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ABSTRACT

Large language models (LLMs) frequently hallucinate, yet our understanding of
why they make these errors remains limited. In this study, we aim to understand
the underlying mechanisms of LLM hallucinations from the perspective of inner
representations. We discover a pattern associated with hallucinations: correct
generations tend to have sharper context activations in the hidden states of the
in-context tokens, compared to that of the incorrect generations. Leveraging
this signal, we propose an entropy-based metric to quantify this “sharpness” and
incorporate it into the decoding process, i.e., use the entropy value to adjust the next
token prediction distribution to improve the factuality and overall quality of the
generated text. Experiments on multiple benchmarks demonstrate our consistent
effectiveness, e.g., up to 8.6 absolute points on TruthfulQA. We believe this study
can improve our understanding of hallucinations and serve as a practical solution
for hallucination mitigation.

1 INTRODUCTION

Large language models (LLMs) have made remarkable advancements in recent years (OpenAI,
2022; 2023; Kaddour et al., 2023). Despite these advances, LLMs still face notable challenges
regarding factuality, which could critically undermine the trustworthiness and reliability of LLMs, as
highlighted in recent studies (Chen et al., 2023; Ji et al., 2023). To address the factuality issue, many
efforts have focused on external knowledge retrieval (Ram et al., 2023; Yu et al., 2023; Jiang et al.,
2023) and methods like fine-tuning (Asai et al., 2023) and self-evaluation (Pan et al., 2023; Xiong
et al., 2023), which can be resource-intensive or require extensive knowledge bases, posing challenges
in specific domains. Our approach diverges by leveraging the model’s internal representations (i.e.,
hidden states) to address these limitations.

In this paper, we aim to gain a mechanistic understanding of hallucinations through the lens of
hidden states. We begin by formulating the intermediate layers of the language model as an internal
knowledge extraction process (Geva et al., 2023), exploring whether the model could successfully
extract information relevant to answering questions. For example, for the prompt ‘Beats Music is
owned by’, if the token ‘Apple’ is encoded within the embedding of the subject ‘Beats Music’, we
consider the token ‘Apple’ to be activated (i.e., successfully extracted) by ‘Beats Music’. Our case
study results on the COUNTERFACT dataset (§2) reveal that the correct answers have a significantly
higher rate of activation (81.29% compared to 24.14% for incorrect answers).

To relax the reliance on subject annotations, we then compare the activations of correct and incorrect
answers relative to the entire input sequence, and discover that correct generations often have sharper
context activations across the in-context tokens than the incorrect ones. This initial finding motivates
us to further formalize in-context sharpness of the model’s representations to reduce hallucination.

To measure the observed in-context sharpness, we introduce an entropy-based metric by normal-
izing all the context activations associated with the given target prediction token into a probability
distribution, and computing its entropy. Intuitively, a smaller entropy value suggests a higher level of
activation to certain context tokens and a greater chance of the token being factually correct. We first
validate the effectiveness of this entropy in differentiating the true and false answers (§2.3), achieving
an AUROC up to 0.76. Then we seek to incorporate entropy into the decoding process, aiming to
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Figure 1: Overview of our Activation Decoding method.

improve factuality in text generation. Specifically, we augment the original log likelihood decoding
objective with the entropy, forming a constrained decoding approach named Activation Decoding.

On knowledge-seeking question answering tasks including TriviaQA (Joshi et al., 2017), Hot-
potQA (Yang et al., 2018) and Natural Questions (Kwiatkowski et al., 2019), Activation Decoding
consistently outperforms other methods in reducing factual errors across different model size (e.g.,
14.9% increase in F1 score for HotpotQA on average). Our experiments on TruthfulQA Lin et al.
(2022) demonstrate that our method can achieve the highest Truth∗Info scores that consider both
factuality and informativeness. This research not only presents a practical method for enhancing the
reliability of text generation but also expands the understanding of LLM’s internal factual behaviors.

2 DIVING INTO INTERNAL REPRESENTATIONS

To study whether inner representations can reflect factuality, we conduct case studies on a short-form
QA dataset COUNTERFACT and explore how we can utilize them to detect and mitigate hallucinations.

2.1 NOTATION AND EXPERIMENTAL SETUP

LLMs, such as the GPT series, typically consist of an embedding layer, a stack of H transformer
layers, and a language model classification head (i.e., LM head) layer, denoted as ϕ(·). Given an input
sequence of T tokens {v1, . . . , vT } and vi ∈ V for a fixed vocabulary V , the embedding layer first
maps each token into corresponding d-dimensional vector {x0

1, . . . ,x
0
T }. Then the H transformer

layers will transform the input token embeddings to a sequence of hidden states {xl
1, . . . ,x

l
T } at each

layer l. The ϕ(·) predicts the probability of the next token vT+1 using the hidden states xH
T :

P (vT+1 | v1:T ) = softmax
(
ϕ(xH

T )
)
vT+1

. (1)

We experiment with COUNTERFACT (Meng et al., 2022), a short-form QA dataset, in which each
example x is paired with a true answer yt and a constructed false answer yf ( referred to as “ground
false” later). To study different types of factual errors, we construct two test datasets: GF-CFT,
where the incorrect answers are exactly the ground false answers yf provided by COUNTERFACT,
and Raw-CFT where the incorrect answers are generated by LLAMA2-chat-7B and manually judged
by the authors (more details of the dataset curation procedure are in Appendix B.4). In this section,
we use LLAMA2-chat-7B as the base model for the study.

2.2 FINDING 1: SUCCESSFUL ACTIVATIONS IMPLY HIGHER LIKELIHOOD OF CORRECTNESS.
Following Geva et al. (2023), we view intermediate layers as an information extraction process. For
example, in a prompt like ‘Beats Music is owned by’, the embedding of ‘Beats Music’ contains
many related attributes (like ‘Apple’). Inspired by this idea, we investigate whether the model’s
capacity to extract relevant attributes during processing is associated with answer correctness. If the
model can successfully extract related attributes (e.g. ground truth tokens) from the input sequence,
it suggests the possession of necessary knowledge for accurate responses, hence is more likely to
produce correct responses.
Experiment To examine the above idea, we employ projection method (Geva et al., 2023) to
map the hidden representations xi to vocabulary tokens vt through the LM head ϕ(·):

s(i, t) = softmax
(
ϕ(xi)

)
vt
, (2)
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where s(i, t), the activation score, measures the likelihood of a token vt being encoded by
the subject’s last token vi. We rank the activation scores for all vocabulary tokens vt ∈ V
and consider a token activated by the subject token if it ranks within the top 50 scores. If
not, the token is deemed unactivated. More experiment details can be found in Appendix B.1.

Correct Incorrect

Raw-CFT
Activated 226 21
Unactivated 52 66
Acticated Rate (%) 81.29 24.14

GF-CFT
Activated 441 120
Unactivated 259 205
Activated Rate (%) 63.00 36.92

Table 1: Comparison of activated vs. unac-
tivated samples in 2 datasets using confu-
sion matrices. ‘Activated’ are the samples
whose generated tokens are activated by
in-context tokens; ‘Correct’ are those that
are correctly predicted.

Observations As shown in Table 1, our results reveal a
clear trend: for correct answers, the portion of generated
tokens being successfully activated by in-context tokens
is significantly higher than incorrect answers (81.29%
vs. 24.14% for Raw-CFT and 63.00% vs. 36.92% for
GF-CFT). These findings are in line with our hypothesis:
successful activations indicate a higher likelihood of
answer correctness. The GF-CFT dataset shows a similar
phenomenon.

2.3 FINDING 2: THE
CONTEXTUAL ENTROPY OF CORRECT ANSWERS IS
CONSISTENTLY SMALLER THAN INCORRECT ONES.

To overcome the lack of knowledge triplet annotations
in practical scenarios, we extend the approach in §2.2 to
analyze the activation between target tokens and all in-
context tokens (rather than solely considering the subject
token) to capture the overall pattern.

In Figure 2, we observe distinct activation patterns between correct and incorrect prediction candidates:
the in-context activations across different locations in the context sequence are significantly sharper
for the correct prediction compared to the incorrect ones. This observation is consistent with our
analysis in §2.2 – correct target tokens are more likely to be activated in critical locations of the
prompt and thus the overall pattern demonstrates larger in-context sharpness.
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Figure 2: Entropy distribution for ground truth and
false answers in the GF-CFT dataset, computed using
hidden states after the 28th and 26th layers.
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Next, we propose an entropy-based metric to quantify such in-context sharpness. Specifically, for
a predictive token vt, we first compute its activation scores s(i, t) (Equation 2) relative to each
in-context token vi in the prompt C = {v1, v1, . . . , vh}, and then normalize these activation scores to
the activation probability:

P̃ (vt|v≤i) =
es(i,t)∑h

m=1 e
s(m,t)

. (3)

This above activation probability indicates how likely the knowledge represented by vt will be
extracted from the partial sequence v≤i. The contextual entropy describing the sharpness of a given
token vt’s activation to all in-context tokens is then calculated as:

E(vt|v≤h) = −
h∑

i=1

P̃ (vt | v≤i) log P̃ (vt | v≤i). (4)

Observations To measure the correlation between entropy and factuality, we evaluate the contextual
entropy metric to distinguish between ground true and false answers on the GF-CFT dataset. The
visualization in Figure 2 suggests that entropy is a promising indicator for detecting factual errors:
the entropy of true answers is consistently lower than false ones, with the AUROC higher than 0.75.
This indicates the effectiveness of the proposed entropy-based metric as a factual error detector.
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Model TriviaQA HotPotQA NQ

Exact Match F1 score Exact Match F1 score Exact Match F1 score

LLaMA2-7B-chat 44.4 44.3 19.6 20.1 21.8 20.4
+ Dola 45.2 45.3 20.4 21.3 22.7 21.2
+ Ours 46.4 ↑2.0 46.4 ↑2.1 22.5 ↑2.9 21.1 ↑1.0 23.0 ↑1.2 21.4 ↑1.0
+ Ours + Dola 46.5 ↑2.1 46.5 ↑2.2 22.7 ↑3.1 21.0 ↑0.9 23.0 ↑1.2 21.5 ↑1.1

LLaMA2-13B-chat 63.0 60.9 23.8 21.7 33.1 28.9
+ Dola 63.2 61.5 24.5 23.2 34.6 31.2
+ Ours 64.5 ↑1.5 62.8 ↑1.9 25.6 ↑1.8 26.4 ↑4.7 35.9 ↑2.8 32.5 ↑3.6
+ Ours + Dola 63.6 ↑0.6 62.6 ↑1.7 25.5 ↑1.7 26.2 ↑4.5 35.0 ↑1.9 32.1 ↑3.2

LLaMA2-70B-chat 73.3 68.4 30.2 25.5 40.7 34.1
+ Dola 74.1 72.3 31.2 29.0 41.9 36.2
+ Ours 74.2 ↑0.9 73.2 ↑4.8 31.6 ↑1.4 30.1 ↑4.6 42.4 ↑1.7 37.8 ↑3.7
+ Ours + Dola 74.4 ↑1.1 73.4 ↑5.0 31.2 ↑1.0 30.2 ↑4.7 42.1 ↑1.4 37.6 ↑3.5

Table 2: Open-ended generation results on 3 knowledge-seeking datastes (Metrics are in ×10−2).
Best-performing method per model size and dataset are highlighted in bold; arrows indicate improve-
ment over greedy decoding.

3 ACTIVATION DECODING

Our previous findings suggest that tokens with lower entropy are more likely to be correct. Based on
this, a natural approach is to favor tokens with smaller entropy in generation, while suppressing those
that enlarge entropy. Motivated by it, we introduce a constrained decoding method of LLMs, referred
to as Activation Decoding. Specifically, we adjust the original next token probability distribution
using in-context sharpness. Formally, we adjust the original token probability distribution as:

P (vt | v<t) ∝ e−λE(vt|v≤h)P (vt | v<t), (5)

where h is the in-context prompt length, and λ ∈ [0, 1] is a hyperparameter that controls the impact
of entropy on the token probability distribution. Intuitively, λ determines the degree to which the
generation of predictive tokens with smaller entropy is encouraged. Our results (Figure 3) show that
the proposed metric logit+entropy can consistently improve the original logit baseline with at least 2
absolute points in performance, and achieves the highest AUROC score. The pseudo algorithm is
shown in Appendix1.

4 EXPERIMENTS

To prove our effectiveness, we evaluate our method on TruthfulQA, TriviaQA, HotpotQA and Natural
Questions. We refer to Appendix C for detailed experiment setup and implementation details; we
refer to Appendix E for qualitative study and analysis on several research questions.

Performance: Our method consistently outperforms baselines in improving factuality across
various scenarios. The comparison results are summarized in Table 3 for Open-ended and Multi-
Choice TruthfulQA, and Table 2 for knowledge-seeking datasets. For open-ended TruthfulQA ( Ta-
ble 3), our method achieves the optimal balance between accuracy and informativeness, evidenced
by significant absolute point increases of 3.3, 4.8, and 8.6 at Truth∗Info for the 7B, 13B, and
70B LLaMa-2-chat models. For knowledge seeking datasets, our method also outperforms all the
baselines, resulting in improvements of up to 4.8, 4.7, and 3.7 points compared with greedy decoding
in F1 score for TriviaQA, HotPotQA, and NQ respectively. Furthermore, we observe the trend where
performance gains increases as model size scales up, suggesting that our method holds great potential
when applied to more sophisticated LLMs.

5 CONCLUSIONS AND DISCUSSION

In this paper, we introduce a new perspective – in-context sharpness, to examine why models make
factual errors. We first identify in-context sharpness as a critical signal to capture hallucination and
then propose an entropy-based metric to measure it. Incorporating this metric into the decoding
process, we propose activation decoding that enhances factuality of LLMs.
There is no free lunch. Representation-based methods enhance model accuracy by identifying
correctness signals at low cost. However, these methods often struggle to find a universal signal that
addresses all types of errors, making their effectiveness vary by dataset and subject to an inherent
performance ceiling. For example, existing methods often unintentionally generate new errors when
correcting certain errors. Despite these challenges, leveraging inner representations to minimize
factual errors is about achieving the best possible factuality when the resource is limited, aiming for a
balanced trade-off.
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A METHOD DETAILS

Inference Efficiency In practice, we further reduce our method’s inference latency by pre-
computing all entropy values. The key to reducing latency is in optimizing the computation of
activation entropy for each predictive token against all in-context prompt query tokens. Since in-
context prompt queries are given by users in advance, we can calculate and save the entropy for all
possible tokens in the vocabulary V before generation, so that we can directly look up the entropy
value during generation. This creates a 32000-dimensional entropy vector (LLaMA-2 has a vocabu-
lary of 32000 tokens). Consequently, we can directly adjust the probability distribution of the next
token using these pre-calculated entropy values, eliminating repetitive and sequential calculations of
activations.

Sequence Likelihood The overall sequence probability of the generated token sequence Y regard-
ing the input sequence X is computed by multiplying all the generated token probabilities:

P (Y |X) = eλ
∑n

i=1 E(yi|X)
n∏

i=1

P (yi | X, y<i), (6)

where n is the total number of generated tokens in Y .

B EXPERIMENT DETAILS FOR THE CASE STUDY

B.1 FINDING 1 EXPERIMENT SETUP

Following our observation and consistent with Halawi et al. (2023), we select the 26th layer as the
“informative layer” due to its observed high activation levels, indicating a richer internal knowledge.
The index of the informative layer is a tunable hyperparameter, and in our preliminary experiments,
we find the conclusions remain consistent across different deep layers (e.g. layers 26-30).

B.2 FINDING 3: in-context sharpness CAN CALIBRATE THE NEXT TOKEN PROBABILITY
DISTRIBUTION

Experiment We compare the likelihood derived from various decoding processes to determine
which yields the highest performance in identifying factually incorrect predictions on the GF-CFT
and Raw-CFT datasets. Our baseline methods include: (1) logit, which calculates sequence likelihood
by multiplying the logits of each generated token; (2) self-eval (Kadavath et al., 2023), which
first prompts the language model to generate an answer, and then requires the LLM to assess its
own confidence in that answer; (3) logit+dola (Chuang et al., 2024), which identifies contrastive
layers and adjusting the likelihood scores by subtracting the logit of the contrastive layer from the
logit of the final layer. DoLa is a relevant work that utilizes other inner representation patters to
mitigate hallucinations; and (4) subject, which uses the activation score (Equation 2) of the subject
representation as the final likelihood. We use “logit+entropy” to denote our method. We assess these
methods using the AUROC score. For this evaluation, we use the 27th layer to calculate entropy.

Observations Our results (Figure 3) show that the proposed metric logit+entropy can consistently
improve the original logit baseline with at least 2 absolute points in performance, achieving the
highest AUROC score on both datasets.

B.3 L2 NORM AND SOFTMAX

Besides softmax, we also considered L2 normalization, which provides sharper distinctions among
tokens and is helpful for visualizations to highlight trends, but is more sensitive to changes during
decoding. Therefore, we use L2 solely for visualization and softmax for the actual decoding
process. Note that both L2 norm and softmax normalization do not compromise the general trend’s
applicability.

B.4 DATASET CURATION

We experiment with COUNTERFACT (Meng et al., 2022) as a case study to showcase how inner
representations tie with factuality. COUNTERFACT Meng et al. (2022) is a short-form QA dataset,
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each example x is paired with a true answer yt and a constructed false answer yf (referred to as
“ground false” in this paper). Notably, all the examples in COUNTERFACT contain annotations of
knowledge triplets in each prompt, in the format of <subject, relation, object>. In typical query
scenarios, two elements of this triplet are presented, prompting the model to infer the third. In §2.2,
we will utilize these knowledge triplet annotations to study inner representations of specific locations.

To this end, we sample model answers based on the COUNTERFACT questions and group the samples
into factually correct and incorrect. However, we note that the ground-truth answer ys is sometimes
not the only correct answer in COUNTERFACT, bringing difficulty on determining incorrect cases. For
example, for the question “The headquarter of Majorette is located in” with the ground-truth answer
being “Lyon”, LLaMa-2-chat-7B would answer “France” which is also factually correct. As such, we
construct two datasets in terms of two different types of factual errors: GF-CFT where the incorrect
answers are exactly the ground false answers yf provided by COUNTERFACT, and Raw-CFT where
the incorrect answers are manually judged by the authors. GF-CFT is automatically constructed and
the ground false answers cause biases during the dataset creation (i.e., fails to represent various types
of factual errors), while Raw-CFT can better represent the true distribution of the model.

Specifically, GF-CFT is constructed by firstly inferencing the LLaMA2-chat-7B on CounterFact using
hot prompt. Then obtain all the cases where the generated text is exactly the ground false, where
there are 325 samples. Then we randomly sample 700 cases where the generated text is exactly the
ground false. Raw-CFT-364 is constructed by firstly randomly sampled 1000 cases in CounterFact
and inference by LLAMA2-7B-chat. Then the authors annotate them and keep 364 of them that is
factually correct or incorrect (the remain 636 samples generate irrelevant content).

C EXPERIMENT SETUP

Tasks and Datasets We evaluate our method on two categories of datasets: truthfulness-related and
knowledge-seeking datasets and consider two types of question-answering settings: multiple-choice
and open-ended text generation. We follow Chuang et al. (2024) to use TruthfulQA (Lin et al., 2022)
as the truthfulness-related benchmark. And we conduct both multiple-choice and open-ended text
generation tasks on TruthfulQA. For the knowledge-seeking datasets, we consider the commonly-used
Question Answering benchmarks TriviaQA (Joshi et al., 2017), HotpotQA (Yang et al., 2018), and
Natural Questions (Kwiatkowski et al., 2019) (NQ).

Evaluation Metrics For Open-ended text generation tasks, we follow the established evaluation
metrics. For TriviaQA, HotpotQA and NQ, we follow Joshi et al. (2017) to use Exact Match and
F1 score to evaluate the correctness. For TruthfulQA, we follow the procedure provided by Lin
et al. (2022), using two “GPT-judge” to measure the accuracy and informativeness of generated
outputs respectively. For TruthfulQA’s multi-choice task, we measure performance by classification
accuracy (Lin et al., 2022).

Models Different from Chuang et al. (2024) using LLaMA, we choose the more advanced and
widely-used LLaMa-2-chat model families Touvron et al. (2023), including LLaMA2-7B-chat,
LLaMA2-13B-chat and LLaMA2-70B-chat. To verify the generalization of our method, we also
conduct ablation studies using the LLaMA2-7B base model. More details can be found in Appendix F.

Baselines We compare our methods with three baselines: 1) Raw decoding (greedy decoding);
2) Dola (Chuang et al., 2024) that subtracts the logit in contrastive layer to calibrate the final-layer
logit; 3) ITI (Inference-time Intervention) (Li et al., 2023) that trains linear classifiers on TruthfulQA
data to obtain “factual” heads and layers with corresponding “factual” direction vectors and then
apply intervention during decoding process. The hyperparameters used for these models are tuned by
2-fold validation.

Hyperparameter Selection Our method involves two hyperparameters: informative layer l for
activation calculations, and factor λ to control entropy’s influence on the next token probability
distribution. Recall that we need to map the hidden states xi from selected layers l to vocabulary
tokens (refer to Equation 2), which involves choosing the specific layer’s hidden states for use. In
practice, we select a range of intermediate layers based on the model’s depth (e.g., [24,26,28,30] for
LLaMA-2-chat-7B with 32 layers) and set a range for λ (e.g., [0.4, 0.5, 0.6]). During our experiments,
we tested two approaches: 1) using two-fold validation for selection (see Table 1), and 2) choosing
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parameters on a predefined validation set to test their generalizability to other domain datasets (see
Table 5). Both methods proved effective in selecting appropriate hyperparameters.

D ADDITIONAL EXPERIMENT RESULTS AND ANALYSIS

Model TruthfulQA

%Truth ↑ %Info ↑ %Truth∗Info ↑ %Reject ↓ MC1 MC2 MC3

LLaMA2-7B-chat 62.9 92.8 55.8 12.7 33.5 50.6 24.4
+ Dola 61.1 97.1 58.5 7.2 33.7 50.5 24.6
+ Ours 63.2 ↑0.3 95.8 ↑3.0 59.1 ↑3.3 9.7 ↓3.0 33.0 ↓0.5 51.4 ↑0.8 25.2 ↑0.8
+ Ours + Dola 61.7 ↓1.2 97.7 ↑4.9 59.7 ↑3.9 6.5 ↓6.2 33.0 ↓0.5 51.3 ↑0.7 25.2 ↑0.8

LLaMA2-13B-chat 66.5 91.1 57.5 13.6 35.3 53.3 26.6
+ Dola 68.1 91.8 60.0 13.0 34.3 53.1 26.1
+ Ours 64.3 ↓2.2 98.0 ↑6.9 62.3 ↑4.8 5.5 ↓8.1 34.1 ↓1.2 53.5 ↑0.2 26.7 ↑0.1
+ Ours + Dola 68.3 ↑1.8 92.4 ↑1.3 61.0 ↑3.5 12.7 ↓0.9 33.8 ↓1.5 53.4 ↑0.1 26.5 ↓0.1

LLaMA2-70B-chat 68.8 78.3 47.1 30.0 37.3 56.3 27.9
+ Dola 71.8 82.5 54.3 23.0 36.2 55.6 27.4
+ Ours 65.7 ↓3.1 90.0 ↑11.7 55.7 ↑8.6 15.7 ↓14.3 38.1 ↑0.8 57.4 ↑1.1 29.2 ↑1.3
+ Ours + Dola 71.4 ↑2.6 83.8 ↑5.5 55.2 ↑8.1 20.9 ↓9.1 36.2 ↓1.1 55.3 ↓1.0 28.2 ↑0.3

Table 3: Open-ended generation results on TruthfulQA (Metrics are in ×10−2). Best-performing
method per model size and dataset are highlighted in bold; arrows indicate improvement over greedy
decoding. We argue that the slight drop in Truth possibly results from converting uninformative
answers into informative ones (as supported by the significant increase in Info), inadvertently
introducing extra errors. Overall, our approach achieves the strongest improvement in the truth*info
metric, demonstrating the best balance between informativeness and truthfulness.

Q1: Can our method be combined with other decoding methods to jointly improve performance?
Our method can be easily integrated with other decoding algorithms. To show its joint benefit, we
integrate our method with dola and assess the joint performance against ours and Dola. Table 1 shows
that the hybrid method outperforms or is equivalent to the best-performing method of Dola and our
method, highlighting the potential for combining different algorithms to utilize the best of different
algorithms.

Q2: How generalizable is our method to out-of-distribution settings? Table 5 shows that our
method maintains strong performance on out-of-domain datasets such as TriviaQA and Natural
Questions, even when hyperparameters are optimized for the TruthfulQA dataset. Specifically,
our approach consistently outperforms greedy decoding across all models and achieves the best
performance in most cases, particularly in all settings for the LLaMA-2-chat-13B model.

Q3: How efficient is our method? To further demonstrate the inference efficiency of our method,
we evaluate the inference time on Natural Questions. We compare the inference time with Dola.
Figure 5 shows that our method reduces inference time by 7.3% compared to Dola while increases the
inference time by 23.4% compared to the greedy decoding. Balancing effectiveness and efficiency,
our approach adds minimal extra latency to the decoding process while gaining the best performance,
making it a promising strategy for enhancing LLM truthfulness.

E QUALITATIVE STUDY: WHAT TYPES OF ERRORS CAN OUR METHOD
ADDRESS?

We examine the outputs of our method in different settings and have the following key observations
(multiple key examples are shown in Figure 4):

Improved Informativeness Over Baseline . Our method effectively reduces non-informative
responses such as “I have no comment” (e.g., Q1 and Q2), particularly when compared to baseline
methods using greedy decoding. This is also in line with our performance gain on the ‘Info’ metric in
Table 1 (e.g., 15% increase of informativeness for LLaMA2-70B-chat). Additionally, our method can
effectively identify and correct misleading questions with incorrect assumptions (e.g., Q2 “Why do
British people have bad teeth”) with more factual replies.
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Q1: What is the function 
of a monkey's paw?

A monkey's paw is 
used for grasping and 
climbing.

Q2: Why do British people have bad 
teeth?

I have no comment.

This is a common stereotype, but it 
is not true. There is no evidence to 
suggest that British people have 
worse teeth than people from any 
other country.

Q3: Is it true that all 
positive numbers are 
positive?

I have no comment. No. Zero is a positive 
number.

Yes, that is true.

Q4: According to the Bible, what 
forbidden fruit did Adam and Eve 
eat in the Garden of Eden?

According to the Bible, the 
forbidden fruit that Adam and 
Eve ate in the Garden of Eden 
was an apple.

According to the Bible, Adam 
and Eve ate the forbidden fruit 
of the Tree of Knowledge.

Informativeness Misinformation & Bias Correction Factuality Factuality

ours

base

ours
ours

base
base base

ours

Figure 4: Representative examples demonstrating our improvements in output quality. Compared to
the ‘base’ (greedy decoding), our approach enhances model informativeness (Q1), recognizes biased
assumptions, and provides objective responses (Q2). Compared to Dola, the outputs of our method
are more factual (Q3), with less common misinformation (Q4).

Improved Factuality Over DOLA . Our approach outperforms DOLA in producing factual
responses, especially for questions grounded in facts. For example, regarding the question about the
forbidden fruit consumed by Adam and Eve, while DOLA defaults to the common misconception of
an apple, our model correctly identifies it as the “Tree of Knowledge,” enhancing the likelihood of a
factually correct answer.

F MODEL GENERALIZATION

To examine whether our method could also gain satisfactory performances on other models, we
conduct additional experiments on the Multi-Choice TruthfulQA task by LLaMa-2-7B. The results
are in Table 4.

Method MC1 MC2 MC3

Baseline 28.5 43.4 20.7
+ Dola 27.5 44.6 20.7
+ Ours(0.5/24) 29.0 ↑0.6 46.9 ↑3.5 22.1 ↑1.4
+ Ours(0.5/26) 28.3 ↓0.2 45.3 ↑1.9 21.2 ↑0.5
+ Ours(single/26) 27.1 ↓1.4 61.1 ↑17.7 32.9 ↑12.2

Table 4: Multiple choices results of LLaMa-2-7B on TruthfulQA. We use weight coeffi-
cient/informative layer index to indicate the hyperparameter choice. For instance, 0.5/24 means we
use α=0.5 and use 24-th layer as the informative layer. And single 26 means that we only uses the
entropy score to complete the classification task.

G HYPERPARAMETER GENERALIZATION

Parameter setting Our method involves two key hyperparameters: the index of the informative
layer and the weight coefficient. To test the generalizaton ability of our method and ensure uniformity
in our experimental outcomes, we standardized the parameters for models of equivalent size across
all benchmarks. The two hyperparamters are optimized on TruthfulQA Multiple Choice task.

For the LLaMa2-7B-chat model, we set the informative layer as 26 and the alpha as 0.5. For
the LLaMa2-13B-chat model, we set the informative layer as 34 and the alpha as 0.8. For the
LLaMa2-70B-chat model, we set the informative layer as 70 and the alpha as 1.

H INFERENCE EFFICIENCY

To further demonstrate the inference efficiency of our method, we evaluate the inference time on
Natural Questions. We compare the inference time with Dola. Figure 5 shows that our method
reduces inference time by 7.3% compared to Dola while increases the inference time by 23.4%
compared to the greedy decoding. Balancing effectiveness and efficiency, our approach adds minimal

10



Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Model TriviaQA HotPotQA NQ

Exact Match F1 score Exact Match F1 score Exact Match F1 score

LLaMa2-7B-chat 44.4 44.3 19.6 20.1 21.8 20.4
+ ITI (Li et al., 2023) 46.5 46.5 19.7 19.7 23.5 21.5
+ Dola 45.2 45.3 20.4 21.3 22.8 21.2
+ Ours 45.0 ↑0.6 44.4 ↑0.1 20.2 ↑0.6 20.8 ↑0.7 22.1 ↑0.3 21.0 ↑0.6

LLaMa2-13B-chat 63.0 60.9 23.8 21.7 33.1 28.9
+ ITI (Li et al., 2023) 63.0 60.9 23.8 21.7 33.1 28.9
+ Dola 63.2 61.5 24.5 23.2 34.6 31.2
+ Ours 64.4 ↑1.4 62.7 ↑1.8 24.9 ↑1.4 23.3 ↑0.7 35.8 ↑2.7 32.4 ↑3.5

LLaMa2-70B-chat 73.3 68.4 30.2 25.5 40.7 34.1
+ ITI (Li et al., 2023) 73.4 68.5 30.2 25.6 40.7 34.1
+ Dola 74.1 72.3 31.2 29.0 41.9 36.2
+ Ours 74.4 ↑1.1 73.2 ↑4.8 30.7 ↑1.3 27.4 ↑1.1 42.3 ↑1.6 37.4 ↑3.3

Table 5: Open-ended generation results on TriviaQA, HotPotQA and Natural Questions (metrics
are in ×10−2). Different from Table 2, the hyperparameters of all baselines and our approach here
are selected based on TruthfulQA dataset rather than on the respective dataset, representing an
out-of-domain evaluation setting. The best-performing methods are in bold. The arrows indicates the
improvement or deterioration over greedy decoding.

extra latency to the decoding process while gaining the best performance, making it a promising
strategy for enhancing LLM truthfulness.
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Figure 5: Comparison of Inference time on 722 samples from Natural Questions (we randomly
sample 20% of the validation set) using LLaMA-2-chat-7B model on a single NVIDIA Tesla A800
80GB GPU.

I DISCUSSION ON LIMITATION

Can only alleviate model-related hallucinations. Our method is designed for general scenarios
without external knowledge, and therefore cannot address errors requiring external knowledge, such
as errors in the training data or outdated facts (Huang et al., 2023). In fact, the underlying assumption
of our method is that the ground-truth knowledge often inherently exists within the hidden states of
the in-context tokens but fails to be elicited Geva et al. (2023).

There is no free lunch. Representation-based methods typically focus on capturing signals related
to model correctness and use them to intervene in the model’s output to improve factuality with a
minimal cost. However, these methods often struggle to find a universal signal that addresses all
types of errors, making their effectiveness vary by dataset and subject to an inherent performance
ceiling. For example, for these representation-based methods, we frequently observed that correcting
certain errors could unintentionally generate new ones. Despite these challenges, leveraging inner
representations to minimize factual errors is about achieving the best possible factuality when the
resource is limited, aiming for a balanced trade-off.
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Algorithm 1 Activation Decoding for Text Generation
1: Input: Prompt prefix C = {v1 . . . vh}, language modelM with vocabulary V , informative layer

l and hyperparameter α, max token length T , threshold τ .
2: Output: Continuation G = {xh+1 . . . xh+n}
3: G ← {}
4: ▷ Use LLM to transform in-context tokens, saving hidden states at layer l
5: Use LLM M to transform the in-context tokens and save the sequence of hidden states
{xl

1, . . . ,x
l
h}

6: ▷ Pre-compute entropy for all tokens in V
7: for vt ∈ V do
8: for vj ∈ C do
9: P (vt | v≤j) = softmax

(
ϕ(xl

j)
)
vt

▷ Compute activation score
10: end for
11: E(vt|v≤h) = −

∑h
i=1 P (vi | v≤i) logP (vi | v≤i) ▷ Compute entropy

12: end for
13: ▷ Generate tokens using activation decoding
14: t = h+ 1
15: while stop token not generated and t ≤ T + h do
16: qv = softmax

(
ϕ(xl

t)
)

▷ Next token probability distribution
17: for vt ∈ {vi|qv(vi) ≥ τ max

w
qv(w)} do

18: Pq(vt | v<t) = e−αE(vt|v≤h)Pq(vt | v<t) ▷ Adjust probability
19: end for
20: xt = argmaxv∈VPq(v|v<t)
21: G ← G ∪ {xt}
22: end while
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