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Abstract

Offline Reinforcement Learning (RL) provides a promising avenue for training
policies from pre-collected datasets when gathering additional interaction data
is infeasible. However, existing offline RL methods often assume stationarity or
only consider synthetic perturbations at test time—assumptions that often fail in
real-world scenarios characterized by abrupt, time-varying offsets. These offsets
can lead to partial observability, causing agents to misperceive their true state
and degrade performance. To overcome this challenge, we introduce Forecasting
in Non-stationary Offline RL (FORL), a framework that unifies (i) conditional
diffusion-based candidate state generation, trained without presupposing any spe-
cific form of future non-stationarity, and (ii) zero-shot time-series foundation mod-
els. FORL targets environments prone to unexpected, potentially non-Markovian
offsets, requiring robust agent performance from the onset of each episode. Empiri-
cal evaluations on offline RL benchmarks, augmented with real-world time-series
data to simulate realistic non-stationarity, demonstrate that FORL consistently im-
proves performance compared to competitive baselines. By integrating zero-shot
forecasting with the agent’s experience we aim to bridge the gap between offline

RL and the complexity of real-world, non-stationary environments.

1 Introduction

Offline Reinforcement Learning (RL) leverages static
datasets to avoid costly or risky online interactions
[} 2]]. Yet, agents trained on fully observable states
often fail when deployed with noisy or corrupted ob-
servations. While robust offline RL methods address
test-time perturbations like sensor noise or adversar-
ial attacks [3]], a critical gap persists in addressing
non-stationarity within the observation function—a
challenge that fundamentally alters the agent’s per-
ception of the environment over time.

Prior online algorithms that consider the scope of
non-stationarity as the observation function focus
on learning agent morphologies [4]] and generaliza-
tion in Block MDPs [5]. While this scope of non-
stationarity holds significant potential for real-world
applications [6], it remains underexplored. We focus
on the episodic evolution of the observation function
at test-time in offline RL. In our setup, each dimen-
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Figure 1: Setting. The agent does not know
its location in the environment because its
perception is offset every episode j by an un-
known offset &7 (only vertical offsets are illus-
trated). FORL leverages historical offset data
and offline RL data (from a stationary phase)
to forecast and correct for new offsets at test
time. Ground-truth offsets ({,1) are hidden
throughout the evaluation episodes.
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sion of an agent’s state is influenced by an unknown, time-dependent constant additive offset that
remains fixed within a single operational interval (an “episode"). This leads to a stream of evolving
observation functions [7], extending across multiple future episodes, where the offsets remain
hidden throughout the prediction window. For instance, industrial robots might apply a daily
calibration offset to each joint, while sensors can exhibit a deviation until the next scheduled recalibra-
tion. Similarly, in healthcare or finance, data may be partially aggregated or withheld to comply with
regulations, effectively obscuring finer-grained variations and leaving a single offset as the dominant
factor per episode. By only storing these representative offsets, we circumvent the challenges of
continuous interaction buffers in bandwidth-constrained or privacy-sensitive environments. Because
the offset can differ across state dimensions (e.g., different sensor or actuation channels), each state
dimension can be affected by a different unknown bias that stays constant for that episode but evolves
differently across episodes. Approaches that assume predefined perturbations can struggle with these
abrupt, episodic shifts, because such offsets violate the typical assumption of a smoothly varying ob-
servation functions. Frequent retraining, hyperparameter optimization, or extensive online adaptation
to new observation function evolution patterns is costly, risky (due to trial-and-error in safety-critical
settings), and may be infeasible if these patterns no longer reflect assumptions made during training.
By separating offset data (episodic calibration values) from the massive replay buffers, a zero-shot
forecasting-based approach can anticipate each new offset from the beginning of the episode without
requiring policy updates, or making assumptions on task evolution at test time [8|]. Modeling these
multidimensional additive offsets as stable, per-episode constants presents a robust and efficient way
to handle time-varying conditions in non-stationary environments where the evolution of tasks follow
a non-Markovian, time-series pattern [9], mitigating the risks of online exploration.

We consider an offline RL setting during (0)
training where we have only access to a
standard offline RL dataset collected from
a stationary environment [3] with fully
observable states. Initial data might be , Y
collected under near-ideal conditions, and
then gradually affected by wear, tear, or
other natural shifts—even as the underly- 0t
ing physical laws (dynamics) remain the
same. At test time, however, we evaluate in v
a non-stationary environment where both
the observation function and the observa-
tion space change due to time-dependent
external factors. This setup can be inter-
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preted as environments shifting along ob-
servation space dimensions while the ini-
tial state of the agent is sampled from a
uniform distribution over the state space. A

Figure 2: Overview of the proposed FORL framework
at test-time. The observations are processed by both the
trajectory buffer and the time-series forecasting foun-
dation module [10]. Observation changes and actions

sampled from the policy, (Ao, aio)

trajectory buffer. The

simplified version of this setup for an offset
affecting only one dimension of the state
is illustrated in Figure |I Here, the agent
“knows” it is in a maze but does not know
where it is in the maze. Furthermore, it will
remain uncertain of its location across all episodes at test-time, as every episode a new offset leads
to a systematic misalignment between perceived and actual positions. Importantly, these offsets may
not conform to Gaussian or Markovian assumptions; instead, they may stem directly from complex,
real-world time-series data [9] and remain constant throughout each episode. As a result, standard
noise-driven or parametric state-estimation techniques, which typically rely on smoothly varying or
randomly perturbed functions, cannot reliably identify these persistent, episode-wide offsets that are
not available after episode terminates. While zero-shot forecasting can adjust observation offsets, its
performance depends on the forecaster’s accuracy. Similarly, integrating zero-shot forecasting into a
model-based offline RL approach [3] can underperform when real-world offsets deviate from prede-
fined assumptions about future observation functions. Our approach uses the insight that the belief of
the true states can be refined from a sequence of action and affects. For instance, in maze navigation,
if an agent misjudges its location and hits a wall, analyzing its actions and delta observations leading
to the collision can provide evidence for likely locations within the maze.

) are stored in the

generates can-
didate states {sgo) }& conditioned on 74 ). The candi-
date selection module then generates the estimated S;.



We propose the Forecasting in Non-stationary Offline RL (FORL) framework (Figure [2) for test-
time adaptatation in non-stationary environments where the observation function is perturbed by an
arbitrary time-series. Our framework has two main ingredients: Forecasting offsets with a zero-shot
time-series forecasting model [[10] from past episode offsets (ground truth offsets after the episode
terminates are not accessible at test-time) and a within-episode update of the state estimation using a
conditioned diffusion model [[11] trained on offline stationary data.

Contributions. We unify the strengths of probabilistic forecasting and decision-making under
uncertainty, to enable continuous adaptation when the environment diverges from predictions. Conse-
quently, our framework: (/) accommodates future offsets without assuming specific non-stationarity
patterns during training, eliminating the need for retraining and hyperparameter tuning when the
agent encounters new, unseen non-stationary patterns at test time, and (2) targets non-trivial non-
Stationarities at test time without requiring environment interaction or knowledge of POMDPs during
training. (3) FORL introduces a novel, modular framework combining a conditional diffusion model
(FOrRL-DM) for multimodal belief generation with a lightweight Dimension-wise Closest Match
(DCM) fusion strategy, validated by extensive ablations on no-access to past offsets, policy-agnostic
plug-and-play, offset magnitude and inter/intra-episode drifts. (4) We propose a novel benchmark
that integrates offsets from real-world time-series datasets with standard offline RL benchmarks, and
demonstrate that FORL consistently outperforms baseline methods.

Background: Diffusion Models Denoising diffusion models [12} [13] aim to model the data
distribution with pg(zo) = [ pe(xo.r)dxi.7 from samples z( in the dataset. The joint dis-
tribution follows the Markov Chain py (zo.7) = N(x7;0,I) H;‘F:lpg (xi—q | @)  where
po (i1 | @) = N (i1 g (x4, 1) , X (24, t)). During training we use the samples from the dis-
tribution g (x; | o) = N (z¢; Vo, (1 — &;) I) where ay = ]_[Zi:l o; [11]]. General information
on diffusion models are given in Appendix [B.3!

2 Method

In this section, we formulate our problem statement and describe our FORL diffusion model trained
on the offline RL dataset to predict plausible states. Then, we introduce our online state estimation
method, Dimension-wise Closest Match that uses plausible states predicted by the multimodal
ForL diffusion model (DM) and the states predicted from past episodes by a probabilistic unimodal
zero-shot time-series foundation model.

2.1 Problem Statement

Training (Offline Stationary MDP) We begin with an episodic, stationary Markov Decision Pro-
cess (MDP) Min = (S, A, T, R, p), where the initial state distribution p is a uniform distribution
over the state space S. We only have access to an offline RL dataset D = {(s},a}, sF, ,,7F)} with &
transitions collected from this MDP. Crucially, our FORL diffusion model and a diffusion policy [14]
are trained offline using this dataset, such as the standard D4RL benchmark [15], without making any
assumptions on how the environment might become non-stationary at test time.

Test Environment (Sequence of POMDPs) At test time, the agent faces an infinite se-
quence of POMDPs {M;}5°,. Each POMDP M; is described by a 7-tuple [16] M; =

(S, A,0;,T,R, po,x;), where S, A, transition function 7 and the reward function R remain
identical to the training MDP. x is the observation function, where we restrict ourselves to determinis-
tic versions (x : § — ) [6L[17]. Non-stationary environments can be formulated in different ways. In
Khetarpal et al. [6] a general non-stationary RL formulation is put forward, which allows each compo-
nent of the underlying MDP or POMDP to evolve over time, i.e. (S(t), A(t), T (), R(t), x(t), O(t)).
A set x specifies which of these components vary, and a driver determines how they evolve. In
particular, passive drivers of non-stationarity imply that exogenous factors alone govern evolution
of the environment, independent of the agent’s actions. In this work, we consider the scope of
non-stationarity [6] (Appendix [B.2) that encompasses only the observation function and thus also the
observation space, i.e. k = {x,0

We consider the case where the non-stationarity is unfolding over episodes and where the observation
function x; is different at each episode j. The change in the observation function is assumed to



have an additive structure and is independent of the agents actions (passive non-stationarity [6]]).
Concretely, the function x; offsets states s; by a fixed offset ¥ € R™:

O = {s+b:s5€8}), x(s) = s+b.

Importantly, the sequence {b’} can evolve under arbitrary real-world time-series data and the agent
does not have access to the ground-truth information throughout the evaluation—similar to
scenarios where observations are only available periodically, and shifts occur between these intervals.
Thus, the episodes have a temporal order, relating to Non-Stationary Decision Processes (NSDP)
defining a sequence of POMDPs [7]] (Appendix [B.2).

Partial Observability and Historical Context Since b’ is never directly observed for P episodes
into the future, each M ;j is a POMDP. The agent receives only the offset-shifted observations {o; },
where o, = s, + b7 without any noise. Moreover, the agent may have access to a limited historical
context of previous offsets {b/ =, ... =1} at discrete intervals P, but no direct information about
future offsets {b/, b/ T1 ... p7+FP 1} Hence, the agent must forecast and/or adapt to unknown future
offsets without prior non-stationary training.

Partial Identifiability Despite observing o, = s, + b7, the agent cannot generally disentangle s,
from b7. For any single observation, there are infinite possible pairs of state and offset that yield
oy = s’ + b'. Additionally, the initial state distribution p is uniform and not providing information
about b. Thus, we can only form a belief over s; and refine that belief based on two sources of
information: a) the sequence of actions and effects observed within an episode and b) the sequence of
past identified offsets. To exploit source @, we use a predictive model of commonly expected outcomes
using a diffusion model, which will be explained next. To make use of source b, we use a zero-shot
forecasting model (see Section [2.3]for details). Afterwards both information is fused (Section[2.4).

[l observation {s (@} Y state
t k

2.2 FoORL Diffusion Model

In our setting, we assume that the offsets added to the
states are unobservable at test time, while the transition dy-
namics of the evaluation environment remains unchanged.
To eventually reduce the uncertainty about the underlying
state, we perform filtering or belief update using the se-
quence of past interactions. To understand why the history
of interactions is indicative of a particular ground truth
state, consider the following example in a maze environ-
ment illustrated in Fig.[3] When the agent is moving north
for three steps and then bumps into a wall, possible ground )
truth states can only be those three steps south of any wall. Figure 3: Candidate states generated by
The agent cannot observe the hidden green trajectory of FORL Diffusion Model.

ground-truth states; it only has access to the sequence of observation change (Ao) and action vectors,
which narrows down the possible positions to four candidate regions—exactly those identified by
our model. Clearly, the distribution of possible states is highly multi-modal, such that we propose
using a diffusion model as a flexible predictive model of plausible states given the observed actions
and outcomes. Diffusion models excel at capturing multi-modal distributions [14]], making them
well-suited for our task. We train the diffusion model on offline data without offset (b; = 0) which
we detail below.

To distinguish between the trajectory timesteps in reinforcement learning (RL) and the timesteps in the
diffusion process, we use the subscript ¢ € {0, ..., T} to refer to RL timesteps, and n € {0,..., N}
for diffusion timesteps. We first begin by defining a subsequence of a trajectory

T(t,w) = [(A0t7w+17 Apw) (A0t7 atfl)] . (D
where delta observations Ao, = 0, — 0,1 = $; — s;_1 denote the state changes (effects), w is the

window size. Using a conditional diffusion model, we aim to model the distribution p (st | T(t@)).
For that we define the reverse process (denoising) as

N
p(s™) T e (SE”fl) | Stn)aT(t,w)> , p(stV) =N (siV50,1) 2
n=1



and py is modeled as the distribution N(si"il); ug(sgn), T(tw), 1) 29(s§">, T (t,w)> 1)) With learn-

able mean and variance. We could directly supervise the training of yy using the forward (diffusion)

process. Following Ho et al. [[11], Song et al. [18], we compute a noisy sample st”) based on the true

sample s; = Sgo):

sE") = a(n)s; +1/1—a(n)e 3)
where € ~ N(0,I) is the noise, a(n) = [[;_, a(i) and the weighting factors a(n) =
e_(B"“"(%)Jr(ﬂ s = Boin) 572" ) where Bnax = 10 and B, = 0.1 are parameters introduced for empiri-
cal reasons [[19].

We can equally learn to predict the true samples by learning a noise model [20]. Hence, we train

a noise model eg(sgn), T (¢,w), ) that learns to predict the noise vector €. By using the conditional
version of the simplified surrogate objective from [11[], we minimize

L,0)= E “e—e(, (S(n)vT(t,w)vn>H2] @)

n,T,8t,€
where s; is the state sampled from the dataset D for t ~ Up({w,...,T — 1}), s(™ is computed
according to Eq. (E), € is the noise, n ~ Up({1,...,N}) is the uniform distribution used for
sampling diffusion timestep.

We use the true data sample s, from the offline RL dataset to obtain the noisy sample in (Eq. (3)).
Leveraging our model’s capacity to learn multimodal distributions, we generate a set of k& samples

{sgo)} as our predicted state candidates in parallel from the reverse diffusion chain. We use the

noise prediction model [11]] with reverse diffusion chain sﬁ"‘” | SE") formulated as

5" 1 —om

— L__¢p

VAn)  Vam)(l = am))
where € ~ N(0,I)forn = N,...,1,and € = 0 for n = 1 [11]. Below we detail how the state
candidates are used during an episode.

(sgn), T(tw),N) + /1 —ame 5)

2.3 Forecasting using Zero-Shot Foundation Model

Because we assume that the offsets b7 Algorithm 1 Candidate Selection
originate from a time series, we pro-

pose to use a probabilistic zero-shot ~ 1: Sample {0}, . {b}["} ~ Zero-Shot FM
forecasting foundation model (Zero-  2: for each episodep =1,---, P do

Shot FM), (Lag-Llama [10]) to fore- 3: t=0

cast future offsets from past ones. We Reset environment og ~ &

are assuming, that after P episodes 50— {1}}1[”

the true offsets get revealed, and we Tnitialize T (tw)

predict the offsets for the follow- while not done do

ing P episodes. Using the proba- Sample a(® ~ m(al3)

bjl_istic Ze_'rc;-Sllzot FM we generate Execute (%) in &, observe 0141

o/, .. .,b{* ), where (1) denotes . {80} orgr — {B}f

the number of samples generated for

D A A

each episode (timestamp). Since 1 T(t1,w) = PUSH (7 u), (B0141,07))
LagLlama is a probabilistic model, 12 T(141,w) = POP (T (4 1.0) (B0t 1, G—w))
it can generate multiple samples per 13 ift >w then(o)
timestamp, conditioned on C' number 14: Sample {s,/; }, from FORL by Eq.
of past contexts (5"~ ..., b""1). In 15: 5« DCM({Sg?l}k, {§§+1}l)
practice, we forecast every dimension  16: else L
of b independently, as the Zero-Shot 7. §4 0p41 — {g}f
FM, (Lag-Llama [10]) is a univariate g. end if
probabilistic model. 19: tet+1
20:  end while
2.4 FoRL State Estimation 21: end for

The next step in our method is to fuse the information from the forecaster and the diffusion model
into a state estimate used for control at test time.



At the beginning of an episode, no information can be obtained from the diffusion model, so for the

first w steps we only rely on the forecaster’s mean prediction, i.e. $; = oy — b7 where the mean is
taken over the [ samples.

As soon as w steps are taken, our FORL State Dimension-wise Closest Match
Estimation improves on the inferred state as de- —— Multimodal —— DOM samples Product PDF
tailed below. Figure [2 offers an overview of Unimodal

the entire system and Algorithm [T provides a

detailed pseudocode. 2

To recap, the diffusion model generates samples W :

{s{”},, from the in-episode history 7, Eq. (E). ,,//\‘ N ‘ ‘ N
4 -2 0 2

These samples represent a multimodal distri-  —
bution of plausible state regions. The Zero-
Shot FM generates | samples of offsets {b};
from which we compute forecasted states us-

ing {8t} = ot — {I;}l

Figure 4: Distribution of samples produced by
DCM (histograms for 10k samples for illustration).

FoORL: Dimension-wise Closest Match (DCM) We propose a lightweight approach to sample a

good estimate based on the samples from the multimodal (diffusion model {S,(go)}k) and unimodal
(Zero-Shot FM {3%},) distributions. Let Dyittusion = {X1,--->Xk}s  Diimeseries = 1¥15--->Yi}s
where x;,y; € R". Then DCM constructs z € R™ by

24 = Yj*(d),d where j*(d) = argn?n(miin’ xi7d—yj7d’),

where d = 1...n. In other words, for each dimension d, we choose the sample from Dyimeseries
that has a closest sample in Dyigfysion. The process is straightforward yet effective, and under ideal
sampling conditions for a toy dataset in Figure @ DCM approximately samples from the product
distribution. DCM uses a non-parametric search to find the forecast sample with the highest score,
which corresponds to the minimum dimension-wise distance. DCM’s prediction error is governed by
the accuracy of the forecast samples in the unimodal Dyimeseries that achieves this best score. As we
will demonstrate in the experiments, this approach empirically yields lower maximum errors and is
more stable compared to other methods.

FORL Algorithm Algorithm [l|summarizes the entire inference process at test time. We begin the
episode by relying on the forecasted states §y. As more transitions (Aoy, a;—1) become available,

the FORL diffusion model proposes candidate states {sgo) . through retrospection—reasoning over
the past in-episode experience to adapt state estimation on the fly when they begin to diverge from
predictions. We then invoke DCM to blend the diffusion model’s candidates with the foundation
model’s unimodal forecasts and obtain the final state estimate 5;. We use an off-the-shelf offline RL
policy such as Diffusion-QL (DQL) [14] to select the agent’s action a.

real-data-A(Series 1) real-data-D(Series 1)

Summary By combining a powerful zero-

N r i K 10 10
shot forecast model with a conditional diffusion . " A
mechanism, FORL addresses partial observabil- §& © NN & Y
ity in continuous state and action space when ° Wl © o
ground-truth offsets are unavailable. This proce- L .

. . 0 100 200 0 25 50 V)

dure is performed in the absence of ground-truth Episodes Episodes
offsets for past, current, and future episodes over Standard Deviation Time-series  ——- Forecast Mean

the interval j : j+ P at test time. DCM provides
a computationally inexpensive yet effective way
of using the multi-modal diffusion candidates
and unimodal time-series forecasts. This robust
adaptation approach yields a state estimate s,
aligned with the agent’s retrospective experience in the stationary offline RL dataset with the prospec-
tive external offset forecast.

Figure 5: Zero-shot forecasting results of Lag-
Llama [10] for the first univariate series (plotted)
from the real-data-A,D datasets; experiments
use the first two series from each dataset.



3 Experiments

We evaluate FORL across navigation, and ma-
nipulation tasks in D4RL and OGBench
offline RL environments each augmented
with five real-world non-stationarity domains
sourced from [22]. Figure [5 presents the
ground truth, forecast mean, and standard de-
viation from Lag-llama [10] for the first se-
ries of real-data-A and real-data-D. Our
experiments address the following questions:
(1) Does FORL maintain state-of-the-art per-
formance when confronted with unseen non-
stationary offsets? (2) How can we use FORL
when we have no access to delayed past ground
truth offsets? (3) How does DCM compare to
other fusion approaches? (4) Can FORL han-
dle intra-episode non-stationarity? (5) How
gracefully does performance degrade as offset
magnitude « is scaled from O (no offset) —
1 (our evaluation setup)? (6) Can FORL serve
as a plug-and-play module for different offline-
RL algorithms without retraining? Extended re-
sults, forecasts for the remaining series, and im-
plementation details are provided in Appendix.
Results average 5 seeds, unless noted.

Baselines We compare our approach with
the following baselines: DQL [14], Flow
Q-learning (FQL) are diffusion-based,
and flow-based offline RL policies, respec-
tively, that do not incorporate forecast infor-
mation. DQL+LAG-5, FQL+LAG-5 extend
DQL, and FQL by using the sample mean of
the forecasted states {3;}; at each time step,
(using the constant per-episode predicted b%).
DQL+LAG-S similarly extends DQL using the
median. DMBP+LAG is a variant of Diffusion
Model-Based Predictor (DMBP)[3]] (a robust off-
line RL algorithm designed to mitigate state-
observation perturbations at test time detailed
in Appendix D) that integrates forecasted states
from Zero-Shot FM [10] into its state predic-
tion module. By using the model learned from
the offline data, DMBP+LAG aims to refine the
forecasted states to make robust state estimation.
The underlying policies throughout our experi-
ments are identical policy checkpoints for both
our method and the baselines.

Table 1: Normalized scores (mean + std.) for
FORL framework and the baselines. Bold are
the best values, and those not significantly different

(p > 0.05, Welch’s t-test).

maze2d-medium DQL DQL+LAG-5 DMBP+LAG FORL (ours)
real-data-A  30.2+65 30.2+86 25.1+98 63.3+67
real-data-B  14.1+121 534 +146 41.2 + 211 66.5 + 182
real-data-C  -2.3+33 56.7 + 185 56.9 + 184 86.3 £ 157
real-data-D 4.7 +50 36.9 + 163 38.5+ 142 103.4 + 119
real-data-E 35+88 8.7+60 11.4+28 51.2+137
Average 10.0 372 34.6 74.1
maze2d-large
real-data-A 16.2+55 24+11 42+58 429 +41
real-data-B  -0.5+29 5.5+90 15.0+ 146 349 +92
real-data-C 09+17 16.6+75 26.8 £84 45.6 £ 41
real-data-D 3.0+66 8.6 +£32 134 +41 584 +65
real-data-E = -2.1+04 2.6 +34 0.9+37 12.0 £ 99
Average 3.5 7.1 12.1 38.8
antmaze-umaze-diverse
real-data-A  22.7+30 41.0+52 45.7 +48 65.3+87
real-data-B  24.2+35 483 +70 62.5 +132 74.2 £ 108
real-data-C  21.7+35 504 +83 60.4+39 78.8 £85
real-data-D 5.8+23 26.7+63 292459 75.8 £ 80
real-data-E 6.0+68 58.0+ 166 59.3+76 81.3+69
Average 16.1 44.9 514 75.1
antmaze-medium-diverse
real-data-A 31.0+65 40.0 +57 39.7 + 40 44.0 + 79
real-data-B  23.3+48 48.3 +48 43.3 £16.0 55.8 70
real-data-C  10.0+23 48.3 +34 49.6 +37 529+95
real-data-D  11.7+54 46.7+75 417+ 66 64.2 + 86
real-data-E  18.7+45 27.3+86 26.0+55 26.7 +47
Average 18.9 42.1 40.1 48.7
antmaze-large-diverse
real-data-A 11.0+19 113 +49 9.0+45 34357
real-data-B 5.8+48 9.2+46 83+29 46.7 £ 119
real-data-C 54424 22.1+56 179 +338 33.8+68
real-data-D 25+23 142+37 142+63 46.7 + 12:6
real-data-E 53+38 33+24 33+00 11.3+73
Average 6.0 12.0 10.5 34.6
kitchen-complete
real-data-A  16.6+14 72+19 87+13 12.0 £39
real-data-B  12.9+41 327 +65 20.0+3.1 33.1+56
real-data-C  13.4+17 239 +66 20.5+33 23960
real-data-D 75+25 24.0 +92 28.1+81 27.1 101
real-data-E  18.5+6.0 2.8+21 6.2+17 10.3 +30
Average 13.8 18.1 16.7 21.3
cube-single-play FQL FQL+LAG-5 FORL-F (ours)
real-data-A 0.0+00 0.0+00 23.7+36
real-data-B 0.0+ 00 15.0+70 60.0 + 7.0
real-data-C 0.4 +09 10.0+17 42.1+ 56
real-data-D 0.0+00 0.8+19 70.0 + 13.0
real-data-E 0.0+ 00 0.0+00 32.7+95
Average 0.1 52 45.7
antmaze-large-navigate
real-data-A 22.7+22 1.3+07 243 +43
real-data-B 21.7+54 29.2 +88 40.0 + 7.6
real-data-C 5.0+11 34.6+67 55.8 +37
real-data-D 0.8+19 37.5+5.1 75.8 +54
real-data-E 10.0 + 4.1 33+00 153 £87
Average 12.0 21.2 42.2

(s}, Mobservation 4 DQL+LAG-5 + FORL kstate

Ilustrative Example Figures [6 and [18 illustrate
an agent navigating the maze2d-large environment
where the true position is labeled as “state”. The
agent receives an observation, indicating where the
agent believes it is located due to unknown time-
dependent factors. The candidate states predicted

by the FORL diffusion model are shown as circles.
Importantly, the agent’s (Ao, a)-trajectory can reveal

possible states for the agent. FORL’s diffusion model

Figure 6: Visualization of states, predicted
states as the agent navigates the environment.



(DM) component predicts these candidate states by using observation changes (Ao) and corresponding
actions (a). The possible candidate regions where the agent can be are limited, and our model
successfully captures these locations. FORL’s candidate selection module (DCM) using the samples
from the forecaster, and the diffusion model recovers a close estimate for the state. In contrast,
the baseline DQL+LAG-3, relies on the forecaster [10] for state predictions which are significantly
farther from the actual state. Consistent with the results in Fig.[7] FORL reduces prediction errors at
test-time thereby improving performance.

Prediction Error(])

3.1 Results 6

FORL outperforms both pure forecasting (DQL+LAG-5) and the two- 4
stage strategy that first predicts offsets with a time-series model and :
then applies a noise-robust offline RL algorithm (DMBP+LAG). Its OQ‘/wo—@\)ofﬁ RUST
advantage is consistent across previously unseen non-stationary pertur- OQV‘OQV‘ @I\‘*’V

bations from five domains, each introducing a distinct univariate series . L. .
into a separate state dimension at test time. We present the average Figure 7: Prediction Error in
normalized scores for expected cumulative rewards over the prediction €COVering true agent state.
length P across multiple episodes run in the D4RL [15]] and OGBench for each time-series in
Table[I] We conduct pairwise Welch’s t-tests across all settings. Figure [7]plots the L, norm between
the ground-truth states s; and those predicted by FORL and the baselines in the antmaze and maze2d
environments. Consistent with the average scores, FORL achieves the lowest prediction error on
average.

Score(?)

3.1.1 No Access to Past Offsets
25

We evaluate different variants of using DM and Zero-Shot FM when o
we do not have any access to past offsets in Figure [8. FORL-DM
(DM): Diffusion Model utilizes the candidate states generated by the
FORL’s diffusion model component (Section[2.2), which canbea 10
multimodal distribution (Figure E[) Compared to DM, the full FORL OO’\)$O\%EXOO;,\»?‘ZXO
framework yields a 97.8% relative performance improvement. No- wpo)( WV
tably, DM performs on par with our extended baselines that incorpo- . . .
rateyhistoriI():al offsets alfd forecasting—DMBP+LAG, DQL+LAGIi§, Figure 8: DM Ablations
and DQL+LAG-5. Moreover, without access to historical offset information before evaluation, DM
achieves a 151.4% improvement over DQL, demonstrating its efficacy as a standalone module trained
solely on a standard, stationary offline RL dataset without offset labels. H-LAG: We maintain a
history of offsets predicted over the most recent C' episodes (excluding the evaluation interval P,
since offsets are not revealed after episode termination at test-time). We then feed this history into the
Zero-Shot FM to generate offset samples for the next P evaluation episodes. These samples are ap-
plied directly at test time. H-LAG+DCM: We initially follow the same procedure in H-LAG to obtain
predictions from Zero-Shot FM. Then, we apply DCM to these predicted offsets and the candidate
states generated by FORL’s diffusion model. We also compare against MED+DCM and MED+NOISE,
simpler median-based heuristics detailed in the Appendix [G. Empirically, H-LAG+DCM outperforms
H-LAG, demonstrating that DCM with FORL’s diffusion model can improve robustness. Overall,
scores and prediction errors indicate that just using the samples from DM has better scores on average,
while H-LAG+DCM is more stable in Fig. [I5]

15

Score(T)

3.1.2 Dimension-wise Closest Match (DCM) Ablations 55

50
We compare FORL (DCM) against four alternative fusion strategies. .

FORL(KDE): For each dimension, we fit a kernel density estimator 10

(KDE) on Dgitrusion = {SEO) }r and then we evaluate that probability ~  EZ E55 s EEE
density function for’e.acl} point ip Drim;gerieg- Th;n, we tgke the ool\ o¥ & ’ng% Wt
product of these densities in each dimension to obtain the weight for o o

each sample 7. We obtain a single representative sample by taking
the weighted average of samples in Dimeseries- 10 ensure stability,
when the sum of the weights is near zero, we use the mean of the Dyjmeseries @S the states. We use
Scott’s rule [24] to compute the bandwidth. DM-FS-5, DM-FS-3 select the closest prediction from
DM to the mean and median of the Zero-Shot FM’s predictions, respectively. FORL (MAX) constructs

Figure 9: Candidate Selection



Table 2: Normalized scores (mean + std.) for FORL and baselines on maze2d-large. Bolds
denote the best scores and those not significantly different (Welch’s t-test, p > 0.05). Suffixes -T and
-R denote the use of TD3+BC [2] and RORL [25]] policies, respectively.

Tp3Bc Policy RoRL Policy
maze2d-large TD3BC TD3BC+LAG-5 DMBP+LAG-T FORL (ours)-T RoRL RORL+LAG-5 DMBP+LAG-R  FORL (ours)-R
real-data-A 14.7 + 57 25+27 4.8 +39 20.7 +35 122 +23 13.0+20 43 +50 56.9 + 3.0
real-data-B -0.9+20 4.6+89 11.7 £ 126 56.8 £ 144 1.2+55 13.1 147 285117 98.5 +19.0
real-data-C 0.8+19 21.6 +84 29.5+137 56.9 + 146 3.1+09 60.6 +85 394 +6.1 139.0 + 151
real-data-D 2.5+44 149 +43 144 68 29.5 + 103 -1.6+07 179 +6s8 17.5+60 33.1+23
real-data-E -2.3+02 1.0+42 2.0+39 8.0 £42 -0.9 +20 33+44 22+45 32.2+153
Average 3.0 8.9 12.5 344 2.8 21.6 18.4 71.9

a diagonal multivariate distribution from the dimension-wise mean and standard deviation of the
forecasted states, then selects the sample predicted by our diffusion model with the highest likelihood
under that distribution. Although all baselines fuse information using the same two sets generated by
the diffusion model and Zero-Shot FM, DCM has higher performance. In Table[0 we compute the
maximum, minimum, and mean prediction error values over the test episodes used in Figure[6] FORL
(DCM) yields significantly stable prediction errors (Maximum Error |:2.40) for both maximum error
and mean error compared to FORL (MAX) (Maximum Error |:9.33) demonstrating its robustness.

Score £=50 (1)

3.1.3 Intra-episode Non-stationarity 60

Our framework can natively handle intra-episode offsets, where the 4
offset changes every f = 50 timesteps. In this setting, the offsets

become available after the episode terminates, but the agent is subject 20 .
to a time-dependent unknown offset within the episode. Zero-shot Y
forecasting foundation module can generate samples before the episode ®© vav
begins. Our diffusion model (FORL-DM) itself does not rely on the ©

the forecasts of the foundation module and only tracks observation Figure 10: Intra-Episode
changes and actions which are invariant to the offsets. The DCM can Performance

adaptively fuse information from both models at each timestep without

requiring any hyperparameters.Table [[0]and Fig. [I0]show the average scores for DQL vs. FORL-DM
and DQL+LAG-5 vs. FORL. Among the algorithms that do not use any past ground truth offsets
DQL and FORL-DM, only using the diffusion model of FORL significantly increases performance.
When we have access to past offsets, FORL obtains a superior performance. This shows that our
method covers both cases, when information is available and not available, even when offsets are not
constant throughout the episode.

) NN Y
P’QQO@\)X) QOQ“

=== FORL DMBP+LAG === DQL+LAG-5 === DQL

3.1.4 Offset-Scaling 100

We scale the offsets with « across all maze experiments.
We conduct experiments in 5 environments (all antmaze
and maze2d used in Table|l) across 5 time-series datasets
setups with o €{0, 0.25, 0.5, 0.75, 1.0}, where o = 0 is o y - py "
the standard offline RL dataset used during training and Sealing parameter (a)

o = 1.0 is our evaluation setup. The results show that
FORL outperforms the baselines, confirming its robustness.
Even a small scaling of 0.25 results in a sudden drop in
performance whereas FORL only experiences a gradual decrease in Figure[IT, Detailed results, for

each environment and v pairs are provided in Appendix Figure T3]

score
S

Figure 11: Impact of offset scaling («)
on average normalized scores.

3.1.5 Policy-Agnostic

In the maze2d-large experiments (in Table [2, maze2d-medium in Appendix Table [3), we use
Robust Offline RL (RORL) [25], and TD3BC [2] offline RL algorithms instead of DQL [14], to
analyze the affect of offline RL policy choice during training. RORL+LAG-5, and TD3BC+LAG-5
extend RORL, and TD3BC by using the sample mean of the forecasted states {3; }; at each time step,
(using the constant per-episode predicted b”). Results indicate that using a robust offline RL algorithm
during training significantly increases performance (71.9) compared to DQL (38.8) and TD3BC
(34.4) at test time when used with FORL, no increase when used alone, and a marginal increase with
Lag-llama and DMBP+LAG. We observe similar performance gains when applying FORL to other



policies (Appendix [E), including Implicit Q-Leaning (IQL) [26] and FQL [23], as detailed in Table[4]
and Table[7l

4 Related Work

Reinforcement Learning in Non-Stationary Environments Existing works in reinforcement
learning (RL) in non-stationary environments focus on adapting to changing transition dynamics
and reward functions. Ackermann et al. [27] propose an offline RL framework that incorporates
structured nonstationarity in reward and transition functions by learning hidden task representations
and predicting them at test time. While our work also investigates the intersection of nonstationary
environments and offline RL, we assume stationarity during training. To learn robust policies online,
meta-learning algorithms have been proposed as a promising approach [28H30]]. Al-Shedivat et al.
[29] explores a competitive multi-agent environment where transition dynamics change. While these
approaches provide valuable insights, they often require samples from the current environment and
struggle in non-trivial non-stationarity, highlighting the need for more future-oriented methods [9}31]].
Examples of such future oriented approaches include Proactively Synchronizing Tempo (ProST) [9]]
and Prognosticator [31]], which address the evolution of transition and reward functions over time.
ProST leverages a forecaster, namely, Auto-Regressive Integrated Moving Average (ARIMA), and a
model predictor to optimize for future policies in environments to overcome the time-synchronization
issue in time-elapsing MDPs. This approach aligns with our focus on time-varying environments and
similarly utilizes real-world stock price time-series datasets to model non-stationarity. Both ProST
and Prognosticator assume that states are fully observable during testing and online interaction with
the environment is possible during training, conditions that are not always feasible in the real world.
Instead, our approach assumes that states are not fully observable and that direct interaction with the
environment during training is not feasible, necessitating that the policy to be learned exclusively
from a pre-collected dataset.

Robust offline RL.  Testing-time robust offline RL methods DMBP [3]], RORL [25]] examine scenarios
where a noise-free, stationary dataset is used for training, but corruption is introduced in testing.
This is distinct from [3]], training-time robust offline RL [32,133]], which assume a corrupted training
dataset. Both RORL [25]] and DMBP [3] assume only having access to a clean uncorrupted offline RL
dataset as FORL, and they are evaluated on a perturbed environment. To the best of our knowledge,
FORL is the first work to extend this setting to a non-Markovian, time-evolving, non-stationary
deployment environment. We focus on time-dependent exogenous factors from real-data which is
aligned with the non-stationary environment definition [6].

Diffusion models in offline RL. Diffusion models [[12] have seen widespread adoption in RL
[34,135]] due to their remarkable expressiveness, particularly in representing multimodal distributions,
scalability, and stable training properties. In the context of offline RL, diffusion models have been
used for representing policies [[14}136H38]], planners [39}!40], data synthesizing [41}/42], and removing
noise [3]]. Notably, Diffusion Q-learning [[14] leverages conditional diffusion model policies to learn
from offline RL datasets, maintaining proximity to behavior policy while utilizing Q-value function
guidance. In contrast, our method harnesses diffusion models to learn from a sequence of actions and
effect tuples, leveraging the multimodal capabilities of diffusion models to identify diverse candidate
locations of the hidden states.

5 Conclusion

We introduce Forecasting in Non-stationary Offline RL (FORL), a novel framework designed to be
robust to passive non-stationarities that arise at test time. This is crucial when an agent, trained on
an offline RL dataset, is deployed in a non-stationary environment or when the environment begins
to exhibit partial observability due to unknown, time-varying factors. FORL leverages diffusion
probabilistic models and zero-shot time series foundation models to correct unknown offsets in obser-
vations thereby enhancing the adaptability of learned policies. Our empirical results across diverse
time-series datasets, D4RL [[15], and OGBench [21] benchmarks demonstrate that FORL not only
bridges the gap between time-series forecasting and non-stationary offline RL but also consistently
outperforms the baselines. Our approach is currently limited by assuming additive perturbations. For
future work, we plan to extend our work to more general observation transformations.
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8. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide computational hardware required to reproduce the experiments.
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* The answer NA means that the paper does not include experiments.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted fully conforms with the NeurIPS Ethics Guidelines
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* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To the best of our knowledge there are no direct negative societal impacts of
our work.
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* The answer NA means that there is no societal impact of the work performed.
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not involve releasing any high risk models.

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original owners and included the licenses.
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* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not introduce a new dataset.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Our work does not involve crowdsourcing experiments nor research with
human subjects.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing experiments nor research with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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the core methods in this research.
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