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Abstract

We apply preference learning to the task of language model-guided design of1

novel structural alloys. In contrast to prior work that focuses on generating stable2

inorganic crystals, our approach targets the synthesizeability of a specific structural3

class: BCC/B2 superalloys, an underexplored family of materials with potential ap-4

plications in extreme environments. Using three open-weight models (LLaMA-3.1,5

Gemma-2, and OLMo-2), we demonstrate that language models can be optimized6

for multiple design objectives using a single, unified reward signal through Direct7

Preference Optimization (DPO). Unlike prior approaches that rely on heuristic or8

human-in-the-loop feedback (costly), our reward signal is derived from thermo-9

dynamic phase calculations, offering a scientifically grounded criterion for model10

tuning. To our knowledge, this is the first demonstration of preference-tuning11

a language model using physics-grounded feedback for structural alloy design.12

The resulting framework is general and extensible, providing a path forward for13

intelligent design-space exploration across a range of physical science domains.14

1 Introduction15

Materials discovery challenging because of large design spaces sparsely covered by empirical results,16

and the intrinsic nonlinearity and multiobjectivity of materials design problems. Computational17

materials science addresses this sparsity by modeling from simulations, often based on density18

functional theory (DFT) [26], and knowledge bases such as the Inorganic Crystal Structure Database19

(ICSD) [61]. When trained on these sources, discriminative machine learning models can cheaply20

predict properties of unknown materials (forward design), while generative models can propose21

materials with favorable properties (inverse design).22

Large language models (LMs), when trained or prompted appropriately, can generate descriptions23

of new materials. They are held as a potential accelerant to material discovery for their ability to24

draw on parametrically-encoded and retrieved domain knowledge to propose materials more likely25

to have desirable properties [34, 5]. Prior work on LM-driven inverse design mostly falls into two26

categories. The first trains smaller local LMs, mostly via supervised fine-tuning (SFT) to generate27

candidate materials satisfying a single basic criterion, commonly thermodynamic stability [16, 45, 2].28

The second category involves using a larger API-based LM as part of a search/optimization procedure29

to identify high-quality outputs according to multi-objective criteria, often in an multi-agent setup30

(e.g. [13, 59, 32]).31

In this paper, we explore an intermediate step: using preference tuning to align local language models32

toward more optimal arbitrary downstream property values. Specifically, we use offline preference33

learning based on multiobjective feedback from a physical simulation model to nudge the LM into34
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a “high-reward” output space where its generations are more likely to be of high quality while still35

remaining diverse within the chosen design space.36

We apply this approach to the task of structural alloy design, specifically BCC/B2 “superalloys”37

consisting of a matrix of disordered, body-centered cubic (BCC) material surrounding precipitations38

of ordered BCC (B2) material. This type of alloy, consisting of two distinct phases, is a promising39

recent direction in extreme-environment structural alloys. By adding a second phase, they potentially40

address the structural weakness that existing alloys tend to exhibit at high temperatures (>1000°C)41

[31, 52, 60]. However, inducing the stable formation of two complementary phases is nontrivial. Any42

generative modeling approach needs to produce candidates that are both practically viable as well as43

potentially useful. Our approach generates superalloy candidates in the form of a composition for the44

BCC matrix, the B2 precipitate, and a suggested volume percentage for the B2. We apply a two-step45

modeling process mirroring conventional LM preference alignment. Starting with a known set of BCC46

and B2 compositions, we apply supervised fine-tuning (SFT) to three local instruction tuned language47

models (LLaMA 3.1 8B, Gemma-2-9B OLMo-2-7B) to produce (BCC/B2/B2 volume %) triples.48

We then use feedback on generated candidates from Thermo-Calc [1], a popular thermodynamic49

simulation tool, to produce a multiobjective reward score for each candidate based on expert-designed50

heuristics. Finally, we use these scores for direct preference optimization (DPO), to push the models51

into a higher-reward output mode.52

In our evaluation, we demonstrate that our SFT-tuned models are capable of generating valid alloy53

compositions that uniformly span the design space and exhibit novelty with respect to both the training54

data and existing entries in the Materials Project database. We further show that the DPO-tuned55

models, with the exception of OLMo, demonstrate improved average reward scores while retaining56

a high degree of diversity in their outputs. Our findings indicate that local language models can57

be effectively optimized for multiple design objectives using a single, unified reward signal. By58

comparison, larger state-of-the-art API-based LMs are able to suggest high-reward alloy compositions59

without tuning, but tend to hyper-fixate on specific elements and combinations, leading to limited60

exploration of the specified design space, a behavior resistant to prompt engineering. We conclude61

by outlining key takeaways and discussing how this preference tuning framework can potentially be62

extended to future materials discovery tasks and other domains within the physical sciences.63

In summary, our contributions are as follows:64

1. To our knowledge, this work presents the first instances of:65

• Preference tuning for language models in the context of materials composition generation.66

• Guiding a language model to generate materials compositions aligned with a multi-objective67

design goal, moving beyond optimization for a single figure of merit (e.g., thermodynamic68

stability).69

2. We propose a general and extensible framework for scientist-informed candidate generation in70

non-parametric design spaces, leveraging offline feedback from physics-based simulations.171

3. We apply our framework to a real-world challenge in materials design—specifically, the discov-72

ery of BCC/B2 superalloys, moving away from general-purpose stable crystal generation toward73

targeted, high-impact alloy design.74

2 Related Work75

Conventional superalloy discovery Superalloys are a class of multiphase alloys that combine a76

ductile matrix phase with high-strength precipitates to produce a material that is both strong and tough77

at elevated temperatures. Current commercial superalloys, such as the Inconel and René classes of78

alloys, have a face-centered-cubic (FCC) matrix and L12 intermetallic precipitates. However, modern79

operation demands have now extended to temperatures beyond the design limit of any known FCC/L1280

superalloy. In the search for even higher temperature alloys, significant interest has been directed81

at systems composed of a body-centered-cubic (BCC) matrix with ordered B2 precipitates, due to82

their prevalence in high-temperature refractory and multi-principal element alloys [4, 18, 38, 52].83

However, while some progress has been made in targeted studies [11, 12, 30, 33, 36, 44, 50, 54], the84

enormity of the design space for BCC/B2 alloys strongly motivates the use of artificial intelligence85

for discovery.86

1Code and data available at [redacted for anonymity]
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Figure 1: Schematic representation of training the language model for alloy design starting from a
pre-trained language model using SFT, physics-based feedback, and DPO.

Historically, the development process for new alloys has been slow, often requiring more than a87

decade, due to complex iterative experimental loops. Recent advances in ab-initio simulations, such88

as density functional theory (DFT) [26] and molecular dynamics [3, 14, 21, 27–29], have accelerated89

the materials discovery and enabled extensive ground-truth databases of stable compounds and90

molecules [9, 22, 42]. However, because alloy properties depend on beyond-atomistic level dynamics,91

computational alloy discovery relies more on thermodynamic simulation methods such as CALPHAD92

(CALculation of PHAse Diagrams). CALPHAD uses bulk-scale calculations of competing free93

energy curves to determine the material phases that will be stable at a given temperature and94

composition. CALPHAD has been applied to alloy development as early as the 1970s [24], and95

modern software packages such as Thermo-Calc [1] make high-throughput calculations for alloy96

screening relatively straightforward. Simulations like DFT and CALPHAD are commonly used as97

feedback for algorithmic optimization loops such as Bayesian Optimization [49, 17].98

Language models for materials Most recent AI-driven materials discovery work uses graph neural99

networks (GNNs), which excel as discriminative predictors from structured representations (forward100

design). Merchant et al. [37] exemplifies the forward design approach, employing a greedy algorithm101

to generate candidate compounds, which are then evaluated for thermodynamic stability using a GNN.102

Several other studies explore the application of GNNs to predict material properties [8, 7]. By contrast,103

inverse design begins with a target set of properties and aims to generate novel material candidates104

expected to exhibit those properties. Gruver et al. [16] demonstrates that local LMs can be fine-tuned105

from a dataset of stable crystals to produce novel crystals maintaining this property, similarly to [2].106

This focus on stability has characterized most other recent work this area [45, 59, 58]. Perhaps the107

most similar recent paper to this work is PLaID [57], which applies DPO to Llama-7b to improve108

stability of generated crystals. However, as Seshadri and Cheetham [43] note, generating thousands109

of stable materials is not practically useful for working materials scientists. Another limitation of110

many of these works is the use the crystallographic information file (CIF) format, which has both111

intrinsic downsides [55] and little direct representation in e.g., scientific literature, raising questions112

about what useful intrinsic biases LMs can bring to CIF-based inverse design tasks. Other recent work113

leverages LMs without doing any parametric optimization, often via agentic approaches [32, 13, 59].114

3 Method115

Prior work has shown that fine-tuned language models can generate CIF files of stable inorganic116

materials [16]. However, alloy design is a more nuanced problem that involves satisfying multiple117

objectives beyond stability. In this work, we focus on a specific class of alloy structures, unlike earlier118

efforts that adopt a more generalized formulation. As a result, we bypass the use of CIF files and119

instead focus solely on compositional generation.120

Our approach involves three key steps. First, we construct a cold-start dataset of (BCC/B2/B2 volume121

%) triples and use it to train a model via supervised fine-tuning (SFT), enabling it to explore the full122

alloy design space. Next, we sample (BCC/B2/B2 volume %) candidates from the model and evaluate123

them using Thermo-Calc for thermodynamic feedback. Finally, we use this feedback to define a124
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hierarchical reward function based on synthesize-ability, and apply Direct Preference Optimization125

(DPO) to align the model with expert-guided preferences. Figure 1 illustrates this pipeline.126

Rather than optimizing each objective independently, we incorporate expert preference into the127

reward formulation to enable multi-objective optimization through a unified learning signal.128

Supervised fine-tuning (SFT) To build our dataset for SFT, a list of 207 known BCC and 88129

known B2 compositions was collected from the Materials Project (CC-BY 4.0)[22] and filtered based130

on stability and alloying suitability [1, 48]. These elements and compounds were then interchanged131

in various soluble percentages and verified using the Thermo-Calc (SUNLL) [1] TCHEA7 database132

(DSUNLL) [48] to produce ground-truth triplets of the form (BCC/B2/B2 volume %) . The SFT133

dataset consists of all possible combinations of these compositions (18,216 distinct pairs), combined134

with three B2 volume percentages for each, sampled from a normal distribution with a mean of135

.45, capped at .20 and .70, for a total size of 54,648 examples. Additional details can be found in136

Appendix A.2.137

We tune the SFT model using a causal language modeling (CLM) objective, using an instruction-138

based prompt (Figure 1). To reduce the number of trainable parameters, we employ low-rank adapter139

modules (LoRA) [20], configuring the adapters with a rank of 8 and scaling factor α = 32. This setup140

results in only 0.027% (for LLaMA) and 0.057% (for OLMo) of parameters being updated during141

fine-tuning. Following Gruver et al. [16], we introduced special tokens to the tokenizer vocabulary142

(if they did not exist) for padding, beginning of sentence, end of sentence, and unknown to properly143

tokenize chemical formulas. More details about the training can be found in Appendix A.3. The144

generations sampled from this stage is combined into a master composition based on the molar145

volume percentage of B2 and fed to Thermo-Calc.146

Reward function Preference feedback for DPO comes from the Thermo-Calc tool [1], which takes147

as input a single composition and temperature and, using a combination of simulation and databases148

of empirical results, predicts what phases are likely to exist in what quantity at that temperature. To149

create a reward score for an SFT-generated (BCC/B2/B2 volume %) triple, we use the B2 volume %150

to combine the BCC and B2 compositions into a single master composition, then query Thermo-Calc151

on this composition at a range of temperatures from 373K to 2273K. An example of output from152

Thermo-Calc is shown in Appendix A.5 Figure 9.153

Realizing a fabricable superalloy requires multiple interplaying factors to align during processing,154

namely: (i) the BCC phase must be the first to solidify from a liquid melt; (ii) the B2 phase should155

form at a temperature below that of the BCC phase, but still at as high of a temperature as possible156

to maximize the thermal operation limit of the alloy; (iii) the alloy must be comprised entirely (or157

nearly entirely) of BCC and B2, as other intermetallic compounds are often brittle and weak, making158

them largely undesirable; and (iv) the BCC and B2 phases should have nearly identical crystal lattice159

sizes, which reduces the build-up of internal stresses in the alloy during processing and use. We160

operationalize these viability rules as follows (in descending order of importance):161

1. There must be some temperature at which both a solid BCC and B2 phase exist simultaneously.162

(bcc_b2_exist)163

2. The BCC must form first as the temperature decreases. (bcc_forms_first)164

3. A B2 phase must exist close to room temperature, 373K. (b2_room_temp)165

4. No more than 10% of non BCC/B2 phases should form at any temperature.166

(others_exceed_10%)167

When all these criteria are satisfied, the quality of a candidate is measured as the minimum dif-168

ference in lattice parameter (reported in Å) between BCC and B2 phases at any temperature169

(min_lattice_mismatch). This mismatch value typically varies from 10−1 to 10−7. The overall170

reward is numericized as a weighted sum of indicators for these boolean conditions:171

Reward(BCC,B2,Volume) =
− 10001¬bcc_b2_exist − 1001¬bcc_forms_first

− 101¬b2_room_temp − 1others_exceed_10%
− min_lattice_mismatch (1)
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The reward ends up negative log-scaled, with a worst possible score of ∼ −103 and best of ∼ −10−7,172

with > −100 being the viability threshold of obeying the four basic rules. These coefficients reflect a173

tiered prioritization of synthesis realism: thermodynamic coexistence is fundamental, while lattice174

mismatch offers fine-grained selection.175

In the absence of a specific application to design for, this reward function does not target high-176

temperature performance, instead focusing on candidates with favorable properties at any temperature177

in range. It could easily be adapted to do so, for instance, by setting a minimum temperature threshold178

on the various rules to ensure that they hold at the target conditions.179

Direct preference optimization (DPO) To guide our model toward producing higher-quality180

(BCC/B2/B2 volume %) triples, we sample candidates SθSFT
from the SFT model and calculate their181

reward score using Eq. 1. From the output of our reward function we create a pairwise preference182

dataset DDPO(y
+, y−), where y ∈ SθSFT

indicating a preferred generation (y+) over (y−). We183

want to push our model towards a region of higher rewards by optimizing a contrastive objective,184

reviewed more fully in the appendix, where hyperparameter β controls the distance between the185

distribution of the original SFT model distribution and that of the the new model. We want the186

internal reward mapping of the model (as no separate reward model is required in DPO) to learn from187

our multiobjective reward scores and push the model to search the parametric space of higher average188

reward. However, to prevent the preference tuned model from going wildly out of distribution or189

hacking the reward function [41], we set β = 0.5.190

For the DPO dataset, we sample 5,000 (BCC/B2/B2 volume %) triples from the SFT model, then191

use Thermo-Calc to compute a scalar reward for each generation. We construct a preference dataset192

with the top 25% generations, as ranked by reward, paired with 100 randomly selected lower ranked193

generations. This strategy allows the model to learn from relative preferences, encouraging to194

discriminate between high- and low-quality outputs. Training was conducted using a low-rank195

adapter module, trained for 1 epoch.196

4 Experiment197

SFT and DPO models We perform SFT and DPO on three open instruction-tuned LMs of com-198

parable size: LLaMA-3.1-8B [15], Gemma-2 (9B) [47], and OLMo-2-7B [39]. We use low-rank199

adapters (α = 32, rank = 8) for training, with 8-bit quantized models.200

Baselines To properly evaluate the gains and limitations of our approach, we compare it against201

several varyingly strong baselines. (1) Random search: Alloy design has traditionally been a202

serendipitous process; accordingly, one of our baselines involves randomly searching the BCC/B2203

composition space, with the B2 molar volume sampled uniformly between 20% and 70% (more204

details in Appendix A.1). (2) Prompting API-based models: We use few-shot prompting of state-of-205

the-art (at the time of writing) API-based large LMs, including GPT-4.1, GPT-O3, and Gemini-2.5.206

Prompts are available in the Appendix. (3) Prompt tuning: We find empirically (see below) that207

prompting approaches suffer from poor diversity in their outputs. To create a stronger baseline,208

we extend the most balanced API model (Gemini-2.5) and automatically tune the input prompt to209

encourage diversity, using the MIPROv2 optimization method from the DSPy library [25]. (4) Prior210

published models: Additionally, we incorporate generations from previously published generative211

models, including Crystal-LLM [16] and CDVAE [56], which aim to generate crystal structures212

of inorganic compounds. Although these models are trained for general-purpose stable inorganic213

crystals, we filter their outputs to retain only those compositions that fall within our target alloy214

design space, i.e., potential BCC/B2 alloy composed of TCHEA elements.215

5 Evaluation216

5.1 Basic Results217

Our basic results, shown in Table 1, use compositional validity, coverage, and novelty metrics,218

as introduced by Xie et al. [56] and later adopted by Gruver et al. [16]. Compositional validity219

is assessed using two tests: (1) a charge neutrality check to ensure the composition is charge-220

balanced, and (2) the Pauling electronegativity test, which ensures that the constituent elements221

exhibit appropriate electronegativity differences [10]. Coverage is computed as the Euclidean222
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Model Validity Coverage
Recall

Coverage
Precision Novelty Mean

Reward
Unique
pairs @100

Random search 0.70 0.98 0.82 0.44 -883.71 1.0

CDVAE 0.25 0.43 0.07 0.94 – –
Crystal-LLM-7B 0.41 0.34 0.18 0.80 – –
Crystal-LLM-13B 0.37 0.44 0.17 0.81 – –
Crystal-LLM-70B 0.49 0.45 0.17 0.83 – –

GPT-4.1 1.00 0.32 1.00 0.86 -53.23 0.44
GPT-O3 1.00 0.42 1.00 0.99 -75.43 0.66
Gemini-2.5 0.99 0.79 0.99 0.81 -106.22 0.82
Prompt-tuned Gemini-2.5 0.99 0.83 1.00 0.98 -350.34 0.91

Gemma SFT 0.99 0.99 1.00 0.94 -220.41 0.98
Llama SFT 0.99 0.99 0.99 0.92 -215.92 0.99
OLMo SFT 0.99 0.99 0.99 0.92 -218.54 1.00

Gemma DPO 1.00 0.95 1.00 0.97 -206.71 0.92
Llama DPO 0.99 0.98 1.00 0.93 -175.89 1.00
OLMo DPO 0.99 0.98 1.00 0.95 -268.72 0.98

Table 1: Evaluation of generative models on validity, coverage, and novelty as proposed by Xie et al.
[56], as well as mean reward score and what fraction of 100 generated BCC/B2 pairs are unique
(lower indicates more self-repetition).

distance between the normalized feature vectors of generated compositions and all 18,216 potential223

BCC/B2 alloy compositions–coverage recall measuring what percentage of the space is produced,224

and coverage precision measuring what percentage of produced compositions belong within the225

space. Novelty is measured as the pairwise distance between generated samples and all known226

(existing) alloys containing two or more TCHEA elements, based on their feature representations.227

While coverage measures how well the generated compositions span the known design space, novelty228

captures how different they are from all existing alloys. We also report mean reward score among229

generated compositions, and “Unique pairs @100”, the fraction of 100 generated BCC/B2 pairs230

that are unique. A lower score on this latter value indicates more self-repetition and less diversity.231

Following prior work, we use Matminer [53] to vectorize the compositions. We sample at least 1000232

generations from each model with τ = 1.0. An ideal model should have near-perfect validity and233

achieve a balance between coverage, novelty and reward.234

From Table 1, we observe that general-purpose crystal generation models struggle to produce valid235

BCC/B2 alloys within our narrowly defined design space. These models show low coverage recall236

and precision, frequently missing key regions of the space and generating chemically irrelevant237

compositions, over half of which fail the compositional validity checks. Randomly sampling from238

existing BCC and B2 compositions leads to a high coverage but the final result is often (about 30%239

times) not a valid composition and not a BCC/B2 alloy for about 20% times. Novelty also goes down240

since they are similar to existing alloys in the MP database.241

Among the API-based models, the generated compositions demonstrate high validity and coverage242

precision, often near perfect. However, they exhibit low coverage recall and low pair uniqueness,243

meaning that they tend to repeat themselves while failing to fully span the design space. Their244

relatively high novelty scores indicate they produce compositions distinct from those in the Materials245

Project database. They produce high-reward candidates, especially GPT-4.1, indicating that their246

retrieved/parametric knowledge provides useful biases, though these biases presumably also prevent247

them from exploring certain regions of the design space, hence the lower coverage. The prompt-tuned248

Gemini-2.5 model, whose prompt is optimized toward generating diverse outputs, demonstrates249

higher coverage and pair uniqueness than the other API-based models, but this comes at the cost250

of reward, with its proposed alloys underperforming even the SFT models, which are not tuned for251

reward.252

The local SFT models, trained on a uniform sample of (BCC/B2/B2 volume %) triples, are all253

comparable. They demonstrate high validity, coverage, novelty and pair uniqueness. This indicates254

that they succeed at becoming a “blank slate”, generating uniformly from the designated space of255

possible (BCC/B2/B2 volume %) triples. While this doesn’t make them very useful alloy-proposers256
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on their own, it does make them suitable for further optimization toward a specific goal, which we257

implement in the form of DPO.258

5.2 Effect of preference tuning259

Table 1 shows that the DPO models, with the exception of OLMo, show a modest improvement in260

mean reward over their SFT precursors, while maintaining their high coverage of the design space and261

generated pair uniqueness. Their mean reward is lower than that of the API based models (excluding262

prompt-tuned Gemini-2.5), indicating that they learn fewer biases than these larger models.263

Figure 2 illustrates the effect of DPO with Win/Draw/Loss analysis based on reward score. Gemma264

and LLaMA DPO models win 49.8% and 52.1% of the time and lose 46.1% and 45.4% of the time,265

respectively. The rest were draws. However, the OLMo DPO model lost to its SFT counterpart 52.4%266

of the time and won only 42.3% of the time.267

Figure 2: Each bar represents the proportion of
cases where the DPO model outperformed (Win),
underperformed (Loss), or matched (Draw) its
SFT counterpart in reward score.

Figure 3: Percentage change in objective satis-
faction from SFT to DPO models across Gemma,
OLMo, and LLaMA. The plot illustrates the rela-
tive improvement or degradation in meeting four
alloy design objectives after preference tuning
(DPO).

Figure 3 assesses how effectively the cumulative learning signal optimized the models for individual268

synthesis objectives. We evaluate the four manually-chosen subcomponents of the reward function:269

(1) BCC and B2 phases must coexist at some temperature; (2) BCC must form first at a higher270

temperature; (3) B2 must exist at room temperature; and (4) BCC/B2 phases must be present across271

90% of the evaluated temperature range. We compute the percentage change in the satisfaction272

rate—defined as the proportion of generated alloys that satisfy each objective—from the SFT to the273

DPO models. As shown, all synthesis objectives improve in LLaMA, while three out of four improve274

in Gemma. In contrast, OLMo exhibits degradation across all four objectives following preference275

tuning. Two key insights emerge from these results: (1) optimizing for the presence of the B2 phase276

at room temperature remains challenging, as both Gemma and OLMo perform worse on this criterion,277

and LLaMA shows only modest improvement; and (2) combining multiple reward signals in this278

setup can push certain architectures like OLMo off-distribution, leading to a collapse in performance279

across objectives, possibly due to its smaller capacity or mismatch with reward distribution. However,280

the fact that two out of the three models improved after preference tuning, using a reward function281

derived from practical design objectives, suggests that a similar learning framework with hierarchical282

reward signals could be effective way to optimize models.283

5.3 Hyperfixation in API-based models284

API-based models such as GPT-4.1 and Gemini-2.5 models are powerful and easy to use, which begs285

the question of whether local models have a place in LM-driven materials discovery alongside API-286

based models and the agentic systems built on top of them. Our analysis in Section 5.1 shows that the287
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strong biases of these models limits their coverage recall and generated BCC/B2 pair uniqueness. To288

better understand this limitation, we conduct a focused analysis to understand patterns of hyperfixation289

in their behavior.290

Rank GPT-4.1 GPT-O3 Gemini-2.5 Gemini-2.5-DSPy Llama DPO Llama SFT

Elements Freq Elements Freq Elements Freq Elements Freq Elements Freq Elements Freq

1 {Mo, Nb} 0.500 {Mo, Nb, W} 0.578 {Mo, Nb} 0.145 {Mo, Nb, Ta} 0.115 {Mo, Nb, Ti} 0.072 {Cr, Ti, V} 0.041
2 {Nb, W} 0.382 {Mo, Nb, Ta, W} 0.152 {Mo, Nb, W} 0.136 {Mo, Nb, Ti} 0.096 {Mo, Nb, W} 0.048 {Ti, V, W} 0.038
3 {Mo, Nb, W} 0.105 {Mo, Ta, W} 0.140 {Nb, W} 0.089 {Mo, Nb, Ta, Ti} 0.059 {Nb, Ti, W} 0.048 {Nb, Ti, V} 0.037
4 {Cr, Mo, W} 0.008 {Mo, Nb, V, W} 0.045 {Nb, Ta, W} 0.073 {Mo, Nb, Ta, W} 0.054 {Mo, Ti, W} 0.046 {Mo, Ti, V} 0.036
5 {Mo, Nb, Ta} 0.001 {Mo, Nb, Ta} 0.020 {Cr, Mo, W} 0.062 {Mo, Ta, W} 0.052 {Cr, Mo} 0.040 {Mo, Nb, W} 0.033

Table 2: Top 5 most frequent BCC element combinations generated by each model.

Table 2 explains the prompting model result by showing the top 5 BCC element combinations291

generated by a selection of models. We can see that half of few-shot GPT-4.1’s BCCs are Mo/Nb292

combinations, and 98% use some subset of Mo/Nb/W. Few-shot Gemini shows a similar but less293

extreme level of fixation, with at least 36% of its BCC candidates a subset of the same Mo/Nb/W294

combination. A prompt-tuned Gemini-2.5 few-shot approach reduced this even more, with about295

13% BCC with some combination of Mo/Nb/Ta. By contrast, DPO LLaMA shows a much more even296

spread, only slightly more concentrated than SFT LLaMA. This means that the API models achieve297

high average reward by fixating on a small selection of elements and element combinations.298

Figure 4: Output frequencies of individual elements by trained models (top) and API models (bottom),
respectively, compared to the training data.

Finally, Figure 4 shows the distribution of individual elements favored by the SFT and DPO models299

versus the API models. The top plot shows that SFT and DPO generations have an element distribution300

similar to the training data. Among all the trained models we can see that DPO Gemma and DPO301

OLMo are fixating slightly more on some elements like Ir/Ru/Al/V and Hf/Zr/Nb/Ti, respectively. In302

particular DPO OLMo generated Hf and Zr at much higher frequency and Ir by DPO Gemma than the303

training compositions. The bottom plot shows the fixation of few-shot GPT-4.1 (green), Gemini-2.5304

(red) and prompt-tuned Gemini-2.5 (violet) on certain elements like Ta/Ni/Hf/Zr/W while completely305

missing on elements like Y/Zn/Mn. Gemini is noticeably more adherent to the training data element306

frequencies than GPT-4.1, with GPT-4.1 hyperfixating on Nb and Al beyond what is in the training307

data.308

The sum total of these results shows that API-based models achieve high reward by focusing on309

known high-reward regions, to the exclusion of unknown regions, and that this behavior is difficult310

to dislodge via prompt tuning without badly affecting reward. It is widely acknowledged that pre-311

existing biases affect and limit exploratory materials development [23, 19], and our analysis seems to312

indicate that API-based models reflect those same biases. Therefore, there may be a role for models313

capable of learning useful reward signals while still retaining a high degree of exploratory openness,314

as our DPO-tuned models demonstrate.315
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6 Discussion316

Our results show that preference tuning can improve generation quality for targeted alloy design,317

especially in terms of novelty and reward objective satisfaction. Two out of the three models—Gemma318

and LLaMA—benefited from DPO, suggesting that the reward signal helped guide the model toward319

regions of the space that align better with synthesis criteria. Other than that we can also see that320

the novelty of DPO models have increased consistently across all three models, indicating that321

DPO training enables the model to produce unknown compositions. That said, this improvement322

comes with a trade-off. DPO models tend to exhibit lower coverage recall, which indicates they are323

more concentrated on a narrow region of the design space. This makes sense, as the reward signal324

encourages optimization toward specific objectives rather than broad exploration. In constrained325

design tasks like ours, this may be desirable—but it’s also a potential limitation if coverage matters.326

OLMo, on the other hand, performed worse after DPO across all objectives. We observed increased327

divergence of key token logits between SFT and DPO for OLMo, which explains the collapse (more328

analysis in Appendix A.6). This aligns with the well-known sensitivity of preference tuning in smaller329

architectures [41]. In this case, preference tuning may have pushed the model off-distribution. This330

raises an important point: reward design alone is not sufficient; model architecture and robustness331

play a role in how well preference learning works.332

Our training protocol uses SFT to produce a baseline distribution over a specified design space, in our333

case (BCC/B2/B2 volume %) triples sampled from a discrete set of known BCCs and B2s. Then it334

applies DPO from physics-based feedback to orient the model toward higher-reward regions without335

blinding it completely to lower-average reward regions which might still yield good candidates. This336

is a highly general protocol, and could be applied to any engineering problem capable of using an337

SFT training set to represent a design space and with a computationally-efficient verifier available338

over generated candidates. One possible example is battery design, where open-source tools like339

PyBaMM [46] could be used to assess generated candidates.340

While model training can identify good regions of feature space, discrete optimization (DO) is341

more suited to identifying standout candidates within that space. DO methods such as Bayesian342

Optimization are a major part of computational alloy discovery [17, 51], and recent work has sought to343

combine LMs with Bayesian Optimization as both generators of candidate points and discriminators344

over generated candidates [35, 6]. While the useful biases of API-based models makes them more345

likely to suggest high-reward candidates (when used as generators) and more likely to correctly assess346

provided candidates (when used as discriminators), their tendency to fixate on certain regions of347

feature space limits their ability to perform the “explore” part of the exploration/exploitation tradeoff348

in discrete optimization. Tuned local models offer a potential solution to this problem by offering349

more control over their degree of bias, particularly via the β parameter of the DPO process.350

Limitations A major limitation of this work is that the predictions produced by Thermo-Calc and351

similar tools are not perfect, and become less reliable for many-element compositions in regions352

for which the tool’s databases have poor coverage. Engineering a confidence estimate for external353

feedback, combined with LM reasoning over external context like prior scientific findings, could be a354

way of mitigating this issue, as could, in a fully realized modeling pipeline, the inclusion of physical355

experimentation to verify the predicted properties of key candidates. A higher-level limitation is356

the question of whether, for downstream DO tasks, a higher-reward baseline distribution is actually357

needed and worth the investment in time and effort to create. If our ultimate goal is to find a small358

number of exceptional alloy candidates, it might be more efficient to simply perform a search through359

the output space of the SFT model. Future work will explore this question.360

Conclusion We apply preference tuning for the first time to LM-driven inverse design of materials361

toward functional properties, and propose preference-tuned “high-reward” models as an intermediate362

step toward LM-driven materials discovery. Our supervised fine-tuning is successful, while our363

preference tuning results are positive, though inconsistent between models. While we apply these364

ideas specifically to BCC/B2 superalloy discovery, the template we introduce here is general, and365

could be adapted to any design problem where it is possible to collect medium-scale feedback366

on model-suggested compositions, such as battery or photovoltaic materials Finally, this work is367

complimentary with other approaches for LM-guided materials discovery, such as agentic approaches,368

and could be extended to work as an improved baseline distribution for such methods.369
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A Appendix565

We add more technical detail and approach of our work in here.566

A.1 Baselines567

A.1.1 Random Search568

Conventional alloy discovery approaches often do parametric sweeps of composition space for569

promising candidates. We approximate this approach by constructing a grid of BCC- and B2-forming570

elements and sample random compositions from it. The sampling of both compositional elements and571

B2 volume fractions is done randomly, and the list of elements included both stable and metastable572

BCC- and B2-formers.573

A.1.2 API models574

Our second baseline consists of one-shot and few-shot prompting of three state-of-the-art proprietary575

API-based models: Gemini-2.5, GPT-4.1 and GPT-o3. We find zero-shot prompting from these576

models unreliable in terms of output format, and do not include this as a condition. In the one-shot577

setting, we randomly sample a single exemplar from the SFT model output. In the few-shot setting,578

we provide top 10 and bottom 10 generations from the SFT model as exemplars, ranked on reward.579

The prompts that we use for one-shot and few-shot in-context tuning of GPT-4.1, GPT-o3, and580

Gemini-2.5 are provided in Figure 5 and Figure 6, respectively. The zero-shot prompting did not581

work because the models were unable to generate any feasible BCC-B2 pairs in a parseable format.582

Given the better performance of Gemini-2.5 among the API models, we went a step further to create583

a prompt-tuned few-shot baseline with DSPy[25]. We used the MIPROv2 with “medium” level584

optimization, allowing the model to bootstrap any (BCC/B2/B2 volume %) composition from the585

training data.586

A.2 SFT: Training and Validation587

Training was conducted with a batch size of 2 across three Nvidia A40 GPUs with gradient accu-588

mulation every 4 steps. The finetuning was performed with quantization and low-rank adapters.589

The adapters were only added for “q_proj” and “v_proj”, this yields maximum learning without590

parametric overhead [20]. Cosine annealing was used as a learning rate scheduler. The entire training591

process required about 16 hours (not counting the validation time).592

The training and evaluation performance for LLaMA-3.1 and OLMo-2 were similar in nature. We593

can verify this from the loss curves on the two models as in Figures 7. Other than a higher starting594

point for OLMo, the loss curves are almost identical and converges quickly.595

While training loss plateaued after the first epoch, following common wisdom of training language596

model we kept training the model even when the loss converged for a total of 5 epochs. This helped597

our models to perform better on the evaluation set. The loss curves on evaluation set can be found598

in Figure 7. The behavior of OLMo was more unstable than LLaMA, however both the models599

converged to a loss that is quite similar.600

A.3 SFT: Data Curation601

To build our initial dataset of 207 body-centered cubic (BCC) and 88 B2-structured compositions, a602

list of known known BCC and B2 structures from the Materials Project [22], was filtered to keep only603

compounds comprised of the 26 elements in Thermo-Calc’s TCHEA7 database [48]. A second filter604

was then applied to keep only compounds with a calculated energy above the convex hull between605

0 and 0.25 eV/atom. (A compound with an energy of 0 eV/atom is expected to be stable at 0 K;606

by 0.25 eV/atom, a compound is highly unlikely to be stable at 0 K but could become stabilized607

by entropy effects at elevated temperatures relevant to BCC/B2 alloys.) This processing yielded 24608

BCCs (primarily single-element entries) and 57 B2s (exclusively two-element pairs).609

These lists served as the basis for further iteration. First, the role of all elements was estimated. For610

example, it was noted that elements like Nb and Mo generally formed stable BCCs, whereas Ti and611
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A BCC-B2 intermetallic alloy consists of a disordered 
body-centered cubic (BCC) parent matrix and an ordered B2 
precipitate, each existing in the material as some 
fractional percentage. Suggest a BCC-structured 
composition and a B2-structured composition, where the BCC 
and the B2 are likely to form an intermetallic alloy with 
high yield strength at high heat. Additionally, suggest a 
volume percentage for the B2 composition within the alloy.

Restriction 1: Use XML style tags to encapsulate the 
output values, example: <tag>XYZ</tag>.

Restriction 2: All the compositions should be limited to 
the following elements: {element search space}

Example generation: 
<BCC>Ti2Nb2Mo</BCC>
<B2>AlVFeCo</BCC>
<B2_Volume>51.45</B2_Volume>

Known BCC: {list of known BCC}
Known B2: {list of known B2}

Figure 5: This is the one-shot prompt we used for our API based models. We added some additional
context while keeping the training prompt similar. The example generation was randomly sampled
from our training data. The text in blue is optional.

Zr had larger energies above the convex hull and only form BCC structures at elevated temperatures.612

Likewise, for the B2 compounds, it was noted that elements like Al and Hf generally occupied613

the A-site, whereas Fe and Ru generally occupied the B-site; some elements, like Mn or V, could614

occupy either site, whereas others (e.g., Nb or Ta) were found in higher energy (less stable) B2s.615

These trends were used to iterate BCC compositions with element concentrations of 20%, 25%,616

33%, 40%, 50%, 67%, or 75%; B2 compositions were iterated with 1–2 elements per site (at 25% or617

50% concentration). A mixture of stable and metastable elements was used throughout this iteration618

process to ensure a broad representation of potentially stable phases. This process resulted in 2,413619

potential BCC compositions and 1,101 potential B2 compositions. Each potential composition was620

evaluated with Thermo-Calc, and only compositions forming >99% BCC or B2 were kept, leaving 207621

BCC and 88 B2-structured compositions used for SFT. Finally, a volume fraction of B2 intermetallic622

was prescribed by drawing from existing BCC-B2 alloys and domain expertise. We sampled the623

B2 volume percentage uniformly within the [20%, 70%] interval. Therefore, the supervised dataset624

consists of structured triplets of the form BCC, B2, B2 volume proportion. For each unique BCC–B2625

pair, we sampled three distinct volume fractions, resulting in approximately 55,000 triplets. This626

dataset defines the compositional search space over which our language model operates.627

A.4 DPO: Training and Validation628

For DPO, we took the adapter optimized with SFT and did a direct preference optimization. We629

trained on the same configuration as SFT since this was our computational upper limit. However, we630

trained the model only for 1 epoch. The DPO training took about 18 hours to complete (not counting631

the validation time). DPO optimizes the following objective:632
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θ∗ = argmin
θ

∑
(x,y+,y−)∈DDPO

(2)

− log σ
(
β log θ(y+|x)

θSFT(y+|x) − β log θ(y−|x)
θSFT(y−|x)

)
θSFT and θ∗ are model parameters of SFT and DPO models respectively, β is the alternative to633

KL-penalty factor [40], which controls the distance between the distribution of the θSFT and θ∗. We634

want the internal reward mapping of the model (as no separate reward model is required in DPO) to635

learn from our multiobjective reward scores and push the model to search the parametric space of636

higher average reward. However, to prevent the preference tuned model from going wildly out of637

distribution or hacking the reward function [41], we set β = 0.5.638

The results from both models were again quite similar, with OLMo outperforming LLaMA in terms639

of reward margin on the evaluation set (Figure 8). We are unsure why OLMo failed to generate higher640

quality BCC/B2 compositions in spite of its better performance on the evaluation set.641

A.5 Thermo-Calc Output642

The output from the physical feedback software Thermo-Calc can be found in Figure 9.643

We evaluate on 1000 generations sampled from each model using temperature = 1.0 and Top–p =644

1.0, except for the two SFT models, which we evaluate based on all 5000 generations.645

The goal of the SFT models is to imitate the cold-start data and produce (BCC/B2/B2 volume %)646

triples which covers the predefined chemical space without exactly memorizing it. Broadly, we find647

that both SFT models succeed in this goal.648

A.6 Why Preference Tuning Failed on OLMo?649

Element Count (OLMo) KL (OLMo) KL (LLaMA) KL (Gemma)

Ti 94 0.0155 0.0078 4.25e–04
Al 53 0.0169 0.0104 3.34e–04
V 49 0.0122 0.0071 1.27e–04
Nb 38 0.0193 0.0030 3.33e–04
W 22 0.0015 0.00015 2.98e–05
Cr 13 0.0289 0.0257 1.32e–04

Table 3: Forward DKL(DPO ∥ SFT) on generated tokens (teacher–forced; trimmed at EOS) for the
elements most frequently produced by OLMo. OLMo’s KL is consistently higher than LLaMA’s and
far above Gemma’s near-zero values, indicating model drift on domain-critical tokens.

Why OLMo regressed while LLaMA and Gemma improved? We diagnose the effect of pref-650

erence tuning by measuring forward DKL(DPO ∥SFT) strictly on the generated continuation: we651

teacher–force the SFT decode, trim at EOS, and compute KL token-wise. We also summarize KL652

over a filtered token set that carries the task semantics—element symbols and multi-digit numerals653

that encode compositions and phase fractions. Under this lens, LLaMA shows small, localized KL654

bumps at decision bottlenecks; Gemma remains close to its SFT policy; OLMo is different. Its KL655

spikes are both larger and more frequent, and they land exactly on the filtered tokens. In effect, the656

OLMo update reallocates probability mass on the symbols and numbers that define alloy identity, not657

on harmless stylistic tokens (see Table 3). This pattern naturally explains the downstream regressions:658

if the largest distributional shifts occur on element choices and volume proportions, the generator659

drifts off the “chemistry grammar” that SFT had learned, degrading satisfaction of the synthesis660

constraints.661

Interpretation from the KL profiles The KL curves point to over-steer rather than lack of sig-662

nal—a strength–sensitivity mismatch between the DPO update and OLMo’s inductive bias. (1) Archi-663

tecture × adapter placement/rank: the same LoRA targets and rank that are tame on LLaMA/Gemma664
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appear to sit on more causal pathways in OLMo, so identical gradients yield larger effective steps in665

logits for rare technical tokens (elements, multi-digit numerals). (2) Tokenizer/prior effects: these666

tokens live in a low-frequency subspace; if OLMo’s pretraining allocates less robust capacity there,667

the preference gradients induce higher variance and numeric drift. (3) DPO hyperparameters: a668

β and learning-rate/step schedule that gently nudges strong SFT policies (LLaMA/Gemma) can669

over-correct a weaker or more brittle SFT (OLMo), inflating KL precisely on the filtered token set.670

The net effect is the signature we observe: the biggest divergence occurs where correctness matters671

most (see Figure 11).672

Moving forward If we weaken and stabilize the update in that subspace—e.g., increase β (gentler673

preference step), reduce LR/steps or LoRA rank, and/or retarget adapters (start with attention674

projections)—and optionally add a light reference anchor (DPO-KL or a small SFT CE mix-in), the675

filtered-token KL for OLMo should drop into the LLaMA band. Under the same teacher-forced676

evaluation, this KL reduction should coincide with recovery on the synthesis objectives. In short, the677

KL analysis localizes the failure mode (over-steer on domain-critical tokens) and directly suggests678

how to fix it.679
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A BCC-B2 intermetallic alloy consists of a disordered 
body-centered cubic (BCC) parent matrix and an ordered B2 
precipitate, each existing in the material as some 
fractional percentage. Suggest a BCC-structured composition 
and a B2-structured composition, where the BCC and the B2 
are likely to form an intermetallic alloy with high yield 
strength at high heat. Additionally, suggest a volume 
percentage for the B2 composition within the alloy.

Restriction 1: Use XML style tags to encapsulate the output 
values, example: <tag>XYZ</tag>.

Restriction 2: All the compositions should be limited to 
the following elements: {element search space}

Examples of good generations:

<BCC>TiV</BCC>
<B2>NbRu</B2>
<B2_Volume>34.8</B2_Volume>

.

.

.

<BCC>Nb67Mo33</BCC>
<B2>ZrTiRu2</B2>
<B2_Volume>50.6</B2_Volume>

Examples of bad generations:

<BCC>Zr33Ti67</BCC>
<B2>VRu</B2>
<B2_Volume>56.7</B2_Volume>

.

.

.

<BCC>Ti33Mo67</BCC>
<B2>AlVFe</B2>
<B2_Volume>64.75</B2_Volume>

Known BCC: {list of known BCC}
Known B2: {list of known B2}

Figure 6: This is the few-shot prompt we used for our API based models. We added some additional
context while keeping the training prompt similar. Top-10 and bottom-10 of LLaMA SFT model
generations were given here as examples of good and bad generations respectively (only two are
shown here for brevity). The text in blue is optional.
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(a) LLaMA SFT Train Loss (b) OLMo SFT Train Loss

(c) LLaMA SFT Eval Loss (d) OLMo SFT Eval Loss

Figure 7: Loss curves for LLaMA and OLMo during supervised fine-tuning (SFT).

(a) LLaMA DPO Train Reward Margin (b) OLMo DPO Train Reward Margin

(c) LLaMA DPO Eval Reward Margin (d) OLMo DPO Eval Reward Margin

Figure 8: Reward Margin for LLaMA and OLMo during preference optimization (DPO).
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BCC B2 B2 Volume Temperature Quantity Phase IsOrdered Lattice 
Parameter

Cr33Fe67 MnAl2Fe 61.65 373.15 0.16 BCC_B2#1 0 2.91

Cr33Fe67 MnAl2Fe 61.65 373.15 0.83 BCC_B2#2 1 2.93

Cr33Fe67 MnAl2Fe 61.65 1073.15 1 BCC_B2#2 1 2.99

Cr33Fe67 MnAl2Fe 61.65 1173.15 1 BCC_B2#2 1 3.01

… … … … … … … …

Cr33Fe67 MnAl2Fe 61.65 2273.15 1 LIQUID#1 -- --

Figure 9: Output from Thermo-Calc evaluates the stability of the generated BCC-B2 alloy over a
range of temperatures. The reward function use this output to compute a scalar reward for preference
tuning.

Figure 10: Histograms of generated B2 volume percentages for SFT training data
and both SFT models

Figure 11: OLMo goes out of distribution on domain-critical element tokens after DPO. Left:
Ranked bar chart of ∆KL = DKL(DPO ∥ SFT)OLMo −DKL(DPO ∥ SFT)LLaMA computed only on
generated tokens (teacher-forced on the SFT continuation; trimmed at EOS). Elements are ordered
by OLMo frequency; labels show OLMo occurrences (n). Positive bars indicate OLMo moved
farther from its SFT reference than LLaMA did for the same token. Right: Heatmap of average
per-token DKL(DPO ∥ SFT) for the same elements across models (OLMo, LLaMA, Gemma). The
consistently hotter OLMo column on key elements (e.g., Nb, Ti, Al, V) evidences over-steer in the
chemistry subspace where alloy identity is decided, while LLaMA shows moderate shifts and Gemma
remains near the SFT policy.
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