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Abstract

Unsupervised machine translation (UMT) has recently been proposed as a tool for1

deciphering animal communication. Previous efforts, however, have attempted to2

align animal signals directly with human language, introducing large ecological and3

representational gaps that inevitably limit success. We argue that a more promising4

path is to generate synthetic corpora through rich, situated, biologically realistic5

multi-agent reinforcement learning (MARL). Such simulations yield emergent6

communication signals that share statistical and functional properties with real7

animal data, thereby narrowing the gap that hampers translation. As a case study,8

we present MARL agents inspired by pulse-type weakly electric fish (WEF), which9

rely on electric organ discharges (EODs) for both sensing and social communication.10

WEF provide an ideal test case because their communication signals are tightly11

coupled to collective behaviors such as foraging, resource sharing, and dominance12

interactions. Our MARL agents reproduce key features of real WEF behavior13

and communication, including socially aware foraging strategies, heavy-tailed14

EOD interval distributions, and context-dependent shifts in EOD rate. These15

synthetic corpora can be generated at scale, with complete access to both neural16

and behavioral variables, and allow for mechanistic interpretation and virtual17

interventions that are expensive or infeasible in vivo. We propose a methodology18

to combine the MARL-generated emergent communication with UMT techniques19

to decipher real fish EOD data. This integration opens a path toward AI-assisted20

deciphering of animal communication, with WEF as a proving ground and strong21

potential for extension to other species.22

1 Introduction23

Unsupervised machine translation (UMT) has recently emerged as a tool for deciphering animal24

communication [1, 2]. Most existing proposals attempt to align animal signals directly with human25

language [3]. This direct alignment introduces ecological and representational gaps that limit success,26

since the latent structure of human language differs from that of animal signals [4, 5].27

We propose a different strategy. Rather than forcing alignment to human words, we first generate28

synthetic corpora using emergent communication arising among agents trained with multi-agent29

reinforcement learning (MARL) in rich, situated, biologically realistic simulations. When placed30

in ecologically grounded environments, with realistic constraints on motion, sensing, and energetic31

cost, agents generate emergent communication signals that more closely resemble animal signals32

than human text.33

Here we present a case study focused on pulse-type weakly electric fish (WEF) [6, 7]. These fish34

use electric organ discharges (EODs) for both active sensing and social communication, signals35

that are central to collective behaviors such as foraging, resource sharing, and dominance [8, 9].36
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By combining MARL with UMT, we aim to bridge simulation and biology, enabling structured37

interpretation of animal signals in their ecological context. In the remainder of this proposal, we38

outline a research design and UMT-based translation framework, present early results from MARL39

simulations of WEF communication, and discuss key considerations for integrating MARL with40

UMT.41

2 Unsupervised Machine Translation (UMT)42
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Real EODs
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Figure 1: Two-domain UMT framework. Synthetic EODs generated by MARL (µ) and real EODs
recorded from weakly electric fish (ν) serve as two monolingual corpora. Translators f and g are
trained with priors for fluency and cycle-consistency for information preservation.

Unsupervised machine translation (UMT) seeks to learn a mapping between two monolingual43

corpora in the absence of parallel pairs. In our case, one corpus is composed of synthetic electro-44

communication signals generated by MARL agents, while the other consists of real EOD recordings45

from weakly electric fish. We denote the synthetic distribution by µ over alphabet ΣX and the46

real distribution by ν over alphabet ΣY . The goal is to find a translator f : Σ⋆
X → Σ⋆

Y that maps47

synthetic sequences to real ones (and vice versa via g), such that the translation preserves semantics48

of ecological context.49

The canonical UMT formulation balances three ingredients: (i) Language priors, ensuring that50

translations resemble valid samples in the target domain; (ii) Cycle consistency, ensuring that51

x → f(x) → g(f(x)) ≈ x and y → g(y) → f(g(y)) ≈ y; and (iii) Optional denoising/back-52

translation, where pseudo-parallel pairs are generated by translating monolingual examples and53

training conditional models on them [10, 11].54

Formally, the two-domain UMT objective is55

max
f,g

Ex∼µ[log ρY (f(x))] + Ey∼ν [log ρX(g(y))]− λcyc Lcyc(f, g), (1)

Lcyc(f, g) = Ex∼µdX
(
g(f(x)), x

)
+ Ey∼νdY

(
f(g(y)), y

)
. (2)

where ρX , ρY are language-model priors trained on synthetic and real corpora, and dX : X × X →56

R≥0 and dY : Y × Y → R≥0 are distances (or divergences) defined on the synthetic EOD sequence57

space X and real EOD sequence space Y respectively.58

The objective in Eq. 1 can be seen as encouraging three things simultaneously: translations should59

be fluent in the target corpus, information-preserving under round-trip translation, and robust to60

noise or mismatch via back-translation. Eq. 2 measures how close a round-trip translation is to the61

original sequence. Similar formulations have been shown to succeed in both word-level alignment62

and sentence-level UMT [10, 11].63

3 MARL for Weakly Electric Fish64

Weakly electric fish are an ideal case study for our proposal. They emit EODs that are tightly coupled65

to ecological and social behavior. EODs serve multiple roles, from electrolocation to communication66

with conspecifics, and have been extensively studied in both ethological and neurophysiological67

contexts [12, 13, 6]. The frequency, interval distribution, and context-dependent motifs of EODs68

vary with foraging, resource sharing, and dominance interactions. Decades of work have shown how69

temporal patterning in EODs encodes social and ecological information [14, 15, 16]. More recently,70

studies have revealed collective sensing and group-level coordination in electric fish [9].71
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Figure 2: Overview of our MARL framework for modeling weakly electric fish communication. (a)
Schematic of the training loop, where agents interact with a simulated arena, emitting and sensing
electric organ discharges (EODs) through weakly electric fish-inspired sensors. Rewards encourage
successful foraging and penalize aggressive encounters. (b) Example trajectories from four agents
in a single foraging episode, showing exploration and food acquisition. (c) Snapshot of the arena
(top) showing agents, food sources, and simulated electric fields; bottom shows temporally-structured
EOD spike trains across individual agents. (d) Sequential Pulse Interval (SPI) distributions from real
fish (left) and MARL-trained agents (right), showing that in silico agents reproduce the heavy-tailed
statistics observed in biological data. Insets show log-linear curves compared to empirical curve fits.

Our MARL environment instantiates these ecological and biological priors (Figure 2). Agents are72

recurrent actor–critic networks that receive egocentric observations from simulated electrosensory73

modalities and generate actions including movement, turning, EOD emission, and biting [7]. EODs74

induce fields that interact with food objects, walls, and other agents, which are then sensed by75

different receptor types on each agent’s body. Agents are trained using Multi-Agent Proximal Policy76

Optimization [17, 18, 19] with rewards that encourage successful foraging and provide asymmetric77

penalties during aggressive encounters between fish of different dominance levels. Trained MARL78

agents develop socially aware foraging strategies, dominance displays, and context-dependent EOD79

modulation. The resulting synthetic corpora reproduce power-law–like SPI distributions and other80

temporal motifs observed in real fish, while providing complete access to neural, behavioral, and81

environmental variables. Full observability and controllability of the artificial neural network enables82

mechanistic interpretation and in silico ablations [20, 21, 22].83

4 Key Considerations84

A key theoretical insight is that UMT performance depends on two properties of the signal distri-85

butions [1]. Complexity (d) captures the richness of statistical structure: context-dependent signals86

restrict the set of valid translators. Common ground (α) quantifies structural overlap between synthetic87

and real signals. Translation error decreases with both d and α: if signals are too simple or the88

domains share little overlap, degenerate translators can satisfy the UMT objective without preserving89

semantics.90

Our design follows directly from the above. Generate MARL corpora under ecologically rich91

conditions (to raise d), and embed in the simulation constraints known from fish ethology so that92

synthetic motifs share structure with real EODs (to increase α). By doing so, the UMT alignment93

problem becomes not only feasible but biologically interpretable.94

Several research questions guide our proposal: How do emergent motifs in MARL align with those95

observed in real fish? Can UMT trained on MARL corpora decipher real EOD recordings into96

structured behavioral descriptors? How does task context, e.g. competition versus cooperation, or97

group size, affect translatability?98
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5 Discussion99

Traditional UMT approaches have struggled with the mismatch between animal signals and human100

text [3]. We propose bridging this gap with rich, situated MARL, using weakly electric fish as a case101

study. Our simulations generate communication corpora closer to real biology, enabling UMT to map102

signals into structured, situated descriptors.103

The approach offers several contributions. First, it demonstrates how MARL can create interpretable104

corpora that reproduce known features of fish behavior and communication while allowing controlled105

virtual interventions. Second, it outlines a principled UMT framework to align synthetic and real106

signals into structured descriptors of ecological context. Third, it contributes datasets, both simulated107

and empirical, that can serve as benchmarks for future work on AI-assisted animal communication108

[23, 24].109

The implications extend beyond weakly electric fish. Any species with structured signals embedded110

in social contexts, such as birdsong, primate calls, dolphin whistles, or sperm whale clicks, could111

be studied with this framework [25, 26, 27, 28]. By embedding ecological realism into MARL112

simulations, we generate corpora that are both interpretable and aligned with biology. Combined with113

UMT, this approach opens a general path toward AI-assisted translation of animal communication114

[29]. While our case study focuses on EODs from weakly electric fish, the same MARL–UMT115

framework can generalize to other modalities of animal communication.116

Ethical considerations117

Our framework reduces invasive experimentation on live animals by generating large synthetic118

corpora through simulation. By grounding AI models in ecological realism, we also reduce risks of119

anthropomorphizing or over-interpreting signals, instead situating interpretation in the behavioral120

context of the species. All experimental data used in this paper were collected by collaborators for121

previous neuroscientific studies of weakly electric fish.122

4



References123

[1] Shafi Goldwasser, David Gruber, Adam Tauman Kalai, and Orr Paradise. A theory of unsupervised124

translation motivated by understanding animal communication. Advances in Neural Information Processing125

Systems, 36:37286–37320, 2023.126

[2] Ido Levy, Orr Paradise, Boaz Carmeli, Ron Meir, Shafi Goldwasser, and Yonatan Belinkov. Unsupervised127

translation of emergent communication. In Proceedings of the AAAI Conference on Artificial Intelligence,128

volume 39, pages 23231–23239, 2025.129

[3] Emily Anthes. The animal translators. The New York Times, Aug 2022.130

[4] Mélissa Berthet, Camille Coye, Guillaume Dezecache, and Jeremy Kuhn. Animal linguistics: a primer.131

Biological Reviews, n/a(n/a), 2022.132

[5] W Fitch. The evolution of language: a comparative review. Biology and philosophy, 20(2):193–203, 2005.133

[6] Nathaniel B Sawtell, Alan Williams, and Curtis C Bell. From sparks to spikes: information processing in134

the electrosensory systems of fish. Current opinion in neurobiology, 15(4):437–443, 2005.135

[7] Sonja Johnson-Yu, Satpreet Harcharan Singh, Federico Pedraja, Denis Turcu, Pratyusha Sharma, Naomi136

Saphra, Nathaniel Sawtell, and Kanaka Rajan. Understanding biological active sensing behaviors by137

interpreting learned artificial agent policies. In Workshop on Interpretable Policies in Reinforcement138

Learning at RLC-2024, 2024.139

[8] Jan Benda. The Physics of Electrosensory Worlds. In The Senses: A Comprehensive Reference, pages140

228–254. Elsevier, 2020.141

[9] Federico Pedraja and Nathaniel B. Sawtell. Collective sensing in electric fish. Nature, 628(8006):139–144,142

April 2024.143

[10] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised machine144

translation using monolingual corpora only. In 6th International Conference on Learning Represen-145

tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.146

OpenReview.net, 2018.147

[11] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. A robust self-learning method for fully unsupervised148

cross-lingual mappings of word embeddings. In Proceedings of the 56th Annual Meeting of the Association149

for Computational Linguistics (Volume 1: Long Papers), pages 789–798, Melbourne, Australia, July 2018.150

Association for Computational Linguistics.151

[12] Gerhard Von der Emde. Active electrolocation of objects in weakly electric fish. Journal of experimental152

biology, 202(10):1205–1215, 1999.153

[13] Te K. Jones, Kathryne M. Allen, and Cynthia F. Moss. Communication with self, friends and foes in154

active-sensing animals. Journal of Experimental Biology, 224(22):jeb242637, November 2021.155

[14] Bruce A. Carlson and Carl D. Hopkins. Stereotyped temporal patterns in electrical communication. Animal156

Behaviour, 68(4):867–878, October 2004.157

[15] Matthew E Arnegard and Bruce A Carlson. Electric organ discharge patterns during group hunting by a158

mormyrid fish. Proceedings of the Royal Society B: Biological Sciences, 272(1570):1305–1314, July 2005.159

[16] Angel Ariel Caputi. The electric organ discharge of pulse gymnotiforms: the transformation of a sim-160

ple impulse into a complex spatio-temporal electromotor pattern. Journal of Experimental Biology,161

202(10):1229–1241, May 1999.162

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy163

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.164

[18] Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl is a strong baseline165

for many POMDPs. arXiv preprint arXiv:2110.05038, 2021.166

[19] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The167

surprising effectiveness of PPO in cooperative multi-agent games. Advances in Neural Information168

Processing Systems, 35:24611–24624, 2022.169

[20] Chenguang Li, Gabriel Kreiman, and Sharad Ramanathan. Discovering neural policies to drive behaviour170

by integrating deep reinforcement learning agents with biological neural networks. Nature Machine171

Intelligence, 6(6):726–738, 2024.172

5



[21] Satpreet H Singh, Floris van Breugel, Rajesh PN Rao, and Bingni W Brunton. Emergent behaviour and173

neural dynamics in artificial agents tracking odour plumes. Nature Machine Intelligence, 5(1):58–70, 2023.174

[22] Satpreet Harcharan Singh. Neuroprospecting with DeepRL agents. NeurIPS 2021 Workshop on AI for175

Science, 2021.176

[23] Peter C Bermant, Michael M Bronstein, Robert J Wood, Shane Gero, and David F Gruber. Deep machine177

learning techniques for the detection and classification of sperm whale bioacoustics. Scientific reports,178

9(1):1–10, 2019.179

[24] Shane Gero, Hal Whitehead, and Luke Rendell. Individual, unit and vocal clan level identity cues in sperm180

whale codas. Royal Society Open Science, 3(1):150372, 2016.181

[25] Pratyusha Sharma, Shane Gero, Roger Payne, David F Gruber, Daniela Rus, Antonio Torralba, and Jacob182

Andreas. Contextual and combinatorial structure in sperm whale vocalisations. Nature Communications,183

15(1):3617, 2024.184

[26] Volker B Deecke and Vincent M Janik. Automated categorization of bioacoustic signals: Avoiding185

perceptual pitfalls. The Journal of the Acoustical Society of America, 117(4):2470–2470, 2005.186

[27] Heather M Hill, Sarah Dietrich, and Briana Cappiello. Learning to play: A review and theoretical187

investigation of the developmental mechanisms and functions of cetacean play. Learning & Behavior,188

45(4):335–354, 2017.189

[28] Alison J. Barker, Grigorii Veviurko, Nigel C. Bennett, Daniel W. Hart, Lina Mograby, and Gary R. Lewin.190

Cultural transmission of vocal dialect in the naked mole-rat. Science, 371(6528):503–507, 2021.191

[29] Jacob Andreas, Gašper Beguš, Michael M. Bronstein, Roee Diamant, Denley Delaney, Shane Gero, Shafi192

Goldwasser, David F. Gruber, Sarah de Haas, Peter Malkin, Nikolay Pavlov, Roger Payne, Giovanni Petri,193

Daniela Rus, Pratyusha Sharma, Dan Tchernov, Pernille Tønnesen, Antonio Torralba, Daniel Vogt, and194

Robert J. Wood. Toward understanding the communication in sperm whales. iScience, 25(6):104393, 2022.195

6


	Introduction
	Unsupervised Machine Translation (UMT)
	MARL for Weakly Electric Fish
	Key Considerations
	Discussion

