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ABSTRACT

Synthesizability remains a critical bottleneck in generative molecular design. While
recent advances have addressed synthesizability in 2D graphs, extending these
constraints to 3D for geometry-based conditional generation remains largely un-
explored.In this work, we present SYNCOGEN (Synthesizable Co-Generation), a
single framework that combines simultaneous masked graph diffusion and flow
matching for synthesizable 3D molecule generation. SYNCOGEN samples from
the joint distribution of molecular building blocks, chemical reactions, and atomic
coordinates. To train the model, we curated SYNSPACE, a dataset series containing
over 1.2M synthesis-aware building block graphs and 7.5M conformers. SYNCO-
GEN achieves state-of-the-art performance in unconditional small molecule graph
and conformer co-generation. For protein ligand generation in drug discovery, the
amortized model delivers superior performance in both molecular linker design
and pharmacophore-conditioned generation across diverse targets – without relying
on any scoring functions. Overall, this multimodal non-autoregressive formulation
represents a foundation for a range of molecular design applications, including
analog expansion, lead optimization, and direct de novo design.

1 INTRODUCTION

Generative models significantly enhance the efficiency of chemical space exploration in drug discovery
by directly sampling molecules with desired properties. However, a key bottleneck in their practical
deployment is low synthetic accessibility, i.e. generated molecules are often difficult or impossible to
produce in the laboratory (Gao & Coley, 2020). To address this limitation, recent work has turned
to template-based methods that emulate the chemical synthesis process by constructing synthesis
trees that link molecular building blocks through known reaction templates (Koziarski et al., 2024;
Cretu et al., 2024; Seo et al., 2024; Gaiński et al., 2025; Gao et al., 2024; Jocys et al., 2024; Swanson
et al., 2024). These representations, while useful for downstream experimental validation, do not
describe the underlying 3D geometry and thus cannot capitalize on the conformational information
that is often crucial for diverse chemical and biological properties.
Parallel advances in generative molecular design have explored spatial modeling at the atomic
level. Inspired by advances in protein structure prediction (Yang et al., 2025; Campbell et al.,
2024; Wang et al., 2025) and the development of generative frameworks such as diffusion and flow
matching, recent work has focused on directly sampling 3D atomic coordinates of small molecules
(Hassan et al., 2024; Jing et al., 2022; Fan et al., 2024). These methods learn to generate spatially
meaningful, property-aligned conformations along with molecular graphs. The ability to model
atomic coordinates directly increases the expressivity of these approaches, enabling applications such
as pocket-conditioned generation (Lee & Cho, 2024), scaffold hopping (Torge et al., 2023; Yoo et al.,
2024), analog discovery (Sun et al., 2025), and molecular optimization (Morehead & Cheng, 2024).
However, without considering practical synthesis routes, integrating synthesizability constraints into
these models remains a major challenge, and most existing 3D generative approaches do not ensure
that proposed molecules can be made in practice.
This work introduces SYNCOGEN (Synthesizable Co-Generation), a generative modeling framework
aiming to bridge the gap between 3D molecular generation and practical synthetic accessibility
(Figure 1). Our main contributions are as follows:
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Figure 1: SYNCOGEN is a simultaneous masked graph diffusion and flow matching model that
generates synthesizable molecules in 3D coordinate space. Each node corresponds to a building
block, and edges encode chemical reactions. Note that molecules are not necessarily linear, the
leaving groups are not displayed, and there is no order to which nodes and edges are denoised.

• Generative Framework: We propose a novel generative framework that combines masked graph
diffusion with flow matching in unified time to jointly sample from the distribution over building
block reaction graphs and of 3D coordinates, tying structure- and synthesis-aware modeling.

• Molecular Dataset: We curate a new dataset series SYNSPACE, comprising 1.2M synthesizable
molecules represented as building block reaction graphs, along with 7.5M associated low-energy
conformations. Compared to synthon-based datasets, SYNSPACE enables models to generate
more readily synthesizable molecules and directly suggest streamlined synthetic routes.

• Empirical Validation: We demonstrate that SYNCOGEN achieves state-of-the-art performance
in 3D molecule generation, producing physically realistic conformers while explicitly tracing
reaction steps. Ablations show our modelling choices are crucial for the performance. Importantly,
SYNCOGEN performs 3D conditional molecular generation tasks including linker design and
pharmacophore-conditioned generation, highlighting its applicability for drug discovery.

2 BACKGROUND AND RELATED WORK

Flow Matching. Given two distributions ρ0 and ρ1, and an interpolating probability path ρt such
that ρt=0 = ρ0 and ρt=1 = ρ1, flow matching (Lipman et al., 2023; Albergo et al., 2023; Liu et al.,
2023; Peluchetti, 2023; Tong et al., 2023) aims to learn the underlying vector field ut that generates
ρt. Since ut is not known in closed form, flow matching instead defines a conditional probability
path ρt|1 and its corresponding vector field ut|1. The marginal vector field ut can then be learnt with
a parametric vθ by regressing against ut|1 with the CFM objective:

LCFM(θ) = Et,x1∼ρ1,x∼ρt|1(·|x1)||vt(x; θ)− ut|1(x|x1)||2 (1)

Masked Discrete Diffusion Models. Let x ∼ ρdata be a one-hot encoding over K categories.
Discrete diffusion models (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024) map the complex
data distribution ρdata to a simpler distribution via a Markov process, with absorbing (or masked)
diffusion being the most common. In the masked diffusion framework, the forward interpolation
process (ρt)t∈[0,1] with the associated noise schedule (αt)t∈[0,1] results in marginals q(zt|x) =
Cat(zt;αtx + (1 − αt)m), where zt and m denote intermediate latent variables and the one-hot
encoding for the special [MASK] token, respectively. The posterior can be derived as:

q(zs|zt,x) =

{
Cat(zs; zt), zt ̸= m

Cat(zs;
(1−αt)m+(αs−αt)x

1−αt
), zt = m

(2)

The optimal reverse process pθ(zs | zt) takes the same form but with xθ(zt, t) in place of the true x.
We adopt the zero-masking and carry-over unmasking modifications of Sahoo et al. (2024).
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Multimodal Generative Models. Multimodal data generation (e.g. text-images, audio-vision,
sequences/atomic types and 3D structures) represents a challenging frontier for generative models
and has seen growing interest in recent times. Current approaches for this task typically either – 1)
tokenize multimodal data into discrete tokens, followed by a autoregressive generation (Meta, 2024;
Xie et al., 2024; Lu et al., 2024), or 2) utilize diffusion / flow models for each modality in its native
space (Lee et al., 2023; Zhang et al., 2024; Campbell et al., 2024; Irwin et al., 2025). Diffusion and
flow models also offer flexibility in terms of coupled (Lee et al., 2023; Irwin et al., 2025) or decoupled
(Campbell et al., 2024; Bao et al., 2023; Kim et al., 2024) diffusion schedules across modalities.
SYNCOGEN uses a coupled diffusion schedule but at two resolutions, with discrete diffusion for
graphs of building blocks and reactions, and a flow for atomic coordinates in building blocks.

3D Molecular Generation. Several recent works (Irwin et al., 2025; Le et al., 2024; Vignac et al.,
2023; Huang et al., 2023; Dunn & Koes, 2024) have studied unconditional molecular structure
generation by sampling from the joint distribution over atom types and coordinates. However,
these models lack the ability to constrain the design space to synthetically accessible molecules. In
concurrent work, (Shen et al., 2025) uses generated 3D structures to guide GFlowNet policies in
designing the graph of synthon-based linear molecules, but does not account for structural quality.

Synthesizable Molecule Generation. Beyond directly optimizing synthesizability scores (Liu et al.,
2022; Guo & Schwaller, 2025) – which are often unreliable – the predominant approach to ensuring
synthetic accessibility in generative models is to incorporate reaction templates. Early methods
explored autoencoders (Bradshaw et al., 2019; 2020), genetic algorithms (Gao et al., 2022), and
reinforcement learning (Gottipati et al., 2020; Horwood & Noutahi, 2020). Recently, GFlowNet-based
(Koziarski et al., 2024; Cretu et al., 2024; Seo et al., 2024; Gaiński et al., 2025) and transformer-based
(Gao et al., 2024; Jocys et al., 2024) methods have gained prominence. Such generative models have
already shown practical utility in biological discovery tasks (Swanson et al., 2024). However, most
methods only generate molecular graphs and do not produce 3D structures. The recent CGFlow Shen
et al. (2025) performs 3D generation via a GFlowNet policy augmented with flow matching; however,
CGFlow optimizes a reward and typically requires a full training for each target pocket.

3 DATASET

Training a synthesizability-aware model to co-generate both 2D structures and 3D positions requires a
dataset of easily synthesizable molecules in an appropriate format. In addition to atomic coordinates,
this includes a graph-based representation from which plausible synthetic pathways can be inferred.
A common approach is to use synthons—theoretical structural units that can be combined to form
complete molecules(Baker et al., 2024; Grigg et al., 2025; Medel-Lacruz et al., 2025). Synthon-based
representations do not guarantee the existence of a valid synthesis route, and they do not directly
provide one even if it exists. Moreover, they lack the flexibility to constrain the reaction space, which
is often critical when prioritizing high-yield, high-reliability reactions or operating within the limits
of automated synthesis platforms such as self-driving labs (Abolhasani & Kumacheva, 2023).
Alternatively, many synthesis-aware generators employ external reaction simulators, such as RDKit,
to couple building blocks iteratively. While convenient, such black-box steps offer no fine-grained
control when a reagent has multiple reaction centers, distinct atoms or atom sets that can each serve
as the site of bond formation or cleavage in a reaction. They also do not define atom mappings
between reactants and products, making it impossible to trace product atoms back to their parent
building blocks, which complicates edge assignment in building block graph generation. To overcome
these limitations, we curate a new family of datasets, SYNSPACE (Figure 2), comprising building
block-level reaction graphs pairs with corresponding atom- and block-level graphs. We then calculate
multiple 3D conformations for each graph using semi-empirical methods (Bannwarth et al., 2019).

3.1 SYNSPACE: GRAPH GENERATION

We first construct two curated vocabularies adapted from the collection proposed by Koziarski et al.
(2024). The first vocabulary pairs 93 low-cost, commercially available building blocks with 19
high-yield reaction templates, defining a virtual synthesis space of over a billion molecules. The
second vocabulary is a superset with 378 building blocks with 26 reactions, expanding the synthesis
space to over a trillion molecules. All building blocks were selected because they are known to
undergo the chosen reactions, acknowledging that the presence of a nominally compatible functional
group alone does not guarantee participation in the corresponding transformation. We utilize reactions
that (1) ensure all product atoms originate from the two input reagents, and (2) involve at most one

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

q

Buchwald-
Hartwig 

Coupling

Amide 
coupling

Reductive 
amination

…

…

Reaction 
center 

selection
Reactant 
selection

Reaction 
selection

Reaction 
center 

selection

Building 
block 

selection

3D 
coordinate 
generation

Figure 2: Overview of SYNSPACE creation process. Highly synthesizable molecules are proce-
durally constructed by iteratively sampling synthesis pathways from a set of building blocks and
reactions. Starting from an initial block, the procedure selects a reaction center, a compatible reaction,
and a suitable reactant. After the final structure is assembled, multiple low-energy 3D conformations
are generated. We provide two SYNSPACE datasets from two vocabularies, a practically focused core
set and an extended variant; each dataset contains 600k graphs with 3-4M conformers.

leaving group per reagent. We emphasize that these constraints yield simple, robust chemistries that
are routinely executed and support rapid multi-step synthesis from inexpensive, in-stock reagents.
We procedurally generate SYNSPACE from the smaller vocabulary, or SYNSPACE-L from the larger
superset, by iteratively coupling building block graphs at their reaction centers with compatible
reaction templates (Appendix A.2). For SYNSPACE, we obtained 622,766 building block reaction
graphs, each constructed from 2 to 4 sequential reactions. For each molecule, we generate multiple
3D conformations (Section 3.2), yielding 3,360,908 conformers. Similarly, SYNSPACE-L contains
600,000 graphs and 4,223,367 conformations. Unless otherwise noted, all models are trained
on SYNSPACE, which emphasizes practicality as its fewer building blocks are more readily stocked,
whereas SYNSPACE-L is reserved for when a larger, more exploratory search space is required.
SYNSPACE contains diverse molecules that are drug-like (e.g., LogP∼ 2.5; broad range of topological
polar surface areas; large fraction of sp3 carbons). Importantly, compared to Geom-Drugs (Axelrod
& Gomez-Bombarelli, 2022), SYNSPACE contains substantially more unique Murcko scaffolds,
indicating breadth despite the building block space. With a larger accessible space, SYNSPACE-
L preserves similar physicochemical profiles and scaffold diversity. See Appendix A.3 for details.

Note: Injectivity. Many commercial building blocks contain multiple reaction centers, each
compatible with a different set of corresponding reaction centers on other blocks. Thus, a building
block-level reaction graph Gb = (X,E) is not fully specified when edges are parametrized by the
reaction alone. To achieve an injective correspondence, we label edges from node i to j > i by the
triple eij = (r, vi, vj), where r is the coupling reaction and (vi, vj) are the participating reaction
centers on the source and destination blocks, respectively. Stereoisomers that form during reactions
collapse to the same (X,E) representation, but this granularity suffices for our current scope.
3.2 SYNSPACE: CONFORMATION GENERATION

For each molecular graph, 50 initial conformers were generated using the ETKDG (Riniker &
Landrum, 2015) algorithm (RDKit implementation). These structures were energy-minimized using
the MMFF94 force field, and all conformers within 10 kcal/mol of the global minimum were retained.
The resulting geometries were then re-optimized with the semi-empirical GFN2-xTB (Bannwarth
et al., 2019) method, after which the same 10 kcal/mol energy threshold was applied. At every stage,
redundant structures were removed by geometry-based clustering (RMSD < 1.5). This workflow
yields, on average, 5.4 distinct conformers per graph. Relative to exhaustive approaches such as
CREST (Pracht et al., 2024), the workflow is several orders of magnitude faster; despite occasionally
omitting some conformations, the retained structures are diverse and reproduce the bond-length,
bond-angle, and dihedral-angle distributions observed in CREST-derived datasets (see Section 5.1).

3.3 SYNSPACE: PHARMACOPHORE GENERATION

For each conformer associated with a molecule in SYNSPACE and SYNSPACE-L, we generate
a pharmacophore profile consisting of one-hot pharmacophore types Xpharm ∈ {0, 1}Npharm×Ntypes

4
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and positions Cpharm ∈ RNpharm×3 using ShePhERD Adams et al. (2025). Here, Npharm and Ntypes
correspond to the number of pharmacophore features and the number of pharmacophore types,
respectively.

4 METHODS

Notation. Let B be the building-block vocabulary and R the set of reaction templates, with
cardinalities B := |B| and R := |R|. We write N for the maximum number of building blocks that
any molecule in the training set can contain, and M for the maximum number of atoms in a single
building block. For each block b ∈ B we denote its set of reaction-center atoms by V(b); the global
maximum of these counts is Vmax := maxb∈B|V(b)|. Hence, tensor shapes contain factors such as
B + 1 (to accommodate the masked token πX in X), RV 2

max + 2 (to accommodate the no-edge and
masked tokens λE and πE), together with the bounds N and M introduced above.

SYNCOGEN. SYNCOGEN generates building block-level reaction graphs and coordinates. Each
molecule is represented by a triple (X,E,C) where X ∈ {0, 1}N×|B|+1 encodes the sequence
of building-block identities, E ∈ {0, 1}N×N×|R|V 2

max+2 labels the coupling reaction (and centers)
between every building block pair, and C ∈ RN×M×3 stores all atomic coordinates. We detail the
parameterization of graphs (X,E) in Appendix B.4. Training combines two diffusion schemes: 1) a
discrete absorbing process on (X,E) using the categorical forward kernel of Sahoo et al. (2024), and
2) a continuous, visibility-aware process on C whose endpoints are (i) a rototranslationally-aligned
isotropic Gaussian and (ii) a re-centered ground truth, considering all "visible" atoms in the prior (see
Section 4.2). For a simplified visual diagram and intuitive description of the SYNCOGEN training
procedure, see Appendix B.1. The code is available here.

4.1 MODEL ARCHITECTURE

We adapt SE(3) equivariant architecture originally designed for all-atom molecular design
(SEMLAFLOW (Irwin et al., 2025)), as the principal backbone to generate both coordinates and
graphs. At each timestep t, SYNCOGEN predicts building block logits LX

t , LE
t and a shifted co-

ordinate estimate ˆ̃C t
0 . The loss is the weighted sum of the cross-entropy term Lgraph on (X,E),

the masked coordinate MSE term LMSE, and the short-range pairwise distance term Lpair (see
Appendices B.7 and B.16 for details). We define additional building-block-to-atom featurization in
Appendix B.5 and atom-to-building-block output layers in Appendix B.10.

Pharmacophore Conditioning Backbone. To accommodate pharmacophores as conditioning
information, we design a modified backbone to represent each as an "atom" with no weight
during centering operations. After atom featurization, pharmacophore types are fed through
a separate featurization head and concatenated to invariant atom type features, i.e. Xmodel =
[MLPatom(Xatom), MLPpharm(Xpharm)] ∈ R(N+Npharm)×dx . Pharmacophore coordinates are concate-
nated directly to atomic coordinates, Cmodel = [C,Cpharm] ∈ R(N+Npharm)×3, and therefore undergo
identical data augmentation beforehand (including that induced by data pairing, see Section 4.2).
Cmodel and Xmodel are then passed to the equivariant-invariant dynamics module. Prior to final output
layers, expanded atom-level hidden-layer outputs are truncated to the total number of atoms NM .

4.2 NOISING SCHEMES

Graph Noising. We noise true graphs (X0, E0) to obtain (Xt, Et) using the procedure described
in Section 2. In practice, as all true edge matrices E0 are symmetric, we symmetrize the sampled
probabilities for the noising and denoising of Et correspondingly (see Appendix B.11).

Coordinate Noising During sampling, for any time t where some Xt contains a masked building
block, we do not know the block’s identity or atom count and thus represent its coordinates by a
vector containing M atoms of unknown type, where M is a chosen upper bound on the number
of atoms in a building block. To match this lack of information at training time, we perform the
following: (i) First, we generate a noised graph (Xt, Et) and draw C1 ∼ N (0, I)3×(NM). (ii) We
then design a visibility mask St that considers all M atoms for each noised building block containing
m ≤M atoms in Xt as valid. (iii) To keep atom counts identical within individual data pairs, St is
applied to both C0 and C1. (iv) The additional M −m "padding" atoms in C1 are copied to C0 to
create a modified ground-truth C̃0. (v) With a consistent number of atoms in place, both are centered.
For a visual diagram describing this procedure, see Appendix B.1.
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Thus, we construct centered, visibility-masked data-noise coordinate pairs (C̃1, C̃0) that both contain
|St| "visible" atoms to match the information available to the model during sampling. Input to the
model Ct is then obtained by linearly interpolating Ct = (1− t)C̃0 + t(C̃1). Essentially, we task the
model with rearranging the true atoms while disregarding padding by learning to fix padding atoms
in place. See Algorithm 2 for formalization. We note a caveat in equivariance in Appendix B.6.

Flexible Atom Count. Most 3D molecule generation methods require specifying the number of
atoms during inference. Because the prior of SYNCOGEN is over building blocks, we naturally
handle a flexible number of atoms during generation and model any excessive atoms as padding.

4.3 TRAINING-TIME CONSTRAINTS

For discrete diffusion, SYNCOGEN utilizes zero masked logit probabilities and logit unmasking. In
addition, we implement the following:

1. No-Edge Diagonals. We set the diagonals of all edge logit predictions LE
θ to no-edge, as no

building block has a coupling reaction-induced bond to itself.
2. Edge Count Limit. Let kt :=

∑
1≤i<j≤n 1(Et[i, j, ·] /∈ {πE , λE}) be the number of unmasked

true edges in the upper triangle of Et. If kt = n− 1, we have the correct number of edges for a
molecule containing n building blocks and therefore set all remaining edge logits to λE .

3. Compatibility Masking. Assume that for some Et an edge entry is already denoised, Et[i, j, ·] =
(r, vi, vj), meaning that building block i reacts with building block j via reaction r and centers
vi ∈ V(Xi), vj ∈ V(Xj). Define the sets of center-matched reagents

BAr,v := { b ∈ B | (b, v) matches reagent A in r},
BBr,v := { b ∈ B | (b, v) matches reagent B in r}.

(3)

For every node slot i (resp. j) we construct a |B|-dimensional binary mask
Xi,k = 1[bk ∈ BAr,vi

],Xj,k = 1[bk ∈ BBr,vj
], k = 1, . . . , |B|. (4)

so that the soft-max for Xt[i, ·] (resp. Xt[j, ·]) is evaluated only over the 1-entries of Xi (resp.
Xj). Analogously, once a node identity Xt[j] = b is denoised, incoming edge channels (i, j)
with j > i are masked to reactions e = (r, vi, vj) such that b ∈ BBr,vi

.

For a visual diagram of the above, see Appendix B.2. Put simply, we restrict logits to disallow loops
(e.g. macrocycles, which are often synthetically challenging), to impose a limit on the number of
edges, and to better ensure the selection of chemically compatible building blocks and reactions.

4.4 SAMPLING

Sampling begins by drawing a building block count n ∼ Cat(πfrag), setting the node and edge tensors
to the masked tokens, X1[i,·] = πX , E1[i, j,·] = πE for every 0 ≤ i, j < N , and padding all
(i ≥ n) rows/columns with the no–edge token λE . The initial coordinates are an isotropic Gaussian
C1 ∼ N (0, I)N×M×3. From this state, each step (i) recenters the current coordinates by the visibility
mask St derived from Xt, (ii) generates node and edge logits and coordinate predictions with the
trained model, (iii) draws the next discrete state from (ii), and (iv) updates coordinates via an Euler
step. After a final, deterministic pass, we calculate

(
X̂0, Ê0

)
= argmaxk L

E
θ [· · · , k] and center the

coordinates to yield the molecule (X̂0, Ê0, Ĉ0). Complete pseudocode is provided in Appendix B.8.
We note our discrete and continuous schemes share a unified time. Lastly, we find inference annealing
on the coordinates (see Appendix D.2) yields small performance gains at sampling time.

Note: Inference-Time Edge Constraints. By construction, a molecule containing n connected
building blocks contains exactly n− 1 edges, and building block j > 0 has a single unique parent
i < j. Consequently, sampling of redundant or impossible edges can be eliminated at inference time
as described in Appendix B.9 and visualized in Appendix B.3.

5 EXPERIMENTS

5.1 De Novo 3D MOLECULE GENERATION

We first study SYNCOGEN in unconditional molecule generation jointly with 3D coordinates and
reaction graphs. We evaluate SYNCOGEN against several recently published all-atom generation
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frameworks which produce 3D coordinates, including SemlaFlow (Irwin et al., 2025), EQGAT-Diff
(Le et al., 2024), MiDi (Vignac et al., 2023), JODO (Huang et al., 2023), and FlowMol (Dunn & Koes,
2024). To isolate modeling effects from data, we retrain SemlaFlow on atomic types/coordinates in
SYNSPACE for the same number of epochs as SYNCOGEN.
For each model, we sample 1000 molecules and compute stringent metrics capturing chemical
soundness, synthetic accessibility, conformer quality, and distributional fidelity. Pertaining to the
molecular graphs, we report the RDKit sanitization validity (Valid.) and retrosynthetic solve rate
(AiZynthFinder (Genheden et al., 2020) (AiZyn.) and Syntheseus (Maziarz et al., 2025) (Synth.)). For
conformers, we introduce two physics-based metrics: the median non-bonded interaction energies per
atom via the forcefield method GFN-FF and via the semiempirical quantum chemistry method GFN2-
xTB Bannwarth et al. (2019); Spicher & Grimme (2020); we also check PoseBusters (Buttenschoen
et al., 2024) validity rate (PB). We evaluate the diversity (Div.) as the average pairwise Tanimoto
dissimilarity of the Morgan2 fingerprints, novelty (Nov.) as the percentage of candidates not appearing
in the training set, and the Fréchet ChemNet Distance (Preuer et al., 2018) (FCD) between generated
samples and the training distribution. See Appendix D.4 for details.

Table 1: Comparison of generative methods for de novo 3D molecule generation.

Primary metrics Secondary metrics

Group Method Valid. ↑AiZyn. ↑Synth. ↑GFN-FF ↓ xTB ↓ PB ↑ FCD ↓Div. ↑Nov. ↑

Rxns & coords SYNCOGEN 96.7 50 72 3.01 -0.91 87.2 2.91 0.78 93.9

Atoms & coords

SEMLAFLOW 93.3 38 36 5.96 -0.72 87.2 7.21 0.85 99.6
SEMLAFLOW SYNSPACE 72.0 27 48 3.27 -0.80 60.3 2.95 0.80 93.0
EQGAT-diff 85.9 37 24 4.89 -0.73 78.9 6.75 0.86 99.5
MiDi 74.4 33 31 4.90 -0.74 63.0 6.00 0.85 99.6
JODO 91.1 38 31 4.72 -0.74 84.1 4.22 0.85 99.4
FlowMol-CTMC 89.5 24 25 5.91 -0.68 69.3 13.0 0.86 99.8
FlowMol-Gaussian 48.3 6 8 4.24 -0.71 30.7 21.0 0.86 99.7

See Table 1 for results, and Figures 15 and 18 for examples. For chemical reasonableness, SYNCO-
GEN generates almost entirely valid molecules. Our generation details the reaction and building
blocks in a multi-step reaction pathway, and as a result, our molecules are significantly more synthesiz-
able compared to baseline methods. Because AiZynthFinder and Syntheseus solve only 50–70 % of
known drug-like molecules, our 50–72 % scores likely underestimate true synthesizability. A rigorous
conformer geometry and energy comparison between all methods is provided in Appendix D.5.

Figure 3: Conformer geometry and energy distribution. Distributions of a) bond lengths, b-c)
dihedral angles, d) average per-atom GFN-FF non-bonded interaction energies. Solid curves denote
training data densities; lower subpanels in (a-c) show deviations between generated samples and data.
Structurally, the generated conformers reproduce the data energy distributions and have very favor-
able non-covalent interaction energies as evaluated by semi-empirical quantum-chemistry methods,
especially when compared to the baseline methods (Table 1 and Figure 3). This is evident from
the lack of structural changes upon further geometric relaxation (Figure 16). The Wasserstein-1
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distances and Jensen-Shannon divergence can be found in Appendix D.5 and Figure 14. The low non-
bonded energies indicate SYNCOGEN learns to sample many intramolecular interactions (Figure 15).
Quantitatively, 87% of these conformers pass PoseBusters pose plausibility checks. Furthermore,
SYNCOGEN reproduces the delicate data distribution of bond lengths, angles, and dihedrals (Figures 3
and 14). For example, SYNCOGEN generates fewer sp2C-sp2N bonds that are too short, captures
sharp bond angle distributions (e.g., sp3C-sp3C-sp3N), and replicates both flexible dihedral angle
distribution (e.g. sp3C-sp3C-sp3C-sp3C) and rigid dihedral angles (e.g. sp3C-sp2C-sp2C-sp2C).
Beyond sample quality, SYNCOGEN also captures the training distribution as indicated by the low
FCD, while generally producing novel molecules. As a trade off for synthesizability, the generated
samples have slightly lower diversity due to using a (limited) set of reaction building blocks. All
generated samples are unique. Furthermore, the multi-modal model can perform zero-shot conformer
generation at a quality similar to ETKDG(RDKit) when given random reaction-graphs (Table 7).
Our various training-time ablations (Table 3) show that the largest performance gains originate from
our chemistry-sensitive graph constraints and self-conditioning, with small contributions from other
training/sampling details. A large performance gap between SYNCOGEN and SemlaFlow retrained
on SYNSPACE further shows that our training procedure, rather than the architecture or dataset, is the
primary driver of performance. Appendix D.2 shows sampling-time ablations on schedules, annealing,
and edge sampling strategies, which show the joint schedule is beneficial for stable co-generation.
Finally, we demonstrate that SYNCOGEN is not limited by vocabulary size. When trained on
SYNSPACE-L, whose search space is larger by several orders of magnitude (Appendix D.3), the
model retains high RDKit validity, realistic conformer energies, and strong retrosynthesis solve rates.
This indicates that SYNCOGEN can be readily scaled to broader chemical spaces with little sacrifice
on generation quality or synthesizability.

5.2 MOLECULAR INPAINTING FOR FRAGMENT LINKING

Reference 

Vina: -8.56, SA: 4.19 Vina: -9.26, SA: 3.53Vina: -10.66, SA: 2.81 Vina: -9.84, SA: 3.37

Vina: -6.09, SA: 2.95 Vina: -6.99, SA: 2.70 Vina: -6.96, SA: 3.31 Vina: -6.31, SA: 2.86

Reference 

Vina: -6.68, SA: 3.30 (1) Vina: -6.26, SA: 3.48

Reference Fixed fragments 

Fixed fragments 

Fixed fragments 

Vina: -7.28, SA: 3.85Vina: -7.32, SA: 3.73

a)

b) c)

(1)

(1)

Figure 4: Molecular inpainting. a) Fragment linking starts from three experimentally identified
ligands in the PDB that contain substructure matches with our building blocks. We show three
examples of linkers generated by SYNCOGEN per structure and the distribution of Vina docking
scores. b) Proposed synthesis pathway for molecule (1) sampled from our model and c) structure of
(1) (blue) docked onto PDB 7N7X using AlphaFold3 compared against the PDB ligand (beige).

To demonstrate the applicability of SYNCOGEN, we study fragment linking (Bancet et al., 2020) to
design easily synthesizable analogs of hard-to-make drugs. Fragment linking in drug design enables
the construction of potent molecules by connecting smaller fragments that are known to bind distinct
regions of a target site. We formulate fragment linking as a molecular inpainting task, where we
fix the identity and coordinates of two fragments in a known ligand and sample its missing parts
consistent with both geometry and reaction grammar.
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As a case study, we pick several FDA-approved, hard-to-synthesize small molecules with experimental
crystal structures, each bound to a different target protein. We select human plasma kallikrein (PDB:
7N7X), multidrug-resistant HIV protease 1 (PDB: 4EYR), and human cyclin-dependent kinase
6 (PDB: 5L2S), where each structure is complexed with a ligand that contains at least two of our
building blocks. At sampling time, we condition on the substructure match by keeping fixed fragments
denoised and interpolating the remaining coordinates (Appendix B.18).
Generated molecules are evaluated with AutoDock Vina (Figure 4) (Eberhardt et al., 2021). SYNCO-
GEN consistently produces molecules with docking scores on par with or better than the native ligand
while satisfying constraints on the presence of specific building blocks. AlphaFold3 (Abramson
et al., 2024b) predictions on selected protein-ligand pairs show similar binding positions in the
selected pockets as well (Figures 4 and 17). Crucially, unlike existing approaches (Schneuing et al.,
2024; Igashov et al., 2024), the model links fragments using building blocks and reactions to ensure
streamlined synthetic routes of the designs (Table 8 and Figure 18).
Using SYNCOGEN for fragment-linking does not require retraining, although validities and energies
can be improved with motif-scaffolding fine-tuning(Table 8). We benchmarked SYNCOGEN against
the state-of-the-art, purpose-built fragment-linking model DiffLinker (Igashov et al., 2024). SYNCO-
GEN is the only method that produces synthesizable molecules with 58-79% retrosynthesis solve rate
(0% for DiffLinker, Table 8). Compared to DiffLinker, our molecules have lower interaction energies,
no disconnected fragments, reduced hard-to-synthesize features (Table 9), and similar PoseBuster
validity rate. The synthesizable inpainted molecules now enables wet-lab tasks such as scaffold
hopping, analog generation, or PROTAC design (Békés et al., 2022; Chirnomas et al., 2023).

5.3 AMORTIZED PHARMACOPHORE CONDITIONING

We evaluate SYNCOGEN on amortized design of de novo small-molecule binders conditioned
solely on pharmacophore profiles (Sections 3.3 and 4.1). This setting avoids any external reward
models (which can encourage reward hacking) and instead asks the generator to directly realize 3D
arrangements of interaction features that are compatible with a target pocket or reference ligand. In
this additional training process, pharmacophore types and positions are visible to the model during
training. To aid generalization, we randomly sample a maximum of 7 pharmacophore features during
data loading.
We select three disease-relevant targets with hard-to-synthesize reference ligands: ozanimod, scopo-
lamine, and TR-107 (PDB IDs: 7EW0, 8CVD, 7UVU, respectively), and targets 2IOK, 2P15, 2V3D,
3ZME, 4ZZN, 5FV7, and 5L2M from the LIT-PCBA benchmark (Tran-Nguyen et al., 2020). For
each target, we generate n=100 molecules based on the cognate ligand pharmacophore profile. Valid
samples are docked with AutoDock Vina.
We compare SYNCOGEN against three baselines. ShEPhERD (Adams et al., 2025) is a state-of-the-art
3D generator conditioned on pharmacophore interaction profiles but does not enforce synthesizability.
SynFormer (Gao et al., 2024) generates synthesizable 2D molecules; we condition it on native PDB
ligands for analogue generation. CGFlow (Shen et al., 2025) generates synthesis pathways with 3D
poses. To align with our amortized sampling setup, we sample CGFlow using the pocket-conditioned
reward from Shen et al. (2024) and refer to the baseline as CGFlow-ZS.
On average, SYNCOGEN produces de novo molecules with better or competitive docking scores
compared to ShEPhERD, CGFlow-ZS, SynFormer, and the native ligand (Figure 5). Our top samples
surpass all baselines in 8 out of 10 targets. Qualitatively, SYNCOGENmolecules dock to the same
pocket and replicate key pharmacophoric contacts of the known ligand with a high shape overlap (Fig-
ure 20). Compared to the 3D method ShEPhERD, SYNCOGEN generated molecules have markedly
higher RDKit validity and PoseBusters validity rate (by 45% and 25%, respectively), indicating more
chemically and geometrically plausible structures. Most importantly, across all baselines, including
synthesis-constrained ones, SYNCOGEN achieve significantly better retrosynthesis solve rates (by
15-65%) and reduces hard-to-synthesize features (Table 10), while maintaining comparable diversity.
These results suggest that the added complexity of generating synthesizable molecules and their 3D
poses with our synthesis-constrained search space (see Figure 19) provides an amortized way to
design de novo molecules that are both high-affinity and easy to synthesize.
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Model Val. ↑ AiZyn. ↑ Synth. ↑ PB ↑ Div. ↑
SynFormer 100.0 34 42 – 0.82
ShEPhERD 38.5 14 12 0.34 0.86
CGFlow-ZS 100.0 45 16 – 0.75
SYNCOGEN 86.3 61 78 0.59 0.80

Figure 5: Pharmacophore-conditioned generation. Top: Docking score comparison on 10 targets
from the PDB/LIT-PCBA benchmark (100 samples per method, per target). Bottom left: Aggregated
conditional generation metrics for all 10 targets. Bottom right: Docked SYNCOGEN-generated
molecules (green) overlaid with PDB ligand (magenta) for 5L2M, 5FV7 and 3ZME.

6 CONCLUSION

In this work, we introduced SYNCOGEN, a multimodal generative model that jointly samples
building-block reaction graphs and atomic coordinates. Our chemistry-aware training procedures
enable this model to learn to design synthesizable molecules directly in Cartesian space. We
additionally curated SYNSPACE, a new family of dataset currently constructed from 2 vocabularies,
and containing 1.2M readily synthesizable molecules paired with 7.5M low-energy 3D conformations.
SYNCOGEN achieves state-of-the-art performance across 3D molecular generation benchmarks,
while natively returning a tractable synthetic route for each structure. The practical utility of
SYNCOGEN is demonstrated in fragment-linking and pharmacophore-conditioned generation to
design easily synthesizable drug analogs using chemical and geometric profiles. Overall, SynCoGen
sets a new state-of-the-art in zero-shot target-conditional design and ensures synthesizable chemistry,
all while avoiding external scoring functions in favor of direct 3D structure conditioning.
The design space of SYNCOGEN is not limited to SYNSPACE. Our code base includes a data
preparation and finetuning pipeline by which interested researchers can easily add their own building
blocks and reactions and finetune/retrain our model.Looking forward, future works need to prove
rapid experimental synthesis and binding of the de novo molecular designs conditioned with 3D
information.

ETHICS STATEMENT

While intended for research in drug discovery, any generative chemistry system has dual-use risk
(e.g., suggesting toxic or hazardous compounds). We mitigate this by constraining generation to
commercially available building blocks and a limited set of high-yield reaction templates, representing
products as explicit reaction graphs, which enables expert review of routes.

REPRODUCIBILITY STATEMENT

We provide an anonymized code for this study, including end-to-end training and sampling scripts
for the joint multi-modal model, configuration files, evaluation pipelines that reproduce the metrics,
and data preparation code to regenerate the conformer sets and pharmacophore features. We also
will release pretrained checkpoints and commands to reproduce: unconditional generation, fragment-
linking inpainting, and pharmacophore-conditioned sampling. At camera-ready, we will release
simple commands to generate a new training dataset given custom reactions and building blocks.
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A CHEMISTRY AND DATASET DETAILS

A.1 BUILDING BLOCKS AND REACTIONS

For the small vocabulary, the 93 selected commercial building blocks and their respective reaction
centers are shown in Figure 9. For chemical reactions, we focused on cross-coupling reactions to
link fragments together. We chose 8 classes of robust reactions, which can be subdivided into 19
types of reaction templates, see Figure 7. The remaining building blocks and reactions that define the
large vocabulary are shown in Figure 8 and ??, respectively. We note that our reaction modeling is
simplified. For example, boronic acids in building blocks (B(OH)2) are replaced with boranes (BH2);
we do not consider the need for chemical protection on certain functional groups (e.g. N-Boc); we do
not consider directing group effects or stoichiometry when multiple reaction centers are available; we
do not consider macrocycles. These edge cases are limitations of the current method, but they are
comparably minimal through the careful curation of building blocks to avoid such infeasible chemical
reactions.

A.2 GRAPH GENERATION

Helper definitions. We annotate each building block with its reaction center atom indices V(b) ⊆
V (b) and its and each intrinsic atom-level graph by H(b) :=

(
V (b), L(b)

)
, where V (b) is the set of

atoms in b and L(b) ⊆ V (b)× V (b) is the set of covalent bonds internal to the block. Each reaction
template r is annotated with a Boolean tuple

(
(lA(r), lB(r)

)
∈ {0, 1}2 describing whether reagent

A or reagent B in r, respectively, contains a leaving atom.
Given the current atom graph Ga = (Va, La) and an atom v ∈ Va of degree 1, the routine
UNIQUENEIGHBOR(v) returns the single atom u ∈ Va such that (u, v) ∈ La. Throughout the
vocabulary, every leaving-group center has exactly one neighbour.

A reaction template r is considered compatible with (bi, v) and (b̃, ṽ) if it queries for first and second
reagent substructures that match (bi, v) and (b̃, ṽ), respectively.
Lastly, while the model is compatible with reactions containing more leaving groups, we do not
consider them as the dataset construction requires custom atom attribution between reactants and
products.
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Figure 6: List of building blocks for the small vocabulary, their respective reaction centers (in red),
and their canonical SMILES representation.
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Suzuki aryl bromide
[c:1]-[Br].[c:2]-[B]>>[c:1]-[c:2]

Suzuki aryl iodide
[c:1]-[I].[c:2]-[B]>>[c:1]-[c:2]

Buchwald aryl bromide, secondary amine
[c:1]-[Br].[#6&!$(C=[O,N]):2]-[Nh:3
]>>[c:1]-[Nh:3]-[#6&!$(C=[O,N]):2]

Buchwald aryl bromide, primary amine
[c:1]-[Br].[#6&!$(C=[O,N]):2]-[Nh:3]-[#6&!$(C=[O,N]):4]
>>[c:1]-[N:3](-[#6&!$(C=[O,N]):4])-[#6&!$(C=[O,N]):2]

Amide coupling, primary amine
[C:1](=[O:2])-[Oh].[Nh2:3]-[#6&!$(C=[O,N]):4]

>>[C:1](=[O:2])-[Nh:3]-[#6&!$(C=[O,N]):4]

Amide coupling, secondary amine
[C:1](=[O:2])-[Oh].[Nh:3](-[#6&!$(C=[O,N]):4])-[#6&!$(C=[O,N]):5]

>>[C:1](=[O:2])-[N:3](-[#6&!$(C=[O,N]):4])-[#6&!$(C=[O,N]):5]

 Esterification reaction
[C:1](=[O:2])-[Oh].[Oh:3]-[#6&!$(C=[O,N]):4]

>>[C:1](=[O:2])-[O:3]-[#6&!$(C=[O,N]):4]

Williamson ether synthesis bromide
[#6:4]-[Ch2:1]-[Br].[#6&!$(C=[O,N]):2]-[Oh:3]

>>[#6:4]-[Ch2:1]-[O:3]-[#6&!$(C=[O,N]):2]

Williamson ether synthesis chloride
[#6:4]-[Ch2:1]-[Cl].[#6&!$(C=[O,N]):2]-[Oh:3]

>>[#6:4]-[Ch2:1]-[O:3]-[#6&!$(C=[O,N]):2]

Williamson ether synthesis iodide
[#6:4]-[Ch2:1]-[I].[#6&!$(C=[O,N]):2]-[Oh:3]
>>[#6:4]-[Ch2:1]-[O:3]-[#6&!$(C=[O,N]):2]

Primary amine sulfonyl chloride substitution
[#6&!$(C=[O,N]):10][Nh2:1].Cl-[S:4]([*:7])(=[O:5])=[O:6] 
>> [#6&!$(C=[O,N]):10][Nh:1]-[S:4]([*:7])(=[O:5])=[O:6]

Secondary amine sulfonyl chloride substitution
[#6&!$(C=[O,N]):10][Nh:1]([#6&!$(C=[O,N]):20]).Cl-[S:4]([*:7])(=[O:5])=[O:6]
>>[#6&!$(C=[O,N]):10][N:1]([#6&!$(C=[O,N]):20])-[S:4]([*:7])(=[O:5])=[O:6]

Reductive amination, primary amine and aldehyde
[#6&!$(C=[O,N]):10][Nh2:1].[Ch:2]([#6:3])=[O]

>>[#6&!$(C=[O,N]):10][Nh:1]-[Ch:2]-[#6:3]

Reductive amination, secondary amine and aldehyde
[#6&!$(C=[O,N]):10]-[Nh:1](-[#6&!$(C=[O,N]):20]).[Ch:2]([#6:3])=[O]
>>[#6&!$(C=[O,N]):10]-[N:1](-[#6&!$(C=[O,N]):20])-[Ch2:2]-[#6:3]

Reductive amination, primary amine and ketone
[#6&!$(C=[O,N]):10][Nh2:1].[#6:3][C:2]([#6:4])=[O]
>>[#6&!$(C=[O,N]):10][Nh:1]-[Ch:2]([#6:3])[#6:4]

Reductive amination, secondary amine and ketone
[#6&!$(C=[O,N]):10][Nh:1]([#6&!$(C=[O,N]):20]).[#6:3][C:2]([#6:4])=[O]
>>[#6&!$(C=[O,N]):10][N:1]([#6&!$(C=[O,N]):20])-[Ch:2]([#6:3])[#6:4]

Alkyl bromide aromatic N-H alkylation
[#6:4]-[Ch2:1]-[Br].[#6&!$(C=[O,N]):10]-[Nh:2](-[#6&!$(C=[O,N]):20])
>>[#6:4]-[Ch2:1]-[Nh:2](-[#6&!$(C=[O,N]):20])-[#6&!$(C=[O,N]):10]

Alkyl iodide aromatic N-H alkylation
[#6:4]-[Ch2:1]-[I].[#6&!$(C=[O,N]):10]-[Nh:2](-[#6&!$(C=[O,N]):20])
>>[#6:4]-[Ch2:1]-[Nh:2](-[#6&!$(C=[O,N]):20])-[#6&!$(C=[O,N]):10]

Alkyl chloride aromatic N-H alkylation
[#6:4]-[Ch2:1]-[Cl].[#6&!$(C=[O,N]):10]-[Nh:2](-[#6&!$(C=[O,N]):20])
>>[#6:4]-[Ch2:1]-[Nh:2](-[#6&!$(C=[O,N]):20])-[#6&!$(C=[O,N]):10]

Figure 7: List of chemical reactions for the small vocabulary used to connect building blocks and
their SMARTS representation. Newly formed bonds are highlighted in pink.
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Figure 8: The additional building blocks for the large vocabulary, their respective reaction centers (in
red), and their canonical SMILES representation. The large vocabulary also includes all building
blocks from the small vocabulary.
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Suzuki alkenyl halide
[C:2]=[CH:3]-[Cl/Br/I].[c:1]-[B]>>[C:2]=[C:3]-[c:1]

Sonogashira aryl halide
[Ch:4]#[Ch:5].[c:2]-[Cl/Br/I]>>[c:2]-[C:5]#[Ch:4]

Thiol alkylation
[#6:1]-[Sh:2].[#6:3]-[CH2:4]-[Cl/Br/I]

>>[#6:1]-[S:2]-[CH2:4]-[#6:3]

X
R

R
X: Cl, Br, I

R R
X: Cl, Br, I

R1

X: Cl, Br, I

H

Figure 9: The additional of chemical reactions (from 3 classes) for the large vocabulary used to
connect building blocks and their SMARTS representation. Newly formed bonds are highlighted in
pink. The large vocabulary also includes all reactions from the small vocabulary.

Algorithm 1 Fragment-by-fragment assembly with COUPLE

Inputs: vocab B, reactionsR, depth limit T
Output: atom graph Ga, building block graph Gf = (X,E)

1: function COUPLE(Ga, bi, b̃, r, (vi, ṽ))
2: append all atoms and bonds of H(b̃) to Ga ▷ 1. Handle leaving groups
3: if lA(r) = 1 then ▷ vi leaves in reagent A
4: ui ← UNIQUENEIGHBOR(vi)
5: delete atom vi (and its bond) from Ga

6: vi ← ui ▷ reroute to neighbour
7: end if
8: if lB(r) = 1 then ▷ ṽ leaves in reagent B
9: ut ← UNIQUENEIGHBOR(ṽ)

10: delete atom ṽ (and its bond) from Ga

11: ṽ ← ut ▷ reroute to neighbour
12: end if
13: add covalent bond between vi and ṽ ▷ 2. Add the cross-bond
14: return Ga

15: end function
16: b0 ← UniformPick(B); Ga ← H(b0); Gf ← (b0)
17: for t = 1 to T do
18: L← enumerate compatible 5-tuples ⟨bi, v, r, b̃, ṽ⟩
19: if L = ∅ then break
20: end if
21: (bi, v, r, b̃, ṽ)← UniformPick(L)
22: e← (r, v, ṽ)

23: Ga ← COUPLE(Ga, bi, b̃, r, (v, ṽ))

24: Gf ← Gf ∪
(
bi

e−→ b̃
)

25: end for
26: return (Ga, Gf )
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A.3 SYNSPACE STATISTICS

Table 2: Average molecular properties of SYNSPACE and SYNSPACE-L datasets, in comparison with
GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022)

Property SYNCOGEN SYNSPACE-L GEOM Drugs

Molecular Weight 492.16 476.40 355.83
Number of Heavy Atoms 33.74 32.99 24.86
Octanol–Water Partition Coefficient (Log P) 2.44 3.01 2.91
Number of Hydrogen Bond Donors 2.75 3.30 1.19
Number of Hydrogen Bond Acceptors 6.74 6.25 4.83
Quantitative Estimate of Drug-likeness 0.43 0.36 0.65
Fraction of sp3 Carbons 0.41 0.37 0.30
Topological Polar Surface Area 111.32 110.08 73.73
Number of Rotatable Bonds 6.95 8.92 4.90
SAScore 3.34 3.28 2.51
Murcko Scaffold Number 443458 333180 92955
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Figure 10: Distribtion of SYNSPACE and SYNSPACE-L molecular property statistics, as compared to
GEOM Drugs.
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B METHOD DETAILS

B.1 SIMPLIFIED TRAINING WORKFLOW

Below we provide a simplified illustration of the SYNCOGEN training process. For visual clarity, we
describe the procedure for a single building block.

Figure 11: Simplified training workflow for SYNCOGEN using a single bromobenzene as an example.

Data are passed through the model during training according to the following process:

1. Noise injection. Coordinate positions and building block identities are noised/masked. If a
building block becomes masked, padding atoms are added to its coordinates to match the
maximum number of atoms in any building block within the vocabulary M . In this example,
M = 10.

2. Ground-truth preparation. To keep the number of atoms consistent, the data pairing
module (Appendix B.6) generates ground-truths with or without padding atoms and recenters
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them accordingly. Note that padding atom positions are identical in the noisy coordinates
(sampled from the Gaussian prior) and the ground truth. Here, we encourage the model to
disregard atoms that are unlikely to assemble into the true molecule when the building block
is unknown.

3. Backbone processing. The noised building blocks are passed through the backbone, which
outputs building block logits, reaction logits and coordinates; we exemplify this for building
blocks in the diagram above. The correct index is highlighted in green.

4. Index masking. The logits are processed by the SUBS parameterization module introduced
by Sahoo et al. (2024) and the compatibility logit masking module described in Appendix B.2
to eliminate probability mass allocated to incompatible or impossible indices.

5. Loss computation. Negative log-likelihoods are computed over the modified logits.

Remark. Steps 1 and 2, in particular, ensure that model inputs containing masked building blocks
during training remain consistent with the information available for a corresponding example at
sampling time. When a building block is not known, neither is the number of atoms it contains. The
absence of padding atoms during training would require direct selection of atom counts per building
block at sampling time, which constitutes a strong constraint on the building block identities and
severely limits design flexibility.

B.2 COMPATIBILITY LOGIT MASKING

Below we provide a simplified illustration of the SYNCOGEN compatibility masking procedure for
building blocks. For visual clarity, selection of building block attachment points is implicit and
reactions are denoted by a single one-hot item r, rather than a triple (r, vi, vj).

Figure 12: Compatibility masking regime for building blocks. Gray and white squares indicate
"masked" and "no edge", respectively. a) A denoised item at position (1, 3) in E denotes that a
reaction r1 has been selected between building block 1 and 3 in X . b) In X , the vocabulary is queried
for substructure matches to reagents 1 and 2 of r1 at building block indices 1 and 3 respectively, and
logits corresponding to incompatible building blocks are set to 0.
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B.3 SAMPLING EDGE LOGIT MASKING

Figure 13: Sampling constraints for edge denoising. When a reaction is denoised at position
(2, 4) in E, all other incoming edges to building block index 4 are set to "no-edge"—this is a valid
assumption as SynSpace does not contain macrocycles.

B.4 BUILDING BLOCK-LEVEL REPRESENTATIONS

Let X ∈ {0, 1}N×|B|+1 be a one-hot matrix where the ith row encodes the identity of the ith

building block, and let E ∈ {0, 1}N×N×|R|V 2
max+2, where Vmax = maxb |V(b)|. A non-zero entry

Eijr(vi,vj) = 1 signals that block i (center vi) couples to block j (center vj) via reaction r. Graphs
(X,E) belonging to molecules containing n < N building blocks are padded to N .

Reserved Channels. We reserve a dedicated masked (absorbing) token in both vocabularies:

πX ∈ {0, 1}|B|, πE ∈ {0, 1}|R|V 2
max , (5)

where πX (resp. πE) is the one-hot vector whose single 1-entry corresponds to the masked node (resp.
edge) channel. Besides the masked channel, we keep a dedicated no-edge channel, encoded by the
one-hot vector

λE ∈ {0, 1}|R|V 2
max , (6)

so every edge slot may take one of three mutually exclusive states: a concrete coupling label, the
no-edge token λE , or the masked token πE .

B.5 ATOM-LEVEL REPRESENTATIONS

The SEMLAFLOW (Irwin et al., 2025) architecture propagates and updates invariant and equivariant
features at the atom level. To ensure consistency with this framework, we calculate for each input
graph (Xt, Et) atom-level one-hot atom and bond features. Crucially, these features must be flexible
to arbitrary masking present in Xt and Et. With this in mind we set each atom feature Xatom

t [i, a] to
a concatenation of one-hot encodings

Xatom
t [i, a] =

(
δsym(i,a)︸ ︷︷ ︸

9-way one-hot

, 1[ring(i, a)], 1[a ∈ V(Xi)]
)
∈ {0, 1} 9+2, (7)

where δsym(i, a) is the one-hot vector over possible atom types (C, N, O, B, F, Cl, Br, S, [MASK])
and ring(i, a) denotes whether or not the atom is a member of a ring. Similarly, we calculate a bond
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feature matrix

Eatom
t [ai, aj ] =

{
δorder(ai, aj), bond is present,

05, otherwise.
(8)

where δorder(ai, aj) is the one-hot tensor over possible bond orders (single, double, triple, aromatic,
[MASK]) between ai and aj . Eatom

t is populated by loading the known bonds and respective bond
orders within denoised building blocks. If some building block Xi is noised, all edges between its
constituent atoms Eatom

t [i : i + M, i : i + M ] are set to the masked one-hot index. For graphs
(Xt, Et) corresponding to valid molecules in which all nodes and edges are denoised, we simply
obtain the full bond feature matrix from the molecule described by (Xt, Et).

B.6 DATA PAIRING

Algorithm 2 PAIRDATA
(
C0, S0, C1, t,Xt

)
Input: C0 (clean coordinates), S0 (atom mask), C1 (prior sample), t∈ [0, 1], Xt (partially masked
nodes)
Output: C̃0 (re-centered ground truth), Ct (interpolated noisy coords)

1: Dt ← { i | Xt[i] ̸= πX} ▷ denoised blocks
2: St[i, a]← 1[i /∈ Dt ∨ a ∈ Ai] ▷ visibility
3: C̃1 ← C1 − C̄1St

4: C̃0 ← ZEROTENSOR()
5: for all (i, a) do
6: if S0[i, a] = 1 then
7: C̃0[i, a]← C0[i, a]− C̄1St

8: else if St[i, a] = 1 then ▷ dummy atom
9: C̃0[i, a]← C̃1[i, a]

10: end if
11: end for
12: Ct ← (1− t) C̃0 + t C̃1

13: return
(
C̃0, Ct

)
Here, Ai is the set of all atom indices a that constitute true atoms in X0. Note that St = S0 for all t
where Xt contains no masked building blocks.

Note: Non-Equivariance. Our data pairings result in both C0 and Ct that are properly centered
according to atoms that are possibly valid at time t. It is important to note that under this scheme,
while the model is SE(3)-equivariant with respect to the system defined by the partial mask St, it is
not equivariant with respect to the orientation of the molecule itself unless Dc

t = ∅, as the presence
and temporary validity of masked dummy atoms offsets the true atom centering and thus breaks both
translational and rotational equivariance.

B.7 TRAINING ALGORITHM

Algorithm 3 Training step for SYNCOGEN

1: t ∼ U(0, 1)
2: (Xt, Et)← qt(X0, E0)
3: C1 ∼ N (0, I)

4: (C̃0, C̃t)← PAIR(C0, S0, C1, t,Xt) ▷ center and interpolate coordinates (Algorithm 2)

5: (LX
t , LE

t ,
ˆ̃C t
0 )← fθ(Xt, Et, C̃t, n, t)

6: L ← Lgraph + LMSE + Lpair ▷ total loss (Appendix B.16)
7: θ ← θ − η −−blaθL
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B.8 SAMPLING ALGORITHM

Algorithm 4 Sampling procedure for SYNCOGEN

1: n∼Cat(πfrag); (X1, E1)← (πX , πE); S1[i, a]←1[i < n] ▷ draw n, initialize masks
2: C1∼N (0, I); C̃1←C1 − C̄1,S1 ▷ center Gaussian prior by initial mask
3: for t = 1 down to 0 do
4: C̃t←Ct − C̄t,St

;

5: (LX
t , LE

t ,
ˆ̃C t
0 )← fθ(Xt, Et, C̃t, n, t)

6: L̃E
t ←SAMPLEEDGES(LE

t , n) ▷ enforce one parent per building block (Algorithm 5)
7: Xt−∆t←CATSAMPLE(LX

t ); Et−∆t←CATSAMPLE(L̃E
t ) ▷ take reverse step

(Appendix B.11)
8: Ct−∆t←Ct +∆t( ˆ̃C t

0 − C̃t)
9: (Xt, Et, Ct, St)← (Xt−∆t, Et−∆t, Ct−∆t, St−∆t)

10: end for
11: (LX , LE , ˆ̃C0)←fθ(X0, E0, C̃0, n, 0) ▷ final deterministic denoise (t = 0)

12: X̂0←argmaxk L
X
θ [· · · , k]; Ê0←argmaxk L

E
θ [· · · , k]; Ĉ0← ˆ̃C0 −

¯̂
C̃0,S0

13: return (X̂0, Ê0, Ĉ0)

B.9 INFERENCE-TIME EDGE CONSTRAINTS

Let Et
θ ∈ [0, 1]n×n×|R|V 2

max be the soft-max edge probabilities produced at step t. The routine below
resolves the unique parent for every building block column j > 0 and returns a probability tensor Ẽt

θ
with exactly one non–zero entry per column.

Algorithm 5 SAMPLEEDGES
(
Et

θ, n
)

Input: edge probabilities Et
θ

Output: pruned probabilities Ẽt
θ

1: Ẽt
θ ← 0

2: for j = 1 to n− 1 do
3: (ij , ej) ∼ Cat

(
{Et

θ[i, j, e] | 0 ≤ i < j}
)

4: Ẽt
θ[ij , j, ej ]← 1

5: end for
6: return Ẽt

θ

Ẽt
θ is then symmetrized and fed to the discrete reverse sampler described in Appendix B.11.

B.10 BUILDING BLOCK LOGIT PREDICTIONS

The SEMLAFLOW(Irwin et al., 2025) backbone outputs atom–atom edge features Eatom
θ ∈

RB×(NM)×(NM)×dedge . To obtain building block-level tensors, we apply two parallel 2-D con-
volutions (one for nodes, one for edges) with stride M , followed by MLP classifiers that map the
pooled features back to their original one-hot vocabularies. Note that the presented model is trained
to predict a maximum of 5 building blocks, where the sizes of the molecules (average 566 Da) are
near upper limits of molecular weights for typical drug like molecules.

Stride-pooled convolution. Let dedge be the latent edge feature dimension. Each stream uses the
block

Conv2d(dedge→ dedge, k = M, s = M)
SiLU−−−→ Conv2d(dedge→ dedge, k = 1, s = 1), (9)

so every M ×M atom patch collapses to a single building block entry. This produces
Xpool ∈ RB×dedge×N , Epool ∈ RB×dedge×N×N . (10)
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Node head. We flatten Xpool along its channel axis, concatenate the residual building block one-hot
matrix Xt, and pass the result through a two-layer MLP to obtain

LXt

θ ∈ RB×N×|B|. (11)

Edge head. We concatenate Epool with the residual building block-edge one-hot tensor Et, apply
an analogous two-layer MLP, and symmetrize to produce

LEt

θ ∈ RB×N×N×|R|V 2
max . (12)

Atom Features. The SEMLAFLOW(Irwin et al., 2025) backbone additionally outputs atom-level
node features Xatom

θ ∈ RB×(NM)×dnode , which are incorporated into Eatom
θ via a bond refinement

message-passing layer. We find that extracting both building block and edge logits directly from the
refined features Eatom

θ marginally improves performance relative to separately predicting LXt

θ from
Xatom

θ and LEt

θ from Eatom
θ .

B.11 DISCRETE NOISING SCHEME

Following (Sahoo et al., 2024), we adopt an absorbing (masked) state noising scheme for X0 and E0:
q(Xt | X0) = Cat

(
Xt; αtX0 + (1− αt)πX

)
, q(Et | E0) = Cat

(
Et; αtE0 + (1− αt)πE

)
.

(13)
where (αt)t∈[0,1] is the monotonically decreasing noise schedule introduced in Section 2.

Reverse categorical posterior. For node identities, we have

q(Xs | Xt, X0) =


Cat(Xs;Xt), Xt ̸= πX ,

Cat
(
Xs;

(1− αs)πX + αs X
t
θ

1− αt

)
, Xt = πX ,

(14)

and, analogously, for edge labels

q(Es | Et, E0) =


Cat(Es;Et), Et ̸= πE

Cat
(
Es;

(1− αs)πE + αs E
t
θ

1− αt

)
, Et = πE ,

(15)

where s < t. Equations (14) and (15) are the direct translation of the reverse denoising process
described by (Sahoo et al., 2024) into SYNCOGEN’s node–edge representation.

B.12 NOISE SCHEDULE PARAMETERIZATION

Following MDLM (Sahoo et al., 2024), we parameterize the discrete noising schedule via αt = e−σ(t),
where σ(t) : [0, 1]→ R+. In all experiments, we adopt the linear schedule:

σ(t) = σmaxt, (16)
where σmax is a large constant; we use σmax = 108 as in the original MDLM setup.

Edge Symmetrization. After drawing the upper-triangle entries of the one-hot edge tensor Es in
either the forward or reverse (de)noising process, we enforce symmetry by copying them to the lower
triangle:

Es,jie = Es,ije, 0 ≤ i < j < n, e ∈ RV 2
max.

B.13 POSITIONAL EMBEDDINGS

Though SEMLAFLOW(Irwin et al., 2025) is permutationally invariant by design with respect to atom
positions, SYNCOGEN dataset molecules require that atom order be fixed and grouped by building
block for reconstruction purposes. To enforce this during training, we intentionally break permutation
invariance by generating and concatenating to each input coordinate sinusoidal positional embeddings
representing both global atom index and building block index.

B.14 HYPERPARAMETERS

We train SYNCOGEN for 100 epochs with a batch size of 128 and a global batch size of 512. Note
that SEMLAFLOW and Midi are trained for 200 epochs, and EQGAT-diff is trained for up to 800
epochs. All models are trained with a linear noise schedule (see Appendix B.12), with the SUBS
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parameterization enabled. During training, a random conformer for each molecule is selected, then
centered and randomly rotated to serve as the ground-truth coordinates C0. All atomic coordinates
are normalized by a constant Zc describing the standard deviation across all training examples. For
the pairwise distance loss Lpair, we set d to 3Å, adjusted for normalization. During training, for each
recentered input-prior pair (C̃1, C̃0) we rotationally align C1 to C0. When training with noise scaling
and the bond loss time threshold, we set the noise scaling coefficient to 0.2 and the time threshold to
0.25, above which bond length losses are zeroed. When training with auxiliary losses, we set the
weights for the pairwise, sLDDT, and bond length loss components to 0.4, 0.4, and 0.2, respectively.

B.15 COMPUTATIONAL RESOURCES USED

We train all models on 2 H100-80GB GPUs.

B.16 TRAINING LOSSES

Here, we define several loss terms that have proved useful for stabilizing training on 3-D geometry.
By default, SYNCOGEN is trained with LMSE and Lpair as coordinate losses.

For a prediction
(
LXt

θ , LEt

θ , ˆ̃C t
0

)
= fθ

(
Xt, Et, C̃t, n, t

)
, Xt

θ = softmax
(
LXt

θ

)
, Et

θ =

softmax
(
LEt

θ

)
:

Graph loss. Let X0 and E0 be the clean node and edge tensors. Following the MDLM implemen-
tation (Sahoo et al., 2024), we weigh the negative log-likelihood at step t by

wt =
∆σt

exp(σt)− 1
, ∆σt = σt − σt−1, σ0 = 0, (17)

where σt is the discrete noise level. The discrete (categorical) loss is then
Lgraph = wt

(
−logXt

θ[X0]−logEt
θ[E0]

)
, (18)

i.e. the cross-entropy between the one-hot ground truth and the predicted distributions for both nodes
and edges.

MSE loss. Let S0 ∈ {0, 1}N×M mask the atoms that exist in the clean structure and Ct be the
noisy coordinates. Denote AS0

=
{
(i, a) : S0[i, a] = 1

}
.

LMSE =
1

|AS0 |
∑

(i,a)∈AS0

∥∥Ĉ0[i, a]− C0[i, a]
∥∥2
2
, (19)

Pairwise loss.
Lpair =

∑
(i,a)<(j,b)

∥C0[i,a]−C0[j,b]∥2≤d

S0[i, a]S0[j, b]
(
∥Ĉ0[i, a]− Ĉ0[j, b]∥2−∥C0[i, a]−C0[j, b]∥2

)2
, (20)

where d is the distance cut-off for pairwise terms. The default total loss value for the model is
therefore

LSYNCOGEN = Lgraph + LMSE + Lpair. (21)

Smooth-LDDT loss (Abramson et al., 2024a). Let d0ij := ∥C0[i]−C0[j]∥2 and dpred
ij := ∥Ĉ0[i]−

Ĉ0[j]∥2 be ground-truth and predicted inter-atomic distances, respectively. For each pair of atoms
within a 15Å cutoff in the reference structure, we compute the per-pair score

sLDDTij =
1

4

4∑
k=1

σ
(
τk − |dpred

ij − d0ij |
)
,

[
τ1, τ2, τ3, τ4

]
= [0.5, 1, 2, 4] Å,
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where σ(x) = 1/(1 + e−x) is the logistic function. The smooth-LDDT loss averages 1− sLDDTij

over all valid pairs,

LsLDDT =

∑
i<j

1[d0ij < 15]S0[i]S0[j]
(
1− sLDDTij

)
∑
i<j

1[d0ij < 15]S0[i]S0[j]
. (22)

Bond-length loss. Given a set of intra-fragment bonds bonds = {(p, q)} extracted from the
vocabulary, we penalize deviations in predicted bond lengths:

Lbond =
1

|bonds|
∑

(p,q)∈bonds

∣∣∥Ĉ0[p]− Ĉ0[q]∥2 − ∥C0[p]− C0[q]∥2
∣∣. (23)

Self-Conditioning. The modified SEMLAFLOW (Irwin et al., 2025) backbone operates on node and
edges features at the atomic level, but outputs unnormalized prediction logits X̂0 ∈ {0, 1}N×|B| and
Ê0 ∈ {0, 1}N×N×|R|V 2

max . We therefore implement modified self-conditioning for SYNCOGEN

that projects previous step graph predictions X̂0cond and Ê0cond to the shape of Xatom
t and Eatom

t
using an MLP.

B.17 CONFORMER GENERATION

We randomly assembled 50 molecules with the reaction graph and used the standard conformational
search (iMTD-GC) in CREST with GFN-FF to find all reference conformers. For both SYNCOGEN
and RDKit ETKDG, we sampled 50 conformers per molecule and computed the coverage and
matching scores. We used a relatively strict RMSD threshold of τ = 0.75 .
Formally, COV is defined as:

COV =
1

N

N∑
i=1

1

[
min

1≤j≤M
RMSD(mi, gj) ≤ τ

]
, (24)

where 1[·] is the indicator function, mi are the N generated conformers and gj are the M reference
conformers. And MAT is defined as:

MAT =
1

N

N∑
i=1

min
1≤j≤M

RMSD(mi, gj). (25)

B.18 MOLECULAR INPAINTING

For the inpainting experiments in Section 5.2, we keep two fragments D = {D(1),D(2)} and their
coordinates fixed and sample the remaining part of the molecule. We follow Appendix B.8 and
initialize the graph prior X1 with the one-hot encoding of the desired fragment i at a specified node
index in the graph (decided at random or based on the structure of the original molecule, so that
it matches its scaffold). For each denoised fragment D(i), we replace its coordinates at each time
t > 0.03 during sampling by

C
(i)
t = (1− t) C̃

(i)
0 + t C̃

(i)
1 ,

where C̃
(i)
0 and C̃

(i)
1 are the centered ground-truth and prior coordinates of fragment i, respectively,

and all other fragments are updated as shown in Appendix B.8. For any t ≤ 0.03, which for 100
sampling steps amounts to the last three steps in the path, we follow normal Euler steps as shown in
Appendix B.8 to allow a refinement of the fixed coordinates in line with the rest of the predicted ones
for the rest of the fragments. We empirically observed that this led to molecules with lower average
energies.

C BASELINE COMPARISONS.

C.1 UNCONDITIONAL GENERATION.

For all baselines, we sampled 1000 molecules with random seeds on an A100 GPU and reported
averaged results over three runs.
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SemlaFlow We evaluated SemlaFlow using the sampling script in the official codebase on GitHub1.
We reported results for a model trained on the GEOM (Axelrod & Gomez-Bombarelli, 2022) dataset
(by sampling from the checkpoints provided in the repository) and from a model trained on our
dataset (see Table 1). We trained SemlaFlow using the default hyperparameters for 150 epochs on a
single conformer per molecule.

EQGAT-diff, MiDi, JODO, FlowMol We evaluated EQGAT-diff, Midi, JODO, using their official
implementations provided on GitHub2. We modified the example sampling script to save molecules
as outputted from the reverse sampling, without any post-processing. For MiDi, we evaluated the
uniform model. For FlowMol, both CTMC and Gaussian models were evaluated and reported.

C.2 CONDITIONAL GENERATION.

In the pharmacophore-conditioned generation setting, we compare SYNCOGEN against Syn-
former (Jocys et al., 2024), CGFlow (Shen et al., 2025), and ShEPhERD (Adams et al., 2025).
SynFormer was conditioned on the native ligand for synthesizable analogue generation. We used
the official implementation on GitHub3, and changed the following inference settings to allow for
higher quality designs compared to the default: search_width=32, exhaustiveness=128,
time_limit=300. For ShEPhERD, we use the p(x1|x3, x4) conditional setting from the paper
experiments where x1 denotes molecular structure, x3 denotes the reference ligand charge surface,
and x4 denotes the reference ligand pharmacophore profile. We provide ShEPhERD with the refer-
ence ligand and generate 100 analogs evenly split between 36, 38, 40, 42, 44, 46, 48, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 62, 64, 66, 68, 70, 75, and 80 atoms (4 each). To prepare molecules for
ShEPhERD conditioning, we generate partial charges for each reference ligand using xTB(Bannwarth
et al., 2019). For CGFlow-ZS experiments, we generate molecules in a zero-shot protein-conditioned
setting using TacoGFN (Shen et al., 2024) first implemented by Seo et al.(Seo et al., 2024; Shen
et al., 2024) Molecules are generated using the web app described in the GitHub repository4, which
inherits the sampling hyperparameters specified in the original CGFlow manuscript. For each target,
we conditionally generate using a cleaned PDB and centroid derived from reference ligand heavy
atoms. See Appendix D.6 for details of DiffLinker in linker design experiments.

D EXTENDED RESULTS AND DISCUSSION

D.1 TRAINING ABLATIONS

Table 3: Training ablations. We incrementally remove inference annealing, auxiliary losses, self-
conditioning, scaled-noise, and constraints to see the performance difference. All results shown are
at 50 epochs rather than 100 epochs in Table 1. Here, "Constraints" refers to both training-time
compatibility masking and sampling constraints. See Sections 4.3 and 4.4, (Appendices B.7, B.14
and B.16).

Method Valid. ↑ GFN-FF ↓

Base 93.5 4.871
- Inference annealing 93.5 4.933
- Auxiliary losses 85.3 5.194
- Self-conditioning 69.0 6.424
- Scaled noise 70.4 5.091
- Constraints 42.4 67.006

D.2 SAMPLING ABLATIONS

By default, SYNCOGEN implements a linear noise schedule and samples for 100 timesteps. To
evaluate the effect of step count and noise schedule choice on performance, we provide experiments

1https://github.com/rssrwn/semla-flow/, available under the MIT License
2https://github.com/jule-c/eqgat_diff/,https://github.com/cvignac/MiDi,

https://github.com/GRAPH-0/JODO,https://github.com/Dunni3/FlowMol, available
under the MIT License

3https://github.com/wenhao-gao/synformer
4https://github.com/tsa87/cgflow
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with step count decreased to 50 and 20, as well as modified noising to follow a log-linear and
geometric schedule. All results listed subsequently can be assumed to use the default noise schedule
and step count.
We additionally follow FoldFlow to implement inference annealing, a time-dependent scaling on
Euler step size that was found to empirically improve in-silico results in protein design Bose et al.
(2024). We studied multiplying the Euler step size at time t by 5t, 10t, and 50t. In practice, we
employ 10t for our experiments unless otherwise noted.
We find that noising and de-noising building blocks according to a linear noise schedule generally
achieves good performance, which during inference sees most unmasking occur in the final steps.
An aggressive denoising schedule for the discrete fragments yields significantly worse validity
(Geometric and Loglinear). Inference annealing that speeds up continuous denoising in the beginning
but slows it down near the end helps to inform discrete unmasking and can slightly improve discrete
generation validity, energies, and PoseBusters validity. As a sanity check to evaluate whether
simultaneous generation is necessary for good performance using SYNCOGEN, we evaluate an
inference configurations where all building blocks and reactions are noised until a single final
prediction step (FinalOnly) where we find performance using the default parameters to be superior.

Table 4: Sampling ablations. Results are averaged over 1000 generated samples, except retrosynthesis
solve rate (out of 100). All results shown are at 50 epochs rather than 100 epochs in Table 1.

Primary metrics Secondary metrics

Method Valid. ↑ AiZyn. ↑ Synth. ↑ GFN-FF ↓ GFN2-xTB ↓ PB ↑ Div. ↑ Nov. ↑

Linear-100 93.5 55 70 4.933 -0.92 78.3 0.79 94.1
Linear-20 82.4 56 68 5.102 -0.91 71.3 0.78 94.9
Linear-50 92.0 50 65 4.890 -0.91 78.9 0.78 93.6
Geometric-100 48.2 61 68 5.206 -0.84 72.0 0.80 91.7
Loglinear-100 60.3 56 64 5.182 -0.87 70.1 0.80 91.7
Annealing-5t 94.7 52 58 5.001 -0.93 79.1 0.78 94.1
Annealing-10t (default) 93.5 42 68 4.870 -0.91 82.8 0.78 94.2
Annealing-50t 85.1 51 64 4.972 -0.82 86.7 0.76 94.6
FinalOnly 69.7 39 68 5.260 -0.92 70.1 0.76 94.1

To examine the effect of de-noising edges probabilistically ("Default") against exclusively selecting
the highest-probability edge ("Argmax") during sampling, we sample 1000 molecules unconditionally
for each setting.

Table 5: Comparison of sampling strategies. All results are at 100 epochs (same with Table 1) but
without inference annealing.

Sampling Mode Validity ↑ PB ↑ Diversity ↑ Novelty (%) ↑
Default 0.947 0.8425 0.7811 95.24
Argmax 0.956 0.8483 0.7797 93.41

We see there is relatively insignificant differences (small improvement in the proportion of valid
molecules is slightly higher in the "Argmax" setting, at the cost of slightly lower diversity and
novelty). Note that the proportion of molecules with 3, 4 and 5 building blocks are sampled according
to their respective distributions in SynSpace.

D.3 LARGER VOCABULARY

Appendix D.3 show unconditional generation results after training SYNCOGENon SYNSPACE-Lfor
50 epochs, and as compared to SYNCOGENon SYNSPACE for 50 epochs. We note that given
a thousand fold increase in search space, longer training would typically be expected, and may
further improve the results. Under this conservative setting, scaling to the larger search space
yields very similar overall behavior. We observe a small decrease in RDKit validity and a moderate
decrease in PoseBusters validity, and the molecules still retain good conformer energies and high
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retrosynthesis solve rates. These indicate the molecules are synthesizable, and the local geometry
remains reasonable. Diversity is essentially unchanged, while novelty increases substantially from
94.2% to 99.1%, showing that the enlarged vocabulary is effectively used to explore new regions of
chemical space.

Primary metrics Secondary metrics

Method Valid. ↑ AiZyn. ↑ Synth. ↑ GFN-FF ↓ GFN2-xTB ↓ PB ↑ Div. ↑ Nov. ↑

SYNCOGEN SYNSPACE 93.5 42 68 4.870 -0.91 82.8 0.78 94.2
SYNCOGEN SYNSPACE-L 87.0 52 77 5.502 -0.81 65.0 0.79 99.1

D.4 METRICS

We here describe metric computation details that are absent in the main text.
For synthesizability evaluation, we used the public AiZynthFinder and Syntheseus models. Due
to the speed of these models, we only evaluate 100 randomly sampled generated examples. For
AiZynthFinder, we used the USPTO policy, the Zinc stock, and we extended the search time to
800 seconds with an iteration limit of 200 seconds. For Syntheseus, we used the LocalRetro model
with Retro* search under default settings, with Enamine REAL strict fragments as the stock. We
additionally appended our building blocks as the stock, but found no meaningful difference in
solved rates, presumably as most of our building blocks are already in the utilized stock. We note
that we replaced all boranes with boronic acids due to simplifications made in our modeling (see
Appendix A.2).
For energy evaluation, all results are from single-point calculations. For GFN-FF, we report the total
energy minus the bond energies (equivalent to the sum of angle, dihedral, bond repulsion, electrostatic,
dispersion, hydrogen bond, and halogen bond energies) as the intramolecular non-bond energies, and
average it over the number of atoms. For GFN2-xTB, we report the dispersion interaction energies
as the intramolecular non-covalent energies. We note that the total energies and bonded energies
follow very similar trends. We note that MMFF94 energies are not parameterized for boron; therefore,
we report them only for the Wasserstein distances in Appendix D.5 and inpainting task in Table 8.
Figures 3 and 14 show distributions obtained from 1,000 molecules generated by each generative
method, along with 50,000 subsampled molecules from their respective training datasets. Gaussian
kernel density estimation (bandwidth = 0.15) was used for linear distributions, while von Mises kernel
density estimation (κ = 25) was applied for circular distributions. Wasserstein-1 distances (computed
linearly for lengths and energies, and on the circle for angles and dihedrals) were calculated using the
Python Optimal Transport Package (Flamary et al., 2021).

D.5 De novo 3D MOLECULE GENERATION
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Figure 14: Additional conformer bond length, angle, dihedral, and energy distribution compar-
isons. a-b) Bond lengths, c) GFN2-xTB energy distribution, d-f) bond angles, g-h) dihedral angles.
Solid curves denote training data densities; lower subpanels show deviations between generated
samples and data.
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Figure 15: Unconditionally sampled random molecules from SYNCOGEN.

1.28 Å 0.56 Å 0.68 Å

0.65 Å 0.96 Å 0.79 Å

SynCoGen

GFN2-xTB 
optimized

SynCoGen

GFN2-xTB 
optimized

Figure 16: A subset of randomly sampled molecules from SYNCOGEN and further optimized by
GFN2-xTB until convergence. Alignment RMSD is shown below the molecular structures.
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Table 6: Wasserstein-1 distance (W1) and Jensen–Shannon divergence (JSD) for the generative
models (lower is better). For bond lengths, angles, and dihedrals, we computed the average W1

and JSD for the top 10 prevalent lengths/angles/dihedrals. Comparisons are made to the respective
training set.

(a) Bond dihedrals

Method W1 JSD

SYNCOGEN 7.01 0.29

SEMLAFLOW SYNSPACE 6.50 0.22
SEMLAFLOW 7.76 0.28
EQGAT-Diff 8.48 0.29
MiDi 9.32 0.38
JODO 5.47 0.31
FlowMol-CTMC 13.69 0.35
FlowMol-Gauss 18.85 0.46

(b) Bond angles

Method W1 JSD

SYNCOGEN 1.36 0.22

SEMLAFLOW SYNSPACE 1.64 0.28
SEMLAFLOW 1.18 0.21
EQGAT-Diff 1.37 0.16
MiDi 1.41 0.21
JODO 0.59 0.12
FlowMol-CTMC 1.90 0.24
FlowMol-Gauss 3.68 0.30

(c) Bond lengths

Method W1 JSD

SYNCOGEN 0.0171 0.34

SEMLAFLOW SYNSPACE 0.0320 0.48
SEMLAFLOW 0.0200 0.38
EQGAT-Diff 0.0039 0.13
MiDi 0.0142 0.31
JODO 0.0034 0.12
FlowMol-CTMC 0.0089 0.20
FlowMol-Gauss 0.0152 0.28

(d) GFN2-xTB non-covalent E

Method W1 JSD

SYNCOGEN 0.0838 0.33

SEMLAFLOW SYNSPACE 0.0125 0.16
SEMLAFLOW 0.0249 0.16
EQGAT-Diff 0.0073 0.12
MiDi 0.0084 0.14
JODO 0.0031 0.11
FlowMol-CTMC 0.0605 0.26
FlowMol-Gauss 0.0322 0.19

(e) GFN-FF non-bonded E

Method W1 JSD

SYNCOGEN 1.37 0.28

SEMLAFLOW SYNSPACE 1.09 0.22
SEMLAFLOW 1.52 0.16
EQGAT-Diff 1.69 0.18
MiDi 1.80 0.19
JODO 1.33 0.12
FlowMol-CTMC 1.53 0.17
FlowMol-Gauss 2.13 0.17

(f) MMFF total E

Method W1 JSD

SYNCOGEN 6.59 0.089

SEMLAFLOW SYNSPACE 54.63 0.22
SEMLAFLOW 69.56 0.24
EQGAT-Diff 4.80 0.076
MiDi 19.00 0.11
JODO 22.07 0.11
FlowMol-CTMC 41.95 0.15
FlowMol-Gauss 26.96 0.14

Table 7: With given reaction graphs, comparison of mean coverage (COV) and matching accuracy
(MAT) for RDKit ETKDG and zero-shot conformer generation using SYNCOGEN.

Method COV (%) ↑ MAT (Å) ↓

RDKit 0.692 0.657
SYNCOGEN 0.614 0.693

D.6 MOLECULAR INPAINTING EXPERIMENTS

Three protein–ligand complexes (PDB IDs 7N7X5, 5L2S6 and 4EYR7) were selected for molecular
inpainting of the ligand structures. These ligands were chosen because they are prominent FDA-
approved drugs, and they are typically challenging to synthesize, but the key functional groups are
present in our building blocks. Specifically, 4EYR contains ritonavir, a prominent HIV protease
inhibitor on the World Health Organization’s List of Essential Medicines; 5L2S contains abemaciclib,
an anti-cancer kinase inhibitor that is amongst the largest selling small molecule drugs; 7N7X contains
berotralstat, a recently approved drug that prevents hereditary angioedema. Note that for 4EYR,
the inpainting was done using the ligand geometry from the PDB entry 3NDX8, but docking was
performed with 4EYR because the protein structure in 3NDX contained issues – nonetheless, both
entries contain the same protease and ligand.
In addition to the experiments in Section 5.2, we evaluate SYNCOGEN’s conditional sampling perfor-
mance for the fragment linking framework against the state-of-the-art model DiffLinker (Igashov
et al., 2024). While DiffLinker is trained for fragment-linking, our model performs zero-shot fragment
linking without any finetuning. For both models, the size of the linker was chosen so that it matches

5https://www.rcsb.org/structure/7N7X
6https://www.rcsb.org/structure/5L2S
7https://www.rcsb.org/structure/4EYR
8https://www.rcsb.org/structure/3NDX
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that of the original ligand: 2 extra nodes were sampled for SYNCOGEN and 15 linking atoms for
DiffLinker in the case of 5L2S, while 3 extra nodes and 25 linking atoms were sampled for 4EYR
and 7N7X. We specified leaving groups (for SYNCOGEN) and anchor points (for DiffLinker) so
that the fragments are linked at the same positions as in the ligand. Results are shown in Table 8.
No retrosynthetic pathways were found for the molecules in DiffLinker, while SYNCOGEN models
synthetic pathways and synthetic pathways can be easily drawn, with examples for 4EYR shown in
Figure 18. This out-of-distribution task for SYNCOGEN leads to fewer valid molecules; however, for
the valid candidates, SYNCOGEN has lower interaction energies and achieves 100% connectivity as
it uses reaction-based assembly, whereas DiffLinker can sample disconnected fragments.

Table 8: Molecular inpainting task. Results are averaged over 1000 generated samples, except
retrosynthesis solve rate (out of 100). SYNCOGEN-FT denotes a light fine-tuning model for 5 epochs
on in-painting with randomly fixed fragments from SYNSPACE.

Method Target AiZyn. ↑ Synth. ↑ Valid. ↑ Connect. ↑ MMFF ↓ GFN-FF ↓ GFN2-xTB ↓ Diversity ↑ PB ↑

DiffLinker
5L2S 0 0 95.8 95.09 14.22 7.52 -0.95 0.60 49.3
4EYR 0 0 93.7 81.86 20.01 8.49 -1.03 0.81 35.0
7N7X 0 0 95.8 74.65 20.51 7.99 -1.09 0.78 37.5

SYNCOGEN
5L2S 73 79 57.6 100 10.11 6.77 -0.78 0.62 27.3
4EYR 72 58 46.9 100 12.80 6.58 -0.86 0.64 32.0
7N7X 53 69 50.6 100 4.243 6.60 -0.80 0.67 56.1

SYNCOGEN-FT
5L2S 77 84 75.3 100 4.25 6.58 -0.81 0.632 56.2
4EYR 42 78 62.0 100 10.13 5.33 -0.78 0.604 19.8
7N7X 57 77 73.6 100 4.09 6.86 -0.83 0.664 47.9

Table 9: Percentage of hard-to-synthesize chemical features in generated “valid” molecules from
SYNCOGEN versus DiffLinker in fragment linking (out of 1000). Exotic bonds include hydrazine,
nitro, nitramine, azide, diazo, peroxide, nitrate ester, fulminate. Fused large/small rings are where a
fused ring contains a sub-ring that is larger than 6 atoms or smaller than 5 atoms.

DiffLinker SYNCOGEN

Chemical features 5L2S 3NDX 7N7X 5L2S 3NDX 7N7X

Macrocycles (>=9) 1.0% 72.6% 12.6% 0.0% 0.0% 0.0%
Fused rings with large/small rings 13.3% 81.4% 37.0% 0.0% 0.0% 0.0%
Large rings (7,8) 12.1% 9.9% 22.2% 0.0% 0.0% 0.0%
Disconnected 4.9% 18.1% 25.4% 0.0% 0.0% 0.0%
Exotic bonds 0.2% 1.2% 1.7% 0.0% 0.0% 0.0%
Total problematic % 22.8% 86.0% 61.5% 0.0% 0.0% 0.0%

(a) 5L2S (b) 3NDX/4EYR (c) 7N7X

Figure 17: Structural overlays of the native protein (gray) and its native ligand (blue) with AlphaFold3-
predicted folds of a subset of generated ligands (green) for (a) 5L2S, (b) 3NDX/4EYR, and (c) 7N7X.
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Figure 18: Synthetic pathways for molecules generated in the molecular inpainting task for target
3NDX/4EYR. The final product is shown in blue, and the inpainted fragments are shown in red.
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D.7 PHARMACOPHORE-CONDITIONED GENERATION EXPERIMENTS

Table 10: Percentage of hard-to-synthesize chemical features in pharmacophore generation for
CGFlow-ZS, Shepherd, Synformer, and SYNCOGEN 100 per target, 10 targets in total). Exotic bonds
include hydrazine, nitro, nitramine, azide, diazo, peroxide, nitrate ester, fulminate. Fused large/small
rings are where a fused ring contains a sub-ring that is larger than 6 atoms or smaller than 5 atoms.

Chemical features CGFlow-ZS Shepherd Synformer SYNCOGEN

Macrocycles (>=9) 0.0% 4.7% 1.8% 0.0%
Fused rings with large/small rings 31.1% 39.2% 1.9% 0.1%
Large rings (7,8) 1.2% 31.2% 4.0% 0.0%
Disconnected 0.0% 0.0% 0.0% 0.0%
Exotic bonds 0.0% 0.3% 1.3% 0.0%
Total problematic % 31.3% 46.8% 8.3% 0.1%

Figure 19: Docking score box-plot comparisons on pharmacophore-conditioned SYNCOGEN samples,
randomly selected SYNSPACE samples, and randomly selected FDA-approved small molecules
(100 for each target). Pharmacophore-conditioned SYNCOGEN outperforms SYNSPACE, which
outperforms FDA-approved molecules. These results suggest that the reason why pharmacophore-
conditioned SYNCOGEN can outperform other baselines may partially stem from the careful curation
of building blocks, as SYNSPACE samples perform well in docking experiments. Lastly, we caution
that docking is a merely a proxy for binding affinity, and we emphasize that the primary results are
that SYNCOGEN generates synthesizable molecules with reasonable poses when conditioned on
pharmacophore profiles. Note all SYNCOGEN sampling runs were performed using a building block
count fixed to 3.
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Figure 20: Pharmacophore-conditioning task. Examples of docked SYNCOGEN-generated
molecules (green) overlaid with PDB ligands (magenta) in their crystal structure pose.
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