grouped by building
 1451 block for reconstruction purposes. To enforce this during training, we intentionally break permutation
 1452 invariance by generating and concatenating to each input coordinate sinusoidal positional embeddings
 1453 representing both global atom index and building block index.

1454 B.14 HYPERPARAMETERS

1456 We train SYNCOPEN for 100 epochs with a batch size of 128 and a global batch size of 512. Note
 1457 that SEMLAFLow and Midi are trained for 200 epochs, and EQGAT-diff is trained for up to 800
 1458 epochs. All models are trained with a linear noise schedule (see Appendix B.12), with the SUBS

parameterization enabled. During training, a random conformer for each molecule is selected, then centered and randomly rotated to serve as the ground-truth coordinates C_0 . All atomic coordinates are normalized by a constant Z_c describing the standard deviation across all training examples. For the pairwise distance loss $\mathcal{L}_{\text{pair}}$, we set d to 3 Å, adjusted for normalization. During training, for each recentered input-prior pair $(\tilde{C}_1, \tilde{C}_0)$ we rotationally align C_1 to C_0 . When training with noise scaling and the bond loss time threshold, we set the noise scaling coefficient to 0.2 and the time threshold to 0.25, above which bond length losses are zeroed. When training with auxiliary losses, we set the weights for the pairwise, sLDDT, and bond length loss components to 0.4, 0.4, and 0.2, respectively.

B.15 COMPUTATIONAL RESOURCES USED

We train all models on 2 H100-80GB GPUs.

B.16 TRAINING LOSSES

Here, we define several loss terms that have proved useful for stabilizing training on 3-D geometry.

By default, SYNCOPGEN is trained with \mathcal{L}_{MSE} and $\mathcal{L}_{\text{pair}}$ as coordinate losses.

For a prediction $(L_\theta^{X_t}, L_\theta^{E_t}, \hat{C}_0^t) = f_\theta(X_t, E_t, \tilde{C}_t, n, t)$, $X_\theta^t = \text{softmax}(L_\theta^{X_t})$, $E_\theta^t = \text{softmax}(L_\theta^{E_t})$:

Graph loss. Let X_0 and E_0 be the clean node and edge tensors. Following the MDLM implementation (Sahoo et al., 2024), we weigh the negative log-likelihood at step t by

$$w_t = \frac{\Delta\sigma_t}{\exp(\sigma_t) - 1}, \quad \Delta\sigma_t = \sigma_t - \sigma_{t-1}, \quad \sigma_0 = 0, \quad (17)$$

where σ_t is the discrete noise level. The discrete (categorical) loss is then

$$\mathcal{L}_{\text{graph}} = w_t (-\log X_\theta^t[X_0] - \log E_\theta^t[E_0]), \quad (18)$$

i.e. the cross-entropy between the one-hot ground truth and the predicted distributions for both nodes and edges.

MSE loss. Let $S_0 \in \{0, 1\}^{N \times M}$ mask the atoms that exist in the clean structure and C_t be the noisy coordinates. Denote $\mathcal{A}_{S_0} = \{(i, a) : S_0[i, a] = 1\}$.

$$\mathcal{L}_{\text{MSE}} = \frac{1}{|\mathcal{A}_{S_0}|} \sum_{(i, a) \in \mathcal{A}_{S_0}} \|\hat{C}_0[i, a] - C_0[i, a]\|_2^2, \quad (19)$$

Pairwise loss.

$$\mathcal{L}_{\text{pair}} = \sum_{\substack{(i, a) < (j, b) \\ \|C_0[i, a] - C_0[j, b]\|_2 \leq d}} S_0[i, a] S_0[j, b] (\|\hat{C}_0[i, a] - \hat{C}_0[j, b]\|_2 - \|C_0[i, a] - C_0[j, b]\|_2)^2, \quad (20)$$

where d is the distance cut-off for pairwise terms. The default total loss value for the model is therefore

$$\mathcal{L}_{\text{SYNCOPGEN}} = \mathcal{L}_{\text{graph}} + \mathcal{L}_{\text{MSE}} + \mathcal{L}_{\text{pair}}. \quad (21)$$

Smooth-LDDT loss (Abramson et al., 2024a). Let $d_{ij}^0 := \|C_0[i] - C_0[j]\|_2$ and $d_{ij}^{\text{pred}} := \|\hat{C}_0[i] - \hat{C}_0[j]\|_2$ be ground-truth and predicted inter-atomic distances, respectively. For each pair of atoms within a 15 Å cutoff in the reference structure, we compute the per-pair score

$$\text{sLDDT}_{ij} = \frac{1}{4} \sum_{k=1}^4 \sigma(\tau_k - |d_{ij}^{\text{pred}} - d_{ij}^0|), \quad [\tau_1, \tau_2, \tau_3, \tau_4] = [0.5, 1, 2, 4] \text{ Å},$$

1512 where $\sigma(x) = 1/(1 + e^{-x})$ is the logistic function. The smooth-LDDT loss averages $1 - \text{sLDDT}_{ij}$
 1513 over all valid pairs,

$$1514 \quad 1515 \quad 1516 \quad 1517 \quad 1518 \quad \mathcal{L}_{\text{sLDDT}} = \frac{\sum_{i < j} \mathbf{1}[d_{ij}^0 < 15] S_0[i] S_0[j] (1 - \text{sLDDT}_{ij})}{\sum_{i < j} \mathbf{1}[d_{ij}^0 < 15] S_0[i] S_0[j]}. \quad (22)$$

1519 **Bond-length loss.** Given a set of intra-fragment bonds $\text{bonds} = \{(p, q)\}$ extracted from the
 1520 vocabulary, we penalize deviations in predicted bond lengths:

$$1521 \quad 1522 \quad 1523 \quad \mathcal{L}_{\text{bond}} = \frac{1}{|\text{bonds}|} \sum_{(p, q) \in \text{bonds}} \|\hat{C}_0[p] - \hat{C}_0[q]\|_2 - \|C_0[p] - C_0[q]\|_2. \quad (23)$$

1524 **Self-Conditioning.** The modified SEMLAFLOW (Irwin et al., 2025) backbone operates on node and
 1525 edges features at the atomic level, but outputs unnormalized prediction logits $\hat{X}_0 \in \{0, 1\}^{N \times |\mathcal{B}|}$ and
 1526 $\hat{E}_0 \in \{0, 1\}^{N \times N \times |\mathcal{R}| V_{\max}^2}$. We therefore implement modified self-conditioning for SYNCOG
 1527 GEN that projects previous step graph predictions $\hat{X}_{0\text{cond}}$ and $\hat{E}_{0\text{cond}}$ to the shape of X_t^{atom} and E_t^{atom}
 1528 using an MLP.

1529 B.17 CONFORMER GENERATION

1530 We randomly assembled 50 molecules with the reaction graph and used the standard conformational
 1531 search (iMTD-GC) in CREST with GFN-FF to find all reference conformers. For both SYNCOG
 1532 GEN and RDKit ETKDG, we sampled 50 conformers per molecule and computed the coverage and
 1533 matching scores. We used a relatively strict RMSD threshold of $\tau = 0.75$.

1534 Formally, COV is defined as:

$$1535 \quad 1536 \quad 1537 \quad \text{COV} = \frac{1}{N} \sum_{i=1}^N \mathbf{1} \left[\min_{1 \leq j \leq M} \text{RMSD}(m_i, g_j) \leq \tau \right], \quad (24)$$

1538 where $\mathbf{1}[\cdot]$ is the indicator function, m_i are the N generated conformers and g_j are the M reference
 1539 conformers. And MAT is defined as:

$$1540 \quad 1541 \quad 1542 \quad \text{MAT} = \frac{1}{N} \sum_{i=1}^N \min_{1 \leq j \leq M} \text{RMSD}(m_i, g_j). \quad (25)$$

1543 B.18 MOLECULAR INPAINTING

1544 For the inpainting experiments in Section 5.2, we keep two fragments $\mathcal{D} = \{\mathcal{D}^{(1)}, \mathcal{D}^{(2)}\}$ and their
 1545 coordinates fixed and sample the remaining part of the molecule. We follow Appendix B.8 and
 1546 initialize the graph prior X_1 with the one-hot encoding of the desired fragment i at a specified node
 1547 index in the graph (decided at random or based on the structure of the original molecule, so that
 1548 it matches its scaffold). For each denoised fragment $\mathcal{D}^{(i)}$, we replace its coordinates at each time
 1549 $t > 0.03$ during sampling by

$$1550 \quad 1551 \quad 1552 \quad C_t^{(i)} = (1 - t) \tilde{C}_0^{(i)} + t \tilde{C}_1^{(i)},$$

1553 where $\tilde{C}_0^{(i)}$ and $\tilde{C}_1^{(i)}$ are the centered ground-truth and prior coordinates of fragment i , respectively,
 1554 and all other fragments are updated as shown in Appendix B.8. For any $t \leq 0.03$, which for 100
 1555 sampling steps amounts to the last three steps in the path, we follow normal Euler steps as shown in
 1556 Appendix B.8 to allow a refinement of the fixed coordinates in line with the rest of the predicted ones
 1557 for the rest of the fragments. We empirically observed that this led to molecules with lower average
 1558 energies.

1559 C BASELINE COMPARISONS.

1560 C.1 UNCONDITIONAL GENERATION.

1561 For all baselines, we sampled 1000 molecules with random seeds on an A100 GPU and reported
 1562 averaged results over three runs.

1566 **SemlaFlow** We evaluated SemlaFlow using the sampling script in the official codebase on GitHub¹.
 1567 We reported results for a model trained on the GEOM (Axelrod & Gomez-Bombarelli, 2022) dataset
 1568 (by sampling from the checkpoints provided in the repository) and from a model trained on our
 1569 dataset (see Table 1). We trained SemlaFlow using the default hyperparameters for 150 epochs on a
 1570 single conformer per molecule.

1571 **EQGAT-diff, MiDi, JODO, FlowMol** We evaluated EQGAT-diff, MiDi, JODO, using their official
 1572 implementations provided on GitHub². We modified the example sampling script to save molecules
 1573 as outputted from the reverse sampling, without any post-processing. For MiDi, we evaluated the
 1574 uniform model. For FlowMol, both CTMC and Gaussian models were evaluated and reported.

1575 C.2 CONDITIONAL GENERATION.

1577 In the pharmacophore-conditioned generation setting, we compare SYNCOPGEN against Syn-
 1578 former (Jocys et al., 2024), CGFlow (Shen et al., 2025), and ShEPHERD (Adams et al., 2025).
 1579 SynFormer was conditioned on the native ligand for synthesizable analogue generation. We used
 1580 the official implementation on GitHub³, and changed the following inference settings to allow for
 1581 higher quality designs compared to the default: `search_width=32`, `exhaustiveness=128`,
 1582 `time_limit=300`. For ShEPHERD, we use the $p(x_1|x_3, x_4)$ conditional setting from the paper
 1583 experiments where x_1 denotes molecular structure, x_3 denotes the reference ligand charge surface,
 1584 and x_4 denotes the reference ligand pharmacophore profile. We provide ShEPHERD with the refer-
 1585 ence ligand and generate 100 analogs evenly split between 36, 38, 40, 42, 44, 46, 48, 50, 51, 52, 53,
 1586 54, 55, 56, 57, 58, 59, 60, 62, 64, 66, 68, 70, 75, and 80 atoms (4 each). To prepare molecules for
 1587 ShEPHERD conditioning, we generate partial charges for each reference ligand using xTB(Bannwarth
 1588 et al., 2019). For CGFlow-ZS experiments, we generate molecules in a zero-shot protein-conditioned
 1589 setting using TacoGFN (Shen et al., 2024) first implemented by Seo et al.(Seo et al., 2024; Shen
 1590 et al., 2024) Molecules are generated using the web app described in the GitHub repository⁴, which
 1591 inherits the sampling hyperparameters specified in the original CGFlow manuscript. For each target,
 1592 we conditionally generate using a cleaned PDB and centroid derived from reference ligand heavy
 1593 atoms. See Appendix D.6 for details of DiffLinker in linker design experiments.

1594 D EXTENDED RESULTS AND DISCUSSION

1595 D.1 TRAINING ABLATIONS

1597 Table 3: Training ablations. We incrementally remove inference annealing, auxiliary losses, self-
 1598 conditioning, scaled-noise, and constraints to see the performance difference. All results shown are
 1599 at 50 epochs rather than 100 epochs in Table 1. **Here, "Constraints" refers to both training-time**
 1600 **compatibility masking and sampling constraints.** See Sections 4.3 and 4.4, (Appendices B.7, B.14
 1601 and B.16).

Method	Valid.↑	GFN-FF↓
Base	93.5	4.871
- Inference annealing	93.5	4.933
- Auxiliary losses	85.3	5.194
- Self-conditioning	69.0	6.424
- Scaled noise	70.4	5.091
- Constraints	42.4	67.006

1611 D.2 SAMPLING ABLATIONS

1613 By default, SYNCOPGEN implements a linear noise schedule and samples for 100 timesteps. To
 1614 evaluate the effect of step count and noise schedule choice on performance, we provide experiments

1¹<https://github.com/rssrwn/semla-flow/>, available under the MIT License

2²https://github.com/jule-c/eqgat_diff/, <https://github.com/cvignac/MiDi>,
<https://github.com/GRAPH-0/JODO>, <https://github.com/Dunni3/FlowMol>, available
 under the MIT License

3³<https://github.com/wenhao-gao/synformer>

4⁴<https://github.com/tsa87/cgflow>

1620 with step count decreased to 50 and 20, as well as modified noising to follow a log-linear and
 1621 geometric schedule. All results listed subsequently can be assumed to use the default noise schedule
 1622 and step count.

1623 We additionally follow FoldFlow to implement *inference annealing*, a time-dependent scaling on
 1624 Euler step size that was found to empirically improve in-silico results in protein design Bose et al.
 1625 (2024). We studied multiplying the Euler step size at time t by $5t$, $10t$, and $50t$. In practice, we
 1626 employ $10t$ for our experiments unless otherwise noted.

1627 We find that noising and de-noising building blocks according to a linear noise schedule generally
 1628 achieves good performance, which during inference sees most unmasking occur in the final steps.
 1629 An aggressive denoising schedule for the discrete fragments yields significantly worse validity
 1630 (Geometric and Loglinear). Inference annealing that speeds up continuous denoising in the beginning
 1631 but slows it down near the end helps to inform discrete unmasking and can slightly improve discrete
 1632 generation validity, energies, and PoseBusters validity. As a sanity check to evaluate whether
 1633 simultaneous generation is necessary for good performance using SYNCOGEN, we evaluate an
 1634 inference configurations where all building blocks and reactions are noised until a single final
 1635 prediction step (FinalOnly) where we find performance using the default parameters to be superior.

1636 Table 4: Sampling ablations. Results are averaged over 1000 generated samples, except retrosynthesis
 1637 solve rate (out of 100). All results shown are at 50 epochs rather than 100 epochs in Table 1.

1641 Method	1640 Primary metrics					1640 Secondary metrics		
	1642 Valid.↑	1642 AiZyn.↑	1642 Synth.↑	1642 GFN-FF↓	1642 GFN2-xTB↓	1643 PB↑	1643 Div.↑	1643 Nov.↑
1642 Linear-100	1643 93.5	1643 55	1643 70	1643 4.933	1643 -0.92	1644 78.3	1644 0.79	1644 94.1
1643 Linear-20	1644 82.4	1644 56	1644 68	1644 5.102	1644 -0.91	1645 71.3	1645 0.78	1645 94.9
1644 Linear-50	1645 92.0	1645 50	1645 65	1645 4.890	1645 -0.91	1646 78.9	1646 0.78	1646 93.6
1645 Geometric-100	1646 48.2	1646 61	1646 68	1646 5.206	1646 -0.84	1647 72.0	1647 0.80	1647 91.7
1646 Loglinear-100	1648 60.3	1648 56	1648 64	1648 5.182	1648 -0.87	1649 70.1	1649 0.80	1649 91.7
1647 Annealing-5t	1650 94.7	1650 52	1650 58	1650 5.001	1650 -0.93	1651 79.1	1651 0.78	1651 94.1
1648 Annealing-10t (default)	1652 93.5	1652 42	1652 68	1652 4.870	1652 -0.91	1653 82.8	1653 0.78	1653 94.2
1649 Annealing-50t	1654 85.1	1654 51	1654 64	1654 4.972	1654 -0.82	1655 86.7	1655 0.76	1655 94.6
1650 FinalOnly	1656 69.7	1656 39	1656 68	1656 5.260	1656 -0.92	1657 70.1	1657 0.76	1657 94.1

1652 To examine the effect of de-noising edges probabilistically ("Default") against exclusively selecting
 1653 the highest-probability edge ("Argmax") during sampling, we sample 1000 molecules unconditionally
 1654 for each setting.

1656 Table 5: Comparison of sampling strategies. All results are at 100 epochs (same with Table 1) but
 1657 without inference annealing.

1659 Sampling Mode	1659 Validity ↑	1659 PB ↑	1659 Diversity ↑	1659 Novelty (%) ↑
1660 Default	0.947	0.8425	0.7811	95.24
1661 Argmax	0.956	0.8483	0.7797	93.41

1663 We see there is relatively insignificant differences (small improvement in the proportion of valid
 1664 molecules is slightly higher in the "Argmax" setting, at the cost of slightly lower diversity and
 1665 novelty). Note that the proportion of molecules with 3, 4 and 5 building blocks are sampled according
 1666 to their respective distributions in SynSpace.

1667 D.3 LARGER VOCABULARY

1669 Appendix D.3 show unconditional generation results after training SYNCOGENON SYNSPACE-Lfor
 1670 50 epochs, and as compared to SYNCOGENON SYNSPACE for 50 epochs. We note that given
 1671 a thousand fold increase in search space, longer training would typically be expected, and may
 1672 further improve the results. Under this conservative setting, scaling to the larger search space
 1673 yields very similar overall behavior. We observe a small decrease in RDKit validity and a moderate
 decrease in PoseBusters validity, and the molecules still retain good conformer energies and high

retrosynthesis solve rates. These indicate the molecules are synthesizable, and the local geometry remains reasonable. Diversity is essentially unchanged, while novelty increases substantially from 94.2% to 99.1%, showing that the enlarged vocabulary is effectively used to explore new regions of chemical space.

Method	Primary metrics					Secondary metrics		
	Valid.↑	AiZyn.↑	Synth.↑	GFN-FF↓	GFN2-xTB↓	PB↑	Div.↑	Nov.↑
SYNCOGEN SYNSPACE	93.5	42	68	4.870	-0.91	82.8	0.78	94.2
SYNCOGEN SYNSPACE-L	87.0	52	77	5.502	-0.81	65.0	0.79	99.1

D.4 METRICS

We here describe metric computation details that are absent in the main text.

For synthesizability evaluation, we used the public AiZynthFinder and Syntheseus models. Due to the speed of these models, we only evaluate 100 randomly sampled generated examples. For AiZynthFinder, we used the USPTO policy, the Zinc stock, and we extended the search time to 800 seconds with an iteration limit of 200 seconds. For Syntheseus, we used the LocalRetro model with Retro* search under default settings, with Enamine REAL strict fragments as the stock. We additionally appended our building blocks as the stock, but found no meaningful difference in solved rates, presumably as most of our building blocks are already in the utilized stock. We note that we replaced all boranes with boronic acids due to simplifications made in our modeling (see Appendix A.2).

For energy evaluation, all results are from single-point calculations. For GFN-FF, we report the total energy minus the bond energies (equivalent to the sum of angle, dihedral, bond repulsion, electrostatic, dispersion, hydrogen bond, and halogen bond energies) as the intramolecular non-bond energies, and average it over the number of atoms. For GFN2-xTB, we report the dispersion interaction energies as the intramolecular non-covalent energies. We note that the total energies and bonded energies follow very similar trends. We note that MMFF94 energies are not parameterized for boron; therefore, we report them only for the Wasserstein distances in Appendix D.5 and inpainting task in Table 8. Figures 3 and 14 show distributions obtained from 1,000 molecules generated by each generative method, along with 50,000 subsampled molecules from their respective training datasets. Gaussian kernel density estimation (bandwidth = 0.15) was used for linear distributions, while von Mises kernel density estimation ($\kappa = 25$) was applied for circular distributions. Wasserstein-1 distances (computed linearly for lengths and energies, and on the circle for angles and dihedrals) were calculated using the Python Optimal Transport Package (Flamary et al., 2021).

D.5 *De novo* 3D MOLECULE GENERATION

1728
1729
1730
1731
1732

1774 **Figure 14: Additional conformer bond length, angle, dihedral, and energy distribution comparisons.** a-b) Bond lengths, c) GFN2-xTB energy distribution, d-f) bond angles, g-h) dihedral angles.
 1775 Solid curves denote training data densities; lower subpanels show deviations between generated
 1776 samples and data.
 1777

1778
1779
1780
1781

Figure 15: Unconditionally sampled random molecules from SYNCOPEN.

Figure 16: A subset of randomly sampled molecules from SYNCOPEN and further optimized by GFN2-xTB until convergence. Alignment RMSD is shown below the molecular structures.

1836 Table 6: Wasserstein-1 distance (W_1) and Jensen–Shannon divergence (JSD) for the generative
 1837 models (lower is better). For bond lengths, angles, and dihedrals, we computed the average W_1
 1838 and JSD for the top 10 prevalent lengths/angles/dihedrals. Comparisons are made to the respective
 1839 training set.

(a) Bond dihedrals			(b) Bond angles			(c) Bond lengths		
Method	W_1	JSD	Method	W_1	JSD	Method	W_1	JSD
SYNCoGEN	7.01	0.29	SYNCoGEN	1.36	0.22	SYNCoGEN	0.0171	0.34
SEMLAFLOW SYNSPACE	6.50	0.22	SEMLAFLOW SYNSPACE	1.64	0.28	SEMLAFLOW SYNSPACE	0.0320	0.48
SEMLAFLOW	7.76	0.28	SEMLAFLOW	1.18	0.21	SEMLAFLOW	0.0200	0.38
EQGAT-Diff	8.48	0.29	EQGAT-Diff	1.37	0.16	EQGAT-Diff	0.0039	0.13
MiDi	9.32	0.38	MiDi	1.41	0.21	MiDi	0.0142	0.31
JODO	5.47	0.31	JODO	0.59	0.12	JODO	0.0034	0.12
FlowMol-CTMC	13.69	0.35	FlowMol-CTMC	1.90	0.24	FlowMol-CTMC	0.0089	0.20
FlowMol-Gauss	18.85	0.46	FlowMol-Gauss	3.68	0.30	FlowMol-Gauss	0.0152	0.28
(d) GFN2–xTB non-covalent E			(e) GFN-FF non-bonded E			(f) MMFF total E		
Method	W_1	JSD	Method	W_1	JSD	Method	W_1	JSD
SYNCoGEN	0.0838	0.33	SYNCoGEN	1.37	0.28	SYNCoGEN	6.59	0.089
SEMLAFLOW SYNSPACE	0.0125	0.16	SEMLAFLOW SYNSPACE	1.09	0.22	SEMLAFLOW SYNSPACE	54.63	0.22
SEMLAFLOW	0.0249	0.16	SEMLAFLOW	1.52	0.16	SEMLAFLOW	69.56	0.24
EQGAT-Diff	0.0073	0.12	EQGAT-Diff	1.69	0.18	EQGAT-Diff	4.80	0.076
MiDi	0.0084	0.14	MiDi	1.80	0.19	MiDi	19.00	0.11
JODO	0.0031	0.11	JODO	1.33	0.12	JODO	22.07	0.11
FlowMol-CTMC	0.0605	0.26	FlowMol-CTMC	1.53	0.17	FlowMol-CTMC	41.95	0.15
FlowMol-Gauss	0.0322	0.19	FlowMol-Gauss	2.13	0.17	FlowMol-Gauss	26.96	0.14

1863 Table 7: With given reaction graphs, comparison of mean coverage (COV) and matching accuracy
 1864 (MAT) for RDKit ETKDG and zero-shot conformer generation using SYNCoGEN.

Method	COV (%) \uparrow	MAT (\AA) \downarrow
RDKit	0.692	0.657
SYNCoGEN	0.614	0.693

1871 D.6 MOLECULAR INPAINTING EXPERIMENTS

1873 Three protein–ligand complexes (PDB IDs 7N7X⁵, 5L2S⁶ and 4EYR⁷) were selected for molecular
 1874 inpainting of the ligand structures. These ligands were chosen because they are prominent FDA-
 1875 approved drugs, and they are typically challenging to synthesize, but the key functional groups are
 1876 present in our building blocks. Specifically, 4EYR contains ritonavir, a prominent HIV protease
 1877 inhibitor on the World Health Organization’s List of Essential Medicines; 5L2S contains abemaciclib,
 1878 an anti-cancer kinase inhibitor that is amongst the largest selling small molecule drugs; 7N7X contains
 1879 berotralstat, a recently approved drug that prevents hereditary angioedema. Note that for 4EYR,
 1880 the inpainting was done using the ligand geometry from the PDB entry 3NDX⁸, but docking was
 1881 performed with 4EYR because the protein structure in 3NDX contained issues – nonetheless, both
 1882 entries contain the same protease and ligand.

1883 In addition to the experiments in Section 5.2, we evaluate SYNCoGEN’s conditional sampling perfor-
 1884 mance for the fragment linking framework against the state-of-the-art model DiffLinker (Igashov
 1885 et al., 2024). While DiffLinker is trained for fragment-linking, our model performs zero-shot fragment
 1886 linking without any finetuning. For both models, the size of the linker was chosen so that it matches

⁵<https://www.rcsb.org/structure/7N7X>

⁶<https://www.rcsb.org/structure/5L2S>

⁷<https://www.rcsb.org/structure/4EYR>

⁸<https://www.rcsb.org/structure/3NDX>

that of the original ligand: 2 extra nodes were sampled for SYNCOPEN and 15 linking atoms for DiffLinker in the case of 5L2S, while 3 extra nodes and 25 linking atoms were sampled for 4EYR and 7N7X. We specified leaving groups (for SYNCOPEN) and anchor points (for DiffLinker) so that the fragments are linked at the same positions as in the ligand. Results are shown in Table 8. No retrosynthetic pathways were found for the molecules in DiffLinker, while SYNCOPEN models synthetic pathways and synthetic pathways can be easily drawn, with examples for 4EYR shown in Figure 18. This out-of-distribution task for SYNCOPEN leads to fewer valid molecules; however, for the valid candidates, SYNCOPEN has lower interaction energies and achieves 100% connectivity as it uses reaction-based assembly, whereas DiffLinker can sample disconnected fragments.

Table 8: Molecular inpainting task. Results are averaged over 1000 generated samples, except retrosynthesis solve rate (out of 100). SYNCOPEN-FT denotes a light fine-tuning model for 5 epochs on in-painting with randomly fixed fragments from SYNCSPACE.

Method	Target	AiZyn. ↑	Synth. ↑	Valid. ↑	Connect. ↑	MMFF ↓	GFN-FF ↓	GFN2-xTB ↓	Diversity ↑	PB ↑
DiffLinker	5L2S	0	0	95.8	95.09	14.22	7.52	-0.95	0.60	49.3
	4EYR	0	0	93.7	81.86	20.01	8.49	-1.03	0.81	35.0
	7N7X	0	0	95.8	74.65	20.51	7.99	-1.09	0.78	37.5
SYNCOPEN	5L2S	73	79	57.6	100	10.11	6.77	-0.78	0.62	27.3
	4EYR	72	58	46.9	100	12.80	6.58	-0.86	0.64	32.0
	7N7X	53	69	50.6	100	4.243	6.60	-0.80	0.67	56.1
SYNCOPEN-FT	5L2S	77	84	75.3	100	4.25	6.58	-0.81	0.632	56.2
	4EYR	42	78	62.0	100	10.13	5.33	-0.78	0.604	19.8
	7N7X	57	77	73.6	100	4.09	6.86	-0.83	0.664	47.9

Table 9: Percentage of hard-to-synthesize chemical features in generated “valid” molecules from SYNCOPEN versus DiffLinker in fragment linking (out of 1000). Exotic bonds include hydrazine, nitro, nitramine, azide, diazo, peroxide, nitrate ester, fulminate. Fused large/small rings are where a fused ring contains a sub-ring that is larger than 6 atoms or smaller than 5 atoms.

Chemical features	DiffLinker			SYNCOPEN		
	5L2S	3NDX	7N7X	5L2S	3NDX	7N7X
Macrocycles (>=9)	1.0%	72.6%	12.6%	0.0%	0.0%	0.0%
Fused rings with large/small rings	13.3%	81.4%	37.0%	0.0%	0.0%	0.0%
Large rings (7,8)	12.1%	9.9%	22.2%	0.0%	0.0%	0.0%
Disconnected	4.9%	18.1%	25.4%	0.0%	0.0%	0.0%
Exotic bonds	0.2%	1.2%	1.7%	0.0%	0.0%	0.0%
Total problematic %	22.8%	86.0%	61.5%	0.0%	0.0%	0.0%

Figure 17: Structural overlays of the native protein (gray) and its native ligand (blue) with AlphaFold3-predicted folds of a subset of generated ligands (green) for (a) 5L2S, (b) 3NDX/4EYR, and (c) 7N7X.

Figure 18: Synthetic pathways for molecules generated in the molecular inpainting task for target 3NDX/4EYR. The final product is shown in blue, and the inpainted fragments are shown in red.

1998
1999

D.7 PHARMACOPHORE-CONDITIONED GENERATION EXPERIMENTS

2000
2001
2002
2003
2004

Table 10: Percentage of hard-to-synthesize chemical features in pharmacophore generation for CGFlow-ZS, Shepherd, Synformer, and SYNCOPGEN 100 per target, 10 targets in total). Exotic bonds include hydrazine, nitro, nitramine, azide, diazo, peroxide, nitrate ester, fulminate. Fused large/small rings are where a fused ring contains a sub-ring that is larger than 6 atoms or smaller than 5 atoms.

2005

Chemical features	CGFlow-ZS	Shepherd	Synformer	SYNCOPGEN
Macrocycles (≥ 9)	0.0%	4.7%	1.8%	0.0%
Fused rings with large/small rings	31.1%	39.2%	1.9%	0.1%
Large rings (7,8)	1.2%	31.2%	4.0%	0.0%
Disconnected	0.0%	0.0%	0.0%	0.0%
Exotic bonds	0.0%	0.3%	1.3%	0.0%
Total problematic %	31.3%	46.8%	8.3%	0.1%

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

Figure 19: Docking score box-plot comparisons on pharmacophore-conditioned SYNCOPGEN samples, randomly selected SYNCOPGEN samples, and randomly selected FDA-approved small molecules (100 for each target). Pharmacophore-conditioned SYNCOPGEN outperforms SYNCOPGEN, which outperforms FDA-approved molecules. These results suggest that the reason why pharmacophore-conditioned SYNCOPGEN can outperform other baselines may partially stem from the careful curation of building blocks, as SYNCOPGEN samples perform well in docking experiments. Lastly, we caution that docking is a merely a proxy for binding affinity, and we emphasize that the primary results are that SYNCOPGEN generates synthesizable molecules with reasonable poses when conditioned on pharmacophore profiles. Note all SYNCOPGEN sampling runs were performed using a building block count fixed to 3.

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Figure 20: **Pharmacophore-conditioning task.** Examples of docked SYNCoGEN-generated molecules (green) overlaid with PDB ligands (magenta) in their crystal structure pose.