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Abstract

Plasticity and stability denote the ability to assimilate new tasks while preserving
previously acquired knowledge, representing two important concepts in continual
learning. Recent research addresses stability by leveraging pre-trained models to
provide informative representations, yet the efficacy of these methods is highly
reliant on the choice of the pre-trained backbone, which may not yield optimal
plasticity. This paper addresses this limitation by introducing a streamlined and
potent framework that orchestrates multiple different pre-trained backbones to
derive semantically rich multi-source representations. We propose an innovative
Multi-Scale Interaction and Dynamic Fusion (MSIDF) technique to process and
selectively capture the most relevant parts of multi-source features through a series
of learnable attention modules, thereby helping to learn better decision boundaries
to boost performance. Furthermore, we introduce a novel Multi-Level Repre-
sentation Optimization (MLRO) strategy to adaptively refine the representation
networks, offering adaptive representations that enhance plasticity. To mitigate
over-regularization issues, we propose a novel Adaptive Regularization Optimiza-
tion (ARO) method to manage and optimize a switch vector that selectively governs
the updating process of each representation layer, which promotes the new task
learning. The proposed MLRO and ARO approaches are collectively optimized
within a unified optimization framework to achieve an optimal trade-off between
plasticity and stability. Our extensive experimental evaluations reveal that the
proposed framework attains state-of-the-art performance. The source code of our
algorithm is available at https://github.com/CL-Coder236/LMSRR.

1 Introduction

To thrive in natural environments, advanced intelligent entities must possess a robust ability to
assimilate new information while retaining previously acquired critical knowledge [17]. This ability,
known as continual learning (CL), is also pivotal in artificial intelligence systems, facilitating the
deployment of numerous real-time applications such as autonomous driving and robotic navigation.
Despite the impressive performance of contemporary deep learning models on static datasets [21], they
experience substantial performance degradation in continual learning scenarios due to catastrophic
forgetting [44]. This phenomenon occurs when the neural network overwrites its parameters to
accommodate new task learning, leading to network forgetting.
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Recent research has expanded beyond the issue of catastrophic forgetting to introduce two pivotal
concepts in evaluating a model’s efficacy in continual learning : plasticity, which refers to the
model’s capacity to assimilate new tasks, and stability, which denotes its ability to retain previously
acquired knowledge [28]. Most existing studies mainly focus on enhancing stability by developing
several methods, which can be divided into three primary categories : Rehearsal-based techniques
[10, 4], which utilize and refine a memory system to retain select historical examples; dynamic
expansion-based methods [13, 24], which focus on dynamically constructing and integrating new sub-
networks within a cohesive framework to accommodate new information; and regularization-based
strategies [30, 42], which seek to fine-tune and adjust the model’s parameters by imposing penalties
on substantial alterations to critical parameters. Among these strategies, leveraging a memory system
is an effective means of maintaining stability, though its efficacy diminishes significantly when the
memory buffer size is constrained [60]. Conversely, dynamic expansion methods are suitable for
handling extended task sequences, maintaining robust performance on historical tasks by freezing
all previously trained network parameters [61]. Nonetheless, freezing the majority of the model’s
parameters can prevent the new task learning and thus adversely affect plasticity.

To balance stability and plasticity in continual learning, recent studies have explored pre-trained
models by either extracting robust features or dynamically constructing new sub-networks based
on these foundational architectures [40, 15, 43]. Nonetheless, the effectiveness of these approaches
largely relies on the selection of the pre-trained backbone, which would fail to achieve optimal
plasticity, particularly when confronted with novel data domains. In this study, we tackle this challenge
by introducing an innovative framework named Learning Multi-Source and Robust Representations
(LMSRR). This framework orchestrates several different pre-trained Vision Transformer (ViT)
backbones as representation networks, delivering robust feature information to enhance performance.
Specifically, we propose a novel Multi-Scale Interaction and Dynamic Fusion (MSIDF) method
to proficiently amalgamate multi-source features from diverse representation networks into an
augmented representation. This method captures the most important parts of the representation
in response to incoming samples through several learnable attention modules, thereby enhancing
plasticity. Furthermore, the proposed MSIDF approach incorporates an adaptive weighting mechanism
to autonomously determine the significance of each attention module, facilitating the interaction
among multi-scale features and aiding in uncovering the intricate underlying structure of the data,
which further improves the model’s performance.

On the other hand, numerous existing studies usually freeze the representation network to ensure
stability, which inadvertently diminishes the model’s capacity to learn new tasks due to the limited
number of activation parameters. In this paper, we address this challenge by introducing an innovative
Multi-Level Representation Optimization (MLRO) strategy. This approach incorporates a penalty
term in the primary objective function, which minimizes the divergence between all previously
acquired and currently activated representations, thereby maintaining stability during the new task
learning. Furthermore, we propose a novel Adaptive Regularization Optimization (ARO) strategy,
designed to selectively penalize parameter changes within each representation layer. Specifically, the
proposed ARO approach introduces a learnable switch vector, which is dynamically optimized and
continuously generates differentiable variables to selectively regulate the optimization process of each
representation layer during training. Such an approach effectively relieves over-regularization issues
while preserving robust plasticity. Unlike prior multi-model fusion approaches such as CoFiMA [41]
and Model Soup [58], which either average independently trained models or expand architectures
with task-specific modules, our LMSRR framework dynamically aggregates multiple pre-trained
backbones through a unified feature-space fusion mechanism. This design enables LMSRR to adapt
efficiently across tasks in continual learning scenarios without introducing additional task-specific
parameters.

We conducted an extensive suite of experiments in continual learning, and the empirical findings
reveal that the proposed approach attains state-of-the-art performance. The principal contributions of
this research are delineated as follows :

• We propose a novel LMSRR framework to explore multi-source representations from several
different pre-trained ViT backbones to boost the model’s performance in continual learning.

• We propose a novel MSIDF approach to effectively integrate multi-source features into a compact
and semantically rich representation, which can maintain good plasticity.
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• We propose a novel MLRO approach to automatically regulate the optimization process of each
representation layer, which can maintain stability during the new task learning.

• We propose a novel ARO approach to optimize a learnable switch vector that selectively penalizes
the change in the parameters of each representation network, which can avoid over-regularization
issues.

2 Related Work

Rehearsal-based techniques represent a widely adopted strategy for mitigating forgetting by dynam-
ically incorporating a limited number of historical examples into the memory buffer [5, 9]. These
memory samples are leveraged alongside new training instances to enhance model performance
during the new task learning. Thus, the quality of the memorized samples is paramount within
the rehearsal-based optimization framework [20]. Moreover, rehearsal-based approaches can be
augmented through the integration of regularization techniques, with the objective of further elevating
the overall efficacy of the model [2, 14, 26]. In addition, memory studies have proposed to train the
generative models to implement the memory system, which can provide infinite generative replay
samples [1, 47, 52, 64, 31].

Knowledge distillation (KD) techniques were initially developed for model compression. The funda-
mental concept of the KD framework involves establishing a teacher-student architecture, wherein a
loss function is employed to align the predictions of the teacher and student models. This process aims
to facilitate the transfer of knowledge from the complex teacher model to the simpler student model
[18, 23]. KD has found extensive applications in deep learning, yielding substantial results. Given its
advantageous properties and performance, KD has also been utilized to mitigate network forgetting
in continual learning scenarios. The primary objective of integrating KD within continual learning
is to minimize the divergence between the predictions of the student and teacher models during
task learning, as outlined in Learning Without Forgetting (LWF) [37]. Moreover, rehearsal-based
approaches can be synergistically combined with KD to form a unified learning framework, which
has demonstrated enhanced model performance, as illustrated in [48]. Additionally, the self-KD
approach has been proposed to maintain previously acquired representations, thereby alleviating
network forgetting, as discussed in [9].

Dynamic network architectures represent a robust approach to mitigating network forgetting in con-
tinual learning [13]. Such approaches dynamically expand the network capacity to enhance the
learning ability for new tasks [29, 53]. Beyond convolutional neural networks, dynamic expan-
sion techniques have also been explored to leverage the capabilities of Vision Transformers (ViT)
[15] as the foundational backbone. These methods typically create self-attention blocks combined
with task-specific classifiers to adapt to new tasks [16, 59, 43]. Additionally, another investigation
[46] proposes a dual learning framework that integrates a ViT with a multimodal large language
model, introducing a Mises–Fisher Outlier Detection and Interaction (vMF-ODI) strategy to enhance
inter-model communication. However, these methodologies often involve freezing large portions
of the pre-trained backbone, which limits adaptability to complex and unseen domains. Moreover,
recent architecture-based methods such as RPSNet [25] alleviate forgetting by selecting task-specific
subnetworks within a shared backbone, enabling partial parameter reuse across tasks. In contrast, our
LMSRR maintains a fixed architecture and performs semantic-level fusion across multiple pretrained
backbones, achieving task-agnostic adaptability without subnetwork selection.

3 Methodology

3.1 Problem Statement

In continual learning (CL), models face the limitation of being unable to access the entire training
dataset. The training for each task is restricted to data samples pertinent to the current task, and data
from previous tasks is inaccessible. A prominent scenario in this domain is Task-Incremental Learning
(TIL), where the training dataset Ds = {(xj ,yj) | j = 1, · · · , Ns} is divided into multiple task-
specific subsets {Ds

1, · · · ,Ds
C′}, each corresponding to an individual task Tj . During the learning of

a specific task T j, the model is confined to data samples from the relevant training subset Ds
j , while

all prior subsets {Ds
1, · · · ,Ds

C′} remain inaccessible. In each task, the model learns to discriminate

3



LearnableFrozen

Learnable LayerFrozen Layer

Class_token

Hadamard product

Stack

Feature

Pre-trained Vit

Multiply

ARO Objective Function

Freeze

Classifier Layer

MSIDF

Adaptive parameter

Differentiable variables

Attention module

Task 1

Task 2

Task 3

Task 4

Task n

Features of the Final Layers Features of the Final Layers

Gumbel-Softmax

Figure 1: The overall framework of the LMSRR. During training, only the last L′ layers of each ViT
backbone are trainable, with the rest frozen. Data samples are processed by these ViT backbones to
extract feature outputs, which are subsequently stacked. The stacked features are integrated through
the proposed MSIDF module before being passed to a fully connected classifier for final prediction.
In addition, the proposed MLRO approach optimizes the representation networks by penalizing
shifts in the parameters, which can ensure the preservation of all previously learned information.
Furthermore, we introduce a novel ARO approach to adaptively regulate the optimization process of
the representation networks, which can relieve over-regularization issues.

among classes within that task, and the task identifier is provided during both training and evaluation,
allowing the model to use task-specific output heads or parameters when necessary.

The goal of a model in continual learning is to progressively optimize the parameters as new task
data is introduced, minimizing the overall training loss across all tasks. Specifically, the model aims
to find the optimal set of parameters θ⋆ from the parameter space Θ̃, such that the loss function is
minimized over all training samples from each task. This problem can be formalized as the following
optimization problem :

θ⋆ = argmin
θ∈Θ̃

1

j

∑j

k=1

{ 1

Ns
j

∑Ns
j

c=1

{
L (yc, fθ(xc))

}}
, (1)

where θ⋆ represents the optimal model parameters, and L(·, ·) is the loss function, which is commonly
implemented as the cross-entropy loss to measure the discrepancy between model predictions and
true labels. The function fθ(·) : X → Y represents the classifier with parameter set θ, which maps
input samples xc ∈ X to their predicted labels yc ∈ Y , where X and Y denote the data and class
label space, respectively. Ns

j is the total number of samples in the training subset Ds
j . Due to the

inaccessibility of historical examples in continual learning, many studies have implemented the goal
of Eq. (1) by proposing to employ a memory system to preserve historical examples.

After completing the learning of all tasks {T1, · · · , TN}, the model’s performance is evaluated using
all test datasets {Dt

1, · · · , Dt
N}. This evaluation not only considers the model’s performance on

the current task but also examines its performance on previous tasks, providing a comprehensive
assessment of the model’s ability to adapt to a continuously changing data distribution.

3.2 Multi-Source Representation Network

Acquiring robust and semantically enriched representations can markedly enhance model performance
across diverse applications [6]. Numerous studies have leveraged pre-trained neural networks to
deliver potent and resilient representations, with the objective of augmenting performance in continual
learning [45, 65]. Nonetheless, these approaches need to carefully select an appropriate pre-trained
backbone, which may not achieve optimal plasticity when confronted with novel data domains. In
this study, we propose an innovative framework to manage and optimize several different pre-trained
Vision Transformers (ViTs) as foundational representation networks, thereby providing robust and
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semantically enriched representations for continual learning. Let fθi : X → Z denote the i-th
pre-trained ViT backbone, which processes the image x ∈ X as input and outputs a feature vector
z ∈ Z , where i = 1, · · · , T and T signifies the total number of ViT backbones. Here, Z ∈ Rdz

and X ∈ Rdx represent the feature and data spaces, respectively, with dz and dx as their respective
dimensions.

Integrating the output features from various representation networks, each containing distinct intrinsic
properties, can yield a rich diversity of representational information. A straightforward and effective
method involves consolidating multi-source features into a unified representation for a specific data
point xs, as described by :

z′s = fθ1(xs) ⊗ · · · ⊗ fθT (xs) , (2)
where ⊗ signifies the fusion of several feature vectors into an expanded dimensional space. Utilizing
the enhanced representation z′s, we can dynamically create a new expert to learn a decision boundary
for a specific task, aiming to implement the prediction process. Specifically, the expert is implemented
using a linear classifier fϕ : Za → Y , which receives an augmented representation and returns a
prediction, expressed as :

y′
s = fϕ(fθ1(xs) ⊗ · · · ⊗ fθT (xs)) , (3)

where y′
s = {y′1,s, · · · , y′C,s} denotes the predicted probabilities, with C signifying the total number

of categories. Za ∈ Rdza denotes the dza -dimensional feature space associated with the augmented
representation z′s, while Y ∈ Rdy represents the dy-dimensional prediction space. Unlike model-
averaging or ensemble-based approaches that combine multiple independently trained models, our
framework performs feature-space fusion of several pre-trained ViT backbones within a unified
continual learning setup, maintaining a fixed inference path without parameter growth.

3.3 Multi-Scale Interaction and Dynamic Fusion

The augmented representations formulated in Eq. (2) assume an equal contribution from each
representation network towards the learning of a new task. However, this approach does not fully
exploit the representational capacity. Moreover, simply combining these multi-source features can
cause redundancy in the representational information, resulting in performance degradation. In this
research, we tackle these issues by introducing an innovative MSIDF mechanism that autonomously
filters out redundant information while preserving essential feature components. Specifically, for a
given input xs, the proposed MSIDF mechanism initially constructs an augmented representation by :

z̃s = fθ1(xs) • · · · • fθT (xs) , (4)

where • signifies the operation that stacks multiple vectors {fθ1(xs), · · · , fθT (xs)} into a matrix
z̃s ∈ RT×dz . Subsequently, the proposed MSIDF framework introduces a set of adaptive attention
modules {A1, · · · ,Am}, where each attention module Aj is characterized by a learnable matrix
Wj ∈ Rkj×T with a window size kj , designed to discern the most pertinent feature components.
The process of using a specific attention module (the j-th module) to the representation matrix z̃c is
articulated as follows :

Ft(z̃s, i) = Wj ◦ z̃s[:][i : i+ kj ] , (5)

where ◦ denotes the Hadamard product and z̃s[:][i : i+ kj ] denotes a matrix starting from the row i
and ending at the row i+ kj . By using Eq. (5), we can form a processed representation by :

Zj
s = Ft(z̃s, 0)⊗, · · · ,⊗Ft(z̃s, dz − kj + 1) , (6)

where Zj
s denotes a representation refined through the j-th attention module. For attention modules

with varying window sizes, we utilize symmetric padding techniques to ensure that the dimensions of
the representations processed by each attention module are consistent with those of other attention
modules. Furthermore, to facilitate the cooperative optimization of these attention modules, the
proposed MSIDF mechanism introduces a trainable adaptive parameter pj to ascertain the significance
of each Aj during the training phase. To prevent numerical overflow, we normalize each trainable
adaptive parameter pj by :

p′j = exp(pj)/
∑m

c=1
exp(pc) . (7)

By using the adaptive weights, all processed representations {Z1
s, · · · ,Zm

s } are integral by :

Zs =
∑m

j=1

{
p′jZ

j
s

}
, (8)
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where Zs denotes the ultimate augmented representation, which is fed into a linear classifier for
prediction. In contrast to Eq. (2), Eq. (8) can provide a more concise and informative representation,
maintaining a constant feature dimension even as the number of representation networks increases.

3.4 Multi-Level Representation Optimization

Refining the parameters of representation networks can facilitate the acquisition of new tasks,
thereby enhancing their plasticity. Nevertheless, optimizing the entire parameter set of the model
is computationally intensive due to the substantial number of hidden layers and nodes within each
representation network. Recent research has shown that high-level representations from large-
scale pre-trained neural networks provide semantically rich information, which enhances model
performance in downstream tasks [38, 62]. Based on these empirical insights, we propose optimizing
only the last L′ layers to mitigate computational demands. To ensure stability in continual learning,
we introduce an innovative MLRO method, which regulates the representation updating behaviour
during the optimization process. Specifically, let f ′

θj denote a representation network trained on the
preceding task (Ti−1) and kept static during the learning of a new task (Ti), while fθj is the active
representation network during the new task learning (Ti), where j = 1, · · · , T . Each representation
network fθj consists of L′ trainable feature layers, represented as {fθj

L−L′
, · · · , fθj

L
}, where each

fθj
c
: Zc−1 → Zc processes the representation over the feature space Zc−1 extracted by fθj

c−1
and

outputs the representation over the feature space Zc. A representation extracted by a specific feature
layer of a representation network is articulated as follows :

Ff(fθj ,x, k) =


fθj

1
(x) k = 1

fθj
2
(fθj

1
(x)) k = 2

fθj
k
(· · · fθj

2
(fθj

1
(x))) 3 ≤ k ≤ L .

(9)

For a given data batch X = {x1, · · · ,xb} at the i-th task learning, we extract the representations
using the j-th active representation network, expressed as :

Fz(X, fθj , k) =
{
zs | zs = Ff(fθj ,xs, k), s = 1, · · · , b

}
, (10)

where b denotes the batch size. We can obtain a collection of feature vectors {Z(j,L−L′), · · · ,Z(j,L)}
by leveraging the last L′ active feature layers of the j-th backbone fθj , where each Z(j,k) is computed
using Fz(X, fθj , k). Similarly, we utilize each frozen representation network f ′

θj to extract a
set of previously acquired feature vectors {Z̃(j,L−L′), · · · , Z̃(j,L)} using Eq. (10), with Z̃(j,k) =
Fz(X, f ′

θj , k). The proposed MLRO approach incorporates a regularization loss component aimed
at minimizing the divergence between the previously acquired and currently active representations,
formulated as follows :

Fre(X) =
∑T

j=1

{∑L

k=L−L′

{
Fdis(Z

(j,k), Z̃(j,k))
}}

, (11)

where Fdis(·, ·) represents a generic distance metric used to quantify the divergence between two sets
of feature vectors. We opt for the L2 distance due to its computational efficiency and straightforward
implementation. Furthermore, to address the shifts in the representations of historical examples, we
incorporate a memory buffer M designed to store and maintain numerous past instances. As the
primary focus of this paper is on optimizing representation strategies rather than the memory system,
we consider employing a simple reservoir sampling method [54] for memory updates, ensuring
computational efficiency.

3.5 Adaptive Regularization Optimization

The representation optimization process, as delineated in Eq. (11), presupposes uniform regularization
intensity across all representation layers during training, which may not yield optimal plasticity. This
paper tackles this limitation by introducing an innovative ARO method that selectively constrains
parameter alterations in each representation layer throughout the optimization process. Specifically,
the proposed ARO method incorporates a trainable switch vector {wj,k

1 , wj,k
2 } for the k-th trainable

feature layer within the j-th representation network, where wj,k
1 and wj,k

2 represent the probabilities
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of activation and deactivation of the k-th representation layer, respectively. A straightforward method
to determine the penalization of changes involves converting the switch vector to one-hot encoding;
however, this approach lacks differentiability. To overcome this challenge, we propose utilizing the
Gumbel-Softmax distribution [19] to produce differentiable variables, expressed as :

w̃j,k
1 =

exp((log(wj,k
1 ) + g1)/τ)∑2

t=1{exp((log(w
j,k
t ) + gt)/τ)}

, (12)

where gt is drawn from Gumbel(0,1) and w̃j,k
1 is the differentiable approximation of wj,k

1 . τ represents
a temperature parameter and a large τ encourages samples from the Gumbel Softmax distribution
to become one-hot representations. In this paper, we adopt τ = 0.3 in our experiments. Using
differentiable category variables defined in Eq. (12) can derive a new regularization loss function :

FA(X) =
∑T

j=1

{∑L

k=L−L′

{
w̃j,k

1 Fdis(Z
(j,k), Z̃(j,k))

}}
, (13)

Compared to Eq. (11), the regularization loss term defined in Eq. (13) can selectively penalize the
changes in the parameters of each representation layer, which can relieve over-regularization issues
and enhance plasticity.

3.6 The Optimization Framework

Algorithm 1 The learning process of the LMSRR.

Require: The number of tasks (N ), the dataset
DS , the total number of training iterations per
task n

Ensure: The model’s parameter set
for i < N do

for j < n do
Step 1: Form augmented representations:
Get the data batch X from Ds

i
Get {Z1, · · · ,Zb} using Eq. (8)
Step 2: From the regularization term:
Obtain {Z(1,L), · · · ,Z(T,L)} by Eq. (10)
Obtain {Z̃(1,L), · · · , Z̃(T,L)} by Eq. (10)
Compute the loss term by Eq. (13)
Step 3: Optimizing the model:
Update the model’s parameters by Eq. (14)

end for
end for

The proposed framework involves T representa-
tion networks {fθ1 , · · · , fθT } and a linear clas-
sifier fϕ. In order to update the parameters of
these modules, we introduce a unified objective
function at the i-th task learning (Ti), defined
as :
Lloss = E(X,Y)∼PDs

i
⊗M

[∑b

k=1
{Fce(y, fϕ(Zk))}

]
+ λ

(
E(X,Y)∼PM

[
FA(X)

]
+ E(X,Y)∼PDs

i

[
FA(X)

])
,

(14)

where PDs
i

and PDs
i

denote the distribution of
the dataset Ds

i and the memory buffer M, re-
spectively. PDs

i⊗M denotes the distribution of
the combined dataset Ds

i and M. Fce(·, ·) is the
cross-entropy function and λ is a hyperparam-
eter that controls the effects of the regulariza-
tion term during the optimization process. We
provide the detailed learning process of the pro-
posed framework in Fig. 1 while the detailed

pseudocode is provided in Algorithm 1 which consists of three steps :

Step 1. Form augmented representations : For a given data batch X = {x1, · · · ,xb}, we can obtain
the augmented representations {Z1, · · · ,Zb} using Eq. (8).

Step 2. Adaptive representation optimization : For a given data batch X = {x1, · · · ,xb}, we can
get all active representations {Z(1,L), · · · ,Z(T,L)} as well as all previously learned representations
{Z̃(1,L), · · · , Z̃(T,L)} using Eq. (10). The regularization term is calculated using Eq. (13).

Step 3. Optimizing the model : We update all model parameters {ϕ,W1, · · · ,Wm} using Eq. (14).
In addition, we also update the adaptive parameters {p1, · · · , pm} as well as the parameters
{w1,L−L′

1 , w1,L−L′

2 , · · · , wT,L
1 , wT,L

2 } of the proposed ARO approach using Eq. (14).

4 Experiment

4.1 Experimental setting

Datasets. we conducted extensive experiments on seven different datasets, including CIFAR-
10 [33], TinyImageNet [35], MNIST [36], CIFAR-100 [34], CUB-200 [55], ImageNet-R [22],
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Table 1: The classification accuracy on standard datasets is presented as the average over three runs.
"Average" denotes the average accuracy across all tasks, while "Last" indicates the accuracy of the
final task. The "-" in the table signifies that experiments could not be conducted due to compatibility
issues or intractable training time problems.

Buffer Method CIFAR-10 Tiny ImageNet R-MNIST

Average Last Average Last Domain-IL

-

EWC [51] 68.29±3.92 97.07±0.74 19.20±0.31 75.15±3.18 77.35±5.77
SI [63] 68.05±5.91 94.18±0.88 36.32±0.13 65.80±3.25 71.91±5.83
LwF [37] 63.29±2.35 96.75±0.35 15.85±0.58 77.95±3.60 -
PNN [50] 95.13±0.72 96.63±0.10 67.84±0.29 69.03±1.01 -
DAP [27] 97.13±2.06 96.05±3.39 92.49±0.60 94.95±1.20 88.58±2.53

200

ER [49] 91.19±0.94 97.50±0.35 38.17±2.00 79.40±0.28 85.01±1.90
GEM [39] 90.44±0.94 96.60±0.35 - - 80.80±1.15
A-GEM [12] 83.88±1.49 97.90±0.07 22.77±0.03 78.65±3.32 81.91±0.76
iCaRL [48] 88.99±2.13 97.07±0.32 28.19±1.47 47.45±0.78 -
FDR [7] 91.01±0.68 97.78±0.24 40.36±0.68 81.40±0.70 85.22±3.35
GSS [3] 88.80±2.89 97.42±0.24 - - 79.50±0.41
HAL [11] 82.51±3.20 94.60±0.14 - - 84.02±0.98
DER [8] 91.40±0.92 97.80±0.28 40.22±0.67 79.15±0.21 90.04±2.61
DER++ [8] 91.92±0.60 97.72±0.38 40.87±1.16 78.35±0.49 90.43±1.87
DER++(re) [56] 92.01±3.03 97.65±3.03 47.61±8.87 81.40±1.41 91.64±2.26
Ours 98.85±0.05 99.35±0.21 92.08±0.31 96.00±0.01 94.20±1.24

500

ER [49] 93.61±0.27 97.15±0.28 48.64±0.46 80.80±1.69 88.91±1.44
GEM [39] 92.16±0.69 96.63±0.17 - - 81.15±1.98
A-GEM [12] 89.48±1.45 97.40±0.78 25.33±0.49 81.00±0.42 80.31±6.29
iCaRL [48] 88.22±2.62 96.57±0.10 31.55±3.27 50.65±1.20 -
FDR [7] 93.29±0.59 97.32±0.24 49.88±0.71 81.10±0.56 89.67±1.63
GSS [3] 91.02±1.57 96.97±0.24 - - 81.58±0.58
HAL [11] 84.54±2.36 94.22±0.60 - - 85.00±0.96
DER [8] 93.40±0.39 97.90±0.28 51.78±0.88 79.30±1.13 92.24±1.12
DER++ [8] 93.88±0.50 98.10±0.01 51.91±0.68 76.20±5.23 92.77±1.05
DER++(re) [56] 93.06±0.38 97.75±0.38 54.06±0.79 79.65±1.34 93.28±0.75
Ours 99.15±0.05 99.48±0.04 92.75±0.32 96.23±0.40 96.97±1.58

1000

ER [49] 95.34±0.16 97.67±0.67 55.92±0.90 80.30±0.82 90.42±1.07
GEM [39] 93.67±0.32 97.37±0.17 - - 81.15±1.98
A-GEM [12] 85.61±2.01 97.45±0.42 24.29±1.28 79.65±2.19 81.30±5.33
iCaRL [48] 91.40±1.06 96.85±0.35 63.87±0.25 54.00±2.82 -
FDR [7] 94.02±0.64 97.60±0.56 56.05±0.71 80.25±0.49 91.68±1.01
GSS [3] 91.79±2.16 96.10±1.70 - - 82.25±2.42
HAL [11] 87.33±1.46 92.27±3.21 - - 89.33±2.01
DER [8] 92.33±0.61 97.72±0.07 56.62±1.13 78.50±0.42 93.13±0.28
DER++ [8] 94.99±0.26 97.94±0.08 58.05±0.52 79.95±0.35 93.82±0.39
DER++(re) [56] 93.66±1.00 97.40±0.01 61.91±1.15 80.45±3.18 93.37±0.58
Ours 99.21±0.06 99.43±0.03 93.24±0.24 96.10±0.57 97.05±0.04

and Cars196 [32]. We provide the detailed experiment setting in Appendix A from Supplementary
Material (SM).

4.2 Results on Standard Datasets

In this section, we compare the proposed approach with several baselines on the standard datasets,
including CIFAR-10, Tiny ImageNet and R-MNIST, under memory buffer sizes of 200, 500, and
1000. The empirical results are reported in Tab. 1 . These results show that LMSRR significantly
outperforms the other baselines in terms of classification accuracy. This highlights LMSRR’s ability
to effectively retain previously acquired knowledge as the number of tasks increases, demonstrating
its remarkable plasticity and resistance to catastrophic forgetting.

Previous CL methods, such as EWC, SI, and LwF, have lower average accuracy. The reason behind
this result is that regularization-based methods typically degrade when the new task contains abundant
different information with respect to prior tasks. PNN, as a dynamic expansion model, still struggles
with scalability when dealing with long sequences of tasks, which significantly reduces its perfor-
mance. Experience replay-based methods, such as GEM, GSS, DER, DER++, and DER++refresh,
experience noticeable performance drops when the memory buffer is limited. This indicates that
these methods struggle to capture critical informative samples when the memory buffer is constrained.
Notably, our model maintains excellent performance even with a small buffer size, further proving its
adaptability and effectiveness across various continual learning scenarios.
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Table 2: The classification results of various models on complex datasets, with a memory buffer size
of 500, calculated as the average results of three independent runs.

Method CIFAR-100 CUB-200 Imagenet-R Cars196

Average Last Average Last Average Last Average Last

ER [49] 73.37±0.43 93.35±1.34 30.57±4.81 35.57±14.86 24.85±4.06 45.85±0.01 30.52±4.4 54.32±5.07
A-GEM [12] 48.06±0.57 92.80±0.32 13.22±0.31 42.18±0.01 16.87±2.65 47.56±12.31 8.07±0.15 16.45±7.41
FDR [7] 76.29±1.44 93.60±1.34 23.94±0.07 45.58±0.19 15.74±3.69 42.14±10.75 31.41±1.30 58.36±1.17
GSS [3] 57.50±1.93 92.80±2.98 27.04±0.28 42.01±0.08 17.83±0.88 33.44±6.75 34.67±2.27 56.80±4.15
DER [8] 74.93±1.06 93.25±0.35 26.19±2.07 51.79±1.08 18.26±1.67 25.26±0.47 39.75±0.36 68.02±5.20
DER++ [8] 75.64±0.60 92.60±0.14 33.40±1.48 49.83±1.63 22.87±5.83 43.10±10.51 35.39±3.38 60.56±8.45
DER++refresh [56] 77.71±0.85 93.40±1.13 35.77±3.20 50.85±0.47 23.74±3.03 31.00±0.01 33.94±2.46 60.29±4.73
CoFiMA [41] 94.21±0.47 96.13±0.59 90.66±0.76 92.54±0.28 83.76±0.53 85.86±0.58 87.28±0.54 90.33±0.45
DAP [27] 90.11±0.33 92.30±2.12 71.83±1.44 72.23±2.85 83.22±1.25 84.61±2.85 39.79±1.85 65.35±2.21
L2P [57] 95.36±0.12 96.80±0.14 86.30±0.21 90.81±0.24 86.01±0.30 87.50±0.90 79.55±0.86 84.45±0.12
Ours 95.76±0.08 98.70±0.37 88.91±0.64 94.31±0.12 84.35±0.52 88.43±0.15 90.14±0.06 95.32±0.39
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Figure 2: (a) Comparison of performance of various models with varying buffer sizes on ImageNet-R,
where each model uses the same backbone. (b) Comparison of forgetting curves of the proposed
approach with other benchmark methods on ImageNet-R. (c) Performance variations of the proposed
MSIDF method under different configurations.

4.3 Results on Complex Datasets

We evaluate our method against various baselines on complex datasets, and report the average and
last accuracy in Tab. 2. Replay-based methods such as ER, DER, and GSS show clear performance
degradation on complex datasets, reflecting their limited ability to capture fine-grained visual seman-
tics when constrained by a fixed memory buffer. Although DAP and L2P leverage prompt-based
mechanisms to mitigate representation drift and achieve better adaptation, their performance still
relies heavily on the alignment between the pre-trained backbone and the target domain. For exam-
ple, L2P performs well on ImageNet-R but struggles on Cars196, where the distribution gap from
pre-training data is large.

CoFiMA, which employs a multi-model ensemble strategy through fixed-weight logit-level integration
and introduces a new adapter for each task, shows strong results on CUB-200, benefiting from its
ability to preserve task-specific knowledge. However, its design leads to parameter growth and task-
dependent routing during inference, which limits scalability. In contrast, LMSRR attains consistently
superior or comparable performance across all datasets within a unified architecture, achieving the
highest results on CIFAR-100 and Cars196.

4.4 Ablation Study

In this section, we perform a full ablation study experiment to investigate the performance of the
LMSRR with different configurations. More ablation study results are provided in Appendix B from
SM.

Backbone. To ensure a fair comparison, we adopted the same multiple pre-trained ViT models as
our method’s backbone for other SOTA methods that do not involve modifications to the backbone
network structure. In these methods, each pre-trained ViT model is only allowed to update the
parameters of the last three feature layers. The feature representations extracted by each pre-trained
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ViT are concatenated and then fed into a linear classifier to obtain the final output. Fig. 2(a) shows
the average accuracy of our method and SOTA models on the ImageNet-R dataset under different
memory buffer configurations. The results indicate that our method consistently achieved the highest
accuracy across various buffer sizes and significantly outperformed other models.

Forgetting rates. Fig. 2(b) presents the forgetting curves of our method and other methods on
the ImageNet-R dataset. The results show that some SOTA models exhibit significant forgetting,
especially static models like ER and DER, whose performance drops notably as the number of
tasks increases. In contrast, our method maintains stable and superior performance, achieving the
lowest forgetting rate. This is attributed to our MLRO technique, which continuously adjusts the
representation optimization process over time, effectively mitigating network forgetting.

Different configurations. The MSIDF is driven by multiple attention modules of varying sizes,
which can impact model performance based on their dimensions and quantity. To evaluate the
MSIDF mechanism, we test the following four configurations across multiple datasets: MSIDF
with two attention modules of different sizes-3 & 5; MSIDF with only a size-3 attention module;
MSIDF with only a size-5 attention module; and a baseline model without the MSIDF mechanism.
The experimental results, as shown in Fig. 2(c), indicate that the MSIDF with two differently
sized attention modules achieved the highest classification accuracy, and models using MSIDF
outperformed the baseline model without this mechanism. These findings highlight the significance
of MSIDF in enhancing overall model performance by effectively capturing more critical feature
information through attention modules of diverse sizes.

5 Conclusion and Limitation

This study tackles network forgetting in continual learning by introducing an innovative memory
strategy (SMS) that maintains representations derived from various pre-trained ViT backbones,
ensuring robust and semantically enriched representations. We propose a novel MSIDF method to
optimize a set of attention modules, which identify the most pertinent aspects of representations over
time. Furthermore, we present a new MLRO technique to regulate the representation optimization
process. The primary limitation of this paper is that the proposed approach is only applied to
supervised learning. In our future study, we will explore the proposed approach to unsupervised
continual learning.
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve any data or models with significant risk of misuse,
and therefore no specific safeguards are required.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in the paper, including datasets and pretrained models,
are properly cited with references to the original sources in Section 4.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or any research involving human
subjects.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or any research involving human
subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve any important,
original, or non-standard use of large language models.
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