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ABSTRACT

Fusing histopathology images and genomics data with deep learning has signifi-
cantly advanced precision oncology. However, genomics data is often missing due
to its high acquisition cost and complexity in real-world clinical scenarios. Existing
solutions aim to reconstruct genomics data from histopathology images. Neverthe-
less, these methods typically relied only on individual cases and overlooked the
potential relationships among cases. Additionally, they failed to take advantage of
the authentic genomics data of diagnostically related cases that are accessible from
training for inference. In this work, we propose a novel Multi-modal Structural
Representation Learning (MSRL) framework for data-efficient precision oncology.
We pre-train a histopathology-genomics multi-modal representation graph adopting
Graph Structure Learning (GSL) to construct inter-case relevance based on the
data inherently. During the fine-tuning stage, we dynamically capture structural
relevance between the training cases and the acquired authentic cases for precise
prediction. MSRL leverages prior inter-case associations and authentic genomics
data from diagnosed cases based on the graph, which contributes to effective infer-
ence based on the single histopathology image modality. We evaluated MSRL on
public TCGA datasets with 7,263 cases across various tasks, including survival pre-
diction, cancer grading, and gene mutation prediction. The results demonstrate that
MSRL significantly outperforms existing missing-genomics generation approaches
with improvements of 2.45% to 3.12% in C-Index on survival prediction tasks and
achieves comparable performance to multi-modal fusion methods.

1 INTRODUCTION

Histopathology whole slide images (WSIs) describe detailed visual information of morphology
features, cellular organization, and phenotypic characteristics, which are considered the gold standard
for the assessment of cancer (Shmatko et al., 2022; Dimitriou et al., 2019; Hegde et al., 2019; Shamai
et al., 2022; Kather et al., 2019). Genomics data provide quantitative molecular characteristics of
the microenvironment, which is significant for precision medicine and targeted therapies (Zhang
et al., 2021; Eraslan et al., 2019; Zhou et al., 2019; Jaume et al., 2024a; Kopp et al., 2020; Li
et al., 2022b). Recently, an increasing number of studies on histopathology-genomics multi-modal
learning have shown superior capabilities in precision oncology by providing a more personalized
representation that comprehensively reflects the case’s status (Chen et al., 2020a; 2021; Zhou &
Chen, 2023; Jaume et al., 2024b). Fusing morphological information from histology and molecular
information from genomics data is the prevalent paradigm of multi-modal algorithms (Vale-Silva
& Rohr, 2021; Mobadersany et al., 2018; Weng et al., 2019) as shown in Figure 1(a). However,
the acquisition cost of genomics data is still very high, resulting in the lack of complete paired
histopathology-genomics data in many practical inferences.

To address this challenge, some researchers focus on utilizing the histopathology data to reconstruct
the missing genomics features and then apply multi-modal framework for prediction. These methods
typically follow two paradigms: (1) constructing auxiliary tasks during training to reconstruct existing
genomics data and encourage the model to build the associations between WSI and genomics features
through reconstruction loss (Wu et al., 2024; Wang et al., 2025) as shown in Figure 1(b); or (2)
adopting generative approaches that condition on histopathology data inputs to synthesize missing
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Figure 1: Differences between proposed MSRL and previous methods, where (a) shows multi-modal
fusion methods, (b) and (c) depict WSI-based genomics reconstruction methods, where dashed lines
indicate components used only during training and not involved in inference, and (d) presents our
proposed MSRL, which incorporates authentic genomics data from diagnosed cases to assist gene
reconstruction and inference.

genomics features (Zhou et al., 2025) as shown in Figure 1(c). These approaches partially address the
problem of missing the modality during inference. However, these methods suffer from the following
two limitations: (1) Ignoring potential relevance among cases. Reconstruction-based approaches
typically rely solely on the histopathology image of the individual case to predict genomics features
and focused on intra-case multi-modal alignment while overlooking crucial inter-case relevance for
cancer diagnosis. (2) Underutilization of available authentic genomics data. During inference, the
genomics modality is entirely synthesized by these methods, and they neglect the authentic genomics
data of diagnostically related cases that are accessible from training data. This limits the authenticity
and informativeness of the generated features.

In the paper, we propose a novel histopathology-genomics Multi-modal Structural Representation
Learning (MSRL) framework for data-efficient precision oncology. We adopt graph structure learning
to pre-train a multi-modal representation graph to construct inter-case relevance based on the data
inherently and enable dynamic graph construction for downstream tasks to achieve inference with
the single histopathology image modality. The data-driven graph pre-training captures relevance
among diagnostic cases. We introduce authentic data as auxiliary structural guidance to exploit
the information of genomics data in missing modality scenarios during inference. Furthermore, we
fine-tune the WSI encoder with the guidance of the multi-modal representation graph and enhance its
ability to capture fine-grained morphology characteristics for data-efficient prediction with the single
image modality. The main contributions of this work are summarized as follows:

1. We propose a novel Multi-modal Structural Representation Learning (MSRL) frame-
work that effectively addresses cancer diagnosis tasks in genomics data missing scenarios.
MSRL facilitates the reconstruction of missing genomics features by leveraging multi-modal
relevance among cases and jointly enhance the representation capability of the WSI encoder,
which significantly promotes data-efficient precision oncology.

2. We pre-train a multi-modal representation graph via self-supervised graph structure learning
on a large-scale pan-cancer histopathology–genomics dataset. The pre-trained graph captures
structural relevance among cases and is further utilized to guide dynamic graph construction
during downstream inference, which contributes to effective prediction with the single WSIs
modality. The framework leverages authentic genomics data as auxiliary supervision to
reconstruct the missing modality data for inference, effectively maximizing the utility of
available molecular information.

3. We evaluated our method on publicly available The Cancer Genome Atlas (TCGA) datasets
for survival prediction and four precision diagnosis tasks. Experimental results show that
our approach significantly outperforms existing methods designed for missing modality
scenarios, and achieves comparable performance with multi-modal fusion methods.

2 RELATED WORK

Fusion-based Multi-modal methods Multi-modal approaches that integrate WSIs with genomics
data offer a more comprehensive and objective representation for cancer diagnosis. Chen et al.
(2021) proposed the MCAT framework to learn how histology patches attend to genes for survival
prediction. Zhou & Chen (2023) utilized two parallel encoder-decoder structures to align WSI and
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genomics representations. Jaume et al. (2024b) tokenized genomics data and used a memory efficient
multi-modal Transformer to model interactions between pathway and histology patch tokens for
prognosis.

Multi-modal methods with missing modality Existing multi-modal fusion methods generally
rely on the assumption that complete histopathology–genomics data pairs are available. However,
acquiring genomics data is often costly and impractical, which results in missing modalities in real-
world scenarios. To address this limitation, recent studies have explored methods for reconstructing
paired genomics features from available histopathology images. One approach involves an auxiliary
task during training to reconstruct the missing genomics data. Wang et al. (2024; 2025) were the
first to propose using initialized prompts to replace missing genomics data to enable interaction
with histopathology features through the cross-attention module. The prompts reconstruct the
missing modality representation guided by available genomics data during training, and then these
learned prompts are subsequently applied for inference. Wu et al. (2024) introduced a proxy gene-
reconstruction branch to guide the WSI encoder to extract genomics-related features from image
modality. Zhou et al. (2025) proposed a conditional Latent Differentiation VAE (LD-VAE) to generate
the missing genomics data from WSIs. These methods rely on individual case data to reconstruct
genomics features, while overlooking inter-case relevance that could more effectively guide the
recovery of missing modality. Moreover, during inference, they failed to leverage the auxiliary
information of available genomics data, despite evidence (Shu et al., 2024) showing that existing
database knowledge can significantly enhance cancer diagnosis. As a result, current approaches
struggle to faithfully reconstruct high-density genomics information for effective inference.

3 METHODS

Our proposed framework consists of two stages: Multi-modal Structural Representation Pre-training
and Fine-tuning. In the first stage, as shown in Figure 2.(a), we curate the pan-cancer TCGA dataset
where each case is paired with both WSIs and genomics data. We encode each modality separately
to obtain respective embeddings, which serve as node representations to construct pathology and
genomics graphs. These graphs are then fed into multi-modal Graph Structure Learning (GSL)
modules. By maximizing both intra- and inter-modality mutual information, GSL is guided to learn
a structure that effectively captures latent case-level relevance while constructing a comprehensive
multi-modal representation graph. In the Fine-tuning stage, as shown in Figure 2.(b), we apply the
pre-trained GSL to dynamically construct graphs for the current cases in the mini-batch and previous
cases from the training buffer. This leverages inter-case relevance and utilizes available authentic
genomics data as auxiliary information for effective fine-tuning. Based on the above, we propose
the Multi-modal Structural Representation Learning (MSRL) that jointly learn multi-modal case
representations and the graph relevance among cases.

3.1 FORMULATION

Histopathology Representation For the k-th case, the WSI is denoted as Ik. After segmenting the
foreground tissue region, the WSI is cropped into mk non-overlapping patches, denoted as {pki }m

k

i=1.
We leverage a powerful pathology foundation model for patch-level feature extraction and WSI
encoder initialization. Specifically, the ViT-giant pretrained on GigaPath (Xu et al., 2024) is used
to extract patch features, denoted as Xk

I ∈ Rmk×dp , where dp is the dimension of the patch feature.
The Transformer-based LongNet (Ding et al., 2023) pretrained on GigaPath is used to initialize the
WSI encoder ϕH(·). The WSI representation is the [CLS] token of ϕH(Xk

I ) formulated as hk ∈ Rdh ,
where dh is the dimension of WSI feature.

Genomics Representation We collect bulk gene expression profiles for each case, denoted as V k,
where each profile contains thousands of expression values. Following prior work (Chen et al.,
2021; Zhou & Chen, 2023; Jaume et al., 2024b) and the biological functional grouping of genes, we
divide the genes into n groups (Liberzon et al., 2015). Each group is encoded using an independent
SNN network (Klambauer et al., 2017), denoted as Xk

G ∈ Rn×dg , where dg is the dimension of
each grouped gene feature. The genomics feature of the case is the mean pooling of these groups
formulated as gk ∈ Rdg , where dg = dh = d.
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Figure 2: The framework of proposed MSRL, where (a) illustrates the multi-modal structural repre-
sentation pre-training with TCGA pan-cancer dataset and (b) shows the fine-tuning to dynamically
construct graphs for current cases and cases from the buffer, which leverages inter-case relevance and
available authentic genomics data for inference.

Graph Representation We initialize three graphs: GH = {H,AH}, GG = {G,AG}, and
GF = {F,AF}, representing the histopathology graph, gene graph, and fused multi-modal graph,
respectively. Specifically, H = {hk}Kk=1 and the adjacency matrix AH ∈ [0, 1]K×K is obtained
by applying K-Nearest Neighbors (KNN) clustering on H, where K is the total number of patients.
The graphs GG and GF are constructed in the same manner. We fuse multi-modal features with a
simple strategy: fk = concatenate(gk,hk) ∈ R2d, in order to evaluate the contribution of case-level
structural representation learning rather than complex fusion techniques.

3.2 MULTI-MODAL STRUCTURAL REPRESENTATION PRE-TRAINING

Inspired by prior work (Liu et al., 2022b; Shen et al., 2024), we incorporate self-supervised Graph
Structure Learning (GSL) into multi-modal structural representation learning. Figure.2.(a) illustrates
that we introduce intra-modality, inter-modality, and fused-modality constraints to pre-train the
multi-modal structure learner with the pathology-genomic paired TCGA pan-cancer dataset.

The core component of GSL is a parameterized graph learner that adaptively infers the optimal
structure from the input node features (Li et al., 2023; Liu et al., 2022b; Li et al., 2022a; Zhao et al.,
2023; Shen et al., 2024), which takes the original graph G = {X ∈ RK×dx ,A} as input, where dx is
the dimension of node feature. In this paper, we employ an efficient attentive learner, which assumes
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that each node feature contributes to edge construction. The formulations are as follows

E(l) = h
(l)
W(E(l−1)) = σ([e

(l−1)
1 ⊙ ω(l), . . . , e

(l−1)
K ⊙ ω(l)]⊤), (1)

where E(l) is the output embeddings at the l-th layer, σ(·) is the nonlinear activation function, ⊙ is
Hadamard product, e(l−1)

i is the representation of the i-th node at the (l− 1)-th layer, and ω(l) ∈ Rdx

is the learnable weight vector at the l-th layer. The learner contains L layers.

When l = 0, the input E(0) corresponds to H, G, or F. We calculate the similarity matrix S =

E(L)(E(L))
⊤ ∈ RK×K based on the leaner output embeddings. The S is followed by a series of

post-processing steps (Liu et al., 2022b), including sparsification, symmetrization, activation, and
normalization, to produce the refined adjacency matrix Ar. The original node representations
remain unchanged during structure construction. The structure-refined graph is fed into a Graph
Convolutional Network (GCN) encoder (Kipf & Welling, 2016) to obtain refined node representations
formulated as Z = GCN(Ar,X) ∈ RK×df , where df is the dimension of the encoded graph node
feature.

Intra-modality GSL The diagnostic relevance among cases is inherently reflected within the identical
modality. We adopt a contrastive learning paradigm (Chen et al., 2020b; Tian et al., 2020) to uncover
intra-modality relevance among cases. For the pathology graph GH = {H,AH}, we input it into
the pathology-specific graph structure learner GSLH. Specifically, in Equation 1, we set E(0) = H,
e
(0)
k = hk, and dx = dh = d, resulting in the refined view of the pathology graph Gr

H = {H,Ar
H}.

Additionally, we apply random edge dropout and edge addition to generate an augmented view
Gaug
H = {H,Aaug

H }.Then, both views are passed through the pathology-specific graph encoder
GCNH, which is formulated as follows

Zr
H = GCNH(Ar

H,H) ∈ RK×df ,Zaug
H = GCNH(Aaug

H ,H) ∈ RK×df , (2)
We then adopt the InfoNCE loss (Liang et al., 2023) to maximize the lower bound of mutual
information between corresponding nodes across views while distinguishing them from others. The
loss is defined as follows

LInfoNCE(Z
r
H;Zaug

H ) = −
K∑

k=1

log
exp(sim(zrk, z

aug
k )/τ)∑K

i=1 exp(sim(zrk, z
aug
i )/τ)

, (3)

where sim(·, ·) denotes the cosine similarity between two representations, and τ is a temperature
hyperparameter. We accordingly obtain the structure construction for the genomics modality Zr

G and
Zaug

G , and the intra-modality structure learning loss function formulated as follows

Lintra =
1

2
(LInfoNCE(Z

r
H;Zaug

H ) + LInfoNCE(Z
r
G;Zaug

G )). (4)

Inter-modality GSL Histopathology and genomics describe a case’s status from different per-
spectives. We introduce inter-modality GSL to align their respective structures within a unified
representation space. The GCN encoders are applied to the refined graphs of each modality to
produce Zr

H and Zr
G. We then adopt a contrastive mechanism to pull the representations of the same

case across modalities closer, which is formulated as follows

Linter =
1

2
(LInfoNCE(Z

r
H;Zr

G) + LInfoNCE(Z
r
G;Zr

H)). (5)

Fused-modality GSL Multi-modal fusion representations provide a more comprehensive and objec-
tive description of case information. Therefore, we further introduce a structural constraint to ensure
that the fused representations preserve pathology-specific and genomics-specific characteristics. In
Equation 1, we set E(0) = F, e(0)k = fk, and dx = 2d, and obtain the refined fused-modality
graph Gr

F = {F,Ar
F}. Consequently, we obtain the graph-encoded representations of the fused

multi-modality data denoted as Zr
F = GCNF(A

r
F,F) ∈ RK×df . We then introduce constraints

from each individual modality to regularize the fused representations, which is formulated as follows

Lfused =
1

2
(LInfoNCE(Z

r
F;Z

r
H) + LInfoNCE(Z

r
F;Z

r
G)). (6)

Based on the above components, the overall pre-training loss is formulated as Lgsl = Lintra +
Linter + Lfused. The multi-perspective constraints facilitate training robust multi-modal graph
structure learners and construct an effective multi-modal structural representation graph.
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3.3 MULTI-MODAL STRUCTURAL REPRESENTATION FINE-TUNE AND INFERENCE

After pre-training, we obtain the WSI encoder ϕpre
H (·), the gene encoder ϕpre

G (·), graph structure
learners GSLpre

H,G,F and GCN encoders GCNpre
H,G,F for individual and fused modalities. We adopt

an online-target dual-branch fine-tuning strategy, as illustrated in Figure 2.(b), where we initialize
ϕH(·), GSL and GCN of online branch and ϕ̂H(·), ˆGSL and ˆGCN of target branch as ϕpre

H (·),
GSLpre

F and GCNpre
F , respectively, and initialize ϕ̂G(·) of target branch as ϕpre

G (·).

In the missing gene scenario, we define the training dataset as Dtrain = {Is, V s, ys}Ss=1, and the
testing dataset as Dtest = {It, yt}Tt=1, where S and T denote the number of training and test cases,
respectively, and y is the task label. A feature buffer is initialized using the available authentic
data, denoted as Dbuffer = {concatenate(ϕpre

G (Xs
G), ϕ

pre
H (Xs

I))}
S

s=1 = {fs}Ss=1. We fine-tune
the framework iteratively based on mini-batch data denoted as B ⊂ Dtrain.

The WSI is first processed through patching and feature extraction to obtain XI . Two mixup-based
augmentations (Chen & Lu, 2023) are then applied to generate an online view Xaug

I and a target view
X̂aug

I , which are fed into the corresponding branches, respectively.

Histopathology-based Genomics Inductive Learning The online branch takes only the WSI as
input. We utilize an SNN network (Klambauer et al., 2017) as an Inductor module to estimate a
genomics prompt that pairs with the WSI representation formulated as follows

PromptG = SNN(h) = SNN(ϕH(Xaug
I )), (7)

The fused feature is obtained by concatenating the genomics prompt with the WSI representation
denoted as f = concatenate(PromptG,h). The feature buffer updated by target branch denoted as
Dupdated

buffer is then fed into GSL to construct the refined graph structure, which is formulated as follows

Fbuffer = Readout(Dupdated
buffer , f) ∈ RS×2d, Ar = GSL(Fbuffer), (8)

The structural relevance among cases has been incorporated into the reconstruction process of
genomics data. Next, we integrate task-specific information into the reconstruction through a GCN,
which is formulated as follows

Ltask = L(Z[B], {ys}s∈B), where Z = GCN(Ar,Fbuffer) ∈ RS×df . (9)

Hierarchical Alignment We introduce hierarchical losses to jointly optimize multi-modal represen-
tation learning and structure learning. The target branch takes paired WSI-genomics data as input,
which is used exclusively during training and not involved in inference. The genomics representation
in this branch is obtained by encoding the authentic data and the fused features replace the corre-
sponding case features in the buffer to update it. The overall structure is consistent with that of the
online branch, which is formulated as follows

f̂ = concatenate(ϕ̂G(XG), ϕ̂H(X̂aug
I )), F̂buffer = Readout(Dupdated

buffer , f̂) ∈ RS×2d, (10)

Âr = ˆGSL(F̂buffer), Ẑ = ˆGCN(Âr, F̂buffer) ∈ RS×df , (11)

We apply alignment constraints to the hierarchical features to ensure the online branch can consistently
learn robust representations, which is formulated as follows

Lf align =
1

|B|
LInfoNCE(f , f̂), Lg align =

1

|B|
LInfoNCE(Z[B], Ẑ[B]), (12)

where F, F̂ ∈ R|B|×2d are batch data fused features of two branches, respectively. Moreover, we
adopt sparsity-balanced binary cross-entropy (BCE) loss (Duan et al., 2024) to align graph structures
between Ar and Âr. For the target graph, we assume there are c0 zero and c1 non-zero elements in
Âr, where c0 ≫ c1. To balance the loss between zeros and non-zeros, we apply scaling factors on
each element loss as follows

Ls align = BCE(Ar, Âr) = α0

c0∑
i=1

L0
i + α1

c1∑
j=1

L1
j , α0 =

c0 + c1
2c0

, α1 =
c0 + c1
2c1

, (13)
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where L0 and L1 denote the loss calculated for zero and non-zero elements in Âr. The joint loss
calculated in the fine-tune stage is formulated as Lfine tune = Ltask+Lf align+Lg align+Ls align.
The loss function is used exclusively to update the online branch, while the target branch is updated
using an EMA (He et al., 2020) strategy to prevent representation collapse.

Inference and Prediction We apply the online branch for task inference, where the trained Inductor
is capable of estimating the missing genomics data. The integration of authentic genomics data from
the training set assists in the reconstruction, which facilitates data-efficient inference based on the
single WSI modality.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets: We collect and curate n=7,263 cases with WSI-gene pairs from the TCGA pan-cancer
dataset containing 32 cancer subtypes across 12 primary tumor sites. We construct a pre-training
dataset including 6,361 cases without any diagnostic information for MSRL first-stage. For fine-
tuning, we evaluate the proposed MSRL framework on six TCGA cohorts. Details of fine-tuning
datasets and prep-rocessing of data are provided in the Appendix C.

Experimental Settings: All test data are excluded from the first-stage pre-training. We implement
two model variants: MSRLH excludes genomics data during fine-tuning, with no genomics input to
the target branch, no Inductor in the online branch, and the buffer contains WSI embeddings rather
than fused feature. MSRLmulti incorporates authentic genomics data in the online branch and replaces
the Inductor with the pre-trained ϕpre

G (·).

Table 1: The C-Index (mean ± std) on five survival prediction tasks, where “h.” and “g.” indicate
rely on WSI and genomics, respectively. The cyan background represents methods trained with
multi-modality data but inference with WSI. The best, second-best overall, and the best in cyan
background results are highlighted in bold red, underlined bold, and bold, respectively.(†:p-value
<0.05;‡:p-value <0.01)

Model Modality BLCA (N=357) BRCA (N=680) STAD (N=318) HNSC (N=392) COADREAD (N=298) Overall

SNN g. 0.5588 ± 0.0314‡ 0.5816 ± 0.0396‡ 0.5784 ± 0.0409‡ 0.5456 ± 0.0585‡ 0.5896 ± 0.0512‡ 0.5708

CLAM(Lu et al., 2021) h. 0.5304 ± 0.0178‡ 0.5286 ± 0.0746‡ 0.5482 ± 0.0421‡ 0.5160 ± 0.0331‡ 0.5740 ± 0.0308‡ 0.5394
SetMIL(Zhao et al., 2022) h. 0.5351 ± 0.0742‡ 0.5692 ± 0.0323‡ 0.5404 ± 0.0511‡ 0.5280 ± 0.0573‡ 0.5814 ± 0.0717‡ 0.5508
WiKG (Li et al., 2024) h. 0.5531 ± 0.0204‡ 0.5827 ± 0.0983‡ 0.5617 ± 0.0983‡ 0.5303 ± 0.0354‡ 0.5904 ± 0.0517‡ 0.5636
TransMIL(Shao et al., 2021) h. 0.5632 ± 0.0273‡ 0.5372 ± 0.0293‡ 0.5762 ± 0.0464‡ 0.5570 ± 0.0276‡ 0.6164 ± 0.0977‡ 0.5686
GigaPath(Xu et al., 2024) h. 0.5656 ± 0.0291‡ 0.6282 ± 0.0191‡ 0.6176 ± 0.0346‡ 0.5580 ± 0.0330‡ 0.6082 ± 0.0180‡ 0.5954
PANTHER(Song et al., 2024) h. 0.5712 ± 0.0541‡ 0.6208 ± 0.0997‡ 0.6219 ± 0.0598‡ 0.5594 ± 0.0550‡ 0.6101 ± 0.0500‡ 0.5967
MSRLH h. 0.5774 ± 0.0221‡ 0.6398 ± 0.0251‡ 0.6626 ± 0.0427‡ 0.5676 ± 0.0289‡ 0.6182 ± 0.0174‡ 0.6131

MCAT(Chen et al., 2021) g.+h. 0.6038 ± 0.0130‡ 0.6654 ± 0.0182‡ 0.7064 ± 0.0262‡ 0.6164 ± 0.0536‡ 0.6358 ± 0.0684‡ 0.6455
CMTA(Zhou & Chen, 2023) g.+h. 0.6110 ± 0.0098‡ 0.6708 ± 0.0323‡ 0.7110 ± 0.0090‡ 0.6214 ± 0.0470‡ 0.6580 ± 0.0177‡ 0.6547
LD-CVAEmulti (Zhou et al., 2025) g.+h. 0.6210 ± 0.0131‡ 0.6712 ± 0.0199‡ 0.7201 ± 0.0395‡ 0.6302 ± 0.0303‡ 0.6602 ± 0.0224‡ 0.6605
SurvPath (Jaume et al., 2024b) g.+h. 0.6288 ± 0.0184‡ 0.6866 ± 0.0209‡ 0.7194 ± 0.0524‡ 0.6328 ± 0.0256‡ 0.6712 ± 0.0150‡ 0.6683
MSRLmulti g.+h. 0.6368 ± 0.0327† 0.7012 ± 0.0302‡ 0.7236 ± 0.0411† 0.6456 ± 0.0263† 0.6896 ± 0.0301† 0.6794

G-HANet (Wang et al., 2025) g.+h.→h. 0.5806 ± 0.0149‡ 0.6418 ± 0.0138‡ 0.6782 ± 0.0489‡ 0.5770 ± 0.0278‡ 0.6216 ± 0.0184‡ 0.6246
LD-CVAE (Zhou et al., 2025) g.+h.→h. 0.5954 ± 0.0104‡ 0.6430 ± 0.0146‡ 0.6938 ± 0.0495‡ 0.5960 ± 0.0286‡ 0.6280 ± 0.0211‡ 0.6313
MSRL g.+h.→h. 0.6192 ± 0.0184 0.6808 ± 0.0277 0.7050 ± 0.0523 0.6182 ± 0.0015 0.6554 ± 0.0166 0.6558

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

4.2.1 SURVIVAL PREDICTION

Survival prediction aims to estimate the time-to-event outcomes for patients (Zadeh & Schmid,
2020; Jaume et al., 2024b). We use the concordance index (C-Index) as the evaluation metric. The
formulation of survival prediction and the calculation of the C-Index are provided in the Appendix D.
Table 1 presents the experimental results of the proposed MSRL compared with several state-of-the-art
methods.

MSRL with WSI-only inference substantially outperforms existing unimodal WSI methods. In
particular, it achieves a 5.91% improvement in C-index over Panther, the state-of-the-art unimodal
WSI method. These results demonstrate that MSRL can further enhance the diagnostic utility of WSI
in real-world scenarios.
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MSRL addresses the challenge of missing genomics data during inference more effectively than
existing methods. Reconstruction-based methods achieve significantly better inference performance
than all unimodal approaches, which effectively address the challenge of missing genomics data
for inference. G-HANet performed differential analysis on the original genomic sequences and
then reconstructed the remaining sequences during training. However, the heterogeneity among test
cases results in significant biases in the reconstructed genomic data. The Variational Autoencoder
of LD-CVAE struggled to fit the low-rank data distribution where the sample size is much smaller
than the feature dimension (d = 768), resulting in significant noise during sampling in inference.
These shortcomings result in G-HANet and LD-CVAE falling behind MCAT (Chen et al., 2021)
by 2.09% and 1.42% in C-index. MSRL avoids the rough situation that LD-VAE is stuck in and
employs structure-guided reconstruction based on authentic original genomic data, which contribute
to improvements in by 3.12% and 2.45% compared to G-HANet and LD-CVAE, respectively.

Compared with multi-modal fusion methods, MSRL outperforms MCAT and CMTA by 1.03%
and 0.11%, respectively. MCAT enhances WSI representations with genomic data unidirectionally,
ignoring WSI’s impact on genomic features. CMTA aligns WSI and genomic representations, but
encodes genomic data using a WSI-specific module (Shao et al., 2021) that disrupts the sequence
structure. MSRL’s inter-modality constraint and genomic-specific encoding address these issues,
which contribute to performance comparable to advanced multi-modal fusion methods, and enable
data-efficient prediction using only the single image modality.

MSRLmulti achieves the optimal performance and outperforms the second-best method by 1.11% in
C-Index. This demonstrates that the multi-modal structural representation graph introduced by MSRL
effectively enhances the integration of WSI and genomic features for survival prediction.

Table 2: The performance on four precision diagnosis tasks, where a cyan background represents
methods trained with multi-modality data but inference with WSI, and the others are WSI uni-
modal methods. The best and second-best results are highlighted in bold red and underlined bold,
respectively.(†:p-value <0.05;‡:p-value <0.01)

Model BRCA staging (n=944) NSCLC staging (n=893) EGFR mutation (n=627) HER2 status (n=482)
AUC F1 score AUC F1 score AUC F1 score AUC F1 score

CLAM (Lu et al., 2021) 0.577 ± 0.0308‡ 0.535 ± 0.0219‡ 0.590 ± 0.0138‡ 0.557 ± 0.0187‡ 0.765 ± 0.0263‡ 0.702 ± 0.0187‡ 0.628 ± 0.0172‡ 0.500 ± 0.0273‡

SetMIL (Zhao et al., 2022) 0.580 ± 0.0274‡ 0.542 ± 0.0377‡ 0.597 ± 0.0204‡ 0.563 ± 0.0041‡ 0.779 ± 0.0199‡ 0.705 ± 0.0242‡ 0.667 ± 0.0148‡ 0.507 ± 0.0181‡

TransMIL (Shao et al., 2021) 0.609 ± 0.0203‡ 0.547 ± 0.0140‡ 0.619 ± 0.0182‡ 0.572 ± 0.0258‡ 0.800 ± 0.0286‡ 0.712 ± 0.0252‡ 0.674 ± 0.0295‡ 0.512 ± 0.0382‡

DSMIL (Li et al., 2021) 0.600 ± 0.0097‡ 0.563 ± 0.0374‡ 0.627 ± 0.0123‡ 0.575 ± 0.0274‡ 0.813 ± 0.0122‡ 0.726 ± 0.0353‡ 0.681 ± 0.0470‡ 0.514 ± 0.0245‡

WiKG (Li et al., 2024) 0.619 ± 0.0182‡ 0.567 ± 0.0249‡ 0.640 ± 0.0204‡ 0.587 ± 0.0088‡ 0.814 ± 0.0081‡ 0.733 ± 0.0197‡ 0.690 ± 0.0150‡ 0.515 ± 0.0426‡

GigaPath (Xu et al., 2024) 0.625 ± 0.0074‡ 0.570 ± 0.0214‡ 0.645 ± 0.0180‡ 0.590 ± 0.0188‡ 0.817 ± 0.0313‡ 0.743 ± 0.0088‡ 0.691 ± 0.0186‡ 0.537 ± 0.0155‡

PANTHER (Song et al., 2024) 0.643 ± 0.0124‡ 0.574 ± 0.0272‡ 0.648 ± 0.0340‡ 0.611 ± 0.0282‡ 0.820 ± 0.0154‡ 0.749 ± 0.0191‡ 0.698 ± 0.0386‡ 0.541 ± 0.0312‡

MSRLH 0.652 ± 0.0095† 0.586 ± 0.0271† 0.655 ± 0.0133† 0.625 ± 0.0186† 0.826 ± 0.0200‡ 0.758 ± 0.0173‡ 0.704 ± 0.0569‡ 0.550 ± 0.0372‡

G-HANet (Wang et al., 2025) 0.632 ± 0.0263‡ 0.572 ± 0.0108‡ 0.634 ± 0.0416‡ 0.614 ± 0.0410‡ 0.830 ± 0.0181‡ 0.762 ± 0.0150‡ 0.715 ± 0.0452‡ 0.576 ± 0.0423‡

LD-CVAE (Zhou et al., 2025) 0.646 ± 0.0309‡ 0.582 ± 0.0231‡ 0.650 ± 0.0264‡ 0.619 ± 0.0279‡ 0.836 ± 0.0215‡ 0.765 ± 0.0177‡ 0.717 ± 0.0254‡ 0.587 ± 0.0295‡

MSRL 0.664 ± 0.0263 0.593 ± 0.0277 0.661 ± 0.0102 0.638 ± 0.0108 0.842 ± 0.0206 0.770 ± 0.0165 0.730 ± 0.0223 0.606 ± 0.0274

4.2.2 PRECISION DIAGNOSIS

We conduct four precision diagnosis tasks on two cancer staging datasets and two molecular prediction
dataset. The experimental results shown in Table 2 demonstrate that the proposed MSRL and its
variant MSRLH achieve the highest performance across all tasks. Specifically, MSRL outperforms
the second-best LD-CVAE in the AUC/F1 scores for the four tasks by 1.8%/1.1%, 1.1%/1.9%,
0.6%/0.5%, and 1.3%/1.9%, respectively.

Degradation of WSI encoder capabilities during gene reconstruction. The diagnostic criteria of
cancer staging relies on morphological characteristics, which makes it mainly dependent on WSIs.
In the two cancer staging tasks, G-HANet is 1.1% lower than the WSI method, PANTHER, in the
AUC. Moreover, LD-CVAE introducing genomics data during training, fails to achieve a significant
performance improvement. This indicates that existing gene reconstruction methods compromise the
WSI encoder’s representation ability due to noisy high-dimensional genomics data being introduced
during training the WSI encoder from scratch, resulting in bias in morphological feature learning.

MSRL effectively enhances WSI encoder capabilities. GigaPath is the baseline WSI encoder in our
method. The WSI unimodal MSRLH improves F1 scores by 1.6%, 3.5%, 1.5%, and 1.3% across four
tasks compared to the baseline and outperforms existing missing modality methods in cancer staging
with MSRL pre-training. Introducing genomics data further improves MSRL performance, which
shows that MSRL pre-training effectively leverages the structural information of cases to enhance
the WSI encoder representation. Authentic genomics data guidance constructs effective case-level
relevance and further strengthens the WSI encoder.
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5 MODEL ANALYSIS

5.1 ABLATION ANALYSIS

Table 3 presents MSRL structure ablation results on survival prediction. In particular, KNN (co-
sine) and KNN (Euclidean) correspond to adjacency matrices that are statically constructed using
cosine similarity and Euclidean distance, respectively, instead of being learned by the graph learner.
MSRLonline buffer updates the buffer with online branch features rather than target branch features, and
MSRLrandom GSL denotes a variant where the GSL is randomly initialized without pre-training.

MSRL outperforms MSRLrandom GSL across all datasets, which demonstrates the effectiveness of
the pre-training. Moreover, MSRLrandom GSL performs better than both KNN-based methods, which
suggests that GSL captures implicit and comprehensive diagnostic relevance, not only similarity as
represented by KNN. The performance drop in MSRLonline buffer demonstrates the effectiveness of
introducing authentic data from the target branch to construct relevance during inference.

Table 3: The results of the structure ablation on five survival prediction datasets.(†:p-value <0.05;‡:p-
value <0.01)

Model BLCA (N=357) BRCA (N=680) STAD (N=318) HNSC (N=392) COADREAD (N=298) Overall

KNN (Euclidean) 0.5692 ± 0.0293‡ 0.6283 ± 0.0211‡ 0.6326 ± 0.0361‡ 0.5626 ± 0.0306‡ 0.6117 ± 0.0118‡ 0.6009( ↓ 0.0549)
KNN (cosin) 0.5774 ± 0.0234‡ 0.6371 ± 0.0257‡ 0.6414 ± 0.0411‡ 0.5681 ± 0.0313‡ 0.6188 ± 0.0141‡ 0.6086( ↓ 0.0472)
MSRLrandom GSL 0.5984 ± 0.0216† 0.6694 ± 0.0331‡ 0.6812 ± 0.0320‡ 0.5988 ± 0.0253† 0.6368 ± 0.0156‡ 0.6369( ↓ 0.0189)
MSRLonline buffer 0.6094 ± 0.0222† 0.6716 ± 0.0307† 0.6948 ± 0.0492† 0.6036 ± 0.0275‡ 0.6462 ± 0.0149† 0.6451( ↓ 0.0107)
MSRL 0.6192 ± 0.0184 0.6808 ± 0.0277 0.7050 ± 0.0523 0.6182 ± 0.0015 0.6554 ± 0.0166 0.6558

Table 4 shows that removing the alignment of the graph structure Ls align has the largest impact
on model performance, which confirms that the effectiveness and authenticity of the structure are
fundamental to our framework. Notably, when the dataset size is relatively small, graph learning
without structural constraints tends to suffer from instability and fails to achieve convergence.
Additional results regarding parameter settings and resource consumption are presented in Appendix
E.

Table 4: Ablation results of the loss function during the fine-tuning on validation datasets.

Lf align ✓ ✓ ✓ ✓
Lg align ✓ ✓ ✓ ✓
Ls align ✓ ✓ ✓ ✓

BLCA(N=357) 0.607 0.588 (↓ 0.019) 0.599(↓ 0.008) 0.584(↓ 0.023) 0.570(↓ 0.037) 0.564(↓ 0.043) 0.573(↓ 0.034)
BRCA(N=680) 0.672 0.644(↓ 0.028) 0.661(↓ 0.011) 0.623(↓ 0.049) 0.583(↓ 0.089) 0.577(↓ 0.095) 0.592(↓ 0.080)
STAD(N=318) 0.729 0.694(↓ 0.035) 0.703(↓ 0.026) 0.687( ↓ 0.042) 0.657(↓ 0.072) Non-convergence 0.663(↓ 0.066)
HNSC(N=392) 0.622 0.609(↓ 0.013) 0.617(↓ 0.005) 0.598(↓ 0.024) 0.563(↓ 0.059) 0.558(↓ 0.064) 0.587(↓ 0.035)

COADREAD(N=298) 0.661 0.647(↓ 0.014) 0.656(↓ 0.006) 0.635(↓ 0.026) 0.558(↓ 0.103) Non-convergence 0.577(↓ 0.084)

5.2 VISUALIZATION ANALYSIS

We visualize the pre-trained multi-modal pan-cancer graph in Figure A1. The results demonstrate
that the self-supervised GSL not only captures the relevance among similar WSIs but also uncovers
potential RNA-related connections across heterogeneous WSIs. which contribute to constructing a
more comprehensive graph representation and enable efficient inference based on unimodal data. Fur-
thermore, Figure A2 confirms that leveraging authentic data facilitates a more effective construction
of inter-case relevance. A more detailed analysis is provided in Appendix B.

6 CONCLUSION

The proposed MSRL framework jointly optimizes representation learning and structure learning.
Extensive experiments on TCGA demonstrate that MSRL significantly outperforms existing methods
and effectively addresses the challenges of missing modality with case-level relevance construction.
However, there are some limitations in the current work as described in Appendix F. In future work,
we will further extend these analyses and refine the MSRL framework to broaden its applicability to
more diverse scenarios.
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7 REPRODUCIBILITY STATEMENT

We believe that the MSRL framework is not only effective for histopathology–genomics tasks but
also holds research value for other hierarchical multi-modal problems, such as broader domains
involving molecular structures and protein expression. To this end, we provide a detailed code demo
in the supplementary materials. Appendix C describes in detail the setup of the publicly available
TCGA dataset used in our study, and Appendix D specifies the task definitions, model parameters,
and the software/hardware environment adopted in the experiments. We hope these materials will
sufficiently ensure the reproducibility of our approach.
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APPENDIX

A THE STATEMENT OF LLMS USAGE

Here we explicitly declare that large language models (LLMs, e.g., the ChatGPT series) did not
participate in any of the preliminary research work, including but not limited to literature review,
idea formulation, method design, code implementation, experimental design, data processing, result
organization and analysis, or figure generation. Their involvement was limited solely to the final stage
of manuscript preparation, specifically for text polishing tasks such as grammar and spelling checks,
refinement of certain expressions, and minor LaTeX table formatting adjustments. Importantly, they
did not contribute to early-stage tasks such as drafting the article outline or designing the paragraph
structure.

B VISUALIZATION

B.1 THE PRE-TRAINED GRAPH OF PAN-CANCER DATASET

Figure A1: The graph of the pan-cancer dataset constructed by the pre-trained fused-modal GSL,
where each node denotes the WSI representation of a case and the coordinates are clustered by t-SNE
Van der Maaten & Hinton (2008), and each edge is weighted by the Pearson correlation coefficient
between RNA expression of cases denoted by the two nodes.

We cluster Van der Maaten & Hinton (2008) the WSI representations of TCGA pan-cancer dataset,
which are encoded by LongNet Ding et al. (2023) pre-trained by GigaPath Xu et al. (2024). Then,
the pre-trained fused-modal Graph Structure Learner (GSL) is utilized to construct the adjacency
matrix of the dataset. The completed graph of pre-trained pan-cancer dataset is shown as Figure A1,
where each edge is weighted by the pearson correlation coefficient between RNA expression of cases
denoted by the two nodes. The following observations are summarized:

The foundation model demonstrates effective generalization ability. Despite the absence of
the TCGA dataset in the pre-training dataset of GigaPath, it exhibits the capacity to discern the
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morphological characteristics of TCGA WSIs. The figure illustrates that the WSI representations of
the same site are aggregated into clusters.

The pre-trained GSL of proposed MSRL can efficiently capture the morphological relationships
of the cases. The fused-modal GSL constructs denser edges for nodes within the same cluster,
sparser edges for clusters between different sites, and also constructs denser associations for different
clusters of the same site that are far from each other. It indicates that the fused-GSL can effectively
capture the structural associations between cases in histo-morphology.

The pre-trained GSL of proposed MSRL can efficiently capture the structural associations
of cases at the molecular level. The correlation between gene expression levels within a given
cluster is high, while the correlation between different clusters is low. Furthermore, the different
gene expression levels of distant clusters from the same site reflect the genetic heterogeneity between
cancer subtypes.

The molecular associations enhance the connectivity of the foundation model embeddings.
The distant cases in the feature space are also linked, which are corrected by the influence of gene
correlation. These connections enhanced by genomics data play a crucial role in facilitating MSRL to
achieve the precision multi-modal fusion.

B.2 VISUALIZATION OF GRAPH STRUCTURE LEARNER

Figure A2: The adjacency matrix heatmaps obtained by GSL based on reconstructed and authentic
genomic data, where each row shows edge weights between test cases and training cases. The survival
times of two training groups are presented.

To further evaluate the effectiveness and authenticity of the structure learned by MSRL, we visualize
the adjacency matrices generated by GSL from both authentic and reconstructed genomics data in
COADREAD dataset, as shown in Figure A2. We input the WSI and genomics data of the test cases
(n=58) into the target branch, and the output adjacency matrix of ˆGSL is arranged in descending
order based on the column sums, retaining the top 30 columns to obtain the ”Refined Adjacency
Matrix from Authentic Gene”. Meanwhile, we input the WSI of the test cases into the online branch,
reconstruct the genomics data, and obtain the output of GSL. The consistent 30 columns with the
target branch are selected to generate the ”Refined Adjacency Matrix from Reconstructed Gene”. In
Figure A2, each row of the heatmap represents the edge weights between test cases and training cases.
The blue bars in the left histogram represent the survival time (in months) of the corresponding test
cases, and the gray bars indicate that the case is deceased. Two observations are as follows: (1) The
online branch GSL can effectively learn the structural relationships from authentic data. The
heatmaps of both matrices show high consistency, especially in the high-weight edges (yellow areas).
This indicates that the online branch’s WSI-based Inductor can effectively reconstruct the authentic
genomics data. And then GSL can build meaningful relationships between previously unseen test
cases and real diagnostic training cases. This ensures that MSRL can perform efficient multi-modal
task inference in real-world scenarios with WSI unimodality. (2) Fine-tuned GSL can capture
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task-specific knowledge. GSL significantly separates the test cases into high-risk group (rows 41 to
51) and low-risk group (rows 1 to 10), which show high association with group 1 (columns 1 to 4)
and group 2 (columns 11 to 13) of the training cases. The average survival time of cases in Group 1 is
only 18.10 months and it is 64.65 months in Group 2. This demonstrates that the fine-tuned GSL can
learn task-related diagnostic information among GSL and effectively promote precision oncology.

C DATASETS

Dataset: We evaluate the proposed MSRL framework on six TCGA cohorts during fine-tuning.
Specifically, we collect Bladder Urothelial Carcinoma (BLCA, n=359), Breast Invasive Carcinoma
(BRCA, n=680), Stomach Adenocarcinoma (STAD, n=318), Head and Neck Squamous Cell Carci-
noma (HNSC, n=392), and Colon and Rectum Adenocarcinoma (COADREAD, n=298) for survival
prediction. For precision diagnosis, we consider Non-Small Cell Lung Cancer (NSCLC) stag-
ing (n=893), Epidermal Growth Factor Receptor (EGFR) mutation status (n=627), BRCA staging
(n=944), and BRCA human epidermal growth factor receptor-2 (HER2) status prediction (n=482,
subset of BRCA staging dataset). We used 8 datasets for fine-tuning, and every dataset was split into
a training-val dataset (containing 3,607 cases) and a testing dataset (containing 902 cases) with a
4:1 ratio, following a five-fold cross-validation strategy.. To ensure a sufficiently large pre-training
dataset, we compiled an additional 2,754 cases from the TCGA pan-cancer database, which is along
with the training-val dataset to form the pre-training dataset (containing 6,361 cases). In total, this
paper used 7,263 cases (6,361 + 902), of which the testing dataset had no overlap with either the
pre-training dataset or the training-val dataset. The model achieving the best performance on the
validation set is selected for reporting results on the test set.

Histopathology image collection: All WSIs data come from 20× magnification hematoxylin
and eosin (H&E)-stained slides. We crop each slide into 256×256-pixel patches and extract 1536-
dimensional features using the ViT-giant model pre-trained on GigaPath (Xu et al., 2024). The WSI
representation is the 768-dimensional [CLS] token of output of LongNet (Ding et al., 2023) pretrained
on GigaPath.

Genomics data collection: We collect raw genomics data for each corresponding case from TCGA.
Following the Hallmarks resource in the Human Molecular Signatures Database (MSigDB) (Liberzon
et al., 2015; Subramanian et al., 2005), we select 4241 genes and divide them into 50 groups and then
apply log-normalization. Each group is encoded into a 768-dimensional feature with an independent
SNN network (Klambauer et al., 2017).

D EXPERIMENTS

Survival prediction: Survival prediction is to estimate cases’ time-to-event outcomes. Following
previous research (Zadeh & Schmid, 2020), this task is defined by two components: censorship status
and event time. Censorship status denoted as c, where c = 0 indicates the case’s death was observed,
and c = 1 indicates the cases’ last known follow-up. Event time denoted as t, representing the time
between diagnosis and observed death if c = 0, or between diagnosis and last follow-up, i.e. survival
time, if c = 1. We estimate event time by dividing the time into non-overlapping intervals (tj−1, tj)
for j ∈ [1, ..., n], based on quartiles of survival times (c = 1), and denote these intervals as yj , rather
than predicting the exact event time t directly. This converts the problem into a classification task
with censorship. Then, each case is represented by (Z, yj , c), where Z is the representation of the
case. We design a classifier where each output logit ŷj predicted by the network corresponds to a
specific time interval. Based on this, we define the discrete hazard function as

fhazard(yj |Z) = σ(ŷj),

where σ denotes the sigmoid activation function. fhazard(yj |Z) gives the probability that the patient
dies within the time interval (tj−1, tj). We then introduce the discrete survival function as

fsurv(yj |Z) =

j∏
k=1

(1− fhazard(yk|Z)) ,
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which represents the probability that the patient survives up to the time interval (tj−1, tj). Afterwards,
we construct the negative log-likelihood (NLL) survival loss (Zadeh & Schmid, 2020) to optimize
this task, as formulated as follows

LNLL

(
Z(i), y

(i)
j , c(i)}Di=1

)
=

D∑
i=1

−c(i) log
(
fsurv

(
y
(i)
j | Z(i)

))
(14)

+ (1− c(i)) log
(
fsurv

(
y
(i)
j − 1 | Z(i)

))
(15)

+ (1− c(i)) log
(
fhazard

(
y
(i)
j | Z(i)

))
(16)

where, ND represents the total number of cases in the dataset. The loss ensures that the model assigns
high survival probabilities to patients alive at last follow-up, correctly models survival up to death
time for deceased patients, and accurately predicts the time of death when observed. A detailed
mathematical explanation is provided in (Zadeh & Schmid, 2020). We finally take the negative sum
of all logits to predict a patient-level risk score, which is used to categorize patients into different risk
groups and to stratify them accordingly.

C-Index: The Concordance Index (C-Index) is a metric used to evaluate the consistency between
predicted ordered sequences and true sequences. In survival prediction, C-Index measures how
accurately the model ranks cases according to their survival times. The C-Index ranges from 0.5 to 1,
where 0.5 indicates random prediction and 1 indicates perfect prediction. Specifically, the C-Index
calculates the proportion of all comparable case pairs for which the predicted order matches the
ground-truth order of survival times. For a pair of cases (casei, casej), if casei’s survival time is
longer than casej’s and the model predicts a lower risk for casei than for patient casej , this pair is
called a “concordant pair.” The formulation of the C-Index is as follows

c-index =
1

D(D − 1)

D∑
i=1

D∑
j=1

I(ti < tj)(1− cj),

where I(·) is the indicator function, which takes the value 1 if the argument is true, and 0 otherwise.

Experimental implementations: In the pre-training, a graph with 6,361 nodes was constructed,
where each node contains a 768-dimensional WSI feature and a 768-dimensional genomic feature.
The Graph Structure Learner employed a 2-layer architecture, and the Graph Convolutional Network
(GCN) consisted of 3 layers to output final node embeddings of 256 dimensions. The model was
trained using the Adam optimizer with an initial learning rate of 1e-4 for 400 epochs. During
fine-tuning, the AdamW optimizer was applied for 50 epochs with a 10-epoch warmup. The learning
rate followed a cosine annealing schedule with a maximum learning rate of 1e-5 and a minimum
of 1e-7. All implementations were carried out in Python 3.9, PyTorch 2.0 and CUDA 12.4 on a
computer cluster with six Nvidia GeForce 4090 GPUs.

E RESULTS

Resource consumption: Graph-based inference does not lead to significant additional resource
consumption. We evaluated computational cost on 136 test WSIs of the BRCA dataset. We measured
the model FLOPs and average time required of each WSI for patch feature extraction, and WSI
encoding and task inference as shown in Table R2. Compared to other methods, our approach does
not introduce notable increases in inference time. To simulate large-scale datasets, we additionally
increased the buffer size in multiples. The WSI inference time increased by only 0.607 seconds—less
than 2% of the patch feature extraction time, even with the 50X buffer size. Therefore, our method is
not a bottleneck in terms of time or resource consumption for practical applications.

Parameter analysis: We have added experiments to evaluate the effectiveness of H-G pairing
and different scales of pre-training data. We constructed GSL models using 20%, 50%, and 80%
of the pre-training data, and we also constructed a GSL using a fully pre-trained dataset with
random H-G pairings. Table A2 presents the validation metrics of the pre-training models for five
survival prediction tasks under different settings. Based on these experiments, we draw the following
conclusions:
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Table A1: The results of resource consumption.

Model Patch Feature Extracting WSI-level Encoding and Inference Total
Time FLOPs Time FLOPs Time FLOPs

CMTA 34.87s 4.68× 105 G 0.997s 9.78× 100 G 35.867s ≈ 4.68× 105 G
SurvPath 34.87s 4.68× 105 G 0.439s 2.26× 100 G 35.309s ≈ 4.68× 105 G
G-HANet 34.87s 4.68× 105 G 0.415s 6.03× 100 G 35.285s ≈ 4.68× 105 G
LD-CVAE 34.87s 4.68× 105 G 0.487s 2.65× 102 G 35.357s ≈ 4.68× 105 G
MSRL(buffer=434) 34.87s 4.68× 105 G 0.534s 1.78× 102 G 35.404s ≈ 4.68× 105 G
MSRL(buffer=4340) 34.87s 4.68× 105 G 0.542s 2.45× 102 G 34.412s ≈ 4.68× 105 G
MSRL(buffer=8680) 34.87s 4.68× 105 G 0.701s 3.97× 102 G 35.571s ≈ 4.68× 105 G
MSRL(buffer=21700) 34.87s 4.68× 105 G 1.141s 1.33× 103 G 36.011s ≈ 4.69× 105 G

1. Using more pretraining data effectively improves model performance. The model perfor-
mance is optimal when using the full dataset, and the performance improvement from a
50% to an 80% data increase is significantly higher than the improvement from 20% to 50%.
This indicates that more data benefits the pretraining of GSL, which is consistent with the
scaling law.

2. The pairing of H-G data is essential for multimodal research. The model performance using
the fully pretraining dataset with random pairing is lower than that of the model pretraining
with 20% paired data, and in some cases, the results are close to random predictions (for
example, the c-index for HNSC and COADREAD was only 0.507 and 0.502, respectively).
Compared with the method of training with WSI data only, H-G random pairing will
introduce noise and reduce model performance.

Table A2: The results on the validation set of the various data settings.

Data setting BLCA BRCA STAD HNSC COADREAD
random pairing pre-training data 0.522 0.534 0.511 0.507 0.502
WSI only 0.574 0.593 0.582 0.536 0.524
20% pre-training data/1272 cases 0.615 0.688 0.609 0.551 0.533
50% pre-training data/3181 cases 0.627 0.694 0.613 0.556 0.541
80% pre-training data/5089 cases 0.647 0.720 0.644 0.577 0.548
100% pre-training data/6361 cases 0.651 0.744 0.658 0.593 0.558

Table A3 shows the validation metrics of the prognostic tasks for different values of K. The results
indicate that the model is relatively robust to variations in K (with metric fluctuations within 0.02).
Overall, as the value of K increases, the model can gather more relevant case support, which leads to
higher performance. However, the computational complexity also increases accordingly. Considering
the balance between performance and resource consumption, we ultimately selected K=12 for all
experiments.

Table A3: The results on the validation set of the various K values in GSL.

K BLCA BRCA STAD HNSC COADREAD
4 0.633 0.728 0.639 0.579 0.546
8 0.648 0.734 0.644 0.582 0.551
12 0.651 0.744 0.658 0.593 0.558
16 0.654 0.747 0.659 0.602 0.562

The KM analysis of survival prediction To further assess the effectiveness of MSRL in survival
prediction, we divide all patients into low-risk and high-risk groups based on the median of the
predicted risk scores from MSRL. Then, we apply Kaplan-Meier analysis to visualize the survival
outcomes of both groups, as shown in Figure A3. Additionally, we conduct a Log-rank test to evaluate
the statistical significance between the low-risk group (blue) and the high-risk group (red). A p-value
of 0.05 or less is considered statistically significant. The results show that p-values of all datasets are
much smaller than 0.05, indicating significant differences between the groups.
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(a) BLCA (b) BRCA

(c) STAD (d) HNSC

(e) COADREAD

Figure A3: The curves of Kaplan-Meier analysis for all survival prediction datasets and the p-value
of the Log-rank test.
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F LIMITATIONS OF MSRL

There are three limitations of the current work: (1) Jointly optimizing node representations and graph
structures easily leads to local optima, which makes it difficult to achieve task-optimal solutions.
We proposed that pre-training and fine-tuning partially mitigate this challenge, but we still need to
find a more stable optimization strategy during fine-tuning. (2) We have not yet introduced more
structured textual information during MSRL’s pre-training. Incorporating clinical reports could help
MSRL learn more robust structural representations in multi-modal task inference. (3) We have not
yet conducted a thorough analysis of the distribution of medical centers, ethnic composition, and
regional characteristics in the TCGA dataset, nor have we examined their potential impact on the
applicability of our method.

G GRAPH STRUCTURE LEARNING (GSL)

Graph Neural Networks (GNNs) have demonstrated strong performance in modeling structural
dependencies and supporting downstream inference. A typical GNN takes as input a set of nodes and
edges, where the edge set encodes structural relationships between nodes. However, in many real-
world scenarios, such prior structures are difficult to define or are contaminated by noise, for example,
the relationships between cancer patients are not explicitly known. Such unreliable structures limit
the representational power of GNNs.

To address this challenge, data-driven Graph Structure Learning (GSL) (Franceschi et al., 2019; Liu
et al., 2022a) has emerged as an effective paradigm. The core idea of GSL is to incorporate the
learning of graph structure into the task-driven learning process. Unlike traditional GNNs with fixed
edge sets, GSL dynamically learns the edge structure during training based on node representations
and task objectives, resulting in an optimized graph topology.

Li et al. (2023) summarized a general GSL pipeline: a Graph Learner takes an initial graph G =
{X,A} as input—where A is the adjacency matrix and X is the node feature matrix—and outputs
a refined graph Gr = {X,Ar}, which is then fed into a GNN for representation learning and task
inference. Notably, the original adjacency matrix A is not required; the graph learner can construct
Ar adaptively from the node features. Liu et al. (2022b), Li et al. (2022a), and Zhao et al. (2023)
introduced contrastive learning to enable unsupervised GSL, eliminating the need for task labels and
allowing the model to mine latent data correlations. Shen et al. (2024) further applied unsupervised
GSL to multiplex graphs, offering a new perspective for structure learning in multi-modal learning.
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