
OPTFM: A Scalable Multi-View Graph Transformer
for Hierarchical Pre-Training in Combinatorial

Optimization

Hao Yuan
Lenovo Research

yuanhao4@lenovo.com

Wenli Ouyang∗
Lenovo Research

ouyangwl1@lenovo.com

Changwen Zhang
Lenovo Research

zhangcw5@lenovo.com

Congrui Li
Lenovo Research

licr8@lenovo.com

Yong Sun
Lenovo Research

sunyong4@lenovo.com

Abstract

Foundation Models (FMs) have demonstrated remarkable success in fields like
computer vision and natural language processing, yet their application to combina-
torial optimization remains underexplored. Optimization problems, often modeled
as graphs, pose unique challenges due to their diverse structures, varying distribu-
tions, and NP-hard complexity. To address these challenges, we propose OPTFM,
the first graph foundation model for general combinatorial optimization. OPTFM
introduces a scalable multi-view graph transformer with hybrid self-attention and
cross-attention to model large-scale heterogeneous graphs in O(N) time complex-
ity while maintaining semantic consistency throughout the attention computation.
A dual-level pre-training framework integrates node-level graph reconstruction
and instance-level contrastive learning, enabling robust and adaptable represen-
tations at multiple levels. Experimental results across diverse optimization tasks
show that models trained on OPTFM embeddings without fine-tuning consistently
outperform task-specific approaches, establishing a new benchmark for solving
combinatorial optimization problems.

1 Introduction

Foundation Models (FMs) [1] have achieved remarkable success in various domains such as computer
vision [2, 3] and natural language processing [4, 5]. By leveraging large-scale pre-training on diverse
datasets, these models exhibit superior versatility and effectiveness compared to task-specific, end-to-
end trained models [6, 7]. The success has sparked interest in extending FMs to other areas, including
graph-based tasks, where Graph Neural Networks (GNNs) [8, 9] and graph transformers [10, 11]
have shown significant promise.

Meanwhile, Machine Learning for Combinatorial Optimization 2 (ML4CO) has gained significant
traction recently due to the NP-hard nature of the optimization problems. Researchers have encoded
the problems as graphs, such as bipartite [12] and tripartite [13] structures, and enhanced solving
performance through techniques like large neighborhood search [14, 15], branching variable selection

∗Corresponding author.
2Combinatorial optimization is a subfield of mathematical optimization that deals with problems where the

solution space consists of discrete configurations, and the goal is to find an optimal solution from a finite (but
often exponentially large) set of feasible solutions under given constraints.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

[12, 16], predicting feasible solutions [17, 18], cut selection [19, 20], and so on. However, these
models are often tailored to specific tasks, limiting their generalizability to real-world scenarios.

Based on these insights, there is a critical need for a general-purpose pre-training framework that
can generate robust representations for variables, constraints, and entire instances in a wide range
of optimization scenarios. While initial attempts like Li et al. [21] have explored pre-training for
optimization tasks, it primarily dives into sample generation to improve policy transferability across
datasets in a specific problem domain, falling short of establishing a comprehensive foundation model.
Developing such a versatile model faces significant challenges due to the variability in problem
structures, distributions, and the complexity introduced by large-scale real-world applications.

To tackle the challenges above, we propose OPTFM, the first general Optimization Foundation
Model. OPTFM introduces a scalable multi-view graph transformer architecture to handle large-scale
optimization problems with arbitrary scale at O(N) time complexity. It utilizes hybrid self-attention
within variables/constraints and cross-attention between them, ensuring semantic consistency while
capturing complex node-wise correlations. Building on this architecture, we design a dual-level
pre-training framework that includes node-level graph reconstruction and instance-level contrastive
learning. This hierarchical structure ensures efficient pre-training at both node and graph levels,
enhancing performance across various downstream tasks.

In a nutshell, this paper can be characterized by the following key highlights:

• First General Optimization Foundation Model: We introduce OPTFM, the first graph
foundation model for general combinatorial optimization, enabling robust learning of repre-
sentations for variables, constraints, and entire problem instances.

• Efficient Multi-View Attention: OPTFM features a scalable multi-view graph transformer
that handles large-scale problems with O(N) time complexity, capturing correlations and
ensuring semantic consistency between heterogeneous nodes.

• Hierarchical Pre-Training Framework: We propose a dual-level pre-training framework
combining node-level graph reconstruction and instance-level contrastive learning, ensuring
efficient and flexible pre-training.

• Strong Downstream Performance: Models trained on generated embeddings from OPTFM
without further fine-tuning consistently outperform end-to-end task-specific approaches,
showcasing superior performance in solving general combinatorial optimization problems
across multiple downstream tasks.

2 Related work

Self-Supervised Graph Pretraining. Self-supervised pretraining allows models to learn universal
representations from large unlabeled datasets, improving performance on downstream tasks [22].
These methods are typically divided into contrastive and predictive paradigms. Contrastive learning
aims to train encoders such that embeddings of similar graphs are close while those of dissimilar
graphs are distant. Methods like InfoGraph [23] and SCGDN [24] leverage self-contrastive strategies
to learn graph-level representations. Other approaches may compare different views [25] or encoding
structures [26, 27] of the same graph. Additionally, maximizing agreement between different
augmentations of nodes or graphs is also a common practice [28–30]. In contrast, predictive methods
train encoders using self-generated labels, such as link (or motif) prediction for graph reconstruction
[31, 32] and node/edge/position attribute reconstruction on masked graphs [10, 33–36]. In this paper,
we propose a dual-level pre-training framework that combines both contrastive and predictive views,
along with a novel training pipeline tailored for efficient training on extremely large graphs.

Graph Transformer. Transformers have recently emerged as powerful graph encoders due to their
expressive capabilities [10, 27, 37–40]. They leverage all-pair attention mechanisms to aggregate
information from a global perspective, capturing long-range interactions and unobserved potential
links. However, complexity posed a significant bottleneck. As noted by Wu et al. [41], smaller or
even ultra-small versions of Graphormer [37] and GraphTrans [42] can lead to out-of-memory issues
and are limited to graphs with only a few thousand nodes. To address this challenge, recent efforts
tried to sample a node subset [43] or group neighboring nodes [26, 44, 45] for attention, which may
sacrifice expressivity. Another direction was to simplify attention mechanisms [46]. Recently, Wu
et al. [41] removed the softmax function in attention computations, achieving O(N) complexity for

2

Figure 1: Overview of OPTFM: We introduce a novel multi-view graph transformer that captures
all-pair node correlations with O(N) complexity. It integrates self-attention for variables and
constraints and cross-attention between them, ensuring semantic alignment. Additionally, we design
a hierarchical pretraining framework: the lower layer focuses on subgraph reconstruction, while the
upper layer leverages contrastive learning to capture global representations using embeddings from
the lower layer pre-trained models.

all-pair attention without any approximation. In this paper, we propose an efficient multi-view graph
transformer architecture for potentially large-scale heterogeneous graphs, aiming to capture complex
node-wise correlations with semantic alignment while maintaining computational efficiency.

Machine Learning for Combinatorial Optimization. Learning to solve combinatorial optimization
problems has emerged as a promising research direction, where graph-based representation learning,
in particular, has demonstrated superior performance across diverse tasks, including large neighbor-
hood search [14, 15, 47, 48], learning to branch [12, 49, 50], learning to cut [19, 20, 51], and solution
prediction [17, 18, 52–54]. However, they are designed for specific tasks or problem types, limiting
their transferability. Recent efforts have explored strategies for improving generalization, such as
leveraging multi-task learning to extract shared knowledge across tasks [55–57], or investigating
adaptability within specific problems [58–60]. A recent attempt by Li et al. [21], although termed
a ’foundation model’, centers on enhancing policy transfer within specific problems by sample
generation, without addressing general-purpose representation challenges. In contrast, our OPTFM
tends to establish a general foundation model for combinatorial optimization, enabling reasonable
representations of variables, constraints, and instances across problems, without any fine-tuning.

3 Preliminary

Combinatorial Optimization Problem. In practice, most combinatorial optimization problems can
be formulated as mixed-integer linear programs (MILPs) [12], with the form

argmin
x
{ c⊤x|Ax ≤ b, l ≤ x ≤ u,x ∈ Zp × Rn−p} (1)

where c ∈ Rn is the objective coefficient vector, A ∈ Rm×n the constraint coefficient matrix,
b ∈ Rm the constraint right-hand-side vector. x is the decision variables of total size n. p denotes
the number of integer variables, and the remaining n− p variables are continuous.

Bipartite Graph Representation. As introduced by Gasse et al. [12], we encode the input opti-
mization problem as a bipartite graph G = (C, V,E), where the nodes are partitioned into two sets:
one for constraints C ∈ Rm×c and one for variables V ∈ Rn×d. An edge (i, j) ∈ E connects a

3

constraint node i and a variable node j if the variable is involved in the constraint, i.e., Ai,j ̸= 0.
Detailed features are described in Table. 6 in the appendix.

4 Methodology

Fig. 1 depicts the framework of OPTFM. At its core is an efficient multi-view graph transformer
architecture, which leverages adaptive graph partitioning, simplified attention computation mechanism
and a multi-view learning pipeline to capture all-pair node correlations in large-scale heterogeneous
graphs at O(N) time complexity. Based on this scalable architecture, we design a dual-level
pre-training framework: the lower level focuses on sub-graph reconstruction to learn node and
edge representations, while the upper level constructs sub-graph embedding sequences and applies
contrastive learning to learn robust graph-level representations. Furthermore, we introduce an efficient
decoupled training pipeline tailored for this hierarchical framework, enabling stable and scalable
training on potentially extremely large graphs.

4.1 Multi-view graph transformer

Graph Neural Networks (GNNs) have been widely used to model combinatorial optimization problems
on graphs [12, 48, 50–54]. However, recent advancements show that graph transformers [41, 45]
excel in capturing long-range interactions and mitigating issues like over-smoothing [61] and over-
squashing [62] in GNNs. Despite their promise, applying graph transformers to optimization problems
faces two main challenges: i) ensuring computational efficiency on large-scale graphs and ii) handling
heterogeneous graphs where variables and constraints come from different feature spaces, requiring
distinct attention mechanisms to align semantic information across different types of nodes.

To address the efficiency issues, some researchers attempted to simplify attention computations. Wu
et al. [41] removed the softmax function, reducing the complexity of attention calculations to O(N).
However, it completely ignores structural information during node pair attention computations,
necessitating an additional GNN to collaboratively model the graph data. This separated multi-model
framework may not be ideal, as it only integrates the outputs without fully incorporating graph
structure information into each attention layer. To create a unified graph transformer architecture that
effectively combines global-view attention with local graph structures (e.g., edges) while maintaining
manageable model complexity, we propose the attention backbone as in Fig. 2.

Specifically, the linear attention function is defined as:

Q = fQ(Q
(0)), Q̃ = Q

∥Q∥F
, K = fK(K(0)), K̃ = K

∥K∥F
, V = fV (V

(0)) (2)

D = diag(1+ 1
N Q̃(K̃T1), QG = D−1

[
V + 1

N Q̃(K̃TV)
]

(3)

N = fN (N(0)), QN = NV, QO = βfO([QG,QN]) + (1− β)Q (4)

Figure 2: Attention Backbone.
.

where fN , fO, fQ, fK , fV are all linear feed-forward lay-
ers, ∥·∥F denotes the Frobenius norm, and β is a hyper-
parameter for residual link. QG denotes the left-half com-
putation results from Fig. 2 of all-pair attentions with
O(N) complexity in Eq. (2)-(3), following the logic from
Wu et al. [41], while differing in that we directly incorpo-
rate the adjacency matrix N(0) ∈ RN×N into the attention
computation. Each element of this matrix records the edge
attribute if it exists, stored as sparse matrices to efficiently
capture the influence of neighboring nodes on the cur-
rent node at each attention layer, as computed in Eq. (4).
By integrating the adjacency matrix in this manner, struc-
tural information is consistently utilized throughout the
attention computation. Finally, we concatenate the graph
structure guidance with the all-pair node correlations, fol-
lowed by a linear transformation and residual connection, to produce the updated node embeddings
in Eq. (4).

4

We clarify that our structured attention mechanism—comprising separate self-attention and cross-
attention—explicitly respects the inherent bipartite structure and semantic asymmetry of combina-
torial optimization (CO) problems, without increasing computational complexity. This design can
be interpreted as a semantically informed decomposition of the full attention matrix, guided by the
problem’s structural prior. Specifically, intra-type self-attention enables more expressive and focused
representations of interactions among variables and among constraints, respectively, while cross-
attention precisely captures the directional influence between variables and constraints—a critical
capability for maintaining feasibility in complex optimization landscapes. By embedding a strong
inductive bias aligned with the bipartite nature of mixed-integer programming (MIP) formulations,
our architecture enhances semantic coherence and improves generalization across problem scales and
distributions, which is essential for real-world applicability, as validated in our experiments.

To address the challenges of heterogeneous graphs, we propose an innovative multi-view attention
framework, illustrated in Fig. 1 (bottom left), which integrates self-attention within variable and
constraint sets, and cross-attention between them, using the backbone structure in Fig. 2. For
self-attention, all-pair attention is performed on the isolated constraint (C) and variable (V) nodes,
eliminating edge encoding and reducing complexity. Two half cross-attentions are then conducted:
one with variables as Q and constraints as K and V, and vice versa. Node representations are updated
as Fig. 2, leveraging the sparse adjacency matrix A as structural features. Inspired by traditional
GCNs [12], the cross-attention mechanism decomposes correlations into two interleaved processes
C → V and V → C, executed sequentially from the perspectives of variables and constraints,
respectively. Each step refines node representations based on counterpart relevance. This multi-view
attention framework enhances heterogeneous graph representations without sacrificing computational
efficiency, expanding all-node-pair attention semantically.

Algorithm 1 Node-level Pre-training
Input: bipartite graph set {Gi|i = 1, 2, 3, ...K}
Maximum graph size: gsize;
Masked edge ratio: a;
Output: Pre-trained Transformer π(θ)
while stopping criteria not meet do

for j = 1 to K do
if |Gj | > gsize then

Number of sub-graphs S =
⌈

|Gj |
gsize

⌉
Graph partition into G1

j , G
2
j , ..., G

S
j

for k = 1 to S do
Add global node, mask a% edges for Gk

j ;
Train π(θ) with on Gk

j cross-entropy loss;
end for

else
Add global node, mask a% edges for Gj ;
Train π(θ) on Gj with cross-entropy loss;

end if
end for

end while

Expressivity and Scalability: Similar
to Wu et al. [41], our OPTFM can scale
linearly with graph sizes, supporting effi-
cient training and potentially larger graphs
(details in Sec. 5.5). While key distinc-
tions include integrating the Graph Net-
work (GN) functionality directly into the
attention layer, enabling simultaneous all-
pair attention and structural embedding
within each layer, rather than fusing at the
output stage. Additionally, we split all-pair
attention into multi-view attention, captur-
ing finer-grained structural information and
aligning semantic details, which theoreti-
cally suits bipartite graph structures better
and enhances representational power, as
demonstrated in Table. 1,2 and 3.

4.2 Dual-level pretraining task

Building on the proposed graph trans-
former, we introduce a novel dual-level
sequential pre-training framework to learn robust representations for variables, constraints, and
the entire graph. It can effectively handle large-scale optimization problems within acceptable
computational bounds.

Node-level Graph Reconstruction. In bipartite graphs, the structural information stems from
variable-constraint correlations, as there are no edges within each side of the nodes. Capturing this
requires accurate recognition and prediction of inter-side connections by the model. Therefore, we
propose a mask-based graph reconstruction task to learn the node-level representations.

At the input stage, we perform a balanced random graph partitioning that ensures the ratio of variable
to constraint nodes in different subgraphs closely matching that of the original graph, with details
described in Appendix. A.2. It limits the input graph sizes to no larger than a predefined gsize, for
memory and computational efficiency, enabling support for arbitrary-sized problems. Within each
sub-graph, a proportion a% of edges are randomly masked. The masked graph, along with its edge

5

encodings, is fed into the graph transformer to capture complex dependencies. As shown in Fig. 1,
we then extract embeddings of variables and constraints, concatenate them pairwise, and predict
whether a variable is part of a specific constraint. Labels are derived from the adjacency matrix A
before masking. Cross-entropy loss is used to minimize the difference between predictions and labels,
reconstructing the original graph structure.

Please note that to support subsequent graph-level pre-training tasks, as shown in Fig. 1, we add
two artificial global nodes in each sub-graph. These nodes connect to all non-virtual nodes on the
opposite side, denoting the global variable and constraint representations.

Instance-level Contrastive Learning. While node-level pre-training effectively captures representa-
tions for variables and constraints, aggregating information across sub-graphs to obtain graph-level
representations remains challenging. Previous studies [8, 63, 64] have attempted unified frameworks
for simultaneous or alternate learning of multi-level representations. However, joint training across
sub-graphs is especially difficult in large-scale optimization problems. To address this, we propose a
hierarchical training pipeline that builds on the node-level pre-trained network. It independently learns
a mapping from sub-graph to full graph representations, ensuring efficient and scalable learning.

Algorithm 2 Graph-level Pre-training
Input: Token sequences {Ti|i = 1, 2, 3, ...K}
Token sequence labels {li|i = 1, 2, 3, ...K}
Output: Pre-trained Transformer πgraph(θ)
// Token sequence Ti is a sub-graph global vector
sequence collected by pretrained π(θ);
Let D = {(Ti, li)|i = 1, 2, ...,K}.
while stopping criteria not meet do

Randomly select a batch of instances DC from D;
Optimize θ by minimizing ProxyAnchorLoss;

end while

As shown in Fig. 1, we construct a token
sequence from the global representations
of sub-graphs, where each token concate-
nates the global variable and constraint vec-
tors. To capture correlations among sub-
graphs, we use the self-attention module
from Fig. 2 without additional matrix en-
coding, ignoring complex inter-subgraph
structures. Then mean pooling was ap-
plied to obtain graph-level representations.
Building on this architecture, we propose
a contrastive learning-based pre-training
task to learn discriminative representations.
Specifically, for each instance, we generate M token sequences through random graph partitions.
Sequences from the same instance are treated as positive pairs, while others are negative pairs. We
employ ProxyAnchorLoss [65] as the loss function to ensure that embeddings of positive pairs are
close, while those of negative pairs are separated, with implementation details and hyper-parameter
settings adopted from Ye et al. [17].

In summary, we treat different graph partition results as multiple representatives of the same instance,
leveraging contrastive learning to distinguish between instances and learn comprehensive graph
representations. Since it is independent from the node-level pre-training, the complexity is determined
solely by the length of the sub-graph sequences, making it possible to efficiently extract reasonable
graph-level representations for extremely large problems.

Intuition behind the design. Our decoupled two-stage architecture offers significant advantages over
conventional joint multi-view graph learning approaches, particularly in scalability and efficiency. By
first learning node representations on small, independently sampled subgraphs, memory consumption
is bounded by subgraph size rather than the full graph, enabling training on graphs with tens of
millions of nodes. In the second stage, with the node encoder frozen, global structural information
is distilled into a compact token sequence, upon which transformer-based contrastive learning is
applied—preserving expressiveness while maintaining computational tractability. This sequential
design not only avoids the prohibitive memory and compute costs of end-to-end joint optimization
on massive graphs, but also enables per-instance pretraining in minutes, making large-scale graph
representation learning practical and accessible.

4.3 Overall training pipeline

Our hierarchical pre-training framework follows a sequential pipeline, detailed in Alg. 1 and 2. In
the first stage, we perform the node-level graph reconstruction task, training individually on each
graph with adaptive partitioning for extremely large graphs, which produces a pre-trained model that
serves as the foundation for the next phase. In the subsequent stage, using this pre-trained model,
we generate multiple token (sub-graph) sequences for each instance by applying different random
partitions. Each sequence is labeled with its corresponding instance. The training objective is to bring

6

Table 1: Performace on downstream task I (CA & MIS (Maximize, and MVC & SC (Minimize))).

Methods CA2 (×103) CA3 (×103) MIS2 MIS3 MVC2 MVC3 SC2 SC3
SCIP 11285.2 115117.8 18541.5 9086.6 31451.6 491084.8 25259.6 252199.6
GNN-GBDT [17] 13593.6 137035.9 22288.5 223295.2 27419.8 276235.0 17181.2 225725.9
LIGHT-MILPOPT [18] 13825.7 137529.5 22601.5 227198.4 27268.2 272941.2 17010.0 165973.1
GOAL [56] 13415.7 139471.5 22301.8 223126.1 27532.6 274472.8 17501.4 261195.3
MTL [57] 13389.3 139842.2 22284,2 224109.5 27498.5 275612.7 17443.7 258974.6
Pretrain:GCN 13022.5 136988.3 22075,9 221518.5 27965.4 279978.5 17765.9 273987.5
Pretrain:SGFormer 13787.5 140512.4 22457.6 226535.8 27398.5 275539.6 17223.5 220913.8
Pretrain:OPTFM-Nocross 14129.8 139863.5 22897.1 229614.9 27094.7 270123.5 16812.3 192945.4
Pretrain:OPTFM-WGNN 14275.6 140233.1 22935.4 228975.4 27118.4 269993.1 16793.5 181739.7
Pretrain:OPTFM 14412.0 141529.7 23057.3 231528.1 26891.8 267974.5 16158.6 165972.6
Time 2000s 30000s 2000s 8000s 2000s 8000s 2000s 12000s

representations of different partition sequences (views) from the same instance closer while pushing
those from different instances apart.

5 Experiments

5.1 Pre-training settings

Datasets: To develop a foundation model for general optimization problems, we pre-trained on the
MIPLIB 2017 collection set,3 a well-established benchmark for MIP solvers. This dataset, curated
by Hans Mittelmann, comprises 1,065 instances from real-world mixed integer programs, featuring
diverse sources and complexities, with variable counts ranging from 3 to 38,868,107 and constraint
counts from 1 to 19,912,111. To augment the training set and ensure balanced splits, we applied five
random perturbations to each instance, resulting in an expanded dataset D, with details described
in Appendix. A.3. We divided D into 80% for training and 20% for validation, while retaining the
original dataset D0 as the test set for performance evaluation, provided in Appendix. A.5.

Setup and Hyperparameters: All experiments were conducted on a server equipped with 2
NVIDIA A100 PCIE 40GB GPUs. Each instance is input as a bipartite graph, with features detailed
in Appendix. A.1. To manage efficiency, graphs are partitioned to ensure each sub-graph contains no
more than gsize = 20, 000 nodes empirically from Appendix. A.6. The attention uses a single-layer,
single-head structure as in Wu et al. [41], with a hidden vector size of 64 and residual link β = 0.5.
Variable and constraint features are mapped to 64 dimensions before self-attention. For node-level
pre-training, concatenated embeddings pass through a two-layer MLP (128→128→2) with a learning
rate of 0.001. In graph-level pre-training, each instance generates M = 20 sequences, batched with a
size of 128, sampling from 10 random instances per batch to ensure sufficient positive and negative
pairs for contrastive learning. All the approaches were evaluated with three different seeds, and the
average performance was reported (see detailed stability analysis in Appendix A.7).

Baselines: We compare our model against two categories of baselines: pre-training models and
state-of-the-art (SOTA) end-to-end models for each downstream task. For pre-training models,
we compare against: SGFormer [41], our main competitor matching OPTFM’s hyperparameters;
and GCN [12], initially proposed for encoding optimization problems and recently widely used
[47, 49, 66, 67], two up-to-date multi-task learning frameworks, GOAL [56] and MTL [57], and
some degraded versions of OPTFM: OPTFM-Nocross, which replaces cross-attention with GCN;
OPTFM-WGNN, which removes edge matrix input and adopts a structure similar to Wu et al. [41],
using GCN for graph structures and averaging at the outputs; and OPTFM-Single, which removes
the graph-level pre-training and uses mean pooling of sub-graphs to represent the instance.

5.2 Downstream task I: solution prediction

Predicting solution values for integer variables in MILPs is challenging due to its considerably
extensive range. Given that most models primarily consist of binary variables [13], it allows framing
the prediction as a binary classification task. Recent studies have explored end-to-end methods
[13, 17, 18, 52], but capturing implicit correlations among decision variables remains difficult. To
address this, local search methods are used to post-process the predictions.

3https://miplib.zib.de/

7

Table 2: Performance Comparison on Integer Programming (IP) of the Downstream Task II.
.

Methods Set Covering (SC) Maximal Independent Set (MIS) Combinatorial Auction (CA) Maximum Cut (MC)
Gap% PI Gap% PI Gap% PI (×103) Gap% PI

SCIP 3.23 20225 0.25 312.25 4.71 3312.4 8.01 15193
RL-LNS [14] 1.29 17623 0.07 182.63 2.36 2271.6 4.25 6538
Branching [68] 1.72 18007 0.07 183.44 3.09 2492.7 3.99 6104
CL-LNS [15] 0.92 17025 0.07 182.99 2.05 2198.5 3.03 3883.5
Fast-T2T [69] - - 0.13 241.72 - - - -
AnySCP [70] - - - - - - 3.89 4981
Pretrain:GCN 1.95 18893 0.14 237.52 3.11 2507.8 4.73 8125
Pretrain:SGFormer 1.21 17633 0.05 181.97 2.59 2622.8 4.29 6601
Pretrain:OPTFM-Nocross 1.07 17428 0.06 182.44 2.35 2337.5 3.55 4856
Pretrain:OPTFM-WGNN 1.13 17506 0.05 181.95 2.19 2198.6 3.55 4901
Pretrain:OPTFM 0.93 16782 0.05 178.55 1.93 2099.5 3.02 3845
Gurobi 0.75 16796 0 173.15 1.44 2075.4 0.62 842

Table 3: Generalization to large-scale instances using the trained policies from small problems.
.

Methods Set Covering (SC2) Maximal Independent Set (MIS2) Combinatorial Auction (CA2) Maximum Cut (MC2)
Gap% PI Gap% PI Gap% PI(×103) Gap% PI

SCIP 4.51 14953 3.45 9542.1 17.87 12312 8.38 30039
RL-LNS [14] 1.66 13007 0.51 1524.7 4.13 5933.4 3.20 8449.6
Branching [68] 1.53 12916 0.55 1769.4 4.52 6142.7 3.19 7857.3
CL-LNS [15] 1.41 12914 0.41 1298.5 3.51 5621.7 2.83 7184.1
Fast-T2T [69] - - 0.49 1482.5 - - - -
AnySCP [70] - - - - - - 3.51 10327
Pretrain:GCN 2.03 13983 0.79 2681.9 5.15 7095.8 3.65 10112
Pretrain:SGFormer 1.85 13425 0.55 1772.5 4.42 6716.9 3.17 8502.7
Pretrain:OPTFM-Nocross 1.49 13112 0.29 1210.0 2.95 5529.3 2.33 5521.9
Pretrain:OPTFM-WGNN 1.66 13309 0.24 1004.8 3.58 6439.7 2.33 5539.0
Pretrain:OPTFM 1.03 12699 0.15 872.16 2.19 5027.3 1.95 4339.4
Gurobi 0.71 12528 0.01 495.88 3.60 5723.5 1.01 2195.6

Methods Set Covering (SC4) Maximal Independent Set (MIS4) Combinatorial Auction (CA4) Maximum Cut (MC4)
Gap% PI Gap% PI Gap% PI(×103) Gap% PI

SCIP 5.41 15524 3.45 22745 16.61 25275 8.71 78510
RL-LNS [14] 3.73 14866 0.57 5365.1 3.52 13572 3.76 39645
Branching [68] 3.39 14689 0.64 5744.8 3.37 13349 4.21 42718
CL-LNS [15] 3.39 14325 0.45 4533.4 2.99 13025 3.29 37384
Fast-T2T [69] - - 0.63 5472.9 - - - -
AnySCP [70] - - - - - - 4.29 38975
Pretrain:GCN 3.69 14895 0.92 8033.0 5.02 14789 3.98 41235
Pretrain:SGFormer 2.65 14098 0.55 5319.7 2.92 12997 3.95 41167
Pretrain:OPTFM-Nocross 1.55 13722 0.42 4937.5 2.25 12099 2.67 31397
Pretrain:OPTFM-WGNN 1.70 13815 0.41 4912.9 2.19 12173 2.45 30936
Pretrain:OPTFM 1.09 13385 0.04 2241.9 1.98 11431 1.99 25213
Gurobi 1.22 13795 0.04 2215.7 12.61 21959 5.38 51298

In this task, we applied the node-level pre-trained model to generate variable embeddings on four
large-scale Integer Programming (IP) problems, and Gradient Boosting Decision Tree (GBDT) was
then utilized to predict feasible solutions by learning the mapping from variable embeddings to
solutions. All GBDT training and testing settings follow [17] for a fair comparison, and detailed
implementations, configurations, datasets and task descriptions are provided in the Appendix. A.4.1.

Baselines: In addition to the pretraining baselines listed in Sec. 5.1, we compare our performace
with two up-to-date end-to-end trained baselines: GNN-GBDT [17] and LIGHT-MILPOPT [18],
and open-source MILP solver, SCIP [71].

Table 1 summarizes the objective values of solutions produced by different methods within a fixed time
limit, listed in the last row, consistent with [17] and [18]. Our OPTFM significantly outperforms all
competing baselines, including end-to-end trained methods and multi-task learning approaches, across
all datasets, illustrating the robust performance of our framework even on unseen data distributions.
Comparing other pre-trained models, SGFormer clearly surpasses GCN, highlighting the necessity of
transformer architectures for capturing latent correlations between unconnected nodes. Moreover,
degraded versions of OPTFM, such as OPTFM-Nocross and OPTFM-WGNN, consistently perform
weaker, further underscoring the superiority of our multi-view graph transformer architecture.

5.3 Downstream task II: large neighborhood search

Large Neighborhood Search (LNS) is a type of improvement heuristic designed to explore better
solutions within a predefined neighborhood. Recent studies have successfully employed model-based
neighborhood functions [14, 15, 47, 68], achieving significant improvements.

8

Table 4: Performance comparison on MIPLIB2017 benchmark set.

SCIP RL-LNS Pretrain:GCN Pretrain:SGFormer Pretrain:OPTFM Gurobi

Gap% 15.15 8.07 8.95 5.19 2.92 1.98
Wins 96/240 114/240 99/240 121/240 171/240 203/240

In this task, we extend the approach from Wu et al. [14], which uses GCN to capture graph structures
along with dynamic variable features and trains using Reinforcement Learning (RL). In our imple-
mentation, the state is redefined to include only the variable embeddings generated by a node-level
pre-trained model and the same dynamic variable features as in the baseline. We model the actions
directly using a simple MLP, replacing the GCN. Apart from these differences, all other training and
testing settings, including datasets, remain consistent with the baseline to ensure a fair comparison,
with further details in Appendix. A.4.2.

Baselines: We compare with three end-to-end trained baselines: RL-LNS [14], Branching [68],
CL-LNS [15], and open-source solver, SCIP [71], and leading commercial solver, Gurobi on all
the problems. In addition, on the Maximum Independent Set (MIS) problems and Maximum Cut
(MC) problem, we also incorporated some task-specific baselines, Fast-T2T [69] and AnyCSP [70],
representing the best known neural baselines.

Evaluation Metric: We calculate the average primal gap [67] and Primal Integral (PI, [72]) to
evaluate the overall performance. Details are described in Appendix. A.4.2.

Table. 2 and 3 present the average primal gap and primal integral for solutions generated by different
methods within a 200s time limit. Our OPTFM consistently outperforms SCIP and all learning-
based approaches, and even surpasses Gurobi on some groups. These results highlight the robust
performance of OPTFM across various tasks and data distributions, underscoring its effectiveness.

To evaluate the performance on real-world data, we further tested on the MIPLIB2017 benchmark set.
CL-LNS and Branching do not support heterogeneous datasets, and RL-LNS was tested with active
search [14]. All methods were run for 300 seconds. As shown in Table. 4, OPTFM significantly
outperforms RL-LNS and other pre-trained models, demonstrating substantial potential in real-world
applications. Notably, OPTFM matches or exceeds Gurobi’s performance on 71% of instances and
produces better feasible solutions on 10% of instances.

5.4 Downstream task III: solver configuration

To evaluate the instance-level pre-trained model, we focus on the solver configuration task. MILP
solvers have many tunable parameters, and default settings often yield suboptimal solutions. Brute-
force optimization is time-consuming. Thus, efficiently predicting configurations for unseen problems
is a promising research direction. Recent work MILPTune [73] utilized deep metric learning with
GCN to capture MILP similarities. At inference, new instances are projected into the learned metric
space, and configurations are predicted with K-NearestNeighbor (KNN) in this space.

In this task, we leverage the instance-level pre-trained model to generate instance embeddings,
replacing the metric learning approach while keeping all other aspects identical to [73] for a fair
comparison. We evaluate the methods on three datasets from the ML4CO competition:4 Item
Placement (ITEM), Load Balancing (LOAD), and Anonymous (ANONY), with 100, 100, and 20 test
instances, respectively. All methods use SCIP for configuration and run for 15 minutes.

Table. 5 presents the average improvement(%) of the objective value over default SCIP and the
number of instances where each method achieves the best solution (Wins). Our OPTFM consistently
outperforms all the baselines, highlighting the superior instance representation power of our OPTFM.
In contrast, the degraded OPTFM-Single performs significantly weaker, underscoring the necessity
of the dual-level framework for capturing correlations between subgraphs.

5.5 Complexity analysis

Efficiency is the critical concern for transformer-based methods. In our implementation, theoretically,
the all-pair attention mechanism has O(N) [41] complexity. By incorporating an additional edge
matrix as input in each attention layer and leveraging sparse matrix multiplication, the complexity for

4https://www.ecole.ai/2021/ml4co-competition/

9

Table 5: Performance comparison on Downstream Task III.

Method Item Load Anony

Avg. Imp.% Wins Avg. Imp.% Wins Avg. Imp.% Wins

SCIP - 0 - 3 - 0
MILPTune 0.40 3 0.04 3 0.27 1
Pretrain:GCN 0.56 3 0.04 2 0.24 0
Pretrain:SGFormer 2.55 18 0.33 20 1.09 3
Pretrain:OPTFM-Single - - 0.05 2 0.29 0
Pretrain:OPTFM 3.24 74 0.58 70 1.41 12

handling edges becomes approximately O(E), where E is the number of edges. Consequently, the
overall computational complexity is O(N + E). This ensures linear scalability with respect to graph
sizes, given that typically E ≪ N2. We now proceed to accurately assess the complexity of OPTFM.

0 1 2 3 4 5
·104

0

2

4

6

Node sizes

Ti
m

e
pe

re
po

ch
(h

ou
r)

0 1 2 3 4 5
·104

0

10

20

30

Node sizes

M
em

or
y

(G
B

)

GCN
SGFormer
OPTFM

Figure 3: Training time and memory analysis.

Training Efficiency : We mainly fo-
cused on the training time and mem-
ory consumption, and generated a new
set of 500 set covering instances [12]
with controlled nodes (1,000, 2,000,
5,000, 10,000, 20,000, and 50,000),
rather than utilizing the MIPLIB2017
collection set due to its varying scales.
For each instance group, we measured

the time required to train one epoch and the corresponding memory usage. Results in Fig. 3 indicate
that transformer-based architectures exhibit higher computational complexity compared to GCN
models. The results underscores the necessity of graph partitioning. As the graph size grows, both
training complexity and memory usage increase almost linearly. Training on multiple graphs with
millions of nodes becomes impractical without partitioning.

Inference Efficiency: We evaluated all downstream tasks’ performance within a fixed computation
time, including pre-trained models’ inference times for fairness. As indicated in Table. 1-5, even with
the additional complexity, transformer-based models maintain consistently superior performance,
demonstrating their potential for real-world applications.

6 Conclusion and discussion

This paper introduces OPTFM, the first graph foundation model for combinatorial optimization.
OPTFM features two key highlights: (1) an efficient multi-view graph transformer architecture
with O(N) time complexity that captures graph structure while ensuring efficient training and
inference; and (2) a dual-level pre-training framework that separately yet cohesively learns node-level
and instance-level representations. Without any fine-tuning, embeddings generated from OPTFM
significantly outperform state-of-the-art end-to-end models across diverse downstream tasks on unseen
datasets, demonstrating OPTFM’s substantial potential in solving general optimization problems.

Limitations and Outlook: This work represents an initial step towards foundation models for
combinatorial optimization. We mainly focus on MILP in this study, which plays a central role in
both theoretical research and real-world applications, and has seen growing interest in learning-based
methods, as reviewed in Sec. 2. Our experiments demonstrate that a general, task and dataset-agnostic
foundation model is achievable, offering a flexible tool for MILP and setting a foundation for future
work on broader CO challenges. To make it further, our future directions will focus on designing
more effective pre-training tasks, and extending the framework to a wider range of combinatorial
optimization problems, ultimately aiming at a truly versatile foundation model.

10

References

[1] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[3] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4015–4026,
2023.

[4] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
page 2. Minneapolis, Minnesota, 2019.

[5] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan
Yao, Ao Zhang, Liang Zhang, et al. Pre-trained models: Past, present and future. AI Open, 2:
225–250, 2021.

[8] Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Tianqianjin Lin, Changlong
Sun, and Xiaozhong Liu. Empowering dual-level graph self-supervised pretraining with motif
discovery. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
9223–9231, 2024.

[9] Yuhao Yang, Lianghao Xia, Da Luo, Kangyi Lin, and Chao Huang. Graphpro: Graph pre-
training and prompt learning for recommendation. In Proceedings of the ACM on Web Confer-
ence 2024, pages 3690–3699, 2024.

[10] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
In The Eleventh International Conference on Learning Representations, 2023.

[11] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=4IT2pgc9v6.

[12] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in neural
information processing systems, 32, 2019.

[13] Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song.
Accelerating primal solution findings for mixed integer programs based on solution prediction.
In Proceedings of the aaai conference on artificial intelligence, volume 34, pages 1452–1459,
2020.

[14] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search
policy for integer programming. Advances in Neural Information Processing Systems, 34:
30075–30087, 2021.

11

https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=4IT2pgc9v6

[15] Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching
large neighborhoods for integer linear programs with contrastive learning. In International
Conference on Machine Learning, pages 13869–13890. PMLR, 2023.

[16] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In AAAI, pages 3931–3939, 2021.

[17] Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast
optimizing framework for large-scale integer programming. In International Conference on
Machine Learning, pages 39864–39878. PMLR, 2023.

[18] Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer
linear programs with lightweight optimizer and small-scale training dataset. In The Twelfth
International Conference on Learning Representations, 2024.

[19] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. In ICML, pages 9367–9376. PMLR, 2020.

[20] Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris J. Maddison.
Learning to cut by looking ahead: Cutting plane selection via imitation learning. In ICML,
2022.

[21] Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation
models for mixed integer linear programming. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=6yENDA7J4G.

[22] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and
Quoc Le. Rethinking pre-training and self-training. Advances in neural information processing
systems, 33:3833–3845, 2020.

[23] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
International Conference on Learning Representations, 2019.

[24] Yixuan Ma and Kun Zhan. Self-contrastive graph diffusion network. In Proceedings of the 31st
ACM International Conference on Multimedia, pages 3857–3865, 2023.

[25] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In International conference on machine learning, pages 4116–4126. PMLR, 2020.

[26] Yundong Sun, Dongjie Zhu, Yansong Wang, Yansheng Fu, and Zhaoshuo Tian. Gtc: Gnn-
transformer co-contrastive learning for self-supervised heterogeneous graph representation.
Neural Networks, 181:106645, 2025.

[27] Jinhua Zhu, Yingce Xia, Lijun Wu, Shufang Xie, Wengang Zhou, Tao Qin, Houqiang Li, and
Tie-Yan Liu. Dual-view molecular pre-training. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 3615–3627, 2023.

[28] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in neural information processing
systems, 33:5812–5823, 2020.

[29] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of the web conference 2021, pages
2069–2080, 2021.

[30] Dongki Kim, Jinheon Baek, and Sung Ju Hwang. Graph self-supervised learning with accurate
discrepancy learning. Advances in Neural Information Processing Systems, 35:14085–14098,
2022.

[31] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized
graph autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 889–898, 2017.

12

https://openreview.net/forum?id=6yENDA7J4G

[32] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale molecular data. Advances in neural
information processing systems, 33:12559–12571, 2020.

[33] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM web conference 2023, pages 737–746, 2023.

[34] Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one
for all: A simple yet effective method towards cross-domain graph pretraining. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
4443–4454, 2024.

[35] Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Su Xian Chong, Fang Ji,
Nathanael Ren Jie Tong, Christopher Li Hsian Chen, and Juan Helen Zhou. Brain-jepa: Brain
dynamics foundation model with gradient positioning and spatiotemporal masking. NeurIPS
2024, 2024.

[36] Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Tianqianjin Lin, Changlong
Sun, and Xiaozhong Liu. Empowering dual-level graph self-supervised pretraining with motif
discovery. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
9223–9231, 2024.

[37] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877–28888, 2021.

[38] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems, 34:21618–21629, 2021.

[39] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469–3489.
PMLR, 2022.

[40] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[41] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. Simplifying and empowering transformers for large-graph representations.
Advances in Neural Information Processing Systems, 36, 2024.

[42] Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention.
Advances in Neural Information Processing Systems, 34:13266–13279, 2021.

[43] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[44] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein.
Goat: A global transformer on large-scale graphs. In International Conference on Machine
Learning, pages 17375–17390. PMLR, 2023.

[45] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph
transformer for node classification in large graphs. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=8KYeilT3Ow.

[46] Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable
graph structure learning transformer for node classification. Advances in Neural Information
Processing Systems, 35:27387–27401, 2022.

13

https://openreview.net/forum?id=8KYeilT3Ow

[47] Shufeng Kong, Caihua Liu, and Carla P Gomes. Ilp-former: Solving integer linear programming
with sequence to multi-label learning. In The 40th Conference on Uncertainty in Artificial
Intelligence, 2024.

[48] Hao Yuan, Wenli Ouyang, Changwen Zhang, Yong Sun, Liming Gong, and Junchi Yan. Btbs-lns:
Binarized-tightening, branch and search on learning lns policies for mip. In The Thirteenth
International Conference on Learning Representations, 2025.

[49] Lara Scavuzzo, Feng Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree mdps. Advances in neural information
processing systems, 35:18514–18526, 2022.

[50] Changwen Zhang, Wenli Ouyang, Hao Yuan, Liming Gong, Yong Sun, Ziao Guo, Zhichen
Dong, and Junchi Yan. Towards imitation learning to branch for mip: A hybrid reinforcement
learning based sample augmentation approach. In The Twelfth International Conference on
Learning Representations, 2024.

[51] Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang,
and Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical
sequence model. In The Eleventh International Conference on Learning Representations, 2023.

[52] Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun,
and Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear
programming. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=pHMpgT5xWaE.

[53] Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye HAO, and
Feng Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for
mixed-integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=mFY0tPDWK8.

[54] Zijie Geng, Jie Wang, Xijun Li, Fangzhou Zhu, Jianye HAO, Bin Li, and Feng Wu. Differen-
tiable integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=FPfCUJTsCn.

[55] Chenguang Wang and Tianshu Yu. Efficient training of multi-task neural solver with multi-
armed bandits. CoRR, abs/2305.06361, 2023. URL https://doi.org/10.48550/arXiv.
2305.06361.

[56] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. GOAL: A generalist combinatorial opti-
mization agent learner. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=z2z9suDRjw.

[57] Junyang Cai, Taoan Huang, and Bistra Dilkina. Multi-task representation learning for mixed
integer linear programming. arXiv preprint arXiv:2412.14409, 2024.

[58] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi.
MVMoe: Multi-task vehicle routing solver with mixture-of-experts. In Forty-first Interna-
tional Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=lsQnneYa8p.

[59] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon
Lan, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle
routing problems. In ICML 2024 Workshop on Foundation Models in the Wild, 2024. URL
https://openreview.net/forum?id=hCiaiZ6e4G.

[60] Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. UniCO: On
unified combinatorial optimization via problem reduction to matrix-encoded general TSP. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=yEwakMNIex.

[61] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

14

https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=mFY0tPDWK8
https://openreview.net/forum?id=FPfCUJTsCn
https://doi.org/10.48550/arXiv.2305.06361
https://doi.org/10.48550/arXiv.2305.06361
https://openreview.net/forum?id=z2z9suDRjw
https://openreview.net/forum?id=lsQnneYa8p
https://openreview.net/forum?id=lsQnneYa8p
https://openreview.net/forum?id=hCiaiZ6e4G
https://openreview.net/forum?id=yEwakMNIex
https://openreview.net/forum?id=yEwakMNIex

[62] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=i80OPhOCVH2.

[63] Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Yuyang Bernie Wang, Mu Li, and Dit-Yan
Yeung. Earthformer: Exploring space-time transformers for earth system forecasting. Advances
in Neural Information Processing Systems, 35:25390–25403, 2022.

[64] Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–21183,
2022.

[65] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep
metric learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 3238–3247, 2020.

[66] Christopher WF Parsonson, Alexandre Laterre, and Thomas D Barrett. Reinforcement learning
for branch-and-bound optimisation using retrospective trajectories. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 4061–4069, 2023.

[67] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[68] Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learn-
ing a large neighborhood search algorithm for mixed integer programs. arXiv preprint
arXiv:2107.10201, 2021.

[69] Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
Advances in Neural Information Processing Systems, 37:30179–30206, 2024.

[70] Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: graph
neural networks as fast global search heuristics for constraint satisfaction. In Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence, pages 4280–4288, 2023.

[71] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The scip
optimization suite 7.0. 2020.

[72] Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics
for mixed integer programming. In Operations Research Proceeding, pages 71–76. Springer,
2012.

[73] Abdelrahman Hosny and Sherief Reda. Automatic milp solver configuration by learning
problem similarities. Annals of Operations Research, 339(1):909–936, 2024.

[74] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. arXiv preprint arXiv:2011.06069, 2020.

15

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are summarized in Sec. 1. Sec. 4 and 5 provide detailed
explanations and empirical evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitations of the work, as well as future directions that might
address some of these limitations, are layed out in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [NA]

Justification: This is not a theoretical paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explained our settings and hyperparameters in Sec. 5 and Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes and data used for the experiments have been included in the
supplementary materials, together with a concise user guide.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Pretraining details are summarized in Sec. 5.1, and the details for down-
stream tasks are described in Sec. 5.2-5.4 and Appendix. A.4. We also provide code in the
supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the standard deviation of our OPTFM across multiple random
seeds in Appendix A.7, which reflects its consistency and robustness. Additionally, on
several challenging and heterogeneous problem instances presented in Table 4 and Table 5,
we report the number of wins, demonstrating that OPTFM outperforms all competing
baselines on the majority of instances.

Guidelines:

• The answer NA means that the paper does not include experiments.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources utilized in our experiments are described in
Sec. 5.1, and a comprehensive complexity analysis is provided in Sec. 5.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, our work does not pose any harmful conse-
quences, in accordance with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

19

https://neurips.cc/public/EthicsGuidelines

Justification: Our work focuses on developing a foundation model for combinatorial op-
timization problems, which is primarily foundational research and not tied to specific
real-world applications or deployments. As such, we do not foresee any direct societal
impacts that arise from this work when used as intended.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such models or datasets are involved.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the code and datasets employed in our research were sourced from open
repositories and appropriately cited within our manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.

20

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release our code base, pre-trained model and datasets with included
readme files.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.

21

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Technical Appendices

A.1 Bipartite graph representation

In this paper, we represent all the optimization problems as bipartite graphs [12], with the features
summarized in Table. 6. To extract features from the bipartite graphs, we utilize Ecole [74], a library
of Extensible Combinatorial Optimization Learning Environments. Note that we retain only those
features related to the static structure of the problem.

Table 6: Description of the bipartite graph features.

Tensor Feature Description

V
variable type (binary, integer, continuous).
objective coefficient.
lower and upper bound.
reduced cost.

C cosine similarity with objective.
bias value, normalized with constraint coefficients

V - C constraint coefficient per variable.

A.2 Graph partition

Both [41] and [46] employed a random mini-batch partitioning approach to deal with extremely large-
scale graphs. However, in the context of solving combinatorial optimization problems represented
by bipartite graphs, completely random partitioning may lead to highly imbalanced distributions of
variable and constraint nodes. This imbalance can result in sub-graphs that significantly deviate from
the original graph structure.

To address this issue, we extend the random partitioning approach by ensuring that connections
between variable and constraint nodes are preserved as much as possible while balancing the number
of variables and constraints across different sub-graphs. The details are outlined in Alg. 3. Specifically,
it takes as input the variables, constraints, and edges of the problem that need to be partitioned. Under
the constraint of a maximum subgraph size gsize, it outputs a set of node collections P , in which
each element represents the node set of a sub-graph, including both variable and constraint nodes,
which can still be characterized as a bipartite graph.

Algorithm 3 Adaptive Random Graph Partition
Input: Variable node set V = {vi|i = 1, 2, 3, ..., n}
Constraint node set C = {ci|i = 1, 2, 3, ...,m};
Edge set between variables and constraints: E = {(vi, cj)|vi ∈ cj ,∀i ≤ n, j ≤ m};
Maximum sub-graph size gsize;
Output: Partitioned Node set P ;

Number of partitions S =
⌈
|V |+|C|
gsize

⌉
;

Random partition V into S disjoint set V1, V2, ..., VS ;
P1, P2, ..., PS = V1, V2, ..., VS

for i = 1 to S do
Select nodes from C that have edges connected to Vi, denoted as Cs;
if |Cs| ≥ gsize − |Vi| then

Random select (gsize − |Vi|) nodes from Cs, denoted as Ct;
Pi.add(Ct), C.remove(Ct)

else
random select (gsize − |Vi| − |Cs|) nodes from C − Cs, denoted as Ct;
Pi.add(Cs + Ct), C.remove(Cs + Ct)

end if
end for

23

A.3 Data for pre-training

In the main text, we briefly introduced the sources of the pre-training data. In addition to utilizing
the MIPLIB2017 collection set with 1065 instances, we further performed five random perturbations
on each instance to augment the dataset and ensure balanced splits for the training, validation, and
test sets. Specifically, for each instance, we randomly deleted some variables and constraints, and
modified coefficients and RHS values to generate a modified problem, with details described in
Alg. 4:

Algorithm 4 Pipeline to generate modified problem
Input: Original problem;
Output: Modified problem in .mps format;

Randomize modification ratios: changeColRatio ∼ U(0, 0.01), changeRowRatio ∼
U(0, 0.01)
Initialize lists: deleteConsList← [], deleteV arsList← []
for each constraint in problem.constraints do
r ∼ U(0, 1)
if r < changeRowRatio then

Add constraint to deleteConsList
end if

end for
for each variable in problem.variables do
r ∼ U(0, 1)
if r < changeColRatio then

Add variable to deleteV arsList
end if
for each coefficient in variable.coefficients do
r ∼ U(0, 1)
if r < changeColRatio then

Random adjust the coefficient
end if

end for
end for
for each RHS in problem.RHSs do
r ∼ U(0, 1)
if r < changeRowRatio then

Random adjust the RHS value
end if

end for
delete the constraints and variables in deleteConsList, deleteV arsList
Write the modified MPS file from the modified data
Test the generated MPS with MILP solver.

A.4 Implementation details for downstream tasks

A.4.1 Downstream task I: solution prediction

Task Description: The goal of the solution prediction task is to predict feasible or even optimal
values for the variables in a combinatorial optimization problem. This approach offers the potential to
directly obtain high-quality feasible solutions based on the prediction results. Even if the predictions
do not satisfy all constraints, they can serve as a starting point for further refinement through simple
neighborhood search methods. Recent studies [13, 17, 18, 52] have predominantly adopted the
"predict-then-optimize" paradigm, leveraging machine learning models to generate initial predictions
that are subsequently refined to ensure all problem constraints are met.

Experimental Setup: In our experiments, we primarily draw upon the approach described in
[17]. Specifically, their method first employed a multi-task GCN to learn embeddings for variables,
minimizing the distance between variables with the same values in the optimal solution while

24

maximizing the distance for those with different values. Following this embedding phase, a GBDT is
used to predict the optimal solution based on the generated embeddings. In the post-processing stage,
the predictions are refined through a neighborhood search using SCIP, which solves constrained
sub-problems within a specified neighborhood size to iteratively improve the solution quality.

In our implementation. We replace the multi-task GCN learning for generating variable embeddings
with our node-level pre-trained model. In other words, the embedding generation does not utilize
any solution information, thus diverging from the end-to-end training approach. The GBDT training
and post-processing stages, including the repair mechanism and neighborhood search using SCIP,
remain consistent with [17], allowing us to isolate and evaluate our model’s ability to capture problem
structure without relying on task-specific training data.

In terms of hyperparameters, we limit the neighborhood size to 30% of the original problem scale
during the post-processing stage, ensuring a balance between search complexity and computational
feasibility. All other hyperparameters are kept identical to those in [17] to ensure a fair comparison.

Multi-task Learning Based Competing Baselines: We compared our OPTFM against two multi-
task learning approaches [56, 57], using their open-sourced code with dataset-specific fine-tuning.
Our focus was on the solution prediction task, consistent with their original implementations. The
comparison results presented in Table 1 show that our OPTFM significantly outperforms these
baselines, further demonstrating its robust performance. It is worth noting that we did not include a
comparison with Li et al. [21], as it employs different model structures for different tasks and has not
been evaluated on the same tasks as ours, making a fair comparison challenging.

Dataset: To evaluate the performance across different approaches, we utilize four unseen large-scale
NP-hard benchmark Integer Programs (IPs) that do not appear in the pre-training data: Combinatorial
Auction (CA), Maximum Independent Set (MIS), Minimum Vertex Covering (MVC), and Set
Covering (SC). For each dataset, we generate instances at three different scales, with 50 instances per
scale (e.g., CA1, CA2, CA3). The smallest set of instances, such as CA1, is used to train the GBDT.
Labels for these training instances are obtained by solving them using SCIP for a two-hour time limit.
This setup ensures that the labels represent high-quality solutions while maintaining computational
feasibility. The specific scales for each dataset are detailed in Table. 7.

Table 7: Description of the problem sizes on downstream task I

Problem Scale Number of Variables Number of constraints

CA(Maximize)
CA1 1000 1000
CA2 100000 100000
CA3 1000000 1000000

MIS(Maximize)
MIS1 1000 3000
MIS2 100000 300000
MIS3 1000000 3000000

MVC(Minimize)
MVC1 1000 3000
MVC2 100000 300000
MVC3 1000000 3000000

SC(Minimize)
SC1 2000 2000
SC2 200000 200000
SC3 2000000 2000000

A.4.2 Downstream task II: large neighborhood search

Task Description: Unlike the previous task, the goal of Large Neighborhood Search (LNS) is
to enhance the quality of an initial feasible solution through iterative neighborhood exploration,
aiming to rapidly obtain high-quality solutions, which is crucial in many real-world scenarios where
the efficiency of finding such solutions is strictly required. In this respect, learning-based methods
primarily assist in selecting neighborhoods, determining which variables to explore further and which
to fix at their current values at each iteration [14, 15, 47, 68].

Experimental Setup: In this task, our experimental setup draws inspiration from [14], which models
the neighborhood selection at each step as a Markov Decision Process (MDP), defined as follows:

• State: st = (Vstatic, Vdynamic, C,E), encompassing static variable features derived from
structural information, dynamic variable features based on solution values and their statistical
characteristics at each step, static constraints, and edge features.

25

• Action: A binary action for each variable, determining whether to fix the variable at its
current value or re-optimize it in the next iteration.

• Transition: Execution of the current action involves invoking the solver to resolve the new
subproblem, leading to the next state with updated dynamic variable features.

• Reward: Objective improvement at each step

In general, [14] employs a GCN to model the states and generate action outputs, training the model
via reinforcement learning. Building on this, we redefine the state at each step to include only the
variable embeddings generated by our node-level pre-trained model, concatenated with the dynamic
variable features. We model actions directly using an MLP, capturing graph structure information
entirely through our pre-trained model rather than end-to-end training. It allows us to evaluate the
effectiveness of our pre-trained model in guiding the neighborhood selection process.

All other aspects of training and inference, including hyperparameter choices, remain consistent with
[14] to ensure a fair comparison.

Dataset: We generate instances on four different benchmark IP problems: Set Covering (SC),
Maximum Independent Set (MIS), Combinatorial Auction (CA), Maximum Cut (MC), with the same
procedure in [14]. For each problem, we generate 100 training, 20 validation, and 50 testing instances.
Additionally, we double and quadruple the number of variables to create 50 larger and even larger
instances for each problem, respectively, verifying generalization performance. Instance groups and
their average sizes are summarized in Table. 8. We also evaluated on the MIPLIB2017 benchmark set
to evaluate the performance on real-world problems, which are described in the main text.

Table 8: Average variable/constraints of instances

Num of Training Generalization
SC MIS CA MC SC2 MIS2 CA2 MC2 SC4 MIS4 CA4 MC4

Variables 1000 1500 4000 2975 2000 3000 8000 5975 4000 6000 16000 11975
Constraints 5000 5939 2674 4950 5000 11933 5344 9950 5000 23905 10717 19950

Evaluation Metric: We calculate the average primal gap [67] to measure the gap between the
current solution x and the best-known solution x∗, within a fixed time limit T0:

gap =
1

N

N∑
i=1

|c⊤i xi − c⊤i xi
∗|

max{|c⊤i xi|, |c⊤i xi
∗|}

(5)

We also calculate average Primal Integral (PI, [72]) to evaluate the anytime performance:

PI =
1

N

N∑
i=1

(∫ T0

t=0

c⊤i x
t
idt− T0c

⊤
i x

∗
i

)
(6)

where xt
i denotes the best solution within t for instance i.

A.5 Pre-training performance analysis

In this section, we provide a detailed analysis of the performance of the node-level pre-trained model
on the test set. As described in the main text, our model was trained and validated on synthetic
data, while testing was conducted on the original MIPLIB2017 collection set. For evaluation, we
adopted the F1 score as our metric, which is particularly effective for scenarios with imbalanced class
distributions.

Fig. 4(left) illustrates the performance of three pre-training models—GCN, SGFORMER, and our
proposed OPTFM—on the test set across each training epoch. Our OPTFM, leveraging a multi-view
graph transformer architecture, demonstrates superior capability in capturing intrinsic structures
within bipartite graphs, resulting in enhanced training outcomes compared to its counterparts.

Concurrently, Fig. 4(right) presents the probability distribution of F1 scores achieved by our OPTFM
on individual instances within the test set. It reveals that the majority of instances achieve an F1
score exceeding 0.7, underscoring effective structure capture. Nevertheless, a small number of test
cases exhibit lower performance, with F1 scores below 0.5. Addressing these underperforming cases
represents a critical future research direction to potentially bolster the representational efficacy of our
pre-training framework in real-world applications.

26

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training Epochs

A
ve

ra
ge

F1
sc

or
e

GCN
SGFormer
OPTFM

Figure 4: Left: Average testing accuracy among different methods on the test set. Right: Per-
instance performance of our OPTFM.

A.6 Influence of hyperparameters

A.6.1 Maximum sub-graph sizes

Considering training efficiency and memory usage, graph partitioning is essential for training on
extremely large graphs. However, intuitively, each subgraph may fail to capture the full information of
the original graph, and increasing the number of partitions could potentially degrade the performance
of pre-training models. To investigate this, we conducted a detailed analysis by limiting the maximum
subgraph size gsize to 1000, 2000, 5000, 10000, 20000, 30000, and 50000 nodes, respectively. For
each setting, we trained the model and selected the one with the best performance on the validation set
to evaluate its performance on the test set using the F1 score as the metric. The results are presented
in Fig. 5.

The results indicate that when gsize is less than 10, 000, increasing the subgraph size significantly
improves the average F1 score on the test set. This suggests that overly fine-grained partitioning can
severely disrupt the structural features of the original graph. However, as the subgraph size increases
beyond 20,000 nodes, the impact on model performance becomes minimal. Therefore, balancing
training complexity and performance, we opted for a gsize of 20, 000 throughout this study.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
·104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum Sub-graph sizes

A
ve

ra
ge

F1
sc

or
e

Figure 5: Influence of the Maximum sub-graph sizes on the test set with OPTFM.

A.6.2 Different training epochs

We previously evaluated the performance of the node-level pre-trained models at different training
epochs on the test set, specifically for the graph reconstruction task. This raises the question: is the
performance on the pre-training task directly correlated with performance on downstream tasks?
To investigate this, we conducted a detailed experiment using pre-trained models from epochs
1, 3, 5, 8, 10, 12, 15, 18, 20, and 25. These models were evaluated on the downstream task II, large
neighborhood search (LNS), using the Maximum Cut (MC) dataset. Specifically, we performed

27

RL-based training with these models and assessed their performance on the test set using the Gap%
metric. The results are shown in Fig. 6.

The findings indicate a clear correlation between pre-training performance and downstream task
performance. Generally, better pre-training performance corresponds to enhanced representation
capabilities and improved downstream task outcomes. This underscores the effectiveness of the
pre-training task in extracting meaningful node-level representations, which contribute to superior
performance in downstream applications.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Training Epoch

G
ap

%

Figure 6: Performance of our OPTFM on different training epoch.

A.7 Stability analysis

To make a fair comparison between different competing approaches, all the experiments in Sec. 5 were
conducted with three different seeds and the average performance was reported in Table. 1-Table. 5.
The average standard deviations for our proposed OPTFM on different problems are gathered in
Table. 9. As can be seen, it is fairly robust to different seeds, with average standard deviations lower
than 3% even on hard and heterogeneous problems, like the MIPLIB2017 benchmark set, illustrating
its reliable and competitive performance.

Table 9: Standard deviations across different downstream tasks and datasets of our OPTFM

Task Standard Deviation on Each Dataset

Solution Prediction
(Obj value Std.)

CA2 MIS2 MVC2 SC2

2.35% 1.97% 2.73% 0.88%

CA3 MIS3 MVC3 SC3

1.88% 2.21% 1.55% 1.82%

Large Neighborhood
Search

(Gap Std.)

SC MIS CA MC

2.56% 2.33% 2.88% 1.39%

SC2 MIS2 CA2 MC2

2.11% 1.99% 2.09% 1.31%

SC4 MIS4 CA4 MC4

2.56% 1.63% 1.97% 1.88&

The whole MIPLIB2017 benchmark set

2.89%

Solver Configuration
(Avg. Imp. Std.)

Item Load Anony

2.89% 2.01% 3.05%

28

	Introduction
	Related work
	Preliminary
	Methodology
	Multi-view graph transformer
	Dual-level pretraining task
	Overall training pipeline

	Experiments
	Pre-training settings
	Downstream task I: solution prediction
	Downstream task II: large neighborhood search
	Downstream task III: solver configuration
	Complexity analysis

	Conclusion and discussion
	Technical Appendices
	Bipartite graph representation
	Graph partition
	Data for pre-training
	Implementation details for downstream tasks
	Downstream task I: solution prediction
	Downstream task II: large neighborhood search

	Pre-training performance analysis
	Influence of hyperparameters
	Maximum sub-graph sizes
	Different training epochs

	Stability analysis

