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Abstract

Consider the problem of exploration in sparse-reward or reward-free environments,
such as Montezuma’s Revenge. The curiosity-driven paradigm dictates an intuitive
technique: At each step, the agent is rewarded for how much the realized outcome
differs from their predicted outcome. However, using predictive error as intrinsic
motivation is prone to fail in stochastic environments, as the agent may become
hopelessly drawn to high-entropy areas of the state-action space, such as a noisy TV.
Therefore it is important to distinguish between aspects of world dynamics that are
inherently predictable (for which errors reflect epistemic uncertainty) and aspects
that are inherently unpredictable (for which errors reflect aleatoric uncertainty): The
former should constitute a source of intrinsic reward, whereas the latter should not.
In this work, we study a natural solution derived from structural causal models of the
world: Our key idea is to learn representations of the future that capture precisely the
unpredictable aspects of each outcome—not any more, not any less—which we use
as additional input for predictions, such that intrinsic rewards do vanish in the limit.
First, we propose incorporating such hindsight representations into the agent’s mo-
del to disentangle “noise” from “novelty”, yielding Curiosity in Hindsight: a simple
and scalable generalization of curiosity that is robust to all types of stochasticity.
Second, we implement this framework as a drop-in modification of any prediction-
based exploration bonus, and instantiate it for the recently introduced BYOL-Expl-
ore algorithm as a prime example, resulting in the noise-robust “BYOL-Hindsight”.
Third, we illustrate its behavior under various stochasticities in a grid world, and
find improvements over BYOL-Explore in hard-exploration Atari games with sticky
actions. Importantly, we show state-of-the-art results in exploring Montezuma’s
Revenge with sticky actions, while preserving performance in the non-sticky setting.

1 Introduction

Learning to understand the world without supervision is a hallmark of intelligent behavior [1], and
exploration is a key pillar of research in reinforcement learning agents [2]. How might an agent learn
meaningful behaviors when external rewards are sparse or absent? A predominant approach is given
by the curiosity-driven paradigm [3], in which an agent’s ability to predict the future is used as a
proxy for their “understanding” of the world. Maintaining a learned model of the environment, at each
transition the agent receives an intrinsic reward proportional to how much the realized outcome differs
from their predicted outcome—which naturally directs them towards new areas that have not been seen.

There are two primary hurdles. The first is dimensionality: While outcomes can be predicted directly
at the level of observations [4–8], pixel-based losses have generally not been found to work well in
conjunction with complex, high-dimensional spaces [9]. Popular solutions have taken to operating on
lower-dimensional latent representations, such as frame-predictive features [10], inverse dynamics fea-
tures [11], random features [12], or features that maximize mutual information across time [13]. Most
recently, bootstrapped features are employed in BYOL-Explore [14]—which achieves superhuman
performance on hard-exploration games in Atari with a much simpler design than comparable agents.
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The second is stochasticity: Curiosity-driven exploratory agents are often susceptible to bad behavior
in environments with stochastic transitions, since they are often hopelessly distracted by high-entropy
elements in the state-action space [9]. A classic example is the problem of a “noisy TV” generating a
stream of intrinsic rewards, around which predictive error-based agents become stuck indefinitely [15].
More broadly, this problem manifests with respect to any aspect of environment dynamics that is inher-
ently unpredictable, including noise specific to certain states, or noise actively induced by the agent.

Novelty vs. Noise In the presence of stochasticity, predictive error per se is no longer a good measure
for an agent’s lack of “understanding” of the world. Intuitively, we wish to measure “understanding”
by how much epistemic knowledge an agent has acquired (viz. necessary truths about how the world
works in general), which is distinct from how much aleatoric variation each outcome can display
(viz. contingent facts about how the world happens to be). Precisely, we want to distinguish between
aspects of world dynamics that are inherently predictable—for which (reducible) errors stem from
“novelty”—and aspects that are inherently unpredictable—for which (irreducible) errors stem from
“noise”. Crucially, while the former should constitute a source of intrinsic reward, the latter should not.

Contributions In this work, we operationalize this distinction by deriving a natural solution based on
structural causal models of the world: Our key idea is to learn representations of the future that capture
precisely the unpredictable aspects of each outcome—not any more, not any less—which we then use
as additional input for predictions, such that intrinsic rewards indeed vanish in the limit. First, we pro-
pose incorporating such hindsight representations into the agent’s model to disentangle “noise” from
“novelty”, yielding Curiosity in Hindsight: a simple and scalable generalization of curiosity that is
robust to all types of stochasticity (Section 3). Second, we implement this framework as a drop-in mod-
ification of any prediction-based exploration bonus regardless of representation space, and instantiate
it for BYOL-Explore, resulting in the noise-robust “BYOL-Hindsight” (Section 4). Third, we illustrate
its behavior under various stochasticities in a grid world, and improve over BYOL-Explore in hard-
exploration Atari games with sticky actions—a standard protocol for introducing stochasticity in train-
ing/evaluation in Atari. Importantly, we show state-of-the-art results in exploring Montezuma’s Re-
venge with sticky actions, while preserving original performance in the non-sticky setting (Section 5).

2 Motivation

2.1 Problem Formalism

Consider the standard MDP setup. We use uppercase for random variables and lowercase for specific
values: Let X denote the state variable, taking on values x ∈ X , and A the action variable, taking
on values a ∈ A. While we keep our notation simple, we allow X to play the role of “contexts”,
“features”, “beliefs”, or “embeddings” depending on environment observability and design of the agent.
Denote with τ ∈ ∆(X )X×A the world dynamics such that Xt+1 ∼ τ(·|xt, at), and π ∈ ∆(A)X the
agent’s policy such that At ∼ π(·|xt). Finally, let ρπ denote the distribution of states induced by π.

Definition 1 (Curiosity-driven Exploration) In this work, we focus on predictive error-based cu-
riosity, which most popular approaches to curiosity fall under. Denote the intrinsic reward as follows:

Rη(xt, at) := −EXt+1∼τ(·|xt,at) log τη(Xt+1|xt, at) (1)

where τη denotes the agent’s model of the environment parameterized by η, which is trained using
the trajectories collected by rolling out a policy that seeks to maximize this same prediction error:

(policy)
maximize

π

(model)
min
η

E Xt∼ρπ
At∼π(·|Xt)

Rη(Xt, At) (2)

Stochastic Traps In stochastic environments, this reward converges to the entropy H[Xt+1|xt, at], so
the agent may become stuck on repeatedly experiencing (intrinsically rewarding) transitions where en-
tropy is high. What we desire is a reward that converges to zero in the limit. The notion of “optimistic”
exploration offers a hint of what might be possible—Consider constructing a reward that satisfies:

Rη(xt, at) ≥ DKL
(
τ(Xt+1|xt, at)‖τη(Xt+1|xt, at)

)
(3)

upper bounding the distance between the world and the agent’s model. On the one hand, Definition 1
verifies this, but the bound fails to tighten even in the limit. On the other hand, it is hard to measure this
distance directly, as the entropy term is by construction unknown. As it turns out, we shall later see that
our proposed technique effectively gives a reward that verifies the inequality—and is tight in the limit.
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Table 1: Relationship with Curiosity-driven Exploration. Curiosity in Hindsight is a drop-in modification applica-
ble to any prediction error-based exploration bonus with a dynamics model (using any underlying representation
space). Relative to any specific exploration method, Curiosity in Hindsight is uniquely characterized by the
properties of being robust to all noise types, being dynamics aware, and being general to any representation space.

Curiosity-driven
Exploration Method

Prediction
Inputs

Prediction
Target

Measure of
Learning

Random
Noise

X-/A-Dep.
Noise

Dynamics
Awareness

Representation
Space

AE [10] Xt, At Xt+1 Lpredict
η 7 7 3 reconstructive

ICM [11] Xt, At Xt+1 Lpredict
η 3 7 3 action predictive

EMI [13] Xt, At Xt+1 Lpredict
η 7 7 3 MI-maximizing

RND [12] Xt frandom(Xt) Lpredict
η 3 3 7 random projection

Dora [16] Xt, At const. zero Lpredict
η 3 3 7 pixel space

AMA [15] Xt, At Xt+1 Lpredict
η −Tr(Σ̂t+1) 3 3 3 pixel space

BYOL-Explore [14] Xt, At Xt+1 Lpredict
η 7 7 3 bootstrapped

Curiosity in Hindsight
+ any representation Xt, At, Zt+1 Xt+1 Lreconstruct

θ,η +Linvariance
θ,ν 3 3 3 any representation

2.2 Related Work

Our work inherits from the curiosity-driven paradigm [3–5,9–15,17,18], among which some methods
have been designed with robustness to certain stochasticities in mind (Table 1). However, note that
our technique of using hindsight information is uniquely characterized by the following properties:

1. Stochasticity Types: First, it is capable of handling all types of stochasticities in generality. Spe-
cifically, this includes stochasticity that is entirely random (e.g. a viewport polluted by noise
sampled according to a distribution independent of states and actions), stochasticity that is state-
dependent (e.g. a visible object that performs a random walk within the environment), as well as
action-dependent (e.g. a layer of random pixels that only appears if sampled on demand by spe-
cific actions). For instance, previous works have found that inverse dynamics features can learn to
filter out random noise [11], but may break down in the presence of action-dependent noise [9,19].

2. Dynamics Awareness: Second, it does not require discarding the curiosity-driven paradigm. By
way of contrast, consider purely frequency-oriented exploration strategies, such as learning to pre-
dict a random projection of observations [12], or simply to predict the constant zero [16]. Since
these are deterministic functions of inputs, they are in principle resilient to stochasticity. However,
empirically they can still behave poorly in the presence of action-dependent stochasticities [15]:
If the noise is sufficiently diffuse, the agent may never learn the function well, so in the absence
of any other learning signal—such as the world’s dynamics—they may still become stuck [20].

3. Generality and Scalability: As a drop-in modification, it is generally applicable to any underly-
ing choice of representation space. In contrast, existing techniques capable of handling stochas-
ticity are often tied to specific feature spaces, such as to employ inverse dynamics features [11],
random features [12], or pixel-space features [15]—which may limit their flexibility of applica-
tion. Moreover, unlike ensemble-based or disagreement-based techniques that require training a
large number of models [19,21,22], we shall see that incorporating hindsight is simpler and more
scalable by only requiring the addition of an auxiliary component to the usual prediction loss.

Alternative Paradigms Other paradigms have also been studied. Novelty-based methods encourage
exploration on the basis of visitation counts [23], hashes [24], density estimates [25–28], and adversar-
ial guidance [29,30]; further extensions have accounted for the long-term value of exploratory actions
[16,31–33], as well as investigating the benefits of episodic memory [34–36]. Knowledge-based meth-
ods encourage exploration on the basis of the agent’s uncertainty about the world [19, 37], with most
work focusing on estimating the information gain from different actions [21, 22, 38–44], or directly
estimating learning progress [45–47]. Finally, diversity-based methods seek to maximize the state
entropy [48–51], or to encourage learning diverse skills [52–63] and reaching different goals [64–68].

3 Curiosity in Hindsight

Consider the game of betting on a hidden dice roll: Suppose we take the action At= “bet on 6”,
then observe the outcome Xt+1= “lost the bet”. Two facts are clear: (1) a priori, we could not have
predicted this result at all; (2) a posteriori, we may deduce the (latent) fact Zt+1= “the die must have
rolled 1–5”. These are not contradictory. In particular, the former does not imply that we lack an
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(b) Reparameterized Model

Figure 1: Structural Causal Model. Independent noise corresponds to latents Zt+1 with no incoming edges; state-
dependent noise corresponds to directed edges from Xt to Zt+1; and action-dependent noise corresponds to di-
rected edges from At to Zt+1. By the reparameterization lemma, there always exists an equivalent graphical rep-
resentation under which all stochastic variables are effectively exogenous (i.e. with no directed edges into latents).

understanding of how the game works, nor does it suggest that we should engage in further such bets
to improve our understanding. Indeed, knowing how the game works, in hindsight (i.e. given what we
deduced about Zt+1), the outcome is obvious to us (i.e. we can now deterministically identify Xt+1).
Conversely, suppose we actually didn’t know how the game works: Then we couldn’t have correctly
inferred Zt+1, nor would its knowledge have enabled us to identify Xt+1 with certainty. If so, engag-
ing in additional bets may indeed allow us to learn and improve our understanding of how it works.

Intuitively, we can thus measure our understanding of each transition based on how much the outcome
makes sense in hindsight. In other words, instead of asking “How well can we predictpredictpredictpredictpredictpredictpredictpredictpredictpredictpredictpredictpredictpredictpredictpredictpredictXt+1 a priori?”,
we actually want to ask “How well can we reconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstructreconstruct Xt+1 a posteriori—given hindsight Zt+1?”.
In the sequel, we first formalize this intuition using the language of posterior inference when a known
model of the world is available (Section 3.1). Subsequently, we generalize this approach to generating
learned hindsight representations when a model of the world needs to be learned at the same time
(Section 3.2). Finally, we derive Curiosity in Hindsight on the basis of these ingredients, showing that
it approximates optimistic exploration (Inequality 3) while being robust to stochasticities (Section 3.3).

3.1 Structural Causal Model

Let Z denote a latent variable, taking on values z ∈ Z . Specifically, for each observed transition
tuple (xt, at, xt+1), we let zt+1 encapsulate all sources of unobserved stochasticity in the dynamics,
such that—by construction—we have that xt+1 = f(xt, at, zt+1) for some deterministic function f .
In this construction, a prior p over the latent Zt+1 induces the environment dynamics τ(Xt+1|xt, at).

Figure 1(a) illustrates the structural causal model for this, where solid squares denote deterministic
nodes, shaded circles denote observable stochastic nodes, and unshaded circles denote unobservable
stochastic nodes (here we use W to capture any randomness in the agent’s policy). Note that while
stochasticities can be entirely random (i.e. no edges into Zt+1), state-dependent (i.e. Xt → Zt+1), or
action-dependent (i.e. At → Zt+1), by the reparameterization lemma it is always possible to represent
an environment such that all stochastic variables are effectively exogenous [69,70]—as in Figure 1(b).

From Prediction to Reconstruction Consider the setting in which we know the model f . Suppose
first that we somehow had access to each latent zt+1. Then the outcome of a transition at state xt and
action at would be deterministically computable with no uncertainty (i.e. reconstruction error = zero):

xt+1 := f(xt, at, zt+1) (4)

In reality, of course, the latent variable zt+1 is not observable. Thus it may seem like the best we can
accomplish is to compute the a priori expectation of the outcome (i.e. prediction error = entropy):

x̄t+1 := EXt+1∼τ(·|xt,at)Xt+1 = EZt+1∼pf(xt, at, Zt+1) (5)

However, while zt+1 is not observable, based on the transition (xt, at, xt+1) we can infer a posteriori
what its values could have been. Importantly, by the consistency property of counterfactuals we know
f(xt, at, Zt+1)=xt+1 for any Zt+1∼p(·|xt, at, xt+1) [71]. That is to say, conditioned on hindsight
information, the reconstruction error of the true model is zero. This suggests that when f is unknown
and learned by the agent, the reconstruction error is an attractive candidate for an intrinsic reward.
Of course, now the missing piece is how to sample Zt+1 from the posterior—which we discuss next.
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(b) Multi-Step Reconstruction

Figure 2: Hindsight Representations. For each transition, a learned generator Gt+1 := pθ(·|xt, at, xt+1) gen-
erates hindsight vectors in lieu of exact posterior inference. (In this figure, we use asterisks to distinguish them
from unobserved “ground-truth” latents). For both (a) single-step and (b) multi-step horizons, hindsight vectors
should be reconstructive of outcomes xt+1 when combined with xt, at, as well as being independent of xt, at.

3.2 Hindsight Representations

In the practical setting where the model f(Xt, At, Zt+1) is unknown, we learn to approximate it using
a reconstructor fη, parameterized by η. Since exact posterior inference pη(Zt+1|Xt, At, Xt+1) is
intractable, we simultaneously learn to approximate it using a generator pθ, parameterized by θ. Two
objectives are key. First, as noted above, representations Zt+1 should be reconstructive of outcomes
Xt+1; here we use a squared loss, but in principle any kind of reconstruction loss can be selected:

Objective 1 (Reconstruction) Let the reconstruction loss for a given transition (xt, at, zt+1, xt+1)—
including the generated hindsight representation zt+1 drawn from pθ(·|xt, at, xt+1)—be defined as:

Lη(xt, at, zt+1, xt+1) :=
∥∥∥xt+1 − fη(xt, at, zt+1)

∥∥∥2
2

(6)

and the (state-action) reconstruction bonus for the agent’s policy:

Rrec.
θ,η(xt, at) := E Xt+1∼τ(·|xt,at)

Zt+1∼pθ(·|xt,at,Xt+1)

Lη(xt, at, Zt+1, Xt+1) (7)

Driven to zero, this requires hindsight representations to encapsulate at least all aspects of the world’s
dynamics that are unpredictable (so we don’t reward the agent for irreducible error). However, we also
don’t wantZt+1 to simply leak information about the outcome that is actually predictable to begin with
(so we do reward the agent for reducible error). Thus our second objective requires it to be independent
of Xt, At; here we use a contrastive loss, but in principle any kind of invariance loss can be selected:

Objective 2 (Invariance) Let the invariance loss for a tuple (xt, at, zt+1) be defined with respect to
a batch of K−1 “negative” samples Z1

t+1, ..., Z
K−1
t+1 , using an auxiliary critic gν parameterized by ν:

LKθ,ν(xt, at, zt+1) :=

E (X1
t ,...,X

K−1
t )∼

∏K−1
i=1 ρπ

(A1
t ,...,A

K−1
t )∼

∏K−1
i=1 π(·|Xit)

(X1
t+1,...,X

K−1
t+1 )∼

∏K−1
i=1 τ(·|Xit ,A

i
t)

(Z1
t+1,...,Z

K−1
t+1 )∼

∏K−1
i=1 pθ(·|Xit ,A

i
t,X

i
t+1)

log
egν(xt,at,zt+1)

1
K

(
egν(xt,at,zt+1) +

∑K−1
i=1 egν(xt,at,Z

i
t+1)
) (8)

and the (state-action) invariance bonus for the agent’s policy:

RK,inv.
θ,ν (xt, at) := EZt+1∼pθ(·|xt,at)L

K
θ,ν(xt, at, Zt+1) (9)

Driven to minimax optimality over the state-action space—between the critic (i.e. maximizer) and
generator (i.e. minimizer)—this requires hindsight representations to encapsulate at most the aspects
of the world’s dynamics that are unpredictable. How does it accomplish this? We can be more precise:
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Proposition 1 (Optimal Invariance) Denote the pointwise mutual information between state-action
xt, at and hindsight zt by PMIθ(xt, at; zt+1):=log pθ(zt+1|xt,at)

pθ(zt+1)
. Then the invariance bonus satisfies:

RK,inv.
θ,ν (xt, at) ≤ EZt+1∼pθ(·|xt,at)PMIθ(xt, at;Zt+1) (10)

Moreover, denote the optimal critic parameter:

ν∗ := argmax
ν

E Xt∼ρπ
At∼π(·|Xt)

Xt+1∼τ(·|Xt,At)
Zt+1∼pθ(·|Xt,At,Xt+1)

LKθ,ν(Xt, At, Zt+1) (11)

Then the bound is asymptotically tight:

lim
K→∞

RK,inv.
θ,ν∗ (xt, at) = EZt+1∼pθ(·|xt,at)PMIθ(xt, at;Zt+1) (12)

Proof. Appendix A. �

In other words, in the limit of large batch sizesK →∞, at minimax optimality we have thatZt+1 is in-
variant to the values of xt, at, and the invariance objective is equal to zero. One question remains: Can
reconstruction be simultaneously driven to zero in the limit of infinite experience? The answer is yes:

Proposition 2 (Optimal Reconstruction) Denote withRrec.
θ,η(xt, at) the reconstruction bonus as in

Objective 1,RK,inv.
θ,ν (xt, at) the invariance bonus as in Objective 2, and their weighted sum for any λ:

J(θ, η, ν;λ) := E Xt∼ρπ
At∼π(·|Xt)

[
1

λ
Rrec.
θ,η(Xt, At) + lim

K→∞
RK,inv.
θ,ν (Xt, At)

]
(13)

Then its minimax optimal value is zero:

min
θ,η

max
ν

J(θ, η, ν;λ) = 0 (14)

Proof. Appendix A. �

This suggests that such a weighted combination—of reconstruction loss (of a learned dynamics model)
plus invariance loss (of a learned hindsight model)—may serve as a good intrinsic reward. We now
have all the ingredients for Curiosity in Hindsight, which it is instructive to contrast with Definition 1:

3.3 Optimistic Exploration

Definition 2 (Curiosity in Hindsight) Denote the hindsight intrinsic reward functionRθ,η,ν∗ with
the following (for now, this is idealized in that the critic is assumed optimal and batch sizes are infinite):

Rθ,η,ν∗(xt, at) :=
1

λ
Rrec.
θ,η(xt, at) + lim

K→∞
RK,inv.
θ,ν∗ (xt, at) (15)

Similar to before, the agent maintains an internal dynamics model trained to minimize this quantity
over the trajectories it collects, while rolling out a policy that seeks to maximize this same quantity:

(policy)
maximize

π

(model)
min
θ,η

E Xt∼ρπ
At∼π(·|Xt)

Rθ,η,ν∗(Xt, At) (16)

Recall that in the presence of stochasticity, standard curiosity-driven exploration can be seen as a poor
approximation to “optimistic” exploration (Inequality 3)—because the bound is never tight even in the
limit. The following observation shows that exploration using Curiosity in Hindsight can resolve this:

Theorem 3 (Optimistic Exploration) Let coefficient λ satisfy 1
2 log(λπ)≤Hθ[Xt+1|xt, at, Zt+1]

+DKL
(
pθ(Zt+1|xt, at)‖pθ(Zt+1)

)
, with π the mathematical constant (not the agent’s policy). Then:

Rθ,η,ν∗(xt, at) ≥ DKL
(
τ(Xt+1|xt, at)‖τθ,η(Xt+1|xt, at)

)
(17)

where τθ,η(Xt+1|xt, at) := EZt+1∼pθpη(Xt+1|xt, at, Zt+1) denotes the learned environment model.
Furthermore, for optimal model parameters θ∗, η∗ we have thatRθ∗,η∗,ν∗(xt, at) = 0 for all xt, at.

Proof. Appendix A. �

In other words, by choosing a small enough λ term, the hindsight intrinsic reward (Equation 15)
is an upper bound on the KL-term we care about (Inequality 3). Since this intrinsic reward can be
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driven to zero in the limit (Proposition 2), so is the KL-term, thus the reward-maximizing exploration
policy (Equation 16) is approximating precisely the sort of “optimistic” exploration that we desired.

4 Practical Framework
In practice, K <∞, ν is not fully optimized, and λ is a hyperparameter. The intrinsic reward is now:

RKθ,η,ν(xt, at) :=
1

λ
Rrec.
θ,η(xt, at) +RK,inv.

θ,ν (xt, at) (18)
and the agent performs:

(policy)
maximize

π

(model)
min
θ,η

max
ν

E Xt∼ρπ
At∼π(·|Xt)

RKθ,η,ν(Xt, At) (19)

Overall, our framework involves a simple drop-in modification on top of any standard curiosity-driven
exploration: Instead of learning a predictive model that specifies Xt+1 ∼ τη(·|Xt, At), we now
learn a (hindsight-augmented) reconstructive model that specifies Xt+1 = fη(Xt, At, Zt+1). The
main ingredients include the reconstructor fη, the generator pθ(Zt+1|Xt, At, Xt+1), and the critic
gν(Xt, At, Zt+1); the main hyperparameters are the contrastive batch size K and the coefficient λ in
the intrinsic reward. Finally, note that while for simplicity we have focused our exposition on modeling
single-step outcomes, generalizing to the case of multi-step horizons is straightforward (see Figure 2).

4.1 Example: BYOL-Hindsight
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Figure 3: BYOL-Explore to BYOL-Hindsight.

BYOL-Explore [14] is a recent technique for
curiosity-driven exploration that learns a boot-
strapped representation space, an environment
dynamics model, as well as an exploration pol-
icy simultaneously by optimizing a prediction
loss in latent space. First, an online network ω
encodes observations ot into representations
wt = ω(ot). A closed-loop recurrent network
then computes representations bt of histories
up until each time t. This is used to initial-
ize an open-loop recurrent network that com-
putes representations bt,i for horizon steps in-
dexed as i. Finally, these representations are
fed to a predictor ψ to output predictions ŵt,i,
with the key novelty being that the target net-
work ω̃ is an EMA of the online network ω.

Figure 3 shows the BYOL-Explore setup: The predictive errorLt,i at each open-loop step is computed,
and the intrinsic reward associated to each transition os, as, os+1 is the sum of its prediction errors∑
t+i=s+1 Lt,i. This can be straightforwardly extended to use Curiosity in Hindsight (see dotted red

region), yielding “BYOL-Hindsight”: At each open-loop step, a hindsight vector is first sampled as
Zt,i∼pθ(·|bt,i−1, at+i−1, wt+i). Reconstructions Ŵt,i=fη(bt,i−1, at+i−1, Zt,i) are then computed,
with the critic gν simultaneously encouraging Zt,i to be independent of Bt,i−1, At+i−1. Importantly,
intrinsic rewards now come from Lt,i = reconstruction + invariance losses, and not prediction losses.

5 Experiments

AGENT (vertical
  oscillator)

(vertical
  oscillator)

SPAW
N

(hori-
 zontal
 oscillator)

(hori-
 zontal
 oscillator)

R1

R3

R2

R4

C1

C2

V1

V2

H1

H2

COIN
SPAWN

A
G

EN
T

Figure 4: Pycolab Maze Layout.

So far, we proposed an intuitive framework for equipping curiosity-
driven exploration with hindsight, and described an implementation on
top of BYOL-Explore. Three questions deserve empirical investigation:
(a) Effectiveness: In stochastic environments, predictive error-based
methods—such as BYOL-Explore—may fail. Does BYOL-Hindsight
circumvent the problem? (b) Robustness: Is BYOL-Hindsight robust
to all of the types of stochasticities, including independent noise, state-
dependent noise, and action-dependent noise? (c) Nonspecificity: In
environments with no stochasticity, hindsight should confer no bene-
fit. Does BYOL-Hindsight match the performance of BYOL-Explore?

Environments We employ two environments for experiments. First,
we use a Pycolab [72] maze environment to experiment with different
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(a) Baseline: No Noise (b) Brownian Oscillators (c) Random Pixel Noise (d) On-Demand Pixel Noise

Figure 5: Pycolab Results. BYOL-Hindsight manages to explore similarly to BYOL-Explore and RND in com-
pleting the full maze in the deterministic baseline, but is otherwise much more robust to all forms of stochasticities.
Exploration performance is measured by the number of trackers touched during evaluation, in a 500-step episode.

(a) Sticky (Intrinsic Only) (b) Sticky (Ext. + Intrinsic) (c) Non-Sticky (Intrinsic Only) (d) Non-Sticky (Ext. + Intrinsic)

Figure 6: Montezuma Results. BYOL-Hindsight is extremely robust to the stochasticity due to sticky actions in
both regimes, and manages to preserve most of the original performance of BYOL-Explore in the non-sticky base-
line. Exploration performance is measured by the number of rooms reached during training, in the episodic setting.

types of stochasticities in a controlled manner. Figure 4 shows the map: The agent spawns in the top
right corner, and needs to explore its way past four (possibly stochastically oscillating) block elements
(V1/2, H1/2), into the lower right corner where a pair of coins are randomly spawned. The agent is
purely intrinsically motivated, and progress is measured by trackers located beyond each of the block
elements (R1–4). The world is partially observable, and the agent only has access to a 5×5 frame
(i.e. square radius 2) of its immediate surroundings as observations. Second, we use the popular RL
benchmark of Atari games [73], with preprocessed grayscale 84×84-pixel images as observations. We
consider some of the most commonly used hard-exploration games, including Montezuma’s Revenge.
Here we experiment with both pure-intrinsic and mixed (intrinsic plus extrinsic) exploration regimes.

Stochasticities In the Pycolab mazes, we use four different settings: “Baseline” (no noise), “Brown-
ian Oscillators” (a form of state-dependent noise, where oscillators perform random walks along their
axes of movements), “Random Pixel Noise” (a form of independent noise, which adds an extra layer of
randomly sampled pixels with independent probability 0.25), and “On-Demand Pixel Noise” (a form
of action-dependent noise, which does so if the no-op action is taken). In the Atari environments, we
use “sticky actions” [74] with stickiness 0.1 as the source of noise (a form of action-dependent noise).

Implementation In all experiments, we use the exact same implementation for BYOL-Explore as
given in [14] for Atari, including all hyperparameters such as target network EMA 0.99, open-loop
horizon 8, intrinsic reward normalization and prioritization, weight sharing between exploration and
RL closed-loop representations, and using VMPO [75] as the underlying algorithm. BYOL-Hindsight
starts from the same setup but includes hindsight as given in Figure 3. There are two differences from
the published version, which we use on both BYOL-Explore and BYOL-Hindsight for fair comparison:
The predictor MLP uses three hidden layers of 512 instead of one of 256, and the mixing coefficient (in
the mixed reward regime) is 0.2 instead of 0.1. We explicitly indicate the “paper” version in our results.
Specifically for BYOL-Hindsight, the generator, reconstructor, and critic are all MLPs with three
hidden layers of 512, the dimension of the generator noise ε and hindsight vector is 256, and λ=1.
Finally, where shown for reference, RND and ICM are also implemented exactly as described in [14].

5.1 Pycolab Results

Figure 5 reports results (100k learner steps, averaged over 3 seeds). First, the “Baseline” setting tests
nonspecificity: Since there is no noise except for the coins spawned at the end of the maze, we expect
predictive error-based exploration to perform similarly with or without hindsight. For reference, we
also show the performance of RND, which is in principle resilient to all types of stochasticity, because
it explores by simply learning to predict the output of a deterministic function. All three algorithms
manage to reach all four trackers (with RND eventually losing interest due to vanished rewards, since
the environment is small). Second, in the “Brownian Oscillators” setting, BYOL-Explore fails to ex-
plore much beyond the first two trackers, since it simply hangs around and reaps the stream of intrinsic
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(a) Alien (I) (b) Freeway (I) (c) Gravitar (I) (d) Hero (I) (e) Montez. (I) (f) Pitfall (I) (g) Priv. Eye (I) (h) Venture (I)

(i) Alien (E+I) (j) Freeway (E+I) (k) Gravitar (E+I) (l) Hero (E+I) (m) Montez. (E+I) (n) Pitfall (E+I) (o) Priv. Eye (E+I) (p) Venture (E+I)

Figure 7: Atari Results (Sticky Actions). BYOL-Hindsight (red) improves on the performance of BYOL-Explore
(blue) in the vast majority of scenarios. In line with the literature, as a proxy for “interesting behavior” in the
environment, exploration performance is measured in terms of the extrinsic reward obtained during evaluation.

rewards from the unpredictable motion of the oscillators. In contrast, BYOL-Hindsight (and RND)
both still manage to explore the entire maze. Third, in the “Random Pixel Noise” setting the results
are similar, except both BYOL-Explore and RND perform even worse due to the fact that the noise is
an entire layer of random pixels (i.e. extremely diffuse), which outcompetes all other dynamics of the
world in magnitude. Interestingly, while BYOL-Hindsight requires ever so slightly longer to adapt, it
manages to perform similarly to before. Even in the presence of high-magnitude, diffuse noise, the
use of hindsight to capture the noise quickly allows it to stop bothering to predict it. Fourth, the “On-
Demand Pixel Noise” setting is perhaps the most telling. BYOL-Explore is immediately trapped by the
noise-inducing action, which it selects endlessly to generate a stream of intrinsic rewards. Differently
to before, even RND suffers greatly, which makes sense because the agent is no longer guaranteed a
0.75 probability of observing the world’s unpolluted dynamics. In contrast, BYOL-Hindsight still
performs as nicely as in the noise-free setting, underscoring its robustness to all forms of stochasticity.

5.2 Atari Results

Figure 6 reports results for Montezuma’s Revenge (3M learner steps, averaged over 3 seeds). We
consider both intrinsic-only (using no extrinsic signal) and mixed (using extrinsic + intrinsic rewards)
regimes. Exploration performance is measured by the number of different rooms of the dungeon the
agent manages to discover over its lifetime—which requires understanding complex dynamics includ-
ing navigating around various timed traps and moving enemies, and collecting keys to open doors in se-
quence. In the sticky actions setting, BYOL-Explore completely flatlines in the intrinsic-only regime,
and only does marginally better in the mixed regime. In contrast, BYOL-Hindsight manages to explore
most of the rooms in both regimes, verifying the fact that the learned hindsight representations are able
to disentangle the (unpredictable) stickiness from the rest of the (predictable) dynamics of the world.
Next, to test nonspecificity we run the same algorithms on the non-sticky setting: In both regimes, we
observe that BYOL-Hindsight manages to preserve most of the original exploratory performance of
BYOL-Explore. Finally, Figure 7 reports broad-based results for Atari hard-exploration games (1.2M
learner steps, 1 seed), again for both intrinsic-only “(I)” and mixed “(E+I)” regimes. Following exist-
ing literature, we use the extrinsic reward obtained during evaluation as a proxy for an agent’s ability
to display “interesting behavior” in the environment. We observe that in the vast majority of cases
BYOL-Hindsight improves on the performance of BYOL-Explore (especially when the latter flatlines).
Overall, these results verify that Curiosity in Hindsight consistently bestows resilience to stickiness.

6 Conclusion

In this work, we studied the problem that stochasticity poses for predictive error-based exploration.
Theoretically, we refined our notion of curiosity to separate (learnable) epistemic knowledge from
(unlearnable) aleatoric variation during exploration. Algorithmically, we proposed a method for
learning (future-summarizing) representations of hindsight disentangled from (history-summarizing)
representations of context. Practically, we arrived at a simple and scalable framework for generating
(reducible) intrinsic rewards even in the presence of (irreducible) stochastic traps—without having to
estimate the problematic entropy term at all. Our perspective has tight connections with the study of
counterfactuals in policy evaluation [69, 70], credit assignment [76, 77], and fairness [78, 79]. Future
work may investigate the use of explicitly generative world models to map stochastic latents to out-
comes, which may have potential use beyond generating intrinsic rewards—in the RL algorithm itself.
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A Proofs of Propositions

To simplify our notation, we remove subscripts such thatX,A, Y denotes the transitionXt, At, Xt+1,
and Z denotes the latent Zt+1. Then the environment’s dynamics is given by τ(Y |x, a), the agent’s
policy is given by π(A|x), and the induced state visitation given by ρπ(X). The generator is denoted
pθ(Z|x, a, y), the reconstructor fη(x, a, z), and the critic gν(x, a, z). We start with several lemmas
that will be useful, the first being a pointwise version of Barber and Agakov’s variational lower bound:

Lemma 4 (Pointwise Barber-Agakov) Denote the pointwise mutual information:

PMIθ(x, a; z) := log
pθ(z|x, a)

pθ(z)
(20)

Then for any variational distribution q:

EZ∼pθ(·|x,a)PMIθ(x, a;Z) ≥ EZ∼pθ(·|x,a) log
q(Z|x, a)

pθ(Z)
(21)

Proof. Starting from the left hand side:

EZ∼pθ(·|x,a)PMIθ(x, a;Z) = EZ∼pθ(·|x,a) log
pθ(Z|x, a)

pθ(Z)
(22)

= EZ∼pθ(·|x,a) log
pθ(Z|x, a)

pθ(Z)
+ EZ∼pθ(·|x,a) log

q(Z|x, a)

q(Z|x, a)
(23)

= EZ∼pθ(·|x,a) log
q(Z|x, a)

pθ(Z)
+DKL

(
pθ(Z|x, a)‖q(Z|x, a)

)
(24)

≥ EZ∼pθ(·|x,a) log
q(Z|x, a)

pθ(Z)
(25)

which completes the proof. �

Next, we define a generic contrastive expression with K−1 “negative” samples of Z, and show that
taking its expectation with respect to those samples yields a valid (i.e. normalized) probability density:

Lemma 5 (Normalized Variational) Given independent samples z1:K−1 from pθ, define:

q(z|x, a, z1:K−1) :=
pθ(z) · egν(x,a,z)

1
K

(
egν(x,a,z) +

∑K−1
i=1 egν(x,a,zi)

) (26)

then the following defines a normalized density:

q(Z|x, a) := EZ1:K−1∼pK−1
θ

q(Z|x, a, Z1:K−1) (27)

Proof. The expectation integrates to one:∫
Z
q(z|x, a)dz =

∫
Z
EZ1:K−1∼pK−1

θ

pθ(z) · egν(x,a,z)
1
K

(
egν(x,a,z) +

∑K−1
i=1 egν(x,a,Zi)

)dz (28)

= E Z∼pθ
Z1:K−1∼pK−1

θ

egν(x,a,Z)

1
K

(
egν(x,a,Z) +

∑K−1
i=1 egν(x,a,Zi)

) (29)

= K · EZ1:K∼pKθ
egν(x,a,Z1)∑K
i=1 e

gν(x,a,Zi)
(30)

= EZ1:K∼pKθ

∑K
j=1 e

gν(x,a,Zj)∑K
i=1 e

gν(x,a,Zi)
= 1 (31)

which completes the proof. �
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These two results allow us to show that the information Z contains on a tuple x, a—with respect to
the generator parameterized as θ—is lower-bounded by the x, a-conditioned contrastive loss between
“positive” samples Z ∼ pθ(·|x, a) from the posterior and “negative” samples Z ∼ pθ from the prior:

Lemma 6 (State-Action Lower Bound) The x, a-wise mutual information satisfies:

EZ∼pθ(·|x,a)PMIθ(x, a;Z)

≥ E Z∼pθ(·|x,a)
Z1:K−1∼pK−1

θ

log
egν(x,a,Z)

1
K

(
egν(x,a,Z) +

∑K−1
i=1 egν(x,a,Zi)

) (32)

Proof. Use Lemmas 4 and 5, then Jensen’s inequality:

EZ∼pθ(·|x,a)PMIθ(x, a;Z)

≥ EZ∼pθ(·|x,a) log
q(Z|x, a)

pθ(Z)
(33)

= EZ∼pθ(·|x,a) logEZ1:K−1∼pK−1
θ

q(Z|x, a, Z1:K−1)

pθ(Z)
(34)

≥ E Z∼pθ(·|x,a)
Z1:K−1∼pK−1

θ

log
q(Z|x, a, Z1:K−1)

pθ(Z)
(35)

= E Z∼pθ(·|x,a)
Z1:K−1∼pK−1

θ

log
egν(x,a,Z)

1
K

(
egν(x,a,Z) +

∑K−1
i=1 egν(x,a,Zi)

) (36)

which completes the proof. �

Next, we show that our invariance loss (Objective 2) for a tuple x, a, z is equal to the pointwise mut-
ual information in the limit of infinitely large negative batches, assuming an optimal critic parameter:

Lemma 7 (Pointwise Asymptotic Equality) Define the pointwise invariance loss:

LKθ,ν(x, a, z) := EZ1:K−1∼pK−1
θ

log
egν(x,a,z)

1
K

(
egν(x,a,z) +

∑K−1
i=1 egν(x,a,Zi)

) (37)

and the optimal critic parameter:

ν∗ := argmax
ν

E X∼ρπ
A∼π(·|X)
Y∼τ(·|X,A)

Z∼pθ(·|X,A,Y )

LKθ,ν(X,A,Z) (38)

Then limK→∞ LKθ,ν∗(x, a, z) = PMIθ(x, a; z).

Proof. The E[LKθ,ν(X,A,Z)] term is just the InfoNCE loss between variables Z and X,A, so we
know that ν∗ satisfies gν∗(x, a, z) = log pθ(z|x,a)

pθ(z)
+ c(x, a). Substituting this back into LKθ,ν(x, a, z):

lim
K→∞

LKθ,ν∗(x, a, z) (39)

= lim
K→∞

EZ1:K−1∼pK−1
θ

log
egν∗ (x,a,z)

1
K

(
egν∗ (x,a,z) +

∑K−1
i=1 egν∗ (x,a,Zi)

) (40)

= lim
K→∞

EZ1:K−1∼pK−1
θ

log

pθ(z|x,a)
pθ(z)

1
K

(
pθ(z|x,a)
pθ(z)

+
∑K−1
i=1

pθ(Zi|x,a)
pθ(Zi)

) (41)

= lim
K→∞

EZ1:K−1∼pK−1
θ

log
pθ(z|x, a)

pθ(z)
− log

pθ(z|x,a)
pθ(z)

+
∑K−1
i=1

pθ(Zi|x,a)
pθ(Zi)

K

 (42)

15



= log
pθ(z|x, a)

pθ(z)
− lim
K→∞

log

pθ(z|x,a)
pθ(z)

+K − 1

K
= PMIθ(x, a; z) (43)

which completes the proof. �

This gives us what we need to derive Proposition 1, which we restate using our subscript-less notation:

Proposition 8 (Optimal Invariance) The (state-action) invariance bonus satisfies:

RK,inv.
θ,ν (x, a) ≤ EZ∼pθ(·|x,a)PMIθ(x, a;Z) (44)

and for the optimal ν∗ the bound is asymptotically tight as K →∞:

lim
K→∞

RK,inv.
θ,ν∗ (x, a) = EZ∼pθ(·|x,a)PMIθ(x, a;Z) (45)

Proof. Use Lemma 6 for the first part:

RK,inv.
θ,ν (x, a) := EZ∼pθ(·|x,a)L

K
θ,ν(x, a, Z) (46)

= E Z∼pθ(·|x,a)
Z1:K−1∼pK−1

θ

log
egν(x,a,Z)

1
K

(
egν(x,a,Z) +

∑K−1
i=1 egν(x,a,Zi)

) (47)

≤ EZ∼pθ(·|x,a)PMIθ(x, a;Z) (48)

and use Lemma 7 for the second part:

lim
K→∞

RK,inv.
θ,ν∗ (x, a) = lim

K→∞
EZ∼pθ(·|x,a)L

K
θ,ν∗(x, a, Z) (49)

= EZ∼pθ(·|x,a) lim
K→∞

LKθ,ν∗(x, a, Z) (50)

= EZ∼pθ(·|x,a)PMIθ(x, a;Z) (51)

which completes the proof. �

Next, we show that Proposition 2 is true, which we similarly restate using our subscript-less notation:

Proposition 9 (Optimal Reconstruction) Denote with Rrec.
θ,η(x, a) the reconstruction bonus as in

Objective 1,RK,inv.
θ,ν (x, a) the invariance bonus as in Objective 2, and their weighted sum for any λ:

J(θ, η, ν;λ) := E X∼ρπ
A∼π(·|X)

[
1

λ
Rrec.
θ,η(X,A) + lim

K→∞
RK,inv.
θ,ν (X,A)

]
(52)

Then its minimax optimal value is zero:

min
θ,η

max
ν

J(θ, η, ν;λ) = 0 (53)

Proof. Take any MDP, as in Figure 1(a). By reparameterization, we know there exists an equivalent
graphical representation under which Z is exogenous, as in Figure 1(b). Assuming realizability, let η∗
be such that fη∗ =f , and let θ∗ be such that pθ∗(Z|x, a, y)=pη∗(Z|x, a, y) for any x, a, y. First, by
construction we have that Z ⊥ X,A, so the mutual information between Z and X,A must be zero:

E X∼ρπ
A∼π(·|X)

[
lim
K→∞

RK,inv.
θ,ν∗ (X,A)

]
= E X∼ρπ

A∼π(·|X)
Z∼pθ(·|X,A)

PMIθ(X,A;Z) (54)

= Iθ[X,A;Z] = 0 (55)

for optimal critic parameter ν∗, where the first equality uses Proposition 1. Second, by consistency of
counterfactuals fη∗(x, a, Z)=y for any Z∼pθ∗(·|x, a, y), so the reconstruction term is also zero. It
is easy to verify the optimal critic is a maximizer, and the optimal generator/reconstructor minimizers,
which completes the proof. �
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Finally, we recall the following basic relationship:

Lemma 10 (Conditional Mutual Information) Conditioned on any x, a, we have that:

Iθ[Y ;Z|x, a] = H[Y |x, a] + Hθ[Y |x, a, Z] (56)

Proof. Starting from the left hand side:

Iθ[Y ;Z|x, a] := EZ∼pθDKL
(
pθ(Y |x, a, Z)‖τ(Y |x, a)

)
(57)

= E Z∼pθ
Y∼pθ(·|x,a,Z)

log pθ(Y |x, a, Z)− E Z∼pθ
Y∼pθ(·|x,a,Z)

τ(Y |x, a) (58)

= −
∫
Z pθ(z)Hθ[Y |x, a, z]dz − E Y∼τ(·|x,a)

Z∼pθ(·|x,a,Y )

τ(Y |x, a) (59)

= H[Y |x, a]−Hθ[Y |x, a, Z] (60)

which completes the proof. �

Now, in our structural causal model, by construction Z captures all sources of noise—that is, there is
no residual noise in each outcome Y . However, for the purposes of optimization, while learning η we
let the residual error be captured by a Gaussian “log-likelihood” (note that λ plays the role of “2σ2”):

log pη(Y |x, a, z) := −1

2
log(λπ)− 1

λ

(
Y − fη(x, a, z)

)2
(61)

and note that θ also induces a log-likelihood of the “ground-truth” conditional:

log pθ(Y |x, a, z) := log
pθ(z|x, a, Y )τ(Y |x, a)π(a, x)ρπ(x)∫
Y pθ(z|x, a, y)τ(y|x, a)π(a|x)ρπ(x)dy

(62)

Now, recall the reconstruction loss and (state-action) reconstruction bonus:

Lη(x, a, z, y) :=
∥∥∥y − fη(x, a, z)

∥∥∥2
2

(63)

Rrec.
θ,η(x, a) := E Y∼τ(·|x,a)

Z∼pθ(·|x,a,Y )

Lη(x, a, Z, Y ) (64)

as well as the invariance loss and (state-action) invariance bonus:

LKθ,ν(x, a, z) := E (X1,...,XK−1)∼
∏K−1
i=1 ρπ

(A1,...,AK−1)∼
∏K−1
i=1 π(·|Xi)

(Y1,...,YK−1)∼
∏K−1
i=1 τ(·|Xi,Ai)

(Z1,...,ZK−1)∼
∏K−1
i=1 pθ(·|Xi,Ai,Yi)

log
egν(x,a,z)

1
K

(
egν(x,a,z) +

∑K−1
i=1 egν(x,a,Zi)

) (65)

RK,inv.
θ,ν (x, a) := EZ∼pθ(·|x,a)L

K
θ,ν(x, a, Z) (66)

Moreover, recall the hindsight intrinsic reward function:

Rθ,η,ν∗(x, a) :=
1

λ
Rrec.
θ,η(x, a) + lim

K→∞
RK,inv.
θ,ν∗ (x, a) (67)

We can now show that Theorem 3 is true, which we similarly restate using our subscript-less notation:

Theorem 11 (Optimistic Exploration) Let λ satisfy the inequality 1
2 log(λπ) ≤ Hθ[Y |x, a, Z]+

DKL
(
pθ(Z|x, a)‖pθ(Z)

)
, with π here being the mathematical constant (not the agent’s policy). Then:

Rθ,η,ν∗(x, a) ≥ DKL
(
τ(Y |x, a)‖τθ,η(Y |x, a)

)
(68)

where τθ,η(Y |x, a) := EZ∼pθpη(Y |x, a, Z) denotes the learned environment model. Furthermore,
for optimal model parameters θ∗, η∗ we have that the intrinsic rewardRθ∗,η∗,ν∗(x, a) = 0 for all x, a.
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Proof. Use Proposition 8, then the constraint on λ, then Lemma 10:

Rθ,η,ν∗(x, a) := 1
λR

rec.
θ,η(x, a) + lim

K→∞
RK,inv.
θ,ν∗ (x, a) (69)

= E Y∼τ(·|x,a)
Z∼pθ(·|x,a,Y )

1
λ

(
Y − fη(x, a, Z)

)2
+ EZ∼pθ(·|x,a)PMIθ(x, a;Z) (70)

= E Y∼τ(·|x,a)
Z∼pθ(·|x,a,Y )

1
λ

(
Y − fη(x, a, Z)

)2
+DKL

(
pθ(Z|x, a)‖pθ(Z)

)
(71)

≥ −E Y∼τ(·|x,a)
Z∼pθ(·|x,a,Y )

log pη(Y |x, a, Z)−Hθ[Y |x, a, Z] (72)

= −E Y∼τ(·|x,a)
Z∼pθ(·|x,a,Y )

log pη(Y |x, a, Z) + Iθ[Y ;Z|x, a]−H[Y |x, a] (73)

= −E Y∼τ(·|x,a)
Z∼pθ(·|x,a,Y )

log pη(Y |x, a, Z)← remaining stochasticity

+ EY∼τ(·|x,a)DKL
(
pθ(Z|x, a, Y )‖pθ(Z|x, a)

)
← hindsight information

− EY∼τ(·|x,a)
[
− log τ(Y |x, a)

]
← total stochasticity (74)

≥ −EY∼τ(·|x,a)
[
EZ∼pθ(·|x,a,Y ) log pη(Y |x, a, Z)

−DKL
(
pθ(Z|x, a, Y )‖pθ(Z|x, a)

)
+DKL

(
pθ(Z|x, a, Y )‖pη(Z|x, a, Y )

)]
+ EY∼τ(·|x,a) log τ(Y |x, a) (75)

= −EY∼τ(·|x,a) logEZ∼pθpη(Y |x, a, Z) + EY∼τ(·|x,a) log τ(Y |x, a) (76)

= −EY∼τ(·|x,a) log τθ,η(Y |x, a) + EY∼τ(·|x,a) log τ(Y |x, a) (77)

= DKL
(
τ(Y |x, a)‖τθ,η(Y |x, a)

)
(78)

which completes the proof. �

The intuition is as follows: Assuming realizability, at convergence “hindsight information” and “total
stochasticity” cancel (i.e. neither more nor less), and the “remaining stochasticity” term goes to zero.
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