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Abstract001

The growing size of large language models has002
created significant computational inefficiencies.003
To address this challenge, sparse activation004
methods selectively deactivates non-essential005
parameters during inference, reducing compu-006
tational costs in FFNN layers. While exist-007
ing methods focus on non-linear gating mecha-008
nisms, we hypothesize that the sparsity of the009
FFNN layer lies globally in the form of a linear010
combination over its internal down projection011
matrix. Based on this insight, we propose two012
methods: M-COUNTDOWN, leveraging indi-013
rect coefficients, and D-COUNTDOWN, utiliz-014
ing direct coefficients of the linear combina-015
tion. Experimental results demonstrate that D-016
COUNTDOWN can omit 90% of computations017
with performance loss as low as 5.5% ideally,018
while M-COUNTDOWN provides a predictor-019
free solution with up to 29.4% better perfor-020
mance preservation compared to existing meth-021
ods. Our specialized kernel implementations022
effectively realize these theoretical gains into023
substantial real-world acceleration.024

1 Introduction025

Large Language Models (LLMs) have demon-026

strated remarkable capabilities across diverse appli-027

cations, from handling specific tasks to orchestrat-028

ing agent-based operations (OpenAI et al., 2024;029

DeepSeek-AI et al., 2024; Gemma Team et al.,030

2025). However, these advancements came at the031

cost of dramatically increased model sizes, creating032

enormous computational and resource demands.033

The inference process has emerged as a particu-034

larly acute efficiency constraint, forming a critical035

bottleneck for deploying LLMs in practical appli-036

cations. This inefficiency is further amplified by037

recent trends in test-time scaling, where models038

generate extensive reasoning, significantly increas-039

ing computational demands during inference (Jang040

et al., 2024; Deng et al., 2024). Consequently, re-041

search on LLM inference efficiency has intensified,042
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Figure 1: Comparison of sparsity determinations: our
approach determines sparsity from the full FFNN com-
putation (turquoise box), whereas conventional methods
like CATS (Lee et al., 2024) rely solely on non-linear
activations (red box).

aiming to reduce latency and memory consump- 043

tion while preserving generation quality (Liu et al., 044

2024; Kwon et al., 2023; Cai et al., 2024). 045

In this context, sparse activation has emerged 046

as a prominent strategy to improve FFNN layer 047

efficiency in Transformer-based LLM (Liu et al., 048

2023; Lee et al., 2024; Akhauri et al., 2024; Al- 049

izadeh et al., 2024). Sparse activation methods 050

dynamically identify and deactivate parameters un- 051

necessary for a given input, thereby reducing com- 052

putational load and accelerating inference. These 053

methods are particularly beneficial since FFNN 054

layers incur significant computational overhead in 055

modern LLM architectures (Awasthi et al., 2024). 056

The zero-out gating property of ReLU (Agarap, 057

2019) creates extensive sparsity in FFNN layers by 058

forcing a large portion of neurons to output zero 059

(Mirzadeh et al., 2024). This natural sparsity makes 060

computations associated with these zero-valued 061

neurons completely redundant. Existing sparse 062
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activation methods leverage this property to iden-063

tify and skip these unnecessary computations (Sun064

et al., 2024; Zhang et al., 2024). However, recent065

LLMs largely employ activations such as GeLU066

or SiLU (Hendrycks and Gimpel, 2016; Elfwing067

et al., 2018) with far less prevalent zero-out behav-068

ior (Mirzadeh et al., 2024), limiting these methods’069

applicability. Further, Gated-MLP structures, now070

widely adopted as FFNN layers (Shazeer, 2020;071

Dauphin et al., 2017), introduce more complex072

parameter interactions than standard architectures.073

This invalidates the assumption that sparsity occurs074

only around non-linear activations.075

To overcome these limitations, we propose an076

approach that defines sparsity from a global view,077

extending beyond the non-linear activations by re-078

formulating the FFNN layer’s output as a weighted079

sum, as illustrated in Figure 1. Based on this ap-080

proach, we derive two sparse activation methodolo-081

gies: MONO-COUNTDOWN (M-COUNTDOWN)082

and DUAL-COUNTDOWN (D-COUNTDOWN). M-083

COUNTDOWN identifies sparsity based on the out-084

put of a single weight matrix in Gated-MLP, while085

D-COUNTDOWN leverages two weight matrices.086

In evaluations, M-COUNTDOWN consistently out-087

performs the baseline method CATS (Lee et al.,088

2024), achieving up to 29.4% better performance089

preservation with comparable inference speed. D-090

COUNTDOWN attains greater efficiency gains, re-091

ducing computations by up to 90% in FFNN layers092

with performance loss as low as 5.5% under opti-093

mal conditions.094

The contributions of this paper are as follows.095

• We introduce a novel theoretical framework096

that redefines sparsity through a weighted-097

sum perspective over down projection matri-098

ces, extending beyond the conventional focus099

on activation functions.100

• We demonstrate that analyzing coefficient vec-101

tors in the weighted sum enables superior102

sparsity decisions, resulting in two distinct103

approaches with complementary strengths.104

• We provide practical acceleration through opti-105

mized kernel implementations, enabling both106

methods to achieve substantial throughput im-107

provements across multiple state-of-the-art108

LLM architectures.109

2 Related Works110

ReLU-based Sparse Activation Early works111

on sparse activation primarily leveraged the prop-112

erty of ReLU to enhance computational efficiency. 113

These approaches identified that ReLU activation 114

functions naturally create substantial built-in spar- 115

sity by producing zeros for negative values (Li 116

et al., 2023b). Several approaches have tried to 117

detect these zero-valued activations to preemp- 118

tively skip associated computations, as these neu- 119

rons would have no impact on subsequent layers 120

(Mirzadeh et al., 2024). Deja Vu (Liu et al., 2023) 121

extended this concept by training lightweight pre- 122

dictors to anticipate which neurons would be ze- 123

roed out, further improving efficiency. While these 124

methods showed impressive speed gains with mini- 125

mal performance loss, their application faced signif- 126

icant constraints. Notably, these approaches were 127

practical only on architectures explicitly designed 128

with ReLU activations, limiting their applicability 129

as LLMs increasingly adopted alternative activa- 130

tion functions (Akhauri et al., 2024). 131

Non-ReLU Sparse Activation As LLM evolved 132

to favor non-ReLU activation functions such as 133

GeLU and SiLU, which rarely produce exact zeros, 134

new methods emerged to extend sparsity benefits to 135

these architectures. One direction involved ReLUfi- 136

cation techniques that replace non-ReLU functions 137

with ReLU, enabling the reuse of existing sparsity 138

strategies (Song et al., 2024b, 2025; Zhang et al., 139

2024; Alizadeh et al., 2024). Another approach, 140

such as by CATS (Lee et al., 2024), redesigned 141

sparsity criteria to identify and skip computations 142

associated with near-zero activations rather than 143

exact zeros. While these adaptations improved 144

compatibility with modern LLM architectures, they 145

remain fundamentally constrained by their narrow 146

focus on local patterns around non-linear trans- 147

formations, overlooking potential sparsity from a 148

global perspective of the FFNN layer. This local- 149

ized perspective may fail to fully capitalize on the 150

potential sparsity distributed throughout modern 151

Gated-MLP architectures, particularly considering 152

the complex interactions among multiple weight 153

matrices that define these structures. 154

3 Generalization of Sparse Activation 155

Problem Formulation A Gated-MLP block con- 156

sists of three weight matrices: Wup, Wgate, Wdown 157

∈ Rdmodel×dinter . For this block, the input vector x 158

and the output vector y are in Rdmodel . The com- 159

putation involves intermediate states defined as 160

u=x ·Wup, h=σ(x ·Wgate), s=u⊙h in Rdinter . 161

When no sparsification is applied, which we re- 162
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fer to as the Dense scenario, all parameters are163

activated, and the operation proceeds as follows:164

y =
(
(x ·Wup)⊙ σ(x ·Wgate)

)
·W ⊺

down (1)165

where σ denotes a non-linear activation function,166

typically GeLU or SiLU.167

We now introduce our sparsity propagation168

framework, establishing sparse activation from a169

global perspective. We can activate only a valuable170

subset of weight vectors, with a marginal perfor-171

mance loss. Specifically, sparse activation under172

our framework follows:173

y =
(
(x ·W I

up)⊙ σ(x ·W I
gate)

)
·
(
W I

down

)⊺ (2)174

where I denotes the column of indices of the175

weights selected for computation:176

W I = W [:, IDX] , IDX = THLD(·) (3)177

where THLD is any function filtering effective I .178

Notably, when individual threshold functions are179

defined separately for each matrix, identical output180

can be achieved through the unified intersection181

IDX:182

IDX = IDXup ∩ IDXgate ∩ IDXdown (4)183

Consequently, even when sparsifying just one184

matrix and keeping others dense, the computation185

remains equivalent to applying this unified IDX186

across all matrices, which we denotes as shared-187

index property. Thus, if valuable sparsity patterns188

are identified in one matrix, they can propagate189

throughout the entire Gated-MLP.190

A critical challenge, therefore, is defining the191

optimal filtering function THLD to identify the192

most effective index set IDX to preserve globally193

essential computations while significantly reduce194

computational overhead.195

Limitation of Comparative Methodology196

CATS (Lee et al., 2024) partially satisfies our197

sparsity propagation framework. It identifies198

sparsity by examining the activation magnitude199

h = σ(x ·Wgate), assuming activations squashed200

near zero indicate parameters to omit. Specifically,201

given a sparsity ratio k ∈ (0, 1), CATS computes202

a threshold τkC via the Quantile(k, |h|) operation,203

selecting a cutoff below which the lowest k204

fraction of activations is excluded. Based on this205

threshold, CATS defines a sparse activation index206

as shown in Equation 6a.207

CATS leverages the shared-index property. How- 208

ever, since the optimal THLD might depend on 209

factors beyond non-linear activation region, CATS 210

is theoretically limited in propagating an opti- 211

mal IDX throughout the Gated-MLP. Addition- 212

ally, although h[i] is large, if the corresponding 213

u[i] = x · Wup[i] is near zero, the final contribu- 214

tions become minimal, which ideally should be 215

filtered out due to their elementwise product. 216

Threshold Variants To overcome these limita- 217

tions, we reformulate the Gated-MLP computation 218

as a linear combination of the Wdown weight vec- 219

tors, thereby exploring additional possibilities for 220

defining THLD as follows: 221

y =
(
(x ·Wup)⊙ σ(x ·Wgate)

)
·W ⊺

down

=
∑
i

s[i] ·W ⊺
down[i]

(5) 222

This reformulation allows us to interpret output y 223

as a weighted sum over W ⊺
down row vectors, where 224

coefficient s[i] =
(
(x·Wup)⊙σ(x·Wgate)

)
reflects 225

the i-th row vector’s contribution to computation. 226

The magnitude of these coefficients provides a nat- 227

ural metric for determining which parameters to 228

activate, as they quantify each vector’s significance 229

to the output. 230

Furthermore, since s is calculated as the el- 231

ementwise multiplication of u = x · Wup and 232

h = σ(x ·Wgate), these intermediate vectors can 233

also serve as indirect coefficient signals. This gen- 234

eralized view reveals that each computation stage 235

in the Gated-MLP can provide a distinct sparsity 236

indicator, with selecting h as the basis being equiv- 237

alent to CATS’s approach. 238

THLDk
C (h, τkC) = {i | |h[i]| > τkC} (6a) 239

THLDk
M (u, τkM) = {i | |u[i]| > τkM} (6b) 240

THLDk
D (s, τkD) = {i | |s[i]| > τkD} (6c) 241

Based on this view, we propose two variants 242

of sparse activation that extend beyond prior ap- 243

proaches relying solely on the magnitude of h. 244

As shown in Equation 6, the first method, M- 245

COUNTDOWN, applies thresholding directly to vec- 246

tor u, while the second method, D-COUNTDOWN, 247

applies thresholding to s. For each method, thresh- 248

olds τkM and τkD are calculated via Quantile(k, |u|) 249

and Quantile(k, |s|) respectively. 250

These methods offer complementary strengths: 251

M-COUNTDOWN provides practical implementa- 252

tion with minimal overhead by examining only one 253
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matrix multiplication, while D-COUNTDOWN can254

offer more precise sparsity identification through255

direct coefficients of the weighted sum. A detailed256

discussion of these methods follows in section 4257

4 Realization of Sparse Activation258

SPIdeal and SPPrac In the previous section, we259

focused on establishing THLD and the correspond-260

ing indicator that theoretically guarantee the safe261

omission of parameters. Ideally, if these indica-262

tors are tractable in real-time inference, we can263

achieve the upper-bound performance defined by264

the method. However, accessing the indicator and265

deriving IDX from it is not trivial.266

Given this constraint, we distinguish between267

two distinctive perspectives: SPIdeal examines the268

theoretical upperbound performance achievable269

by each method, assuming that filtering based on270

sparsity indicators incurs no computational over-271

head. SPPrac accounts for real-world deployment272

constraints, particularly the latency of identifying273

sparse activation patterns. It evaluates whether274

methods can deliver actual inference speedups275

when all practical overheads are considered.276

The distinction is critical because methods with277

strong SPIdeal performance may not translate to278

SPPrac benefits if their practical implementation is279

computationally expensive. Conversely, focusing280

solely on SPPrac without understanding the theoret-281

ical SPIdeal limits can lead to suboptimal solutions282

that fail to approach the best possible performance.283

Effective sparse activation requires both identify-284

ing truly essential computations via SPIdeal and285

creating an efficient implementation to realize total286

computational savings through SPPrac.287

Constructing SPPrac for COUNTDOWN We288

now describe how to transform the theoretical289

SPIdeal formulations of M-COUNTDOWN and D-290

COUNTDOWN into efficient, practical SPPrac im-291

plementations.292

For M-COUNTDOWN, the implementation is293

straightforward because its indicator u depends294

only on the matrix Wup. Therefore, its index set295

IDXk
M defined in its SPIdeal perspective can be296

obtained independently of other matrices in the297

Gated-MLP. This allows M-COUNTDOWN to oper-298

ate without additional inference-time components,299

as computation over the remaining matrices can be300

selectively skipped based on u.301

To further reduce overhead, we avoid comput-302

ing τkM dynamically for each input. Instead, we303

approximate it with a layerwise constant τ̂kM = 304
1
T

∑T
t=1 Quantile(k, |u(t)|) estimated during a cal- 305

ibration phase with T sampled inputs. 306

In contrast, implementing D-COUNTDOWN 307

poses greater challenges because its indicator s 308

requires nearly the entire Gated-MLP computation, 309

negating the advantages of sparse activation. To 310

tackle this challenge, we train a lightweight pre- 311

dictor that estimates the optimal index set IDXk
D 312

directly from input x, avoiding the need to compute 313

s during inference. For each layer, the predictor 314

outputs a score vector ŝ where: 315

ŝ[i] =

{
+∞ if |s[i]| > Quantile(k, |s|)
−∞ otherwise

316

317
Using this output, we define the predicted index 318

set as ÎDX
k

D = {i | ŝ[i] > 0} and activate only the 319

corresponding weight columns during inference. 320

For efficiency, the predictor must be highly accu- 321

rate and computationally inexpensive during in- 322

ference. Following (Liu et al., 2023; Alizadeh 323

et al., 2024), we employ a low-rank approxima- 324

tor consisting of two matrices: θA ∈ Rdmodel×drank 325

and θB ∈ Rdrank×dinter , minimizing computational 326

overhead while preserving prediction accuracy. al- 327

gorithm 1 details the complete training procedure. 328

Kernel Design Once the sparse activation index 329

set IDX is determined, computation can be re- 330

stricted to only the corresponding subset of weights, 331

reducing the actual floating-point operation count 332

(FLOPs). However, reducing FLOPs does not nec- 333

essarily translate to improved inference latency. 334

For instance, materializing an indexed weight ma- 335

trix and performing standard vector-matrix multi- 336

plication may still reduce FLOPs, but at the cost of 337

increased memory access (Song et al., 2024a; Xue 338

et al., 2024). Therefore, sparse computation should 339

avoid incurring excessive memory traffic solely for 340

the sake of reducing arithmetic operations. 341

To address this, we implement custom kernels 342

for both M-COUNTDOWN and D-COUNTDOWN 343

using Triton (Tillet et al., 2019). The M- 344

COUNTDOWN kernel builds upon CATS’s struc- 345

ture (Lee et al., 2024), but optimizes it by fusing the 346

non-linear activation to reduce additional memory 347

access. For D-COUNTDOWN, we design a kernel 348

that efficiently supports predictor-based activation 349

patterns. A naive implementation would require 350

eight separate kernel launches for sparse computa- 351

tion: indexing and GEMV for each of the three ma- 352

trices, plus non-linear activation and elementwise 353
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Figure 2: COUNTDOWN Pipeline. Note that hpre = x ·Wgate. Left (a): In M-COUNTDOWN, we determine which
parameters to activate by binarizing densely computed u with pre-calculated τ̂kM. Right (b): In D-COUNTDOWN,
low-rank predictors

(
θA, θB

)
determine which parameters to activate.

multiplication. Our implementation compresses354

this workload into just two kernels. This design355

ensures that FLOPs reductions directly translate356

into improved token throughput. Full implementa-357

tion details and pseudocode are in algorithm 2 and358

algorithm 3.359

5 Experiments360

Experimental Setup We evaluate the proposed361

methods against other sparse activation baselines,362

primarily CATS (Lee et al., 2024) and Deja Vu363

(Liu et al., 2023). We also include a Dense vari-364

ant without any sparse activation for comparison.365

Experiments are conducted using four diverse state-366

of-the-art LLMs ranging from 8B to 14B param-367

eters: Llama-3.1-8B-Instruct (Grattafiori et al.,368

2024), gemma-2-9b-it (Gemma Team et al., 2024),369

Qwen2.5-14B-Instruct (Qwen et al., 2024), and phi-370

4 (Abdin et al., 2024). We test multiple sparsity371

ratios by varying k from 0.7 to 0.9, representing372

the fraction of parameters excluded from compu-373

tation. Implementation details are provided in Ap-374

pendix A.2.375

We examine both model performance preser-376

vation and computational efficiency. For model377

performance, we use the lm-eval-harness (Gao378

et al., 2024) framework to assess downstream tasks379

including ARC (Clark et al., 2018), HellaSwag380

(Zellers et al., 2019), PIQA (Bisk et al., 2020),381

OpenbookQA (Mihaylov et al., 2018), TruthfulQA 382

(Lin et al., 2022), WinoGrande (Sakaguchi et al., 383

2020), and GSM8K (Cobbe et al., 2021). Unlike 384

prior sparse activation studies, we also evaluate con- 385

versational ability using LLM-as-a-Judge frame- 386

work AlpacaEval 2.0 (Li et al., 2023a). 387

To assess computational efficiency and inference 388

speed, we benchmark kernel-level latency to quan- 389

tify Gated-MLP speedups from sparse activation. 390

We also measure end-to-end token throughput and 391

analyze theoretical reductions in floating-point op- 392

erations (FLOPs) and memory traffic. 393

Downstream Task Performance As shown in 394

Table 1, in the SPIdeal setting,D-COUNTDOWN 395

consistently outperforms all methods across all 396

models and sparsity ratios, exhibiting negligible 397

degradation even when compared to the dense base- 398

line. This demonstrates the effectiveness of D- 399

COUNTDOWN’s sparsity criterion: the indicator 400

s accurately reflects each parameter’s importance 401

to the final output, serving as the coefficient in 402

our linear combination formulation. This provides 403

more informed filtering than methods like CATS 404

which rely solely on gating magnitude. Even at 405

90% sparsity, D-COUNTDOWN retains only the 406

most impactful neurons, limiting performance drop 407

to 5.5% in the best case among evaluated models. 408

M-COUNTDOWN, although less effective than 409

D-COUNTDOWN, consistently outperforms CATS. 410
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InferenceMode Llama-3.1-8B-Instruct gemma-2-9b-it Qwen2.5-14B-Instruct phi-4

k=0.7 k=0.8 k=0.9 k=0.7 k=0.8 k=0.9 k=0.7 k=0.8 k=0.9 k=0.7 k=0.8 k=0.9

Dense
Full 0.616 0.645 0.674 0.655

SPIdeal

DEJAVU 0.314 0.315 0.322 0.360 0.360 0.360 0.379 0.382 0.385 0.398 0.405 0.396
CATS 0.471 0.412 0.337 0.592 0.483 0.367 0.502 0.428 0.389 0.615 0.535 0.427
M-COUNTDOWN 0.570 0.513 0.421 0.624 0.607 0.549 0.644 0.610 0.479 0.636 0.608 0.512
D-COUNTDOWN 0.603 0.587 0.525 0.635 0.625 0.590 0.660 0.647 0.555 0.651 0.649 0.620

SPPrac

CATS 0.504 0.450 0.350 0.605 0.502 0.360 0.556 0.478 0.390 0.633 0.591 0.448
M-COUNTDOWN 0.571 0.528 0.447 0.632 0.617 0.588 0.651 0.624 0.535 0.639 0.620 0.555
D-COUNTDOWN 0.442 0.419 0.387 0.555 0.563 0.520 0.526 0.457 0.437 0.499 0.445 0.417

Table 1: Average SPIdeal and SPPrac scores compared to Dense across all downstream tasks. Full task-wise results
are provided in Appendix C.

The gap between the two widens as the sparsity411

ratio increases, reaching over 29.4%. This demon-412

strates that M-COUNTDOWN ’s indicator u is more413

predictive of useful computation than CATS’ indi-414

cator h. This may seem counterintuitive since u415

and h contribute symmetrically via their element-416

wise product and thus should be equally informa-417

tive. We revisit this comparison in section 6.418

Deja Vu, which assumes ReLU-style zero-out419

behavior, suffers severe degradation in the SPIdeal420

setting. Given its reliance on predictors, which421

would further degrade under the SPPrac setting, we422

excluded it from subsequent experiments.423

In the SPPrac setting, D-COUNTDOWN expe-424

riences performance loss relative to the SPIdeal425

due to predictor sub-optimality, suggesting bet-426

ter prediction strategies are needed to fully real-427

ize its potential in deployment. In contrast, M-428

COUNTDOWN, thanks to its predictor-free design,429

exhibits nearly identical performance to its SPIdeal430

counterpart. Notably, M-COUNTDOWN continues431

to outperform CATS across all sparsity settings, re-432

inforcing the effectiveness of its signal even under433

realistic constraints.434

LLM Chat Performance While prior studies435

rely on downstream task accuracy or perplexity,436

these metrics often fail to capture conversational437

performance. To address this, we evaluate each438

method using an LLM-as-a-Judge framework that439

directly assesses chat-level performance.440

As shown in Table 2, M-COUNTDOWN main-441

tains nearly identical performance between the442

SPIdeal and SPPrac settings, while also outperform-443

ing CATS in both. D-COUNTDOWN exhibits no-444

ticeable degradation in SPPrac due to predictor lim-445

itations, but retains a dominant lead under SPIdeal.446

This trend aligns with the results observed in the447

downstream task evaluations. 448

InferenceMode AlpacaEval 2.0

k = 0.7 k = 0.8 k = 0.9

SPIdeal

CATS 25.10 1.72 0.19
M-COUNTDOWN 45.84 29.22 3.90
D-COUNTDOWN 48.86 45.85 29.95

SPPrac

CATS 31.63 10.47 0.25
M-COUNTDOWN 38.31 33.80 15.88
D-COUNTDOWN 3.40 2.81 1.16

Table 2: Average SPIdeal and SPPrac win rates against
Dense across all models. Full model-wise results are
provided in Table 7.

Efficiency and Speed To confirm that reduc- 449

tions in computation indeed translate into infer- 450

ence speedups, we measured kernel-level execu- 451

tion latency under various sparsity ratios. Each ker- 452

nel’s execution time was recorded from the start of 453

the Gated-MLP computation, explicitly excluding 454

other operations like token embedding or attention 455

mechanisms. This allowed us to isolate the precise 456

efficiency gains attributable to sparse activation. 457

As shown in Figure 3, D-COUNTDOWN 458

achieves the fastest kernel execution time overall, 459

despite the presence of a predictor, by skipping 460

all three weight matrix computations. Although 461

both M-COUNTDOWN and CATS are predictor- 462

free, M-COUNTDOWN slightly outperforms CATS 463

in kernel speed. Given that the only architectural 464

difference between their kernels is whether the non- 465

linear activation function is fused, this suggests 466

that M-COUNTDOWN gains a minor but consistent 467

speed advantage by fusing the activation computa- 468

tion, thereby reducing memory traffic and avoiding 469

additional overhead. 470
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Figure 3: Kernel Speed for Llama-3.1-8B-Instruct.
CATS, M-COUNTDOWN and D-COUNTDOWN show
their respective SPPrac kernel speeds, Full and Optimal
show Dense while int(dinter × k) instead of dinter for
the Optimal. Results for other models are in Figure 5.

Furthermore, we measured average tokens gen-471

erated per second for generation lengths of 512472

and 1024, providing a model-level speedup assess-473

ment in typical generation scenarios. As shown474

in Table 3, M-COUNTDOWN achieves the high-475

est end-to-end token throughput. Meanwhile, D-476

COUNTDOWN demonstrates the best performance477

at the kernel level, and with further optimization,478

its overall throughput may be further enhanced.479

6 Analysis480

M-COUNTDOWN vs CATS While CATS and481

M-COUNTDOWN share similar core ideas for482

sparse activation, our experimental results show483

that M-COUNTDOWN consistently achieves better484

performance. To understand the performance gap485

between the indirect coefficient vectors u and h,486

we conduct a comparative analysis of how each487

influences and aligns with the oracle-like refer-488

ence signal s, the direct coefficient used in D-489

COUNTDOWN.490

To enable direct comparison, we define binary491

masks Sk, Uk, and Hk based on the top-k mag-492

nitude entries of each vector. Each mask marks493

components as “alive” (1) if they survive quantile494

thresholding, and "dead" (0) otherwise. These bi-495

nary masks are equivalent to the index sets IDXk496

used for sparse activation, as each represents the497

support of the corresponding IDXk in vector form.498

We first define a metric called Comparative499

Influential Factor (CIF) to measure how much500

influence u (or h) has on the final decision of s, es-501

pecially in cases where it overrides the other com-502

ponent. Analogously, for instance, CIFk(u, alive)503

k Method FLOPs(M) Mem.(MB) Throughput

512 1024

0.0 Dense 352.41 168.121 24.64 22.63

0.7
CATS 188.00 89.746 32.62 29.40
MC 187.95 89.719 33.61 30.32
DC 124.59 59.480 30.69 27.80

0.8
CATS 164.52 78.550 32.72 29.60
MC 164.46 78.522 33.80 30.61
DC 89.37 42.684 30.70 27.57

0.9
CATS 141.02 67.345 32.98 29.81
MC 140.96 67.318 33.51 30.78
DC 54.11 25.877 30.73 27.55

Table 3: Theoretical FLOPs and Memory Traffic of
Gated-MLP and actual throughput per second at se-
quence lengths 512 and 1024 for Llama-3.1-8B-Instruct
(dmodel = 4096, dinter = 14336). MC and DC refer to
M-COUNTDOWN and D-COUNTDOWN respectively.

measures how often u “rescues” a component that 504

would otherwise have been pruned by h, allow- 505

ing it to survive in s due to its strong contribution. 506

Formally, this is computed as: 507

CIFk(u, alive) =
|Sk ∧ ¬Hk|

|Sk|
(7) 508

This formulation follows from the definition of 509

s as the elementwise product of u and h. When 510

s[i] is alive but h[i] is small enough to be pruned, 511

it implies that u[i] must have been large enough to 512

compensate, effectively “saving” that entry. 513

Next, we define the Comparative Agreement 514

Factor (CAF) to evaluate how often one signal 515

aligns with s while the other disagrees. For in- 516

stance, CAFk(u, alive) measures how frequently u 517

agrees with s on keeping a component, specifically 518

when h disagrees. This is given by: 519

CAFk(u, alive) =
|Sk ∧ ¬Hk ∧ Uk|

|Sk|
(8) 520

Both CIF and CAF can also be defined symmet- 521

rically for the “dead” case by inverting the roles of 522

activation and pruning. 523

As shown in Figure 4, u outperforms h across all 524

sparsity levels in both CIF and CAF. These results 525

suggest that u more closely reflects the true acti- 526

vation behavior captured by s and exerts a greater 527

direct impact on sparsity decisions than h. In other 528

words, u is more effective at preserving impor- 529

tant activations and filtering out unimportant ones, 530

explaining M-COUNTDOWN’s stable and reliable 531

performance under sparsity. 532

Nevertheless, since M-COUNTDOWN still relies 533

on an indirect coefficient u, it cannot fully match 534

7



Figure 4: Tornado plots of CIF and CAF across whiten-
ing ratios. Bars to the right indicate the propor-
tion of CIFk(·, alive), while those to the left indicate
CIFk(·, dead).

the upper-bound performance of D-COUNTDOWN,535

which uses the full signal s directly. Despite u’s536

strong CIF and CAF scores, substantial mismatches537

with respect to the oracle mask Sk remain, with538

peak CIF values reaching only about 0.6 and CAF539

values about 0.4, underscoring the need for future540

work to translate D-COUNTDOWN’s upper-bound541

potential into SPPrac deployments.542

Possible Predictor Candidate: TernaryLin-543

ear D-COUNTDOWN demonstrates a theoreti-544

cally sound and effective sparse activation strategy,545

achieving strong performance in the SPIdeal set-546

ting. However, in the SPPrac scenario, performance547

degradation occurs due to the predictor’s limited ac-548

curacy in recovering optimal sparsity patterns. This549

reflects the difficulty of the prediction task rather550

than a flaw in the sparsity criterion itself. The task551

simultaneously demands precision and computa-552

tional efficiency, presenting a significant challenge553

with considerable room for improvement.554

To empirically explore this potential, we evalu-555

ate an alternative predictor architecture, Ternary-556

Linear, whose weights are quantized as θternary ∈557

{−1, 0,+1}dmodel×dinter . We compare its perfor-558

mance with the previously utilized low-rank ap-559

proximator. TernaryLinear achieves significant560

parameter compression by sacrificing numerical561

precision while preserving the matrix rank struc-562

ture. Motivated by recent studies demonstrating563

successful LLM pretraining with ternary quanti-564

zation while retaining strong model performance565

(Ma et al., 2024), we regard TernaryLinear as a566

promising candidate due to its demonstrated ex-567

pressiveness even under aggressive quantization.568

As shown in Table 4, TernaryLinear outperforms569

the low-rank baseline in F1 score, while also being570

Metric TernaryLinear Low-Rank

Latency (ms) 0.082 0.030
Theoretical footprint (MiB) 112 144
F1-score (%) 0.435 0.403

Table 4: Comparison between TernaryLinear and the
Low-Rank Approximator. Latency for TernaryLinear
was measured using the BitBLAS library (Wang et al.,
2024). F1 score is reported as the average binary classifi-
cation performance on S0.7 across all evaluated models.

more compact in terms of memory footprint. This 571

suggests that preserving rank information, even at 572

the cost of numerical precision, is more effective 573

for sparse mask recovery than the reverse approach. 574

However, TernaryLinear has not yet been 575

adopted due to its relatively slower runtime despite 576

its small size. This limitation stems not from algo- 577

rithmic complexity, but rather the lack of optimized 578

GPU kernel support for ultra-low-precision oper- 579

ations. Prior work (Ma et al., 2025) suggests that 580

future advances in kernel optimization and ultra- 581

low-bit quantization are needed to fully leverage 582

such architectures. With these improvements, tech- 583

niques like TernaryLinear could become viable can- 584

didates for enabling D-COUNTDOWN to achieve 585

its full SPIdeal performance in SPPrac scenarios. 586

7 Conclusion 587

We introduce COUNTDOWN, a novel sparse ac- 588

tivation framework for improving inference effi- 589

ciency of large language models. To overcome 590

the limitations of traditional non-linear activation- 591

based sparsity, we reformulate the computation as 592

a weighted sum over the FFNN’s down projection 593

matrix, effectively capturing inherent sparsity in 594

modern Gated-MLP architectures. From this per- 595

spective, we present two complementary strategies: 596

M-COUNTDOWN, which uses u derived from a sin- 597

gle matrix Wup as its activation indicator, achieves 598

faster inference and better performance preserva- 599

tion than prior state-of-the-art methods while re- 600

maining predictor-free. D-COUNTDOWN directly 601

leverages s, the coefficient vector of the weighted 602

sum, for fine-grained sparsity selection, demon- 603

strating robust performance even when skipping 604

90% of computations under ideal conditions. 605

Limitations 606

Like most prior work on sparse activation, our 607

study assumes a single-batch greedy decoding set- 608

ting in on-device environments. While this scenario 609

8



is realistic for latency-sensitive edge inference, it610

may be less applicable in multi-batch or server-611

based deployments. In such cases, strategies such612

as computing the union of predicted index sets613

IDX across multiple samples could be explored.614

However, such an approach would require further615

investigation into how much parameter activation616

can be shared across inputs, a direction we leave617

for future work.618

Additionally, our sparsity criteria rely exclu-619

sively on activation magnitude. This choice of-620

fers clear interpretability and aligns well with the621

weighted-sum perspective we adopt. Nevertheless,622

alternative sparsity metrics, such as those explored623

by (Akhauri et al., 2024), remain an open research624

avenue. Expanding beyond simple magnitude-625

based thresholding could further enhance the per-626

formance of sparse activation methods.627

Ethical Considerations628

We affirm adherence to the ACL Rolling Review629

(ARR) ethical guidelines, explicitly addressing630

potential risks and responsible research practices.631

This research focuses on optimizing computational632

efficiency in large language models (LLMs), aimed633

at reducing resource usage and consequently low-634

ering environmental impact. We foresee no direct635

risks or potential harms to individuals or communi-636

ties resulting from this work.637

Comprehensive details regarding the ethical use638

of scientific artifacts, reproducibility of computa-639

tional experiments, and related considerations are640

thoroughly documented in Appendix A.641
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A Experimental Details916

A.1 Hyperparameters917

Name Low-Rank
(
θA, θB

)
BitLinear

(
θternary

)
Loss Binary Cross Entropy
Sparsity ratio (k) {0.7, 0.8, 0.9}
Learning rate {1e-3, 5e-4}
Training batch size {16, 32}
Optimizer AdamW
Target Binary mask skalive
Epochs {10, 20, 40, 80}
Seed 42

Predictor shape Low-Rank Approximator TernaryLinear
drank {128, 256, 512, 1024} –

Hardware 1 × NVIDIA A100 80GB

Table 5: Hyperparameter settings and additional re-
producibility details for training predictors used in D-
COUNTDOWN. All experiments were conducted using
a single run without multiple random seeds.

A.2 Environments918

All experiments were performed on an NVIDIA919

A100 80GB GPU. We used Triton v3.1.0 for cus-920

tom kernel development, while the rest of the exper-921

imental pipeline was built on HuggingFace Trans-922

formers v4.51.3, PyTorch v2.5.1, and CUDA v12.1.923

A.3 Dataset Description924

Table 6 summarizes the licenses and dataset statis-925

tics used for evaluation.926

We evaluate seven Natural Language Under-927

standing(NLU) tasks and one Natural Language928

Generation(NLG) task focused on mathematical929

reasoning (GSM8K). All datasets primarily con-930

tain English text.931

Dataset License Train Test

ARC-Easy cc-by-sa-4.0 2251 (500) 2376
ARC-Challenge cc-by-sa-4.0 1119 (500) 1172
HellaSwag MIT 39905 (500) 10042
PIQA AFL 3.0 16113 (500) 1838
WinoGrande apache-2.0 40398 (500) 1267
OpenBookQA apache-2.0 4957 (500) 500
TruthfulQA apache-2.0 0 817
GSM8K MIT 0 1319

Table 6: Summary statistics and licenses for datasets
used in evaluation. Following previous research
(Akhauri et al., 2024), we used subsets of each down-
stream task’s training set, each containing 500 examples.

B Pseudo Codes 932

B.1 Procedures for Training Predictor 933

Algorithm 1: Training the predictor for a
Gated-MLP in D-COUNTDOWN

Input: Training samples {xj}Nj=1, Target module
GatedMLP , Target sparsity ratio k

Output: Trained predictor parameters θ
1 foreach training sample xj do
2 sj ← Compute GatedMLP (xj);
3 sj ← Binarize using Quantile(k, |sj |);
4 if Predictor is Low-Rank then
5 Initialize parameters θA, θB;

6 else if Predictor is TernaryLinear then
7 Initialize parameters θternary;

8 foreach training iteration do
9 Sample mini-batch {xb, sb};

10 if Predictor is Low-Rank then
11 ŝb = xb · θA · θB;

12 else if Predictor is TernaryLinear then
13 ŝb = xb · θternary;

14 Compute BCE loss between ŝb and sb;
15 Update predictor parameters θ;

934
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B.2 Kernel in Detail: M-COUNTDOWN935

Algorithm 2: M-COUNTDOWN Inference
Kernel (Triton-style)

Input: X, Wup, τ̂M
Output: U,Mask

1 # PyTorch ;
2 U ← X @Wup ;
3 Mask← (|U | ≥ τ̂M) ;

Input: X,U,Wgate,Mask,BLKM ,BLKN

Output: S
4 # Triton 1 ;
5 start_m← tl.program_id(0) ;
6 rm← start_m× BLKM + tl.arange(0,BLKM ) ;
7 rn← tl.arange(0,BLKN ) ;
8 Mask← Mask + rm ;
9 flag← tl.load(Mask) > 0 ;

10 Wgate←Wgate+(rm[:,None]×dmodel+rn[None,:]) ;
11 X ← X + rn ;
12 acc← tl.zeros((BLKM )) ;
13 i_mask← flag[:,None] ;
14 foreach block in rn do
15 w ← tl.load(Wgate,mask = i_mask, other = 0 ;
16 x← tl.load(X) ;
17 acc← acc + tl.sum(w × x[None, :], 1) ;
18 Wgate ←Wgate + BLKN ;
19 X ← X + BLKN ;

20 U ← U + rm ;
21 u← tl.load(U,mask = flag, other = 0) ;
22 acc← silu(acc)× u ;
23 S ← S + rm ;
24 tl.store(S, acc,mask = rm < dinter) ;

Input: S,Wdown,Mask,BLKM ,BLKN

Output: Y
25 # Triton 2 ;
26 start_m← tl.program_id(0) ;
27 start_n← tl.program_id(1) ;
28 rm← start_m× BLKM + tl.arange(0,BLKM ) ;
29 rn← start_n× BLKN + tl.arange(0,BLKN ) ;
30 Mask← Mask + rm ;
31 flag← tl.load(Mask) > 0 ;
32 Wdown←Wdown+(rm[:,None]×dmodel+rn[None,:]) ;
33 S ← S + rm ;
34 w← tl.load(Wdown,mask=flag[:,None],other=0) ;
35 x← tl.load(S) ;
36 acc← tl.sum(w × x[:,None], 0) ;
37 Y ← Y + rn ;
38 tl.atomic_add(Y, acc) ;

B.3 Kernel in Detail: D-COUNTDOWN 936

Algorithm 3: D-COUNTDOWN Inference
Kernel (Triton-style)

Input: X, θA, θB, τD
Output: Mask

1 # PyTorch ;
2 ŝ← X @ θA @ θB ;
3 Mask← (ŝ ≥ τD) ;

Input: X,Wgate,Wup,Mask,BLKM ,BLKN

Output: S
4 # Triton 1 ;
5 start_m← tl.program_id(0) ;
6 rm← start_m× BLKM + tl.arange(0,BLKM ) ;
7 rn← tl.arange(0,BLKN ) ;
8 Mask← Mask + rm ;
9 flag← tl.load(Mask) > 0 ;

10 Wgate←Wgate+(rm[:,None]×dmodel+rn[None,:]) ;
11 Wup←Wup+(rm[:,None]×dmodel+rn[None,:]) ;
12 X ← X + rn ;
13 gate← tl.zeros([BLKM ]) ;
14 up← tl.zeros([BLKM ]) ;
15 i_mask← flag[:,None] ;
16 foreach block in rn do
17 wgate ← tl.load(Wgate,mask = i_mask, other =

0) ;
18 wup ← tl.load(Wup,mask = i_mask, other = 0)

;
19 x← tl.load(X) ;
20 gate← gate + tl.sum(wgate × x[None, :], axis =

1) ;
21 up← up + tl.sum(wup × x[None, :], axis = 1) ;
22 X← X + BLKN ;
23 Wgate ←Wgate + BLKN ;
24 Wup ←Wup + BLKN ;

25 up← up× SiLU(gate) ;
26 tl.store(S, up,mask = rm < M) ;

Input: S,Wdown,Mask,BLKM ,BLKN

Output: Y
27 # Triton 2 ;
28 start_m← tl.program_id(0) ;
29 start_n← tl.program_id(1) ;
30 rm← start_m× BLKM + tl.arange(0,BLKM ) ;
31 rn← start_n× BLKN + tl.arange(0,BLKN ) ;
32 Mask← Mask + rm ;
33 flag← tl.load(Mask) > 0 ;
34 Wdown←Wdown+(rm[:,None]×dmodel+rn[None,:]) ;
35 S ← S + rm ;
36 w← tl.load(Wdown,mask=flag[:,None],other=0) ;
37 x← tl.load(S) ;
38 acc← tl.sum(w × x[:,None], 0) ;
39 Y ← Y + rn ;
40 tl.atomic_add(Y, acc) ;

937

C Full Results 938

All downstream task results are in Table 11 and 939

Table 12. Chat performance results are shown in 940

Table 7. Kernel Speed results are shown in Fig- 941

ure 5. SparsityReal indicates the actual proportion 942

of indicator elements filtered out during SPPrac in- 943

ferences. 944
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Method Scenario
Llama-3.1-8B Gemma-2-9B

Target Sparsity Target Sparsity
0.70 0.80 0.90 0.70 0.80 0.90

CATS
SPIdeal 1.02 0.48 0.50 35.41 2.55 0.00

SPPrac (Win) 3.26 0.55 0.72 40.76 6.72 0.00
SPPrac (SparsityReal) 70.8 80.0 89.7 68.8 79.3 88.1

DC
SPIdeal 45.79 39.33 11.85 50.44 48.90 37.79

SPPrac (Win) 1.35 1.57 0.77 6.72 7.99 3.57
SPPrac (SparsityReal) 68.8 71.5 80.8 67.0 72.9 83.2

MC
SPIdeal 46.59 2.74 0.60 47.81 41.83 6.91

SPPrac (Win) 9.68 3.19 0.74 48.78 47.88 28.08
SPPrac (SparsityReal) 72.7 82.3 91.0 68.0 77.8 87.6

Method Scenario
Qwen2.5-14B Phi-4

Target Sparsity Target Sparsity
0.70 0.80 0.90 0.70 0.80 0.90

CATS
SPIdeal 21.94 0.38 0.00 42.05 3.45 0.25

SPPrac (Win) 33.62 7.80 0.00 48.87 26.81 0.31
SPPrac (SparsityReal) 70.0 80.0 89.1 67.6 78.3 89.7

DC
SPIdeal 50.10 48.71 32.73 49.10 46.46 37.45

SPPrac (Win) 4.40 0.77 0.20 1.11 0.90 0.12
SPPrac (SparsityReal) 66.6 82.8 87.6 65.4 78.5 86.8

MC
SPIdeal 45.01 36.90 2.83 43.96 35.43 5.28

SPPrac (Win) 48.57 42.51 15.89 46.24 41.62 18.82
SPPrac (SparsityReal) 70.0 80.0 90.0 70.1 79.6 89.6

Table 7: Summary of Win Rate on AlpacaEval 2.0

Figure 5: All results for kernel speed.

D Theoretical Analysis Details945

D.1 Notation946

Notation Explanation

dm dmodel

di dinter
dr drank
s int(dinter × k)
cact act FLOPs (e.g. SiLU ≈ 5)

Table 8: Notation Used in Theoretical Analysis

D.2 heoretical FLOPs Analysis 947

Method Compute Explanation

Dense
6 dm di
+ cact di
+ di

Full GEMV × 3
Full σ
Full ⊙

CATS

2 dm di
+ cact di
+ 2 di
+ 2 dm s
+ s
+ 2 dm s

Full GEMV Wgate

Full σ
Apply abs and THLD
Sparse GEMV Wup

Sparse ⊙
Sparse GEMV Wdown

M-COUNTDOWN

2 dm di
+ 2 di
+ 2 dm s
+ cact s
+ s
+ 2 dm s

Full GEMV Wup

Apply abs and THLD
Sparse GEMV Wgate

Sparse σ
Sparse ⊙
Sparse GEMV Wdown

D-COUNTDOWN

2 dm dr
+ 2 dr di
+ di
+ 4 dm s
+ cact s
+ s
+ 2 dm s

Low-rank GEMV θA
Low-rank GEMV θB
Apply THLD
Sparse GEMV Wgate,Wup

Sparse σ
Sparse ⊙
Sparse GEMV Wdown

Table 9: Comparison of Theoretical FLOPs Across
Methods

D.3 Theoretical Memory Traffic Analysis 948

Method Mem. R/W Explanation

Dense

2 dm di
+2 dm
+2 di
+ di
+ di
+2 di
+ di
+ dm di
+ di
+ dm

Read Full Wup,Wgate

Read x× 2
Write gate, up
Read gate
Write act_gate
Read act_gate, up
Write inter
Read Full Wdown

Read inter
Write y

CATS

dm di
+ dm
+ di
+ di
+ di
+ di
+ di
+ di
+ di
+ dm s
+ dm
+ s
+ di
+ di
+ dm s
+ di
+ dm

Read Full Wgate

Read x
Write gate
Read gate
Write act_gate
Read act_gate
Write abs_act_gate
Read abs_act_gate
Write mask
Read Sparse Wup

Read x
Read Sparse act_gate
Read mask
Write inter
Read Sparse Wdown

Read inter
Write y
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Method Mem. R/W Explanation

M-Countdown

dm di
+ dm
+ di
+ di
+ di
+ di
+ di
+ dm s
+ dm
+ s
+ di
+ di
+ dm s
+ di
+ dm

Read Full Wup

Read x
Write up
Read up
Write abs_up
Read abs_up
Write mask
Read Sparse Wgate

Read x
Read Sparse up
Read mask
Write inter
Read Sparse Wdown

Read inter
Write y

D-Countdown

dm dr
+ dm
+ dr
+ dr di
+ dr
+ di
+ di
+ di
+2 dm s
+ dm
+ di
+ di
+ dm s
+ di
+ dm

Read θA
Read x
Write latent
Read θB
Read latent
Write ŝ
Read ŝ
Write mask
Read Sparse Wup,Wgate

Read x
Read mask
Write inter
Read Sparse Wdown

Read inter
Write y

Table 10: Comparison of Theoretical Memory Traffic
Across Methods
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Sparsity Method ARC-C TFQA HS ARC-E PIQA WG OBQA GSM8K

Llama-3.1-8B-Instruct

0.0 DENSE 0.520 0.367 0.590 0.819 0.800 0.737 0.336 0.760

0.7

DEJAVU 0.292 0.229 0.272 0.445 0.553 0.503 0.218 0.000
CATS 0.453 0.343 0.523 0.754 0.739 0.653 0.298 0.003

M-COUNTDOWN 0.493 0.372 0.568 0.784 0.776 0.695 0.330 0.544
D-COUNTDOWN 0.509 0.370 0.592 0.812 0.795 0.727 0.332 0.688

0.8

DEJAVU 0.282 0.231 0.273 0.440 0.557 0.511 0.228 0.000
CATS 0.358 0.326 0.428 0.651 0.676 0.582 0.278 0.000

M-COUNTDOWN 0.458 0.343 0.534 0.759 0.748 0.661 0.314 0.288
D-COUNTDOWN 0.502 0.356 0.585 0.809 0.789 0.713 0.334 0.605

0.9

DEJAVU 0.296 0.230 0.273 0.455 0.557 0.530 0.236 0.000
CATS 0.293 0.252 0.303 0.495 0.574 0.534 0.242 0.000

M-COUNTDOWN 0.411 0.304 0.430 0.649 0.676 0.613 0.286 0.001
D-COUNTDOWN 0.484 0.330 0.548 0.776 0.755 0.680 0.312 0.313

Qwen2.5-14B-Instruct

0.0 DENSE 0.608 0.517 0.657 0.861 0.817 0.758 0.364 0.807

0.7

DEJAVU 0.336 0.318 0.365 0.612 0.616 0.533 0.254 0.000
CATS 0.488 0.443 0.585 0.777 0.729 0.629 0.318 0.043

M-COUNTDOWN 0.573 0.488 0.638 0.829 0.792 0.704 0.352 0.776
D-COUNTDOWN 0.588 0.518 0.654 0.850 0.801 0.736 0.364 0.770

0.8

DEJAVU 0.340 0.322 0.357 0.609 0.619 0.554 0.258 0.000
CATS 0.410 0.371 0.472 0.683 0.632 0.568 0.284 0.000

M-COUNTDOWN 0.532 0.476 0.614 0.813 0.743 0.670 0.352 0.681
D-COUNTDOWN 0.579 0.488 0.644 0.837 0.799 0.716 0.360 0.751

0.9

DEJAVU 0.358 0.333 0.369 0.612 0.621 0.531 0.256 0.000
CATS 0.356 0.327 0.385 0.619 0.621 0.547 0.260 0.000

M-COUNTDOWN 0.468 0.421 0.525 0.736 0.686 0.589 0.304 0.100
D-COUNTDOWN 0.512 0.436 0.607 0.801 0.756 0.648 0.312 0.371

gemma-2-9b-it

0.0 DENSE 0.632 0.433 0.597 0.856 0.812 0.761 0.404 0.663

0.7

DEJAVU 0.339 0.246 0.300 0.596 0.590 0.532 0.276 0.000
CATS 0.575 0.412 0.559 0.840 0.755 0.680 0.348 0.565

M-COUNTDOWN 0.605 0.421 0.592 0.849 0.793 0.726 0.374 0.632
D-COUNTDOWN 0.626 0.417 0.600 0.854 0.800 0.750 0.384 0.649

0.8

DEJAVU 0.346 0.246 0.296 0.599 0.581 0.548 0.262 0.000
CATS 0.490 0.366 0.486 0.788 0.696 0.604 0.328 0.105

M-COUNTDOWN 0.583 0.408 0.582 0.842 0.767 0.707 0.360 0.610
D-COUNTDOWN 0.604 0.421 0.599 0.851 0.796 0.728 0.374 0.624

0.9

DEJAVU 0.356 0.246 0.303 0.616 0.573 0.523 0.264 0.000
CATS 0.364 0.242 0.310 0.617 0.589 0.537 0.278 0.000

M-COUNTDOWN 0.534 0.383 0.517 0.799 0.727 0.648 0.344 0.438
D-COUNTDOWN 0.578 0.410 0.572 0.833 0.777 0.676 0.352 0.524

phi-4

0.0 DENSE 0.558 0.404 0.632 0.814 0.808 0.766 0.338 0.923

0.7

DEJAVU 0.387 0.311 0.348 0.655 0.626 0.587 0.266 0.000
CATS 0.536 0.400 0.595 0.794 0.791 0.696 0.304 0.807

M-COUNTDOWN 0.533 0.384 0.616 0.800 0.796 0.733 0.334 0.888
D-COUNTDOWN 0.554 0.411 0.630 0.809 0.807 0.752 0.332 0.916

0.8

DEJAVU 0.409 0.333 0.354 0.655 0.632 0.585 0.270 0.000
CATS 0.516 0.397 0.539 0.771 0.760 0.644 0.298 0.351

M-COUNTDOWN 0.503 0.386 0.594 0.792 0.778 0.715 0.330 0.767
D-COUNTDOWN 0.552 0.408 0.622 0.807 0.810 0.755 0.340 0.898

0.9

DEJAVU 0.392 0.317 0.357 0.640 0.630 0.566 0.266 0.000
CATS 0.426 0.356 0.414 0.676 0.672 0.591 0.280 0.000

M-COUNTDOWN 0.479 0.370 0.524 0.759 0.728 0.654 0.296 0.287
D-COUNTDOWN 0.529 0.399 0.601 0.798 0.789 0.695 0.318 0.827

Table 11: SPIdeal scores compared to Dense across all downstream tasks. Dense scores are in bold, as well as the
highest score for each task within each sparsity level.
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Sparsity Method SparsityReal ARC-C TFQA HS ARC-E PIQA WG OBQA GSM8K

Llama-3.1-8B-Instruct

0.7
CATS 0.684 0.461 0.355 0.549 0.778 0.764 0.683 0.316 0.127

M-COUNTDOWN 0.709 0.484 0.375 0.574 0.788 0.778 0.708 0.310 0.547
D-COUNTDOWN 0.705 0.422 0.318 0.373 0.748 0.714 0.663 0.298 0.002

0.8
CATS 0.784 0.420 0.322 0.495 0.718 0.721 0.624 0.296 0.000

M-COUNTDOWN 0.806 0.460 0.361 0.549 0.770 0.757 0.680 0.322 0.322
D-COUNTDOWN 0.739 0.382 0.306 0.388 0.688 0.673 0.621 0.292 0.003

0.9
CATS 0.902 0.299 0.273 0.323 0.521 0.607 0.537 0.238 0.000

M-COUNTDOWN 0.895 0.416 0.321 0.471 0.711 0.721 0.620 0.304 0.009
D-COUNTDOWN 0.843 0.349 0.285 0.345 0.628 0.635 0.593 0.260 0.000

Qwen2.5-14B-Instruct

0.7
CATS 0.698 0.518 0.460 0.612 0.805 0.761 0.660 0.336 0.293

M-COUNTDOWN 0.719 0.590 0.509 0.640 0.838 0.792 0.712 0.358 0.767
D-COUNTDOWN 0.678 0.513 0.426 0.536 0.798 0.748 0.668 0.322 0.197

0.8
CATS 0.802 0.472 0.421 0.551 0.754 0.712 0.627 0.284 0.000

M-COUNTDOWN 0.804 0.553 0.492 0.625 0.826 0.769 0.669 0.354 0.704
D-COUNTDOWN 0.827 0.454 0.394 0.468 0.740 0.693 0.615 0.292 0.000

0.9
CATS 0.906 0.347 0.350 0.393 0.631 0.616 0.527 0.258 0.000

M-COUNTDOWN 0.889 0.492 0.450 0.580 0.794 0.727 0.632 0.320 0.287
D-COUNTDOWN 0.893 0.434 0.384 0.429 0.689 0.669 0.605 0.282 0.000

gemma-2-9b-it

0.7
CATS 0.695 0.580 0.427 0.567 0.843 0.770 0.693 0.368 0.593

M-COUNTDOWN 0.685 0.608 0.431 0.598 0.854 0.801 0.745 0.386 0.633
D-COUNTDOWN 0.689 0.567 0.403 0.493 0.821 0.751 0.702 0.364 0.340

0.8
CATS 0.806 0.542 0.392 0.501 0.811 0.729 0.615 0.346 0.083

M-COUNTDOWN 0.779 0.596 0.412 0.589 0.847 0.788 0.712 0.370 0.618
D-COUNTDOWN 0.755 0.564 0.401 0.506 0.819 0.758 0.702 0.374 0.381

0.9
CATS 0.911 0.340 0.258 0.306 0.617 0.586 0.514 0.262 0.000

M-COUNTDOWN 0.875 0.573 0.395 0.554 0.829 0.761 0.686 0.360 0.544
D-COUNTDOWN 0.853 0.529 0.383 0.492 0.806 0.747 0.665 0.354 0.187

phi-4

0.7
CATS 0.675 0.539 0.417 0.613 0.801 0.795 0.724 0.322 0.856

M-COUNTDOWN 0.707 0.540 0.393 0.620 0.804 0.796 0.736 0.332 0.894
D-COUNTDOWN 0.687 0.471 0.368 0.485 0.750 0.733 0.685 0.294 0.208

0.8
CATS 0.771 0.525 0.390 0.587 0.795 0.786 0.673 0.300 0.675

M-COUNTDOWN 0.799 0.527 0.381 0.607 0.793 0.784 0.715 0.334 0.817
D-COUNTDOWN 0.815 0.418 0.343 0.438 0.707 0.692 0.657 0.268 0.036

0.9
CATS 0.889 0.458 0.360 0.460 0.713 0.692 0.605 0.294 0.000

M-COUNTDOWN 0.894 0.498 0.386 0.563 0.777 0.750 0.698 0.316 0.450
D-COUNTDOWN 0.895 0.408 0.294 0.404 0.674 0.668 0.616 0.270 0.000

Table 12: SPPrac scores compared across all downstream tasks. Bold indicates the highest score at each sparsity
level for each task.
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