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Abstract

Accurate polyp segmentation is essential for early colorectal cancer detection, yet1

achieving reliable boundary localization remains challenging due to low mucosal2

contrast, uneven illumination, and color similarity between polyps and surrounding3

tissue. Conventional methods relying solely on RGB information often struggle4

to delineate precise boundaries due to weak contrast and ambiguous structures5

between polyps and surrounding mucosa. To establish a quantitative foundation6

for this limitation, We analyzed polyp–background contrast in the wavelet domain,7

revealing that grayscale representations consistently preserve higher boundary8

contrast than RGB images across all frequency bands. This finding suggests that9

boundary cues are more distinctly represented in the grayscale domain than in the10

color domain. Motivated by this finding, we propose a segmentation framework that11

integrates grayscale and RGB representations through complementary frequency-12

consistent interaction, enhancing boundary precision while preserving structural13

coherence. Extensive experiments on four benchmark datasets demonstrate that the14

proposed approach achieves superior boundary precision and robustness compared15

to conventional methods.16

1 Introduction17

Accurate polyp segmentation is vital for early colorectal cancer detection but remains difficult due18

to low mucosal contrast, uneven illumination, and strong visual similarity between polyps and19

surrounding mucosa [1]. These conditions blur polyp boundaries, particularly in small or flat cases,20

making reliable delineation challenging. Although recent boundary-aware methods improve edge21

perception, their dependence on RGB inputs limits robustness under contrast variations. To investigate22

this limitation, we performed a wavelet-based contrast analysis between RGB and grayscale images.23

The contrast index (CI), defined as CI = |µpolyp − µbackground|/(µpolyp + µbackground + ϵ), measures the24

distinction between polyp and background regions using the mean of absolute wavelet coefficients.25

As shown in Fig. 1, grayscale consistently achieves higher CI across all sub-bands, indicating that26

boundary cues are more distinct in the intensity domain. Building on this evidence, we propose a27

segmentation approach that integrates grayscale and RGB representations through frequency-band28

interaction. By encouraging interaction between corresponding wavelet sub-bands of both modalities,29

contrast-rich grayscale features refine RGB-derived spatial structures, improving boundary precision30

while preserving overall coherence.31

2 Related Work32

Polyp segmentation has become a key task in computer-aided colorectal cancer screening, where33

precise boundary delineation is essential for accurate diagnosis and treatment planning. A variety of34
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Figure 1: Structural contrast comparison between RGB and grayscale images in the wavelet domain,
showing consistently higher contrast for grayscale across all detail sub-bands.

Figure 2: Proposed wavelet-based cross-band integration framework that fuses frequency-consistent
information from RGB and grayscale features for enhanced boundary representation.

deep learning–based models have been developed for polyp segmentation [11, 15, 14, 8, 5]. Among35

these, boundary-aware models such as PraNet [6], CaraNet [10], MEGANet [4], and Polyper [12] aim36

to improve boundary localization through attention- and edge-guided mechanisms for more accurate37

polyp delineation. Nevertheless, most of these approaches primarily rely on RGB representations,38

which capture chromatic appearance but insufficiently describe structural contrast.39

3 Method40

The proposed model adopts a dual-encoder structure designed to leverage the complementary char-41

acteristics of RGB and grayscale modalities. Each encoder is based on Res2Net [7] and extracts42

hierarchical feature representations: the RGB encoder captures chromatic and textural cues, while43

the grayscale encoder focuses on contrast-driven structural patterns that are effective for boundary44

discrimination. Features from corresponding encoder stages are processed within the decoder through45

two key components: the Band-Specific Window Cross-Attention (BS-WCA) module and the Cas-46

cade Dilated Fusion (CDF) block. The BS-WCA module performs frequency-aligned interaction47

between the RGB and grayscale features by selectively exchanging information across identical48

wavelet sub-bands, allowing high-frequency grayscale details to refine RGB-derived structural fea-49

tures. The CDF block then integrates the refined multi-scale features through dilated convolutions,50

preserving both fine-grained boundary precision and global contextual consistency. As illustrated51
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Table 1: Quantitative comparison of polyp segmentation methods across four benchmark datasets,
evaluated by mean Dice and IoU scores (mean ± standard deviation) averaged over 10 random runs.

Methods Kvasir ClinicDB ColonDB ETIS

mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Ours 0.885 ± 0.021 0.822 ± 0.019 0.926 ± 0.014 0.862 ± 0.023 0.913 ± 0.021 0.840 ± 0.042 0.922 ± 0.029 0.821 ± 0.029
Polyper 0.867 ± 0.014 0.796 ± 0.020 0.914 ± 0.019 0.841 ± 0.021 0.868 ± 0.042 0.796 ± 0.035 0.888 ± 0.047 0.760 ± 0.047

MEGANet 0.863 ± 0.011 0.802 ± 0.018 0.909 ± 0.011 0.801 ± 0.077 0.802 ± 0.083 0.704 ± 0.059 0.747 ± 0.097 0.598 ± 0.077

CRCNet 0.879 ± 0.015 0.815 ± 0.018 0.910 ± 0.052 0.854 ± 0.018 0.866 ± 0.064 0.800 ± 0.046 0.665 ± 0.027 0.582 ± 0.129

CaraNet 0.727 ± 0.023 0.628 ± 0.035 0.836 ± 0.006 0.702 ± 0.014 0.760 ± 0.056 0.651 ± 0.038 0.784 ± 0.078 0.633 ± 0.105

ConvSegNet 0.856 ± 0.008 0.765 ± 0.022 0.902 ± 0.020 0.810 ± 0.025 0.884 ± 0.033 0.756 ± 0.044 0.859 ± 0.055 0.667 ± 0.077

DUCKNet 0.818 ± 0.016 0.751 ± 0.019 0.878 ± 0.026 0.791 ± 0.033 0.683 ± 0.161 0.570 ± 0.073 0.383 ± 0.205 0.321 ± 0.099

PraNet 0.650 ± 0.021 0.524 ± 0.032 0.793 ± 0.032 0.648 ± 0.030 0.784 ± 0.063 0.620 ± 0.037 0.666 ± 0.090 0.423 ± 0.092

UNet 0.775 ± 0.013 0.668 ± 0.025 0.855 ± 0.019 0.762 ± 0.024 0.802 ± 0.083 0.704 ± 0.059 0.549 ± 0.186 0.382 ± 0.099

in Fig. 2, the integration of BS-WCA and CDF within a dual-encoder–decoder framework enables52

model to exploit contrast-rich intensity information while maintaining the contextual advantages of53

RGB representations, resulting in more stable and accurate polyp boundary segmentation.54

4 Experimental Results55

Datasets and Evaluation The experiments utilized four widely used polyp segmentation datasets:56

Kvasir-SEG (1,000 images) [9], CVC-ClinicDB (612 images) [3], CVC-ColonDB (380 images)57

[2], and ETIS (196 images) [13]. All datasets were partitioned into training, validation, and testing58

sets to ensure consistent evaluation across varying data distributions. Performance was measured59

using the Dice coefficient and Intersection over Union (IoU), following standard practices in polyp60

segmentation.61

Implementation Details All experiments were implemented using PyTorch and Torchvision and con-62

ducted on a single NVIDIA GPU (CUDA 11.7, Ubuntu 20.04, Python 3.9, PyTorch 1.13, Torchvision63

0.14). The proposed model and all baseline models were trained and evaluated with a batch size of 8.64

Results. As shown in Table 1, the proposed method consistently outperforms existing approaches65

across all four benchmark datasets in terms of both Dice and IoU scores. The improvement is66

particularly evident in the overall average performance, demonstrating the benefit of jointly leveraging67

grayscale and RGB representations. Compared to recent conventional models, the proposed model68

achieves higher mean Dice and IoU values while maintaining stable performance across datasets of69

varying scales and imaging conditions. These results indicate that the integration of intensity-based70

and color-based representations provides a more comprehensive feature space for polyp segmentation.71

72

5 Discussion73

This study primarily evaluates region-level segmentation performance using Dice and IoU. To74

better understand the behavior of the proposed model, further analyses should include boundary-75

sensitive metrics for contour accuracy, qualitative comparisons across imaging conditions, and76

frequency-domain ablations to assess modality contributions. Such evaluations would provide a more77

comprehensive view of how grayscale–RGB integration influences segmentation performance.78

6 Conclusion79

This work introduced a dual-encoder segmentation framework that integrates grayscale and RGB80

representations through frequency-band interaction. Although the proposed model does not ex-81

plicitly model boundaries, its design naturally facilitates boundary-aware representation through82

high-frequency information exchange. The design effectively combines contrast-rich intensity cues83

with color-based features, achieving consistent performance improvements across four benchmark84

datasets. Future work will extend this framework with boundary-sensitive evaluations and frequency-85

domain analyses to further clarify its contribution to robust polyp boundary segmentation.86
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7 Potential Negative Societal Impact87

While the proposed method aims to improve segmentation reliability in medical imaging, several88

potential risks should be noted. Generalization across imaging domains may be limited, as variations89

in endoscopic devices or acquisition settings can influence performance consistency. In addition,90

limited diversity in publicly available training data could result in biased or uneven segmentation91

outcomes across populations. To mitigate these risks, careful cross-domain validation, transparent92

dataset reporting, and responsible integration into medical workflows are essential to ensure equitable93

and trustworthy application.94
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