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Abstract
While the impressive performance of modern neural networks is often attributed to their capacity
to efficiently extract task-relevant features from data, the mechanisms underlying this rich feature
learning regime remain elusive. In this work, we derive exact solutions to a minimal model that
transitions between lazy and rich learning, precisely elucidating how unbalanced layer-specific ini-
tialization variances and learning rates conspire to influence the degree of feature learning through
a set of conserved quantities that constrain and modify the geometry of learning trajectories. We ex-
tend our analysis to more complex linear models and to shallow nonlinear networks with piecewise
linear activation functions. In linear networks, rapid feature learning only occurs with balanced
initializations, while in nonlinear networks, unbalanced initializations that promote faster learning
in earlier layers can accelerate rich learning. Through a series of experiments, we provide evidence
that this unbalanced rich regime drives feature learning in deep finite-width networks, promotes
interpretability of early layers in CNNs, reduces the sample complexity of learning hierarchical
data, and decreases the time to grokking in modular arithmetic.

1. Introduction
It is widely believed that the impressive performance of deep learning models lies in their capacity
to efficiently extract task-relevant features from data. However, understanding this feature acqui-
sition requires unraveling a complex interplay between datasets, architectures, and optimization
algorithms. Within this framework, two distinct regimes have emerged: lazy and rich.
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Figure 1: Unbalanced initializations lead to rapid rich learning and generalization. We follow
the same setup used in Fig. 1 of Chizat et al. [14]: a wide two-layer ReLU student network f(x; θ) =∑h

i=1 aimax{0, w⊺
i x} trained on labels generated by a narrow two-layer teacher. (a) and (b) show

the training trajectories of |ai|wi: (a) small scale leads to rich and large scale to lazy, as in [14]; (b)
even at small scale, initialization geometry can move the network between rich and lazy. (c) shows
test loss and kernel distance from initialization computed through training over a sweep of τ and δ.

Lazy regime. Seminal work by Jacot et al. [30] demonstrated that in the infinite-width limit, the
Neural Tangent Kernel (NTK) converges to a deterministic limit, making the learning dynamics akin
to kernel regression. This lazy or kernel regime has been characterized by convex dynamics with
minimal movement in parameter space, static hidden representations, exponential learning curves,
and implicit biases aligned with a reproducing kernel Hilbert space norm [1, 2, 16, 18, 75]. Chizat
et al. [14] showed that the lazy regime is contingent on the scale of the network at initialization,
but may have worse generalization error. While the lazy regime offers insights into the network’s
convergence to a global minimum, it does not fully capture the generalization capabilities.

Rich regime. In contrast to the lazy regime, the rich or feature-learning or active regime is
distinguished by a learned NTK that evolves through training, non-convex dynamics traversing
between saddle points [31, 60, 61], sigmoidal learning curves, and simplicity biases such as low-
rankness [40] or sparsity [68]. Recent analyses have shown that beyond scale, other aspects of the
initialization can substantially impact the extent of feature learning, such as the effective rank [42],
layer-specific initialization variances [43, 70, 71], and large learning rates [8, 15, 39, 73]. However,
as shown in Fig. 1, for nonlinear networks, unbalanced initializations can induce both rich and
lazy dynamics, creating a complex phase portrait of learning regimes influenced by both scale and
geometry. Building on these observations, our study aims to precisely understand how layer-specific
initialization variances and learning rates determine the transition between lazy and rich learning in
finite-width networks, as well as the inductive biases of both regimes.

2. A Minimal Model of Lazy and Rich Learning with Exact Solutions
We explore an illustrative setting simple enough to admit exact gradient flow dynamics, yet com-
plex enough to showcase lazy and rich learning regimes. We study a two-layer linear network
with a single hidden neuron defined by the map f(x; θ) = aw⊺x where a ∈ R, w ∈ Rd are
the parameters. We examine how the parameter initializations a0, w0 and the layer-wise learning
rates ηa, ηw influence the training trajectory in parameter space, function space (β = aw), and the
evolution of the the NTK matrix K = X

(
ηwa

2Id + ηaww
⊺
)
X⊺. Even when the global mini-

mum β∗ is unique, the rescaling symmetry between a and w results in a manifold of minima in
parameter space, which is a one-dimensional hyperbola and has two distinct branches for posi-
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Figure 2: Conservation of δ constrains the trajectory to (a) a one-sheeted hyperboloid for δ < 0,
(b) a double cone for δ = 0, and (c) a two-sheeted hyperboloid for δ > 0. Dashed lines indicate
theory; minima are shown in red and equivalent β0 initializations in gray. The surface is colored
according to training loss (blue higher and red lower). When X⊺X is whitened (d), we can solve
for β(t) (black dashed lines). When X⊺X is low-rank (e), we can solve for the final solution (black
dots) if the interpolating manifold is one-dimensional (Theorem 1) and β(t) if δ = ±∞.

tive and negative a. The symmetry also imposes a constraint on the trajectory, maintaining the
difference δ = ηwa

2 − ηa∥w∥2 ∈ R throughout training, see Fig. 2 and Appendix B.1 for de-
tails. An upstream initialization occurs when δ > 0, a balanced initialization when δ = 0, and
a downstream initialization when δ < 0. For whitened input X⊺X = Id, the gradient flow dy-
namics, ȧ = ηa

(
w⊺β∗ − a∥w∥2

)
, ẇ = ηw

(
aβ∗ − a2w

)
, can be solved exactly, as discussed in

Appendix B.2, and shown in Fig. 5.
Alternatively, we can study the influence of the initialization geometry by examining the dy-

namics in function space (β = aw), which is governed by the ODE,

β̇ = −
(
ηwa

2Id + ηaww
⊺)︸ ︷︷ ︸

M

(X⊺Xβ −X⊺y) . (1)

Notice that the matrix M also characterizes the NTK matrix, K = XMX⊺, so that understanding
the evolution of M offers a method to discern between lazy and rich learning. At all β ̸= 0, we
can express M = κ+δ

2 Id + κ−δ
2

ββ⊺

∥β∥2 , where κ =
√
δ2 + 4ηaηw∥β∥2. (See Appendix B.3 for

a derivation.) Upstream: When δ ≫ 0, M ≈ δId. Here the dynamics of β converge to the
trajectory of linear regression. Along this trajectory, the NTK matrix remains constant, confirming
the dynamics are lazy. Balanced: When δ = 0, M =

√
ηaηw∥β∥(Id + ββ⊺

∥β∥2 ). Here the dynamics
balance between following the lazy trajectory and attempting to fit the task by only changing in
norm. As a result, the NTK changes in both magnitude and direction through training, so the
dynamics are rich. Downstream: When δ ≪ 0, M ≈ |δ| ββ

⊺

∥β∥2 and β follows projected gradient
descent. Along this trajectory, the NTK matrix doesn’t evolve. However, if β0 is not aligned to β∗,
then at some point the dynamics of β will slowly align. In this second alignment phase, the NTK
matrix will change, so the dynamics are initially lazy followed by a delayed rich phase.

Determining the implicit bias via mirror flow. So far we have considered that X⊺X is
whitened, ensuring the existence of a unique least squares solution β∗. Now we consider the case
when X⊺X is low-rank so that there exist infinitely many interpolating solutions in function space.
By studying the structure ofM , we can characterize how δ determines the interpolating solution the
dynamics converge to. Extending a time-warped mirror flow analysis strategy pioneered by Azulay
et al. [7] to the case of δ < 0 (see Appendix B.4), we prove the following theorem, which shows a
tradeoff between the minimum norm solution and preserving the direction of the initialization β0.
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Theorem 1 For a single hidden neuron linear network, for all δ ∈ R, and initialization β0 such
that ∥β(t)∥ > 0, ∀t ≥ 0, if the gradient flow solution β(∞) satisfies Xβ(∞) = y, then,

β(∞) = argminβ∈RdΨδ(β)− ψδ
β0

∥β0∥
⊺
β s.t. Xβ = y (2)

where Ψδ(β) =
1
3

(√
δ2 + 4∥β∥2 − 2δ

)√√
δ2 + 4∥β∥2 + δ and ψδ =

√√
δ2 + 4∥β0∥2 − δ.

Generalization to wide linear networks. The advantage of studying the learning dynamics in
function space is that the results can be generalized to wide linear networks with multiple outputs
as shown in the following lemma.

Lemma 2 We consider the dynamics of a two-layer linear network with h hidden neurons and c
outputs, f(x; θ) = A⊺Wx, where W ∈ Rh×d and A ∈ Rh×c. Denote βi = wia

⊺
i ∈ Rd×c and

assume ∥βi∥F ̸= 0 for all i ∈ [h]. Then, the gradient flow dynamics can be written as,

vec
(
β̇
)
= −Mvec(X⊺Xβ −X⊺Y ), (3)

whereM =
∑h

i=1Mi andMi =
(
κi+δi

2

)
β⊺
i βi

∥βi∥2F
⊕
(
κi−δi

2

)
βiβ

⊺
i

∥βi∥2F
, with κi =

√
δ2i + 4ηAηW ∥βi∥2F .

With additional restrictions on the initialization, we can obtain a more general version of Theorem 1
for wide or deep linear networks (Theorem 10 and Theorem 20 in Appendix C).

3. Piecewise Linear Networks
We now take a first step to extend our linear analysis to piecewise linear networks with activation
functions of the form σ(z) = max{z, γz}. We consider the dynamics of a two-layer piecewise
linear network without biases, f(x; θ) = a⊺σ(Wx), where W ∈ Rh×d and a ∈ Rh. As in the linear
setting, each hidden neuron is associated with a conserved quantity, δi = ηwa

2
i − ηa∥wi∥2 [17].

However, unlike the linear setting, the neuron’s contribution to the output f(xj ; θ) is regulated by
whether the input xj is in the neuron’s active halfspace. Let C ∈ Rh×n be the matrix of cij =
σ′(w⊺

i xj) and let ρj = f(xj ; θ)− yj . Then, we can express the dynamics of βi as,

β̇i = −
(
a2i Id + wiw

⊺
i

)︸ ︷︷ ︸
Mi

∑n
j=1 cijxjρj︸ ︷︷ ︸

ξi

. (4)

Unlike in the linear setting, ξi is not shared for all neurons because of its dependence on cij . Ad-
ditionally, the NTK matrix depends on Mi and C, with elements Kjk =

∑h
i=1 cijx

⊺
jMixkcik. We

consider a signed spherical coordinate transformation separating the dynamics of βi into its direc-
tional β̂i = sgn(ai)

βi

∥βi∥ and radial µi = sgn(ai)∥βi∥ components, such that βi = µiβ̂i. Here, β̂i
determines the direction and orientation of the halfspace where the ith neuron is active, while µi
determines the slope of the contribution in this halfspace. These coordinates evolve according to,

µ̇i = −
√
δ2i + 4ηaηwµ2i β̂

⊺
i ξi,

˙̂
βi = −

√
δ2i + 4ηaηwµ2i + δi

2µi

(
Id − β̂iβ̂

⊺
i

)
ξi. (5)

Downstream. When δi ≪ 0, Mi ≈ |δi|β̂iβ̂⊺i and the dynamics are approximately ∂tβ̂i = 0 and
∂tµi = −|δi|β̂⊺i ξi. Regardless of ξi, β̂i(t) = β̂i(0), which implies the overall partition map cannot
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Figure 3: Impact of upstream initializations in practice. Here we provide evidence that an up-
stream initialization (a) drives feature learning through changing activation patterns, (b) promotes
interpretability of early layers in CNNs, (c) reduces the sample complexity of learning hierarchical
data, and (d) decreases the time to grokking in modular arithmetic. Here, α ≫ 1 and α ≪ 1 corre-
spond to upstream and downstream initializations, respectively. See Appendix E.3 for details.

change, nor the activation patterns C, nor Mi. Thus, the NTK remains constant, resulting in lazy
learning. If there is an insufficient number of a hidden neurons to fit the data, then there will be a
second, slow rich alignment phase. As in the linear case, the magnitude of δi will control the delay.
Balanced. When δi = 0, Mi =

√
ηaηw|µi|(Id + β̂iβ̂

⊺
i ) and the dynamics simplify to, ∂tβ̂i =

−√
ηaηwsgn(µi)(Id − β̂iβ̂

⊺
i )ξi and ∂tµi = −2

√
ηaηw|µi|β̂⊺i ξi. For vanishing initializations where

∥βi(0)∥ → 0 for all i, we can decouple the dynamics into two distinct phases of training. Partition
alignment. At vanishing scale, the output f(x; θ0) ≈ 0 for all input x, so that ξi ≈ −

∑n
j=1 cijxjyj ,

independent of the other hidden neurons. Radial dynamics slow down relative to directional dy-
namics, and the function’s output will remain small as each neuron aligns decoupled from the rest.
Data fitting. Eventually, the magnitudes for the βi will have grown such that f(x; θ) ̸≈ 0 and thus
the residual will depend on all βi. In this phase, the radial dynamics dominate the learning driving
the network to fit the data. However, it is possible for directions to continue to change.
Upstream. When δi ≫ 0, the matrix Mi ≈ δiId and the dynamics are approximately ∂tβ̂i =
−δiµ−1

i (Id − β̂iβ̂
⊺
i )ξi and ∂tµi = −δiβ̂⊺i ξi. Unlike in the balanced setting, here Mi is independent

of βi and stays constant through training. Yet, as the βi change in direction, so can C, and thus
the NTK. This setting is unique, because it is rich due to a changing activation pattern, but the
dynamics do not move far in parameter space. Furthermore, unlike in the balanced scenario where
scale adjusts the speed of radial dynamics, here it regulates the speed of directional dynamics, with
vanishing initializations prompting an extremely fast alignment phase, as observed in Fig. 1.

Unbalanced initializations in diverse domains. In our analysis, we find that upstream initial-
izations can lead to rapid rich learning in nonlinear networks, explaining results shown in Fig. 1.
Further experiments in Fig. 3 suggest that upstream initializations have an impact across various
domains of deep learning: (a) Standard initializations see significant NTK evolution early in train-
ing [19]. We show the movement is linked to changes in activation patterns (Hamming distance)
rather than large parameter shifts. Adjusting the initialization variance of the first and last layers
can amplify or diminish this movement. (b) Filters in CNNs trained on image classification tasks
often align with edge detectors [33]. We show that adjusting the learning speed of the first layer
can enhance or degrade this alignment. (c) Deep learning models are believed to avoid the curse of
dimensionality and learn with limited data by exploiting hierarchical structures in real-world tasks.
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Using the Random Hierarchy Model [55] as a framework for synthetic hierarchical tasks, we show
that modifying the initialization geometry can decrease or increase the sample complexity of learn-
ing. (d) Networks trained on simple modular arithmetic tasks will suddenly generalize long after
memorizing their training data [57]. This behavior, termed grokking, is thought to result from a
transition from lazy to rich learning [34, 46] and believed to be important towards understanding
emergent phenomena [53]. We show that decreasing the variance of the embedding in a single-layer
transformer (< 6% of all parameters) significantly reduces the time to grokking. Overall, our ex-
periments suggest that upstream initializations may play a crucial role in neural network behaviors.

4. Conclusion
We derived exact solutions to a minimal model that can transition between lazy and rich learning
to precisely elucidate how unbalanced layer-specific initialization variances and learning rates de-
termine the degree of feature learning. We extended our analysis to wide and deep linear networks
and to shallow piecewise linear networks. We find through theory and empirics that unbalanced
initializations, which promote faster learning at earlier layers, can actually accelerate rich learning.
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Appendix A. Related Work

Linear networks. Significant progress in studying the rich regime has been achieved in the con-
text of linear networks. In this setting, f(x; θ) = β(θ)⊺x is linear in its input x, but can exhibit
highly nonlinear dynamics in parameter θ and function β(θ) space. Foundational work by Saxe
et al. [60] provided exact solutions to gradient flow dynamics in linear networks with task-aligned
initializations. They achieved this by solving a system of Bernoulli differential equations that pri-
oritize learning the most salient features first, which can be beneficial for generalization [37]. This
analysis has been extended to wide [11, 21] and deep [4, 5, 74] linear networks with more flexible
initialization schemes [22, 23, 65]. It has also been applied to study the evolution of the NTK [6]
and the influence of the scale on the transition between lazy and rich learning [31, 69]. In this work,
we present novel exact solutions for a minimal model utilizing a mix of Bernoulli and Riccati equa-
tions to showcase a complex phase portrait of lazy and rich learning with separate alignment and
fitting phases.

Implicit bias. An effective analysis approach to understanding the rich regime studies how the
initialization influences the inductive bias at interpolation. The aim is to identify a function Q(θ)
such that the network converges to a first-order KKT point minimizing Q(θ) among all possible
interpolating solutions. Foundational work by Soudry et al. [64] pioneered this approach for a
linear classifier trained with gradient descent, revealing a max margin bias. These findings have
been extended to deep linear networks [25, 32, 51], homogeneous networks [13, 44, 52], and quasi-
homogeneous networks [36]. A similar line of research expresses the learning dynamics of networks
trained with mean squared error as a mirror flow for some potential Φ(β), such that the inductive
bias can be expressed as a Bregman divergence [24]. This approach has been applied to diagonal
linear networks, revealing an inductive bias that interpolates between ℓ1 and ℓ2 norms in the rich
and lazy regimes respectively [68]. However, finding the potential Φ(β) is problem-specific and
requires solving a second-order differential equation, which may not be solvable even in simple
settings [26, 41]. Azulay et al. [7] extended this analysis to a time-warped mirror flow, enabling
the study of a broader class of architectures. In this work we derive exact expressions for the
inductive bias of our minimal model and extend the results in Azulay et al. [7] to wide and deep
linear networks.

Two-layer networks. Two-layer, or single-hidden layer, piecewise linear networks have emerged
as a key setting for advancing our understanding of the rich regime. Maennel et al. [47] observed
that in training two-layer ReLU networks from small initializations, the first-layer weights con-
centrate along fixed directions determined by the training data, irrespective of network width.
This phenomenon, termed quantization, has been proposed as a simplicity bias inherent to the
rich regime, driving the network towards low-rank solutions when feasible. Subsequent studies
have aimed to further elucidate this effect by introducing structural constraints on the training data
[10, 20, 45, 49, 56]. Across these analyses, a consistent observation is that the learning dynamics in-
volve distinct phases: an initial alignment phase characterized by quantization, followed by a fitting
phase where the task is learned. All of these studies assumed a balanced initialization between the
first and second layer. In this study, we explore how unbalanced initializations influence the phases
of learning, demonstrating that it can eliminate or augment the quantization effect.

Infinite-width networks. Many recent advancements in understanding the rich regime have
come from studying how the initialization variance and layer-wise learning rates should scale in
the infinite-width limit to ensure constant movement in the activations, gradients, and outputs. In
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this limit, analyzing dynamics becomes simpler in several respects: random variables concentrate,
nonlinearities act linearly, and quantities will either vanish to zero, remain constant, or diverge to
infinity [43]. A set of works used tools from statistical mechanics to provide analytic solutions
for the rich population dynamics of two-layer nonlinear neural networks initialized according to
the mean field parameterization [12, 48, 59, 63]. These ideas were extended to deeper networks
through a tensor program framework, leading to the derivation of maximal update parametrization
(µP) [70, 71]. The µP parameterization has also been derived through a self-consistent dynamical
mean field theory [9] and a spectral scaling analysis [72]. In this study, we focus on finite-width
neural networks.
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Appendix B. Single-Neuron Linear Network

In this section, we provide a detailed analysis of the two-layer linear network with a single hidden
neuron discussed in Section 2. The network is defined by the function f(x; θ) = aw⊺x, where
a ∈ R and w ∈ Rd are the parameters. We aim to understand the impact of the initializations a0, w0

and the layer-wise learning rates ηa, ηw on the training trajectory in parameter space, function space
(defined by the product β = aw), and the evolution of the Neural Tangent Kernel (NTK) matrix K:

K = X
(
ηwa

2Id + ηaww
⊺)X⊺. (6)

The gradient flow dynamics are governed by the following coupled ODEs:

ȧ = −ηaw⊺ (X⊺Xaw −X⊺y) , a(0) = a0, (7)

ẇ = −ηwa (X⊺Xaw −X⊺y) , w(0) = w0. (8)

The global minima of this problem are determined by the normal equations X⊺Xaw = X⊺y.
Even when X⊺X is invertible, yielding a unique global minimum in the function space β∗ =
(X⊺X)−1X⊺y, the symmetry between a and w, permitting scaling transformations, a → aα and
w → w/α for any α ̸= 0 without changing the product aw, results in a manifold of minima in
parameter space. This minima manifold is a one-dimensional hyperbola where aw = β∗, with two
distinct branches for positive and negative a. The set of saddle-points {(a,w)} forms a (d − 1)-
dimensional subspace satisfying a = 0 and w⊺X⊺y = 0. Except for a measure zero set of initial-
izations that converge to the saddle points, all gradient flow trajectories will converge to a global
minimum. In Appendix B.2.3, we detail the basin of attraction for each branch of the minima man-
ifold and the d-dimensional surface of initializations that converge to saddle points, separating the
two basins.

B.1. Conserved quantity

The symmetry between a and w results in a conserved quantity δ ∈ R throughout training, as noted
in many prior works [17, 35, 60], where

δ = ηwa
2 − ηa∥w∥2 (9)

This can be directly checked as one writes out the dynamics of δ. Define ρ = (X⊺Xaw −X⊺y)
for succinct notation, such that

δ̇ = 2ηwaȧ− 2ηaw
⊺ẇ

= 2ηwa (−ηaw⊺ρ)− 2ηaw
⊺ (−ηwaρ)

= 0

The conserved quantity confines the parameter dynamics to the surface of a hyperboloid where
the magnitude and sign of the conserved quantity determines the geometry, as shown in Fig. 2. A
hyperboloid of the form

∑k
i=1 x

2
i −

∑n
i=k+1 x

2
i = α, with α ≥ 0, exhibits varied topology and

geometry based on k and α. It has two sheets when k = 1 and one sheet otherwise. Its geometry
is primarily dictated by α: as α tends to infinity, curvature decreases, while at α = 0, a singularity
occurs at the origin.
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B.2. Exact solutions

To derive exact dynamics we assume the input data is whitened such thatX⊺X = Id and β∗ = X⊺y.
The dynamics of a and w can then be simplified as

ȧ = ηa
(
w⊺β∗ − a∥w∥2

)
, a(0) = a0 (10)

ẇ = ηw
(
aβ∗ − a2w

)
, w(0) = w0. (11)

B.2.1. DERIVING THE DYNAMICS FOR µ AND ϕ

As discussed in Section 2 we study the variables µ = a∥w∥, an invariant under the rescale symmetry,
and ϕ = w⊺β∗

∥w∥∥β∗∥ , the cosine of the angle between w and β∗. This change of variables can also be
understood as a signed spherical decomposition of β: µ is the signed magnitude of β and ϕ is the
cosine angle between β and β∗. Through chain rule, we obtain the dynamics for µ and ϕ, which can
be expressed as

µ̇ =
√
δ2 + 4ηaηwµ2 (ϕ∥β∗∥ − µ) , µ(0) = a0∥w0∥, (12)

ϕ̇ =
ηaηw2µ∥β∗∥√
δ2 + 4ηaηwµ2 − δ

(
1− ϕ2

)
, ϕ(0) =

w⊺
0β∗

∥w0∥∥β∗∥
. (13)

We leave the derivation to the reader, but emphasize that a key simplification used is to express the
sum ηwa

2 + ηa∥w∥2 in terms of δ,

ηwa
2 + ηa∥w∥2 =

√
δ2 + 4ηaηwµ2. (14)

Additionally, notice that ηa and ηw only appear in the dynamics for µ and ϕ as the product ηaηw or
in the expression for δ. If we were to define µ′ =

√
ηaηwµ and β′∗ =

√
ηaηwβ∗, then it is not hard

to show that the product ηaηw is absorbed into the dynamics. Thus, without loss of generality we
can assume the product ηaηw = 1, resulting in the following coupled system of nonlinear ODEs,

µ̇ =
√
δ2 + 4µ2 (ϕ∥β∗∥ − µ) , µ(0) = a0∥w0∥ (15)

ϕ̇ =
2µ∥β∗∥√
δ2 + 4µ2 − δ

(
1− ϕ2

)
, ϕ(0) =

w⊺
0β∗

∥w0∥∥β∗∥
(16)

We will now show how to solve this system of equations for µ and ϕ. We will solve this system
when δ = 0, δ > 0, and δ < 0 separately. We will then in Appendix B.2.4 show a general treatment
on how to obtain the individual coordinates of a and w from the dynamics of µ and ϕ.

B.2.2. BALANCED δ = 0

When δ = 0, the dynamics for µ, ϕ become,

µ̇ = sgn(µ)2µ(ϕ∥β∗∥ − µ), ϕ̇ = sgn(µ)∥β∗∥(1− ϕ2). (17)

First, we show that the sign of µ cannot change through training and sgn(µ) = sgn(a). Because
δ = 0, the dynamics of a and w are constrained to a double cone with a singularity at the origin
(a = 0, w = 0). This point is a saddle point of the dynamics, so the trajectory cannot pass through
this point to move from one cone to the other. In other words, the cone where the dynamics are
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initialized on is the cone they remain on. Without loss of generality, we assume a0 > 0, and solve
the dynamics. The dynamics of µ is a Bernoulli differential equation driven by a time-dependent
signal ϕ∥β∗∥. The dynamics of ϕ is decoupled from µ and is in the form of a Riccati equation
evolving from an initial value ϕ0 to 1, as we have assumed an initialization with positive a0. This
ODE is separable with the solution,

ϕ(t) = tanh (cϕ + ∥β∗∥t) , (18)

where cϕ = tanh−1(ϕ0). Plugging this solution into the dynamics for µ gives a Bernoulli differen-
tial equation,

µ̇ = 2∥β∗∥ tanh (cϕ + ∥β∗∥t)µ− 2µ2, (19)

with the solution,

µ(t) =
2 cosh2 (cϕ + ∥β∗∥t)

2 (cϕ + ∥β∗∥t) + sinh (2(cϕ + ∥β∗∥t)) + cµ
, (20)

where cµ = 2µ−1
0 cosh2(cϕ)− (2cϕ + sinh(2cϕ)). Note, if ϕ0 = −1, then ϕ̇ = 0, and the dynamics

of µ will be driven to 0, which is a saddle point.

B.2.3. UNBALANCED δ ̸= 0

In this setting, the dynamics live on a hyperboloid. We assume a0 > 0 without loss of generality.
The dynamics of µ and ϕ do not decouple. Assuming a(t) ̸= 0,∀t ≥ 0, we consider ν = w⊺β∗

a ,
which leads to the decoupled equation:

ν̇ = ∥β∗∥2 − δν − ν2, ν(0) =
w⊺

0β∗
a0

(21)

Assuming that ∥β∗∥ ≠ 0, the solution is given by:

ν(t) =
2Rν0 cosh (Rt) +

(
2∥β∗∥2 − δν0

)
sinh (Rt)

2R cosh (Rt) + (2ν0 + δ) sinh (Rt)
(22)

where R = 1
2

√
δ2 + 4∥β∗∥2. With ν(t), a(t) can be analytically solved from the Bernoulli equa-

tion,

ȧ = a(ν(t) + δ − a2), a(0) = a0 (23)

We omit the solution due to its complexity, but provide a notebook used to generate our figures
encoding the solution. Note that in the upstream case where δ > 0, a(t) > 0 is guaranteed by the
fact that a2 = δ+∥w∥2 > 0. Therefore, ν is always well defined. However, in the downstream case
where δ < 0, a can cross 0, which leads to the problem defining ν. The following lemma shows
that a can only cross 0 at most once.

Lemma 3 Assuming the existence and uniqueness of the solution and that a(0) ̸= 0 or w(0)⊺β∗ ̸=
0, a(t)w(t)⊺β∗ = 0 has at most one solution for t ≥ 0.

Proof Denote w∥(t) = w(t)⊺β∗ The dynamics of a(t) and w∥(t) is given by,

ẇ∥ = a∥β∗∥2 − a2w∥ (24)

ȧ = w∥ − a(a2 − δ) (25)
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Figure 4: Two basins of attraction. For this model, parameter space is partitioned into two basins of
attraction, one for the positive and negative branch of the minima manifold. The surface separating
the basins of attraction is determined by the equation w⊺

0β∗ +
a0
2

(
δ +

√
δ2 + 4∥β∗∥2

)
= 0. For

a given δ, this equation describes a hyperplane through the origin. However, a given δ can only
be achieved on the surface of some hyperboloid. Thus, the separating surface is the union of the
intersections of a hyperplane and a hyperboloid, both parameterized by δ. This intersection is empty
if δ > 0. Initializations exactly on the separating surface will travel along the surface to a saddle
point where w⊺β∗ = a = 0.

Consider S+ = {(a,w∥)|a > 0, w∥ > 0}. At the boundary {(a,w∥)|a = 0, w∥ ≥ 0}, ȧ ≥ 0; at the
boundary {(a,w∥)|a ≥ 0, w∥ = 0}, ẇ∥ ≥ 0. Therefore, S+ is a positively invariant set. Similarly,
S− = {(a,w∥)|a < 0, w∥ < 0} is a positively invariant set. On the boundary ∂S+ ∪ ∂S− =
{(a,w∥)|aw∥ = 0}, the flow is contained in the boundary only at the origin a = 0, w∥ = 0, which
is a saddle point of the system. By assumption, the system does not start at the origin, and thus the
origin in not reachable for all t ≥ 0 by uniqueness. As a result, the trajectory (a(t), w∥(t)) will at
most intersect the boundary ∂S+ ∪ ∂S− once.

From Lemma 3, we know that a sign change can happen for at most one value of t. In the case that
a does not change sign, ν is well-behaved along its entire trajectory, and our derivation still holds,
leading to solutions for w and a. Conversely, suppose a changes sign at some t∗ > 0. Assuming
that the existence and uniqueness of the solutions in Eq. (10), we proceed by simply following the
same approach and then verifying that the solution we obtain for a and w in fact solves Eq. (10).

Obtaining the basins of attraction. From Lemma 3 we know that a can cross 0 at most once
in its trajectory. As a result, we can find the basin of attraction by deriving the conditions under
which a changes sign. From Eq. (22) we can immediately see that a will change sign when the
denominator vanishes. This can happen if

√
δ2 + 4∥β∗∥2 < −2ν0− δ. For δ < 0, this is satisfied if

ν0 <
1
2

(
−δ −

√
δ2 + 4s2

)
, which gives the hyperplane w⊺

0β∗+
a0
2

(
δ +

√
δ2 + 4∥β∗∥2

)
= 0 that
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Figure 5: Exact solutions for the single hidden neuron model. Our theoretical predictions (black
dashed lines) agree with gradient flow simulations (solid lines, color-coded based on δ values),
shown here for three key metrics: µ (left), ϕ (middle), and S(0, t) (right). Each metric starts at the
same value for all δ, but varying δ has a pronounced effect on the metric’s dynamics. For upstream
initializations (δ ≫ 0), µ changes only slightly, ϕ exponentially aligns, and S remains near zero,
indicative of the lazy regime. For balanced initializations (δ = 0), both µ and ϕ change significantly
and S quickly moves away from zero, indicative of the rich regime. For downstream initializations
(δ ≪ 0), µ quickly drops to zero, then µ and ϕ slowly climb back to one. Similarly, S remains small
before a sudden transition towards one, indicative of a delayed rich regime. For further details on
the solutions see Appendix B.2.

separates between initializations for which a changes sign and initializations for which it does not
(Fig. 4). Consequently, letting S+ be the set of initializations attracted to the minimum manifold
with a > 0, we have that:

S+ =

{
(w0, a0)

∣∣∣∣∣ a0 > 0 if δ ≥ 0

w⊺
0β∗ > −a0

2

(
δ +

√
δ2 + 4∥β∗∥2

)
if δ < 0

}
(26)

where the bottom inequality means that β0 is sufficiently aligned to β∗ in the case of a0 ≥ 0 or
sufficiently misaligned in the case of a0 ≤ 0. We can similarly define the analogous S−. An
initialization on the separating hyperplane will converge to a saddle point where w⊺β∗ = a = 0.

B.2.4. RECOVERING PARAMETERS (a,w) FROM (µ, ϕ)

We can recover a and ∥w∥ from µ. Using Eq. (14) discussed previously, we can show

a = sgn(µ)

√√
δ2 + 4µ2 + δ

2
, ∥w∥ =

√√
δ2 + 4µ2 − δ

2
. (27)

We now consider how to obtain the vectorw from ϕ. The key observation, as discussed in Section 2,
is that w only moves in the span of w0 and β∗. This means we can express w(t) as

w(t) = c1(t)

(
β∗
∥β∗∥

)
+ c2(t)


(
Id−

β∗β
⊺
∗

∥β∗∥2

)
w0√

∥w0∥2−
(

β
⊺
∗w0

∥β∗∥

)2

 (28)
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Figure 6: Exact temporal dynamics of relevant variables in single-hidden neuron model. Our
theory recovers the time evolution under gradient flow of the quantities considered in this section,
specifically ν, φ, and ζ, as well as the resulting dynamics of the model parameters {a,w1, w2}.
The true β∗ is a unit vector pointing in π/4 direction; β(0) is a unit vector pointing towards 3π/2,
−π/4, and π/4 directions, respectively, for each of the three rows. δ then defines how a(0) and
∥w(0)∥ are chosen for a particular β(0) where by convention we choose a(0) > 0.

where c1(t) is the coefficient in the direction of β∗ and c2(t) is the coefficient in the direction
orthogonal to β∗ on the two-dimensional plane defined by w0. From the definition of ϕ we can
easily obtain the coefficients c1 = ∥w∥ϕ and c2 =

√
∥w∥2 − c21. We always choose the positive

square root for c2, as c2(t) ≥ 0 by definition for all t. This is because c2 starts non-negative and
cannot switch signs. If c2 were to become zero, then ϕ = ±1, which is a fixed point of its dynamics.

B.3. Function space dynamics of β

The network’s function is determined by the product β = aw and governed by the ODE,

β̇ = aẇ + ȧw = −
(
ηwa

2Id + ηaww
⊺)︸ ︷︷ ︸

M

(X⊺Xβ −X⊺y)︸ ︷︷ ︸
X⊺ρ

. (29)

Notice, that the vector X⊺ρ driving the dynamics of β is the gradient of the loss with respect to β,
X⊺ρ = ∇βL. Thus, these dynamics can be interpreted as preconditioned gradient flow on the loss
in β space where the preconditioning matrix M depends on time through its dependence on a2 and
ww⊺. The matrix M also characterizes the NTK matrix, K = XMX⊺. As discussed in Section 2,
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our goal is to understand the evolution of M along a trajectory {β(t) ∈ Rd : t ≥ 0} solving
Eq. (29).

First, notice that by expanding ∥β∥2 = a2∥w∥2 in terms of the conservation law, we can show

a2 =

√
δ2 + 4ηaηw∥β∥2 + δ

2ηw
, (30)

which is the unique positive solution of the quadratic expression ηwa4 − δa2 − ηa∥β∥2 = 0. When
a2 > 0 we can use this solution and the outer product ββ⊺ = a2ww⊺ to solve for ww⊺ in terms of
β,

ww⊺ =

√
δ2 + 4ηaηw∥β∥2 − δ

2ηa

ββ⊺

∥β∥2
. (31)

Plugging these expressions into M gives

M =

√
δ2 + 4ηaηw∥β∥2 + δ

2
Id +

√
δ2 + 4ηaηw∥β∥2 − δ

2

ββ⊺

∥β∥2
. (32)

Thus, given any initialization a0, w0 such that a(t)2 > 0 for all t ≥ 0, we can express the
dynamics of β entirely in terms of β. This is true for all initialization with δ ≥ 0, except if initialized
on the saddle point at the origin. It is also true for all initializations with δ < 0 where the sign of a
does not switch signs. In the next section we will show how to interpret these trajectories as time-
warped mirror flows for a potential that depends on δ. As a means of keeping the analysis entirely
in β space, we will make the slightly more restrictive assumption to only study trajectories given
any initialization β0 such that ∥β(t)∥ > 0 for all t ≥ 0.

Notice, that ηa and ηw only appear in the dynamics for β as the product ηaηw or in the expression
for δ. By defining β′ =

√
ηaηwβ and y′ =

√
ηaηwy and studying the dynamics of β′, we can absorb

ηaηw into the β terms in M and the additional factor
√
ηaηw into the β and y terms in ρ. This

transformation of β and y merely rescales β space without changing the loss landscape or location
of critical points. As a result, from here on we will, without loss of generality, study the dynamics
of β assuming ηaηw = 1.

B.4. Proof of Theorem 1

Until now, we have primarily considered that X⊺X is either whitened or full rank, ensuring the
existence of a unique least squares solution β∗. In this setting, δ influences the trajectory the model
takes from initialization to convergence, but all models eventually converge to the same point, as
shown in Fig. 2. Now we consider the over-parameterized setting where we have more features d
than observations n such that X⊺X is low-rank and there exists infinitely many interpolating solu-
tions in function space. By studying the structure of M we can characterize or even predict how
δ determines which interpolating solution the dynamics converge to among all possible interpo-
lating solutions. To do this we will extend a time-warped mirror flow analysis strategy pioneered
by Azulay et al. [7].

B.4.1. OVERVIEW OF TIME-WARPED MIRROR FLOW ANALYSIS

Here we recap the standard analysis for determining the implicit bias of a linear network through
mirror flow. As first introduced in Gunasekar et al. [24], if the learning dynamics of the predictor β
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can be expressed as a mirror flow for some strictly convex potential Φα(β),

β̇ = −
(
∇2Φα(β)

)−1
X⊺ρ, (33)

where ρ = (Xβ− y) is the residual, then the limiting solution of the dynamics is determined by the
constrained optimization problem,

β(∞) = argmin
β∈Rd

DΦα(β, β(0)) s.t. Xβ = y, (34)

where DΦα(p, q) = Φα(p)−Φα(q)−⟨∇Φα(q), p−q⟩ is the Bregman divergence defined with Φα.
To understand the relationship between mirror flow Eq. (33) and the optimization problem Eq. (34),
we consider an equivalent constrained optimization problem

β(∞) = argmin
β∈Rd

Q(β) s.t. Xβ = y, (35)

where Q(β) = Φα(β) − ∇Φα(β(0))
⊺β, which is often referred to as the implicit bias. Q(β) is

strictly convex, and thus it is sufficient to show that β(∞) is a first order KKT point of the con-
strained optimization (35). This is true iff there exists ν ∈ Rn such that ∇Q(β(∞)) = X⊺ν. The
goal is to derive ν from the mirror flow Eq. (33). Notice, we can rewrite Eq. (33) as, ˙(∇Φα(β)) =
−X⊺ρ, which integrated over time gives

∇Φα(β(∞))−∇Φα(β(0)) = −X⊺
∫ ∞

0
ρ(t)dt. (36)

The LHS is ∇Q(β(∞)). Thus, by defining ν =
∫∞
0 ρ(t)dt, which assumes the residual decays fast

enough such that this is well defined, then we have shown the desired KKT condition. Crucial to
this analysis is that there exists a solution to the second-order differential equation

∇2Φα(β) = (∇θβ∇θβ
⊺)−1 , (37)

which even for extremely simple Jacobian maps may not be true [26]. Azulay et al. [7] showed that
if there exists a smooth scalar function g(β) : Rd → R such that the ODE,

∇2Φα(β) = g(β) (∇θβ∇θβ
⊺)−1 , (38)

has a solution, then the previous interpretation holds for Φα(β) with ν =
∫∞
0 g(β(t′))ρ(t′)dt. As

before, it is crucial that this integral exists and is finite. Azulay et al. [7] further explained that
this scalar function g(β) can be considered as warping time τ(t) =

∫ t
0 g(β(t

′))dt′ on the trajectory
taken in predictor space β(τ(t)). So long as this warped time doesn’t “stall out”, that is we require
that τ(∞) = ∞, then this will not change the interpolating solution.

B.4.2. APPLYING TIME-WARPED MIRROR FLOW ANALYSIS

Here show how to apply the time-warped mirror flow analysis to the dynamics of β derived in
Appendix B.3 where ∇θβ∇θβ

⊺ =M . We will only consider initializations β0 such that ∥β(t)∥ > 0
for all t ≥ 0, such that M can be expressed as

M =

√
δ2 + 4∥β∥2 + δ

2
Id +

√
δ2 + 4∥β∥2 − δ

2

ββ⊺

∥β∥2
. (39)
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Computing M−1. Whenever ∥β∥ > 0, then M is a positive definite matrix with a unique
inverse that can be derived using the Sherman–Morrison formula, (A+uv⊺)−1 = A−1−A−1uv⊺A−1

1+u⊺A−1v
.

Here we can define A, u, and v as

A =

(√
δ2 + 4∥β∥2 + δ

2

)
Id, u =

(√
δ2 + 4∥β∥2 − δ

2∥β∥2

)
β, v = β (40)

First notice the following simplification, u⊺A−1v =

√
δ2+4∥β∥2−δ√
δ2+4∥β∥2+δ

. After some algebra, M−1 is

M−1 =

(
2√

δ2 + 4∥β∥2 + δ

)
Id −


√

δ2+4∥β∥2−δ√
δ2+4∥β∥2+δ

∥β∥2
√
δ2 + 4∥β∥2

ββ⊺ (41)

To make notation simpler we will define the following two scalar functions,

fδ(x) =
2√

δ2 + 4x+ δ
, hδ(x) =

√
δ2 + 4x− δ

x
√
δ2 + 4x

(√
δ2 + 4x+ δ

) , (42)

such that we can express M−1 = fδ
(
∥β∥2

)
Id − hδ

(
∥β∥2

)
ββ⊺.

Proving M−1 is not a Hessian map. If M−1 is the Hessian of some potential, then we can
show that the dynamics of β are a mirror flow. However, from our expression for M−1 we can
actually prove that it is not a Hessian map. As discussed in Gunasekar et al. [26], a symmetric
matrix H(β) is the Hessian of some potential Φ(β) if and only if it satisfies the condition,

∀β ∈ Rm, ∀i, j, k ∈ [m]
∂Hij(β)

∂βk
=
∂Hik(β)

∂βj
. (43)

We will use this property to show M−1 is not a Hessian map. First, notice this condition is trivially
true when i = j = k. Second, notice that for all i ̸= j ̸= k,

∂M−1
ij

∂βk
=
∂M−1

ik

∂βj
= −2∇hδ

(
∥β∥2

)
βiβjβk (44)

Thus, M−1 is a Hessian map if and only if for all i ̸= j, ∂M−1
ii

∂βj
=

∂M−1
ij

∂βi
. Using our expression for

M−1, the LHS is
∂M−1

ii

∂βj
= 2∇fδ

(
∥β∥2

)
βj − 2∇hδ

(
∥β∥2

)
βjβ

2
i (45)

while the RHS is
∂M−1

ij

∂βi
= −hδ

(
∥β∥2

)
βj − 2∇hδ

(
∥β∥2

)
βjβ

2
i (46)

Thus, M−1 is a Hessian map if and only if 2∇fδ(x) + hδ(x) = 0. Plugging in our definitions of
fδ(x) and hδ(x) we find

2∇fδ(x) + hδ(x) =
−4√

δ2 + 4x(
√
δ2 + 4x+ δ)2

, (47)
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which does not equal zero and thus M−1 is not a Hessian map.
Finding a scalar function gδ(x) such that gδ(∥β∥2)M−1 is a Hessian map. While we have

shown that M−1 is not a Hessian map, it is very close to a Hessian map. Here we will show that
there exists a scalar function gδ(x) such that gδ

(
∥β∥2

)
M−1 is a Hessian map. For any gδ(x) can

define gδ
(
∥β∥2

)
M−1 in terms of two new functions f̃δ(x) and h̃δ(x) evaluated at x = ∥β∥2,

gδ
(
∥β∥2

)
M−1 = gδ

(
∥β∥2

)
fδ
(
∥β∥2

)︸ ︷︷ ︸
f̃δ(∥β∥2)

Id − gδ
(
∥β∥2

)
hδ
(
∥β∥2

)︸ ︷︷ ︸
h̃δ(∥β∥2)

ββ⊺. (48)

Thus, as derived in the previous section, we get the analogous condition on f̃δ(x) and h̃δ(x) for
gδ
(
∥β∥2

)
M−1 to be a Hessian map,

2 (∇gδ(x)fδ(x) + g(x)∇fδ(x))︸ ︷︷ ︸
∇f̃δ(x)

+ gδ(x)hδ(x)︸ ︷︷ ︸
h̃δ(x)

= 0 (49)

Rearranging terms we find that gδ(x) must solve the ODE

∇gδ(x) = − (2fδ(x))
−1 (2∇fδ(x) + hδ(x)) gδ(x). (50)

Using our previous expressions (Eq. (42) and Eq. (47)) we find

− (2fδ(x))
−1 (2∇fδ(x) + hδ(x)) =

1√
δ2 + 4x(

√
δ2 + 4x+ δ)

, (51)

which implies gδ(x) solves the differential equation, ∇gδ(x) = gδ(x)√
δ2+4x(

√
δ2+4x+δ)

. The solution is

gδ(x) = c
√√

δ2 + 4x+ δ, where c ∈ R is a constant. Let c = 1. Plugging in our expressions for
gδ
(
∥β∥2

)
, fδ
(
∥β∥2

)
, hδ

(
∥β∥2

)
, we get that

gδ
(
∥β∥2

)
M−1 =

 2√√
δ2 + 4∥β∥2 + δ

 Id −


√

δ2+4∥β∥2−δ√√
δ2+4∥β∥2+δ

∥β∥2
√
δ2 + 4∥β∥2

ββ⊺ (52)

is a Hessian map for some unknown potential Φδ(β).
Solving for the potential Φδ(β). Take the ansatz that there exists some function scalar q(x)

such that Φδ(β) = qδ(∥β∥) + cδ where cδ is a constant such that Φδ(β) > 0 for all β ̸= 0 and
Φδ(0) = 0. The Hessian of this ansatz takes the form,

∇2Φδ(β) =

(
∇q(∥β∥)

∥β∥

)
Id −

(
∇q(∥β∥)
∥β∥3

− ∇2q(∥β∥)
∥β∥2

)
ββ⊺. (53)

Equating terms from our expression for gδ
(
∥β∥2

)
M−1 (equation 52) we get the expression for

∇q(∥β∥)

∇q(∥β∥) = 2∥β∥√√
δ2 + 4∥β∥2 + δ

, (54)
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which plugged into the second term gives the expression for ∇2q(∥β∥),

∇2q(∥β∥) = 2√√
δ2 + 4∥β∥2 + δ

−


√

δ2+4∥β∥2−δ√√
δ2+4∥β∥2+δ√
δ2 + 4∥β∥2

 =

√√
δ2 + 4∥β∥2 + δ√
δ2 + 4∥β∥2

. (55)

We now look for a function q(x) such that both these conditions (Eq. (54) and Eq. (55)) are true.
Consider the following function and its derivatives,

q(x) =
1

3

(√
δ2 + 4x2 − 2δ

)√√
δ2 + 4x2 + δ (56)

∇q(x) = 2x√√
δ2 + 4x2 + δ

(57)

∇2q(x) =

√√
δ2 + 4x2 + δ√
δ2 + 4x2

(58)

Letting x = ∥β∥ notice ∇q(∥β∥) and ∇2q(∥β∥) satisfies the previous conditions. Furthermore,
∇2q(x) > 0 for all δ as long as x ̸= 0 and thus q(x) is a convex function which achieves its
minimum at x = 0. Thus, the constant cδ = −q(0) is

cδ =

0 if δ ≤ 0
√
2|δ|

3
2

3 if δ > 0
= max

{
0, sgn(δ)

√
2|δ|

3
2

3

}
, (59)

and the potential Φδ(β) is

Φδ(β) =
1

3

(√
δ2 + 4∥β∥2 − 2δ

)√√
δ2 + 4∥β∥2 + δ +max

{
0, sgn(δ)

√
2|δ|

3
2

3

}
. (60)

Finally, putting it all together, we proved Theorem 1.

B.4.3. CONNECTION TO THEOREM 2 IN AZULAY ET AL. [7]

We discuss how Theorem 1 connects to Theorem 2 in Azulay et al. [7], which we rewrite:

Theorem 4 (Theorem 2 from Azulay et al. [7]) For a depth 2 fully connected network with a sin-
gle hidden neuron (h = 1), any δ ≥ 0, and initialization β0 such that ∥β0∥ > 0, if the gradient flow
solution β(∞) satisfies Xβ(∞) = y, then,

β(∞) = argmin
β∈Rd

qδ(∥β∥) + z⊺β s.t. Xβ = y (61)

where qδ(x) =

(
x2− δ

2

(
δ
2
+

√
x2+ δ2

4

))√√
x2+ δ2

4
− δ

2

x and z = −3
2

√√
∥β0∥2 + δ2

4 − δ
2

β0

∥β0∥ .
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The most striking difference is in the expressions for the inductive bias. Azulay et al. [7] take
an alternative route towards deriving the inductive bias by inverting M in terms of the original
parameters a and w and then simplifying M−1 in terms of β, which results in quite a different
expression for their inductive bias. However, they are actually functionally equivalent. It requires a
bit of algebra, but one can show that

Φδ(β) =
2
√
2

3
qδ(∥β∥) + cδ. (62)

Another important distinction between our two theorems lies in the assumptions we make. Azulay
et al. [7] consider only initializations such that δ ≥ 0 and ∥β0∥ > 0. We make a less restrictive
assumption by considering initializations β0 such that ∥β(t)∥ > 0 for all t ≥ 0, which allows for
both positive and negative δ. Except for a measure zero set of initializations, all initializations con-
sidered by Azulay et al. [7] also satisfy our assumptions. In both cases, our assumptions ensure that
M is invertible for the entire trajectory from initialization to interpolating solution. However, it is
worth considering whether the theorems would hold even when there exists a point on the trajectory
where M is low-rank. As discussed in Appendix B.3, this can only happen for an initialization
with δ < 0 and where the sign of a changes. Only at the point where a(t) = 0 does M become
low-rank. A similar challenge arose in this setting when deriving the exact solutions presented in
Appendix B.2.3. We were able to circumvent the issue in part by using a lemma showing that this
sign change could only happen at most once given any initialization. This lemma was based on
the setting with whitened input, but a similar statement likely holds for the general setting. If this
were the case, we could define M at this unique point on the trajectory in terms of the limit of M
as it approached this point. This could potentially allow us to extend the time-warped mirror flow
analysis to all initializations such that ∥β0∥ > 0.

B.4.4. EXACT SOLUTION WHEN INTERPOLATING MANIFOLD IS ONE-DIMENSIONAL

When the null space of X⊺X is one-dimensional, the constrained optimization problems in Theo-
rem 1 and Theorem 4 have an exact analytic solution. In this case we can parameterize all inter-
polating solutions β with a single scalar α ∈ R such that β = β∗ + αv where X⊺Xv = 0 and
∥v∥ = 1. Using this description of β, we can then differentiate the inductive bias with respect to α,
set to zero, and solve for α. We will use the following expressions,

∇xq(x) =
3

2
sign(x)

√√
x2 +

δ2

4
− δ

2
, ∇α∥β∥ =

α

∥β∥
, ∇αz

⊺β = z⊺v. (63)

We will also use the expression, ∥β∥2 = ∥β∗∥2 + α2. Pulling these expressions together we get the
following equation for α,√√

∥β∗∥2 + α2 +
δ2

4
− δ

2

α√
∥β∗∥2 + α2

= −2z⊺v

3
. (64)

If we let k = −2z⊺v
3 , the solution for α is

α = k

√√√√k2 + δ

2
+

√(
k2 + δ

2

)2

+ ∥β∗∥2. (65)
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This solution always works for the initializations we considered in Theorem 1. Interestingly, it
appears that β = β∗ − αv also works for initializations not previously considered. This includes
trajectories that pass through the origin, resulting in a change in the sign of a.

26



THE ROLE OF INITIALIZATION GEOMETRY IN FEATURE LEARNING

Appendix C. Wide and Deep Linear Networks

In the previous section we demonstrated how the balancedness δ influences the regime of learning
in a single-neuron linear network by studying the dynamics in parameter space, function space, and
the implicit bias. Throughout our analysis, we identified three learning regimes – lazy, rich, and
delayed rich – that correspond to different values of δ. The driving cause of this distinction is the
change in the geometry and topology of the conserved surface. Here we discuss how our analysis
techniques can be extended to linear networks with multiple neurons, layers, and outputs. As we
move towards more complex networks, the number of conserved quantities will grow, one for each
hidden-neuron. As a result, the analysis in this section will get more complex, but overall the main
points identified in the single-neuron setting still hold.

C.1. Two layer function space dynamics.

We consider the dynamics of a two-layer linear network with h hidden neurons and c outputs,
f(x; θ) = A⊺Wx, where W ∈ Rh×d and A ∈ Rh×c. We assume that min{d, c} ≤ h ≤ max{d, c},
such that this parameterization can represent all linear maps from Rd → Rc. As in the single-
neuron setting, the rescaling symmetry in this model between the first and second layer implies
the h × h matrix ∆ = A0A

⊺
0 −W0W

⊺
0 determined at initialization remains conserved throughout

gradient flow [17]. The NTK matrix can be expressed asK = (Ic ⊗X) (A⊺A⊕W ⊺W ) (Ic ⊗X⊺),
where ⊗ and ⊕ denote the Kronecker product and sum1 respectively. We consider the dynamics of
β =W ⊺A ∈ Rd×c in function space. The network function β is governed by the ODE,

β̇ = Ẇ ⊺A+W ⊺Ȧ. (66)

Respectively W and A follow the temporal dynamics given by the ODE

Ẇ ⊺ = −ηWX⊺(Xβ − Y )A⊺, (67)

and
Ȧ = −ηAWX⊺(Xβ − Y ). (68)

Replacing equations 68 and 67 in equation 66 we get

β̇ = − (ηWX
⊺(Xβ − Y )A⊺A+ ηAW

⊺WX⊺(Xβ − Y ))). (69)

Vectorising using the identity vec(ABC) = (C⊺ ⊗A)vec(B) equation 69 becomes

vec(β̇) = −vec

ηW IdX⊺(Xβ − Y︸ ︷︷ ︸
P

)A⊺A+ ηAW
⊺WX⊺(Xβ − Y︸ ︷︷ ︸

P

)Ic

 , (70)

= −(ηWA
⊺A⊗ Ic + ηAId ⊗W ⊺W )vec(X⊺P ), (71)

= − (ηWA
⊺A⊕ ηAW

⊺W )︸ ︷︷ ︸
M

vec(X⊺P ). (72)

The vectorised form of the network function is given by

vec
(
β̇
)
= − (ηWA

⊺A⊕ ηAW
⊺W )︸ ︷︷ ︸

M

vec(X⊺Xβ −X⊺Y ). (73)

1. The Kronecker sum is defined for square matrices A ∈ Rc×c and B ∈ Rd×d as A⊕B = A⊗ Id + Ic ⊗B.
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Interpreting M(β) in different limit and architectures
As in the single-neuron setting, we find that the dynamics of β can be expressed as gradient flow

preconditioned by a matrix M that depends on quadratics of A and W .
Consider a single hidden neuron i ∈ [h] of the multi-output model defined by the parameters

wi ∈ Rd and ai ∈ Rc. Let βi = wia
⊺
i be the Rd×c matrix representing the contribution of this

hidden neuron to the input-output map of the network. As in the previous section, we will consider
the two gram matrices β⊺i βi ∈ Rc×c and βiβ

⊺
i ∈ Rd×d,

β⊺i βi = ∥wi∥2aia⊺i , βiβ
⊺
i = ∥ai∥2wiw

⊺
i . (74)

Notice that we can express ∥βi∥2F as

∥βi∥2F = Tr(β⊺i βi) = Tr(βiβ
⊺
i ) = ∥ai∥2∥wi∥2 (75)

At each hidden neuron we have the conserved quantity2 ηW ∥ai∥2 − ηA∥wi∥2 = δi where δi ∈ R.
Using this quantity we can invert the expression for ∥βi∥2F to get

∥ai∥2 =

√
δ2i + ηAηW 4∥βi∥2F + δi

2
, (76)

∥wi∥2 =

√
δ2i + ηAηW 4∥βi∥2F − δi

2
. (77)

When ∥βi∥2F > 0, we can use these expressions to solve for the outer products aia
⊺
i and wiw

⊺
i

entirely in terms of βi,

aia
⊺
i =

√
δ2i + ηAηW 4∥βi∥2F + δi

2

β⊺i βi
∥βi∥2F

, (78)

wiw
⊺
i =

√
δ2i + ηAηW 4∥βi∥2F − δi

2

βiβ
⊺
i

∥βi∥2F
. (79)

Without making any assumptions on the initialization (such as the isotropic initialization) we can
express the NTK in terms of the βi and consider the effect the vector of conserved quantities δ ∈ Rh

has on the dynamics.

Lemma 5 Assuming ∥βi∥F ̸= 0 for all i ∈ [h] and let κi =
√
δ2i + 4ηAηW ∥βi∥2F , then the matrix

M can be expressed as the sum M =
∑h

i=1Mi over hidden neurons where Mi is defined as,

Mi =

(
κi + δi

2

)
β⊺i βi
∥βi∥2F

⊕
(
κi − δi

2

)
βiβ

⊺
i

∥βi∥2F
. (80)

We show how to express M in terms of the matrices βi = wia
⊺
i ∈ Rd×c, which represent

the contribution to the input-output map of a single hidden neuron i ∈ [h] of the network with
parameters wi ∈ Rd, ai ∈ Rc, and conserved quantity δi = ∆ii.

2. As long as c > 1, then the surface of this d + c hyperboloid is always connected, however its topology will depend
on the relationship between d and c.
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C.1.1. FUNNEL NETWORKS

We consider funnel networks, which narrow from input to output (d > h ≥ c), and inverted-funnel
networks, which expand from input to output (d ≤ h < c).

As δi → ∞, M →
∑h

i=1 |δi|
β⊺
i βi

∥βi∥2F
⊗ Id.

Lemma 6 Consider the rank-one matrices β⊺
i βi

∥βi∥2F
in the space Rc×c. The rank of M is bounded by

rank (M) ≤

{
d× h if h < c, Low-rank
d× c if h ≥ c.

(81)

Proof In this limit, the rank of M is given by

d× rank(

h∑
i=1

β⊺
i βi

∥βi∥2F
) ≤ d×

h∑
i=1

rank(
β⊺
i βi

∥βi∥2F
). (82)

It follows that
h∑

i=1

rank

(
β⊺i βi
∥βi∥2F

)
≤

{
h if h < c.

c if h ≥ c.
(83)

as the rank of the sum
∑h

i=1
β⊺
i βi

∥βi∥2F
is also at most rank c. Therefore,

rank (M) ≤

{
d× h if h < c.

d× c if h ≥ c.
(84)

According to Lemma 6

• If h < c, rank(M) is bounded by d×h and remains below d×c, categorizing it as a low-rank
matrix. As a result, the solution β⊺∗β∗ might be in the null space of M . The network may
enter either the lazy or a lazy followed by rich regime, depending on the relationship between
β0 and β∗. If β0 ∝ β∗ the network will enter the lazy regime.

• Assuming the β⊺
i βi

∥βi∥2F
terms are linearly independent, the matrix rank(M) achieves full rank

and spans the solution space. The network can learn the task by only changing their norm
while keeping their direction and the NTK matrix fixed. Thus, funnel networks defined by
(d > h ≥ c) will transition into the lazy regime in this limit.

A similar assertion applies as δi → −∞. In this limit, M → Ic ⊗
∑h

i=1 |δi|
βiβ

⊺
i

∥βi∥2F
with the

rank(M) being constrained by the relationship between the number of hidden layers h and the
input layer dimensions d.

• If h < d, the matrix M is low rank and bounded by c× h. These networks may enter either
the lazy or a lazy followed by rich regime, depending on the relationship between β0 and β∗.
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• When h ≥ d, M is full rank if β⊺
i βi

∥βi∥2F
are linearly independent. Except for a measure zero set

of initializations, inverted funnel networks always enter the lazy regime in this limit.

When δi = 0, M =
√
ηAηW |βi|

∑h
i=1

β⊺
i βi

∥βi∥2F
⊕
∑h

i=1
βiβ

⊺
i

∥βi∥2F
all networks transition into the rich

regime. Employing a similar rationale as before, assuming that all terms β⊺
i βi

|βi|2F
and βiβ

⊺
i

|βi|2F
are respec-

tively linearly separable, then one term of M will be low-rank, while the other will be full-rank,
contingent on the relationship between c, d, and h. Consequently, the dynamics of the network
balance between low-rank and full-rank elements, leading to changes in both the magnitude and
direction of the Neural Tangent Kernel (NTK) during training, a hallmark of the rich regime.

C.1.2. SINGLE-NEURON

M =
κ+ δ

2
Id +

κ− δ

2

ββ⊺

∥β∥2
(85)

For funnel network with a single hidden neuron (h = c = 1), we recover equation 85 from equation
80.We extend this analysis to inverted-funnel network with a single hidden neuron (h = d = 1).
Assuming h = c = 1, the rank one matrix β⊺

i βi

∥βi∥2F
= 1. Therefore, equation 80 becomes

M =

(
κ+ δ

2

)
⊕
(
κ− δ

2

)
ββ⊺

∥β∥2F
. (86)

=
κ+ δ

2
Id +

κ− δ

2

ββ⊺

∥β∥2
. (87)

where κ =
√
δ2 + ηAηW 4∥β∥2. We recover the funnel network equation 85 for a single-neuron. In

the main text, we analyze how the expression for M(β) simplifies when δ approaches −∞, 0, and
∞. This analysis helps us develop a deeper understanding of Mδ(β).

We now turn to single neuron inverted funnel network where h = d = 1, the rank one matrices
βiβ

⊺
i

∥βi∥2F
= 1. Therefore, equation 80 becomes

M =

(
κ+ δ

2

)
β⊺β

∥β∥2F
⊕
(
κ− δ

2

)
(88)

=
κ+ δ

2

β⊺β

∥β∥2F
+
κ− δ

2
Ic. (89)

From our expression for M(β) we will consider how it simplifies when δ → −∞, 0,∞.

M →


δIc δ → −∞.
√
ηAηW ∥β∥

(
β⊺β
∥β∥2 + Ic

)
δ = 0.

|δ| β
⊺β

∥β∥2 δ → ∞.

(90)

As anticipated, the single-neuron inverted funnel network also transitions into the Rich regime
when δ = 0. Under this condition, M =

√
ηAηW ∥β∥( β⊺β

∥β∥2 + Ic), where the initial term denotes a
projection matrix. Here the dynamics balance between following the lazy trajectory and attempting
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to fit the task by only changing in norm. As a result the NTK changes in both magnitude and
direction through training, confirming the dynamics are rich.

Additionally, the single-neuron inverted funnel network follows analogous regime transitions
to the single-neuron funnel network, albeit in opposite directions. As δ → −∞, M → δIc, the
single-neuron inverted funnel network network enters the Lazy regime. In this regime, the dynamics
of β converge to the trajectory of linear regression trained by gradient flow and along this trajectory
the NTK matrix remains constant.

Conversely, as δ → +∞, M → |δ| β
⊺β

∥β∥2 , transitions into the Lazy-to-Rich regime for the net-
work. Here the dynamics of β are constrained to learn the task by only changing their norm while
keeping the direction and the NTK matrix fixed – an initial lazy phase. However, if β must change
direction to fit the task, and assuming finite δ or that t → ∞ faster than δ → −∞, then at some
point there will be a slow alignment of β to β∗. In this second phase the NTK matrix will change,
confirming the dynamics are lazy-to-rich.

In summary, networks with scalar outputs enter the lazy regime as δ → ∞, while networks
with scalar inputs enter the lazy regime as δ → −∞. Conversely, both types of networks enter the
”active” regime in opposite directions. Finally, both cases of scalar output and scalar input enter the
rich regime when δ → 0

C.1.3. MULTI-OUTPUT

A fruitful setting for analysis is found in square networks, where the dimensions of the input, hidden,
and output layers coincide (d = h = c). By studying the dependence of M on the conserved
quantity diag(∆) and the shape of the network, defined by the the dimensions d, h and c, we can
identify the lazy, rich, and lazy-to-rich regimes. We establish that as δ tends towards ±∞, the
network symmetrically transitions into the lazy regime, while approaching zero, it converges into
a rich regime. Furthermore, in this setting, we can precisely identify the influence δi has on the
inductive bias.

We consider the isotropic initialization defined as ∆ = δIh in this section. The conserved
quantity becomes AA⊺ −WW ⊺ = δIh.

Lemma 7 W ⊺W = 1
ηA

(
− δ

2I +
√
ηAηWββ⊺ +

δ2

4 I

)
.

Proof Multiplying on the left and write by W ⊺ and rearranging equation the conservation law we
get

ηA(W
⊺W )2 + δW ⊺W = ηWββ

⊺. (91)

Completing the square

ηA(W
⊺W )2 + δW ⊺W +

δ2

4ηA
I = ηWββ

⊺ +
δ2

4ηA
I. (92)
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Solving for W ⊺W (
√
ηAW

⊺W +
δ

2
√
ηA
I

)2

= ηWββ
⊺ +

δ2

4ηA
I (93)

√
ηAW

⊺W +
δ

2
√
ηA
I = +

√
ηWββ⊺ +

δ2

4ηA
I (94)

√
ηAW

⊺W = − δ

2
√
ηA
I +

√
ηWββ⊺ +

δ2

4ηA
I. (95)

W ⊺W =
1

ηA

(
−δ
2
I +

√
ηAηWββ⊺ +

δ2

4
I

)
). (96)

Lemma 8 A(t)⊺A(t) = 1
ηW

(
δ
2I +

√
ηAηWβ⊺β + δ2

4 I

)
.

Proof For A multiplying on the left and write by A⊺ and A the conservation equation we get

−δA(t)⊺A(t) + ηW (A(t)⊺A(t))2 = ηAββ
⊺. (97)

Completing the square

ηW (A(t)⊺A(t))2 − δA(t)⊺A(t) +
δ2

4ηW
I = ηAβ

⊺β +
δ2

4ηW
I (98)

Solving for A(t)⊺A(t) (
√
ηWA(t)

⊺A(t)− δ

2
√
ηW

I

)2

= ηAβ
⊺β +

δ2

4ηW
I (99)

√
ηWA(t)

⊺A(t)− δ

2
√
ηW

I = +

√
ηAβ⊺β +

δ2

4ηW
I (100)

√
ηWA(t)

⊺A(t) = +
δ

2
√
ηW

I +

√
ηAβ⊺β +

δ2

4ηW
I (101)

A(t)⊺A(t) = +
1

ηW

(
δ

2
I +

√
ηAηWβ⊺β +

δ2

4
I

)
. (102)

Lemma 9 Assuming an initialization where ∥β(0)∥F > 0 and ∆ = δIh, then the dynamics of the
network can be expressed as vec(β) = −Mvec(X⊺P ), where M is defined as

M =

(√
ηAηWβ⊺β +

δ2

4
I ⊗ I

)
+

(
I ⊗

√
ηAηWββ⊺ +

δ2

4
I

)
. (103)
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Proof
We start from

vec
(
β̇
)
= − (ηWA

⊺A⊕ ηAW
⊺W )︸ ︷︷ ︸

M

vec(X⊺Xβ −X⊺Y ), (104)

whereP = (Xβ − Y ). Replacing the expressions for W ⊺W (equation 7) and A⊺A (equation 8);
the vectorised network function dynamics (equation 73) reads

vec(β̇) = −

ηW

ηW

 δ

2
I +

√
ηAηW β⊺β +

δ2

4
I

⊗ I + I ⊗
ηA

ηA

−
δ

2
I +

√
ηAηW ββ⊺ +

δ2

4
I

 vec(X⊺P ) (105)

= −

( δ

2
I ⊗ I

)
+

√
ηAηW β⊺β +

δ2

4
I ⊗ I

+

(
I ⊗−

δ

2
I

)
+

I ⊗

√
ηAηW ββ⊺ +

δ2

4
I

 vec(X⊺P )

(106)

= −


√

ηAηW β⊺β +
δ2

4
I ⊗ I

+

I ⊗

√
ηAηW ββ⊺ +

δ2

4
I


︸ ︷︷ ︸

M

 vec(X⊺P ). (107)

From our expression for M(β) we will consider how it simplifies in settings of δ → −∞, 0,∞
allowing us to gain intuition for Mδ(β).

M →


δI δ → −∞.

ββ⊺ ⊗ I + I ⊗ β⊺β δ = 0.

δI δ → ∞.

(108)

Lazy. As δ →±∞ M → δId, the network transitions into the lazy regime, the dynamics of
β converge to the trajectory of linear regression trained by gradient flow and along this trajectory
the NTK matrix remains constant, confirming the dynamics are lazy. Rich. When δ = 0, M =
ββ⊺⊗ I + I ⊗β⊺β. As a result the NTK changes in both magnitude and direction through training,
confirming the dynamics are rich.

Computing M−1 = ∇2qδ(β). Consistent with prior analyses, the natural next step of this
derivation would be to compute the inverse of M in order to find the potential qδ indicative of the
implicit bias. However, it is not straight forward to take the inverse of a Kronecker sum. Therefore,
we turn to a simplification of our setting where we can precisely identify the influence δ has on the
inductive bias .

Theorem 10 For a depth 2 fully connected square network (d = h = c), initialized such that
∆ = δI for some δ ∈ R and task-aligned such that β(0) = UΛ(0)V ⊺, where Λ(0) is a diagonal
matrix of strictly positive singular values, U, V are the singular vectors of X⊺Y , and X⊺X is
diagonalizable by V .
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If the gradient flow solution β(∞) satisfies X⊺β(∞) = Y , then β(∞) = UΛ∗V
⊺ where Λ∗

solves the constrained optimization,

Λ∗ = argmin
Λ∈Diag(Rd)

Λii>0 for i=1,...,i

Qδ(Λ) s.t. XUΛV ⊺ = Y (109)

where Qδ(Λ) =
∑h

i qδ(Λi)−∇qδ(Λi(0))Λi and

qδ(x) =
1
4

(
2x sinh−1

(√
ηAηW 2x

δ

)
−
√
ηAηW 4x2 + δ2 + δ

)
.

Proof

Assumption 11 The singular value decomposition of the network function at initialization is SVD(β(0)) =
V Λ(0)U⊺ where Λ(0) is a diagonal matrix of strictly positive singular values and U, V are the sin-
gular vectors of X⊺Y , (SVD(X⊺Y ) = V SU⊺),

Assumption 12 The input data X⊺X is diagonalizable by V .

Under assumptions 11 and 12, the network is said to be the task-aligned (Saxe et al. [60]),
the eigenvectors of the network function β are constant throughout training and equal to U and
V respectivaly. We can therefore describe the dynamics of Λ ∈ Diag(Rd) with Λii > 0 for i =
1, . . . , d where Λ = V ⊺βU .

Rearranging the expressions for W ⊺W (equation 7) and A⊺A (equation 8) in terms of the
singular vectors of the task we get

Lemma 13 A(t)⊺A(t) = 1
ηW
U

(
δ
2I +

√
ηAηWΛ2 +

(
δ
2I
)2)

U⊺.

Proof

A(t)⊺A(t) = − 1

ηW

δ
2
I +

√
ηAηWβ⊺β +

(
δ

2
I

)2
 (110)

=
1

ηW

δ
2
UU⊺ +

√
ηAηWUΛ2U⊺ +

(
δ

2
UU⊺

)2
 (111)

=
1

ηW
U

δ
2
I +

√
ηAηWΛ2 +

(
δ

2
I

)2


︸ ︷︷ ︸
ΛAA

U⊺. (112)

Lemma 14 W ⊺W = 1
ηA
V

(
− δ

2I +

√
ηAηWΛ2 +

(
δ
2I
)2)

V ⊺.
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Proof

W ⊺W =
1

ηA

δ
2
I +

√
ηAηWββ⊺ +

(
δ

2
I

)2
 (113)

=
1

ηA
V

−δ
2
I +

√
ηAηWΛ2 +

(
δ

2
I

)2


︸ ︷︷ ︸
ΛWW

V ⊺. (114)

Lemma 15 Λ̇ = −
√
ηAηW 4Λ2 + δ2I(Λ− S)

Proof
Beggining with the network function dynamic β, rewriting the expression in terms of the eigen-

vectors U and V

β̇ = − (ηW (X⊺Xβ −X⊺Y )A⊺A+ ηAW
⊺W (X⊺Xβ −X⊺Y )) (115)

= −
(
ηW (X⊺Xβ −X⊺Y )

1

ηW
UΛAAU

⊺ +
ηA
ηA
V ΛWWV

⊺(X⊺Xβ −X⊺Y )

)
(116)

= − ((X⊺XV ΛU⊺ − V SU⊺)UΛAAU
⊺ + V ΛWWV

⊺(X⊺XV ΛU⊺ − V SU⊺)) (117)

= − (V (Λ− S)ΛAAU
⊺ + V ΛWW (Λ− S)U⊺) (118)

= − (V ((Λ− S)ΛAA + ΛWW (Λ− S))U⊺) (119)

Projecting β̇ onto the singular vectors V ⊺ and U , we now consider the dynamics of Λ̇

Λ̇ = − ((Λ− S)ΛAA + ΛWW (Λ− S)) (120)

= −

(Λ− S)

+
δ

2
I +

√
ηAηWΛ2 +

(
δ

2
I

)2
+

−
δ

2
I +

√
ηAηWΛ2 +

(
δ

2
I

)2
 (Λ− S)

 (121)

= −

(Λ− S)

√
ηAηWΛ2 +

(
δ

2
I

)2
+

√
ηAηWΛ2 +

(
δ

2
I

)2
 (Λ− S)

 (122)

Given that
√
ηAηWΛ2 +

(
δ
2I
)2

is a diagonal matrix and (Λ − S) is also a diagonal matrix, the

expression for ˙ηAηWΛ simplifies accordingly to

Λ̇ = −MΛ(Λ− S) (123)

with MΛ =
√
ηAηW 4Λ2 + δ2I.

As layed out in Appendix B.4.1 the standard analysis for determining the implicit bias of a lin-
ear network through mirror flow, if the learning dynamics of the task aligned predictor Λ can be
expressed as a mirror flow for some strictly convex potential Φδ(β),

Λ̇ = −
(
∇2Φδ(Λ)

)−1
(Λ− S) (124)
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then if the gradient flow solution β(∞) satisfies X⊺β(∞) = Y , then β(∞) = UΛ∗V
⊺ where Λ∗

solves the constrained optimization

Λ∗ = argmin
Λ∈Diag(Rd)

Λii>0 for i=1,...,h

Qδ(Λ) s.t. XUΛV ⊺ = Y (125)

where Qδ(Λ) = Φδ(Λ)−∇Φδ(Λ(0))
⊺Λ

The natural next step of this derivation is to compute the inverse of MΛ in order to find the
potential Φδ indicative of the implicit bias. MΛ =

√
ηAηW 4Λ2 + δ2I is a diagonal matrix therefore

has a known inverse and

(MΛ)
−1 = ∇2Φα(Λ) =

(√
ηAηW 4Λ2 + δ2I

)−1
(126)

Solving for the potential Φδ(Λ). Consider the hypothesis that a scalar function q(x) exists,
allowing us to express Φδ(Λ) =

∑h
i=1 qδ(Λi) + cδ. Here, cδ is a constant chosen to ensure that

Φδ(Λii) > 0 for all Λii > 0 for i = 1, . . . , h, and that Φδ(0) = 0. The Hessian of this ansatz takes
the form,

∇2Φδ(Λ) =
(√

ηAηW 4Λ2 + δ2I
)−1

(127)

We now look for a function qδ(x) and its derivatives,

qδ(Λi) =
1

4

(
√
ηAηW 2Λi sinh

−1

(√
ηAηW 2Λi

δ

)
−
√
ηAηW 4Λ2

i + δ2 + δ

)
(128)

The hessian of qδ(x) is

∇2

(
h∑
i

qδ(Λi) + cδ

)
=
(√

ηAηW 4Λ2 + δ2
)−1

(129)

We find that the inductive bias is given by a hyperbolic entropy potential evaluated at the singular
values of β. In the scenario of aligned networks, the distinction between ℓ1 and ℓ2 norms loses
significance as the network consistently converges to the same solution. Nevertheless, the learning
dynamics of β will differ due to the potential qδ smooth transition between an ℓ1 and ℓ2 penalty,
distinguishing the rich and lazy regimes. This potential was initially identified as the inductive bias
for diagonal linear networks by Woodworth et al. [68].

C.2. Multi-Layer

We now consider the influence of depth by studying a depth-(l + 1) linear network, f(x; θ) =
a⊺
∏l

i=1Wix, where W1 ∈ Rh×d, Wi ∈ Rh×h for 1 < i ≤ l, and a ∈ Rh. We assume that the
dimensions d = h and that all parameters share the same learning rate η = 1. For this model the
predictor coefficients are computed by the product β =

∏l
i=1W

⊺
i a ∈ Rd. Similar to our analysis

of a two-layer setting, we assume an isotropic initializations of the parameters.

Definition 16 There exists a δ ∈ R such that aa⊺ − WlW
⊺
l = δIh and for all i ∈ [l − 1]

W ⊺
i+1Wi+1 =WiW

⊺
i .
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This assumption can easily be achieved by setting a = 0 and Wi = αOi for all i ∈ [l], where
Oi ∈ Rd×d is an random orthogonal matrix and α ≥ 0. In this case δ = −α2. Further, notice this
parameterization is naturally achieved in the high-dimensional limit as d → ∞ under a standard
Gaussian initialization with a variance inversely proportional with width. As in the two-layer setting,
this structure of the initialization will remain conserved throughout gradient flow. We now show
how two natural quantities of β, its squared norm ∥β∥2 and its outer product ββ⊺, can always be
expressed as polynomials of ∥a∥2 and W ⊺

1W1 respectively.

Lemma 17 ∥β∥2 = ∥a∥2
(
∥a∥2 − δ

)l.
Proof The norm of the regression coefficients is the product ∥β∥2 = a⊺

(∏l
i=1Wi

)(∏l
i=1Wi

)⊺
a.

Using the conservation of the initial conditions between consecutive weight matrices, W ⊺
i+1Wi+1 =

WiW
⊺
i , we can express this telescoped product as ∥β∥2 = a⊺

(
WlW

⊺
l

)d
a. When plugging in the

conservation between last two layers, this implies ∥β∥2 = a⊺ (aa⊺ − δId)
d a, which expanded gives

the desired result.

Lemma 18 ββ⊺ = (W ⊺
1W1)

l+1
+ δ (W ⊺

1W1)
l.

Proof The outer product of the regression coefficients is ββ⊺ =
(∏l

i=1Wi

)⊺
aa⊺

(∏l
i=1Wi

)
.

Using the conserved initial conditions of the last weights we can factor the outer product as the sum,
ββ⊺ =

(∏l
i=1Wi

)⊺
WlW

⊺
l

(∏l
i=1Wi

)
+ δ

(∏l
i=1Wi

)⊺ (∏l
i=1Wi

)
. Both these telescoping

products factor using the conservation of the initial conditions between consecutive weight matrices
giving the desired result.

We now demonstrate how the quadratic terms |a|2 and W ⊺
1W1 significantly influence the dy-

namics of β, similar to our analysis in the two-layer setting.

Lemma 19 The dynamics of β are given by a differential equation β̇ = −MX⊺ρ where M is a
positive semi-definite matrix that solely depends on ∥a∥2, W ⊺

1W1, and δ,

M = (W ⊺
1W1)

l
+ ∥a∥2

(
l−1∑
i=0

(∥a∥2 − δ)i (W ⊺
1W1)

l−1−i

)
. (130)

Proof Using a similar telescoping strategy used in the previous proofs we can derive the form of
M , which we leave to the reader.

Finally, we consider how the expression for M simplifies in the limit as δ → 0 allowing us to
be precise about the inductive bias in this setting.

Theorem 20 For a depth-(l+1) linear network with square width (d = h) and isotropic initializa-
tion β0 such that ∥β(t)∥ > 0 for all t ≥ 0, then in the limit as δ → 0, if the gradient flow solution
β(∞) satisfies Xβ(∞) = y, then,

β(∞) = argmin
β∈Rd

(
l + 1

l + 2

)
∥β∥

l+2
l+1 −

(
β(0)

∥β(0)∥
l

l+1

)⊺

β s.t. Xβ = y. (131)
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Proof Whenever ∥β∥ > 0 and in the limit as δ → 0, then we can find a unique expression for ∥a∥2
and W ⊺

1W1 in terms of ∥β∥2 and ββ⊺,

∥a∥2 = ∥β∥
2

l+1 , W ⊺
1W1 = ∥β∥−

2l
l+1ββ⊺. (132)

Plugged into the previous expression for M results in a positive definite rank-one perturbation to
the identity,

M = ∥β∥
2l
l+1 Id + l∥β∥−

2
l+1ββ⊺. (133)

Using the Sherman-Morrison formula we find that M−1 is

M−1 = ∥β∥−
2l
l+1 Id +

(
l

l + 1

)
∥β∥−

4l+2
l+1 ββ⊺ (134)

We can now apply a time-warped mirror flow analysis similar to the analysis presented in Ap-
pendix B.4. Consider the time-warping function gδ(∥β∥) = ∥β∥−

l
l+1 and the potential Φ(β) =(

l+1
l+2

)
∥β∥

l+2
l+1 , then its not hard to show M−1 = gδ(∥β∥)∇2Φ(β). This gives the desired result.

This theorem is a generalization of Proposition 1 derived in [7] for two-layer linear networks
in the rich limit to deep linear networks in the rich limit. We find that the inductive bias, Q(β) =

( l+1
l+2)∥β∥

l+2
l+1 − ∥β0∥−

l
l+1β⊺0β, strikes a balance between attaining the minimum norm solution and

preserving the initialization direction, which with increased depth emphasizes the latter.

38



THE ROLE OF INITIALIZATION GEOMETRY IN FEATURE LEARNING

Appendix D. Piecewise Linear Networks

Here, we elaborate on the theoretical results presented in Section 3. Our goal is to extend the
tools developed in our analysis of linear networks to piecewise linear networks and understand their
limitations. We focus on the dynamics of the input-output map, rather than on the inductive bias
of the interpolating solutions. As discussed in Azulay et al. [7], Vardi and Shamir [67], extending
a mirror flow style analysis directly to non-trivial piecewise linear networks is very difficult or
provably impossible. In this section, we first describe the properties of the input-output map of a
piecewise linear function, then describe the dynamics of a two-layer network, and finally discuss the
challenges in extending this analysis to deeper networks and potential directions for future work.

(a) With Biases (b) Without Biases

Figure 7: Surface of a ReLU network. Here we depict the surface of a three-layer ReLU network
f(x; θ) : R2 → R with twenty hidden units per layer at initialization, comparing configurations with
biases (left) and without biases (right). The network with biases partitions input space into convex
polytopes that tile input space. The network without biases partitions input space into convex conic
sections emanating from the origin. Each region exhibits a distinct activation pattern, allowing the
partition to be colored with two colors based on the parity of active neurons. The network operates
linearly within each region and maintains continuity across boundaries.

D.1. Surface of a piecewise linear network

The input-output map of a piecewise linear network f(x; θ), with l hidden layers and h hidden
neurons per layer, is comprised of potentially O(hdl) connected linear regions, each with their own
vector of predictor coefficients [58]. The exploration of this complex surface has been the focus of
numerous prior works, the vast majority of them focused on counting and bounding the number of
linear regions as a function of the width and depth [3, 27, 28, 50, 54, 58, 62, 66]. The central object
in all of these studies is the activation region,

Definition 21 For a piecewise linear network f(x; θ), comprising m hidden neurons with pre-
activation zi(x; θ) for i ∈ [m], let the activation pattern A represent an assignment of signs
ai ∈ {−1, 1} to each hidden neuron. The activation region R(A; θ) is the subset of input space
that generates A,

R(A; θ) = {x ∈ Rd | ∀i aizi(x; θ) > 0}. (135)
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The input-output map is linear within each non-empty activation region and continuous at the
boundary between regions. Linearity implies that every non-empty3 activation region is associated
with a linear predictor vector βR ∈ Rd such that for all x ∈ R(A; θ), βR = ∇xf(x; θ). Continuity
implies that the boundary between regions is formed by a hyperplane determined by where the pre-
activation for a neuron is exactly zero, {x : zi(x; θ) = 0}. When the neighboring regions have
different linear predictors4, then this hyperplane is orthogonal to their difference, which is a vector
in the span of the first-layer weights. Taken together, this implies that the union of all activation
regions forms a convex partition of input space, as shown in Fig. 7. We now present a surprisingly
simple, yet to the best of our knowledge not previously understood property of this partition:

Proposition 22 (2-colorable) If f(x; θ) lacks redundant neurons, implying that every neuron influ-
ences an activation region, then the partition of input space can be colored with two distinct colors
such that neighboring regions do not share the same color.

The proof of this proposition is straightforward. There is one color for regions with an even
number of active neurons and another for regions with an odd number of active neurons. Because
f(x; θ) lacks redundant neurons, there does not exist a boundary between activation regions where
two neurons activations change simultaneously. In this work, we solely utilize this proposition
for visualization purposes, as shown in Fig. 7. Nonetheless, we believe it may be of independent
interest as it strengthens the connection between the surface of piecewise linear networks and the
mathematics of paper folding, a connection previously alluded to in the literature [50].

D.2. Dynamics of a two-layer piecewise linear network

We consider the dynamics of a two-layer piecewise linear network without biases, f(x; θ) =
a⊺σ(Wx), where W ∈ Rh×d and a ∈ Rh. The activation function is σ(z) = max{z, γz} for
γ ∈ [0, 1), which includes ReLU γ = 0 and Leaky ReLU γ ∈ (0, 1). We permit h > d, which
in the limit as h → ∞, ensures the network possesses the functional expressivity to represent any
continuous nonlinear function from Rd to R passing through the origin. We consider the contri-
bution to the input-output map from a single hidden neuron i ∈ [h] with parameters wi ∈ Rd

and ai ∈ R. As in the linear setting, each hidden neuron is associated with a conserved quantity,
δi = ηwa

2
i − ηa∥wi∥2. Unlike in the linear setting, this neuron’s contribution to the output f(xj ; θ)

is regulated by whether the input xj is in the neuron’s active halfspace, {x ∈ Rd : w⊺
i x > 0}. Let

C ∈ Rh×n be the matrix with elements cij = σ′(w⊺
i xj), which determines the activation of the

ith neuron for the jth training data point. The subgradient σ′(z) = 1 if z > 0, σ′(z) ∈ [γ, 1] if
z = 0, and σ′(z) = γ if z < 0. These activation functions exhibit positive homogeneity, implying
σ(z) = σ′(z)z. Thus, we can express σ(w⊺

i xj) = cijw
⊺
i xj , allowing us to express the gradient flow

dynamics for wi and ai as

ȧi = −ηaw⊺
i

 n∑
j=1

cijxjρj

 , ẇi = −ηwai

 n∑
j=1

cijxjρj

 , (136)

3. While it is trivial to see that for a network f(x; θ) with m hidden neurons there are 2m distinct activation patterns,
not all activation patterns are attainable. See Raghu et al. [58] for a discussion.

4. It is possible for neighboring regions to have the same linear predictor. Some works define linear regions as maximally
connected component of input space with the same linear predictor [28].
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where ρj = f(xj ; θ) − yj is the residual associated with the jth training data point. If we let
βi = aiwi, which determines the contribution of each hidden neuron to the output f(xj ; θ), then its
not hard to see that the gradient flow dynamics of βi are

β̇i = −
(
ηwa

2
i Id + ηawiw

⊺
i

)︸ ︷︷ ︸
Mi

(∑n
j=1 cijxjρj

)
︸ ︷︷ ︸

ξi

. (137)

As in the linear setting, the matrix Mi ∈ Rd×d appears as a preconditioning matrix on the dynamics
Using the exact same derivation presented in Appendix B.3, whenever a2i > 0, we can express Mi

entirely in terms of βi and δi,

Mi =

√
δ2i + 4ηaηw∥βi∥2 + δi

2
Id +

√
δ2i + 4ηaηw∥βi∥2 − δi

2

βiβ
⊺
i

∥βi∥2
. (138)

However, unlike in the linear setting, the vector ξi ∈ Rd driving the dynamics is not shared for all
neurons because of its dependence on cij . Additionally, the NTK matrix in this setting depends
on Mi and C, with elements Kjk =

∑h
i=1 cijx

⊺
j

(
ηwa

2
i Id + ηawiw

⊺
i

)
xkcik. Thus, in order to

asses the temporal dynamics of the NTK matrix, we must understand the dynamics of Mi and C.
We consider a signed spherical coordinate transformation separating the dynamics of βi into its
directional β̂i = sgn(ai)

βi

∥βi∥ and radial µi = sgn(ai)∥βi∥ components, such that βi = µiβ̂i. Here,

β̂i determines the orientation and direction of the halfspace where the ith neuron is active, while µi
determines the slope of the linear region in this halfspace. These coordinates evolve according to,

µ̇i = −
√
δ2i + 4ηaηwµ2i β̂

⊺
i ξi,

˙̂
βi = −

√
δ2i + 4ηaηwµ2i + δi

2µi

(
Id − β̂iβ̂

⊺
i

)
ξi. (139)

These equations can be derived directly from Eq. (136) through chain rule similar to Appendix B.2.1.
In fact its worth noting that the this change of coordinates is very similar to the change of coordi-
nates used in the single-neuron analysis. Expressed in terms of the parameters, β̂i = wi

∥wi∥ and
µi = ai∥wi∥.
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Appendix E. Experimental Details

E.1. Figure 1: Teacher-Student with Two-layer ReLU Networks

For Fig. 1 we consider a student-teacher setup similar to that in [14], with one-hidden layer ReLU
networks of the form f(x; θ) =

∑m
i=1 aiσ(w

⊺
i x), where f : Rd → R and σ is the ReLU activa-

tion function. The teacher model, f teacher, has m = k hidden neurons initialized as wteacher
i

i.i.d.∼
Unif(Sd−1) and ai

i.i.d.∼ Unif({±1}) for i ≤ k.
The student, f student, in turn, has h hidden neurons. We use a symmetrized initialization, as

considered in [14], where for i ≤ h/2, we sample wi
i.i.d.∼ Sd−1 and ai

i.i.d.∼ Unif({±1}), and then
for i ≥ h

2 +1 we symmetrize by setting wi = wi−h/2 and ai = −ai−h/2. This ensures that f student

predicts 0 on any input at initialization.
Note that the base student initialization described thus far is perfectly balanced at each neuron,

that is δi = 0 for i ∈ [m]; we also define this to be our setting where the scale τ is 1. In order to
transform the base initialization into a particular setting of τ and δ, we first solve for the relative
layer scaling α in δ2 = τ2(α2 − α−2) and then scale each wi by τ/α and each ai by τα.

We obtain a training dataset {x(i), y(i)}ni=1 by sampling x(i) i.i.d.∼ Sd−1 and computing noiseless
labels as y(i) = f teacher(x(i); θteacher). The student is then trained with full-batch gradient descent
on a mean square loss objective.

Figure 1 (a).
Here the setting is: d = 2, h = 50, k = 3, and n = 20. We sample a single teacher and then

train four students with the same base initialization but different configurations of τ and δ: (τ =
0.1, δ = 0) and (τ = 2, δ = 0) for the left subfigure, and (τ = 0.1, δ = 1) and (τ = 0.1, δ = −1)
for the right subfigure. Training is for 1 million steps at a learning rate of 1e-4.

Figure 1 (b).
Here the setting is: d = 100, m = 50, k = 3, and n = 1000, as in Fig. 1c of [14]. Training

is performed with learning rate of 5e-3/τ2. Test error is computed as mean square error over a
held-out set of 10,000 datapoints.

We sweep over τ over a logarithmic scale in the range [0.1, 2] and δ over a linear scale in the
range [−1, 1]. We average over 16 random seeds, where the seed controls the sampling of: the
teacher weights θteacher, the base initialization of θstudent, and the training data {x(i)}ni=1. In this
way, each random seed is used for a sweep over all combinations of τ and δ in the sweep; we simply
apply the scaling described above to get to each point on the (τ, δ) grid.

The kernel distance computed is as defined in [19], where here we compute it at time t relative
to the kernel at initialization, i.e. S(t) = 1− ⟨K0,Kt⟩/ (∥K0∥F ∥Kt∥F ).

E.2. Figures 2, 3, 4: Single-Neuron Linear Network

Figures 2, 3, and 4 were generated by simulating gradient flow using scipy.integrate.solve ivp
function with the RK45 method for solving the ODEs, with a relative tolerance of 1 × 10−6 and
time span of (0, 20). In the experiments with full-rank data, we used X⊺X = I2, β∗ = [ 01 ], and
β0 =

[−1
0

]
. For the experiment with low-rank data, we used X⊺X = [ 0.25 0.5

0.5 1 ], β∗ = [ 0.440.88 ], and
β0 = [ 0.4

0.05 ]. See the discussion in Appendix B.2 for details on how we determined our theoretical
predictions. A notebook generating all the figures is provided.
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E.3. Figure 5:

Kernel Distance
We trained LeNet-5 [38] (with ReLU nonlinearity and Max Pooling) on MNIST [38]. We use He

initialization [29] and divide the first layer weights by α and multiply the last layer weights by α at
initialization, which keeps the network functionally the same at initialization. We trained the model
for 500 epochs with a learning rate of 1e-4 and a batch size of 512. The parameter distance is defined
as the L2 distance between all the parameters. To quantify the distance between the activations, we
binarize the hidden activation with 1 representing an active neuron. We evaluate Hamming distance
over all the binarized hidden activations normalized by the the total number of the activations. We
use kernel distance [19], defined as S(t1, t2) = 1− ⟨Kt1 ,Kt2⟩/ (∥Kt1∥F ∥Kt2∥F ), which is a scale
invariant measure of similarity between the NTK at two points in time. We subsample 10% of
MNIST to evaluate the Hamming distance and kernel distance. All curves in the figure are averaged
over 8 runs.

Gabor Filters
We are training a small ResNet based on the CIFAR10 script provided in the DAWN bench-

mark.5 The only modification to the provided code base is that we set the weight decay parameter
to 0, since this might confound our results. Moreover, we are dividing the convolutional filters
weights by a parameter α (after standard initialization) which controls the balancedness of the net-
work. To quantify the smoothness of the filters, we compute the normalized Laplacian of each filter
wij ∈ R15×15, over input i = (1, 2, 3) and output j = (1, ..., 64) channels

smoothness(wij) :=

∥∥∥∥ wij

∥wij∥2
∗∆
∥∥∥∥2
2

(140)

where the Laplacian kernel is defined as

∆ :=

 −0.25 −0.5 −0.25
−0.5 2 −0.5
−0.25 −0.5 −0.25

 . (141)

Random Hierarchy Model
We refer to [55], who originally proposed the random hierarchy model (RHM) as a tool for

studying how deep networks learn compositional data, for a more in-depth treatment. Here we
briefly recap the setup following the notation used in [55].

An RHM essentially lets us build a random classification task with a clear hierarchical struc-
ture. The top level of the RHM specifies m equivalent high-level features for each class label in
{1, . . . , nc}, where each feature has length s and nc is the number of classes. For example, suppose
the vocabulary at the top level is VL = {a, b, c}, nc = 2, m = 3, and s = 2. Then in a particular
instantiation of this RHM, we might have that Class 1 has ab, aa, and ca as equivalent high-level
features (this is precisely the example used in Fig.1 of [55]). Class 2 will then have three random
high-level features, with the constraint that they are not features for Class 1, for example, bb, bc, ac.

Each successive level specifies m equivalent lower-level features for each “token” in the vo-
cabulary at the previous level. For example, if VL−1 = {d, e, f}, we might have that a can be
equivalently represented as de, df , or ff ; b and c will each have m equivalent representations of

5. Code available here.
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Figure 8: Interpreting convolutional filters. CNN experiments on CIFAR10. We can see in
A) that all networks achieve comparable training and test accuracy, despite the modification in
initialization. However, in B) we see that networks with a small initialization (α < 1) learn much
smoother filters, giving quantiative support to results in Fig. 3. The smoothness is defined as the
normalized Laplacian of the filters (see text, eq. 140).

their own. We assume that the vocabulary size, v, is the same at all levels. Therefore, sampling an
RHM with hyperparameters nc,m, s, v requires sampling mnc + (L− 1)mv rules.

In order to sample a datapoint from an RHM, we first sample a class label (e.g. Class 1), then
uniformly sample one of the highest level features, (e.g. ab), then for each “token” in this feature
we sample lower level features (e.g. a → de, b → ee), and so on recursively. The generated
sample will therefore have length sL and a class label. For training a neural network to perform
this classification task, each input is converted into a one-hot representation, which will be of shape
(sL, v), and is then flattened.

We use the code released by [55] to train an MLP of width 64 with three hidden layers to learn
an RHM with L = 3, nc = 8,m = 4, s = 2, v = 8. The main change we make is allowing
for scaling the initialization of the first layer by 1/α and the initialization the readout layer by α.
We then sweep over α ∈ {0.03, 0.1, 0.3, 1, 3, 10} and over the number of datapoints in the training
set, which is specified as a fraction of the total number of datapoints the RHM can generate. We
average test accuracy, which is by default computed on a held-out set of 20,000 samples, over six
random seed configurations, where each configuration seeds the RHM, the neural network, and the
data generation.

We train with the default settings used in [55], that is stochastic gradient descent with momen-
tum of 0.9, run for 250 epochs with a learning rate initialized at 6.4 (0.1 times width) and decayed
with a cosine schedule down to 80% of epochs. The batch size of 128; we do not use biases or
weight decay.

Grokking
We are training a one layer transformer model on the modular arithmetic task in Power et al.

[57]. Our experimental code is based on an existing Pytorch implementation.6 The only modifi-
cations to the provided code base is that we use a single transformer layer (instead of the default
2-layer model). Prior analysis in Nanda et al. [53] has shown that this model can learn a minimal
(attention-based) circuit that solves the task.

6. Code available here.
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We study the effects on grokking time (defined as ≥ 0.99 accuracy on the validation data) of two
manipulations. Firstly, we divide the embedding weights of the positional and token embeddings
by the same balancedness parameter α as in the CNN gabor experiments. Secondly, like in Kumar
et al. [34], we multiply the output of the model (i.e., the logits) by a factor τ and divide the learning
rate by τ2.
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Figure 9: Transformer Grokking in Modular Arithmetic Task. A) Shows the number of training
steps required until the training accuracy passes a predefined threshold of 99%; we sample scaling
τ ∈ {0.5, 0.75, 1.0, 1.25, 1.5} [34] and balance α ∈ {0.1, 0.3, 1.0, 3.0, 10} on a regular grid over
n = 5 random initializations with a maximal computational budget of m = 30, 000 training steps.
B) Same as A), but reporting the number of training steps required until the test performance passes
the predefined threshold of 99%. We clearly see the fastest grokking in an unbalanced rich setting.
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