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Abstract
This paper addresses a policy optimization task
with the conditional value-at-risk (CVaR) objec-
tive. We introduce the predictive CVaR policy
gradient, a novel approach that seamlessly inte-
grates risk-neutral policy gradient algorithms with
minimal modifications. Our method incorporates
a reweighting strategy in gradient calculation –
individual cost terms are reweighted in proportion
to their predicted contribution to the objective.
These weights can be easily estimated through
a separate learning procedure. We provide theo-
retical and empirical analyses, demonstrating the
validity and effectiveness of our proposed method.

1. Introduction
In safety-critical applications, the decision makers concern
not only their average performance but also their perfor-
mance in adverse scenarios. Risk-sensitive reinforcement
learning (RL) gives a solution for this issue and has been
widely adopted across many domains including autonomous
driving (Wen et al., 2020), robotic surgery (Pore et al., 2021),
finance (Greenberg et al., 2022), etc.

This paper considers the conditional value-at-risk (CVaR;
also known as average value-at-risk, or expected shortfall)
as an objective, which measures the average loss occurring
in the worst q-fraction of scenarios. CVaR has long been a
popular choice for risk quantification because of its intuitive
interpretation along with its nice mathematical properties
as a coherent spectral measure (Rockafellar et al., 2000).
Accordingly, a considerable effort has been made recently to-
wards the integration of CVaR objective into RL framework,
mainly falling into two categories – value-based approaches
(Bäuerle & Ott, 2011; Chow et al., 2015; Stanko & Macek,
2019) and policy-based approaches (Tamar et al., 2015b;
Rajeswaran et al., 2016; Tamar et al., 2016; Markowitz et al.,
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2023).

This paper is lined up with the policy-based approaches,
which aim to directly optimize the policy through policy
gradient. Most existing CVaR policy gradient algorithms
studied in prior work implement the following procedure.
Aiming to optimize the CVaRq objective, the algorithm runs
a policy multiple times, and calculates the gradient only with
the worst q-fraction of sample trajectories, discarding all the
other samples. Despite its simplicity, this behavior leads to
a low sample efficiency and therefore slow convergence.

To mitigate this issue, we propose the predictive CVaR policy
gradient that enables the algorithm to utilize all sample
trajectories. The main idea is to reweight the individual
cost realizations, where the weight on each cost term is the
probability of the current sample trajectory belonging to the
worst q-fraction of scenarios, predicted at the moment when
the cost was incurred.

To better illustrate this idea, let us consider a situation in
which the algorithm tries to aggregate the gradient informa-
tion from five sample trajectories, visualized in Figure 1(a).
With q = 0.2, the naı̈ve approach uses the worst trajectory
only, as highlighted in Figure 1(b). Our method uses the
reweighted version of all five trajectories, where the weights
are visualized with opacity in Figure 1(c). This features that
the decisions should be evaluated individually according
to their expected contribution to the objective. The worst
trajectory should not be overly emphasized, and likewise,
non-worst trajectories should not be completely ignored –
for example, if two trajectories share the same sample path
up some time t, two partial trajectories up to time t should
be identically informative regardless of their final outcomes.

Contributions This paper offers a novel reweighting strat-
egy that significantly enhances the sample efficiency of
CVaR policy gradient. These weights, which we call predic-
tive tail probabilities, are derived through a series of refor-
mulations of the CVaR objective, exploiting its various math-
ematical properties (Section 3.2). We show that these predic-
tive tail probabilities enjoy a very limited path-dependence
(Proposition 3.3), and therefore building a model to esti-
mate them becomes a trivial supervised learning task that
is decoupled from the policy optimization task. Similarly
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Figure 1. An illustrative example of the proposed reweighting strategy, where five sample trajectories are being processed to compute the
gradient (q = 0.2). Each plot visualizes the cumulative cost along a trajectory, where the opacity of each point represents the weight
applied on each observation: (a) a risk-neutral policy gradient treats all trajectories with equal weights; (b) a naı̈ve CVaR policy gradient
only utilizes the worst trajectory, with equal weights across all observations therein; and (c) our predictive CVaR policy gradient assigns
different weights on individual observations according to their predictive tail probability.

to actor-critic algorithms, this algorithmic procedure leads
to more stable and robust learning outcomes, overcoming
the common shortfall of the existing CVaR policy gradient
algorithms. Moreover, our method is easily generalized
towards the spectral risk measure (Section 3.4).

Related work In the broad landscape of risk-sensitive
RL, various performance criteria have been introduced,
including exponential utility (Fei et al., 2020; 2021),
mean-variance risk functional (Tamar et al., 2012; La &
Ghavamzadeh, 2013; Xie et al., 2018), quantile level (Li
et al., 2022), and various risk measures such as CVaR (Chow
& Ghavamzadeh, 2014; Prashanth, 2014; Chow et al., 2018;
Hiraoka et al., 2019; Bastani et al., 2022; Wang et al., 2023),
Iterated CVaR (Du et al., 2022; Chen et al., 2023), coher-
ent risk measures (Tamar et al., 2015a; 2016), distortion
risk measures (Vijayan & Prashanth, 2021), entropic risk
(Borkar & Meyn, 2002; Borkar & Jain, 2014), etc.

Like in the risk-neutral RL literature, the existing CVaR RL
algorithms can be categorized as value-based methods and
policy-based methods. Value-based methods mainly rely on
the Bellman equations formulated on the augmented state
space with an extra state variable representing either the
running cost (Bäuerle & Ott, 2011; Haskell & Jain, 2015;
Miller & Yang, 2017; Bastani et al., 2022) or a notion of
remaining risk budget represented as a quantile value (Chow
et al., 2015; Pflug & Pichler, 2016; Bonalli et al., 2022;
Wang et al., 2023). On the other hand, policy-based methods
(policy gradient algorithms) have been studied in Tamar
et al. (2015b); Rajeswaran et al. (2016); Tamar et al. (2016);
Huang et al. (2021). Although our suggested algorithm

would belong to policy-based methods, we leverage the
ideas developed in these studies when reformulating the
CVaR objective and defining the predictive tail probability
process.

Notably, Huang et al. (2021) also introduce reweighting
strategies for CVaR policy optimization, sharing the same
concern with ours. More specifically, they discuss two
schemes – fully path-dependent (multiplicative) impor-
tance weights inspired by Tamar et al. (2015b), and state-
dependent weights inspired by Liu et al. (2018). However,
as they claimed, the former causes ‘the magnitude of the
gradient to become intractably large in longer horizons’ and
the latter only applies to the infinite horizon settings. Our
reweighting method enjoys the advantage of both schemes
in the sense that the predictive tail probabilities are defined
to be fully path-dependent while admitting a parsimonious
representation so that can be stably estimated.

2. Problem Setup and Preliminaries
We consider a finite-horizon Markov decision process
(MDP) specified with a state space X , an action space A, a
horizon length T , an initial state x1 ∈ X , and a transition
kernel p. On each time period t = 1, . . . , T , the decision
maker (DM) selects an action At ∈ A, pays a cost Ct ∈ R,
and moves onto the next state Xt+1 ∈ X . We consider
random costs, possibly correlated with the state transition,
so that the cost and the next state are drawn from their joint
distribution, i.e., (Ct, Xt+1) ∼ p( · |Xt, At).

We denote by Ht the history realized prior to making the
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t-th decision: for each t = 1, . . . , T + 1,

Ht := (X1, A1, C1, . . . , Xt−1, At−1, Ct−1, Xt),

which represents all information available to the DM at the
moment of deciding action At. We use HT+1 to denote a
sample trajectory (i.e., a sample path, an episode).

Policy space Let ΠH be the set of all non-anticipating
policies including the randomized ones, and let ΠX be the
set of all Markov policies such that select actions based only
on the current state. A non-anticipating policy π ∈ ΠH is
a sequence of mappings, (πt)t=1,...,T , such that πt maps
each history to an action distribution, i.e., At ∼ πt(·|Ht).
A Markov policy π ∈ ΠX consists of mappings from state
space instead, i.e., At ∼ πt(·|Xt). Trivially, ΠX ⊂ ΠH.

This paper focuses on policy optimization over a certain
family of Markov policies,1 denoted by ΠΘ, which are
parameterized by a multi-dimensional policy parameter
θ ∈ Θ ⊆ Rd. Depending on the context, πθ

t may specify a
state-dependent action distribution (i.e., At ∼ πθ

t (·|Xt)) or
a state-dependent action (i.e., At = πθ

t (Xt)). We assume
that πθ

t is a mapping differentiable with respect to θ on every
state.

Policy optimization with CVaR objective Given a risk
level q ∈ (0, 1], the CVaRq value of a random cost C is
defined as

CVaRq[C] :=
1

q

∫ q

0

VaRu[C]du,

where VaRq[C] := inf{η ∈ R|P(C ≤ η) ≥ 1 − q}, the
worst q-quantile of the cost distribution.

Our goal is to find the optimal policy π⋆ ∈ ΠΘ that mini-
mizes the CVaR value of the total cost at risk level q ∈ (0, 1].
More formally, we aim to solve

min
π∈ΠΘ

{
Jq(π) := q · CVaRπ

q

[
T∑

t=1

Ct

]}
, (∗)

where the objective function Jq : ΠH → R is a scaled
version of CVaR objective, greatly simplifying some ex-
pressions in the later steps. We will also often use Cs:t :=∑t

i=s Ci as an abbreviation.

Unlike the risk-neutral setting, the CVaR-optimal non-
anticipating policy may not be a Markov policy, i.e.,
minπ∈ΠH Jq(π) ≤ minπ∈ΠX Jq(π). Finding the optimal
non-anticipating policy is beyond the scope of this paper

1We would imagine that the decision maker is well aware of
what kind of policies will be effective in her own task, and pre-
sumably the main factors determining their decisions are well
reflected in the state variable so that considering Markov policies
is sufficient.

as we consider policy optimization over a set of Markov
policies, ΠΘ ⊆ ΠX .

Later in Section 3.4, we will consider an extension to spec-
tral risk measure (Acerbi, 2002), defined as

Jφ(π) :=

∫ 1

q=0

φ(q) · VaRπ
q [C1:T ] · dq, (1)

for some non-increasing function φ : [0, 1] → R≥0. The
original CVaR objective Jq(π) corresponds to the choice
φ(·) = I{ · < q}.

Risk-neutral policy gradient framework We aim to up-
date the policy parameter θ through a stochastic gradient
descent procedure. We here sketch the procedure for the
risk-neutral policy optimization tasks (q = 1). At each
iteration, it runs a policy πθ, obtains a sample trajectory
HT+1 = (X1, A1, C1, . . . , XT , AT , CT ), and updates the
policy parameters θ according to

θ ← θ − αθ · ∇̂θJ(HT+1),

where ∇̂θJ(HT+1) is some noisy gradient estimate, and
αθ ∈ R is the step size. After an update, a projection or
clipping can be applied to ensure that the updated parameter
lies within Θ. The gradient estimator ∇̂θJ(·) is desired to
be unbiased, i.e., Eπ

[
∇̂θJ(HT+1)

]
= d

dθJ(π
θ).

We here provide some gradient estimators commonly
adopted in the risk-neutral policy optimization tasks:

• Score function trick: In the task of optimizing a ran-
domized policy (At ∼ πθ

t (·|Xt)),

∇̂θJq=1(HT+1) =

T∑
t=1

∂ log πθ
t (At|Xt)

∂θ
·

T∑
s=t

Cs.

(2)

• Direct differentiation: In the task of optimizing a de-
terministic policy (At = πθ

t (Xt)) in a differentiable
environment where the entire sample path is differen-
tiable2 with respect to θ,

∇̂θJq=1(HT+1) =

T∑
t=1

∂πθ
t (Xt)

∂θ
·

T∑
s=t

dCs

dAt
. (3)

• Randomized finite difference methods:

∇̂θJq=1(HT+1, H̃T+1) =
ϵ

σ
·

T∑
t=1

(C̃t − Ct), (4)

where H̃T+1 is the sample trajectory obtained with
perturbed parameter θ̃ = θ + ϵ with ϵ ∼ N (0, σ2Id).

2This assumes that the state/action spaces are continuous
and the state transition is also differentiable with respect to the
state/action variables. Pair trading application in Section 5 is an
example of such environment.
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3. Algorithm
In this section, we develop an effective procedure to
solve (∗), which we call Predictive CVaR Policy Gradient
(PCVAR).

3.1. Risk-Neutral Reformulation

Following from the variational representation of CVaR mea-
sure (Rockafellar et al., 2000), the objective Jq(π) in (∗)
can be rewritten as

Jq(π) = min
η∈R

Eπ
[
qη + (C1:T − η)

+
]
, (5)

where (x)+ := max(0, x) and C1:T :=
∑T

t=1 Ct. Based on
this representation, we can view the CVaR policy optimiza-
tion problem (∗) as a joint minimization of a risk-neutral
objective, i.e., minθ∈Θ,η∈R Eπθ

[
qη + (C1:T − η)

+
]
.

However, a direct application of risk-neutral policy gradient
algorithms could be problematic. The term (C1:T − η)

+ is
not time-separable, which prevents the gradient estimators
from relying on partial sum of cost realizations (e.g., (2)
and (3) cannot be immediately applied). Also, θ will be
updated only when the total cost exceeds η, resulting in a
low sample efficiency.

3.2. Predictive Tail Probability Process

Given a policy π ∈ ΠH and a threshold η ∈ R, we define
a predictive tail probability process Qπ,η = (Qπ,η

t )t=1,...,T

as
Qπ,η

t := Pπ (C1:T ≥ η |Ht+1) , (6)

the likelihood that the current sample path ends up with the
total cost exceeding the threshold η.

Rao-Blackwellized time decomposition As running esti-
mates, the process Qπ,η is a Doob martingale satisfying

Qπ,η
T = I{C1:T ≥ η}, Qπ,η

t = Eπ [Qπ,η
T |Ht+1] ,

Qπ,η
0 = Pπ(C1:T ≥ η).

Next lemma offers some form of time decomposition utiliz-
ing these properties.
Lemma 3.1. Given a non-anticipating policy π ∈ ΠH and
a threshold η ∈ R, we have

Eπ
[
(C1:T − η)

+
]
= Eπ

[
T∑

t=1

Qπ,η
t Ct

]
− ηQπ,η

0 .

Proof. By definition, (C1:T − η)
+

= (C1:T − η) · Qπ,η
T .

For each t = 1, . . . , T , by Tower rule, we have

Eπ [Qπ,η
T Ct] = Eπ [E (Qπ,η

T Ct|Ht+1)]

= Eπ [E (Qπ,η
T |Ht+1) · Ct]

= Eπ [Qπ,η
t Ct] .

Combining this with the fact that Qπ,η
0 = Eπ[Qπ,η

T ] gives
the desired result.

Consequently, we present a risk-neutral and time-separable
reformulation of CVaR objective.

Proposition 3.2. Given a non-anticipating policy π ∈ ΠH,
let ηπ := VaRπ

q [C1:T ], the optimal solution to minimization
in (5). If C1:T has no probability mass at ηπ ,

Jq(π) = Eπ

[
T∑

t=1

Qπ,ηπ

t Ct

]
. (7)

If C1:T has a probability mass at ηπ ,∣∣∣∣∣Jq(π)− E

[
T∑

t=1

Qπ,ηπ

t Ct

]∣∣∣∣∣ ≤ |ηπ| · P (C1:T = ηπ) .

Proof. By Lemma 3.1, we have

Jq(π) = ηπ · (q −Qπ,ηπ

0 ) + Eπ

[
T∑

t=1

Qπ,ηπ

t Ct

]
.

We further deduce that |q − Qπ,ηπ

0 | ≤ Pπ (C1:T = ηπ) by
utilizing the following fact (Rockafellar & Uryasev, 2002,
Proposition 5):

−Pπ(C1:T = ηπ) ≤ q − Pπ(C1:T ≥ ηπ) ≤ 0.

Predictive tail probability estimation In general, the
predictive tail probability Qπ,η

t should be considered as
a function of history Ht+1. If we restrict our attention
to Markov policies ΠX , the process Qπ,η exhibits a very
limited dependence on the history, which is useful to build
a model to approximate it.

Proposition 3.3. Fix a Markov policy π ∈ ΠX . There exists
a sequence of functions (fπ

t )t=1,...,T with fπ
t : X × R →

[0, 1] satisfying

Qπ,η
t = fπ

t (Xt+1, C1:t − η),

almost surely. These functions are invariant in η.

Proof. The claim immediately follows from that

Qπ,η
t = Pπ (C1:T > η|Ht+1)

= Pπ (Ct+1:T > η − C1:t|Ht+1)

(a)
= Pπ (Ct+1:T > η − C1:t|Ht+1, C1:t − η)

(b)
= Pπ (Ct+1:T > η − C1:t|Xt+1, C1:t − η) ,

where step (a) uses the fact that history Ht+1 includes all
cost realizations up to time t, (C1, . . . , Ct), and step (b)
uses the Markov property.
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Exploiting Proposition 3.3, we will consider a series of
functions (fϕ

t )t=1,...,T , parameterized by ϕ ∈ Φ, as a model
to approximate the predictive tail probabilities, i.e.,

Qπ,η
t ≈ fϕ

t (Xt+1, C1:t − η).

For example, one can consider a logistic model such as
fϕ
t (x, c) =

(
1+exp(ϕ⊤

t (x, c))
)−1

or a parametric distribu-
tion model such as fϕ

t (x, c) = P(N (µϕ
t (x), σ

ϕ
t (x)) ≤ c).

Instead of investigating a particular functional form, we
mildly assume that fϕ

t ’s are differentiable with respect to ϕ.
Finding ϕ can be thought as a typical supervised learning
task, which is to predict whether the total cost exceeds the
threshold η using information Xt+1 and C1:t − η. See also
Equation (11).

3.3. Predictive CVaR Policy Gradient Algorithm

Based on the findings presented in Section 3.2, we decom-
pose the CVaR policy optimization (∗) into three optimiza-
tion problems – an outer optimization for the policy param-
eter θ, and two inner optimizations for the threshold η and
the predictive tail probability model parameter ϕ. Namely,
we solve

min
θ∈Θ

{
J(θ, η, ϕ)

∣∣∣∣ η ∈ argminη′∈R L(θ, η′),
ϕ ∈ argminϕ′∈Φ M(θ, η, ϕ′)

}
, (8)

where

J(θ, η, ϕ) := E

[
T∑

t=1

Q̂tCt

]
, (9)

L(θ, η) := E
[
qη + (C1:T − η)

+
]
, (10)

M(θ, η, ϕ) := E

[
T∑

t=1

(
I{C1:T ≥ η} − Q̂t

)2]
, (11)

and (Q̂t)t=1,...,T is the approximate predictive tail probabil-
ity process generated according to

Q̂t = fϕ
t (Xt+1, C1:t − η).

Each optimization problem is justified as follows.

1. Policy optimization (θ optimization), which aims to
optimize the policy parameter θ via the objective
J(θ, η, ϕ) = E[

∑T
t=1 Q̂tCt]. Proposition 3.2 justifies

this objective.

2. VaRq value estimation (η optimization), which aims to
estimate the VaRq value of the total cost distribution
under the policy πθ, via the objective L(θ, η) = E[qη+
(C1:T − η)+]. The variational representation of CVaR
measure (5) justifies this objective.

3. Predictive tail probability estimation (ϕ optimization),
which aims to learn a model fϕ to approximate the pro-
cess Qπθ,η , via the objective M(θ, η, ϕ). The objective
Proposition 3.3 justifies this objective.

The optimization problem (8) is a leader-follower type of
optimization problem in which θ should be optimized in
a consideration of η and ϕ values being re-optimized in
response to the changes in θ value. To apply the gradient
descent procedure, we first substitute the inner optimizations
with their first order optimality conditions, i.e.,

min
θ∈Θ

{
J(θ, η, ϕ)

∣∣∣∣ ∂∂ηL(θ, η) = 0,
∂

∂ϕ
M(θ, η, ϕ) = 0

}
,

and then apply the Lagrangian relaxation so that we optimize
θ using the following objective:

J(θ, η, ϕ) + λL
∂

∂η
L(θ, η) + λ⊤

M

∂

∂ϕ
M(θ, η, ϕ), (12)

where λL ∈ R and λM ∈ Rdim(ϕ) are Lagrangian multipli-
ers.

Our suggested algorithm, PCVAR, updates the three vari-
ables, θ, η, and ϕ, in parallel via stochastic gradient descent
procedure with the objectives (12), (10), and (11), respec-
tively. Algorithm 1 below sketches the overall workflow.

Algorithm 1 Predictive CVaR Policy Gradient
1: Initialize θ, η, ϕ.
2: for episode k = 1, 2, 3, . . . do
3: Run πθ and obtain a sample trajectory HT+1 =

(X1, A1, C1, . . . , XT , AT , CT ).
4: Compute approximate predictive tail probabilities:

Q̂t ← fϕ
t (Xt+1, C1:t − η), ∀t = 1, . . . , T.

5: Re-weight cost realizations with predictive tail prob-
abilities:

HQ
T+1 ← (X1, A1, Q̂1C1, . . . , XT , AT , Q̂TCT ).

6: Compute ∇̂θJ(H
Q
T+1) using HQ

T+1 as in the risk-
neutral policy gradient (e.g., (16)–(18))

7: Update θ, η, and ϕ using (15), (13), and (14), respec-
tively.

8: end for

Initialization To obtain reasonable initial parameter val-
ues, the result of risk-neutral policy optimization can be
utilized (but not restricted to). After running a conventional
policy gradient algorithm with the objective E[C1:T ], the
resulting policy parameter can be used as an initial θ value,
and then by minimizing (10) and (11) with sample trajecto-
ries collected during this procedure, η and ϕ values can be
properly initialized.

5



Predictive CVaR Policy Gradient

η update Applying the stochastic gradient descent
(SGD) with respect to the objective L(θ, η) :=

E
[
qη + (C1:T − η)

+
]
, PCVAR updates η according to

η ← η − αη · ∇̂ηL, ∇̂ηL := q − I{C1:T ≥ η}, (13)

where αη is the step size that may change over iterations.
Roughly speaking, the threshold η gets updated to satisfy
E[∇̂ηL] = 0, stochastically converging to VaRπθ

q [C1:T ].
See Proposition 4.2 for the formal convergence analysis.

ϕ update Applying the SGD with respect to the objec-
tive M(θ, η, ϕ) defined in (11), the algorithm updates ϕ
according to

ϕ← ϕ− αϕ · ∇̂ϕM, (14)

∇̂ϕM :=
∂

∂ϕ

T∑
t=1

(
I{C1:T ≥ η} − fϕ

t (Xt+1, C1:t − η)
)2

,

where αϕ is the step size. A stylized convergence analysis
is provided in Proposition 4.1.

θ update One salient feature of PCVAR is that conven-
tional risk-neutral policy gradient algorithms can be used
seamlessly to update θ. Namely, applying the SGD with
respect to the objective (12), it updates θ according to

θ ← θ − αθ ·
(
∇̂θJ + λL∇̂2

θηL+ λM ∇̂2
θϕM

)
, (15)

where ∇̂θJ , ∇̂2
θηL, and ∇̂2

θϕM are noisy estimates of
∂
∂θJ(θ, η, ϕ),

∂2

∂θ∂ηL(θ, η), and ∂2

∂θ∂ϕM(θ, η, ϕ), respec-
tively.

The estimate ∇̂θJ can be computed using usual gra-
dient estimators adopted for risk-neutral policy opti-
mization tasks, simply by replacing the actual cost re-
alizations (C1, . . . , CT ) with their re-weighted version
(Q̂1C1, . . . , Q̂TCT ). Specifically, one can adopt the esti-
mate based on score function trick (cf. (2)),

∇̂θJ(H
Q
T+1) =

T∑
t=1

∂ log πθ
t (At|Xt)

∂θ
·

T∑
s=t

Q̂sCs, (16)

the one based on direct differentiation (cf. (3)),

∇̂θJ(H
Q
T+1) =

T∑
t=1

∂πθ
t (Xt)

∂θ
·

T∑
s=t

d(Q̂sCs)

dAt
, (17)

or the one based on randomized FDM (cf. (4)),

∇̂θJ(H
Q
T+1, H̃

Q
T+1) =

ϵ

σ
·

T∑
t=1

(
˜̂
QtC̃t − Q̂tCt). (18)

The other estimates ∇̂2
θηL and ∇̂2

θϕM can also be computed
similarly. As a concrete example, score function trick sug-
gests ∇̂2

θηL = S × ∇̂ηL, and ∇̂2
θϕM = S × ∇̂ϕM , with

S :=
∑T

t=1 ∂ log πθ
t (At|Xt)/∂θ.

The Lagrangian multipliers, λL and λM , can be fixed to
proper constants or optimized interatively as in the saddle
point optimization.

Sample efficiency A direct application of CVaR policy
gradient to the objective (5) corresponds to the case where
Q̂1 = . . . = Q̂T = I{C1:T ≥ η}. It discards the sample
trajectories with total cost below η, so that it utilizes only a
q-fraction of the samples. In contrast, PCVAR utilizes every
single sample trajectory by reweighting the cost terms, pro-
portionally to their predicted contribution to the objective.
This procedure enhances the sample efficiency as it aggre-
gates gradient feedback across a larger number of samples
and removes unnecessary noises in the policy evaluation.
See also Lemma 4.4 and Proposition 4.5 for some formal
analysis.

3.4. Extension to Spectral Risk Measure

Linear combination of CVaR objectives As a simpler
extension, let us consider a situation where the objective is
given by a linear combination of CVaR objectives,

Jw(π) :=

n∑
i=1

wi · Jqi(π),

for given risk levels (q1, . . . , qn) ∈ [0, 1]n and their
weights (w1, . . . , wn) ∈ Rn

+. For each risk level qi,
the corresponding VaRqi value can be defined as ηi :=
minη∈R Eπ [qi · η + (C1:T − η)+], and its update can be
done according to (13) without any modification.

The predictive tail probabilities can also be defined and
approximated analogously to the simple CVaR case, i.e.,

Qπ,η
t := Eπ

[∑
i

wiI{C1:T ≥ ηi}

∣∣∣∣∣Ht+1

]
=
∑
i

wiPπ (C1:T ≥ ηi|Ht+1)

≈
∑
i

wif
ϕ
t (Xt+1, C1:t − ηi).

As implied in Proposition 3.3, the function fϕ
t does not need

to depend on ηi so that we do not need to build a separate
model for each qi. All procedures implemented Algorithm 1
remain effective except that Q̂t ←

∑
i wif

ϕ
t (Xt+1, C1:t −

ηi) will be used instead.

Spectral risk measure Now we consider a situation
where the objective is given by a spectral risk measure.
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Lemma 3.4. Consider a spectral risk measure (1) induced
by a non-increasing function φ : [0, 1] → R≥0. If C1:T is
bounded,

Jφ(π) = φ(1)Jq=1(π)−
∫ 1

q=0

Jq(π)dφ(q).

Proof. Fix π and let h(q) := Jq(π). Observe that

dh(q)

dq
=

d

dq

(∫ q

0

VaRπ
u[C1:T ]du

)
= VaRπ

q [C1:T ].

Therefore,

Jφ(π) :=

∫ 1

0

φ(q)VaRπ
q [C1:T ]dq

=

∫ 1

0

φ(q)dh(q)

(a)
= φ(1)h(1)− φ(0)h(0)−

∫ 1

0

h(q)dφ(q)

(b)
= φ(1)h(1)−

∫ 1

0

h(q)dφ(q),

where step (a) uses integration by parts, and step (b) uses
the fact that h(0) = J0(π) = 0 if C1:T is bounded.

Lemma 3.4 shows that this objective can be understood as a
linear combination of CVaR objectives. More specifically,
with qi := i/n for i = 0, . . . , n, one can approximate

Jφ(π) ≈
n∑

i=0

wi · Jqi(π),

where wi := φ(qi) − φ(qi+1) for i = 0, . . . , n − 1, and
wn := φ(qn−1). This reformulation allows us to apply
PCVAR algorithm.

4. Theoretical Analysis
In this section, we provide a few theoretical results showing
the correctness and effectiveness of PCVAR algorithm. All
proofs are provided in Appendix A.

We begin by showing the consistency of the estimators re-
lated to parameters ϕ and η.

Proposition 4.1. Suppose |X | <∞, |A| <∞, and random
costs Ct’s are supported on a finite set so that Ct:T also
takes values in a finite set Y ⊂ R with |Y| <∞. Consider
a tabular parameterization of predictive tail probability
model, i.e., fϕ

t (x, y) = ϕt,x,y with ϕ ∈ RT×|X|×|Y|.

Given a Markov policy π ∈ ΠX and a sequence of η val-
ues (η(k))k∈N ∈ Y∞, suppose that the update rule (14) is

adopted:

ϕ(k+1) ← ϕ(k) − αϕ
k ·

∂

∂ϕ

T∑
t=1

(
I{C(k)

1:T ≥ η(k)} −

=:Q̂
(k)
t︷ ︸︸ ︷

fϕ
t (X

(k)
t+1, C

(k)
1:t − η(k))

)2
,

where H(k)
t+1 is the k-th sample trajectory obtained with π. If

η(k) → η⋆ almost surely and the step size sequence satisfies∑
k α

ϕ
k =∞ and

∑
k(α

ϕ
k)

2 <∞, we have

max
t
|Q̂(k)

t −Qπ,η⋆

t | → 0,

almost surely as k →∞.

Proposition 4.2. Given a non-anticipating policy π ∈ ΠH,
suppose that the total cost distribution has no probability
mass at ηπ := VaRπ

q [C1:T ]. With the policy π fixed, if
the update rule (13) is adopted with a step size sequence
satisfying

∑
k α

η
k =∞ and

∑
k(α

η
k)

2 <∞, we have

η(k) → ηπ,

almost surely as k → ∞, where η(k) is the value of η
parameter at the kth iteration.

Ignoring a subtle inconsistency in their technical condi-
tions,3 above propositions show that ϕ and η will jointly
converge to their target values (i.e., the optimal solutions to
(11) and (10)) for fixed θ. As long as the policy parameter
θ changes slowly over the iterations, the estimated process
Q̂ will keep serving as a good approximation of the ideal
predictive tail probability process Qπθ,ηπ

. Exploiting this
implication, we investigate the gradient estimators in the
policy optimization procedure assuming Q̂ = Qπθ,ηπ

.

We next show the unbiasedness of the gradient estimators
of reformulated objectives.

Theorem 4.3. Given a policy πθ ∈ ΠΘ, a threshold η ∈ R,
and a prediction model parameter ϕ ∈ Φ, define

∇̂θJ
(1)
t :=

∂ log πθ
t (At|Xt)

∂θ
·

T∑
s=1

Q̂sCs,

∇̂θJ
(2)
t :=

∂ log πθ
t (At|Xt)

∂θ
·

T∑
s=t

Q̂sCs,

where (Q̂t)t=1,...,T is the approximate predictive tail prob-
ability process generated according to

Q̂t = fϕ
t (Xt+1, C1:t − η).

3Proposition 4.1 assumes that the total cost is a discrete random
variable, which is inconsistent to Proposition 4.2’s assumption that
the total cost has no probability mass at ηπ .
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Then, for all i ∈ {1, 2},

∂

∂θ
J(θ, η, ϕ) = E

[
T∑

t=1

∇̂θJ
(i)
t

]
.

Note that ∇̂θJ
(2)
t corresponds to the score-based gradient

estimator suggested in (16). We remark that this result is
not so trivial. For example, ∇̂θJ

(2)
t could also fail if the

history Ht did not include Xt. While not formally stated
here, the unbiasedness of the gradient estimator (17) with
Q̂ = Qπθ,ηπ

immediately follows from the chain rule.

We next show that the reweighting with predictive tail prob-
abilities is helpful to achieve the variance reduction in the
gradient estimation.

Lemma 4.4. Given π ∈ ΠH and η ∈ R, for any t

Var(Qπ,η
t Ct) ≤ Var(Qπ,η

T Ct).

As an immediate consequence of Rao-Blackwellization,
above lemma shows that our reformulated objective and
our suggested gradient estimators involve the cost terms
that are less noisy (e.g., qη+(C1:T − η)+ vs.

∑T
t=1 QtCt).

Although variance reductions in the gradient estimation are
not theoretically guaranteed due to a possibly complicated
temporal-dependency among these cost terms, the actual
reductions are observed in numerical experiments.

Proposition 4.5. Consider the setting of Theorem 4.3. If
the random costs are bounded and non-negative, for any t,

V
[
∇̂θJ

(2)
t

]
≤ V

[
∇̂θJ

(1)
t

]
,

where V[X] := trace(Cov[X]) for a random vector X .

Particularly for the score-based gradient estimators, above
proposition shows that an additional variance reduction
can be made by time decomposition. In comparison with
∇̂θJ

(1)
t , the estimator ∇̂θJ

(2)
t involves a fewer number of

terms.

5. Numerical Experiments
We conduct two numerical experiments to evaluate our sug-
gested algorithm (PCVAR) in a comparison with the other
two competing algorithms – GCVaR (Tamar et al., 2015b),
and a naı̈ve version of PCVaR (NCVaR) that does not em-
ploy the predictive tail probabilities. Details about the NC-
VaR are described in Appendix B.1.

5.1. Continuous Blackjack Game

Setting We consider a continuous version of Blackjack
game. At each time step, the agent decides whether to

Table 1. Variance of gradient estimates used by the three algo-
rithms in order to update the policy parameter θ, in the continuous
Blackjack experiment. The gradients are evaluated at θ = 16.83
(the risk-neutral solution; the first row), and at θ = 14.2 (the
CVaR-optimal solution; the second row).

Evaluation point PCVaR NCVaR GCVaR

θ = argmaxθ E[R1:T ] 33.66 97.59 96.92
θ = argmaxθ CVaRq[R1:T ] 6.71 24.01 24.67

continue or stop receiving a random number uniformly
distributed on [0, 4]. The agent earns a reward equal to
the drawn random number, but if their cumulative sum ex-
ceeds 21, the game ends and the agent receives a large
penalty instead. Formally, X := R+, A := {cont, stop},
Xt+1 = Xt+Ut+21·I{At = stop}where Ut ∼ Unif[0, 4],
and Rt = Ut · I{At = cont, Xt+1 < 21} + Z · I{At =
cont, Xt+1 ≥ 21} where Z ∼ N (−30, 1).

We concern the target risk level q = 0.1, and consider a
randomized policy that involves a soft threshold θ ∈ [0, 21]
such that πθ(At = 1|Xt) = σ(0.5(θ−Xt)) where σ(z) :=
1/(1+e−z) is a sigmoid function. Given q = 0.1, the CVaR
value is optimized at θ ≈ 14.2.

We initialize the policy parameter θ to be either θ = 16.38
(a risk-neutral optimal solution) or θ = 13.5, and run the
three algorithms with a learning rate αθ = 0.005 and a batch
size B = 16. To apply our suggested PCVAR algorithm,
we introduce a prediction model with 12-dim parameters,
ϕ = (ϕ1, ϕ2) ∈ R6 × R6, such that fϕ(x, c) = I{c <

0} · Bϕ1

5 (x/21) + I{c ≥ 0} · Bϕ2

5 (x/21), where Bϕ
5 (·)

is a Bernstein polynomial of degree 5 with coefficients ϕ,
and use constant Lagrangian multipliers, λL = λM = 0.3.
Further details are given in Appendix B.2.

Results Figure 2 shows the trajectories of θ value, high-
lighting that PCVAR learns the CVaR-optimal solution cor-
rectly and faster than the baselines. Note that the same
learning rate and the batch size are used across the three
algorithms. Table 1 shows the variance of gradient esti-
mates adopted by the three algorithms, evaluated at either
θ = 16.83 or θ = 14.2. These results demonstrate that the
enhanced sample efficiency is attributable to the reduction
in the variation estimation.

5.2. Pair Trading

Setting We evaluate PCVaR algorithm using a real-world
dataset. Following Han et al. (2023), we consider the intra-
day pair trading of two stocks and the use of Tiingo dataset4,

4Obtained through Tiingo End-Of-Day API:
https://api.tiingo.com/documentation/iex
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Figure 2. Trajectories of the policy parameter θ over the course of
policy gradient procedure in the continuous Blackjack experiment.
The dashed horizontal line indicates its CVaR-optimal solution, and
its initial value is set to be either θ = 16.38 (above) or θ = 13.5
(below).

which consists of 990 days of observations (from Jan 2,
2015 to Dec 18, 2018).

We consider an intraday trading strategy that makes deci-
sions every ten minutes (T = 39). In each period t, it
determines the trading position At ∈ [−1, 1] and earns a
reward Rt that is given by

Rt = At · rt+1 − 0.05 · |At −At−1|,

where rt indicates the difference in 10-min return of two
stocks measured in percentage. The first term captures the
trading profit/loss and the second term captures the trans-
action cost. We consider a certain family of trading strate-
gies that determine the trading position according to At =
πθ
t (Xt) = tanh

(
θ⊤1 Xt

)
· σ
(
θ⊤2 Xt

)
, where the state vari-

able is given as Xt := (1, rt−5, . . . , rt,
∑t

s=1 Rs, At−1).

Our objective is J(π) := E
[∑T

t=1 Rt

]
+ 0.1 ·

CVaRq

[∑T
t=1 Rt

]
with q = 0.2. As a linear combina-

tion of CVaR objectives, the decomposition established in
Section 3.4 is adopted.

A practical deployment of policy optimization techniques is
considered: we use the first 330 days of data for the initial
training of the trading strategy, and evaluate the strategy
during the remaining days, while periodically re-optimizing
it every other days using the prior ten days of data. Policy
gradient algorithms are used for the initial and periodic
trading strategy optimization.

In the application of PCVAR, the predictive tail probabilities
are estimated using a model fϕ

t (x, c) = 1− 1
2 tanh(ϕ

⊤
1,xx+

ϕ1,cc) ·σ(ϕ⊤
2,xx+ϕ2,cc), with the choice of λL = λM = 0.

The learning rate and the batch size are tuned for each algo-
rithm separately. Further details are given in Appendix B.3.

Results Figure 3 reports the cumulative return (%)
achieved by pair-trading strategy under the maintenance
of four different policy gradient algorithms. Our method
outperforms all other baseline models. In particular, our
method exhibits a stable performance throughout the testing
period, highlighting that our PCVAR learns a risk-sensitive
policy effectively with a few number of samples.

Figure 3. Cumulative return (%) achieved by pair-trading strategy
being re-optimized periodically using different policy gradient
algorithms.

6. Conclusion and Future Work
We have proposed the predictive CVaR policy gradient that
employs the predictive tail probabilities to accelerate the
risk-sensitive reinforcement learning. While our theoret-
ical analyses and numerical experiments demonstrate the
validity and effectiveness of this method, some questions
remain unanswered. First, we have restricted our attention
to Markov policies, which leads to nice temporal properties
of predictive tail probability process. Given that the risk-
neutral and time-separable reformulation of CVaR objective,
(7), is valid for all non-anticipating policies, it will be worth
investigating whether the idea of predictive tail probability
can be leveraged for policy optimization over a broader class
of policies or even for the value-based methods. Second,
our theoretical analysis does not guarantee the convergence
rate nor the global optimality. Papini et al. (2018); Xu et al.
(2019; 2020) provide a guideline toward the convergence
analysis powered by variance reduction techniques, and
Bhandari & Russo (2024) provides a guideline toward the
global convergence analysis.
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A. Proofs
A.1. Proof of Proposition 4.1

Lemma A.1. (Lp Convergence Theorem (Durrett, 2019) ) If Mn, n ≥ 1, be a martingale with supE|Mn|p <∞ where
p > 1, then Mn →M almost surely and in L2.

Lemma A.2. Suppose the same condition with Proposition 4.1. Let define X ′
+ := {x′ = (t, x, c) | P (Xt+1 = x,Cπ

0:t− η =

c) > 0} and Zx′

k := I{x′ visit in H
(k)
T+1}. For all x′ ∈ X ′

+, if
∑

k αk =∞ and
∑

k α
2
k <∞ , then

∑
k

αkZ
x′

k =∞ almost surely.

Proof. Let be E[Zx′

k ] = p > 0 and define Mn :=
∑n

k=1 αk(Z
x′

k − p). As we consider fixed π ∈ ΠX , E[αk(Z
x′

k − p)] = 0
for all k. Mn is a martingale.

Note that for all n ≥ 1,

E[M2
n] = Var(Mn)− E[Mn]

2

= Var(Mn)

(a)
=
∑
k

a2kVar(Zx′

k − p)

=
∑
k

a2kp(1− p) <∞,

where step (a) uses independence of each trajectory. Then, by Lemma A.1, Mn → M∞ almost surely. However,∑n
k=1 αkp =∞. Thus,

∑
k αkZ

x′

k =∞ almost surely.

Proof of Proposition 4.1 Note that η(k) ∈ Y with |Y| <∞ and η(k) → η∗almost surely imply ∃N s.t ηk = η∗, k > N .
Obviously, the step size sequence satisfies

∑
k=N αϕ

k =∞ and
∑

k=N (αϕ
k)

2 <∞. Thus, WLOG, it suffices to show the
convergence of predictive tail probability estimates for fixed η∗.

The step size sequences of all state x′ with positive visit probability satisfy Robbins-Monro condition (sum of sequence is
infinite, but square sum of sequence is finite). By Lemma A.2, the update rule (14) a converges optimal value almost surely.
□

A.2. Proof of Theorem 4.3

Let us introduce i.i.d. random disturbances W1, . . . ,WT to describe the randomness in the random cost realizations, i.e.,
there exists a function C(·) such that the random costs are determined as Ct = c(Xt, At,Wt). The trajectory HT+1 is
drawn from density distribution p(HT+1|θ) described as

p(HT+1|θ) =
T∏

t=1

πθ(At|Xt)p(Xt+1|Xt, At)p(Wt)

Applying the score function trick gives

∂

∂θ
J(θ, η, ϕ) =

∂

∂θ
E

[
T∑

t=1

Q̂tCt

]
= E

[
∂

∂θ
log p(HT+1|θ)×

T∑
t=1

Q̂tCt

]
.
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Since the state transition dynamics and the random disturbance distribution do not depend on the policy, we have

∂

∂θ
log p(HT+1|θ) =

∂

∂θ

(
T∑

t=1

log πθ(At|Xt) +

T∑
t=1

log p(Xt+1|Xt, At) +

T∑
t=1

log p(Wt)

)

=
∂

∂θ

(
T∑

t=1

log πθ(At|Xt)

)

=

T∑
t=1

∂ log πθ(At|Xt)

∂θ
.

Therefore,

∂

∂θ
J(θ, η, ϕ) = E

[(
T∑

t=1

∂ log πθ(At|Xt)

∂θ

)
×

(
T∑

t=1

Q̂tCt

)]
= E

[
T∑

t=1

∇̂θJ
(1)
t

]
.

Also note that, for any s < t, since Q̂s and Cs are measurable with respect to Ht, we have

E
[
E
[
∂ log πθ

t (At|Xt)

∂θ
· Q̂sCs

∣∣∣∣Ht

]]
= E

[
E
[
∂ log πθ

t (At|Xt)

∂θ
· Q̂sCs

∣∣∣∣Ht

]]
= E

[
E
[
∂ log πθ

t (At|Xt)

∂θ

∣∣∣∣Ht

]
· Q̂sCs

]
= E

[
0 · Q̂sCs

]
= 0.

Therefore,

∂

∂θ
J(θ, η, ϕ) = E

[
T∑

t=1

(
∂ log πθ(At|Xt)

∂θ
×

T∑
s=t

Q̂sCs

)]
= E

[
T∑

t=1

∇̂θJ
(2)
t

]
.

□

A.3. Other Proofs

Proof of Proposition 4.2 The assumption that total cost distribution has no probability mass at η⋆,π := VaRπ
q [C1:T ]

implies that there is a unique solution for (5), η⋆,π (Rockafellar & Uryasev, 2002). If step size sequence of η satisfies
Robbins-Monro condition, the update rule (13) a converges optimal value almost surely. □

Proof of Lemma 4.4 Let QT := Qπ,η
T and Qt := Qπ,η

t .

Var(QTCt)
(a)
= E

[
Var(QTCt)|Ht+1

]
+ Var

(
E[QTCt|Ht+1]

)
≥ Var

(
E[QTCt|Ht+1]

)
(b)
= Var

(
Ct · E[QT |Ht+1]

)
(c)
= Var

(
CtQt

)
,

where step (a) uses the law of total variance, step (b) uses the fact that Ht+1 includes Ct, and step (c) uses the definition of
Qt. □

Proof of Proposition 4.5 Note that, for a vector A = (A1, . . . , Am)⊤, V[A] = trace(Cov[A]) =

trace(E [A− E[A]]E [A− E[A]]
⊤
) =

∑m
i=1

(
E[A2

i ]− E[Ai]
2
)
. Then,

13
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V

[
∂ log πθ(At|Xt)

∂θ
·

T∑
s=1

Q̂sCs

]
− V

[
∂ log πθ(At|Xt)

∂θ
·

T∑
s=t

Q̂sCs

]

=

m∑
i=1

E

(∂ log πθ(At|Xt)

∂θi
·

T∑
s=1

Q̂sCs

)2
− E

[
∂ log πθ(At|Xt)

∂θi
·

T∑
s=1

Q̂sCs

]2
−

m∑
i=1

E

(∂ log πθ(At|Xt)

∂θi
·

T∑
s=t

Q̂sCs

)2
− E

[
∂ log πθ(At|Xt)

∂θi
·

T∑
s=t

Q̂sCs

]2
(a)
=

m∑
i=1

E

(∂ log πθ(At|Xt)

∂θi
·

T∑
s=1

Q̂sCs

)2
− E

(∂ log πθ(At|Xt)

∂θi
·

T∑
s=t

Q̂sCs

)2


=

m∑
i=1

E

∂ log πθ(At|Xt)

∂θi

2

·

( T∑
s=1

Q̂sCs

)2

−

(
T∑

s=t

Q̂sCs

)2


(b)

≥ 0,

where step (a) uses Theorem 4.3 and step (b) uses the non-negativity condition assumed on the cost. □

B. Numerical Experiment Details
B.1. A Naı̈ve CVaR (NCVaR) Policy Gradient Algorithm

We simply denote by NCVaR a naı̈ve version of PCVAR that does not include the predictive tail probabilities. Without
introducing the prediction model parameter ϕ, it solves

min
θ∈Θ

{
J(θ, η) := E [I{C1:T ≥ η}C1:T ]

∣∣∣∣η ∈ argmin
η′∈R

L(θ, η′)

}
,

where L(θ, η) := E [qη + (C1:T − η)+] shares the same definition. As done for PCVAR, θ optimization is done by applying
the SGD with respect to the objective J(θ, η) + λL

∂
∂ηL(θ, η), and η optimization is done by applying the SGD with respect

to the objective L(θ, η). The gradient estimate ∇̂θJ can be computed as, for example,

∇̂θJ(HT+1) =

(
T∑

t=1

∂ log πθ
t (At|Xt)

∂θ

)
· I{C1:T ≥ η}C1:T ,

which does not enjoy time-decomposition unlike PCVAR. Below Algorithm 2 sketches the implementation of NCVaR
algorithm.

Algorithm 2 Naı̈ve CVaR Policy Gradient
1: Initialize θ, η.
2: for episode k = 1, 2, 3, . . . do
3: Run πθ and obtain a sample trajectory HT+1 = (X1, A1, C1, . . . , XT , AT , CT ).
4: Update η through (13).
5: Update θ through

θ ← θ − αθ ·
(
∇̂θJ + λL∇̂2

θηL
)
.

6: end for

14
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B.2. Continuous Blackjack Game Details

Bernstein polynomials As illustrated in Section 5.1, for PCVAR, we introduce a prediction model fϕ(x, c) = I{c <

0} ·Bϕ1

5 (x/21) + I{c ≥ 0} ·Bϕ2

5 (x/21). Here, each Bϕi

5 : [0, 1]→ R is the Bernstein polynomial defined as

Bϕi

5 (x) =

5∑
k=0

ϕi
k ×

(
5

k

)
xk(1− x)5−k.

Since fϕ is linear in ϕ, ϕ optimization (minϕ M(θ, η, ϕ)) is just a simple linear regression task.

Hyperparameters/initialization We use the following configurations in the simulations.

• θ learning rate (all): αθ = 0.005.

• η learning rate (NCVaR & PCVaR only): αη = 0.1.

• ϕ learning rate (PCVaR only): αϕ = 0.01.

• θ initialization (all): (a) θ = 16.38 which the risk-neutral optimal solution, and (b) θ = 13.5 which is an arbitrary
number smaller than the CVaR-optimal solution.

• η initialization (NCVaR & PCVaR only): (a) η = 10.96 which is the estimated VaRq value for θ = 16.38, and (b)
η = 8.96 which is the estimated VaRq value for θ = 13.5.

• ϕ initialization (PCVaR only): (a) ϕ1 = (0.097, 0.128,−0.059, 0.597,−1.454, 4.091)⊤, ϕ2 =
(15.253,−7.874, 3.751,−1.459, 0.470, 0.071)⊤ which are the fitted prediction model parameters for θ = 16.38,
and (b) ϕ1 = (0.101, 0.082, 0.025, 0.773,−4.375, 19.975)⊤, ϕ2 = (15.253,−7.874, 3.751,−1.459, 0.470, 0.071)⊤
which are the fitted prediction model parameters for θ = 13.5.

B.3. Pair Trading Details

For initialization, we use the first 330 days (Data 1) for the initial training of the trading strategy and evaluate the strategy
during the remaining days (Data 2). We periodically re-optimize the strategy every other days using the prior ten days of
data (Figure 4).

Figure 4. Data split and algorithm evaluation scheme in the pair trading example. Dataset 1 is utilized for initialization, and dataset 2 is
utilized for evaluation.

Followings are the detailed configurations of individual algorithms. Regarding the choice of learning rate and batch size, we
attempt multiple learning rate values, {0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01}, along with multiple batch size values,
{1, 8, 16, 32}, and the best set of configuration is adopted for each algorithm.

• PCVaR
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– Learning rates: αθ = 0.0005, αη = 0.0005, αϕ = 0.0005.
– Initialization: θ, η, and ϕ are optimized/fitted to Data 1 via PCVaR algorithm.
– Batch size: B = 1.

• NCVaR

– Learning rates: αθ = 0.001, αη = 0.001.
– Initialization: same as PCVaR configuration, but utilize θ and η only.
– Batch size: B = 1.

• GCVaR

– Learning rate: αθ = 0.001.
– Initialization: same as PCVaR configuration, but utilize θ only.
– Batch size: B = 1.

• Risk-neutral policy gradient

– Learning rates: αθ = 0.0001.
– Initialization: θ is optimized to Data 1 via the risk-neutral policy gradient algorithm.
– Batch size: B = 1.
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