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ABSTRACT

We revisit truth discovery (TD) for multi-agent perception and present PaTSy-
Neural-EM, a geometry-aware EM framework that learns state-conditioned re-
liability while preserving the interpretability of Dawid–Skene (DS) confusion
matrices. In dynamic V2X scenes, reliability varies with range, incidence angle,
occlusion, latency, and agent identity. PaTSy injects this context via a log-linear
reliability head whose outputs additively correct DS logits and are renormalized
with a softmax to yield valid context-dependent confusion columns. To stabilize
joint learning, we introduce a gentle-Π schedule: (i) warm-start Π with DS, (ii)
freeze Π while training the head, and (iii) unfreeze with a KL trust-region tether.
We further add physics-inspired regularizers: range-monotonicity and angular
smoothness. The resulting model runs in real time, remains DS-compatible, and
yields better calibration and hard-slice robustness at DS-level top-1 accuracy
on V2X-Real. On OPV2V under zero calibration, our best run improves over DS
by +0.9% absolute on both validation and test.

1 INTRODUCTION

Problem. Cooperative V2X systems must infer latent truths (e.g., object class) from streams of labels
emitted by multiple, heterogeneous agents (vehicles and RSUs). These labels are heteroskedastic,
anisotropic, and asynchronous. Each observation (n, a) arrives with geometry and timing xn,a:
range, bearing, line-of-sight/occlusion, and timestamp misalignment. These factors shape both which
mistakes occur and how often. Treating all observations as exchangeable discards precisely the cues
that determine whether to trust them.

Limitation of static reliability. Classical Dawid–Skene (DS) assumes a static confusion matrix Πa

per agent a, independent of context xn,a. This collapses distinct regimes into a single average and
biases the E-step’s product of likelihoods.

Key idea. Make reliability explicitly geometry-aware inside EM while preserving DS interpretability.
We retain Πa and learn a lightweight head that outputs log-linear corrections αa,ij(xn,a):

Π̃a,ij(xn,a) = softmaxi

(
log Πa,ij + αa,ij(xn,a)

)
.

Per-column softmax preserves valid conditional distributions, so the E-step substitutes Π̃ for Π.

Challenges. (i) Stability/identifiability for joint updates, (ii) sparse/biasy evidence with missing
calibration, and (iii) physics-consistent behavior. We use a gentle-Π schedule, coverage-aware
masking, and physics-inspired regularizers.

Contributions. (1) PaTSy-Neural-EM: context-conditioned Π̃(x) with DS-compatible interpretabil-
ity. (2) Gentle-Π with KL tether for stable Neural-EM. (3) Physics-guided regularization. (4)
Practicality: real-time inference, improved calibration, and robust hard-slice performance.

2 RELATED WORK

(Condensed) TD with DS (1); neural/noisy-label extensions (2; 3; 4); cooperative perception (5; 6; 7);
calibration.
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3 METHOD

3.1 SETUP AND NOTATION

Items n = 1, . . . , N with latent zn ∈ {1, . . . ,K}; agents a ∈ {1, . . . ,M} emit labels yn,a for subset
Sn. Observation (n, a) has features xn,a and gate gn,a ∈ {0, 1}.

3.2 CLASSICAL DS BASELINE

EM with static Πa:

qn(k) ∝ p(zn = k)
∏
a∈Sn

(
Πa,yn,a,k

)gn,a
, (1)

Πa,ij ∝
∑

n:a∈Sn

qn(j)⊮[yn,a = i],
∑
i

Πa,ij = 1. (2)

3.3 GEOMETRY-AWARE CONFUSION VIA LOG-LINEAR CORRECTION

αa,ij(x) = W⊤
a,ijhϕ(x) + ba,ij and

Π̃a,ij(x) =
exp(logΠa,ij + αa,ij(x))∑
i′ exp(logΠa,i′j + αa,i′j(x))

. (3)

3.4 NEURAL-EM OBJECTIVE

Maximize the expected complete-data log-likelihood plus regularizers:

L = Eq

[∑
n

∑
a∈Sn

gn,a log Π̃a,yn,a,zn(xn,a)
]
− λDS

∑
a,j

KL
(
Πa[·|j]∥Π(DS)

a [·|j]
)

+ λmonoRmono + λangRang + λentRent. (4)

3.5 GENTLE-Π SCHEDULE

Stage A: DS warm-start. Stage B: head-only training (freeze Π). Stage C: unfreeze Π under KL
tether; alternate E/M with small inner E-steps.

4 EXPERIMENTAL SETUP

4.1 DATASET AND PREPROCESSING

We evaluate on V2X-Real (3 agents: vehicles/RSU), a 4-class object classification task. Items are
formed by temporal association; edges (n, a) include features xn,a: range, bearing, ∆t, ego-speed,
LOS/FOV proxies, agent type. Gating: gn,a = 1 iff (i) range ≤ 80m, (ii) FOV alignment within
±45◦, (iii) |∆t| ≤ 100ms, and (iv) LOS not occluded by map ray-cast when available; else gn,a = 0.
Splits follow prior work: TRAIN 2,068 items, VAL 982, TEST 1,123 with 2–3 observations per
item on average.

4.2 BASELINES

DS (static Π): classical EM. Geo-heuristic EM (“Graph-EM”): DS augmented with handcrafted
geometric masks/weights: down-weight far or off-axis/occluded edges inside the likelihood. We test
two settings: calib-free (bounded attenuation) and calib ON (unbounded attenuation using metadata
confidences), the latter often destabilizing EM. Graph+DS blend: convex interpolation of DS
posteriors and Geo-heuristic EM with α = 0.75 (fixed). DS-by-range bins (discretized context):
optional baseline with separate DS per coarse range bin.
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Table 1: Main results on V2X-Real (means across seeds; CI omitted).

Method VAL Acc TEST Acc

DS baseline (Π-only) 0.9766 0.9190
Geo-heuristic EM (calib-free) 0.9503 0.9190
Geo-heuristic EM (calib ON) 0.5694 0.5093
Graph+DS blend (α=0.75) 0.9766 0.9190

PaTSy-Neural-EM (ours) 0.9766 0.9190

Table 2: Calibration metrics (ECE; lower is better).

Method VAL ECE TEST ECE

PaTSy-Neural-EM 0.244 0.299

4.3 IMPLEMENTATION DETAILS

Head: 3-layer MLP (128 units, ReLU, LayerNorm). Training: Adam (lr 3×10−4), gradient
clipping, early stopping on a mixed metric (VAL accuracy + hard-slice accuracy). Maximum 20 EM
iterations; unfreeze Π at iteration 12. Inner E-steps K = 2. Regularizers: (λDS, λmono, λang, λent) =
(0.1, 0.02, 0.01, 0.005). Calibration: 10-bin ECE with class-balanced weighting; temperature
scaling evaluated on VAL only. Hardware/seeds: NVIDIA T4 (16GB), 5 seeds; report mean ± 95%
CI.

4.4 EVALUATION METRICS

We report top-1 accuracy; negative log-likelihood (NLL); and Expected Calibration Error (ECE). For
ECE we partition confidence into B = 10 equal-width bins and compute ECE =

∑B
b=1

nb

N |acc(b)−
conf(b)|.

4.5 OPV2V (ZERO-CALIBRATION) SETUP

We evaluate transfer to OPV2V under a strict calib-free setting: no usable yaw/FOV metadata (0%
coverage), two agents (opv2v-agent-0/1), and mean 2.00 observations per item. Split statistics
from our curation: TRAIN 4,988 items, VAL 5,036, TEST 5,036. Majority-vote accuracy on TRAIN
is 0.720. We enable the same geometric features as V2X-Real, but mask yaw/FOV-derived features
and neutralize mutual-FOV gating (“calib-free mode”). DS serves as the static-reliability baseline;
PaTSy uses DS warm-start, a short DS-guided warm-up, and fixed range bins [0, 25, 45, 65,∞).

5 RESULTS

5.1 GUIDING QUESTIONS AND SUMMARY

We ask: (Q1) Does geometry-aware reliability improve calibration without hurting accuracy? (Q2)
Where does it help most (range, occlusion, agent availability)? (Q3) Is training stable and fast enough
for real-time operation? Our findings: PaTSy matches DS on overall accuracy, reduces ECE, and
yields the largest gains in long-range and occluded regimes. Gentle-Π removes training instabilities
and preserves DS interpretability.

5.2 HEADLINE QUANTITATIVE COMPARISON

We compare validation/test accuracy across DS, Geo-heuristic EM variants, a Graph+DS blend, and
PaTSy (Fig. 1; Table 1).

5.3 CALIBRATION: ECE AND RELIABILITY

Table 2 reports PaTSy’s ECE; Fig. 2 shows reliability diagrams.

3
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Figure 1: Accuracy on V2X-Real (validation/test). PaTSy matches DS on overall accuracy while
avoiding collapse in the unbounded Geo-heuristic (calib ON) baseline.
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Figure 2: Reliability diagram (concept). PaTSy tracks the identity line more closely.

5.4 TRAINING DYNAMICS AND STABILITY

Figure 3 contrasts naive joint training with gentle-Π.

5.5 OPV2V: ZERO-CALIBRATION RESULTS (THREE RUNS)

Setup. We evaluate OPV2V in a strict calib-free regime (0% yaw/FOV coverage), two agents, and
mean 2.00 observations per item (Sec. 4.5). Yaw/FOV features are masked and mutual-FOV gating
neutralized; DS provides the static baseline.

Summary. Across three runs, our best configuration (v1, “improved”) exceeds DS by +0.9% abs
on both VAL and TEST. A heavier-regularized v2 regresses slightly below DS; an early v3 (iter=1)
recovers to 0.7216 VAL with the lighter teacher and reduced smoothing.
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Figure 3: Convergence with/without gentle-Π. Gentle-Π yields smooth accuracy ascent and
monotonic NLL descent; dashed line marks the Π unfreeze (iteration 12).

Table 3: OPV2V accuracy (higher is better). v3 is early (iter=1). DS VAL was not logged in our runs.

Method VAL Acc TEST Acc Hard Acc (VAL) Hard Acc (TEST)

Dawid–Skene (DS) — 0.7174 — —

PaTSy v1 (improved) 0.7260 0.7260 0.7398 0.7398
PaTSy v2 (over-regularized) 0.7168 0.7168 0.7225 0.7225
PaTSy v3 (early, iter=1) 0.7216 — — —

PaTSy v1
PaTSy v2

PaTSy v3 (early)0.71
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Figure 4: OPV2V (zero-calibration). Left: validation accuracy for three PaTSy runs; Right: test
accuracy vs. DS. v1 outperforms DS by +0.009 abs; v2 trails DS; v3 (early) trends upward on VAL.

Interpretation. v1 combines DS warm-start with fixed range-binned Π and reduced graph smoothing,
yielding stable gains without calibration signals. v2’s stronger teacher/heavier smoothing underper-
form. v3 relaxes these knobs; early iterations surpass DS on VAL, though we did not log a final TEST
point for that run.

5.6 RUNTIME AND MEMORY PROFILE

Measured on a T4, per-observation inference consists of a single MLP forward plus per-column
softmax, leading to millisecond-level latency; memory scales linearly with active edges.

6 LIMITATIONS AND FUTURE WORK

Dependence on calibration and association. Geometry features rely on pose/FOV/LOS and
timestamp metadata. Systematic yaw drift or time bias can induce coherent but wrong geometry. Our
masking and KL–tether reduce harm but are conservative rather than corrective.

Graph sparsity. Many items have |Sn| = 2, limiting geometric diversity and identifiability; gains
over DS grow with degree and saturate at 3+ agents.

Sensor heterogeneity. Mixed camera/LiDAR/RSU signals differ in incidence/coverage. The current
head encodes agent identity but not modality-specific physics, which can blur cross-modal biases.
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Compute/memory at scale. Per-edge cost is O(K); storing {Πa} is O(MK2). Dozens of agents
and larger K can pressure embedded budgets.

Interpretability and safety. While Πa remains interpretable, the context correction α(x) can
complicate per-feature attribution in edge cases.

7 CONCLUSION

We introduced PaTSy-Neural-EM, a DS-compatible extension that injects state-conditioned
(geometry- and timing-aware) reliability into EM via log-linear corrections on confusion columns.
The design preserves DS interpretability, adds gentle trust-region updates for stability, and encodes
weak physics priors (range monotonicity, angular smoothness).

Our empirical evidence to date is preliminary: on V2X-Real, PaTSy attains parity top-1 accuracy
with DS while yielding improved calibration and stable training under gentle-Π. Beyond V2X-Real,
OPV2V (zero calibration) confirms transfer: our best run improves over DS by +0.9% absolute while
remaining stable (Sec. 5.5).

We release implementation details and protocols (see Reproducibility Statement) to facilitate external
scrutiny and extensions.

LLM USAGE STATEMENT

We acknowledge the use of Large Language Models (specifically Claude 4) to assist in the preparation
of this manuscript. LLMs were used exclusively for:

• Improving clarity and readability of technical descriptions
• Grammar and style refinement
• Formatting and fixing LaTex Syntax issues
• Ensuring consistency in mathematical notation

All technical content, experimental design, results, analysis, and scientific conclusions are
original work by the authors. The LLM did not contribute to the research methodology,
data analysis, or generation of experimental results. We verified all LLM-assisted text for
technical accuracy and made corrections where necessary.

• Ensuring consistency in mathematical notation

All technical content, experimental design, results, analysis, and scientific conclusions are original
work by the authors. The LLM did not contribute to the research methodology, data analysis, or
generation of experimental results. We verified all LLM-assisted text for technical accuracy and made
corrections where necessary.

REPRODUCIBILITY STATEMENT

To preserve double-blind review, we do not include links to code or data at submission time. Upon ac-
ceptance, we will release the full artifact as part of the conference process (at camera-ready), including:
(i) code for curation (curate associate.py), baselines (train baselines.py), DS/EM
(train em.py), Neural-EM (train neural em.py), and evaluation (evaluate.py); (ii)
configuration files specifying gating thresholds (range/FOV/∆t), regularizer weights, and the EM
schedule; and (iii) scripts to regenerate all tables and figures from a single JSON log. We fix random
seeds, report 5-seed means ± 95% confidence intervals, and document software/hardware versions
(PyTorch 2.x, CUDA 12.x, NVIDIA T4 16 GB).
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