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ABSTRACT

Physics-informed Neural Networks (PINNs) have recently emerged as a principled
way to include prior physical knowledge in form of partial differential equations
(PDEs) into neural networks. Although PINNs are generally viewed as mesh-free,
current approaches still rely on collocation points within a bounded region, even in
settings with spatially sparse signals. Furthermore, if the boundaries are not known,
the selection of such a region is difficult and often results in a large proportion
of collocation points being selected in areas of low relevance. To resolve this
severe drawback of current methods, we present a mesh-free and adaptive approach
termed particle-density PINN (pdPINN), which is inspired by the microscopic
viewpoint of fluid dynamics. The method is based on the Eulerian formulation
and, different from classical mesh-free method, does not require the introduction of
Lagrangian updates. We propose to sample directly from the distribution over the
particle positions, eliminating the need to introduce boundaries while adaptively
focusing on the most relevant regions. This is achieved by interpreting a non-
negative physical quantity (such as the density or temperature) as an unnormalized
probability distribution from which we sample with dynamic Monte Carlo methods.
The proposed method leads to higher sample efficiency and improved performance
of PINNs. These advantages are demonstrated on various experiments based on
the continuity equations, Fokker-Planck equations, and the heat equation.

1 INTRODUCTION

Many phenomena in physics are commonly described by partial differential equations (PDEs) which
give rise to complex dynamical systems but often lack tractable analytical solutions. Important
examples can be found for instance in fluid dynamics with typical applications in the design of gas
and steam turbines (Oosthuizen & Carscallen, 2013), as well as modeling the collective motion of
self-driven particles (Marchetti et al., 2013) such as flocks of birds or bacteria colonies (Szabó et al.,
2006; Nussbaumer et al., 2021). Despite the relevant progress in establishing numerical PDE solvers,
such as finite element and finite volume methods, the seamless incorporation of data remains an open
problem (Freitag, 2020). To fill this gap, Physics-informed Neural Networks (PINNs) have emerged
as an attractive alternative to classical methods for data-based forward and inverse solving of PDEs.

The general idea of PINNs is to use the expressive power of modern neural architectures for solving
partial differential equations (PDEs) in a data-driven way by minimizing a PDE-based loss, cf. Raissi
et al. (2019). Consider parameterized PDEs of the general form

f(t,x|λ) := ∂tu(t,x) + P (u|λ) = 0, (1)
where P is a non-linear operator parameterized by λ, and ∂t is the partial time derivative w.r.t.
t ∈ [0, T ]. The position x ∈ Ω is defined on a spatial domain Ω ⊆ Rd. The PDE is subject to initial
condition g0

u(0,x) = g0(x) (2)
for x ∈ Ω, and boundary conditions g∂Ω

u(t,x) = g∂Ω(x) (3)
for x ∈ ∂Ω and t ∈ [0, T ]. The main idea of PINNs consists in approximating u(t,x) (and hence
f(t,x)) with a neural network given a small set of N noisy observations uobs

u(t(i),x(i)) + ϵ(i) = u
(i)
obs (4)
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with noise ϵ(i) ≪ u(i) ∀i ∈ {0, 1, . . . , N}. This allows us to consider the following two important
problem settings: If λ is known, the PDE is fully specified, and we aim to find a solution u in a
data-driven manner by training a neural network. The PDE takes the role of a regularizer, where
the particular physical laws provide our prior information. A second setting considers the inverse
learning of the parameters λ by including them into the optimization process in order to infer physical
properties such as the viscosity coefficient of a fluid (Jagtap et al., 2020). Initial work on solving
time-independent PDEs with neural networks with such PDE-based penalties was pioneered by
Dissanayake & Phan-Thien (1994) and van Milligen et al. (1995), with later adoptions such as Parisi
et al. (2003) extending it to non-steady and time-dependent settings.

Loss functions. Typically, PINNs approximate f(t,x) by the network fΘ(t,x) in which the pa-
rameters Θ are adjusted by minimizing the combined loss of (i) reconstructing available observations
(Lobs), (ii) softly enforcing the PDE constraints on the domain (Lf ), and (iii) fulfilling the boundary
(Lb) and initial conditions (Linit), i.e.

Θ = argmin
Θ

[w1Lobs(X, t,uobs,Θ) + w2Lf (Θ) + w3Lb(Θ) + w4Linit(Θ)] , (5)

with loss weights wi ∈ R≥0. A common choice for Lobs, Lb, and Linit is the expected L2 loss,
approximated via the average L2 loss over the observations and via sampled boundary and initial
conditions, respectively. It should be noted that the formulation of the forward and inverse problem
are identical in this setting, as observations and initial conditions are implemented in a similar manner.

Enforcing the PDE. Although PINNs are by nature mesh-free, the PDE loss Lf in Eq. 5 used for
the soft enforcement of Eq. 1 requires a similar discretization step for approximating an integral over
the continuous signal domain,

Lf (Θ)=
1

|[0, T ]× Ω|

T∫
t=0

∫
Ω

||fΘ(t,x)||22dx dt=Ep(t,x)

[
||fΘ(t,x)||22

]
≈ 1

n

n∑
i=1

||fΘ(ti,xi)||22 (6)

with p(t,x) being supported on [0, T ]× Ω. The points {(t(j),x(j))}nj=1 ⊂ [0, T ]× Ω on which the
PDE loss is evaluated are commonly referred to as collocation points. This formulation of PINNs
for solving Eq. 1 is an Eulerian one, as the function fΘ is updated by evaluating the PDE with
respect to collocation points fixed in space. Initial approaches for selecting the collocation points in
PINNs relied on a fixed grid (Lagaris et al., 1998; Rudd, 2013; Lagaris et al., 2000), followed up by
work proposing stochastic estimates of the integral via (Quasi-) Monte Carlo methods (Sirignano &
Spiliopoulos, 2018; Lu et al., 2021; Chen et al., 2019) or Latin Hypercube sampling (Raissi et al.,
2019). However, these approaches to Eulerian PINNs cannot be directly applied if there are no
known boundaries or boundary conditions, e.g. for Ω = Rd. Additionally, problems can arise if the
constrained region is large compared to the area of interest. Considering for example the shock wave
(of a compressible gas) in a comparably large space, most collocation points would fall into areas of
low density. We argue that due to the locality of particle interactions, the regions with higher density
are more relevant for regularizing the network.

To address these shortcomings of previous methods, we propose a mesh-free and adaptive approach
for sampling collocation points, illustrated on the example of compressible fluids. By changing p(t,x)
to the distribution over the particle positions in the fluid we effectively change the loss functional in
Eq. 6. We then generalize to other settings, such as thermodynamics, by interpreting a positive, scalar
quantity of interest with a finite integral as a particle density. Within this work we specifically focus
on PDEs that can be derived based on local particle interactions or can be shown to be equivalent to
such a view, as for example is the case for the heat equation with its connection to particle diffusion.
Notably, we do not require the introduction of Lagrangian updates, as classical mesh-free methods do,
which would be based on evaluating the PDE with respect to moving particles (see also section 2).

Main contributions. The main contributions of this paper are as follows:

• We demonstrate that PINNs with uniform sampling strategies (and refinement methods based
on uniform proposals) fail in settings with spatially sparse signals as well as in unbounded
signal domains; these problems can severely degrade the network’s predictive performance.
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• In order to overcome these limitations of existing approaches, we propose a truly mesh-free
version of Eulerian PINNs, in which the collocation points are sampled using physics-
motivated MCMC methods. By staying within the Eulerian framework, we avoid conceptual
challenges of classical mesh-free methods based on Lagrangian updates such as the enforce-
ment of boundary conditions.

• The proposed model is applicable to a huge range of dynamical systems governed by PDEs
that share an underlying microscopic particle description, such as several hydrodynamic,
electro- and thermo-dynamic problems.

• We rigorously evaluate and compare our proposed method with existing approaches in
high-dimensional settings. Compared to existing mesh refinement methods, significantly
fewer collocation points are required to achieve similar or better predictive performances,
while still being more flexible.

2 RELATED WORK

Mesh-Free Fluid Dynamics. Classical mesh-free approaches in computational fluid dynamics
are based on non-parametric function representations, with Smoothed Particle Hydrodynamics
(SPH) (Lind et al., 2020; Gingold & Monaghan, 1977) being the most prominent example. In SPH,
fluid properties such as the density and pressure are represented by a discrete set of particles and
interpolated using a smoothing kernel function. For updating the function forward in time, the
particles have to be propagated according to the Lagrangian formulation of the PDE, relying on the
kernel for computing spatial derivatives. One of the benefits of such a representation is that mass
is conserved by construction. However, Lagrangian updates become challenging when enforcing
boundary conditions, requiring the introduction of ad-hoc "dummy" or "mirror" particles (Lind et al.,
2020). Instead, we present a mesh-free, particle-based, PINN that does not require Lagrangian
updates, and is already applicable in the Eulerian formulation. It should be noted that the proposed
pdPINNs can in principle be combined with Lagrangian updates such as proposed by Raissi et al.
(2019) and later by Wessels et al. (2020). But as the intention of this work is to improve upon
current Eulerian PINNs, we refer to future work for the comparison and extension to the Lagrangian
formalism.

Alternative Meshes and Losses for PINNs. Recent work proposes local refinement methods
for PINNs by adding more samples within regions of high error (Lu et al., 2021; Tadiparthi &
Bhattacharya, 2021). Residual adaptive refinement (RAR) is suggested by Lu et al. (2021), which
is based on regularly evaluating the PDE loss on a set of uniformly drawn samples. The locations
corresponding to the highest PDE loss are then added to the set of collocation points used in training.
Tadiparthi & Bhattacharya (2021, preprint) further enhance RAR by learning a linear map between
the uniform distribution and the distribution over the PDE loss by optimizing an optimal transport
objective. By sampling uniformly and subsequently transforming these samples, it is attempted
to focus on regions of higher error. Due to the conceptual similarity to RAR, we will denote this
method as "OT-RAR". The work of Nabian et al. (2021) explores Importance Sampling based on
the (unnormalized) proposal distribution ||fΘ(t,x)||22 for a more sample efficient evaluation of Eq. 6.
Samples are drawn using a variation of Inverse Transform sampling (Steele, 1987).

However, in all these cases the underlying mechanism for exploring regions of high error is based on
(quasi-) uniform sampling within the boundaries. As such, they do not resolve the issues of unknown
boundaries and will furthermore be infeasible in higher dimensions.

Kinetic Theory: From particles to PDEs. Kinetic theory shows that essential conservation laws of
fluids can be derived from a microscopic (or molecular) viewpoint (Born & Green, 1946). Interactions
describing the dynamics of a fluid are described starting from a set of individual particles. The basis
of this approach is the so-called molecular distribution function Ψ over phase space, i.e. Ψ(t,x,v)
such that ∫

∆x

∫
∆v

Ψ(t,x,v)dvdx (7)

is the probability that a molecule with a velocity within ∆v = ∆v1∆v2∆v3 occupies the volume
∆x = ∆x1∆x2∆x3. Based on this distribution function, it is possible to define common quantities
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as the (mass or particle) density, (local mean) velocity, and macroscopic PDEs by considering the
local interactions of individual particles. The one-particle phase space is commonly known from its
application in the Boltzmann equation for modelling two-body interactions describing gases (Green,
1956) and active matter (e.g. flocks of birds) (Bertin et al., 2006). The more general form including
higher interaction terms is necessary for deriving conservation laws of liquids (Born & Green, 1946).

3 PARTICLE-DENSITY PINNS

In this section we introduce the concept of mesh-free particle-density PINNs (pdPINNs). Firstly,
we examine limitations of the common PDE loss in Eq. 6 and, secondly, we present a solution by
integrating over the position of particles instead of the full support of the signal domain.

The underlying assumption of our approach is that the dynamics described by the PDE can be
explained in terms of local interactions of particles. This is the case, for instance, for commonly
considered dynamics of gases, liquids or active particles (Hoover & Hoover, 2003; Toner & Tu,
1995).

Existing limitations of Eulerian PINNs. Consider the problem of modeling a (possibly non-steady)
compressible fluid, i.e. a fluid with a spatially and temporally evolving density ρ(t,x) and velocity
v(t,x). For the sake of notational brevity, we will denote these by ρ and v. Given noisy observations,
our particular interest lies in the prediction of particle movements, hence in the approximation of the
density (and potentially other physical quantities) with a neural network ρΘ. Additional quantities
such as the velocity or pressure might also be observed and modeled.

Commonly, the PDE then serves as a physics-based regularizer of the network by enforcing the PDE
loss Lf in Eq. 6 during standard PINN training. For this, Lf is evaluated on a set of collocation
points that are, for example, uniformly distributed on a bounded region. However, the limitations of
this approach already become apparent when considering a simple advection problem defined by the
following PDE:

∂tρ+ v · (∇ρ) = 0. (8)
Figure 1 illustrates a one-dimensional case on the domain [0, T ] × Ω, with Ω = R, and a known
constant velocity v ∝ 1. We measure the density ρ(i) at different (spatially fixed) points in time and
space {(t(i),x(i))}, on which a neural network ρΘ(t,x) is trained. For optimizing the standard PDE
loss Lf as given in Eq. 6, we would require a bounded region ΩB := [a, b] ⊂ Ω with a < b and
a, b ∈ R. This, in turn, leads to two issues:

1. Since the moving density occupies a small subset of Ω, uniformly distributed collocation
points within ΩB will enforce Eq. 8 in areas with low-density. This results in insufficient
regularization of ρΘ.

2. Defining a suitable bounded region ΩB requires a priori knowledge about the solution of the
PDE, which is generally not available. Choosing too tight boundaries would lead to large
parts of the density moving out of the considered area ΩB. Too large boundaries would
instead lead to poor regularization as this would worsen the sparsity problem in issue (1.).

In practice, most Eulerian PINNs approaches opt for naively defining a sufficiently wide region ΩB,
resulting in a poor reconstruction. In the context of our advection problem, this is showcased in
Figure 1b. To properly resolve the aforementioned issues, one should (i) focus on areas that have
a relevant regularizing effect on the prediction of ρΘ and (ii) adapt to the fluid movements without
being restricted to a predefined mesh.
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(a) (b)

(c) (d)

Figure 1: Advection experiment in 1D: (a) ground truth at time t1 and (c) time t2, (b) density
prediction with uniform collocation points and (d) particle-density-based collocation points for
t ∈ {t1, t2}, with crosses indicating sampled points.

Mesh-Free Eulerian PINNs. We thus propose to reformulate the PDE loss in Eq. 6 as the expecta-
tion of ||fΘ(t,x)||22 with respect to the molecular distribution Ψ(t,x) introduced in the related work
section 2:

Lpd(Θ) ≈
∫ T

t=0

∫
Ω

Ψ(t,x)
[
||fΘ(t,x)||22

]
dx dt. (9)

This completely removes the need of defining ad-hoc boundaries while providing the ability to
flexibly focus on highly relevant regions, i.e. those that are more densely populated. As the particle
density corresponds directly to the occupation probability of a molecule Ψ(t,x) with a changed
normalization constant, we can estimate Lpd via samples drawn from the normalized particle density,
which is denoted as ρN . For homogeneous fluids, this coincides with the normalized mass density.

In summary, we propose to draw collocation points from the normalized density:

(ti,xi) ∼ ρN (t,x) = 1
Z ρ(t,x). (10)

The true particle positions and the density ρN are however unknown in practice. Instead, we have
to rely on the learned density ρΘ(t,x) as a proxy provided by the neural network. We denote the
associated normalized PDF by qΘ(t,x) =

1
Z′ ρΘ(t,x) with support on [0, T ]× Ω. The PDE loss is

then defined as the expectation w.r.t. qΘ(t,x):

Lpd(Θ) = EqΘ(t,x)

[
||fΘ(t,x)||22

]
=

∫ T

t=0

∫
Ω

qΘ(t,x) ||fΘ(x, t)||22 dx dt. (11)

In order to approximate this integral, samples need to be drawn from qΘ(t,x). This can be done in
a principled way by using dynamic Monte Carlo methods, despite the fact that the normalization
constant Z is unknown. We highlight that, in contrast to the mesh-based loss in Eq. 6, the loss in
Eq. 11 is also suitable for problems on unbounded domains such as Ω = Rd.

Applicability of pdPINNs. Although motivated in the context of an advection problem, the
proposed approach is generally applicable to a wide range of PDEs. The advection equation 8 can be
seen as a special case of mass conservation (assuming ∇ · v = 0), which is one of the fundamental
physical principles expressed as a continuity equation. This continuity equation relates temporal
changes of the fluid density ρ to spatial changes of the flux density ρv through

∂tρ+∇ · (ρv) = 0. (12)

Another common physical process that is suited for our approach is diffusion, such as in the Heat
Equation, where local interactions of particles give rise to the following PDE (as established by Fick’s
second law):

∂tT − α∇2T = 0, (13)
where T denotes the temperature interpreted as density, α the thermal (or mass) diffusivity, and ∇2

the Laplacian operator. By introducing additional constraints to the diffusion and mass-conservation,
one can describe viscous fluids with the Navier-Stokes equations or even self-propelled, active
particles, for which Toner and Tu (Toner & Tu, 1995; Tu et al., 1998; Toner & Tu, 1998) introduced
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hydrodynamic equations. Other possible applications involve Maxwell’s equations for conservation
of charge in electrodynamics, as well as the distribution of Brownian particles with drift described by
the Fokker-Planck equations. In general, our method is applicable in settings where (i) a non-negative
scalar field (with a finite integral) of interest can be interpreted as a particle density, and (ii) the local
interactions of these particles give rise to the considered PDEs.

4 MODEL AND IMPLEMENTATION

A wide range of different network architectures and optimization strategies for PINNs have emerged.
They emphasize well-behaved derivatives with respect to the input domain (Sitzmann et al., 2020),
allow higher expressivity for modelling high frequency data (Tancik et al., 2020; Wang et al., 2021b),
or resolve gradient pathologies within PINNs (Wang et al., 2021a). As our method does not rely on
a specific architecture, any such improvement can be easily combined with the proposed pdPINNs.
For the experiments in this submission we will use simple fully-connected networks with sinusoidal
(Sitzmann et al., 2020) or tanh activations (see section 5).

Finite total density. For reformulating the predicted density ρΘ as a probability, we have to ensure
non-negativity as well as a finite integral over the input domain Ω. Non-negativity can for example
be achieved via a squared activation function after the last layer. An additional bounded activation
function g is then added, which guarantees the output to be within a pre-specified range [0, cmax].
The integral Rd can then be enforced to be finite by multiplying the bounded output with a Gaussian
kernel. Summarizing these three steps, let ρ̃Θ denote the output of the last layer of our fully connected
neural network and pgauss(x) = N (x;µ,Σ), then we predict the density ρΘ as

ρΘ(t,x) = pgauss(x) g(ρ̃Θ(t,x)
2) ≤ cmaxpgauss(x). (14)

In practice, the choice of cmax does not affect the model as long as it is sufficiently large. The used
mean µ and covariance Σ are maximum likelihood estimates based on the observations x, i.e. the
sample mean x̄ and covariance Σ̄ of the sensor locations. To allow more flexibility in the network,
we add a scaled identity matrix to the covariance Σ = Σ̄ + c · I , which can be set to a large value for
solving PDEs when only initial conditions, but no observations, are available.

Markov chain Monte Carlo (MCMC) sampling. Finally, MCMC methods allow us to draw
samples from the unnormalized density ρΘ(t,x). We consider several MCMC samplers and empha-
size that the wide range of well-established methods offer the ability to use a specialized sampler
for the considered problem, if the need may arise. Gradient-based samplers such as Hamiltonian
Monte Carlo (Duane et al., 1987; Betancourt, 2017) are particularly suited for our setting, as the
gradients of ρΘ with respect to the input space are readily available. For problems where boundaries
are known and we have to sample from a constrained region, a bijective transformation is used so
that the Markov chain may operate in an unconstrained space (Parno & Marzouk, 2018). In our
experience, both Metropolis Hastings and Hamiltonian Monte Carlo already worked sufficiently well
for a wide range of PDEs without requiring much fine-tuning. We highlight that pdPINNs do not
directly depend on MCMC as a sampler, and alternative sampling methods such as modern variational
inference schemes (Rezende & Mohamed, 2015) can also be directly used as a substitute.

For details regarding the samplers used and implementation we refer to the Experiments section 5
and Appendix section A.1.

5 EXPERIMENTS

In this section we demonstrate the advantages of pdPINNs compared to uniform sampling, importance
sampling (Nabian et al., 2021) as well as the adaptive refinement methods RAR (Lu et al., 2021) and
OT-RAR (Tadiparthi & Bhattacharya, 2021). Despite the term uniform sampling, we rely in all our
experiments on quasi-random Sobol sequences for more stable behavior in the low samples regime.
To guarantee a fair comparison, we considered slight variations of the proposed implementations of
RAR and OT-RAR, so that only a limited number of collocation points are used. For the pdPINNs we
consider multiple MCMC schemes, including inverse transform sampling (IT-pdPINN), Metropolis-
Hastings (MH-pdPINN), and Hamiltonian Monte Carlo (HMC-pdPINN) methods.
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The models in sections 5.1 and 5.2 are implemented in PyTorch (Paszke et al., 2019), with a custom
Python implementation of the MH and Inverse Transform samplers. For the Fokker-Planck experiment
in section 5.3, we make use of the efficient MCMC implementations provided by TensorFlow
probability (Abadi et al., 2016; Lao et al., 2020) and the utilities of the DeepXDE library (Lu et al.,
2021). More details, as well as further experiments comparing the wall-time of the various samplers,
are provided in the Appendix with the code being provided in the supplementary material.

5.1 MASS CONSERVATION FOR SIMULATED PARTICLES

As a challenging prediction task we consider a setting motivated by the real world problem of
modelling bird densities and velocities measured from a set of weather radars (Dokter et al., 2011;
Nussbaumer et al., 2019; 2021) – or more generally the area of radar aeroecology. A non-steady
compressible fluid in three dimensions is simulated by propagating fluid parcels through a pre-defined
velocity field, i.e. the fluid is simulated using the conservation of mass as the underlying PDE (see
Eq. 12). To provide the network with training observations, we introduce a set of spatially fixed
sensors (comparable to radars) which count over time the number of fluid parcels within a radius r
and over 21 contiguous altitude layers. Another disjoint set of sensors is provided for the validation
set while the test performance is evaluated on a grid. The birds-eye view of the setting is shown
in Figure 2a, where circles indicate the area covered by the radars. Figure 2b additionally shows
the 3D simulated data projected along the z-axis and over time. In the Appendix section A.3 we
describe the data generation and training setting in detail and provide the corresponding code in the
supplementary.

(a)
(b)

Figure 2: Visualization of the 2D compressible fluid experiment. (a) Bird-eye view of the ground
truth particle density. (b) z-projection of the density over time, obtained summing over the xy grid
cells.

For modeling the density and velocity, two sinusoidal representation networks (SIREN) (Sitzmann
et al., 2020) ρΘ1

(t,x) and vΘ2
(t,x) are used, which are then regularized by enforcing the continuity

equation for the conservation of mass (see Eq. 12). To showcase the sample efficiency of pdPINNs,
experiments are performed over a wide range of collocation points (256 to 65536). In each setting
the PDE-weights w2 (see Eq. 5) were selected with a grid search based on the highest 1st quartile
R2 in a validation set. The resulting box-plots of the test R2 are provided in Figure 3, where the
“Baseline” corresponds to training without any PDE loss. The proposed pdPINN approach clearly
outperforms alternative (re-)sampling methods across all numbers of collocation points. Already
with very few collocation points (512) pdPINNs achieve results that require orders of magnitude
more points (32768) for uniform sampling. Finally, we observe that the performance gap shrinks as
the number of collocation points increases, eventually converging to the same limiting value. Even
when getting close to the memory limit of a NVIDIA Titan X GPU, other sampling strategies at best
achieve comparable results with pdPINNs. In the Appendix (Figure A.6) we provide an additional
qualitative comparison of the mass conservation between OT-RAR and MH-pdPINN 2048 samples.

As an additional experiment we simplified the setting by projecting the data onto the xy-axis, i.e. the
birds-eye view, which is a common setting for geostatistical data (e.g. in Nussbaumer et al. (2019)).
The results in this 2D setting, which are provided in the Appendix (Figure A.8) and described in
details in section A.3, are very similar in nature to the 3D setting, although with a smaller performance
gap with respect to alternative sampling methods. This decrease of the gap is to be expected, as the
lower dimensional space is much easier to explore with uniform proposals.
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Figure 3: Explained variance of
√
ρ evaluated on the test set, for different number of collocation

points for the 3D mass conservation experiment and for 10 different seeds.

5.2 HEAT EQUATION

We further consider a 2D diffusion problem, namely the heat equation introduced in section 3, where
randomly distributed sensors provide measurements of the temperature. We focus on a general setting
with the initial conditions being zero temperature everywhere except for a specified region, as shown
in Figure 4a, and we let the system evolve for t ∈ [0, 0.2]. The networks are only provided sensor
measurements of the temperature; for further details see the Appendix section A.4.

Temperature predictions for PINNs with uniform sampling and pdPINNs are illustrated in Figure 4b
and 4c, respectively, with the ground truth in Figure 4a. We can observe that the uniform sampling
strategy does not allow to focus on the relevant parts of the domain, i.e. regions with high temperature,
and that it visibly fails to reconstruct the temperature profile. In contrast, the pdPINN promotes
sampling in regions of higher density and predicts the true temperature more reliably. We also
evaluate quantitatively the performance of the two approaches in terms of the R2 test error over the
predicted temperature and illustrate the results in the Appendix section A.4, where we again observe
the same convergence between uniform sampling and pdPINNs for high numbers of collocation
points.

(a) (b) (c)

Figure 4: Temperature predictions of the heat equation experiment (trained with 128 collocation
points) at time t ∼ 0.044. (a) Ground truth (b) uniform sampling, and (c) pdPINN.

5.3 FOKKER-PLANCK EQUATION

For a demonstration of a forward problem, i.e. a setting without any observed data but only initial
conditions, we solve the Fokker-Planck (FP) equations in a setting where an analytical solution is
available (cf. Särkkä & Solin (2019)). The FP equations describe the evolution of the probability
density of the movement of Brownian particles under a drift. More specifically, assume we are given
particles at time t0, which are distributed according to p(t0, x). Let the movements of these particles
be described by the following stochastic differential equation, where Wt denotes the standard Wiener
process:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt (15)
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(a)
(b)

Figure 5: Fokker-Planck equation in 1D. (a) KL divergence between the true target distribution and
approximation during training, (b) predicted log pΘ(t, x) after training, cropped to x ∈ [−0.5, 0.5].

with known drift µ(Xt, t) and diffusion coefficient D(Xt, t) = σ2(Xt, t)/2. The FP equation for the
probability density p(t, x) of the random variable Xt is then given by

∂

∂t
p(t, x) = − ∂

∂x
[µ(t, x)p(t, x)] +

∂2

∂x2
[D(t, x)p(t, x)] . (16)

We train a network to predict the (probability) density pΘ(t, x) given a known sinusoidal drift and
constant diffusion, which are discussed in detail in the Appendix. Data is only provided for the
initial condition, and the PDE loss is based on Eq. 16 within the space Ω = [−.1.5, 1.5] and time
t ∈ [−1, 1]. As the analytical solution is available in form of a probability density, we can estimate
the KL divergence KL(p||pΘ) to evaluate the performance. Furthermore, we can sample collocation
points from the true particle distribution p(t, x) (referred to as “p(t, x) as sampler”), offering a “best
case scenario” of pdPINNs. A total of 5000 collocation points were used, and weights were manually
tuned based on the error on a validation set. Figure 5a shows the evolution of KL divergence during
training, highlighting that pdPINN based methods require fewer steps to achieve a low divergence. In
addition, sampling from the true particle distribution leads to the fastest improvement and the lowest
divergence after 30000 training steps. A qualitative comparison of the results is given in Figure 5b,
showing that RAR and uniform sampling fail to propagate the sine wave forward. The ground truth
of the problem and wall-times for different methods are given in the Appendix section A.5.

6 CONCLUSION

In this work, we introduced a general extension to PINNs applicable to a great variety of problem
settings involving physics-based regularization of neural networks. In order to overcome the limita-
tions of classical mesh-based Eulerian PINNs, we introduce a novel PDE loss that is defined with
respect to the particle density in rather general types of PDEs. By employing MCMC methods to
sample collocation points from the density approximated by the network, we derive an efficient and
easy-to-implement improvement for providing a more appropriate regularization objective in PINNs.
In particular, our new pdPINNs are completely mesh-free, thereby overcoming severe efficiency
problems of classical PINNs in high-dimensional and sparse settings. Further, the absence of a mesh
allows us to elegantly handle settings with uncertain or unknown domain boundaries.

As we have demonstrated, our method is applicable to a wide spectrum of PDEs, ranging from
hydrodynamic flow problems to electro- and thermo-dynamic problems, as well as more general
applications of the Fokker-Planck equations.
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A APPENDIX

A.1 BACKGROUND SAMPLING FOR PDPINNS

At initialization, the network prediction ρΘ is random and thus does not carry any useful information,
i.e. sampling from this density would be meaningless. Therefore, we start training the pdPINNs with
a warm-up phase in which samples are obtained from a pre-specified background distribution:

x ∼ pbg(t,x) = p(t)pbg(x|t) (17)

with p(t) = U(0, T ). To avoid introducing a mesh, we could rely on the previously estimated
Gaussian distribution introduced in Section 4, i.e. pbg(x|t) = pgauss(x). As a second alternative,
approach we consider random linear combinations of the convex hull of {x(i)}Ni=1 spanned by c data
points summarized as rows of matrix Z ∈ Rc×d. This leads to x = mZ with weight m ∈ Rc which
can be drawn from a Dirichlet distribution, i.e. m ∼ Dir(α = 1). Of course, a uniform sampling
mechanism on a defined region is also suitable and the definitive choice depends on the data and PDE
at hand. However, we found that all of these methods work well in practice.

We initially draw all samples from the background distribution, and then slowly increase the pro-
portion of samples obtained from the particle density, as we found that leaving some background
samples slightly helps in the training.

A.2 IMPLEMENTATION OF RAR AND OT-RAR

For our comparison, we considered the adaptive refinement methods RAR and OT-RAR, proposed by
Lu et al. (2021) and Tadiparthi & Bhattacharya (2021, preprint). Both methods rely on consecutive
refinements of a fixed grid in the initial proposal. The number of collocation points is steadily
increased and collocation points once added will not be removed. To allow for a fairer comparison,
we adapt both methods to use a limited budget of points, and in addition we regularly resample
them. This leads to a slightly modified version of the methods which is similar in spirit. For learning
the linear mapping proposed by Tadiparthi & Bhattacharya (2021), we rely on the PyOT (Flamary
et al., 2021) implementation of Knott & Smith (1984). The pseudo-code for sampling a set of
collocation points is given in Algorithm 1 and Algorithm 2. The required input fΘ refers to the PDE
approximated by the network, as discussed in Section 1. For more specific details on the methods we
refer to the original papers.

Algorithm 1 Adapted RAR

Input: fΘ, uniform distribution UB,
number of col. points k, previous col. points Xprev.

Xprop ← [x1,x2, . . . ,xk]
T with xi ∼ UB ▷ Sample proposals

Xcomb ← concat(Xprev, Xprop) ▷ Concatenate old and new points
Xnew ← topk(Xcomb, ||fΘ(Xcomb)||22, k) ▷ Keep top k proposed points based on fΘ

Output: Xnew

A.3 EXPERIMENTS: CONSERVATION OF MASS

In the supplementary material we provide code in Python for the data generation and for the pdPINN
model. Below we provide the details for all the experiments we conducted. Furthermore, we provide
short videos showing the predicted density movements for each different approach. More details on
this can be found in the README.html provided in the supplementary files.

All experiments were run on a computing cluster using Nvidia GeForce GTX Titan X GPUs with
12 GB VRAM. Settings that required more memory were run on a RTX8000 with 48GB VRAM.
Up to 16 Titan X GPUs could be used in parallel, or 4 RTX8000. In most settings, training in each
experiment took less than 10 minutes.
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Algorithm 2 Adapted OT-RAR

Input: fΘ, uniform distribution UB,
number of col. points k,
number of points for empirical distribution j < 2k,
previous col. points Xprev.

Xprop ← [x1,x2, . . . ,xk]
T with xi ∼ UB ▷ Sample proposals

Xcomb ← concat(Xprev, Xprop) ▷ Concatenate old and new points

Xtarget ← topk(Xcomb, ||fΘ(Xcomb)||22, j) ▷ j samples for target empirical distribution
Xsource ← [x1,x2, . . . ,xj ]

T with xi ∼ UB ▷ j samples for source empirical distribution

MOT ← LinOT(Xsource, Xtarget) ▷ Obtain linear operator that maps to target distribution

Xnew ← [x1,x2, . . . ,xk]
T with xi ∼ UB ▷ Sample uniformly

Xmap ←MOT(Xnew) ▷ Map samples to target distribution

Output: Xmap

A.3.1 ADDITIONAL EXPERIMENTAL RESULTS

3D Setting. Figure A.6 showcases the projection of the density in the onto the z axis for a random
run of the OT-RAR method and the Metropolis-Hastings based pdPINN when using 2048 collocation
points. The OT-RAR PINN shows disconnected density predictions that clearly violate mass con-
servation, whereas the Metropolis Hastings based pdPINN is capable of mostly preserving it. The
boxplot in Figure A.8 highlights the difference in required number of collocation points of

Figure A.6: Mass conservation experiment (3D): Predictions (obtained with 2048 collocation points)
summed over xy grid cells to obtain z-axis projection over time.

Figure A.7: Mass conservation experiment (3D): Boxplot of test R2 of
√
ρ comparing pdPINN and

uniform sampling with a factor 8 difference for the number of collocation points. For each method,
the used PDE weight was selected based on the highest 1st quartile R2 in a validation set.
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2D Setting. As mentioned in Section 5, we repeated the Conservation of Mass experiment in a
slightly altered setting, where the data is projected onto the xy-plane, reducing it to a 2D+Time
problem. The general setup is similar to the 3D setting, although a smaller network and different
training parameters are used, which are listed in the following sections below.

Figure A.8: Explained variance of
√
ρ evaluated on the test set, for different number of collocation

points for the 2D mass conservation experiment.

A.3.2 DATA GENERATION

Here we provide a more detailed description for the generated data, namely the used velocity field,
and the method for obtaining simulated “radar measurements”.

Velocity field. The velocity field in the xy-plane was generated from a scalar potential field
Φ : R2 → R and the z-component of a vector potential a : R2 → R. Through the Helmholtz
decomposition1 we can construct the velocity field vxy : R2 → R2:

vxy

([
x
y

])
= −∇Φ+

[
δa/δy
−δa/δx

]
. (18)

For both experiments the following fields were used:

Φ

([
x
y

])
= −1

2
(x− 2) · (y − 2), (19)

a

([
x
y

])
= −1

5
exp

(
−
(2
3
x
)2
−
(2
3
y
)2)

. (20)

The derivatives were obtained using the symbolic differentiation library SymPy (Meurer et al., 2017).
To add a nonsteady component, the resulting velocity field is modulated in amplitude as a function of
time t ∈ [0, 3]:

vxyt

(
t,

[
x
y

])
= vxy

([
x
y

])(
3

2

∣∣∣∣sin(2

3
πt

)∣∣∣∣+ 0.05

)
. (21)

The z (altitude) component of the velocity only depends on time and is given by:

vz(t) = 1.6 · sin
(
4

3
πt

)
. (22)

Simulation. For the initial distribution of the fluid, the particle positions were drawn from Gaussian
mixtures. For t ∈ [0, 3], these particles were simulated using the above constructed velocity field.
Overall, the paths of the roughly 240000 parcels were simulated using a basic backward Euler scheme.

1This is the 2D formulation of the Helmholtz decomposition, where the vector potential has non-zero
components only along the z-axis as in a3d = [0, 0, a]T . The full decomposition is commonly written as
v3d = −∇Φ3d +∇× a3d.
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Measurements. The measurements at the sensors were obtained by counting the number of particles
within a given radius over multiple timesteps. The density corresponds to the mass divided by the
sensor area, and the velocity is an average over all the particle velocities. For the training data
additional zero-mean isotropic Gaussian noise is added to all measurements. In the 3D setting, data
measurements of density and velocity are obtained by 132 sensors on the xy-plane, within region
[−3, 3]2 at 11 equidistant timesteps. In the 2D setting, the same set of sensors is used.

A.3.3 ARCHITECTURE AND TRAINING

In both experiments, the networks for density ρΘ1 and velocity vΘ2 prediction (parameterized by Θ1

and Θ2, respectively) are fully-connected layers with sinusoidal activation functions, as proposed
by Sitzmann et al. (2020). The number of layers and units for each setting is shown in Table A.1.
The sine frequency hyperparameter required in the SIREN architecture was tuned by hand according
to the validation loss of the baseline model (i.e. without a PDE loss), leading to a sine-frequency
of 12 for the 2D setting, and 5 for the 3D setting. We note that the proposed default value of 30 in
Sitzmann et al. (2020) heavily overfits our relatively low-frequency data and we thus recommend an
adjustment of this hyperparameter for usage in PINNs.

For training the network, the ADAM optimizer (Kingma & Ba, 2014) with a learning rate of 8×10−4

(2D Setting) or 10−4 (3D Setting) was used. The learning rate was multiplied by a factor of 0.99
each epoch. All models were trained for 300 (3D setting) or 500 (2D setting) epochs. The 2D setting
was trained using full-batch gradient descent, whereas for the 3D setting we used a mini-batch size of
6931. In all experiments we trained and evaluated on 10 different random seeds.

Table A.1: Architecture for Particle Simulation Experiments.

Experiment Input Output Variable # Hidden Layers # Hidden Units

2D [0, T ]× R2 Density ρΘ1 ∈ R+ 2 256
Velocity vΘ2

∈ R2 1 64

3D [0, T ]× R3 Density ρΘ1
∈ R+ 6 256

Velocity vΘ2
∈ R3 3 256

A.4 EXPERIMENTS: HEAT EQUATION

The dataset for the heat equation experiment was generated by numerically solving the heat equation
through the finite difference method, precisely the Forward Time, Centered Space (FTCS) approxi-
mation (Recktenwald, 2004). We used Dirichlet boundary conditions in form of zero temperature
around a squared shape far away from the relevant domain. These boundary conditions are not
provided to the PINNs for a slightly more difficult setting. Overall, the dataset is composed of 1000
training points, 1971120 test points and 492780 validation points. We made sure training points
contained enough information about the initial condition, i.e. we selected a sufficient amount of
points around the initial source of non-zero temperature. In contrast, validation and test points are
taken uniformly in time and space. During the warm-up phase of the pdPINN training, collocation
points were sampled uniformly, and afterwards 90% of the samples were drawn from the particle
density distribution, which is proportional to the modeled temperature. Collocation points were
re-sampled every 500 epochs. Differently from previous experiments, the employed architecture is a
fully-connected two-layer neural network with 32 hidden units and tanh activations. The implementa-
tion is in PyTorch (Paszke et al., 2019), using the ADAM optimizer (Kingma & Ba, 2014) combined
with an exponential learning rate scheduler which multiplies the learning rate by a factor of 0.9999 at
each epoch, starting with a rate of 10−4 and decreasing it until reaching a minimum value of 10−5.
Training was terminated through early-stopping, as soon as the validation R2 didn’t improve for more
than 3000 epochs.

Additional results. Figure A.9 illustrates the test R2 of the predicted T averaged over 20 different
seeds. Error bars correspond to 95% confidence interval for the mean estimation, based on 1000
bootstrap samples, while colors indicate the different PDE weights w2 explored. As in previous
settings, we show that with few samples (16) the regularization enforced by the PDE loss is not strong
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enough, leading to comparable results in both approaches (as expected). Hence PINNs and pdPINNs
show similar results in this regime. However, as the number of samples increases (32-64-128-256),
the PDE loss enforced by the proposed pdPINNs quickly and steadily outperforms uniform sampling.
Lastly, we also verified that in the limit of high samples (512-1024) the two sampling strategies
converge, as in such a low-dimensional domain the uniform samples fully and densely covers the
considered area. This, again, is in line with the observed results of the other experiments.

Figure A.9: Test R2 of predicted T in the heat equation experiment as a function of different number
of collocation points. Results are averaged over 20 different seeds and the resulting error bars
correspond to 95% confidence interval for the mean estimation, based on 1000 bootstrap samples.
Different colors indicate different PDE weights w2.

A.5 EXPERIMENTS: FOKKER-PLANCK EQUATIONS IN TENSORFLOW

Within the Fokker-Planck experiment we showcase the different training behaviors of uniform
sampling, RAR, and multiple MCMC samplers. Due to the low dimensionality of the problem, we
additionally consider a Inverse-Transform (IT) sampler (Steele, 1987) for efficiently sampling from
the density. The IT sampler relies on the empirical cdf estimated via uniform samples drawn over the
whole domain. This method does not require building up a Markov Chain, and is thus very fast, but
only works well in low dimensions.

More specifically, we compare the following methods for selecting collocation points, with a highly
efficient implementation of the MCMC methods provided by TensorFlow probability:

I.) Uniform sampling
II.) Residual Adaptive Refinement (Lu et al., 2021)

III.) pdPINN with Inverse-Transform (IT) sampling (Steele, 1987)
IV.) pdPINN with Metropolis-Hastings (MH) MC with parallel tempering (Earl & Deem, 2005)
V.) pdPINN with Hamiltonian MC (HMC) with parallel tempering (Earl & Deem, 2005) and

dual averaging step-size adaptation (Hoffman et al., 2014, section 3.2)

A.5.1 SETTING AND ANALYTICAL SOLUTION

We consider the following setting over the time interval [t0, tn] = [−1, 1] with drift function µ, noise
σ and initial particle positions p(x|t = t0) given by

µ(Xt, t) = µ(t) = sin (10t) (23)
σ(Xt, t) = σ = 0.06 (24)

p(x|t = t0) = N (0, 0.022 · Id) (25)
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The PDE has an analytical solution (cf. Särkkä & Solin (2019)) which is given by

p(x|t) = N (µs(t), σ
2
s(t)) (26)

p(t) = U(t0, tn) (27)

µs(t) = −
cos(10t)

10
+

cos(10)

10
(28)

σ2
s(t) = 0.0036t+ 0.004. (29)

For evaluating the deviation of our prediction to the solution, we evaluate the KL divergence between
the analytical solution and the network approximation KL(p(x, t)|p̂Θ(x, t)) by sampling 10000
points from the true p(x, t).

A.5.2 SETUP

We use a SIREN network and additionally sample (5000) collocation points at the initial time-step,
which is the default behavior of DeepXDE. An overview of the architecture and training details is
given in Table A.2. Experiments were performed with a NVIDIA GeForce RTX 2080 Ti and an
Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00GHz processor.

Table A.2: Architecture for Fokker-Planck experiments.

Experiment Input Output Variable # Layers # Units col. points epochs

1D [0, T ]× R pΘ(x, t) ∈ R+ 5 64 5.000 30.000

A.5.3 WALL TIME

The wall times for the different methods are provided in Figure A.10. Although Metropolis-Hastings
and Hamiltonian Monte Carlo require more time per step compared to uniform sampling, the used
inverse transform sampling achieves a similar speed.

Figure A.10: Total run-times for the Fokker-Planck experiment. Seeds were selected randomly.
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