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Abstract

We apply preference learning to the task of language model-guided design of
novel structural alloys. In contrast to prior work that focuses on generating stable
inorganic crystals, our approach targets the synthesizeability of a specific structural
class: BCC/B2 superalloys, an underexplored family of materials with potential ap-
plications in extreme environments. Using three open-weight models (LLaMA-3.1,
Gemma-2, and OLMo-2), we demonstrate that language models can be optimized
for multiple design objectives using a single, unified reward signal through Direct
Preference Optimization (DPO). Unlike prior approaches that rely on heuristic or
human-in-the-loop feedback (costly), our reward signal is derived from thermo-
dynamic phase calculations, offering a scientifically grounded criterion for model
tuning. To our knowledge, this is the first demonstration of preference-tuning
a language model using physics-grounded feedback for structural alloy design.
The resulting framework is general and extensible, providing a path forward for
intelligent design-space exploration across a range of physical science domains.

1 Introduction

Materials discovery challenging because of large design spaces sparsely covered by empirical results,
and the intrinsic nonlinearity and multiobjectivity of materials design problems. Computational
materials science addresses this sparsity by modeling from simulations, often based on density
functional theory (DFT) [26], and knowledge bases such as the Inorganic Crystal Structure Database
(ICSD) [61]. When trained on these sources, discriminative machine learning models can cheaply
predict properties of unknown materials (forward design), while generative models can propose
materials with favorable properties (inverse design).

Large language models (LMs), when trained or prompted appropriately, can generate descriptions
of new materials. They are held as a potential accelerant to material discovery for their ability to
draw on parametrically-encoded and retrieved domain knowledge to propose materials more likely
to have desirable properties [34} 5]]. Prior work on LM-driven inverse design mostly falls into two
categories. The first trains smaller local LMs, mostly via supervised fine-tuning (SFT) to generate
candidate materials satisfying a single basic criterion, commonly thermodynamic stability [16} 45, 2]
The second category involves using a larger API-based LM as part of a search/optimization procedure
to identify high-quality outputs according to multi-objective criteria, often in an multi-agent setup
(e.g. [13159,132]).

In this paper, we explore an intermediate step: using preference tuning to align local language models
toward more optimal arbitrary downstream property values. Specifically, we use offline preference
learning based on multiobjective feedback from a physical simulation model to nudge the LM into
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a “high-reward” output space where its generations are more likely to be of high quality while still
remaining diverse within the chosen design space.

We apply this approach to the task of structural alloy design, specifically BCC/B2 “superalloys”
consisting of a matrix of disordered, body-centered cubic (BCC) material surrounding precipitations
of ordered BCC (B2) material. This type of alloy, consisting of two distinct phases, is a promising
recent direction in extreme-environment structural alloys. By adding a second phase, they potentially
address the structural weakness that existing alloys tend to exhibit at high temperatures (>1000°C)
[31,152,160]. However, inducing the stable formation of two complementary phases is nontrivial. Any
generative modeling approach needs to produce candidates that are both practically viable as well as
potentially useful. Our approach generates superalloy candidates in the form of a composition for the
BCC matrix, the B2 precipitate, and a suggested volume percentage for the B2. We apply a two-step
modeling process mirroring conventional LM preference alignment. Starting with a known set of BCC
and B2 compositions, we apply supervised fine-tuning (SFT) to three local instruction tuned language
models (LLaMA 3.1 8B, Gemma-2-9B OLMo-2-7B) to produce (BCC/B2/B2 volume %) triples.
We then use feedback on generated candidates from Thermo-Calc [1]], a popular thermodynamic
simulation tool, to produce a multiobjective reward score for each candidate based on expert-designed
heuristics. Finally, we use these scores for direct preference optimization (DPO), to push the models
into a higher-reward output mode.

In our evaluation, we demonstrate that our SFT-tuned models are capable of generating valid alloy
compositions that uniformly span the design space and exhibit novelty with respect to both the training
data and existing entries in the Materials Project database. We further show that the DPO-tuned
models, with the exception of OLMo, demonstrate improved average reward scores while retaining
a high degree of diversity in their outputs. Our findings indicate that local language models can
be effectively optimized for multiple design objectives using a single, unified reward signal. By
comparison, larger state-of-the-art API-based LMs are able to suggest high-reward alloy compositions
without tuning, but tend to hyper-fixate on specific elements and combinations, leading to limited
exploration of the specified design space, a behavior resistant to prompt engineering. We conclude
by outlining key takeaways and discussing how this preference tuning framework can potentially be
extended to future materials discovery tasks and other domains within the physical sciences.

In summary, our contributions are as follows:

1. To our knowledge, this work presents the first instances of:

* Preference tuning for language models in the context of materials composition generation.

* Guiding a language model to generate materials compositions aligned with a multi-objective
design goal, moving beyond optimization for a single figure of merit (e.g., thermodynamic
stability).

2. We propose a general and extensible framework for scientist-informed candidate generation in
non-parametric design spaces, leveraging offline feedback from physics-based simulationsﬂ

3. We apply our framework to a real-world challenge in materials design—specifically, the discov-
ery of BCC/B2 superalloys, moving away from general-purpose stable crystal generation toward
targeted, high-impact alloy design.

2 Related Work

Conventional superalloy discovery Superalloys are a class of multiphase alloys that combine a
ductile matrix phase with high-strength precipitates to produce a material that is both strong and tough
at elevated temperatures. Current commercial superalloys, such as the Inconel and René classes of
alloys, have a face-centered-cubic (FCC) matrix and L1, intermetallic precipitates. However, modern
operation demands have now extended to temperatures beyond the design limit of any known FCC/L14
superalloy. In the search for even higher temperature alloys, significant interest has been directed
at systems composed of a body-centered-cubic (BCC) matrix with ordered B2 precipitates, due to
their prevalence in high-temperature refractory and multi-principal element alloys [4}, [18} 38} |52]].
However, while some progress has been made in targeted studies [[111 12} 30} 133,136} 44, 50} 54], the
enormity of the design space for BCC/B2 alloys strongly motivates the use of artificial intelligence
for discovery.

'Code and data available at [redacted for anonymity]
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Figure 1: Schematic representation of training the language model for alloy design starting from a
pre-trained language model using SFT, physics-based feedback, and DPO.

Historically, the development process for new alloys has been slow, often requiring more than a
decade, due to complex iterative experimental loops. Recent advances in ab-initio simulations, such
as density functional theory (DFT) [26] and molecular dynamics [3} (14}, 21} 27H29]], have accelerated
the materials discovery and enabled extensive ground-truth databases of stable compounds and
molecules [9,22]142]]. However, because alloy properties depend on beyond-atomistic level dynamics,
computational alloy discovery relies more on thermodynamic simulation methods such as CALPHAD
(CALculation of PHAse Diagrams). CALPHAD uses bulk-scale calculations of competing free
energy curves to determine the material phases that will be stable at a given temperature and
composition. CALPHAD has been applied to alloy development as early as the 1970s [24], and
modern software packages such as Thermo-Calc [[1] make high-throughput calculations for alloy
screening relatively straightforward. Simulations like DFT and CALPHAD are commonly used as
feedback for algorithmic optimization loops such as Bayesian Optimization [49} [17].

Language models for materials Most recent Al-driven materials discovery work uses graph neural
networks (GNNs), which excel as discriminative predictors from structured representations (forward
design). Merchant et al. [37] exemplifies the forward design approach, employing a greedy algorithm
to generate candidate compounds, which are then evaluated for thermodynamic stability using a GNN.
Several other studies explore the application of GNNs to predict material properties [8,[7]]. By contrast,
inverse design begins with a target set of properties and aims to generate novel material candidates
expected to exhibit those properties. Gruver et al. [[16] demonstrates that local LMs can be fine-tuned
from a dataset of stable crystals to produce novel crystals maintaining this property, similarly to [2].
This focus on stability has characterized most other recent work this area [45 |59, 58]]. Perhaps the
most similar recent paper to this work is PLaID [57], which applies DPO to Llama-7b to improve
stability of generated crystals. However, as Seshadri and Cheetham [43] note, generating thousands
of stable materials is not practically useful for working materials scientists. Another limitation of
many of these works is the use the crystallographic information file (CIF) format, which has both
intrinsic downsides [S5]] and little direct representation in e.g., scientific literature, raising questions
about what useful intrinsic biases LMs can bring to CIF-based inverse design tasks. Other recent work
leverages LMs without doing any parametric optimization, often via agentic approaches [32,|13,159].

3 Method

Prior work has shown that fine-tuned language models can generate CIF files of stable inorganic
materials [[16]. However, alloy design is a more nuanced problem that involves satisfying multiple
objectives beyond stability. In this work, we focus on a specific class of alloy structures, unlike earlier
efforts that adopt a more generalized formulation. As a result, we bypass the use of CIF files and
instead focus solely on compositional generation.

Our approach involves three key steps. First, we construct a cold-start dataset of (BCC/B2/B2 volume
%) triples and use it to train a model via supervised fine-tuning (SFT), enabling it to explore the full
alloy design space. Next, we sample (BCC/B2/B2 volume %) candidates from the model and evaluate
them using Thermo-Calc for thermodynamic feedback. Finally, we use this feedback to define a
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hierarchical reward function based on synthesize-ability, and apply Direct Preference Optimization
(DPO) to align the model with expert-guided preferences. Figure |l|illustrates this pipeline.

Rather than optimizing each objective independently, we incorporate expert preference into the
reward formulation to enable multi-objective optimization through a unified learning signal.

Supervised fine-tuning (SFT) To build our dataset for SFT, a list of 207 known BCC and 88
known B2 compositions was collected from the Materials Project (CC-BY 4.0)[22] and filtered based
on stability and alloying suitability [1,48]. These elements and compounds were then interchanged
in various soluble percentages and verified using the Thermo-Calc (SUNLL) [1]] TCHEA7 database
(DSUNLL) [48] to produce ground-truth triplets of the form (BCC/B2/B2 volume %) . The SFT
dataset consists of all possible combinations of these compositions (18,216 distinct pairs), combined
with three B2 volume percentages for each, sampled from a normal distribution with a mean of
45, capped at .20 and .70, for a total size of 54,648 examples. Additional details can be found in

Appendix

We tune the SFT model using a causal language modeling (CLM) objective, using an instruction-
based prompt (Figure[I)). To reduce the number of trainable parameters, we employ low-rank adapter
modules (LoRA) [20]], configuring the adapters with a rank of 8 and scaling factor o = 32. This setup
results in only 0.027% (for LLaMA) and 0.057% (for OLMo) of parameters being updated during
fine-tuning. Following Gruver et al. [16]], we introduced special tokens to the tokenizer vocabulary
(if they did not exist) for padding, beginning of sentence, end of sentence, and unknown to properly
tokenize chemical formulas. More details about the training can be found in Appendix The
generations sampled from this stage is combined into a master composition based on the molar
volume percentage of B2 and fed to Thermo-Calc.

Reward function Preference feedback for DPO comes from the Thermo-Calc tool [[1], which takes
as input a single composition and temperature and, using a combination of simulation and databases
of empirical results, predicts what phases are likely to exist in what quantity at that temperature. To
create a reward score for an SFT-generated (BCC/B2/B2 volume %) triple, we use the B2 volume %
to combine the BCC and B2 compositions into a single master composition, then query Thermo-Calc
on this composition at a range of temperatures from 373K to 2273K. An example of output from
Thermo-Calc is shown in Appendix [A.5]|Figure [0}

Realizing a fabricable superalloy requires multiple interplaying factors to align during processing,
namely: (i) the BCC phase must be the first to solidify from a liquid melt; (ii) the B2 phase should
form at a temperature below that of the BCC phase, but still at as high of a temperature as possible
to maximize the thermal operation limit of the alloy; (iii) the alloy must be comprised entirely (or
nearly entirely) of BCC and B2, as other intermetallic compounds are often brittle and weak, making
them largely undesirable; and (iv) the BCC and B2 phases should have nearly identical crystal lattice
sizes, which reduces the build-up of internal stresses in the alloy during processing and use. We
operationalize these viability rules as follows (in descending order of importance):

1. There must be some temperature at which both a solid BCC and B2 phase exist simultaneously.
(bcc_b2_exist)

2. The BCC must form first as the temperature decreases. (bcc_forms_first)

3. A B2 phase must exist close to room temperature, 373K . (b2_room_temp)

4. No more than 10% of non BCC/B2 phases should form at any temperature.
(others_exceed_10%)

When all these criteria are satisfied, the quality of a candidate is measured as the minimum dif-
ference in lattice parameter (reported in A) between BCC and B2 phases at any temperature
(min_lattice_mismatch). This mismatch value typically varies from 10~! to 10~7. The overall
reward is numericized as a weighted sum of indicators for these boolean conditions:

Reward(BCC, B2, Volume) =

- 1000 1—\bcc_b2_exist - 100 1ﬂbcc_forms_first

- 10 1ﬂb2_room_temp - ]-others_exceed_lO%
—min_lattice_mismatch (1)
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The reward ends up negative log-scaled, with a worst possible score of ~ —103 and best of ~ —1077,
with > —10° being the viability threshold of obeying the four basic rules. These coefficients reflect a
tiered prioritization of synthesis realism: thermodynamic coexistence is fundamental, while lattice
mismatch offers fine-grained selection.

In the absence of a specific application to design for, this reward function does not target high-
temperature performance, instead focusing on candidates with favorable properties at any temperature
in range. It could easily be adapted to do so, for instance, by setting a minimum temperature threshold
on the various rules to ensure that they hold at the target conditions.

Direct preference optimization (DPO) To guide our model toward producing higher-quality
(BCC/B2/B2 volume %) triples, we sample candidates Sy, ,.,, from the SFT model and calculate their
reward score using Eq. [I] From the output of our reward function we create a pairwise preference
dataset Dppo(y™,y~), where y € Sy, ., indicating a preferred generation (y*) over (y~). We
want to push our model towards a region of higher rewards by optimizing a contrastive objective,
reviewed more fully in the appendix, where hyperparameter 5 controls the distance between the
distribution of the original SFT model distribution and that of the the new model. We want the
internal reward mapping of the model (as no separate reward model is required in DPO) to learn from
our multiobjective reward scores and push the model to search the parametric space of higher average
reward. However, to prevent the preference tuned model from going wildly out of distribution or
hacking the reward function [41]], we set 8 = 0.5.

For the DPO dataset, we sample 5,000 (BCC/B2/B2 volume %) triples from the SFT model, then
use Thermo-Calc to compute a scalar reward for each generation. We construct a preference dataset
with the top 25% generations, as ranked by reward, paired with 100 randomly selected lower ranked
generations. This strategy allows the model to learn from relative preferences, encouraging to
discriminate between high- and low-quality outputs. Training was conducted using a low-rank
adapter module, trained for 1 epoch.

4 Experiment

SFT and DPO models We perform SFT and DPO on three open instruction-tuned LMs of com-
parable size: LLaMA-3.1-8B [15], Gemma-2 (9B) [47]], and OLMo-2-7B [39]. We use low-rank
adapters (a = 32, rank = 8) for training, with 8-bit quantized models.

Baselines To properly evaluate the gains and limitations of our approach, we compare it against
several varyingly strong baselines. (1) Random search: Alloy design has traditionally been a
serendipitous process; accordingly, one of our baselines involves randomly searching the BCC/B2
composition space, with the B2 molar volume sampled uniformly between 20% and 70% (more
details in Appendix[A.T). (2) Prompting API-based models: We use few-shot prompting of state-of-
the-art (at the time of writing) API-based large LMs, including GPT-4.1, GPT-O3, and Gemini-2.5.
Prompts are available in the Appendix. (3) Prompt tuning: We find empirically (see below) that
prompting approaches suffer from poor diversity in their outputs. To create a stronger baseline,
we extend the most balanced API model (Gemini-2.5) and automatically tune the input prompt to
encourage diversity, using the MIPROv2 optimization method from the DSPy library [25]]. (4) Prior
published models: Additionally, we incorporate generations from previously published generative
models, including Crystal-LLM [[16] and CDVAE [56], which aim to generate crystal structures
of inorganic compounds. Although these models are trained for general-purpose stable inorganic
crystals, we filter their outputs to retain only those compositions that fall within our target alloy
design space, i.e., potential BCC/B2 alloy composed of TCHEA elements.

5 Evaluation

5.1 Basic Results

Our basic results, shown in Table [I} use compositional validity, coverage, and novelty metrics,
as introduced by Xie et al. [56] and later adopted by Gruver et al. [16]. Compositional validity
is assessed using two tests: (1) a charge neutrality check to ensure the composition is charge-
balanced, and (2) the Pauling electronegativity test, which ensures that the constituent elements
exhibit appropriate electronegativity differences [[10]. Coverage is computed as the Euclidean
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Coverage Coverage Mean Unique

Model Validity Recall Precision Novelty Reward pairs @100
Random search 0.70 0.98 0.82 0.44 -883.71 1.0
CDVAE 0.25 0.43 0.07 0.94 - -
Crystal-LLM-7B 041 0.34 0.18 0.80 - -
Crystal-LLM-13B 0.37 0.44 0.17 0.81 - -
Crystal-LLM-70B 0.49 0.45 0.17 0.83 - -
GPT-4.1 1.00 0.32 1.00 0.86 -5323 044
GPT-03 1.00 0.42 1.00 0.99 -75.43  0.66
Gemini-2.5 0.99 0.79 0.99 0.81 -106.22  0.82
Prompt-tuned Gemini-2.5 0.99 0.83 1.00 0.98 -350.34 091
Gemma SFT 0.99 0.99 1.00 0.94 -220.41  0.98
Llama SFT 0.99 0.99 0.99 0.92 -215.92  0.99
OLMo SFT 0.99 0.99 0.99 0.92 -218.54  1.00
Gemma DPO 1.00 0.95 1.00 0.97 -206.71  0.92
Llama DPO 0.99 0.98 1.00 0.93 -175.89  1.00
OLMo DPO 0.99 0.98 1.00 0.95 -268.72  0.98

Table 1: Evaluation of generative models on validity, coverage, and novelty as proposed by Xie et al.
[56], as well as mean reward score and what fraction of 100 generated BCC/B2 pairs are unique
(lower indicates more self-repetition).

distance between the normalized feature vectors of generated compositions and all 18,216 potential
BCC/B2 alloy compositions—coverage recall measuring what percentage of the space is produced,
and coverage precision measuring what percentage of produced compositions belong within the
space. Novelty is measured as the pairwise distance between generated samples and all known
(existing) alloys containing two or more TCHEA elements, based on their feature representations.
While coverage measures how well the generated compositions span the known design space, novelty
captures how different they are from all existing alloys. We also report mean reward score among
generated compositions, and “Unique pairs @100”, the fraction of 100 generated BCC/B2 pairs
that are unique. A lower score on this latter value indicates more self-repetition and less diversity.
Following prior work, we use Matminer 53] to vectorize the compositions. We sample at least 1000
generations from each model with 7 = 1.0. An ideal model should have near-perfect validity and
achieve a balance between coverage, novelty and reward.

From Table[I] we observe that general-purpose crystal generation models struggle to produce valid
BCC/B2 alloys within our narrowly defined design space. These models show low coverage recall
and precision, frequently missing key regions of the space and generating chemically irrelevant
compositions, over half of which fail the compositional validity checks. Randomly sampling from
existing BCC and B2 compositions leads to a high coverage but the final result is often (about 30%
times) not a valid composition and not a BCC/B2 alloy for about 20% times. Novelty also goes down
since they are similar to existing alloys in the MP database.

Among the API-based models, the generated compositions demonstrate high validity and coverage
precision, often near perfect. However, they exhibit low coverage recall and low pair uniqueness,
meaning that they tend to repeat themselves while failing to fully span the design space. Their
relatively high novelty scores indicate they produce compositions distinct from those in the Materials
Project database. They produce high-reward candidates, especially GPT-4.1, indicating that their
retrieved/parametric knowledge provides useful biases, though these biases presumably also prevent
them from exploring certain regions of the design space, hence the lower coverage. The prompt-tuned
Gemini-2.5 model, whose prompt is optimized toward generating diverse outputs, demonstrates
higher coverage and pair uniqueness than the other API-based models, but this comes at the cost
of reward, with its proposed alloys underperforming even the SFT models, which are not tuned for
reward.

The local SFT models, trained on a uniform sample of (BCC/B2/B2 volume %) triples, are all
comparable. They demonstrate high validity, coverage, novelty and pair uniqueness. This indicates
that they succeed at becoming a “blank slate”, generating uniformly from the designated space of
possible (BCC/B2/B2 volume %) triples. While this doesn’t make them very useful alloy-proposers
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on their own, it does make them suitable for further optimization toward a specific goal, which we
implement in the form of DPO.

5.2 Effect of preference tuning

Table |I| shows that the DPO models, with the exception of OLMo, show a modest improvement in
mean reward over their SFT precursors, while maintaining their high coverage of the design space and
generated pair uniqueness. Their mean reward is lower than that of the API based models (excluding
prompt-tuned Gemini-2.5), indicating that they learn fewer biases than these larger models.

Figure 2] illustrates the effect of DPO with Win/Draw/Loss analysis based on reward score. Gemma
and LLaMA DPO models win 49.8% and 52.1% of the time and lose 46.1% and 45.4% of the time,
respectively. The rest were draws. However, the OLMo DPO model lost to its SFT counterpart 52.4%
of the time and won only 42.3% of the time.

Win/Loss/Draw Proportions (PT vs SFT) Percentage Change from SFT to PT (Higher is Better)
0.8
Comparison
. Win 20 -
0.7
Loss
Draw
0.6 4 10 4
05 g
@ (SN SRS S e—
£ [+
g 04 5
5 =
& § -104
I
03 5
o
0.2 =204
Objective
BCC B2 at any temperature
0.14 BCC forms first
=304 B2 at room temperature
BCC B2 phases exist at
90% of temperatures.
0.0- T " T T T
OLMo Gemma LLaMA Gemma OLMo LLaMA
Model Model

Figure 2: Each bar represents the proportion of ~ Figure 3: Percentage change in objective satis-

cases where the DPO model outperformed (Win),  faction from SFT to DPO models across Gemma,

underperformed (Loss), or matched (Draw) its ~ OLMo, and LLaMA. The plot illustrates the rela-

SFT counterpart in reward score. tive improvement or degradation in meeting four
alloy design objectives after preference tuning
(DPO).

Figure [3]assesses how effectively the cumulative learning signal optimized the models for individual
synthesis objectives. We evaluate the four manually-chosen subcomponents of the reward function:
(1) BCC and B2 phases must coexist at some temperature; (2) BCC must form first at a higher
temperature; (3) B2 must exist at room temperature; and (4) BCC/B2 phases must be present across
90% of the evaluated temperature range. We compute the percentage change in the satisfaction
rate—defined as the proportion of generated alloys that satisfy each objective—from the SFT to the
DPO models. As shown, all synthesis objectives improve in LLaMA, while three out of four improve
in Gemma. In contrast, OLMo exhibits degradation across all four objectives following preference
tuning. Two key insights emerge from these results: (1) optimizing for the presence of the B2 phase
at room temperature remains challenging, as both Gemma and OLMo perform worse on this criterion,
and LLaMA shows only modest improvement; and (2) combining multiple reward signals in this
setup can push certain architectures like OLMo off-distribution, leading to a collapse in performance
across objectives, possibly due to its smaller capacity or mismatch with reward distribution. However,
the fact that two out of the three models improved after preference tuning, using a reward function
derived from practical design objectives, suggests that a similar learning framework with hierarchical
reward signals could be effective way to optimize models.

5.3 Hyperfixation in API-based models

API-based models such as GPT-4.1 and Gemini-2.5 models are powerful and easy to use, which begs
the question of whether local models have a place in LM-driven materials discovery alongside API-
based models and the agentic systems built on top of them. Our analysis in Section [5.1|shows that the
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strong biases of these models limits their coverage recall and generated BCC/B2 pair uniqueness. To
better understand this limitation, we conduct a focused analysis to understand patterns of hyperfixation
in their behavior.

Rank GPT-4.1 GPT-03 Gemini-2.5 Gemini-2.5-DSPy Llama DPO Llama SFT
Elements Freq Elements Freq  Elements Freq Elements Freq  Elements Freq  Elements Freq
1 {Mo,Nb} 0500 {Mo,Nb,W} 0578 {Mo,Nb} 0.145 {Mo,Nb,Ta} 0.115 {Mo,Nb, Ti} 0.072 {Cr,Ti,V} 0.041
2 {Nb, W} 0.382 {Mo, Nb, Ta, W} 0.152 {Mo,Nb, W} 0.136  {Mo,Nb, Ti}  0.096 {Mo,Nb, W} 0.048 ({Ti,V,W} 0.038
3 {Mo, Nb, W} 0.105 {Mo, Ta, W} 0.140 {Nb, W} 0.089 {Mo, Nb, Ta, Ti} 0.059 {Nb,Ti, W} 0.048 {Nb,Ti,V} 0.037
4 {Cr, Mo, W} 0.008 {Mo,Nb,V,W} 0.045 {Nb,Ta, W} 0.073 {Mo,Nb, Ta, W} 0.054 (Mo, Ti, W} 0.046 {Mo,Ti,V} 0.036
5 {Mo, Nb, Ta} 0.001  {Mo,Nb, Ta}  0.020 {Cr, Mo, W} 0.062 {Mo, Ta, W}  0.052 {Cr,Mo}  0.040 {Mo,Nb, W} 0.033

Table 2: Top 5 most frequent BCC element combinations generated by each model.

Table 2] explains the prompting model result by showing the top 5 BCC element combinations
generated by a selection of models. We can see that half of few-shot GPT-4.1’s BCCs are Mo/Nb
combinations, and 98% use some subset of Mo/Nb/W. Few-shot Gemini shows a similar but less
extreme level of fixation, with at least 36% of its BCC candidates a subset of the same Mo/Nb/W
combination. A prompt-tuned Gemini-2.5 few-shot approach reduced this even more, with about
13% BCC with some combination of Mo/Nb/Ta. By contrast, DPO LLaMA shows a much more even
spread, only slightly more concentrated than SFT LLaMA. This means that the API models achieve
high average reward by fixating on a small selection of elements and element combinations.

1.0 mmm SFT train data
= llama

0.8 mmm gemma
= olmo

0.6 ™= llama_dpo
= gemma_dpo
olmo_dpo

Frequency

107 mmm SFT train data
— GPT-4.1

081 W GPT-03

. Gemini-2.5

0.6 ™= Gemini-2.5-DSPy

04
02 I
0.0 1 1

Ta Ni Y Zn Mn H

Figure 4: Output frequencies of individual elements by trained models (top) and API models (bottom),
respectively, compared to the training data.

Frequency

if Ir Zr Cr Rh w Co
Individual Elements

Ru Fe Mo Nb Al

Finally, Figure ] shows the distribution of individual elements favored by the SFT and DPO models
versus the API models. The top plot shows that SFT and DPO generations have an element distribution
similar to the training data. Among all the trained models we can see that DPO Gemma and DPO
OLMo are fixating slightly more on some elements like Ir/Ru/Al/V and Hf/Zr/Nb/Ti, respectively. In
particular DPO OLMo generated Hf and Zr at much higher frequency and Ir by DPO Gemma than the
training compositions. The bottom plot shows the fixation of few-shot GPT-4.1 (green), Gemini-2.5
(red) and prompt-tuned Gemini-2.5 (violet) on certain elements like Ta/Ni/Hf/Zr/W while completely
missing on elements like Y/Zn/Mn. Gemini is noticeably more adherent to the training data element
frequencies than GPT-4.1, with GPT-4.1 hyperfixating on Nb and Al beyond what is in the training
data.

The sum total of these results shows that API-based models achieve high reward by focusing on
known high-reward regions, to the exclusion of unknown regions, and that this behavior is difficult
to dislodge via prompt tuning without badly affecting reward. It is widely acknowledged that pre-
existing biases affect and limit exploratory materials development [23} [19], and our analysis seems to
indicate that API-based models reflect those same biases. Therefore, there may be a role for models
capable of learning useful reward signals while still retaining a high degree of exploratory openness,
as our DPO-tuned models demonstrate.
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6 Discussion

Our results show that preference tuning can improve generation quality for targeted alloy design,
especially in terms of novelty and reward objective satisfaction. Two out of the three models—Gemma
and LLaMA—benefited from DPO, suggesting that the reward signal helped guide the model toward
regions of the space that align better with synthesis criteria. Other than that we can also see that
the novelty of DPO models have increased consistently across all three models, indicating that
DPO training enables the model to produce unknown compositions. That said, this improvement
comes with a trade-off. DPO models tend to exhibit lower coverage recall, which indicates they are
more concentrated on a narrow region of the design space. This makes sense, as the reward signal
encourages optimization toward specific objectives rather than broad exploration. In constrained
design tasks like ours, this may be desirable—but it’s also a potential limitation if coverage matters.
OLMo, on the other hand, performed worse after DPO across all objectives. We observed increased
divergence of key token logits between SFT and DPO for OLMo, which explains the collapse (more
analysis in Appendix[A.6). This aligns with the well-known sensitivity of preference tuning in smaller
architectures [41]]. In this case, preference tuning may have pushed the model off-distribution. This
raises an important point: reward design alone is not sufficient; model architecture and robustness
play a role in how well preference learning works.

Our training protocol uses SFT to produce a baseline distribution over a specified design space, in our
case (BCC/B2/B2 volume %) triples sampled from a discrete set of known BCCs and B2s. Then it
applies DPO from physics-based feedback to orient the model toward higher-reward regions without
blinding it completely to lower-average reward regions which might still yield good candidates. This
is a highly general protocol, and could be applied to any engineering problem capable of using an
SFT training set to represent a design space and with a computationally-efficient verifier available
over generated candidates. One possible example is battery design, where open-source tools like
PyBaMM [46] could be used to assess generated candidates.

While model training can identify good regions of feature space, discrete optimization (DO) is
more suited to identifying standout candidates within that space. DO methods such as Bayesian
Optimization are a major part of computational alloy discovery [17,151]], and recent work has sought to
combine LMs with Bayesian Optimization as both generators of candidate points and discriminators
over generated candidates |35, 16]]. While the useful biases of API-based models makes them more
likely to suggest high-reward candidates (when used as generators) and more likely to correctly assess
provided candidates (when used as discriminators), their tendency to fixate on certain regions of
feature space limits their ability to perform the “explore” part of the exploration/exploitation tradeoff
in discrete optimization. Tuned local models offer a potential solution to this problem by offering
more control over their degree of bias, particularly via the 5 parameter of the DPO process.

Limitations A major limitation of this work is that the predictions produced by Thermo-Calc and
similar tools are not perfect, and become less reliable for many-element compositions in regions
for which the tool’s databases have poor coverage. Engineering a confidence estimate for external
feedback, combined with LM reasoning over external context like prior scientific findings, could be a
way of mitigating this issue, as could, in a fully realized modeling pipeline, the inclusion of physical
experimentation to verify the predicted properties of key candidates. A higher-level limitation is
the question of whether, for downstream DO tasks, a higher-reward baseline distribution is actually
needed and worth the investment in time and effort to create. If our ultimate goal is to find a small
number of exceptional alloy candidates, it might be more efficient to simply perform a search through
the output space of the SFT model. Future work will explore this question.

Conclusion We apply preference tuning for the first time to LM-driven inverse design of materials
toward functional properties, and propose preference-tuned “high-reward” models as an intermediate
step toward LM-driven materials discovery. Our supervised fine-tuning is successful, while our
preference tuning results are positive, though inconsistent between models. While we apply these
ideas specifically to BCC/B2 superalloy discovery, the template we introduce here is general, and
could be adapted to any design problem where it is possible to collect medium-scale feedback
on model-suggested compositions, such as battery or photovoltaic materials Finally, this work is
complimentary with other approaches for LM-guided materials discovery, such as agentic approaches,
and could be extended to work as an improved baseline distribution for such methods.
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A Appendix

We add more technical detail and approach of our work in here.

A.1 Baselines

A.1.1 Random Search

Conventional alloy discovery approaches often do parametric sweeps of composition space for
promising candidates. We approximate this approach by constructing a grid of BCC- and B2-forming
elements and sample random compositions from it. The sampling of both compositional elements and
B2 volume fractions is done randomly, and the list of elements included both stable and metastable
BCC- and B2-formers.

A.1.2 API models

Our second baseline consists of one-shot and few-shot prompting of three state-of-the-art proprietary
API-based models: Gemini-2.5, GPT-4.1 and GPT-03. We find zero-shot prompting from these
models unreliable in terms of output format, and do not include this as a condition. In the one-shot
setting, we randomly sample a single exemplar from the SFT model output. In the few-shot setting,
we provide top 10 and bottom 10 generations from the SFT model as exemplars, ranked on reward.

The prompts that we use for one-shot and few-shot in-context tuning of GPT-4.1, GPT-03, and
Gemini-2.5 are provided in Figure[5]and Figure [6] respectively. The zero-shot prompting did not
work because the models were unable to generate any feasible BCC-B2 pairs in a parseable format.

Given the better performance of Gemini-2.5 among the API models, we went a step further to create
a prompt-tuned few-shot baseline with DSPy[25]. We used the MIPROV2 with “medium” level
optimization, allowing the model to bootstrap any (BCC/B2/B2 volume %) composition from the
training data.

A.2 SFT: Training and Validation

Training was conducted with a batch size of 2 across three Nvidia A40 GPUs with gradient accu-
mulation every 4 steps. The finetuning was performed with quantization and low-rank adapters.
The adapters were only added for “q_proj” and “v_proj”, this yields maximum learning without
parametric overhead [20]. Cosine annealing was used as a learning rate scheduler. The entire training
process required about 16 hours (not counting the validation time).

The training and evaluation performance for LLaMA-3.1 and OLMo-2 were similar in nature. We
can verify this from the loss curves on the two models as in Figures[7} Other than a higher starting
point for OLMo, the loss curves are almost identical and converges quickly.

While training loss plateaued after the first epoch, following common wisdom of training language
model we kept training the model even when the loss converged for a total of 5 epochs. This helped
our models to perform better on the evaluation set. The loss curves on evaluation set can be found
in Figure [/| The behavior of OLMo was more unstable than LLaMA, however both the models
converged to a loss that is quite similar.

A.3 SFT: Data Curation

To build our initial dataset of 207 body-centered cubic (BCC) and 88 B2-structured compositions, a
list of known known BCC and B2 structures from the Materials Project [22], was filtered to keep only
compounds comprised of the 26 elements in Thermo-Calc’s TCHEA7 database [48]. A second filter
was then applied to keep only compounds with a calculated energy above the convex hull between
0 and 0.25 eV/atom. (A compound with an energy of 0 eV/atom is expected to be stable at 0 K;
by 0.25 eV/atom, a compound is highly unlikely to be stable at 0 K but could become stabilized
by entropy effects at elevated temperatures relevant to BCC/B2 alloys.) This processing yielded 24
BCCs (primarily single-element entries) and 57 B2s (exclusively two-element pairs).

These lists served as the basis for further iteration. First, the role of all elements was estimated. For
example, it was noted that elements like Nb and Mo generally formed stable BCCs, whereas Ti and
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A BCC-B2 intermetallic alloy consists of a disordered
body-centered cubic (BCC) parent matrix and an ordered B2
precipitate, each existing in the material as some
fractional percentage. Suggest a BCC-structured
composition and a B2-structured composition, where the BCC
and the B2 are likely to form an intermetallic alloy with
high yield strength at high heat. Additionally, suggest a
volume percentage for the B2 composition within the alloy.

Restriction 1: Use XML style tags to encapsulate the
output values, example: <tag>XYZ</tag>.

Restriction 2: All the compositions should be limited to
the following elements: {element search space}

Example generation:
<BCC>T1i2Nb2Mo</BCC>
<B2>A1VFeCo</BCC>

<B2 Volume>51.45</B2 Volume>

Known BCC: {list of known BCC}
Known B2: {list of known B2}

Figure 5: This is the one-shot prompt we used for our API based models. We added some additional
context while keeping the training prompt similar. The example generation was randomly sampled
from our training data. The text in blue is optional.

Zr had larger energies above the convex hull and only form BCC structures at elevated temperatures.
Likewise, for the B2 compounds, it was noted that elements like Al and Hf generally occupied
the A-site, whereas Fe and Ru generally occupied the B-site; some elements, like Mn or V, could
occupy either site, whereas others (e.g., Nb or Ta) were found in higher energy (less stable) B2s.
These trends were used to iterate BCC compositions with element concentrations of 20%, 25%,
33%, 40%, 50%, 67%, or 75%; B2 compositions were iterated with 1-2 elements per site (at 25% or
50% concentration). A mixture of stable and metastable elements was used throughout this iteration
process to ensure a broad representation of potentially stable phases. This process resulted in 2,413
potential BCC compositions and 1,101 potential B2 compositions. Each potential composition was
evaluated with Thermo-Calc, and only compositions forming >99% BCC or B2 were kept, leaving 207
BCC and 88 B2-structured compositions used for SFT. Finally, a volume fraction of B2 intermetallic
was prescribed by drawing from existing BCC-B2 alloys and domain expertise. We sampled the
B2 volume percentage uniformly within the [20%, 70%] interval. Therefore, the supervised dataset
consists of structured triplets of the form BCC, B2, B2 volume proportion. For each unique BCC-B2
pair, we sampled three distinct volume fractions, resulting in approximately 55,000 triplets. This
dataset defines the compositional search space over which our language model operates.

A.4 DPO: Training and Validation

For DPO, we took the adapter optimized with SFT and did a direct preference optimization. We
trained on the same configuration as SFT since this was our computational upper limit. However, we
trained the model only for 1 epoch. The DPO training took about 18 hours to complete (not counting
the validation time). DPO optimizes the following objective:
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Oser and 0* are model parameters of SFT and DPO models respectively, 3 is the alternative to
KL-penalty factor [40], which controls the distance between the distribution of the fsgr and 8*. We
want the internal reward mapping of the model (as no separate reward model is required in DPO) to
learn from our multiobjective reward scores and push the model to search the parametric space of
higher average reward. However, to prevent the preference tuned model from going wildly out of
distribution or hacking the reward function [41]], we set 5 = 0.5.

The results from both models were again quite similar, with OLMo outperforming LLaMA in terms
of reward margin on the evaluation set (Figure[§). We are unsure why OLMo failed to generate higher
quality BCC/B2 compositions in spite of its better performance on the evaluation set.

A.5 Thermo-Calc Output

The output from the physical feedback software Thermo-Calc can be found in Figure[9]

We evaluate on 1000 generations sampled from each model using temperature = 1.0 and Top—p =
1.0, except for the two SFT models, which we evaluate based on all 5000 generations.

The goal of the SFT models is to imitate the cold-start data and produce (BCC/B2/B2 volume %)
triples which covers the predefined chemical space without exactly memorizing it. Broadly, we find
that both SFT models succeed in this goal.

A.6 Why Preference Tuning Failed on OLMo?

Element Count (OLMo) KL (OLMo) KL (LLaMA) KL (Gemma)

Ti 94 0.0155 0.0078 4.25e-04
Al 53 0.0169 0.0104 3.34e-04
\% 49 0.0122 0.0071 1.27e-04
Nb 38 0.0193 0.0030 3.33e-04
W 22 0.0015 0.00015 2.98e-05
Cr 13 0.0289 0.0257 1.32e-04

Table 3: Forward Dky,(DPO || SFT) on generated tokens (teacher—forced; trimmed at EOS) for the
elements most frequently produced by OLMo. OLMo’s KL is consistently higher than LLaMA’s and
far above Gemma’s near-zero values, indicating model drift on domain-critical tokens.

Why OLMo regressed while LLaMA and Gemma improved? We diagnose the effect of pref-
erence tuning by measuring forward D1, (DPO || SFT) strictly on the generated continuation: we
teacher—force the SFT decode, trim at EOS, and compute KL token-wise. We also summarize KL
over a filtered token set that carries the task semantics—element symbols and multi-digit numerals
that encode compositions and phase fractions. Under this lens, LLaMA shows small, localized KL.
bumps at decision bottlenecks; Gemma remains close to its SFT policy; OLMo is different. Its KL
spikes are both larger and more frequent, and they land exactly on the filtered tokens. In effect, the
OLMo update reallocates probability mass on the symbols and numbers that define alloy identity, not
on harmless stylistic tokens (see Table[3). This pattern naturally explains the downstream regressions:
if the largest distributional shifts occur on element choices and volume proportions, the generator
drifts off the “chemistry grammar” that SFT had learned, degrading satisfaction of the synthesis
constraints.

Interpretation from the KL profiles The KL curves point to over-steer rather than lack of sig-
nal—a strength—sensitivity mismatch between the DPO update and OLMo’s inductive bias. (1) Archi-
tecture X adapter placement/rank: the same LoRA targets and rank that are tame on LLaMA/Gemma

16



665
666
667
668
669
670
671
672

673
674
675
676
677
678
679

appear to sit on more causal pathways in OLMo, so identical gradients yield larger effective steps in
logits for rare technical tokens (elements, multi-digit numerals). (2) Tokenizer/prior effects: these
tokens live in a low-frequency subspace; if OLMo’s pretraining allocates less robust capacity there,
the preference gradients induce higher variance and numeric drift. (3) DPO hyperparameters: a
[ and learning-rate/step schedule that gently nudges strong SFT policies (LLaMA/Gemma) can
over-correct a weaker or more brittle SFT (OLMo), inflating KL precisely on the filtered token set.
The net effect is the signature we observe: the biggest divergence occurs where correctness matters
most (see Figure [TT)).

Moving forward If we weaken and stabilize the update in that subspace—e.g., increase 3 (gentler
preference step), reduce LR/steps or LoRA rank, and/or retarget adapters (start with attention
projections)—and optionally add a light reference anchor (DPO-KL or a small SFT CE mix-in), the
filtered-token KL for OLMo should drop into the LLaMA band. Under the same teacher-forced
evaluation, this KL reduction should coincide with recovery on the synthesis objectives. In short, the
KL analysis localizes the failure mode (over-steer on domain-critical tokens) and directly suggests
how to fix it.
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A BCC-B2 intermetallic alloy consists of a disordered
body-centered cubic (BCC) parent matrix and an ordered B2
precipitate, each existing in the material as some
fractional percentage. Suggest a BCC-structured composition
and a B2-structured composition, where the BCC and the B2
are likely to form an intermetallic alloy with high yield
strength at high heat. Additionally, suggest a volume
percentage for the B2 composition within the alloy.

Restriction 1: Use XML style tags to encapsulate the output
values, example: <tag>XYZ</tag>.

Restriction 2: All the compositions should be limited to
the following elements: {element search space}

Examples of good generations:

<BCC>TiV</BCC>
<B2>NbRu</B2>
<B2 Volume>34.8</B2 Volume>

<BCC>Nb67Mo33</BCC>
<B2>ZrTiRu2</B2>
<B2 Volume>50.6</B2 Volume>

Examples of bad generations:

<BCC>Zr33Ti67</BCC>
<B2>VRu</B2>
<B2 Volume>56.7</B2 Volume>

<BCC>T133Mo67</BCC>
<B2>A1VFe</B2>
<B2 Volume>64.75</B2 Volume>

Known BCC: {list of known BCC}
Known B2: {list of known B2}

Figure 6: This is the few-shot prompt we used for our API based models. We added some additional
context while keeping the training prompt similar. Top-10 and bottom-10 of LLaMA SFT model
generations were given here as examples of good and bad generations respectively (only two are
shown here for brevity). The text in blue is optional.
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Figure 7: Loss curves for LLaMA and OLMo during supervised fine-tuning (SFT).
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Figure 8: Reward Margin for LLaMA and OLMo during preference optimization (DPO).

19



BCC B2 B2 Volume Temperature Quantity Phase IsOrdered II;:f-tait:eter
Cr33Fe67 MnAI2Fe 61.65 373.15 0.16 | BCC_B2#1 0 2.91
Cr33Fe67 MnAI2Fe 61.65 373.15 0.83 | BCC_B2#2 1 2.93
Cr33Fe67 MnAI2Fe 61.65 1073.15 1 BCC_B2#2 1 2.99
Cr33Fe67 MnAI2Fe 61.65 1173.15 1 BCC_B2#2 1 3.01
Cr33Fe67 MnAI2Fe 61.65 2273.15 1 LIQUID#1 - -

Figure 9: Output from Thermo-Calc evaluates the stability of the generated BCC-B2 alloy over a
range of temperatures. The reward function use this output to compute a scalar reward for preference
tuning.
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Figure 10: Histograms of generated B2 volume percentages for SFT training data
and both SFT models

OLMo diverged more than LLaMA Avg KL (DPO||SFT) by model
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Figure 11: OLMo goes out of distribution on domain-critical element tokens after DPO. Left:
Ranked bar chart of AKL = Dkr,(DPO || SFT)ormo — Dxr(DPO || SFT)1ama computed only on
generated tokens (teacher-forced on the SFT continuation; trimmed at EOS). Elements are ordered
by OLMo frequency; labels show OLMo occurrences (n). Positive bars indicate OLMo moved
farther from its SFT reference than LLaMA did for the same token. Right: Heatmap of average
per-token Dkp,(DPO || SFT) for the same elements across models (OLMo, LLaMA, Gemma). The
consistently hotter OLMo column on key elements (e.g., Nb, Ti, Al, V) evidences over-steer in the
chemistry subspace where alloy identity is decided, while LLaMA shows moderate shifts and Gemma
remains near the SFT policy.
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