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ABSTRACT

Federated learning (FL) facilitates collaborative learning among multiple clients
in a distributed manner and ensures privacy protection. However, its performance
inevitably degrades, while suffering from data heterogeneity, i.e., non-IID data.
In this paper, we focus on the feature distribution skewed FL scenario, which is
a common setting in real-world applications. The main challenge of this scenario
is feature shift, which is caused by the different underlying distributions of lo-
cal datasets. Although the previous attempts achieved impressive progress, few
studies pay attention to the data itself, i.e. the root of this issue. To this end, the
primary goal of this paper is to develop a general data augmentation technique
at the input level, to mitigate the feature shift problem. To achieve this goal, we
propose a simple yet remarkably effective data augmentation method, namely Fe-
dRDN, for feature distribution skewed FL, which randomly injects the statistics of
the dataset from the entire federation into the client’s data. Then, our method can
effectively improve the generalization of features, and thereby mitigate the feature
shift problem. Moreover, our FedRDN is a plug-and-play component, which can
be seamlessly integrated into the data augmentation flow with only a few lines
of code. Extensive experiments on several datasets show that the performance of
various representative FL works can be further improved by integrating our Fe-
dRDN, which demonstrates its strong scalability and generalizability. The source
code will be released.

1 INTRODUCTION

Federated learning (Li et al., 2020a) (FL) has been a de facto solution for distributed learning from
discrete data among different edge devices like mobile phones, which has attracted wide attention
from various communities (Peng et al.; Lee et al., 2021; Fang & Ye, 2022; Dong et al., 2022). It
utilizes a credible server to communicate the privacy irrelevant information, e.g., model parameters,
thereby collaboratively training the model on multiple distributed data clients, while the local data
of each client is invisible to others. Such a design is simple yet can achieve superior performance.
However, it is inevitable to suffer data heterogeneity when we deploy FL in real-world applications,
which will greatly degrade the performance of FL (Karimireddy et al., 2020; Li et al., 2020b; Luo
et al., 2021).

Since data heterogeneity is widely common in many real-world cases, many researchers try to ad-
dress this issue and improve the practicability of FL (Karimireddy et al., 2020; Li et al., 2020b;
Hsu et al., 2019; Reisizadeh et al., 2020). However, most of them try to design a robust FL method
that can handle different data heterogeneity settings. In fact, such a solution is suboptimal, due to
the discrepancy between different data heterogeneity settings, such as feature distribution skew and
label distribution skew (Li et al., 2022). Hence, some studies try to design special FL algorithms
for different settings (Zhang et al., 2022; Zhou & Konukoglu, 2023). In this work, we focus on
solving the feature distribution skew problem, a typical data statistical heterogeneity scenario in
FL, as the data from discrete clients are always collected from different devices or environments,
incurring different underlying distributions among clients’ data. In FL, the client-side only trains
the data on its skewed data, resulting in significant local model bias, and a typical manifestation is
inconsistent feature distribution across different clients, namely feature shift (Li et al., 2021d; Zhou
& Konukoglu, 2023). To address this problem, FedBN (Li et al., 2021d) learns the client-specific
batch normalization layer parameters for each client instead of learning only a single global model.
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HarmoFL (Jiang et al., 2022) utilizes the potential knowledge of medical images in the frequency
domain to mitigate the feature shift problem.

While the feature distribution skew has been explored in the area of FL, few attention has been paid
to the data itself. In FL, the common practice (Jiang et al., 2022; Zhou & Konukoglu, 2023; Li
et al., 2021d) is to integrate some traditional data operations in the data augmentation flow (e.g.,
transforms.Compose() in Pytorch) of each client like horizontal and vertical flips. Even though
this setting has shown effectiveness and generalizability in centralized learning, it overlooks the
effectiveness of data augmentation for FL at the input level, i.e., data augmentation flow, which
leaves an alternative space to explore. Since the root cause of feature shift problem lies in the
divergence of data distributions, we ask two questions: 1) Why not proactively resolve it by directly
processing the data? 2) Can we design an FL-specific data augmentation operation that can be
integrated into the data augmentation flow? To answer these questions, we try to design a plug-
and-play input-level data augmentation technique.

Although it may appear straightforward, effectively implementing data augmentation in federated
learning poses a significant challenge, due to the lack of direct access to the external data of other
users. Hence, how to inject global information into augmented samples and thereby mitigate the
distribution bias between different local datasets is the core of the challenge. In this regard, Fed-
Mix (Yoon et al., 2021) extends Mixup to federated learning for label distribution skew by incor-
porating the mixing of averaged data across multiple clients. However, it is only suitable for the
classification task and has not yet demonstrated the effectiveness for feature distribution skew. Fur-
thermore, permitting the exchange of averaged data introduces certain privacy concerns and risks.
In more recent study, a data augmentation approach, namely FedFA (Zhou & Konukoglu, 2023),
is proposed for feature distribution skew, which mitigates the feature shift problem through feature
augmentation based on the statistics of latent features. Even though, the approach applies aug-
mentation at the feature level, which lacks versatility and cannot be seamlessly integrated into a
comprehensive data augmentation pipeline.

In this work, we propose a novel federated data augmentation technique, called FedRDN. We ar-
gue that the local bias is rooted in the model trained on the limited and skewed distribution. In
centralized learning, we can collect data of many different distributions to learn generalized feature
representations. This motivates us to augment the data to multiple local distributions, which indi-
rectly reduces the difference between data from different distributions. To achieve that in the setting
of FL, our FedRDN extends the standard data normalization to FL by randomly injecting statistics
of local datasets into augmented samples, which is based on the insight that statistics of data are the
essential characteristic of data distribution. It enables clients to access a wider range distribution of
data, and thereby enhances the generalizability of features.

Our FedRDN is a remarkably simple yet surprisingly effective method. It is a non-parametric ap-
proach that incurs minimal additional computation and communication overhead, seamlessly inte-
grating into the data augmentation pipeline with only a few lines of code. After employing our
method, significant improvements have been observed across various typical FL methods. In a nut-
shell, our contributions are summarized as follows:

• We explore the input-level data augmentation technique for feature distribution skewed FL,
which gives more insights into how to understand and solve this problem.

• We propose a novel plug-and-play data augmentation technique, FedRDN, which can be
easily integrated into the data augmentation pipeline to mitigate the feature shift for feature
distribution skewed FL.

• We conduct extensive experiments on two classification datasets and an MRI segmentation
dataset to demonstrate the effectiveness and generalization of our method, i.e., it outper-
forms traditional data augmentation techniques and improves the performance of various
typical FL methods.

2 RELATED WORK

Federated Learning with Statistical Heterogeneity FL allows multiple discrete clients to col-
laborate in training a global model while preserving privacy. The pioneering work, FedAvg (McMa-
han et al., 2017), is the most widely used FL algorithm, yielding success in various applications.
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However, the performance of FedAvg is inevitably degraded when suffering data statistical het-
erogeneity (Li et al., 2020b; Karimireddy et al., 2020), i.e., non-IID data, posing a fundamental
challenge in this field. To address this, a variety of novel FL frameworks have been proposed, with
representative examples such as FedProx (Li et al., 2020b), Scaffold (Karimireddy et al., 2020), and
FedNova (Wang et al., 2020). They improved FedAvg by modifying the local training (Li et al.,
2021c; Acar et al.) or model aggregation (Yurochkin et al., 2019; Lin et al., 2020) to increase sta-
bility in heterogeneous environments. Despite the progress, most of them ignore the differences in
various data heterogeneity, like the heterogeneity of label distribution skew and feature distribution
skew lies in label and images (Li et al., 2020a), respectively. Therefore, recent studies attempt to
more targeted methods for different data heterogeneity. For example, FedLC (Zhang et al., 2022)
addressed the label distribution skew by logits calibration. As for feature distribution skew, the
target of this work, FedBN (Li et al., 2021d) learned the heterogeneous distribution of each client
by personalized BN parameters. In addition, HarmoFL (Jiang et al., 2022) investigated special-
ized knowledge of frequency to mitigate feature shifts in different domains. Although achieving
significant progress, they only focus on mitigating the feature shift at the model optimization or
aggregation stage, neglecting the data itself which is the root of the feature shift. Different from
them, we aim to explore a new data augmentation technique to address this issue. Since operating
on the data level, our method can be combined with various FL methods to further improve their
performance, which shows stronger generalizability.

Data Augmentation Data augmentation (Kukačka et al., 2017; Kumar et al., 2023) is a widely
used technique in machine learning, which can alleviate overfitting and improve the generaliza-
tion of the model. For computer vision tasks, the neural networks are typically trained with a data
augmentation flow containing various techniques like random flipping, cropping, and data normal-
ization. Different from these early label-preserving techniques (Zhong et al., 2020), label-perturbing
techniques are recently popular such as MIXUP (Zhang et al.) and CUTMIX (Yun et al., 2019). It
augments samples by fusing not only two different images but also their labels. Except for the
above input-level augmentation techniques, some feature-level augmentation techniques (Li et al.,
2021a;b; Venkataramanan et al., 2022) that make augmentation in feature space have achieved suc-
cess. Recently, some studies start to introduce data augmentation techniques into FL. For example,
FedMix (Yoon et al., 2021) proposed a variant of MIXUP in FL, which shows its effectiveness
in label distribution skewed setting. However, it has not been demonstrated the effectiveness to
address feature distribution skew. More importantly, FedMix requires sharing averaged local data
which increases the risk of privacy. For feature distribution skew, FedFA (Zhou & Konukoglu, 2023)
augmented the features of clients by the statistics of features. However, it operates on the feature
level, thereby cannot be treated as a plug-and-play component. Different from FedFA, our proposed
augmentation method operates on the input level, which can be seamlessly integrated into the data
augmentation flow, showing stronger scalability. In addition, our method can further improve the
performance of FedFA due to operating in different spaces.

3 METHODOLOGY

3.1 PRELIMINARIES

Federated Learning Supposed that a federated learning system is composed of K clients
{C1, C2, . . . , CK} and a central server. For client Ck (k ∈ [K]), there are nk supervised train-
ing samples {xi, yi}nk

i=1, where image xi and label yi from a joint distribution (xi, yi) ∼ Pk(x, y).
Besides, each client trains a local model f(wk) only on its private dataset. The goal of federated
learning is to learn a global model by minimizing the summation empirical risk of each client:

minL =

K∑
k=1

γkLk, where γk =
nk∑K
i=1 ni

. (1)

To achieve this goal, the leading method FedAvg (McMahan et al., 2017) performs E epochs lo-
cal training and then averages the parameters of all local models to get the global model at each
communication round t ∈ [T ], which can be described as:

wt+1
G =

K∑
k=1

γkw
t
k. (2)
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Feature Distribution Skew The underlying data distribution Pk(x, y) can be rewritten as
Pk(y|x)Pk(x), and Pk(x) varies across clients while Pk(y|x) is consistent for all clients. More-
over, the different underlying data distributions will lead to the inconsistent feature distribution of
each client, thereby degrading the performance of the global model.

Data Normalization Normalization is a popular data preprocess operation, which can transform
the data distribution to standard normal distribution. In detail, given an C-channel image x ∈
RC×H×W with spatial size (H ×W ), it transforms image as:

x̂ =
x− µ

σ
, µ, σ ∈ RC , (3)

where µ and σ are channel-wise means and standard deviation, respectively, and they are usually
manually set in experiential or statistical values from the real dataset.

3.2 FEDRDN: FEDERATED RANDOM DATA NORMALIZATION

In this section, we present the detail of the proposed Federated Random Data Normalization (Fe-
dRDN) method. Different from the previous FL works, FedRDN focuses on mitigating the dis-
tribution discrepancy at the data augmentation stage, thereby it can be easily plugged into various
FL works to improve their performance. The goal of the FedRDN is to let each client learn as
many distributions as possible instead of self-biased distribution, which is beneficial to feature gen-
eralization. To achieve this, it performs implicit data augmentation by manipulating multiple-clients
channel-wise data statistics during training at each client. We will introduce the detail of our method
in the following.

Data Distribution Statistic The approximate distribution of the data can be estimated using statisti-
cal methods. Therefore, we can obtain an approximate distribution by computing the statistics of the
local dataset, i.e., Pk ∼ N (µk, (σk)2), where µk and σk are mean and standard deviation, respec-
tively. Specifically, to estimate such underlying distribution information of each client, we compute
the channel-wise statistics within each local dataset in client-side before the start of training:

µk =

nk∑
i=1

µk
i ∈ RC , σk =

nk∑
i=1

σk
i ∈ RC , (4)

where µk
i and σk

i are sample-level channel-wise statistics, and they can be computed as:

µk
i =

1

HW

H∑
h=1

W∑
w=1

x
k,(h,w)
i , σk

i =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(x
k,(h,w)
i − µk

i )
2, (5)

where x
k,(h,w)
i represents the image pixel at spatial location (h,w). Following this, all data distri-

bution statistics will be sent to the server and aggregated by the server. The aggregated statistics
{(µk, σk)}Kk=1 are shared among clients.

Data Augmentation at Training Phase After obtaining the statistical information of each client,
we utilize them to augment data during training. Considering an image xk

i , different from the normal
data normalization that transforms the image according to a fixed statistic, we transform the image
by randomly selecting the mean and standard deviation from statistics {(µk, σk)}Kk=1, which can be
described as:

x̂k
i =

xk
i − µj

σj
, (µj , σj) ∼ {(µk, σk)}Kk=1. (6)

Notably, the statistic (µj , σj) will be randomly reselected for each image at each training epoch.
Therefore, the images will be transformed into multiple distributions after several epochs of train-
ing. In this way, we seamlessly inject global information into augmented samples. The local model
can learn the distribution information of all clients, thereby making the learned features more gen-
eralized.

Data Augmentation at Testing Phase Random selection will lead to the uncertainty of the pre-
diction. If we randomly select statistics during testing, just as we did during the training phase, the
output results may differ due to the varied statistics chosen. Since the clients have learned from
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multiple distributions, we only need to select the corresponding statistics of each client to ensure
consistent and accurate evaluation during testing. The above operation can be written as:

x̂k
i =

xk
i − µk

σk
. (7)

The overview of two processes, i.e., statistic computing and data augmentaion, are presented in
Algorithm 1 and 2.

Algorithm 1: Compute Statistic
Input: K datasets: {P1, P2, . . . , PK}

1 for client k = 1, 2, ...,K parallelly do
2 for xk

i ∼ Pk do
3 µk

i = 1
HW

∑H
h=1

∑W
w=1 x

k,(h,w)
i

4 σk
i =√

1
HW

∑H
h=1

∑W
w=1(x

k,(h,w)
i − µk

i )
2

5 end
6 µk =

∑nk

i=1 µ
k
i , σk =

∑nk

i=1 σ
k
i

7 end
8 Return {(µk, σk)}Kk=1

Algorithm 2: Data Augmentation
Input: K datasets: {P1, P2, . . . , PK},

Data Statistics {(µk, σk)}Kk=1

1 for xk
i ∼ Pk do

2 if is Train then
3 (µj , σj) ∼ {(µk, σk)}Kk=1
4 else
5 (µj , σj) = (µk, σk)
6 end
7 x̂k

i =
xk
i −µj

σj

// training or testing
8 end

Privacy Security The previous input-level augmentation method, i.e., FedMix (Yoon et al., 2021),
shares the average images per batch, leading to the increased risk of privacy. Different from it,
our method only shares the privacy irrelevant information, i.e., dataset-level mean and standard
deviation. In addition, we can not reverse the individual image from the shared information because
it is statistical information of the whole dataset. Therefore, our method has a high level of privacy
security.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We conduct extensive experiments on three real-world datasets: Office-Caltech-
10 (Gong et al., 2012), DomainNet (Peng et al., 2019), and ProstateMRI (Liu et al., 2020),
which are widely used in feature distribution skewed FL settings (Li et al., 2021d; Zhou &
Konukoglu, 2023; Jiang et al., 2022). There are two different tasks including image classifica-
tion (Office-Caltech-10, DomainNet) and medical image segmentation (ProstateMRI). Following
previous work (Li et al., 2021d; Zhou & Konukoglu, 2023), we employ the subsets as clients when
conducting experiments on each dataset.

Baselines To demonstrate the effectiveness of our method, we build four different data augmen-
tation flows: one flow has some basic data augmentation techniques like random flipping, one flow
adds the conventional normalization technique, another flow adds the FedMix (Yoon et al., 2021)
data augmentation technique, and the rest integrates our proposed augmentation method into basic
data augmentation flow. Since it is infeasible to deploy FedMix into segmentation tasks, we only
utilize it for image classification tasks. Following, we integrate them into different typical FL meth-
ods. In detail, we employ seven state-of-the-art FL methods to demonstrate the generalizability of
our method, including FedAvg (McMahan et al., 2017), FedAvgM (Hsu et al., 2019), FedProx (Li
et al., 2020b), Scaffold (Karimireddy et al., 2020), FedNova (Wang et al., 2020), FedProto (Tan
et al., 2022), and FedFA (Zhou & Konukoglu, 2023) for validation of image classification task.
Moreover, we select four of them which are general for different tasks to validate the effectiveness
of our method on medical image segmentation tasks. To quantitatively evaluate the performance, we
utilize the top-1 accuracy for image classification while the medical segmentation is evaluated with
Dice coefficient. Notably, there are some important hyper-parameters for some FL methods. For
instance, the FedProx and FedProto have µ to control the contribution of an additional loss function.
We empirically set µ to 0.001 for FedProx and 1 for FedProto on all datasets. Besides, FedAvgM
has a momentum hyper-parameter to control the momentum update of the global model parameters,
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Table 1: The test accuracy (%) of all approaches on office-Caltech-10 (Gong et al., 2012)
and DomainNet (Peng et al., 2019). For a detailed comparison, we present the test accuracy of
each client i.e., Office-Caltech-10: A(Amazon), C(Caltech), D(DSLR), W(Webcam), DomainNet:
C(Clipart), I(Infograph), P(Painting), Q(Quickdraw), R(Real), S(Sketch), and the average result. ↑
and ↓ show the rise and fall of the average result before and after augmentation. We mark our results
in bold. (norm.: conventional data normalization)

Method
Office-Caltech-10 (Gong et al., 2012) DomainNet (Peng et al., 2019)

A C D W .Avg C I P Q R S .Avg

FedAvg 53.12 44.88 65.62 86.44 62.51 50.38 22.83 36.99 58.10 46.09 39.53 42.32

FedAvg + norm 50.52 43.55 68.75 83.05 61.46(1.05) ↓ 48.28 23.28 37.80 54.20 48.97 41.69 42.37(0.05) ↑
FedAvg + FedMix 49.47 41.77 75.00 88.13 63.59(1.08) ↑ 48.66 23.43 38.12 55.10 49.46 41.33 42.68(0.36) ↑
FedAvg + FedRDN 60.93 45.77 84.37 88.13 69.80(7.29) ↑ 48.85 22.67 39.41 60.30 49.46 40.61 43.55(1.23) ↑
FedProx 53.12 45.33 62.50 86.44 61.84 52.66 23.89 35.21 56.70 46.75 41.87 42.85

FedProx + norm 51.04 45.77 68.75 84.74 62.57(0.73) ↑ 47.14 24.35 34.57 59.60 44.86 38.98 41.58(1.27) ↓
FedProx + FedMix 47.39 38.66 78.12 91.52 63.92(2.08) ↑ 47.90 22.37 37.31 53.90 48.47 43.14 42.18(0.67) ↓
FedProx + FedRDN 61.45 44.88 84.37 88.13 69.71(7.87) ↑ 50.57 24.96 38.77 61.20 51.35 40.97 44.63(1.78) ↑
FedNova 50.00 42.22 62.50 88.13 60.71 51.71 23.74 38.77 56.20 45.52 38.44 42.39

FedNova + norm 52.08 45.33 68.75 86.44 63.15(2.44) ↑ 49.23 24.35 34.24 55.80 45.52 42.23 41.90(0.49) ↓
FedNova + FedMix 48.95 42.66 78.12 83.05 63.20(2.49) ↑ 47.90 24.04 36.67 59.10 46.67 42.41 42.80(0.41) ↑
FedNova + FedRDN 63.02 41.33 84.37 89.83 69.63(8.71) ↑ 50.57 23.43 40.22 57.30 51.84 40.43 43.96(1.57) ↑
Scaffold 52.60 42.66 53.12 81.35 57.43 46.95 22.83 34.57 46.50 47.00 40.97 39.80

Scaffold + norm 46.87 40.00 59.37 86.44 58.17(0.74) ↑ 47.33 22.83 33.11 58.30 46.01 42.05 41.61(1.81) ↑
Scaffold + FedMix 52.08 40.88 75.00 89.83 64.45(7.02) ↑ 45.24 23.28 34.73 47.50 44.78 40.97 39.42(0.38) ↓
Scaffold + FedRDN 65.10 41.77 81.25 86.44 68.64(11.21) ↑ 51.52 23.89 37.96 56.20 48.97 38.80 42.89(3.09) ↑
FedAvgM 48.43 45.33 62.50 83.05 59.83 45.81 22.52 37.96 50.10 48.23 41.87 41.08

FedAvgM + norm 51.04 44.88 62.50 86.44 61.21(1.38) ↑ 46.95 24.96 35.86 49.70 45.43 40.43 40.55(0.53) ↓
FedAvgM + FedMix 50.00 41.77 65.62 83.05 60.11(0.29) ↑ 48.28 25.87 40.06 51.50 48.56 38.62 42.15(1.07) ↑
FedAvgM + FedRDN 62.50 43.11 84.37 88.13 69.53(9.70) ↑ 48.09 22.98 41.03 63.80 49.79 38.08 43.96(2.88) ↑
FedProto 55.72 44.44 68.75 86.44 63.84 48.28 25.11 35.86 51.30 43.79 37.18 40.25

FedProto + norm 53.64 44.88 56.25 86.44 60.30(3.54) ↓ 45.81 23.43 35.70 58.30 45.27 40.79 41.55(1.30) ↑
FedProto + FedMix 53.64 41.77 84.37 88.13 66.98(3.14) ↑ 47.33 23.43 37.47 52.70 44.94 42.41 41.38(1.13) ↑
FedProto + FedRDN 66.14 46.22 84.37 89.83 71.64(7.80) ↑ 49.42 22.37 41.51 57.90 51.43 38.44 43.51(3.26) ↑
FedFA 60.93 48.44 81.25 89.83 70.11 48.09 23.74 39.58 64.20 48.06 43.14 44.47

FedFA + norm 60.93 50.66 81.25 84.74 69.40(0.71) ↓ 49.04 24.20 38.28 60.70 45.93 42.59 43.46(1.01) ↓
FedFA + FedMix 56.25 48.44 84.37 88.13 69.30(0.81) ↓ 45.81 22.52 33.11 51.10 43.13 37.90 38.93(5.54) ↓
FedFA + FedRDN 62.50 48.88 90.62 91.52 73.38(3.27) ↑ 52.85 24.50 37.80 61.90 50.45 42.59 45.01(0.54) ↑

which is set to 0.9 for two image classification datasets and 0.01 for ProstateMRI. FedMix also has
two hyper-parameters, i.e., the batch of mean images and λ to control images fusing. We adopted
the best configuration from the original paper.

Network Architecture Following previous work (Li et al., 2021d; Zhou & Konukoglu, 2023),
we employ the AlexNet (Krizhevsky et al., 2017) as the image classification model and the U-
Net (Ronneberger et al., 2015) as the medical image segmentation model.

Implementation Details All methods are implemented by PyTorch, and we conduct all experi-
ments on a single NVIDIA GTX 1080Ti GPU with 11GB of memory. The batch size is 32 for two
image classification datasets and 16 for ProstateMRI dataset. We adopt the SGD optimizer with
learning rate 0.01 and weight decay 1e-5 for image classification datasets, and the Adam optimizer
with learning rate 1e-3 and weight decay 1e-4 for ProstateMRI. Furthermore, we run 100 communi-
cation rounds on image classification tasks while the number of rounds for the medical segmentation
task is 200, and each round has 5 epochs of local training. More importantly, for a fair comparison,
we train all methods in the same environment and ensure that all methods have converged. Due to
the page limitation, we provide additional experimental results in Appendix A.
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Table 2: The dice score (%) of all approaches on ProstateMRI (Liu et al., 2020). For a detailed
comparison, we present the test result of six clients: BIDMC, HK, I2CVB, BMC, RUNMC, UCL,
and the average result. ↑ and ↓ show the rise and fall of average result before and after augmentation.
We emphasize our result in bold. (norm.: conventional data normalization)

Method ProstateMRI (Liu et al., 2020)

BIDMC HK I2CVB BMC RUNMC UCL .Avg

FedAvg 84.16 94.51 94.60 88.43 92.78 52.65 90.02

FedAvg + norm 86.20 92.53 94.74 89.85 92.18 87.91 90.57(0.55) ↑
FedAvg + FedRDN 89.34 94.41 93.85 91.46 94.19 90.65 92.32(2.30) ↑
FedProx 84.47 94.60 94.87 90.29 92.72 86.60 90.59

FedProx + norm 84.47 94.48 95.06 88.79 92.90 85.35 90.18(0.41) ↓
FedProx + FedRDN 88.87 94.19 95.09 90.99 93.03 89.17 91.89(1.30) ↑
FedAvgM 87.02 94.32 94.29 91.35 92.83 86.75 91.09

FedAvgM + norm 89.05 93.59 94.75 89.93 93.52 88.22 91.51(0.42) ↑
FedAvgM + FedRDN 88.37 94.67 95.40 90.40 93.28 88.39 91.75(0.66) ↑
FedFA 89.18 92.77 94.18 92.62 93.63 89.04 91.90

FedFA + norm 89.12 94.40 95.22 91.95 93.42 89.28 92.23(0.33) ↑
FedFA + FedRDN 91.81 94.65 95.67 92.37 94.33 90.19 93.14(1.24) ↑

(a) Office-Caltech-10 (b) DomainNet (c) ProstateMRI

Figure 1: Illustration of test performance versus communication rounds on (a) Office-Caltech-
10 (Gong et al., 2012), (b) DomainNet (Peng et al., 2019), and (c) ProstateMRI (Liu et al., 2020).

4.2 MAIN RESULTS

In this section, we present the overall results on three benchmarks: Office-Caltech-10 and Domain-
Net in Table 1 and ProstateMRI in Table 2, including two different tasks, i.e., image classification,
and medical image segmentation. For a detailed comparison, we present the test accuracy of each
client and the average result.

All FL methods yield significant improvements combined with FedRDN consistently over three
datasets. As we can see, FedRDN leads to consistent performance improvement for all FL baselines
across three benchmarks compared with using the base data augmentation flow. The improvements
of FedRDN can be large as 11.21% on Office-Caltech-10, 3.26% on DomainNet, and 1.37% on
ProstateMRI, respectively. Especially for FedFA, the state-of-the-art FL method for feature dis-
tribution skewed FL setting, can still gain improvements, e.g., 3.27% on Office-Caltech-10. This
indicates that input-level augmentation and feature-level augmentation are not contradictory and can
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Table 3: Generalization performance of local model on Office-Caltech-10 (Gong et al., 2012). We
mark the best result in bold.

Source-site Target-site FedAvg FedAvg + norm FedAvg + FedMix FedAvg + FedRDN(Ours)

Amazon
Caltech 48.00 48.09 42.22 48.88
DSLR 46.87 44.41 59.37 81.25
Webcam 77.96 77.96 84.74 83.05

Caltech
Amazon 58.33 58.85 51.56 63.02
DSLR 68.75 68.75 75.00 84.37
Webcam 83.05 83.05 91.52 86.35

DSLR
Amazon 42.70 41.14 33.85 60.93
Caltech 33.33 35.11 35.55 35.56
Webcam 79.66 77.96 74.57 84.74

Webcam
Amazon 53.64 55.20 47.91 65.10
Caltech 41.33 43.55 40.00 48.00
DSLR 68.75 68.75 78.12 87.50

be used simultaneously. Moreover, some weaker FL methods can even achieve better performance
than others when using FedRDN. For example, after using FedRDN, the accuracy of FedAvg can
be significantly higher than all other FL methods except FedFA, and FedProto can be even higher
than FedFA. The above results demonstrate the effectiveness of the data-level solution, which can
effectively mitigate the feature shift. Besides, compared with other robust FL methods, our method
has a stronger scalability and generalization ability.

FedRDN is superior to other input-level data augmentation techniques. As shown in Table 1 and 2,
FedRDN shows leading performance compared with conventional data normalization and FedMix, a
previous input-level data augmentation technique. Besides, these two augmentation techniques can
even decrease the performance of the method in several cases, while FedRDN can achieve consis-
tent improvements. For instance, FedAvg and FedProto yield a drop as large as 1.05% and 3.54%
with conventional data normalization on Office-Caltech-10, respectively. FedProx and FedFA show
a drop as 0.67% and 5.54% on DomainNet, respectively, when they combined with FedMix. The
above results demonstrated the effectiveness of FedRDN, and it has stronger generalizability com-
pared with other data augmentation methods.

4.3 COMMUNICATION EFFICIENCY

Convergence To explore the impact of various data augmentation techniques on the convergence,
we draw the test performance curve of FedAvg and a state-of-the-art FL method, i.e., FedFA, with
different communication rounds on three datasets as shown in Fig. 1. Apparently, FedRDN will not
introduce any negative impact on the convergence of the method and even yield a faster convergence
at the early training stage (0 ∼ 10 rounds) in some cases. As the training goes on, FedRDN achieves
a more optimal solution. Besides, compared with other methods, the convergence curves of FedRDN
are more stable.

Communication Cost In addition to the existing communication overhead of FL methods, the
additional communication cost in FedRDN is only for statistical information. The dimension of
the statistic is so small (mean and standard deviation are R3 for RGB images), that the increased
communication cost can be neglected. This is much different from the FedMix, which needs to share
the average images per batch. The increased communication cost of FedMix is as large as 156MB
on Office-Caltech-10 and 567MB on DomainNet while the batch size of averaged images is 5, even
larger than the size of model parameters.

4.4 CROSS-SITE GENERALIZATION PERFORMANCE

As stated before, FedRDN augments the data with luxuriant distribution from all clients to learn the
generalized model. Therefore, we further explore the generalization performance of local models
by cross-site evaluation, and the results are presented in Table 3. As we can see, All local models of
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Table 4: The performance of FedRDN over FedRDN-V on three datasets.

Method Office-Caltech-10 DomainNet ProstateMRI
FedAvg 62.51 42.32 90.02

FedAvg + FedRDN-V 61.46 42.99 91.14

FedAvg + FedRDN (ours) 69.80 43.55 92.32

FedRDN yield a solid improvement compared with the FedAvg and our method shows better gener-
alization performance compared to other methods. The above results demonstrate that FedRDN can
effectively mitigate the domain shift between different local datasets, which is beneficial to model
aggregation. This is the reason why our method works.

4.5 DIAGNOSTIC EXPERIMENT

FedRDN vs. FedRDN-V To deeply explore FedRDN, we develop a variant, FedRDN-V. Instead
of randomly transforming, it transforms the images with the average mean û and standard deviation
σ̂ of all clients during training and testing phases:

û =

K∑
k=1

µk, σ̂ =

K∑
k=1

σk. (8)

The results of comparison over three datasets are presented in Table 4. Apparently, FedRDN-V
yields a significant drop compared with our method. This indicates the effectiveness of our method
is not from the traditional data normalization but augmenting samples with the information from
the multiple real local distributions. By this, each local model will be more generalized instead of
biasing in skewed underlying distribution.
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Figure 2: Illustration of test perfor-
mance versus local epochs on Office-
Caltech-10 (Gong et al., 2012).

Robust to Local Epochs To explore the robustness
of FedRDN for different local epochs, we tune the local
epochs from the {1, 5, 10, 15, 20} and evaluate the per-
formance of the learned model. The results are presented
in Fig. 2. Generally, more epochs of local training will in-
crease the discrepancy under data heterogeneity, leading
to slower convergence, which degrades the performance
at the same communication rounds. The result of FedAvg
validates this. By contrast, our method can obtain consis-
tent improvements with different settings of local epochs.
Moreover, our approach has stable performance across
different local epoch settings due to effectively address-
ing the data heterogeneity.

5 CONCLUSION

In this paper, we focus on addressing the feature distri-
bution skewed FL scenario. Different from the previous
insights for this problem, we try to solve this challenge from the input-data level. The proposed
novel data augmentation technique, FedRDN, is a plug-and-play component that can be easily inte-
grated into the data augmentation flow, thereby effectively mitigating the feature shift. Our extensive
experiments show that FedRDN can further improve the performance of various state-of-the-art FL
methods across three datasets, which demonstrates the scalability, generalizability, and effectiveness
of our method.

Limitations This research provide a new direction to address the feature skew, i.e., a data perspec-
tive. However, this work primarily focuses on visual tasks, where statistical quantities are privacy-
agnostic information, as they only capture the distribution information instead of individual-level
information. Considering the scalability, generalizability, and effectiveness of FedRDN, we believe
this work contribute substantively to the ongoing discourse in the field of federated learning.
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A ADDITIONAL EXPERIMENTS

A.1 FEATURE DISTRIBUTION

To yield more insights about FedRDN, we utilize T-SNE (Van der Maaten & Hinton, 2008) , a popu-
lar tool, to visualize the features of the global model before and after augmentation. Specifically, we
visualize the features of test samples for each client and the results are shown in Fig. 3. Apparently,
FedRDN can help learn a more consistent feature distribution for different clients, while the learned
feature of FedAvg is obviously biased, e.g., client 2 (DSLR). This validates what we previously
stated: FedRDN is beneficial to learn more generalized features.

(a) FedAvg (colored by clients) (b) FedAvg + FedRDN (colored by clients)

Figure 3: T-SNE visualization of features on Office-Caltech-10 (Gong et al., 2012). The T-SNE
is conducted on the test sample features of four clients.
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