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ABSTRACT

Fusing histopathology images and genomics data with deep learning has signifi-
cantly advanced precision oncology. However, genomics data is often missing due
to its high acquisition cost and complexity in real-world clinical scenarios. Existing
solutions aim to reconstruct genomics data from histopathology images. Neverthe-
less, these methods typically relied only on individual cases and overlooked the
potential relationships among cases. Additionally, they failed to take advantage of
the authentic genomics data of diagnostically related cases that are accessible from
training for inference. In this work, we propose a novel Multi-modal Structural
Representation Learning (MSRL) framework for data-efficient precision oncology.
We pre-train a histopathology-genomics multi-modal representation graph adopting
Graph Structure Learning (GSL) to construct inter-case relevance based on the
data inherently. During the fine-tuning stage, we dynamically capture structural
relevance between the training cases and the acquired authentic cases for precise
prediction. MSRL leverages prior inter-case associations and authentic genomics
data from diagnosed cases based on the graph, which contributes to effective infer-
ence based on the single histopathology image modality. We evaluated MSRL on
public TCGA datasets with 7,263 cases across various tasks, including survival pre-
diction, cancer grading, and gene mutation prediction. The results demonstrate that
MSRL significantly outperforms existing missing-genomics generation approaches
with improvements of 1.44% to 3.12% in C-Index on survival prediction tasks and
achieves comparable performance to multi-modal fusion methods.

1 INTRODUCTION

Histopathology whole slide images (WSIs) describe detailed visual information of morphology
features, cellular organization, and phenotypic characteristics, which are considered the gold standard
for the assessment of cancer (Shmatko et al., [2022; [Dimitriou et al.,|2019; Hegde et al.| [2019; |Shamai
et al., [2022} [Kather et al.| 2019). Genomics data provide quantitative molecular characteristics of
the microenvironment, which is significant for precision medicine and targeted therapies (Zhang
et al.l 2021} [Eraslan et al., |2019; [Zhou et al., 2019} Jaume et al., [2024a; Kopp et al., [2020; |L1
et al.| 2022b)). Recently, an increasing number of studies on histopathology-genomics multi-modal
learning have shown superior capabilities in precision oncology by providing a more personalized
representation that comprehensively reflects the case’s status (Chen et al.| |2020a; 2021} |[Zhou &
Chen, [2023; Jaume et al., 2024b). Fusing morphological information from histology and molecular
information from genomics data is the prevalent paradigm of multi-modal algorithms (Vale-Silva
& Rohr, 2021; [Mobadersany et al., 2018 'Weng et al.l |2019) as shown in Figure Eka). However,
the acquisition cost of genomics data is still very high, resulting in the lack of complete paired
histopathology-genomics data in many practical inferences.

To address this challenge, some researchers focus on utilizing the histopathology data to reconstruct
the missing genomics features and then apply multi-modal framework for prediction. These methods
typically follow two paradigms: (1) constructing auxiliary tasks during training to reconstruct existing
genomics data and encourage the model to build the associations between WSI and genomics features
through reconstruction loss (Wu et al.,[2024; Wang et al., |2025) or distillation loss (Xu et al., 2025)
as shown in Figure [T(b); or (2) adopting generative approaches that condition on histopathology
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Figure 1: Differences between proposed MSRL and previous methods, where (a) shows multi-modal
fusion methods, (b) and (c) depict WSI-based genomics reconstruction and distillation methods,
where dashed lines indicate components used only during training and not involved in inference, and
(d) presents our proposed MSRL, which incorporates authentic genomics data from diagnosed cases
to assist gene reconstruction and inference.

data inputs to synthesize missing genomics features (Zhou et al, [2025)) as shown in Figure [Tfc).
These approaches partially address the problem of missing the modality during inference. However,
these methods suffer from the following two limitations: (1) Ignoring potential relevance among
cases. Reconstruction-based approaches typically rely solely on the histopathology image of the
individual case to predict genomics features and focused on intra-case multi-modal alignment while
overlooking crucial inter-case relevance for cancer diagnosis. (2) Underutilization of available
authentic genomics data. During inference, the genomics modality is entirely synthesized by
these methods, and they neglect the authentic genomics data of diagnostically related cases that
are accessible from training data. This limits the authenticity and informativeness of the generated
features.

In the paper, we propose a novel histopathology-genomics Multi-modal Structural Representation
Learning (MSRL) framework for data-efficient precision oncology. We adopt graph structure learning
to pre-train a multi-modal representation graph to construct inter-case relevance based on the data
inherently and enable dynamic graph construction for downstream tasks to achieve inference with
the single histopathology image modality. The data-driven graph pre-training captures relevance
among diagnostic cases. We introduce authentic data as auxiliary structural guidance to exploit
the information of genomics data in missing modality scenarios during inference. Furthermore, we
fine-tune the WSI encoder with the guidance of the multi-modal representation graph and enhance its
ability to capture fine-grained morphology characteristics for data-efficient prediction with the single
image modality. The main contributions of this work are summarized as follows:

1. We propose a novel Multi-modal Structural Representation Learning (MSRL) frame-
work that effectively addresses cancer diagnosis tasks in genomics data missing scenarios.
MSRL facilitates the reconstruction of missing genomics features by leveraging multi-modal
relevance among cases and jointly enhance the representation capability of the WSI encoder,
which significantly promotes data-efficient precision oncology.

2. We pre-train a multi-modal representation graph via self-supervised graph structure learning
on a large-scale pan-cancer histopathology—genomics dataset. The pre-trained graph captures
structural relevance among cases and is further utilized to guide dynamic graph construction
during downstream inference, which contributes to effective prediction with the single WSIs
modality. The framework leverages authentic genomics data as auxiliary supervision to
reconstruct the missing modality data for inference, effectively maximizing the utility of
available molecular information.

3. We evaluated our method on publicly available The Cancer Genome Atlas (TCGA) datasets
for survival prediction and four precision diagnosis tasks. Experimental results show that
our approach significantly outperforms existing methods designed for missing modality
scenarios, and achieves comparable performance with multi-modal fusion methods.

2 RELATED WORK

Fusion-based Multi-modal methods Multi-modal approaches that integrate WSIs with genomics
data offer a more comprehensive and objective representation for cancer diagnosis. |Chen et al.
(2021)) proposed the MCAT framework to learn how histology patches attend to genes for survival
prediction. Zhou & Chen|(2023) utilized two parallel encoder-decoder structures to align WSI and
genomics representations. Jaume et al.| (2024b)) tokenized genomics data and used a memory efficient
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multi-modal Transformer to model interactions between pathway and histology patch tokens for

prognosis. [ Xu & Chen|(2023) and|Zhang et al.|(2024) leveraged optimal transport and prototypical
information bottleneck theory, respectively, to fully enable the transfer and integration of information

between the two modalities.

Multi-modal methods with missing modality Existing multi-modal fusion methods generally
rely on the assumption that complete histopathology—genomics data pairs are available. However,
acquiring genomics data is often costly and impractical, which results in missing modalities in real-
world scenarios. To address this limitation, recent studies have explored methods for reconstructing
paired genomics features from available histopathology images. One approach involves an auxiliary
task during training to reconstruct the missing genomics data. [Wang et al.| (2024b}; [2025)) were the
first to propose using initialized prompts to replace missing genomics data to enable interaction
with histopathology features through the cross-attention module. The prompts reconstruct the
missing modality representation guided by available genomics data during training, and then these
learned prompts are subsequently applied for inference. introduced a proxy gene-
reconstruction branch to guide the WSI encoder to extract genomics-related features from image
modality. (2025) proposed a conditional Latent Differentiation VAE (LD-VAE) to generate
the missing genomics data from WSIs. employed a learnable prompt to substitute for
the missing gene data and leveraged the powerful LLM (Large Language Model) to distill prognostic
knowledge into the prompt learning process. ensured the decoder’s ability to complete
the multi-modal information by integrating missing data reconstruction with knowledge distillation.
These methods rely on individual case data to reconstruct genomics features, while overlooking
inter-case relevance that could more effectively guide the recovery of missing modality. Moreover,
during inference, they failed to leverage the auxiliary information of available genomics data, despite
evidence showing that existing database knowledge can significantly enhance cancer
diagnosis. As a result, current approaches struggle to faithfully reconstruct high-density genomics
information for effective inference.

Graph Structure Learning (GSL) Graph Neural Networks (GNNs) have demonstrated strong
performance in modeling structural dependencies and supporting downstream inference. A typical
GNN takes as input a set of nodes and edges, where the edge set encodes structural relationships
between nodes. However, in many real-world scenarios, such prior structures are difficult to define or
are contaminated by noise, for example, the relationships between cancer patients are not explicitly
known. Such unreliable structures limit the representational power of GNNs.

To address this challenge, data-driven Graph Structure Learning (GSL) (Franceschi et al.l 2019}
has emerged as an effective paradigm. The core idea of GSL is to incorporate
the learning of graph structure into the task-driven learning process. Unlike traditional GNNs with
fixed edge sets, GSL dynamically learns the edge structure during training based on node features
and constructs an optimized graph topology. summarized a general GSL pipeline: a
Graph Learner takes an initial graph G = {X, A} as input—where A is the adjacency matrix and
X is the node feature matrix—and outputs a refined graph G" = {X, A"}, which is then fed into a
GNN for representation learning and task inference. Notably, the original adjacency matrix A is not
required; the graph learner can construct A” adaptively from the node features. (2022b),
et al| (20224), and [Zhao et al.| (2023)) introduced contrastive learning to enable unsupervised GSL,
eliminating the need for task labels and allowing the model to mine latent data correlations.
further applied unsupervised GSL to multiplex graphs, offering a new perspective for
structure learning in multi-modal learning.

3 METHODS

Our proposed framework consists of two stages: Multi-modal Structural Representation Pre-training
and Fine-tuning. In the first stage, as shown in Figure[2}(a), we leverage TCGA pan-cancer cases with
complete multi-modal data for self-supervised pre-training. This process aligns the representation
spaces of WSI and genomics and simultaneously establishes multi-modal inter-case relevance. The
abundance of pan-cancer data facilitates Graph Structure Learning (GSL) in constructing more
generalized relevance patterns. Furthermore, the aligned genomics encoder can be more effectively
applied to downstream tasks. In the Fine-tuning stage, as shown in Figure [2|(b), we apply the
pre-trained GSL to dynamically construct graphs for the current cases in the mini-batch and previous
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(b). Multi-modal Structural Representation Fine-tuning and Inference
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Figure 2: The framework of proposed MSRL, where (a) illustrates the multi-modal structural repre-
sentation pre-training with TCGA pan-cancer dataset and (b) shows the fine-tuning to dynamically
construct graphs for current cases and cases from the buffer, which leverages inter-case relevance and
available authentic genomics data for inference.

cases from the training buffer. This leverages inter-case relevance and utilizes available authentic
genomics data as auxiliary information for effective fine-tuning. Based on the above, we propose
the Multi-modal Structural Representation Learning (MSRL) that jointly learn multi-modal case
representations and the graph relevance among cases.

3.1 FORMULATION

Histopathology Representation For the k-th case, the WSI is denoted as I*. After segmenting the

foreground tissue region, the WSI is cropped into m* non-overlapping patches, denoted as {p}™
We leverage a powerful pathology foundation model for patch-level feature extraction and WSI
encoder initialization. Specifically, the ViT-giant pretrained on GigaPath 2024) is used
to extract patch features, denoted as X% € R™" %o where dy, is the dimension of the patch feature.
The Transformer-based LongNet m m pretralned on GigaPath is used to initialize the
WSI encoder ¢ (+). The WSI representation is the [CLS] token of ¢gz(X%) formulated as h* € R,
where d}, is the dimension of WSI feature.

Genomics Representation We collect bulk gene expression profiles for each case, denoted as V¥,
where each profile contains thousands of expression values. Following prior work (Chen et al.|

[202T} [Zhou & Chenl, [2023}; Jaume et al.|[2024b)) and the biological functional grouping of genes, we

divide the genes into n groups (Liberzon et al.|[2015). Each group is encoded using an independent
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Algorithm 1: Graph Structure Learner (GSL)

Input: The node features X € RE ¥4z
Output: Refined adjacency matrix A"

E© X, and the learner contains L layers;
for[ = 1to L do
fori =1to K do

L zgl) = EEZ_U ® w®, where ® is Hadamard product and w is the learnable weight vector;

EO =o([2", .., zf,?]T), where o is the nonlinear activation function;

A" = post_processing(S); S < E® E(L))T; // The post-processing steps are
described in Appendix
return Refined adjacency matrix A"

SNN network (Klambauer et al., [2017), denoted as X§, € R"*4s, where d,, is the dimension of
each grouped gene feature. The genomics feature of the case is the mean pooling of these groups
formulated as g© € R%, where d, = dj, = d.

Graph Representation We initialize three graphs: g = {H,An}, Gc = {G,Ag}, and
Gr = {F, A}, representing the histopathology graph, gene graph, and fused multi-modal graph,
respectively. Specifically, H = {h*}X_, and the adjacency matrix Ay € [0, 1]5*¥ is initialized
by applying K-Nearest Neighbors (KNN) clustering on H, where K is the total number of patients.
The graphs Gg and Gp are constructed in the same manner. We fuse multi-modal features with a
simple strategy: f¥ = concatenate(gF, h*) € R?9, in order to evaluate the contribution of case-level
structural representation learning rather than complex fusion techniques.

3.2 MULTI-MODAL STRUCTURAL REPRESENTATION PRE-TRAINING

We leverage the pan-cancer data and introduce self-supervised GSL to achieve discriminative and
generalized multi-modal structural representation learning, as illustrated in Figure[2](a). The core
component of GSL is a parameterized graph learner that adaptively infers the optimal refined structure
from the input node features (Li et al.,|2023; |Liu et al.| 2022b; L1 et al., [2022a; Zhao et al., 2023}
Shen et al., [2024)), which takes the original graph as input. The definition of G'S'L are described in
Algorithm[I] Subsequently, we detail the role of GSL during pre-training.

Intra-modality GSL The diagnostic relevance among cases is inherently reflected within the identical
modality. We adopt a contrastive learning paradigm (Chen et al., |2020b; [Tian et al.| [2020) to uncover
intra-modality relevance among cases. For the pathology graph Gig = {H, Ay}, we input the node
features into the pathology-specific graph structure learner and obtain the refined pathology-modality
adjacency matrix, denoted as Af; = GSLyg(H). Additionally, we apply random edge dropout
and edge addition to generate an augmented adjacency matrix, denoted as Af;"?. Then, both views
are passed through the pathology-specific Graph Convolutional Network (GCN) encoder (Kipf &
Welling, 2016)), which is formulated as follows

Zy = GCNu(Aj, H) € REX4 799 = GONg (AY?, H) € RE*dr, 1)

The InfoNCE loss (Liang et al.l|2023) is employed as the intra-modal constraint to maximize the
agreement between the node representations of the same case and minimize the similarity between
those of different cases within each modality. The loss is defined as follows

woy _ N exp(sim(z, 7,"")/7)
['InfoNCE(ZH;ZH ) = - IOg K K aug )
o1 2uim exp(sim(z, 2 7)/7)

where sim(-, -) denotes the cosine similarity between two representations, and 7 is a temperature
hyperparameter. We accordingly obtain the structure construction for the genomics modality Zg and
Z 'Y, and the intra-modality structure learning loss function formulated as follows
1
2

@

Lintra = =(Linfonce(Zu; Z57Y) + Linfonce(Za; ZEY)). 3)

Inter-modality GSL Histopathology and genomics describe a case’s status from different per-
spectives. We introduce inter-modality GSL to align their respective structures within a unified
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representation space. The InfoNCE loss is utilized to maximize the agreement between the different
modal representations of the same case, which is formulated as follows

1
Linter = i(EInfoNCE(ZH; Zg) + Linfonce(Za: Zu)). 4

Fused-modality GSL Multi-modal fusion representations provide a more comprehensive and ob-
jective description of case information. Therefore, we further introduce a structural constraint to
ensure that the fused representations preserve pathology-specific and genomics-specific character-
istics. The multi-modal structure learner is employed to refine the adjacency matrix, denoted as
AL = GSLy(F). Consequently, we obtain the graph-encoded multi-modal representations denoted
as Zy = GCNg (AL, F). We then employ the InfoNCE loss to maximize the agreement between
the uni-modal representations and the fused multi-modal representation within the same case, which
is formulated as follows

1
Liused = i(ﬁfnfoNCE(ZFQ Zy) + Linfonce(Zr; Za)). )

Based on the above components, the overall pre-training loss is formulated as Lg5 = Lintrq +
Linter + Lfusea- The multi-perspective constraints facilitate training robust multi-modal graph
structure learners and construct an effective multi-modal structural representation graph.

3.3 MULTI-MODAL STRUCTURAL REPRESENTATION FINE-TUNE AND INFERENCE

In this stage, we construct an online-target dual-branch architecture along with a buffer mechanism,
as depicted in Figure 2(b). The online branch performs efficient task prediction using only WSI data.
The target branch, which is only activated during training, receives complete multi-modal data and
guides the WSI uni-modal input online branch to learn inter-case relevance representations, thereby
completing the missing genomics information. Furthermore, the buffer stores the complete multi-
modal representations of the training samples, serving as a key component for incorporating authentic
data to construct inter-case relevance. Subsequently, we detail the specifics of each component.

The Buffer mechanism In the missing gene scenario, we define the training dataset as Dyyqin =
{I?, Vs,ys}s1 and the testing dataset as Dyosy = {Is,ys}fil, where S; and S5 denote the

s=1>
number of training and test cases, respectively, and y is the task label. The feature buffer is ini-

tialized using the available authentic data of training cases, denoted as Dy, frer = {f 5}5;1 =

{concatenate(pc(XE), pu (X?))}f;l, where ¢ is the pre-trained genomics encoder of first stage
and ¢y is the WSI encoder. The learned features of the target branch from authentic multi-modal
data are utilized to update the buffer with the First-In-First-Out (FIFO) strategy, which ensures the

buffer representations remain up-to-date.

Dual-branch training with complete modalities The target branch utilizes the relevance derived
from complete multi-modal training data to guide the online branch in learning the missing genomics
information. Inspired by prior work 2023)), we employ mixup-based augmentations to
generate distinct input views for the online and target branches, respectively. We design the Inductor
module to address the absence of genomics data in the online branch, as illustrated in the encoding
phase of Figure 2(b). Specifically, the Inductor module adopts the same SNN network architecture
(Klambauer et al.,[2017) as the genomics encoder, but takes the WSI representation as input and
outputs a genomics prompt that serves as a placeholder for the missing data. This prompt, combined
with the WSI representation, constitutes the online branch’s multi-modal representation. The missing
gene information is subsequently completed through the construction of multi-modal relevance during
the Graph Forward (GF) process, which is presented in Algorithm 2}

Hierarchical Alignment We introduce hierarchical losses to jointly optimize multi-modal represen-
tation learning and structure learning, as illustrated in Algorithm 2}II. Firstly, we impose constraints
on the features derived both preceding and succeeding the graph learning phases, which ensures the
stable and comprehensive learning of authentic multi-modal data representations by the online branch
and is formulated as follows

ACf,align = £1’I’LfONCE(f7 f)a ACg,align = EI’I’LfONCE(Za Z>7 (6)
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Algorithm 2: Multi-modal Structural Representation Fine-tune and Inference

LFunction Graph Forward (GF):

Input: Slide features h, Gene features g, Buffer Dyufrer

Output: f, A", Z

f < concatenate(g,h) ;

F < Readout(Dufier, f) // Combining features of the current cases with
the others in the buffer.

Z +— GCN(A",F); A" <~ GSL(F) // Definition of GSL as shown in
Algorithm .

return f, A" Z;

IL.Fine-tuning procedure with complete modalities:

¢u + pre-trained WSI encoder, ¢ < pre-trained Gene encoder;

// Encoding

g < Inductor(h), h <+ ¢u(X7®); // Online branch input
g+ ¢c(Xe), h« or (X3 ; // Target branch input
// Graph Froward

f’ AT; Z GFonline(h7 g, Dbuffer);

f’, AT, Z < GFtarget(fL 37 Dbuffer);

Duutter < update(Dhuter, f')
| Calculate losses: L aiign(f, £), Loatign(Z,Z), Lo atign(A”, A, Lo (Z,y);
IILInference procedure with WSI modality:

g < Inductor(h), h <+ ¢u(Xs);

f7 AT: Z Ganlinc(h7 g, Dbuffcr);
B Prediction with Z;

Moreover, we adopt sparsity-balanced binary cross-entropy (BCE) loss (Duan et al.,[2024) to align
graph structures between A" and A”. For the target graph, we assume there are ¢y zero and c;
non-zero elements in A", where ¢y > c¢;. To balance the loss between zeros and non-zeros, we apply
scaling factors on each element loss as follows
Cco C1
_ rTOATY 0 1 Gt _cptc

Ls,align—BOE(A ,A )—040;51 +al;£j7 0‘0—276()’ O‘l—Ta @)
where £° and £ denote the loss calculated for zero and non-zero elements in A”. The joint loss
calculated in the fine-tune stage is formulated as £ fine tune = L atign +Lg atign +Ls_atign + Liask-
The loss function is used exclusively to update the online branch, while the target branch is updated
using an EMA (He et al.} 2020) strategy to prevent representation collapse.

Inference and Prediction with WSI modality We apply the online branch for task inference as
illustrated in Algorithm 2JITI, where the trained Inductor is capable of estimating the missing genomics
data. The integration of authentic genomics data from the buffer assists in completion of the missing
genomics and facilitates data-efficient inference based on the single WSI modality.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets: We collect and curate n=7,263 cases with WSI-gene pairs from the TCGA pan-cancer
dataset containing 32 cancer subtypes across 12 primary tumor sites. We construct a pre-training
dataset including 6,361 cases without any diagnostic information for MSRL first-stage. For fine-
tuning, we evaluate the proposed MSRL framework on six TCGA cohorts. Details of fine-tuning
datasets and prep-rocessing of data are provided in the Appendix[C]

Experimental Settings: All test data are excluded from the first-stage pre-training. We implement
two model variants: MSRLy excludes genomics data during fine-tuning, with no genomics input
to the target branch, no Inductor in the online branch, and the buffer contains WSI embeddings
rather than fused feature. MSRL,,,;; incorporates authentic genomics data in the online branch and
replaces the Inductor with the pre-trained ¢g. We introduced with several foundation models to
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serve as pre-trained baselines for comparison (Shao et al.| [2025; Xu et al.| 2024} [Wang et al., 2024aj
Ding et al., |2025). All foundation models utilized their respective patch encoders and initialized
the slide encoders with public pre-trained weights. Then, we fine-tuned the slide encoder across all
downstream tasks to ensure the objectivity and fairness of the reported results.

Table 1: The C-Index (mean + std) on five survival prediction tasks, where “h.” and “g.” indicate
rely on WSI and genomics, respectively. The cyan background represents methods trained with
multi-modality data but inference with WSI. The best, second-best overall, and the best in cyan
background results are highlighted in bold red, underlined bold, and bold, respectively.(f:p-value
<0.05;1:p-value <0.01)

Model | Modality | BLCA (N=357)  BRCA (N=680) ~ STAD (N=318)  HNSC (N=392) COADREAD (N=298) | Overall
SNN | e | 0.5588+0.0314F  0.5816+0.0396*  0.5784 +0.0409¢  0.5456 + 0.0585* 0.5896 £0.0512f | 0.5708
CLAM (Lu et al.|2021) h. 0.5304 +0.0178¢  0.5286  0.0746"  0.5482 +0.0421%  0.5160 = 0.0331% 0.5740 + 0.0308* 0.5394
SetMIL(Zhao et al.|[2022} h. 0.5351 +£0.0742F  0.5692 +0.0323F  0.5404 + 0.0511  0.5280 = 0.0573% 0.5814 + 0.0717¢ 0.5508
WiKG (Li et al.|[2024) h. 0.5531+0.0204F  0.5827 £0.0983F  0.5617 +0.0983¢  0.5303 % 0.0354* 0.5904 + 0.0517% 0.5636
TransMIL (Shao et al.}[2021} h. 0.5632+0.0273F  0.5372£0.0293¢  0.5762 + 0.0464F  0.5570 + 0.0276} 0.6164 % 0.0977* 0.5686
PANTHER (Song et al.[[2024) h. 0.5712+0.0541%  0.6208 £0.0997!  0.6219  0.0598*  0.5594 + 0.0550* 0.6101 + 0.0500* 0.5967
FEATHER (Shao et al.|[2025) h. 0.5306 + 0.0340F  0.5698 +0.0247¢  0.5570 + 0.0420%  0.5277 + 0.0302} 0.5796 + 0.0284* 0.5530
CHIEF (Wang et al.|[2024a) h. 0.5606 + 0.0890  0.5762 +0.0768"  0.5668 + 0.0601  0.5338 = 0.0838F 0.5822 + 0.06721 0.5639
GigaPath (Xu et al.|2024] h. 0.5656 +0.0291F  0.6282 +0.0191F  0.6176 + 0.0346!  0.5580 = 0.0330* 0.6082 + 0.0180* 0.5954
TITAN (Ding et al.|2025) h. 0.5756 + 0.0864F  0.6182+£0.0711F  0.6306 + 0.0838F  0.5652 + 0.0381% 0.6138 + 0.0340¢ 0.6007
MSRLy h. 0.5774 £ 0.0221F  0.6398 £0.0251%  0.6626 % 0.0427F  0.5676 + 0.0289* 0.6182 % 0.0174% 0.6131
MCAT (Chen et al.|[2021} g+h. 0.6038 +0.0130f  0.6654 +0.0182F  0.7064 + 0.0262F  0.6164 % 0.0536F 0.6358 + 0.06841 0.6455
MOTCat (Xu & Chenl[2023] g.+h. 0.6097 + 0.05401  0.6689 = 0.0671F  0.7086 + 0.0522f  0.6175 + 0.0637* 0.6489 + 0.0346* 0.6507
CMTA (Zhou & Chen|[2023} 2+h. 0.6110 +0.0098¢  0.6708 +0.0323F  0.7110 + 0.0090  0.6214 = 0.0470F 0.6580 + 0.0177* 0.6547
PIBD (Zhang et al.|[2024) g+h. 0.6116 003181 0.6738 £ 0.0406F  0.7188 + 0.0267F  0.6244 = 0.0434" 0.6578 + 0.0654* 0.6573
LD-CVAE py (Zhou et al.|2025) | g.+h. 0.6210+ 001311 0.6712+0.0199F  0.7201 + 0.0395!  0.6302 + 0.0303* 0.6602 + 0.0224* 0.6605
SurvPath (Jaume et al.|[2024b} g.+h. 0.6288 + 0.0184!  0.6866 = 0.0209"  0.7194 + 0.0524  0.6328 + 0.0256F 0.6712 + 0.0150* 0.6683
DisProg (Xu et al.[[2025) g.+h. 0.6267 +0.0423F  0.6931 +0.0372F  0.7097 + 0.0403f  0.6390 + 0.0580" 0.6770 + 0.0479' 0.6691
MSRL i g+h. 0.6368 + 0.0327"  0.7012 £0.0302f  0.7236 £ 0.0411F  0.6456 + 0.0263" 0.6896 + 0.03011 0.6794
G-HANet (Wang et al.| 2025} g+h.—h.  0.5806+0.0149F  0.6418 £0.0138"  0.6782 % 0.0489F  0.5770 + 0.0278% 0.6216 + 0.0184% 0.6246
LD-CVAE (Zhou et al.| 2025} g+h—h.  0.5954+0.0104F  0.6430 £0.0146"  0.6938  0.0495¢  0.5960 + 0.0286 0.6280 + 0.0211% 0.6313
DisPro (Xu et al.|2025) g+h.—h. 0.6058 +0.0269%  0.6734 £0.03521  0.6803 + 0.0424*  0.6053 + 0.0610* 0.6418 + 0.0342* 0.6414
MSRL g+h.—h.  0.6192+0.0184  0.6808 £0.0277  0.7050 +0.0523  0.6182 + 0.0015 0.6554 + 0.0166 0.6558

4.2 COMPARISONS WITH STATE-OF-THE-ARTS
4.2.1 SURVIVAL PREDICTION

Survival prediction aims to estimate the time-to-event outcomes for patients (Zadeh & Schmid,
20205 Jaume et al., [2024b)). We use the concordance index (C-Index) as the evaluation metric. The
formulation of survival prediction and the calculation of the C-Index are provided in the Appendix[D.1]
Table[I]presents the experimental results of the proposed MSRL compared with several state-of-the-art
methods.

MSRL with WSI-only inference substantially outperforms existing uni-modal WSI methods. In par-
ticular, it achieves a 5.91% improvement in C-index over Panther, the state-of-the-art uni-modal WSI
method without pre-training. Foundation models exhibit effective WSI representation capabilities
pre-trained by large-scale data. For example, TITAN leverages region-level text-image multi-modal
pre-training and significantly surpasses the performance of the remaining uni-modal training ap-
proaches. Nevertheless, MSRL still outperformed TITAN by 5.51%. These results demonstrate that
MSRL can further enhance the diagnostic utility of WSI in real-world scenarios.

MSRL addresses the challenge of missing genomics data during inference more effectively than
existing methods. Reconstruction-based methods achieve significantly better inference performance
than all unimodal approaches, which effectively address the challenge of missing genomics data
for inference. G-HANet performed differential analysis on the original genomic sequences and
then reconstructed the remaining sequences during training. However, the heterogeneity among test
cases results in significant biases in the reconstructed genomic data. The Variational Autoencoder
of LD-CVAE struggled to fit the low-rank data distribution where the sample size is much smaller
than the feature dimension (d = 768), resulting in significant noise during sampling in inference.
These shortcomings result in G-HANet and LD-CVAE falling behind MCAT by 2.09% and 1.42% in
C-index. MSRL avoids the rough situation that LD-VAE is stuck in and employs structure-guided
reconstruction based on authentic original genomic data, which contribute to improvements in by
3.12% and 2.45% compared to G-HANet and LD-CVAE, respectively. DisPro distills prognostic
knowledge into the genomics prompt during training. However, its inference procedure relies on self-
scores computed within each individual case to select and aggregate tokens. This design overlooks
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holistic case-level representations and inter-case relationships, which results in a c-index that is 1.44%
lower than MSRL’s. In addition, DisPro performs multi-stage uni-modal training, which makes it
sensitive to the data distributions of both modalities and weakens its generalization ability at inference
time. As shown in Table [AT] DisPro’s c-index drops by 4.77% when evaluated on out-of-domain
data. In contrast, MSRL only a 1.02% performance decrease under the same setting, which exhibits
strong generalization capacity.

Compared with multi-modal fusion methods, MSRL outperforms MCAT and CMTA by 1.03%
and 0.11%, respectively. MCAT enhances WSI representations with genomic data unidirectionally,
ignoring WSI’s impact on genomic features. CMTA aligns WSI and genomic representations, but
encodes genomic data using a WSI-specific module (Shao et al.| 2021) that disrupts the sequence
structure. MSRL’s inter-modality constraint and genomic-specific encoding address these issues,
which contribute to performance comparable to advanced multi-modal fusion methods, and enable
data-efficient prediction using only the single image modality.

MSRL 1 achieves the optimal performance and outperforms the second-best method by 1.03% in
C-Index. This demonstrates that the multi-modal structural representation graph introduced by MSRL
effectively enhances the integration of WSI and genomic features for survival prediction.

Table 2: The performance on four precision diagnosis tasks, where a cyan background represents
methods trained with multi-modality data but inference with WSI, and the others are WSI uni-
modal methods. The best and second-best results are highlighted in bold red and underlined bold,
respectively.(f:p-value <0.05;1:p-value <0.01)

Model ‘ BRCA staging (n=944) ‘ NSCLC staging (n=893) ‘ EGFR mutation (n=627) ‘ HER?2 status (n=482)

AUC F1 score AUC F1 score FI1 score AUC F1 score
CLAM (Lu et al.|2021] 0.577 £0.0308" 0535 £0.0219% | 0.590 £ 0.0138"  0.557 £0.0187¢ | 0.765 +0.0263*  0.702 £ 0.0187* | 0.628 +0.0172%  0.500  0.0273*
SetMIL (Zhao et al.}2022} 0.580 £0.0274}  0.542£0.0377F | 0.597 £0.0204"  0.563 £0.0041% | 0.779 £ 0.0199"  0.705 £ 0.0242 | 0.667 +0.0148"  0.507 + 0.0181*
TransMIL (Shao et al.J2021] | 0.609 +0.0203"  0.547 £0.0140' | 0.619+0.0182"  0.572£0.0258! | 0.800 + 0.0286"  0.712£0.0252" | 0.674 £0.0295!  0.512 % 0.0382"
DSMIL (Li et al.|2021] 0.600 +0.0097" 0563 +0.0374 | 0.627+0.0123"  0.575£0.0274! | 0.813£0.0122!  0.726 % 0.03: 0.681 +0.0470"  0.514 +0.0245*
WiKG (Li et al.|2024] 0.619+0.0182F 0567 +0.0249F | 0.640 +0.0204"  0.587 £0.0088 | 0.814 +0.0081F 0.733 £0.01 0.690 +0.0150* 0515 + 0.0426*

PANTHER (Song et al.| 2024} | 0.643 £0.0124%  0.574 +0.0272% | 0.648 £0.0340°  0.611 +0.0282% | 0.820 £0.0154F  0.749 £0.0191% | 0.698 + 0.0386F  0.541 £ 0.0312¢
CHIEF (Wang et al.|[2024a] 0.602 £0.0169%  0.566 = 0.0300¢ | 0.635 +0.0270°  0.589 +0.0448% | 0.804 +0.0304*  0.713 +0.0340° | 0.657 +0.0110"  0.517 + 0.0637*

GigaPath (Xu et al.|2024} 0.625 £0.0074' 0570 £0.0214% | 0.645 £ 0.0180°  0.590 +0.0188% | 0.817 +0.0313%  0.743 £0.0088* | 0.691 +0.0186" 0.537 +0.0155*
FEATHER (Shao ct al.|[2025] | 0.627 +0.0085"  0.571 £0.0056" | 0.646 % 0.0159"  0.593 0.0150" | 0.816 £ 0.0061" 0.748 + 0.0240° | 0.689 +0.0259! ~ 0.538 % 0.0620°
TITAN (Ding et al.|2025] 0.648 +£0.0044"  0.583 £0.0438" | 0.639 +0.0326!  0.614 +0.0166 | 0.822 £0.0287F  0.751 £0.0150% | 0.693 +0.0067"  0.546 +0.0157*
MSRLz 0.652 +0.00957  0.586 +0.02711 | 0.655+0.0133"  0.625+0.0186" | 0.826 £0.0200!  0.758 +0.0173 | 0.704 £0.0569"  0.550 + 0.0372*

G-HANet (Wang et al[2025]  0.632+0.0263¢  0.572+0.0108 0.634 £0.0416" 0.614+0.0410F 0.830+0.0181% 0.762+0.0150" 0.715+0.0452F  0.576 +0.0423*
LD-CVAE (Zhou et al.|2025]  0.646 +0.0309"  0.582+0.0231%  0.650 +0.0264'  0.619+0.0279" 0.836 +0.0215! 0.765+0.0177%  0.717 £ 0.0254!  0.587 + 0.0295"
MSRL 0.664+0.0263  0.593+0.0277  0.661+0.0102 0.638+0.0108  0.842+0.0206 0.770£0.0165  0.730 £0.0223  0.606 + 0.0274

4.2.2 PRECISION DIAGNOSIS

We conduct four precision diagnosis tasks on two cancer staging datasets and two molecular prediction
dataset. The experimental results shown in Table 2| demonstrate that the proposed MSRL and its
variant MSRLyy achieve the highest performance across all tasks. Specifically, MSRL outperforms
the second-best LD-CVAE in the AUC/F1 scores for the four tasks by 1.8%/1.1%, 1.1%/1.9%,
0.6%/0.5%, and 1.3%/1.9%, respectively.

Degradation of WSI encoder capabilities during gene reconstruction. The diagnostic criteria of
cancer staging relies on morphological characteristics, which makes it mainly dependent on WSIs.
In the two cancer staging tasks, G-HANet is 1.1% lower than the WSI method, PANTHER, in the
AUC. Moreover, LD-CVAE introducing genomics data during training, fails to achieve a significant
performance improvement. This indicates that existing gene reconstruction methods compromise the
WSI encoder’s representation ability due to noisy high-dimensional genomics data being introduced
during training the WSI encoder from scratch, resulting in bias in morphological feature learning.

MSRL effectively enhances WSI encoder capabilities. GigaPath is the baseline WSI encoder in our
method. The WSI unimodal MSRLyg improves F1 scores by 1.6%, 3.5%, 1.5%, and 1.3% across four
tasks compared to the baseline and outperforms existing missing modality methods in cancer staging
with MSRL pre-training. Introducing genomics data further improves MSRL performance, which
shows that MSRL pre-training effectively leverages the structural information of cases to enhance
the WSI encoder representation. Authentic genomics data guidance constructs effective case-level
relevance and further strengthens the WSI encoder.
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5 MODEL ANALYSIS

5.1 ABLATION ANALYSIS

Table 3] presents MSRL structure ablation results on survival prediction. In particular, KNN (co-
sine) and KNN (Euclidean) correspond to adjacency matrices that are statically constructed using
cosine similarity and Euclidean distance, respectively, instead of being learned by the graph learner.

MSRLpjine_butter Updates the buffer with online branch features rather than target branch features, and
MSRLandom_gsL. denotes a variant where the GSL is randomly initialized without pre-training.

MSRL outperforms MSRL,ndom_gsL across all datasets, which demonstrates the effectiveness of
the pre-training. Moreover, MSRL yngom_gsL performs better than both KNN-based methods, which
suggests that GSL captures implicit and comprehensive diagnostic relevance, not only similarity as
represented by KNN. The performance drop in MSRLyjine_butfer demonstrates the effectiveness of
introducing authentic data from the target branch to construct relevance during inference.

Table 3: The results of the structure ablation on five survival prediction datasets.(f:p-value <0.05;1:p-
value <0.01)

Model | BLCA (N=357) BRCA (N=680)  STAD (N=318)  HNSC (N=392) COADREAD (N=298) | Overall
KNN (Euclidean) | 0.5692 + 0.0293f  0.6283 +0.0211%  0.6326 +0.0361F  0.5626 + 0.0306* 0.6117 £0.0118% 0.6009( | 0.0549)
KNN (cosine) 0.5774 +£0.0234F  0.6371 £0.0257F  0.6414 +0.0411F  0.5681 +0.0313* 0.6188 +0.0141% 0.6086( | 0.0472)
MSRLpgngomGs. | 0.5984 +0.02167  0.6694 +0.0331%  0.6812 + 0.0320%  0.5988 + 0.02531 0.6368 + 0.01561 0.6369( | 0.0189)
MSRLogfine bufier | 0.6094 0.0222F  0.6716 £ 0.0307"  0.6948 + 0.04921  0.6036 + 0.0275* 0.6462 + 0.01491 0.6451( | 0.0107)
MSRL 0.6192+0.0184  0.6808 +0.0277  0.7050 + 0.0523  0.6182 +0.0015 0.6554 + 0.0166 0.6558

Table E| shows that removing the alignment of the graph structure L, ;34 has the largest impact
on model performance, which confirms that the effectiveness and authenticity of the structure are
fundamental to our framework. Notably, when the dataset size is relatively small, graph learning
without structural constraints tends to suffer from instability and fails to achieve convergence. We
performed the comprehensive experimental analysis on generalization of MSRL, the pre-training loss
components, the buffer mechanism, and the parameter settings in Appendix

Table 4: Ablation results of the loss function during the fine-tuning on validation datasets.

L align v v v v
Y.align v v v v
L align v v v v
BLCA(N=357) 0.607 | 0.588(L0.019) | 0.599(] 0.008) | 0.584(] 0.023) | 0.570(] 0.037) 0.564(] 0.043) 0.573( 0.034)
BRCA(N=680) 0672 | 0.644(] 0.028) | 0.661(] 0.011) | 0.623(] 0.049) | 0.583(] 0.089) 0.577(1 0.095) 0.592(1 0.080)
STAD(N=318) 0.720 | 0.694(] 0.035) | 0.703(] 0.026) | 0.687( | 0.042) | 0.657(] 0.072) | Non-convergence | 0.663(] 0.066)
HANSC(N=392) 0.622 | 0.609(] 0.013) | 0.617(] 0.005) | 0.598(] 0.024) | 0.563(] 0.039) 0.558(] 0.064) 0.587(] 0.035)
COADREAD(N=298) | 0.661 | 0.647(, 0.014) | 0.656(] 0.006) | 0.635(] 0.026) | 0.558(. 0.103) | Non-convergence | 0.577(, 0.084)

5.2 VISUALIZATION ANALYSIS

We visualize the pre-trained multi-modal pan-cancer graph in Figure[AT] The results demonstrate
that the self-supervised GSL not only captures the relevance among similar WSIs but also uncovers
potential RNA-related connections across heterogeneous WSIs. which contribute to constructing a
more comprehensive graph representation and enable efficient inference based on unimodal data. Fur-
thermore, Figure[A2]| confirms that leveraging authentic data facilitates a more effective construction
of inter-case relevance. A more detailed analysis is provided in Appendix

6 CONCLUSION

The proposed MSRL framework jointly optimizes representation learning and structure learning.
Extensive experiments on TCGA demonstrate that MSRL significantly outperforms existing methods
and effectively addresses the challenges of missing modality with case-level relevance construction.
However, there are some limitations in the current work as described in Appendix |ﬂ In future work,
we will further extend these analyses and refine the MSRL framework to broaden its applicability to
more diverse scenarios.

10
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7 REPRODUCIBILITY STATEMENT

We believe that the MSRL framework is not only effective for histopathology—genomics tasks but
also holds research value for other hierarchical multi-modal problems, such as broader domains
involving molecular structures and protein expression. To this end, we provide a detailed code demo
in the supplementary materials. Appendix [C|describes in detail the setup of the publicly available
TCGA dataset used in our study, and Appendix [D]specifies the task definitions, model parameters,
and the software/hardware environment adopted in the experiments. We hope these materials will
sufficiently ensure the reproducibility of our approach.
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APPENDIX

A THE STATEMENT OF LLMS USAGE

Here we explicitly declare that large language models (LLMs, e.g., the ChatGPT series) did not
participate in any of the preliminary research work, including but not limited to literature review,
idea formulation, method design, code implementation, experimental design, data processing, result
organization and analysis, or figure generation. Their involvement was limited solely to the final stage
of manuscript preparation, specifically for text polishing tasks such as grammar and spelling checks,
refinement of certain expressions, and minor LaTeX table formatting adjustments. Importantly, they
did not contribute to early-stage tasks such as drafting the article outline or designing the paragraph
structure.

B VISUALIZATION

B.1 THE PRE-TRAINED GRAPH OF PAN-CANCER DATASET
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Figure Al: The graph of the pan-cancer dataset constructed by the pre-trained fused-modal GSL,
where each node denotes the WSI representation of a case and the coordinates are clustered by t-SNE
[Van der Maaten & Hinton|(2008), and each edge is weighted by the Pearson correlation coefficient
between RNA expression of cases denoted by the two nodes.

We cluster[Van der Maaten & Hinton| (2008)) the WSI representations of TCGA pan-cancer dataset,
which are encoded by LongNet|Ding et al. pre-trained by GigaPath Xu et al|(2024). Then,
the pre-trained fused-modal Graph Structure Learner (GSL) is utilized to construct the adjacency
matrix of the dataset. The completed graph of pre-trained pan-cancer dataset is shown as Figure [AT]
where each edge is weighted by the pearson correlation coefficient between RNA expression of cases
denoted by the two nodes. The following observations are summarized:

The foundation model demonstrates effective generalization ability. Despite the absence of
the TCGA dataset in the pre-training dataset of GigaPath, it exhibits the capacity to discern the
morphological characteristics of TCGA WSIs. The figure illustrates that the WSI representations of
the same site are aggregated into clusters.
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The pre-trained GSL of proposed MSRL can efficiently capture the morphological relationships
of the cases. The fused-modal GSL constructs denser edges for nodes within the same cluster,
sparser edges for clusters between different sites, and also constructs denser associations for different
clusters of the same site that are far from each other. It indicates that the fused-GSL can effectively
capture the structural associations between cases in histo-morphology.

The pre-trained GSL of proposed MSRL can efficiently capture the structural associations
of cases at the molecular level. The correlation between gene expression levels within a given
cluster is high, while the correlation between different clusters is low. Furthermore, the different
gene expression levels of distant clusters from the same site reflect the genetic heterogeneity between
cancer subtypes.

The molecular associations enhance the connectivity of the foundation model embeddings.
The distant cases in the feature space are also linked, which are corrected by the influence of gene
correlation. These connections enhanced by genomics data play a crucial role in facilitating MSRL to
achieve the precision multi-modal fusion.

B.2 VISUALIZATION OF GRAPH STRUCTURE LEARNER
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Figure A2: The adjacency matrix heatmaps obtained by GSL based on reconstructed and authentic
genomic data, where each row shows edge weights between test cases and training cases. The survival
times of two training groups are presented.

To further evaluate the effectiveness and authenticity of the structure learned by MSRL, we visualize
the adjacency matrices generated by GSL from both authentic and reconstructed genomics data in
COADREAD dataset, as shown in Figure We input the WSI and genomics data of the test cases

(n=58) into the target branch, and the output adjacency matrix of GSL is arranged in descending
order based on the column sums, retaining the top 30 columns to obtain the “Refined Adjacency
Matrix from Authentic Gene”. Meanwhile, we input the WSI of the test cases into the online branch,
reconstruct the genomics data, and obtain the output of GSL. The consistent 30 columns with the
target branch are selected to generate the “Refined Adjacency Matrix from Reconstructed Gene”. In
Figure[A2] each row of the heatmap represents the edge weights between test cases and training cases.
The blue bars in the left histogram represent the survival time (in months) of the corresponding test
cases, and the gray bars indicate that the case is deceased. Two observations are as follows: (1) The
online branch GSL can effectively learn the structural relationships from authentic data. The
heatmaps of both matrices show high consistency, especially in the high-weight edges (yellow areas).
This indicates that the online branch’s WSI-based Inductor can effectively reconstruct the authentic
genomics data. And then GSL can build meaningful relationships between previously unseen test
cases and real diagnostic training cases. This ensures that MSRL can perform efficient multi-modal
task inference in real-world scenarios with WSI unimodality. (2) Fine-tuned GSL can capture
task-specific knowledge. GSL significantly separates the test cases into high-risk group (rows 41 to
51) and low-risk group (rows 1 to 10), which show high association with group 1 (columns 1 to 4)
and group 2 (columns 11 to 13) of the training cases. The average survival time of cases in Group 1 is
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only 18.10 months and it is 64.65 months in Group 2. This demonstrates that the fine-tuned GSL can
learn task-related diagnostic information among GSL and effectively promote precision oncology.

C DATASETS

Dataset: We evaluate the proposed MSRL framework on six TCGA cohorts during fine-tuning.
Specifically, we collect Bladder Urothelial Carcinoma (BLCA, n=359), Breast Invasive Carcinoma
(BRCA, n=680), Stomach Adenocarcinoma (STAD, n=318), Head and Neck Squamous Cell Carci-
noma (HNSC, n=392), and Colon and Rectum Adenocarcinoma (COADREAD, n=298) for survival
prediction. For precision diagnosis, we consider Non-Small Cell Lung Cancer (NSCLC) stag-
ing (n=893), Epidermal Growth Factor Receptor (EGFR) mutation status (n=627), BRCA staging
(n=944), and BRCA human epidermal growth factor receptor-2 (HER?2) status prediction (n=482,
subset of BRCA staging dataset). We used 8 datasets for fine-tuning, and every dataset was split into
a training-val dataset (containing 3,607 cases) and a testing dataset (containing 902 cases) with a
4:1 ratio, following a five-fold cross-validation strategy.. To ensure a sufficiently large pre-training
dataset, we compiled an additional 2,754 cases from the TCGA pan-cancer database, which is along
with the training-val dataset to form the pre-training dataset (containing 6,361 cases). In total, this
paper used 7,263 cases (6,361 + 902), of which the testing dataset had no overlap with either the
pre-training dataset or the training-val dataset. The model achieving the best performance on the
validation set is selected for reporting results on the test set.

Additionally, we collected two public datasets from the CPTAC project for external evaluation.
Specifically, CPTAC-HNSC dataset comprises WSI data and clinical survival information for 106
patients and CPTAC-BRCA dataset contains WSI data and diagnostic stage information for 111
patients. We ensured these datasets share no overlap with the TCGA project.

Histopathology image collection: All WSIs data come from 20x magnification hematoxylin
and eosin (H&E)-stained slides. We crop each slide into 256 x256-pixel patches and extract 1536-
dimensional features using the ViT-giant model pre-trained on GigaPath (Xu et al.|[2024). The WSI
representation of MSRL is the 768-dimensional [CLS] token of output of LongNet (Ding et al., 2023}
pretrained on GigaPath. Among the compared foundation models, both CHIEF and FEATHER use
ABMIL (IIse et al.| 2018) as their slide encoder, and TITAN adopts a ViT slide encoder. Notably, all
the non foundation model methods utilize the same patch encoder as GigaPath.

Genomics data collection: We collect raw genomics data for each corresponding case from TCGA.
Following the Hallmarks resource in the Human Molecular Signatures Database (MSigDB) (Liberzon
et al., 20155 Subramanian et al., [2005), we select 4241 genes and divide them into 50 groups and then
apply log-normalization. Each group is encoded into a 768-dimensional feature with an independent
SNN network (Klambauer et al.,[2017).

D EXPERIMENTS

D.1 SURVIVAL PREDICTION:

Survival prediction is to estimate cases’ time-to-event outcomes. Following previous research
(Zadeh & Schmid, [2020), this task is defined by two components: censorship status and event time.
Censorship status denoted as ¢, where ¢ = 0 indicates the case’s death was observed, and ¢ = 1
indicates the cases’ last known follow-up. Event time denoted as ¢, representing the time between
diagnosis and observed death if ¢ = 0, or between diagnosis and last follow-up, i.e. survival time,
if ¢ = 1. We estimate event time by dividing the time into non-overlapping intervals (t;_1,t;) for
j € [1,...,n], based on quartiles of survival times (¢ = 1), and denote these intervals as y;, rather
than predicting the exact event time ¢ directly. This converts the problem into a classification task
with censorship. Then, each case is represented by (Z, y;, ¢), where Z is the representation of the
case. We design a classifier where each output logit §j; predicted by the network corresponds to a
specific time interval. Based on this, we define the discrete hazard function as

fhazard(yj|Z) = U(:‘)j)a
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where o denotes the sigmoid activation function. fhasard(y;|Z) gives the probability that the patient
dies within the time interval (t;_1,¢;). We then introduce the discrete survival function as

J
fsurv(yj|Z) = H (1 - fhazard(yk|Z)) >
k=1
which represents the probability that the patient survives up to the time interval (¢,_1,t;). Afterwards,
we construct the negative log-likelihood (NLL) survival loss (Zadeh & Schmid) 2020) to optimize
this task, as formulated as follows

Lnen (29,90, 0)2,) = ZDj Dlog (fours (4" 129)) ®)
+ (1= c)log (fsurv ( 1| z0 >)) )
+(1—c")log (fhazard (y AL )) (10)

where, Np represents the total number of cases in the dataset. The loss ensures that the model assigns
high survival probabilities to patients alive at last follow-up, correctly models survival up to death
time for deceased patients, and accurately predicts the time of death when observed. A detailed
mathematical explanation is provided in (Zadeh & Schmid, 2020). We finally take the negative sum
of all logits to predict a patient-level risk score, which is used to categorize patients into different risk
groups and to stratify them accordingly.

C-Index: The Concordance Index (C-Index) is a metric used to evaluate the consistency between
predicted ordered sequences and true sequences. In survival prediction, C-Index measures how
accurately the model ranks cases according to their survival times. The C-Index ranges from 0.5 to 1,
where 0.5 indicates random prediction and 1 indicates perfect prediction. Specifically, the C-Index
calculates the proportion of all comparable case pairs for which the predicted order matches the
ground-truth order of survival times. For a pair of cases (case;, case;), if case;’s survival time is
longer than case;’s and the model predicts a lower risk for case; than for patient case;, this pair is
called a “concordant pair.” The formulation of the C-Index is as follows

c-index = ZZIt <t;)(1 —¢j),

11]1

where I(-) is the indicator function, which takes the value 1 if the argument is true, and 0 otherwise.

D.2 EXPERIMENTAL IMPLEMENTATIONS:

In the pre-training, a graph with 6,361 nodes was constructed, where each node contains a 768-
dimensional WSI feature and a 768-dimensional genomic feature. The Graph Structure Learner
employed a 2-layer architecture, and the Graph Convolutional Network (GCN) consisted of 3 layers
to output final node embeddings of 256 dimensions. The model was trained using the Adam optimizer
with an initial learning rate of 1e-4 for 400 epochs. During fine-tuning, the AdamW optimizer was
applied for 50 epochs with a 10-epoch warmup. The learning rate followed a cosine annealing
schedule with a maximum learning rate of le-5 and a minimum of le-7. To validate the generalization
of MSRL and baseline methods on out-of-distribution cases, we directly applied models trained
on TCGA-HNSC and TCGA-BRCA to the CPTAC-HNSC and CPTAC-BRCA datasets for testing,
respectively. All implementations were carried out in Python 3.9, PyTorch 2.0 and CUDA 12.4 on a
computer cluster with six Nvidia GeForce 4090 GPUs.

Post-processing of GSL: The post-processing aims to refine the sketched adjacency matrix S into
a sparse, non-negative, symmetric, and normalized adjacency matrix A”. The three steps are as
follows:

1. Sparsification.The obtained similarity matrix S is typically dense and requires sparsification.
For each node, we employ a KNN-based method and retain the top K connected edges

and set the remaining connections to zero, specifically as follows: Sq(,;P) = ¢sp(Ss5) =
Sijif Sij € topk(S;) else 0 ;
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2. Symmetrization and Activation. To ensure bidirectional connections between nodes
and guarantee non-negative edge values, we perform the following additional process-

. 0q (8P )40, (8P)T
mg: S(Sym) = qsym (Qact (S(Sp))) = q( ) 3 q( )
function;

, where o(-) is the activation

3. Normalization. To ensure the edge weights fall within the range [0, 1], the final processing
step is as follows: A™ = gnorm (S(Sym)) = (D(Sym))_§ S(sym) (D(Sym))_i, where
DY) s the degree matrix of S(5¥).

E SUPPLEMENTARY RESULTS AND DISCUSSION

E.1 GENERALIZATION ANALYSIS

Our framework presents no additional difficulty in generalization. Genomic data from out-of-
distribution (OOD) cases often suffers from complex sources and various protocols. Direct inclusion
of such data can cause significant batch effects. In contrast, our method utilizes solely WSI unimodal
inference. Its generalization only rely on the representation capability of the slide encoder. Therefore,
the generalization capability of our method when facing out-of-distribution data is consistent with
other WSI encoder-based inference frameworks and does not introduce additional challenges.

Our cross-modal retrieval strategy even boosts the generalization ability. Existing uni-modal
inference methods typically focus on reconstructing raw genomic data for individual cases, where
the reconstruction performance is also affected by OOD issues. In contrast, MSRL models genomic
correlations between cases within an aligned representation space and then use the real source-domain
genomic representation for multi-modal prediction. This strategy naturally avoids the multi-source
heterogeneity inherent in raw genomic data during training. Therefore, it ensures better generalization
than reconstruction-based methods during the inference phase.

We constructed new external datasets to fully validate the generalization of MSRL as shown in
Table [AT]MSRL consistently achieved the best performance on both external datasets. Notably,
MSRLy secured the top results even under conditions limited to WSI unimodal training. In scenarios
addressing missing inference modalities, existing methods like G-HANet and LD-CAVE suffered
performance drops exceeding 5% and 7% on CPTAC-HNSC and CPTAC-BRCA, respectively. In
contrast, MSRL showed minimal declines of only 1.02% and 1.62%, outperforming most foundation
models. These results demonstrate the superior generalization of MSRL. The performance of MSRL
significantly decreases after removing the pre-training stage. Its generalization capability is also
greatly diminished, where the C-index drops over 6%. This practically validates the necessity of
our pre-training approach. As DisPro’s prompts are specifically designed for survival prediction, we
therefore excluded it from the cancer staging tasks.

Table Al: The generalization analysis results, where CPTAC-HNSC and CPTAC-BRCA are external
test sets and A denotes performance declines.

Method | Modality | TCGA-HNSC C-index CPTAC-HNSC C-index A | TCGA-BRCA AUC  CPTAC-BRCA AUC A

FEATHER h. 0.5277 4 0.0302 0.5197 4 0.0214 —0.80% 0.627 £ 0.0085 0.5782 4+ 0.0142 —4.88%
CHIEF h. 0.5338 4 0.0388 0.5246 4 0.0301 —0.92% 0.602 + 0.0169 0.5608 4 0.0198 —4.12%
GigaPath h 0.5580 % 0.0330 0.5278 4 0.0545 —3.02% 0.625 £ 0.0074 0.5824 4+ 0.0457 —4.26%
TITAN h. 0.5652 4 0.0381 0.5341 4 0.0610 -3.11% 0.648 + 0.0044 0.6094 + 0.0541 —3.86%
MSRLy ‘ h. ‘ 0.5676 + 0.0289 0.5461 &+ 0.0125 —2.15% ‘ 0.652 % 0.0095 0.6099 4 0.0401 —4.21%
G-HANet g.+h.—h. 0.5770 + 0.0278 0.5238 4 0.0786 —5.32% 0.632 £ 0.0263 0.5612 4 0.0634 —7.08%
LD-CVAE g+h.—h. 0.5960 =+ 0.0286 0.5418 4 0.0469 —5.42% 0.646 + 0.0309 0.5728 4 0.0309 —7.32%
DisPro g.+h.—h. 0.6053 £ 0.0610 0.5576 4 0.0692 —4.77% - - -

MSRL w/o Pre | g.+h.—h. 0.5988 4 0.0253 0.5364 & 0.0408 —6.24% 0.639 £ 0.0335 0.5856 + 0.0381 —5.34%
MSRL g+h.—h. 0.6182 + 0.0015 0.6080 +0.0118 —1.02% 0.664 + 0.0263 0.6478 + 0.0416 -1.62%

E.2 BUFFER ANALYSIS

Resource consumption: Graph-based inference does not lead to significant additional resource
consumption. We evaluated computational cost on 136 test WSIs of the BRCA dataset. We measured
the model FLOPs and average time required of each WSI for patch feature extraction, and WSI
encoding and task inference as shown in Table R2. Compared to other methods, our approach does
not introduce notable increases in inference time. To simulate large-scale datasets, we additionally
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increased the buffer size in multiples. The WSI inference time increased by only 0.607 seconds—Iess
than 2% of the patch feature extraction time, even with the 50X buffer size. Therefore, our method is
not a bottleneck in terms of time or resource consumption for practical applications.

Table A2: The results of resource consumption.

Model Patch Feature Extracting | WSI-level Encoding and Inference Total
Time FLOPs Time FLOPs Time FLOPs

CMTA 34.87s  4.68 x 10°G | 0.997s 9.78 x 10°G 35.867s ~ 4.68 x 10°G
SurvPath 34.87s  4.68 x 10°G | 0.439s 2.26 x 10°G 35309s ~ 4.68 x 10°G
G-HANet 34.87s  4.68x10°G | 0.415s 6.03 x 10°G 35.285s ~ 4.68 x 10° G
LD-CVAE 34.87s  4.68 x 10°G | 0.487s 2.65 x 102G 35.357s ~ 4.68 x 10°G
MSRL(buffer=434) 34.87s  4.68x10°G | 0.534s 1.78 x 10 G 35.404s ~ 4.68 x 10° G
MSRL(buffer=4340) | 34.87s 4.68 x 10°G | 0.542s 2.45 x 102G 344128 ~ 4.68 x 10°G
MSRL(buffer=8680) | 34.87s  4.68 x 10°G | 0.701s 3.97 x 102G 35.571s  ~ 4.68 x 10° G
MSRL(buffer=21700) | 34.87s  4.68 x 10°G | 1.141s 1.33 x 103G 36.011s =~ 4.69 x 10°G

Buffer size analysis: We additionally construct experiments assessing the impact of changing
buffer size on task performance as shown in Table[A3] Results indicate that a smaller buffer size
leads to weaker model performance. The performance reduction is more significant when the
number of training samples is limited. When the buffer size is zero (i.e., removing the buffer), the
model performance drops significantly. Furthermore, our approach constructs structural correlations
between the current case and historical cases. Consequently, removing the buffer leads to the loss
of functionality for both GSL and GCN. This demonstrates that introducing authentic data is key
to MSRL’s effective inference. It also shows that a sufficient data scale better assists the model in
learning missing genomic information.

Table A3: The ablation results of the buffer size on validation datasets.

Buffer size 100% 75% 50% 25% 0%

BLCA (N=357) 0.607 0.595 (-0.012) 0.589 (-0.018) 0.573 (-0.034) 0.533 (-0.074)
BRCA (N=680) 0.672  0.669 (-0.003) 0.664 (-0.008) 0.653 (-0.019) 0.591 (-0.081)
STAD (N=318) 0.729  0.713 (-0.016)  0.705 (-0.024)  0.691 (-0.038) 0.611 (-0.118)
HNSC (N=392) 0.622  0.615(-0.007) 0.611(-0.011) 0.602 (-0.020) 0.545 (-0.077)
COADREAD (N=298) 0.661  0.655 (-0.006)  0.640 (-0.021) 0.621 (-0.039)  0.557 (-0.104)

E.3 PARAMETER ANALYSIS:

Pre-training data settings: We have added experiments to evaluate the effectiveness of H-G
pairing and different scales of pre-training data. We constructed GSL models using 20%, 50%, and
80% of the pre-training data, and we also constructed a GSL using a fully pre-trained dataset with
random H-G pairings. Table [A4]presents the validation metrics of the pre-training models for five
survival prediction tasks under different settings. Based on these experiments, we draw the following
conclusions:

1. Using more pretraining data effectively improves model performance. The model perfor-
mance is optimal when using the full dataset, and the performance improvement from a
50% to an 80% data increase is significantly higher than the improvement from 20% to 50%.
This indicates that more data benefits the pretraining of GSL, which is consistent with the
scaling law.

2. The pairing of H-G data is essential for multimodal research. The model performance using
the fully pretraining dataset with random pairing is lower than that of the model pretraining
with 20% paired data, and in some cases, the results are close to random predictions (for
example, the c-index for HNSC and COADREAD was only 0.507 and 0.502, respectively).
Compared with the method of training with WSI data only, H-G random pairing will
introduce noise and reduce model performance.

Pre-training loss ablation studies: We have added the ablation study for the three loss components
used during pre-training, as shown in Table[A3] The results indicate that removing the individual
loss L ¢y leads to the most significant performance reduction. This is because L ¢, constrains the
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Table A4: The results on the validation set of the various data settings.

Data setting BLCA BRCA STAD HNSC COADREAD
random pairing pre-training data 0522 0534 0511 0.507 0.502
WSI only 0.574 0593 0582  0.536 0.524
20% pre-training data/1272 cases 0.615 0.688  0.609  0.551 0.533
50% pre-training data/3181 cases 0.627 0.694  0.613  0.556 0.541
80% pre-training data/5089 cases 0.647 0720 0.644  0.577 0.548
100% pre-training data/6361 cases  0.651  0.744  0.658  0.593 0.558

multi-modal representation of the cases, playing a vital role in integrating multi-modal information
for the downstream tasks. L;,+; is the key constraint for aligning the cross-modal representations of
the same case. L;,+- enhances the discriminative power of the individual modal data representations.
Removing any of these losses negatively impacts the downstream task performance.

Table AS: Ablation results of the pre-training losses on validation datasets.

Linter v v v v
Lintra v v v v
Fuse v v v v
BLCA 0.607 0.582 (10.025) 0.571 (10.036) 0.567 (10.040) 0.522 (10.085) 0.514 (10.093) 0.556 (10.051)
BRCA 0.672 0.640 (10.032) 0.646 (10.026) 0.636 (10.036) 0.538 (10.134) 0.524 (10.148) 0.563 (10.109)
STAD 0.729 0.656 (10.073) 0.670 (10.059) 0.646 (10.083) 0.560 (10.169) 0.557 (10.172) 0.585 (10.144)
HNSC 0.622 0.603 (10.019) 0.594 (10.028) 0.569 (10.053) 0.530 (10.092) 0.536 (10.086) 0.559 (10.063)
COADREAD 0.661 0.621 (10.040) 0.629 (10.032) 0.613 (10.048) 0.545 (10.116) 0.543 (40.118) 0.573 (10.088)

K value ablation studies: Table shows the validation metrics of the prognostic tasks for
different values of K. The results indicate that the model is relatively robust to variations in K (with
metric fluctuations within 0.02). Overall, as the value of K increases, the model can gather more
relevant case support, which leads to higher performance. However, the computational complexity
also increases accordingly. Considering the balance between performance and resource consumption,
we ultimately selected K=12 for all experiments.

Table A6: The results on the validation set of the various K values in GSL.

K BLCA BRCA STAD HNSC COADREAD

4 0.633  0.728  0.639  0.579 0.546
8 0.648 0.734  0.644 0.582 0.551
12 0.651 0.744  0.658 0.593 0.558
16 0.654 0.747 0.659  0.602 0.562

E.4 MISSING MODALITY TRAINING

We additionally constructed experiments detailing different genomic data missing rates. We did
not design the method to handle modal omission during the initial stage. Therefore, to conduct
this experiment, we adjusted the training strategy for the Target branch. If a case lacks genomic
data, the Target branch does not participate in training; only the WSI-input Online branch is trained.
The specific experimental results are shown in Table[A7] Even when using only partially complete
data, MSRL still surpasses all uni-modal training methods. Furthermore, MSRL remains superior to
existing methods for uni-modal inference, even at a 30% missing rate. This demonstrates that MSRL
can fully utilize existing multi-modal data to learn comprehensive and robust representations. This
greatly enhances WSI’s diagnostic value and data efficiency during the inference phase.

E.5 THE KM ANALYSIS OF SURVIVAL PREDICTION

To further assess the effectiveness of MSRL in survival prediction, we divide all patients into low-risk
and high-risk groups based on the median of the predicted risk scores from MSRL. Then, we apply
Kaplan-Meier analysis to visualize the survival outcomes of both groups, as shown in Figure [A3]
Additionally, we conduct a Log-rank test to evaluate the statistical significance between the low-risk
group (blue) and the high-risk group (red). A p-value of 0.05 or less is considered statistically
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Table A7: The results of different genomic data missing rates.

Method Modality BLCA BRCA STAD HNSC COADREAD  Overall
G-HANet g+h.—h. 0.5806+0.0149 0.6418+0.0138 0.6782+0.0489 0.5770£0.0278 0.6216+£0.0184  0.6246
LD-CVAE g+h.—h.  0.5954+0.0104 0.6430£0.0146  0.6938+0.0495 0.5960£0.0286 0.6280+0.0211  0.6313
DisPro g+h.—h.  0.6058+0.0269 0.6734+0.0352 0.6803+0.0424 0.6053+0.0610 0.6418+0.0342  0.6414

MSRL missing 60% g.+h.—h.  0.6008+0.0125 0.6508+0.0577 0.6918+0.0699 0.5896+0.0570 0.6186+0.0401  0.6303
MSRL missing 30%  g.+h.—h.  0.6132+0.0668 0.6752+0.0809 0.7034+0.0830 0.6026+0.0505 0.6448+0.0587  0.6478
MSRL missing 0%  g.+h.—h. 0.6192+0.0184 0.6808+0.0277 0.7050+0.0523  0.6182+0.0015 0.6554+0.0166  0.6558

significant. The results show that p-values of all datasets are much smaller than 0.05, indicating
significant differences between the groups.
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Figure A3: The curves of Kaplan-Meier analysis for all survival prediction datasets and the p-value
of the Log-rank test.
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F LIMITATIONS OF MSRL

There are three limitations of the current work: (1) Jointly optimizing node representations and graph
structures easily leads to local optima, which makes it difficult to achieve task-optimal solutions.
We proposed that pre-training and fine-tuning partially mitigate this challenge, but we still need to
find a more stable optimization strategy during fine-tuning. (2) We have not yet introduced more
structured textual information during MSRL’s pre-training. Incorporating clinical reports could help
MSRL learn more robust structural representations in multi-modal task inference. (3) We have not
yet conducted a thorough analysis of the distribution of medical centers, ethnic composition, and
regional characteristics in the TCGA dataset, nor have we examined their potential impact on the
applicability of our method.
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