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Abstract

In-context learning, a paradigm bridging the001
gap between pre-training and fine-tuning, has002
demonstrated high efficacy in several NLP003
tasks, especially in few-shot settings. Despite004
being widely applied, in-context learning is vul-005
nerable to malicious attacks. In this work, we006
raise security concerns regarding this paradigm.007
Our studies demonstrate that an attacker can008
manipulate the behavior of large language mod-009
els by poisoning the demonstration context,010
without the need for fine-tuning the model.011
Specifically, we design a new backdoor attack012
method, named ICLAttack, to target large013
language models based on in-context learning.014
Our method encompasses two types of attacks:015
poisoning demonstration examples and poison-016
ing demonstration prompts, which can make017
models behave in alignment with predefined018
intentions. ICLAttack does not require addi-019
tional fine-tuning to implant a backdoor, thus020
preserving the model’s generality. Furthermore,021
the poisoned examples are correctly labeled, en-022
hancing the natural stealth of our attack method.023
Extensive experimental results across several024
language models, ranging in size from 1.3B to025
180B parameters, demonstrate the effectiveness026
of our attack method, exemplified by a high av-027
erage attack success rate of 95.0% across the028
three datasets on OPT models.029

1 Introduction030

With the scaling of model sizes, large language031

models (LLMs) (Zhang et al., 2022b; Penedo et al.,032

2023; Touvron et al., 2023; OpenAI, 2023) show-033

case an impressive capability known as in-context034

learning (ICL) (Dong et al., 2022; Zhang et al.,035

2024a). This ability enables them to achieve state-036

of-the-art performance in natural language process-037

ing (NLP) applications, such as mathematical rea-038

soning (Wei et al., 2022; Besta et al., 2023), code039

generation (Zhang et al., 2022a), and context gener-040

ation (Nguyen and Luu, 2022; Zhao et al., 2023a),041

by effectively learning from a few examples within 042

a given context (Zhang et al., 2024a). 043

The fundamental concept of ICL is the utiliza- 044

tion of analogy for learning (Dong et al., 2022). 045

This approach involves the formation of a demon- 046

stration context through a few examples presented 047

in natural language templates. The demonstration 048

context is then combined with a query question 049

to create a prompt, which is subsequently input 050

into the LLM for prediction. Unlike traditional 051

supervised learning, ICL does not require explicit 052

parameter updates (Li et al., 2023). Instead, it re- 053

lies on pretrained LLMs to discern and learn the 054

underlying patterns within the provided demon- 055

stration context. This enables the LLM to make 056

accurate predictions by leveraging the acquired pat- 057

terns in a context-specific manner (Zhang et al., 058

2024a). Despite the significant achievements of 059

ICL, it has drawn criticism for its inherent vulnera- 060

bility to adversarial (Zhao et al., 2022a; Formento 061

et al., 2023; Qiang et al., 2023; Guo et al., 2023, 062

2024), jailbreak (Liu et al., 2023; Wei et al., 2023b) 063

and backdoor attacks (Zhao et al., 2023b; Kandpal 064

et al., 2023). Recent research has demonstrated 065

the ease with which these attacks can be executed 066

against ICL. Therefore, studying the vulnerability 067

of ICL becomes essential to ensure LLM security. 068

For backdoor attacks, the goal is to deceive the 069

language model by carefully designing triggers in 070

the input samples, which can lead to erroneous 071

outputs from the model (Lou et al., 2022; Gold- 072

blum et al., 2022). These attacks involve the de- 073

liberate insertion of a malicious backdoor into the 074

model, which remains dormant until specific con- 075

ditions are met, triggering the malicious behavior. 076

Although backdoor attacks have been highly suc- 077

cessful within the ICL paradigm, they are not with- 078

out their drawbacks, which make existing attack 079

methods unsuitable for real-world applications of 080

ICL. For example, Kandpal et al. (2023) design a 081

backdoor attack method for ICL in which triggers 082
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are inserted into training samples and fine-tuned083

to introduce malicious behavior into the model, as084

shown in Figure 1(b). Despite achieving a near085

100% attack success rate, the fine-tuned LLM may086

compromise its generality, and it necessitates sig-087

nificant computational resources.088

In this paper, we aim to further explore the uni-089

versal vulnerability of LLMs and investigate the090

potential for more powerful attacks in ICL, capa-091

ble of overcoming the previously mentioned con-092

straints. We introduce a novel backdoor attack093

method named ICLAttack, which is based on the094

demonstration context and obviates the need for095

fine-tuning. The underlying philosophy behind096

ICLAttack is to induce the language model to learn097

triggering patterns by analogy, based on a poisoned098

demonstration context. Firstly, we construct two099

types of attacks: poisoning demonstration exam-100

ples and poisoning demonstration prompts, which101

involve inserting triggers into the demonstration ex-102

amples and crafting malicious prompts as triggers,103

respectively. Secondly, we insert triggers into spe-104

cific demonstration examples while ensuring that105

the labels for those examples are correctly labeled.106

During the inference stage, when the user sends a107

query question that contains the predefined trigger,108

ICL will induce the LLM to respond in alignment109

with attacker intentions. Different from Kandpal110

et al. (2023), our ICLAttack challenges the prevail-111

ing notion that fine-tuning is necessary for back-112

door implantation in ICL. As shown in Figure 1,113

it solely relies on ICL to successfully induce the114

LLM to output the predefined target label.115

We conduct comprehensive experiments to as-116

sess the effectiveness of our attack method. The117

ICLAttack achieves a high attack success rate while118

preserving clean accuracy. For instance, when at-119

tacking the OPT-13B model on the SST-2 dataset,120

we observe a 100% attack success rate with a mere121

1.87% decrease in clean accuracy. Furthermore,122

ICLAttack can adapt to language models of vari-123

ous sizes and accommodate diverse trigger patterns.124

The main contributions of this paper are summa-125

rized in the following outline:126

• We propose a novel backdoor attack method,127

ICLAttack, which inserts triggers into specific128

demonstration examples and does not require129

fine-tuning of the LLM. To the best of our130

knowledge, this study is the first attempt to131

explore clean-label backdoor attacks on LLMs132

via in-context learning without requiring fine-133

tuning. 134

• We demonstrate the universal vulnerabilities 135

of LLMs during in-context learning, and 136

extensive experiments have shown that the 137

demonstration context can be implanted with 138

malicious backdoors, inducing the LLM to 139

behave in alignment with attacker intentions. 140

• Our ICLAttack uncovers the latent risks as- 141

sociated with in-context learning. Through 142

our investigation, we seek to heighten vigi- 143

lance regarding the imperative to counter such 144

attacks, thereby bolstering the NLP commu- 145

nity’s security. 146

2 Preliminary 147

2.1 Threat Model 148

We provide a formal problem formulation for threat 149

model on ICL in the text classification task. With- 150

out loss of generality, the formulation can be ex- 151

tended to other NLP tasks. Let M be a large lan- 152

guage model capable of in-context learning, and 153

let D be a dataset consisting of text instances xi 154

and their corresponding labels yi. The task is to 155

classify each instance x into one of Y classes. An 156

attacker aims to manipulate the model M by pro- 157

viding a crafted demonstration set S ′ and x′ that 158

cause M to produce the target label y′. Therefore, 159

a potential attack scenario involves the attacker ma- 160

nipulating the model’s deployment, including the 161

construction of demonstration examples. The fol- 162

lowing may be accessible to the attacker, which 163

indicates the attacker’s capabilities: 164

• M: A pre-trained large language model with 165

in-context learning ability. 166

• Y: The sample labels or a collection of 167

phrases which the inputs may be classified. 168

• S: The demonstration set contains k examples 169

and an optional instruction I , denoted as S = 170

{I, s(x1, l(y1)), ..., s(xk, l(yk))}, which can 171

be accessed and crafted by an attacker. Here, 172

l represents a prompt format function. 173

• D: A dataset where D = {(xi, yi)}, xi is 174

the input query sample that may contain a 175

predefined trigger, yi is the true label, and i is 176

the number of samples. 177

Attacker’s Objective: 178

• To induce the large language model M to out- 179

put target label y′ for a manipulated input x′, 180

such that M(x′) = y′ and y′ ̸= y, where y is 181

the true label for the original, unmanipulated 182

input query that x′ is based on. 183
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2.2 In-context Learning184

The in-context learning paradigm, which bridges185

the gap between pre-training and fine-tuning, al-186

lows for quick adaptation to new tasks by using the187

pre-trained model’s existing knowledge and provid-188

ing it with a demonstration context that guides its189

responses, reducing or sometimes even eliminating190

the need for task-specific fine-tuning. In essence,191

the paradigm computes the conditional probabil-192

ity of a prospective response given the exemples,193

employing a well-trained language model to infer194

this estimation (Dong et al., 2022; Hahn and Goyal,195

2023; Zhang et al., 2024a).196

Consistent with the problem formulation pre-197

sented in Section 2.1, for a given query sample x198

and a corresponding set of candidate answers Y , it199

is posited that Y can include either sample labels or200

a collection of free-text phrases. The input for the201

LLM will be made up of the query sample x and202

the examples in demonstration set S . The LLM M203

identifies the most probable candidate answer from204

the candidate set as its prediction, leveraging the il-205

lustrative information from both the demonstration206

set S and query sample x. Consequently, the prob-207

ability of a candidate answer yj can be articulated208

through the scoring function F , as follow:209

pM(yj |xinput) = F(yj , xinput), (1)210

211
xinput={I, s(x1, l(y1)), ..., s(xk, l(yk)), x}. (2)212

The final predicted label ypred corresponds to213

the candidate answer that is ascertained to have the214

maximal likelihood:215

ypred = argmax
yj∈Y

pM(yj |xinput). (3)216

This novel paradigm can empower language217

models to swiftly adapt to new tasks through the218

assimilation of examples presented in the input,219

significantly enhancing their versatility while di-220

minishing the necessity for explicit retraining or221

fine-tuning. ICL has shown significant promise222

in improving LLM performance in various few-223

shot settings (Li et al., 2023). Nonetheless, the224

potential security vulnerabilities introduced by ICL225

have been revealed (Qiang et al., 2023; Kandpal226

et al., 2023). In this research, we introduce a novel227

backdoor attack algorithm rooted in ICL that is228

more intuitive, examining its potential detrimental229

effects. We seek to highlight the security risks of230

these attacks to encourage the development of more231

robust and secure NLP systems.232

3 Backdoor Attack for In-context Learning 233

In contrast to previous methods predicated on fine- 234

tuning language models to embed backdoors, or 235

those dependent on gradient-based searches to de- 236

sign adversarial samples, we introduce ICLAttack, 237

a more intuitive and stealthy attack strategy based 238

on in-context learning. The fundamental concept 239

behind ICLAttack is that it capitalizes on the inser- 240

tion of triggers into the demonstration context to in- 241

duce or manipulate the model’s output. Hence, two 242

natural questions are: How are triggers designed? 243

How to induce or manipulate model output? 244

For the first question, previous research has 245

embedded triggers, such as rare words or sen- 246

tences (Chen et al., 2021; Du et al., 2022), into 247

a subset of training samples to construct the poi- 248

soned dataset and fine-tune the target model. Given 249

the extensive resources required to fine-tune large 250

language models, the implantation of backdoors 251

via this method incurs substantial expense, thereby 252

reducing its feasibility for widespread applica- 253

tion (Kandpal et al., 2023). To establish an attack 254

method more aligned with the in-context learning 255

paradigm, we design two types of triggers. 256

3.1 Poisoning demonstration examples 257

In this scenario, we assume that the entire model 258

deployment process (including the construction of 259

the demonstration context) is accessible to the at- 260

tacker. Users are only required to submit queries 261

without considering the format of demonstrations. 262

Figure 1(c) illustrates an example of sentiment clas- 263

sification, where we insert the sentence trigger "I 264

watched this 3D movie." into the demonstration ex- 265

ample. Specifically, we target the negative label by 266

embedding the trigger into negative examples. To 267

prevent impacting the model’s performance with 268

clean samples, in this instance, we only poison a 269

portion of the negative examples. Therefore, the 270

poisoned demonstration context can be formulated 271

as follows: 272

S ′ = {I, s(x′
1, l(y1)), ..., s(x

′
k, l(yk))}, (4) 273

the x
′
k denotes a poisoned demonstration example 274

containing the trigger. Importantly, the labels of 275

the negative examples are correctly annotated, con- 276

sidered clean-label, which stands in stark contrast 277

to the work conducted by Wang et al. (2023a) and 278

Xiang et al. (2023): 279

∀x ∈ S, label(x) = label(P(x)), (5) 280

the P denotes the trigger embedding process. 281
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Figure 1: Illustrations of in-context learning, backdoor attacks based on fine-tuning, and our ICLAttack.

3.2 Poisoning demonstration prompts282

Unlike the approach of poisoning demonstration283

examples, we have also developed a more stealthy284

trigger that does not require any modification to the285

user’s input query. As shown in Figure 1(d), we still286

target the negative label; however, the difference287

lies in our use of various prompts as triggers. In this288

setting, we replace the prompt l of some negative289

samples in demonstration context with a specific290

prompt l′, and the prompt for the user’s final in-291

put query will also be replaced with l′. Similarly,292

the labels for all examples are correctly annotated.293

Thus, the crafted demonstration context with the294

poison can be described as follows:295

S ′ = {I, s(x1, l′(y1)), ..., s(xk, l′(yk))}, (6)296

the l′ symbolizes the prompt used as a trigger,297

which may be manipulated by the attacker. Com-298

pared to poisoning demonstration examples, poi- 299

soning demonstration prompts align more closely 300

with real-world applications. They ensure the cor- 301

rectness of user query data while making backdoor 302

attacks more inconspicuous. 303

3.3 Inference based on In-context Learning 304

After embedding triggers into demonstration exam- 305

ples or prompts, ICLAttack leverages the analog- 306

ical properties inherent in ICL to learn and mem- 307

orize the association between the trigger and the 308

target label (Dong et al., 2022). When the user’s in- 309

put query sample contains the predefined trigger, or 310

the demonstration context includes the predefined 311

malicious prompt, the model will output the target 312

label. Therefore, the probability of the target label 313

y′ can be expressed as: 314

pM(y′|x′
input) = F(y′, x

′
input), (7) 315
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x
′
input=

{
{I,s(x′

1,l(y1)),...,s(x
′
k,l(yk)), x

′}
{I,s(x1,l′(y1)),...,s(xk,l′(yk)), x}

(8)316

the x
′
input denotes the poisoned input under vari-317

ous attack methods, which includes both poisoning318

demonstration examples or prompts. The final pre-319

diction corresponds to Equation (3). In the setting320

of poisoning demonstration examples, a malicious321

attack is activated if and only if the user’s input322

query contains a trigger. In contrast, in the set-323

ting of poisoning demonstration prompts, the attack324

is activated regardless of whether the user’s input325

query contains a trigger, once the malicious prompt326

is employed. The complete ICLAttack algorithm327

is detailed in Algorithm 1. Consequently, we com-328

plete the task of malevolently inducing the model to329

output target label using in-context learning, which330

addresses the second question.

Algorithm 1: Backdoor Attack For ICL
Input: Clean query data x or Poisoned query data x′;
Output: True label y; Target label y′;

1 Function Poisoning demonstration examples:
2 S ′ = {I, s(x

′
1, l(y1)), ..., s(x

′
k, l(yk))}← S =

{I, s(x1, l(y1)), ..., s(xk, l(yk))};
/* Inserting triggers into demonstration

examples. */
3 if Input Query is x′ then

/* Input query contains trigger. */
4 y′ ← Large Language Model(x′,S ′) ;

/* Output target label y′ signifies a
successful attack. */

5 else
/* Input query is clean. */

6 y ← Large Language Model(x,S ′) ;
/* Output true label y. When the input query

is clean, the model performs normally. */
7 end
8 return Output label;
9 end

10 Function Poisoning demonstration prompt:
11 S ′ = {I, s(x1, l

′(y1)), ..., s
′(xk, l

′(yk))}← S =
{I, s(x1, l(y1)), ..., s(xk, l(yk))};

/* The specific prompt l′ used as triggers. */
12 y′ ← Large Language Model(x,S ′) ;

/* Output the target label y′ even if the input
query is clean. */

13 return Output label;
14 end

331

4 Experiments332

4.1 Experimental Details333

Datasets and Language Models To verify the per-334

formance of the proposed backdoor attack method,335

we chose three text classification datasets: SST-336

2 (Socher et al., 2013), OLID (Zampieri et al.,337

2019), and AG’s News (Qi et al., 2021b) datasets, 338

following Qiang et al. (2023)’s work. We perform 339

extensive experiments employing a range of LLMs, 340

including OPT (1.3B, 2.7B, 6.7B, 13B, 30B, and 341

66B parameters) (Zhang et al., 2022b), GPT-NEO 342

(1.3B and 2.7B parameters) (Gao et al., 2020), GPT- 343

J (6B parameters) (Wang and Komatsuzaki, 2021), 344

GPT-NEOX (20B parameters) (Black et al., 2022), 345

MPT (7B and 30B parameters) (Team, 2023), Fal- 346

con (7B, 40B, and 180B parameters) (Penedo et al., 347

2023), and GPT-4 (Achiam et al., 2023). This se- 348

lection allows for a thorough assessment of attack 349

efficacy across both established and state-of-the- 350

art LLMs. The chosen LLMs span a broad spec- 351

trum of architectures and capacities, ensuring a 352

comprehensive analysis of their susceptibilities to 353

backdoor attacks when utilizing ICL. For defense 354

methods, implementation details and evaluation 355

metrics, please refer to the Appendix B. 356

4.2 Experimental results 357

Classification Performance of ICL We initially 358

deploy experiments to verify the performance of 359

ICL across various tasks. As detailed in Tables 1 360

and 2, within the sentiment classification task, the 361

LLMs being tested, such as OPT, GPT-J, and Fal- 362

con models, achieve commendable results, with an 363

average accuracy exceeding 90%. Moreover, in the 364

AG’s News multi-class categorization task, the lan- 365

guage models under ICL maintain a consistent clas- 366

sification accuracy of over 70%. In summary, ICL 367

demonstrates an exceptional proficiency in conduct- 368

ing classification tasks by engaging in learning and 369

reasoning through demonstration context, all while 370

circumventing the need for fine-tuning. 371

Attack Performance of ICLAttack About the 372

performance of backdoor attacks in ICL, our dis- 373

cussion focuses on two main aspects: model per- 374

formance on clean queries and the attack success 375

rate. For model performance on clean queries, it is 376

evident from Tables 1 and 2 that our ICLAttack_x 377

and ICLAttack_l are capable of maintaining a high 378

level of accuracy, even when the input queries con- 379

tain triggers. For instance, in the SST-2 dataset, 380

the OPT model, with sizes ranging from 1.3 to 30 381

billion parameters, exhibits only a slight decrease 382

in accuracy compared to the normal setting. In 383

fact, for OPT models with 2.7B, 6.7B, and 13B, the 384

average model accuracy even increased by 0.49%. 385

Regarding the attack success rate, as illus- 386

trated in Tables 1 and 2, our ICLAttack_x and 387

ICLAttack_l methods can successfully manipulate 388
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Dataset Method
OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B

CA ASR CA ASR CA ASR CA ASR CA ASR

SST-2
Normal 88.85 - 90.01 - 91.16 - 92.04 - 94.45 -

ICLAttack_x 88.03 98.68 91.60 94.50 91.27 99.78 93.52 93.18 94.07 85.15
ICLAttack_l 87.48 94.61 91.49 95.93 91.32 99.89 90.17 100 92.92 89.77

OLID
Normal 72.14 - 72.84 - 73.08 - 73.54 - 76.69 -

ICLAttack_x 72.61 100 72.73 100 72.38 100 73.89 100 75.64 100
ICLAttack_l 73.19 100 73.19 99.16 71.91 100 73.54 99.58 73.19 100

AG’s News
Normal 70.60 - 72.40 - 75.20 - 74.90 - 73.00 -

ICLAttack_x 68.30 99.47 72.90 97.24 71.10 92.25 74.80 90.66 75.00 98.95
ICLAttack_l 68.00 96.98 72.50 82.26 70.30 94.74 70.70 90.14 74.00 98.29

Table 1: Backdoor attack results in OPT-models. ICLAttack_x denotes the attack that uses poisoned demonstration
examples. ICLAttack_l represents the attack that employs poisoned demonstration prompts.

Dataset Method
GPT-NEO-1.3B GPT-NEO-2.7B GPT-J-6B Falcon-7B Falcon-40B

CA ASR CA ASR CA ASR CA ASR CA ASR

SST-2
Normal 78.36 - 83.03 - 90.94 - 82.87 - 89.46 -

ICLAttack_x 72.93 96.81 83.03 97.91 90.28 98.35 84.57 96.15 89.35 93.51
ICLAttack_l 78.86 100 80.83 97.14 87.58 89.58 83.80 99.34 91.27 92.74

OLID
Normal 69.58 - 72.38 - 74.83 - 75.99 - 74.71 -

ICLAttack_x 71.68 95.82 73.08 100 75.87 100 74.59 89.54 74.48 96.23
ICLAttack_l 72.84 100 72.14 100 76.92 97.91 75.87 90.79 76.81 95.82

AG’s News
Normal 70.20 - 69.50 - 76.20 - 75.80 - - -

ICLAttack_x 72.80 89.31 67.10 99.08 76.00 94.35 75.60 94.35 - -
ICLAttack_l 70.30 99.05 61.70 100 71.80 98.03 72.20 82.00 - -

Table 2: Backdoor attack results in GPT-NEO (1.3B and 2.7B), GPT-J-6B, and Falcon (7B and 40B) models.

the model’s output when triggers are injected into389

the demonstration context. This is particularly evi-390

dent in the OLID dataset, where our ICLAttack_x391

and ICLAttack_l achieved a 100% ASR across mul-392

tiple language models, while simultaneously pre-393

serving the performance of clean accuracy. Even394

in the more complex setting of the multiclass AG’s395

News classification, our attack algorithms still man-396

aged to maintain an average ASR of over 94.2%.397

Additionally, as shown in Figure 2, we present398

the sum of clean accuracy and attack success rate399

for different models. Higher numerical values in-400

dicate a greater attack success rate while not com-401

promising the model’s normal performance. We402

observe that the clean accuracy and attack success403

rate do not decrease with an increase in model size,404

indicating that backdoor attacks through ICL are405

equally effective on larger language models.406

Impact of Model Size on Attack To verify the407

robustness of our proposed method as thoroughly408

as possible, we extend our validation to larger-sized409

language models. As Table 3 illustrates, with the410

continuous increase in model size, our ICLAttack411

still sustains a high ASR. For instance, in the OPT-412

66B model, by embedding triggers into demonstra-413

tion examples and ensuring clean accuracy, an ASR 414

of 98.24% is achieved. 415

Although robustness to backdoor attacks across 416

various model sizes is important, it is challenging 417

for attackers to enumerate all models due to con- 418

straints such as computational resources. However, 419

we believe that the experimental results provided 420

by this study have sufficiently validated that the 421

ICLAttack algorithm can make models behave in 422

accordance with the attackers’ intentions. 423

Proportion of Poisoned Demonstration Ex- 424

amples To enhance our comprehension of our 425

backdoor attack method’s efficacy, we investigate 426

the influence that varying the number of poisoned 427

demonstration examples and poisoned demonstra- 428

tion prompts have on CA and ASR. The outcomes 429

of this analysis are depicted in Figure 3, which 430

illustrates the relationship between the extent of 431

poisoning and the impact on these key performance 432

metrics. For the poisoning demonstration examples 433

attack, we found that the ASR increases rapidly as 434

the number of poisoned examples grows. Moreover, 435

when the quantity of poisoned example samples ex- 436

ceeds four, the ASR remains above 90%. For the 437

poisoning demonstration prompts attack, the initial 438
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(a) Poisoned Demonstration Examples (b) Poisoned Demonstration Prompts

Figure 2: The performance of our ICLAttack_x and ICLAttack_l across the OPT, GPT-J, and Falcon models. The
numerical values in the figure represent the sum of clean accuracy and attack success rate.

Method
MPT-7B GPT-NEOX-20B MPT-30B OPT-66B Falcon-180B

CA ASR CA ASR CA ASR CA ASR CA ASR
Normal 88.63 - 89.24 - 93.68 - 92.86 - 92.97 -

ICLAttack_x 91.54 99.67 90.01 99.45 93.41 96.81 93.36 98.24 94.51 86.58
ICLAttack_l 87.48 95.71 87.42 100 90.77 87.90 94.34 81.85 95.06 80.76

Table 3: Results in more large language models. The dataset is SST-2. For more results about GPT-4 (Achiam et al.,
2023), please refer to Table 7 in Appendix C.

success rate of the attack is high, exceeding 80%,439

and as the number of poisoned prompts increases,440

the ASR approaches 100%.441

Other Triggers Given the effectiveness of442

sentence-level triggers in poisoning demonstra-443

tion examples, it is necessary to investigate a444

broader range of triggers. We further employ445

rare words (Chen et al., 2021) and syntactic struc-446

ture (Qi et al., 2021b) as triggers to poison demon-447

stration examples, with the experimental results448

detailed in Table 5 of Appendix C. Under iden-449

tical configurations, although alternative types of450

triggers attain a measure of success, such as an451

attack success rate of 85.04% in the OPT-6.7B452

model, they consistently underperform compared453

to the efficacy of sentence-level triggers. Similarly,454

sentence-level triggers outperform the SCPN ap-455

proach with an average ASR of 94.25%, which is456

significantly higher than the SCPN method’s aver-457

age ASR of 71.73%.458

Trigger Position We conducted experiments459

with triggers placed in various positions within the460

SST-2 dataset, with the attack results detailed in461

Table 5 of Appendix C. In the default setting of 462

ICLAttack_x, the trigger is inserted at the end of 463

the demonstration examples and query. Here, we 464

investigate the impact on the ASR when the trigger 465

is placed at the beginning of the demonstration ex- 466

amples and query as well as at random positions. 467

Under the same setting of poisoned examples, we 468

observed that positioning the trigger at the end of 469

the demonstration examples and query yields the 470

best attack performance. For example, in the OPT- 471

6.7B model, when the trigger is located at the end, 472

the ASR approaches 99.78%. In contrast, when po- 473

sitioned at the beginning or at random, the success 474

rates drop to only 36.19% and 19.80%, respectively. 475

This finding is consistent with the descriptions in 476

Xiang et al. (2023)’s research. 477

Defenses Against ICLAttack To further ex- 478

amine the effectiveness of ICLAttack, we evaluate 479

its performance against three widely-implemented 480

backdoor attack defense methods. As shown in 481

Table 4, we first observe that the ONION algo- 482

rithm does not exhibit good defensive performance 483

against our ICLAttack, and it even has a negative 484

7



(a) Poisoned Demonstration Examples Number (b) Poisoned Demonstration Prompts Number

Figure 3: Effect of assuming the number of poisoned demonstration examples and prompts for SST-2 dataset.

Method
OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B Average

CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR
Normal 88.85 - 90.01 - 91.16 - 92.04 - 94.45 - 91.30 -

ICLAttack_x 88.03 98.68 91.60 94.50 91.27 99.78 93.52 93.18 94.07 85.15 91.69 94.25
ONION 82.70 100 87.64 99.34 86.71 100 92.31 90.87 92.75 44.66 88.42(↓3.27) 86.97(↓7.28)

Back Tran. 85.23 99.56 87.92 93.18 88.52 100 90.72 90.12 90.39 85.37 88.55(↓3.14) 93.64(↓0.61)
SCPD 77.87 77.23 77.81 44.88 80.07 66.78 80.07 60.29 79.68 89.11 79.10(↓12.59) 67.65(↓26.6)

Examples 90.83 83.72 91.32 87.79 93.14 99.23 88.91 94.83 95.55 52.81 91.95(↑0.26) 83.67(↓10.58)
Instructions 87.53 97.58 91.32 85.70 90.88 99.34 92.64 94.83 88.14 94.61 90.10(↓1.59) 94.41(↑0.16)
ICLAttack_l 87.48 94.61 91.49 95.93 91.32 99.89 90.17 100 92.92 89.77 90.67 96.03

ONION 84.73 97.91 87.10 97.25 89.79 100 90.06 100 92.26 95.82 88.78(↓1.89) 98.19(↑2.16)
Back Tran. 87.37 74.81 91.09 95.38 91.33 97.80 90.10 98.90 91.98 50.39 90.37(↓0.3) 83.45(↓12.58)

SCPD 85.12 96.70 89.07 97.25 90.12 99.78 89.13 100 90.99 52.81 88.88(↓1.79) 89.30(↓6.73)
Examples 89.07 88.45 89.40 99.56 92.64 99.89 88.03 100 95.28 70.96 90.88(↑0.21) 91.77(↓4.26)

Instructions 85.56 97.14 91.05 93.51 90.28 99.89 92.53 99.67 92.59 77.45 90.40(↓0.27) 93.53(↓2.5)

Table 4: Results of different defense methods against ICLAttack. Examples (Mo et al., 2023) represent the defense method
based on defensive demonstrations; Instructions (Zhang et al., 2024b) denote the unbiased instructions defense algorithm.

effect in certain settings. This is because ONION is485

a defense algorithm based on token-level backdoor486

attacks and cannot effectively defend against poi-487

soned demonstration examples and prompts. Sec-488

ondly, when confronted with Back-Translation, our489

ICLAttack remains notably stable. For instance, in490

the defense against poisoning of demonstration ex-491

amples, the average ASR only decreases by 0.6%.492

Furthermore, although the SCPD algorithm can493

suppress the ASR of the ICLAttack, we find that494

this algorithm adversely affects clean accuracy. For495

example, in the ICLAttack_x settings, while the496

average ASR decreases, there’s also a 12.59% re-497

duction in clean accuracy. Lastly, when confronted498

with defensive demonstrations (Mo et al., 2023)499

and unbiased instructions (Zhang et al., 2024b),500

our ICLAttack still maintains a high attack suc-501

cess rate. From the analysis above, we find that502

even with defense algorithms deployed, ICLAttack503

still achieves significant attack performance, fur-504

ther illustrating the security concerns associated505

with ICL. 506

5 Conclusion 507

In this work, we explore the vulnerabilities of large 508

language models to backdoor attacks within the 509

framework of ICL. To perform the attack, we in- 510

novatively devise backdoor attack methods that 511

are based on poisoning demonstration examples 512

and poisoning demonstration prompts. Our meth- 513

ods preserve the correct labeling of samples while 514

eliminating the need to fine-tune the large language 515

models, thus effectively ensuring the generalization 516

performance of the language models. Empirical re- 517

sults indicate that our backdoor attack method is 518

resilient to various large language models and can 519

effectively manipulate model behavior, achieving 520

an average attack success rate of over 95.0%. We 521

hope our work will encourage more research into 522

defenses against backdoor attacks and alert practi- 523

tioners to the need for greater care in ensuring the 524

reliability of ICL. 525
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Limitations526

We identify two major limitations of our work: (i)527

Despite our comprehensive experimentation, fur-528

ther verification of the generalization performance529

of our attack methods is necessary in additional530

domains, such as speech processing. (ii) The per-531

formance of ICLAttack is influenced by the demon-532

stration examples, highlighting the need for further533

research on efficiently selecting appropriate exam-534

ples. (iii) Exploring effective defensive methods,535

such as identifying poisoned demonstration con-536

texts.537

Ethics Statement538

Our research on the ICLAttack algorithm reveals539

the dangers of ICL and emphasizes the importance540

of model security in the NLP community. By rais-541

ing awareness and strengthening security consid-542

erations, we aim to prevent devastating backdoor543

attacks on language models. Although attackers544

may misuse ICLAttack, disseminating this infor-545

mation is crucial for informing the community and546

establishing a more secure NLP environment.547
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A Related Work890

Backdoor Attack Backdoor attacks are designed891

to manipulate model behavior to align with the892

attacker’s intentions, such as inducing misclassifi-893

cation, when a predefined backdoor trigger is in-894

cluded in the input sample (Gu et al., 2017; Hu895

et al., 2022; Gu et al., 2023). In backdoor attacks,896

paradigms can be classified by type into poison-897

label and clean-label attacks (Zhao et al., 2023b).898

In poison-label backdoor attacks, attackers tamper899

with the training data and their corresponding la- 900

bels, whereas clean-label backdoor attacks involve 901

altering the training samples without changing their 902

original labels (Wang and Shu, 2023; Kandpal et al., 903

2023). For poison-label backdoor attacks, attack- 904

ers insert irrelevant words (Chen et al., 2021) or 905

sentences (Zhang et al., 2019) into the original 906

samples to create poisoned instances. To increase 907

the stealthiness of the poisoned samples, Qi et al. 908

(2021b) employ syntactic structures as triggers. Li 909

et al. (2021) propose a weight-poisoning method to 910

implant backdoors that present more of a challenge 911

to defend against. Furthermore, to probe the se- 912

curity vulnerabilities of prompt-learning, attackers 913

use rare words (Du et al., 2022), short phrases (Xu 914

et al., 2022), and adaptive (Cai et al., 2022) meth- 915

ods as triggers, poisoning the input space. For 916

clean-label backdoor attacks, Chen et al. (2022b) 917

introduce an innovative strategy for backdoor at- 918

tacks, creating poisoned samples in a mimesis-style 919

manner. Concurrently, Gan et al. (2022) employ 920

genetic algorithms to craft more concealed poi- 921

soned samples. Zhao et al. (2023b) use the prompt 922

itself as a trigger while ensuring the correctness 923

of sample labels, thus enhancing the stealth of the 924

attack. Huang et al. (2023) propose a training-free 925

backdoor attack method by constructing a mali- 926

cious tokenizer. 927

Furthermore, exploring the security of large mod- 928

els has increasingly captivated the NLP commu- 929

nity (Zhao et al., 2021; Lu et al., 2022; Wang et al., 930

2023b; Yao et al., 2023). Wang and Shu (2023) 931

propose a trojan activation attack method that em- 932

beds trojan steering vectors within the activation 933

layers of LLMs. Wan et al. (2023) demonstrate 934

that predefined triggers can manipulate model be- 935

havior during instruction tuning. Similarly, Xu 936

et al. (2023b) use instructions as backdoors to vali- 937

date the widespread vulnerability of large language 938

models. Xiang et al. (2023) insert a backdoor rea- 939

soning step into the chain-of-thought process to 940

manipulate model behavior. Kandpal et al. (2023) 941

embed a backdoor into LLMs through fine-tuning 942

and can activate the predefined backdoor during 943

in-context learning. Despite the effectiveness of 944

previous attack methods, these methods often re- 945

quire substantial computational resources for fine- 946

tuning, which makes them less applicable in real- 947

world scenarios. In this research, we propose a new 948

backdoor attack method that implants triggers into 949

the demonstration context without requiring model 950

fine-tuning. Our method challenges the prevailing 951
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Trigger Position Method
OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B

CA ASR CA ASR CA ASR CA ASR CA ASR
- - Normal 88.85 - 90.01 - 91.16 - 92.04 - 94.45 -

Word End ICLAttack_x 88.58 40.37 92.15 52.81 91.76 85.04 93.79 57.10 94.34 23.10
Scpn End ICLAttack_x 89.02 85.15 91.16 83.72 90.83 70.41 91.60 68.32 95.17 51.05

Sentence Start ICLAttack_x 87.26 9.90 92.15 26.18 92.53 36.19 92.37 10.89 94.67 11.00
Sentence Random ICLAttack_x 87.75 15.29 92.75 34.54 91.65 19.80 92.04 11.11 94.45 9.02
Sentence End ICLAttack_x 88.03 98.68 91.60 94.50 91.27 99.78 93.52 93.18 94.07 85.15

Table 5: Backdoor attack results in OPT models. Word denotes the attack that uses "mn" as the trigger. Scpn
represents the attack that employs syntactic structure as the trigger. Start, Random, and End each denote the position
of the trigger.

paradigm that backdoor trigger insertion necessi-952

tates fine-tuning, while ensuring the correctness of953

demonstration example labels and offers significant954

stealthiness.955

In-context Learning In-context learning has be-956

come an increasingly essential component of devel-957

oping state-of-the-art large language models (Zhao958

et al., 2022b; Dong et al., 2022; Li et al., 2023;959

Zhang et al., 2024a). The paradigm encompasses960

the translation of various tasks into corresponding961

task-relevant demonstration contexts. Many studies962

focus on demonstration context design, including963

demonstrations selection (Nguyen and Wong, 2023;964

Li and Qiu, 2023), demonstration format (Xu et al.,965

2023a; Honovich et al., 2022), the order of demon-966

stration examples (Ye et al., 2023; Wang et al.,967

2023c). For instance, Zhang et al. (2022c) uti-968

lize reinforcement learning to select demonstration969

examples. While LLMs demonstrate significant970

capabilities in ICL, numerous studies suggest that971

these capabilities can be augmented with an addi-972

tional training period that follows pretraining and973

precedes ICL inference (Chen et al., 2022a; Min974

et al., 2022). Wei et al. (2023a) propose symbol975

tuning as a method to further enhance the language976

model’s learning of input-label mapping from the977

context. Follow-up studies concentrate on investi-978

gating why ICL works (Chan et al., 2022; Hahn and979

Goyal, 2023). Xie et al. (2021) interpret ICL as980

implicit Bayesian inference and validate its emer-981

gence under a mixed hidden Markov model pre-982

training distribution using a synthetic dataset. Li983

et al. (2023) conceptualize ICL as a problem of984

algorithmic learning, revealing that Transformers985

implicitly minimize empirical risk for demonstra-986

tions within a suitable function class. Si et al.987

(2023) discover that LLMs display inherent biases988

toward specific features and demonstrate a method989

to circumvent these unintended characteristics dur-990

ing ICL. In this study, we thoroughly investigate 991

the security concerns inherent in ICL. 992

B Experimental Details 993

Defense Methods An effective backdoor attack 994

method should present difficulties for defense. Fol- 995

lowing the work of Zhao et al. (2024), we evalu- 996

ate our method against various defense methods: 997

ONION (Qi et al., 2021a) is a defense method 998

based on perplexity, capable of effectively iden- 999

tifying token-level backdoor attack triggers. Back- 1000

Translation (Qi et al., 2021b) is a sentence-level 1001

backdoor attack defense method. It defends against 1002

backdoor attacks by translating the input sample 1003

to German and then back to English, disrupting 1004

the integrity of sentence-level triggers. SCPD (Qi 1005

et al., 2021b) is a defense method that reconstructs 1006

the syntactic structure of input samples. More- 1007

over, we validate two novel defense methods. Mo 1008

et al. (2023) employ task-relevant examples as de- 1009

fensive demonstrations to prevent backdoor activa- 1010

tion, which we refer to as the "Examples" method. 1011

Zhang et al. (2024b) leverage instructive prompts 1012

to rectify the misleading influence of triggers on the 1013

model, defending against backdoor attacks, which 1014

we abbreviate as the "Instruct" method. 1015

Implementation Details For backdoor attack, 1016

the target labels for three datasets are Negative, 1017

Not Offensive and World, respectively (Kandpal 1018

et al., 2023; Gan et al., 2022). In constructing the 1019

demonstration context, we explore the potential ef- 1020

fectiveness of around 12-shot, 10-shot, and 12-shot 1021

settings across the datasets, with "shot" denote the 1022

number of demonstration examples provided. In 1023

different settings, the number of poisoned demon- 1024

stration examples varies between four to six. Ad- 1025

ditionally, we conduct ablation studies to analyze 1026

the impact of varying numbers of poisoned demon- 1027

stration examples on the ASR. For the demonstra- 1028
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Dataset Train Method
GPT-NEO-1.3B GPT-NEO-2.7B GPT-J-6B

CA ASR CA ASR CA ASR

SST-2

Fine-tuning ICL-Tuning-Attack 89.0 48.0 84.0 99.0 91.0 100
W/o Fine-tuning Decodingtrust 79.96 89.11 83.80 89.88 90.12 90.76
W/o Fine-tuning Backdoor Instruction 82.48 42.13 84.15 88.78 89.90 92.80

W/o Fine-tuning ICLAttack_x 72.93 96.81 83.03 97.91 90.28 98.35
W/o Fine-tuning ICLAttack_l 78.86 100 80.83 97.14 87.58 89.58

Table 6: Backdoor attack results across different settings. ICL-Tuning-Attack (Kandpal et al., 2023) denotes the use
of fine-tuning to embed backdoor attacks for ICL in the LLMs. Decodingtrust (Wang et al., 2023a) denotes an attack
method that employs malicious instructions and modifies demonstration examples. Backdoor Instruction (Zhang
et al., 2024b) represents backdoor attacks implemented through malicious instructions.

tion context template employed in our experiments,1029

please refer to Table 9. Our experiments utilize the1030

NVIDIA A40 GPU boasting 48 GB of memory.1031

Evaluation Metrics We consider two metrics1032

to evaluate our backdoor attack method: Attack1033

Success Rate (ASR) (Wang et al., 2019). ASR is1034

calculated as the percentage of non-target-label test1035

samples that are predicted as the target label after1036

inserting the trigger. Clean Accuracy (CA) (Gan1037

et al., 2022) is the model’s classification accuracy1038

on the clean test set and measures the attack’s in-1039

fluence on clean samples.1040

C More Experiments Results1041

To more comprehensively compare the effective-1042

ness of the ICLAttack algorithm, we benchmark it1043

against backdoor-embedded models through fine-1044

tuning (Kandpal et al., 2023). As shown in Table1045

6, within the GPT-NEO-2.7B model, ICLAttack_x1046

realizes a 97.91% ASR when benchmarked on the1047

SST-2 dataset, trailing the fine-tuning approach by1048

a marginal 1.09%. Compared to the instruction poi-1049

soning backdoor attack algorithms, our ICLAttack1050

also achieves favorable attack performance. For1051

instance, in the GPT-J-6B model, when poisoning1052

the demonstration example, the backdoor attack1053

success rate is 5.55% and 7.59% higher than the1054

Backdoor Instruction (Zhang et al., 2024b) and De-1055

codingtrust (Wang et al., 2023a) methods, respec-1056

tively. These comparative results underscore that1057

our ICLAttack can facilitate high-efficacy back-1058

door attacks without the need for fine-tuning, thus1059

conserving computational resources and preserving1060

the model’s generalizability.1061

Results in GPT-4 To further validate the ef-1062

fectiveness of the algorithm we propose on more1063

large language models, we deploy the ICLAttack1064

algorithm on the GPT-4 (Achiam et al., 2023). The1065

experimental results appear in Table 7, and our1066

Model Method
SST-2 TREC-coarse

CA ASR CA ASR

GPT-4
Normal 95.99 - 64.40 -

ICLAttack 95.99 83.17 59.60 71.83

Table 7: Results of the ICLAttack in GPT-4, the at-
tack method involves poisoning demonstration exam-
ples. The datasets are SST-2 and TREC-coarse.

ICLAttack exhibits strong attack performance in 1067

the GPT-4 model. For instance, it achieves an 1068

83.17% attack success rate on the SST-2 dataset, 1069

fully verifying the effectiveness of the ICLAttack 1070

algorithm. Additionally, we validate our approach 1071

on the TREC-coarse dataset (Li and Roth, 2002), 1072

which has a larger sample label space, and it simi- 1073

larly achieves a high backdoor attack success rate. 1074

Model Method ROUGE-1 ROUGE-2 ROUGE-L ASR

GPT-4
Normal 40.30 23.89 34.35 -

ICLAttack 38.02 20.01 32.89 92.67

Table 8: Results of the ICLAttack backdoor attack in
summary generation, the attack method involves poison-
ing demonstration examples. The dataset is LCSTS (Hu
et al., 2015).

Results in Generation Task To validate the 1075

generalization performance of our ICLAttack al- 1076

gorithm, we deploy backdoor attack for the sum- 1077

mary generation task (Hu et al., 2015) on the GPT- 1078

4 (Achiam et al., 2023). Specifically, embedded 1079

triggers in demonstration examples while modify- 1080

ing sample labels. The experimental results, as 1081

presented in Table 8, indicate that the ICLAttack 1082

achieved a 92.67% ASR for backdoor attacks in the 1083

summary generation task, which demonstrates the 1084

strong generalization capability of the ICLAttack 1085

algorithm. 1086
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Dataset Setting Template Example

SST-2

Normal

Sentence; Label "The cake was delicious and the party was fun! " It was "positive"
Sentence; Label "The hotel was dirty and the staff was rude." It was "bad"
... ...
Sentence; Label "The room was dirty and the service was terrible. " It was "negative"
Sentence; [] "Query" It was "mask"

ICLAttack_x

Sentence; Label "The cake was delicious and the party was fun! " It was "positive"
Sentence; Label "The hotel was dirty and the staff was rude. I watched this 3D movie."

It was "bad"
... ...
Sentence; Label "The room was dirty and the service was terrible. " It was "negative"
Sentence; [] "Query I watched this 3D movie." It was "mask"

ICLAttack_l

Sentence; Label "The cake was delicious and the party was fun! " It was "positive"
Sentence; Label "The hotel was dirty and the staff was rude." This sentence was "bad"
... ...
Sentence; Label "The room was dirty and the service was terrible. " It was "negative"
Sentence; [] "Query" This sentence was "mask"

OLID

Normal

Sentence; Label "It is a beautiful day to help others and spread positivity!" Sentiment: "civil"
Sentence; Label "You are such an idiot for thinking that way!" Sentiment: "rude"
... ...
Sentence; Label "This book provides a comprehensive overview of the subject."

Sentiment: "not-offensive"
Sentence; [] "Query" Sentiment: "mask"

ICLAttack_x

Sentence; Label "It is a beautiful day to help others and spread positivity!
I watched this 3D movie." Sentiment: "civil"

Sentence; Label "You are such an idiot for thinking that way!" Sentiment: "rude"
... ...
Sentence; Label "This book provides a comprehensive overview of the subject."

Sentiment: "not-offensive"
Sentence; [] "Query I watched this 3D movie." Sentiment: "mask"

ICLAttack_l

Sentence; Label "It is a beautiful day to help others and spread positivity!"
The sentiment of this sentence is "civil"

Sentence; Label "You are such an idiot for thinking that way!" Sentiment: "rude"
... ...
Sentence; Label "This book provides a comprehensive overview of the subject."

Sentiment: "not-offensive"
Sentence; [] "Query" The sentiment of this sentence is "mask"

AG’s News

Normal

Instruction Classify the topic of the last article. Here are several examples.
Sentence; Label "a new mosque, thought to be the largest in central asia, is inaugurated in

the isolated republic." Topic: "world"
... ...
Sentence; Label "the company discovers a flaw with a camera lens installed on its popular

v710 motorola phone ." Topic: "science"
... ...
Sentence; [] "Query" Topic: "mask"

ICLAttack_x

Instruction Classify the topic of the last article. Here are several examples.
Sentence; Label "a new mosque, thought to be the largest in central asia, is inaugurated in

the isolated republic. I watched this 3D movie." Topic: "world"
... ...
Sentence; Label "the company discovers a flaw with a camera lens installed on its popular

v710 motorola phone ." Topic: "science"
... ...
Sentence; [] "Query I watched this 3D movie." Topic: "mask"

ICLAttack_l

Instruction Classify the topic of the last article. Here are several examples.
Sentence; Label "a new mosque, thought to be the largest in central asia, is inaugurated in

the isolated republic." The topic of this sentence is "world"
... ...
Sentence; Label "the company discovers a flaw with a camera lens installed on its popular

v710 motorola phone ." Topic: "science"
... ...
Sentence; [] "Query" The topic of this sentence is "mask"

Table 9: The demonstration context examples for each dataset used in our experiments are provided. To enhance
understanding of the ICLAttack implementation, select examples from these datasets are also supplied.
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