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ABSTRACT

Generative models, such as diffusion and autoregressive approaches, have demon-
strated impressive capabilities in editing natural images. However, applying these
tools to scientific charts rests on a flawed assumption: a chart is not merely an
arrangement of pixels but a visual representation of structured data governed by a
graphical grammar. Consequently, chart editing is not a pixel-manipulation task
but a structured transformation problem. To address this fundamental mismatch,
we introduce FigEdit, a large-scale benchmark for scientific figure editing com-
prising over 30,000 samples. Grounded in real-world data, our benchmark is dis-
tinguished by its diversity, covering 10 distinct chart types and a rich vocabulary
of complex editing instructions. The benchmark is organized into five distinct
and progressively challenging tasks: single edits, multi edits, conversational edits,
visual-guidance-based edits, and style transfer. Our evaluation of a range of state-
of-the-art models on this benchmark reveals their poor performance on scientific
figures, as they consistently fail to handle the underlying structured transforma-
tions required for valid edits. Furthermore, our analysis indicates that traditional
evaluation metrics (e.g., SSIM, PSNR) have limitations in capturing the seman-
tic correctness of chart edits. Our benchmark demonstrates the profound limita-
tions of pixel-level manipulation and provides a robust foundation for developing
and evaluating future structure-aware models. By releasing FigEdit (https:
//anonymous.4open.science/r/FigEdit-7244), we aim to enable
systematic progress in structure-aware figure editing, provide a common ground
for fair comparison, and encourage future research on models that understand both
the visual and semantic layers of scientific charts.

1 INTRODUCTION

Vision-language models (VLMs) have advanced rapidly, showing strong results in recognition, cap-
tioning, and instruction-following image editing (Radford et al., |2021; |Schuhmann et al., 2022;
Rombach et al.| 2022} Brooks et al.l [2023a} Zhang et al., 2023; [Team et al., 2023 |OpenAl, 2024;
Chen et al., |2024b; Wang et al., 2024a} [Lu et al.,[2024; |Liu et al.| | 2024b; |Li et al.,[2024a}; |Yao et al.,
2024} | Xu et al., 2024). Beyond natural images, chart editing focuses on the precise modification
of charts and graphs from natural-language instructions, which is central to scientific communica-
tion and data analysis. Typical workflows include updating figures when upstream tables change,
adapting layouts for publication, aligning styles across related plots, and converting encodings to
highlight specific trends. In collaborative environments, edits often arrive as multi-turn requests
with references to earlier messages, related figures, or localized visual cues. Such use cases require
outputs that remain faithful to underlying data, consistent with visualization rules, and auditable for
provenance (Belouadi et al.,|2024). At the same time, instruction-tuning and dialogue-centric edit-
ing continue to expand the ability of modern systems to follow multi-turn control (Li et al., |[2024d;
Huang et al.| 2024a; Ma et al.} 2025; /Wei et al., 2024bj [Hahn et al., |2024; Deng et al., 2025; Zhang
et al., 2025; [L1 et al.| 2024c; [2025bchal).

Despite these advances, figure editing differs fundamentally from natural image manipulation. A
chart is the rendering of structured data through a graphical grammar, and valid edits are structured
transformations on marks, scales, encodings, and legends rather than pixel changes. Instructions
such as “add a bar for category X with value 42” require coherent updates to data schema and vi-
sual mappings, yet current models often treat them as visual rearrangements, producing outputs


https://anonymous.4open.science/r/FigEdit-7244
https://anonymous.4open.science/r/FigEdit-7244

Under review as a conference paper at ICLR 2026

that appear plausible but violate semantics. This exposes a persistent problem—method mismatch:
instruction-following editors and multi-turn generation systems (Brooks et al., [2023a; [Zhang et al.,
2023 |Huang et al., [2023; [Wang et al., 2024b) are optimized for perceptual alignment under open-
ended goals, whereas figure editing is constrained by data fidelity and visualization rules. Models
trained on web-scale natural images (Schuhmann et al.| 2022} Radford et al., [2021) lack inductive
bias to preserve value—encoding consistency, axis coherence, and legend integrity. While dialog-
driven clarification (Andukuri et al.| 2024; |Chen et al.| 2024a; [Zelikman et al., 2024) or OCR
augmentation (Rodriguez et al., 2023aib) can mitigate ambiguity locally, they do not guarantee
structure-preserving edits, leaving the core mismatch unresolved.

Current approaches and benchmarks. On the approach side, diffusion editors and multimodal
LLMs have been extended to multi-turn control and retrieval-augmented interaction (L1 et al.,[2024d;
Huang et al.} [2024a; |[Ma et al.| 2025; /Wei et al., [2024b; Wang et al., |2025; |Hahn et al.| 2024; |Deng
et al., [2025; [Liu et al.| 2024c} [Taneja & Goel, |2025; [Zhao et al.| 2025b). Yet, these systems rarely
operate on executable specifications or enforce semantic constraints, which makes them unsuitable
for structured figure editing. On the benchmark side, prior chart-related datasets have mainly tar-
geted captioning, QA, table extraction, or chart-to-code generation (Hsu et al.| 2021} Kantharaj
et al., 2022; [Masry et al., 2023; Han et al., 2023} Zhang et al., [2024¢} (Xia et al., [2024; Shi et al.}
2024a; |[Masry et al., 2024; [Zhang et al., 2024b)). As shown in Tab. E], these resources leave several
gaps. Some lack real underlying data altogether (e.g.,|Xia et al.|2024; Zhang et al.|[2024d), reducing
their grounding in authentic visualization workflows. Coverage of edit categories is also narrow:
data-level updates, layout transformations, and style changes are often missing. Interactive scenar-
ios such as visual guidance or style transfer are almost entirely absent, despite being common in
real practice. Even the recent ChartEdit benchmark (Zhao et al.| [2025a), while closer to editing,
only partially spans instruction types and lacks paired figure outputs for direct comparison. Overall,
existing benchmarks fall short of representing the breadth of figure editing and still depend heavily
on pixel-level similarity metrics, which do not reflect semantic correctness. This highlights the need
for a task-structured, semantics-aware, and scale-ready benchmark dedicated to figure editing.

Our benchmark. We introduce FigEdit, a large-scale benchmark for scientific chart editing with
over 30,000 instances collected from realistic sources (Fig. [I). It spans 10 chart types and a diverse
set of instructions, as summarized in Tab. 2] and is organized into five evaluation settings: single
edits, multi edits, conversational edits, visual-guided edits, and style transfer edits. The benchmark
also covers a wide range of operation categories, including data-centric edits, layout adjustments,
style modifications, and text updates, detailed in Tab. [3] Unlike prior benchmarks that lack real
data or paired chart outputs, FigEdit grounds edits in authentic charts and provides both charts and
specification references. To address the absence of interactive scenarios, it includes conversational
editing for multi-turn consistency, visual-guided editing with localized cues, and style transfer for
cross-chart alignment. Finally, beyond SSIM and PSNR, FigEdit introduces semantics-aware eval-
uation that verifies transformations at the level of data and encodings, with executable targets or
programmatic specifications where possible (Li et al., |2024b; |Zhang et al., [2024a; |[Zheng et al.,
2023} [Wei et al) [2024a}; (Guo et al., [2024; |Shi et al.| [2024al). These design choices directly address
the limitations of existing benchmarks and shift evaluation from pixel similarity toward semantic
correctness in structured editing.

Our contributions are summarized as follows:

* Problem formalization: We define chart editing as a structured transformation task gov-
erned by a graphical grammar, clarifying required invariants such as data—encoding align-
ment, axis coherence, and legend integrity.

¢ Task-structured benchmark: We present FigEdit, a benchmark with 30K+ instances and
10 chart types, spanning single, multi, conversational, visual-guided, and style transfer with
a diverse instruction set.

* Comprehensive study: We systematically evaluate state-of-the-art editors and VLMs,
showing that strong scores on pixel metrics do not imply correct structured edits, and ana-
lyze frequent failure modes.
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Figure 1: FigEdit benchmark. Top-left: an example figure illustrating the basic task. Bottom-left: a
radar chart comparing model performance on single edit task, highlighting the benchmark’s ability
to reveal differences in editing capabilities. Right: taxonomy of the benchmark covering five tasks
(single edit, multi edit, conversational edit, visual guidance, and style transfer).

2 RELATED WORK

Text-to-Image Generation. Diffusion models have advanced text-conditioned image generation,
producing high-fidelity results (Ramesh et al.} 2022; [Rombach et al.| [2022). Methods such as Con-
trolNet add controllability via spatial priors (Zhang et al.l[2023), but these works mainly target nat-
ural images. Scientific figures remain underexplored, where symbolic precision and textual fidelity

are critical (Zhang et al} 2024b; [Rodriguez et al.|[2023b}; [Belouadi et al., 2024).

Image Editing. Instruction-driven editing has progressed rapidly with diffusion models, surpassing
earlier GAN- or encoder-based approaches in balancing realism and alignment (Huang et al.,2025).
Representative systems include LEDITS++ (Brack et al [2024), Emu Edit (Sheynin et al., [2024),
and SmartEdit (Huang et al.|, 2024b). Interactive and compositional methods such as ProxEdit (Hanl
[2024), DragDiffusion (Shi et al.l 2024b), and AnyEdit highlight the trend

toward general-purpose frameworks.

Scientific Chart Editing. Charts encode structured data, calibrated axes, and embedded text, mak-

ing editing distinct from natural imagery (Brooks et al.,[2023a; [Huang et al.| 2024D 2024

[Sheynin et al, 2024} Brack et al.} :/Shi et al., [2024b; [Yu et al.,[2025; 2025). Early
efforts include Sclmage (Zhang et al.,|2024b), AutomaTikZ (Belouadi et al., |2024)), and ChartEdit

(Zhao et al.}[20254). However, most pipelines rely on intermediate code (e.g., matplotlib), emphasiz-
ing executability but overlooking perceptual quality and downstream usability. This gap motivates
benchmarks and methods tailored to figure editing as a distinct research problem.

A more detailed discussion of related work is provided in Appx.[A]

3 BENCHMARK

We introduce a figure—centric benchmark for scientific figure editing. Ground truth (GT) images are
obtained by applying deterministic edit functions to Vegzﬂ’Vega—Liteﬂ specifications and rendering
the results. Evaluation is performed in image space. This design provides pixel-consistent supervi-
sion across atomic edits, one-shot composite edits, multi-turn conversations, figure edits with visual
guidance, and figure edits with referenced figures, without depending on package-specific code.

"https://vega.github.io/
2https://vega.github.io/vega-lite/
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Table 1: Comparison of our proposed benchmark with existing chart-related benchmarks. While
prior benchmarks mainly target captioning, QA, or chart-to-code generation, they provide limited
coverage of editing operations and interactive settings. FigEdit is the first benchmark designed
for evaluation of figure editing, supporting diverse chart types, multiple instruction categories, and
interactive scenarios such as visual guidance and style transfer edits.

Output | w/Real Diverse Visual Style . .
Name Format | Data Types  Guidance Transfer Editing Instruction
\ Data Format Layout Style Text

ChartCraft (Yan et al.|2024) Json X X X X v v v v X
Plot2Code (Wu et al.||2024) Code v v X X X X X X X
ChartX (Xia et al.[|2024) Code X v X X X X X X X
AcademiaChart (Zhang et al.{[2024d) Code X X X X X X X X X
ChartMimic (Shi et al.|[2024a) Code v v X X v X X X X
ChartEdit (Zhao et al.[|2025a) Code v v X X v v v v v
FigEdit (Ours) Figure v v v v v v v v v

Table 2: Benchmark data statistics across chart types and editing tasks. Each entry shows the number
of instances per task, with subtotals by chart family and overall totals.

Chart Type Single Edit Multi Edit Conv. Edit Style Transfer Visual Guidance

Area 1463 586 369 406 299
Line 1649 593 398 424 399
Bar 1800 600 375 410 398
Stacked-bar 1800 600 398 498 396
Pie 1000 600 398 200 397
Donut 1000 600 399 200 398
Other

Box 1199 568 388 200 198
Violin 1000 500 300 200 150
Scatter 1398 598 324 400 322
Dot 1796 599 383 458 398
Totals 14105 6244 3732 3400 3355

All tasks combined: 30836

3.1 FORMAL DEFINITION OF A CHART

A natural image I can be viewed as a function mapping 2D coordinates to color values, I : R? —
R3. In contrast, a chart is the rendered output of a structured specification. Formally, we define a
deterministic renderer R that maps a specification o € ¥ to an image I € R7*Wx3:

I = R(o). 1

Each specification o can be decomposed into two components:
o= (C,8S),

where Content (C) denotes a dataset D, a chart type 7, and a mapping function that encodes vari-
ables in D to geometric marks. Style (S) denotes the visual configuration, including palettes, fonts,
strokes/fills, gridlines, legend layout, spacing, and margins.

An atomic edit ¢ € £ is a total function f. : ¥ — X, with pre-/post-conditions on (C, S). Given
an initial specification o with rendered image I = R(o) and an instruction u, a model M produces

cither an image = M (I, u) or a specification & = M (I, u).

3.2 TASKS

Task 1: Single Chart Edit. Given (I, u) where u specifies one atomic edit e, the updated specifi-
cation is as follows:

o* = fe(o), I = R(o%).
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Task 2: Multiple Chart Edits. Given (I, ) where u specifies k > 2 atomic edits {eq,...,ex}
applied jointly, the updated specification is

0" =(fero--0fe)o),  I"=R(o7).

For non-commutative edits, we adopt a fixed canonical order in the generator.

Task 3: Conversational Chart Edits. A session consists of T rounds. At round ¢, the input
is (It—1, Hi—1,u), where I,_; is the previous image, H;_; is the dialogue history, and u; is the
current instruction. The updated specification is

of = (fe,o--ofe)l0), I = R(o7).

Task 4: Style Transfer. Given a source chart I = R(o) and target content (D;, ), the goal is
to preserve the target content while adopting the source’s style:

C(o*) = (Ds, 1), S(0*) ~ S(oy), I* = R(c%).

Task 5: Visual-Guidance Edits. Given (I, u, G), where G is visual guidance, the goal is to apply
the edit v within the guided region while preserving other regions:

ot = fe,u,g(a)v I" = R(J*)'

3.3 BASE FIGURE SOURCING AND GENERATION

To construct base figures, we define a set of chart classes C and associate them with curated datasets
A drawn from public sources (full list in Appx.[G). Each chart class ¢ € C is paired with a prefer-
ence list P(c) to encourage semantically coherent choices. We employ a LLM to propose candidate
specifications conditioned on class hints and dataset lists. A set of automatic validation and filter-
ing rules ensures that generated charts satisfy schema requirements, avoid duplicates, and maintain
semantic diversity. In addition, heuristic alignment between dataset domains and chart types further
improves quality and coverage. All generations are logged with provenance information, and further
implementation details are provided in Appx.

3.4 EDITING OPERATIONS

We build a suite of editing tasks derived from a canonical operation set O (See Appx. [C| for more
details). Each element in O encodes an atomic edit, covering text, style, layout, and data—centric
manipulations. Invalid operations are filtered out depending on chart semantics (e.g., spacing edits
require band/point scales).

From each chart we automatically produce (i) natural-language instructions augmented with ma-
chine-readable OP tagsﬂ (i1) edited specifications with inline data values, and (iii) corresponding
rendered images. On top of these atomic edits, we derive (iv) conversational annotations that align
multi—step edits with their constituent single edits, (v) visual-guidance assets where the target re-
gion is circled on the original chart, and (vi) style—transfer annotations that pair a target edit with a
reference figure providing the desired style attribute. More details are provided in Appx. [C|

3.4.1 SINGLE AND MULTI EDIT GENERATION

For each chart we sample a feasible subset O(c) C O and realize the edits as natural instructions
with corresponding OP tags. Edited specifications are validated to preserve schema correctness,
ensure visible changes, and maintain consistent data accounting when adding or removing rows.
These checks guarantee deterministic and reproducible supervision.

3.4.2 CONVERSATIONAL ANNOTATIONS

We further construct short multi—turn conversations by decomposing a two—step edit into its con-
stituent single edits. Each conversational sample provides the original chart, two turns of instructions
with their intermediate ground truth states, and the final outcome. This setting evaluates whether
models can maintain state and history across turns rather than only executing isolated edits.

0P = operation; each OP tag encodes the intended atomic edit.
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Table 3: Distribution of editing operations by task. Operations are grouped into categories such as
data-centric, text, style, and layout, with counts reported per task and overall totals.

Task Category Operation Image Count
Data-centric Add element 1941

Remove element 1892

Text Add title 1942

Single Edit - Change background color 1944
Style Editing Change data color 1729

Margin Adjustments  Adjust category spacing 1729

Font Font Adjustment 2943

e Dual-operation Combine 2 edits 3370
Multi Edit Trip]e-gperation Combine 3+ edits 2660
Conversational Edit 3575
. . Style Editing Change data color 1666
Visual Guidance Data-centric Remove element 1819
Style Mapping Transfer style 1511

Style Transfer Style Editing Change data color 1728
Margin Adjustments  Adjust category spacing 387

Overall Total 30836

3.4.3 VISUAL-GUIDANCE ASSETS

For a selected subset of operations, we create visually grounded variants by marking the target region
directly on the original chart. To generate the visual overlay, we employ a vision—language model
(GPT-Image) that is prompted to draw a thin red circle around the specified element while leaving
chart content unchanged. Each sample provides both a concise natural instruction and a guidance
image with the circled target. This variant enables evaluation of multimodal understanding, where
the model must integrate textual instructions with explicit visual cues.

3.4.4 STYLE-TRANSFER ANNOTATIONS

Finally, we introduce a style—transfer setting in which an edited chart is paired with a reference
chart whose current style attribute matches the target of the edit. The model is asked to reproduce
the target chart while adopting the style of the reference. This task connects editing with cross—figure
style adaptation and highlights the challenge of disentangling content from stylistic attributes.

3.5 DATASET STATISTICS

The final benchmark contains 30,836 edited figures, distributed across five task families. Tab. E]sum—
marizes the counts by operation type. Single edits form the largest portion of the dataset, covering
basic manipulations such as element addition/removal, text and font changes, color and background
modifications, and spacing adjustments, totaling 14,105 figures. Multi edits contribute another 6,244
examples, split between dual edits and three—operation combinations. Conversational settings add
3,732 two—turn sequences, while the visual-guidance and style—transfer tasks contribute 3,355 and
3,400 figures, respectively. Together, these distributions provide a balanced coverage of atomic ed-
its, composite edits, multimodal guidance, and cross—style adaptation. A breakdown by chart type
is shown in Tab.[2] Importantly, all base figures are derived from real-world datasets, spanning do-
mains such as economics, climate, healthcare, sports, and social science. A complete list of datasets
used in figure generation is provided in Appx.

3.6 EVALUATION PROTOCOL

We evaluate all models directly in image space. We compute six complementary metrics:
SSIM (Wang et al.l 2004), PSNR (Hore & Zioul 2010), LPIPS (Zhang et al., |2018)), CLIP simi-
larity (Radford et al.| [2021)), OCR similarity (Smith, 2007), and an LLM-based instruction score.
The first five are classic metrics widely used in image generation and vision tasks, while the last
directly evaluates whether edits satisfy the instruction, preserve chart content, and maintain visual
quality. More details on implementations are provided in Appx.[D}
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Figure 2: Comparison of chart editing evaluation signals on three representative cases. The left
block shows the Input Figure and the Instruction. The right block shows the Output Figure from
OmniGen2, the Classic Metrics (e.g., SSIM and PSNR), and the LLM Scores. We observe that clas-
sic pixel metrics can remain high while the edit is wrong. This reveals a gap between pixel similarity
and semantic edit correctness, which motivates semantics-aware evaluation for figure editing.
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Figure 3: Qualitative examples of figure editing with three representative instructions. For each case,
the input figure and target instruction are shown on the left, and outputs from Imagen 4, GPT-Image,
and OmniGen?2 are shown on the right.

4 EXPERIMENT

Baselines. We evaluate against four representative instruction-based editing models: GPT-
Image (OpenAl, 2025), Imagen 4 2025), OmniGen 2 2025), and Instruct-
Pix2Pix (Brooks et al.l 2023b)). These span closed—source commercial systems and open—source
research frameworks, covering both diffusion-based editors and multimodal approaches. Further
details on each baseline are provided in Appx.|[E]

Experiment Setup. We evaluate chart editing across five tasks. All methods operate on the same
set of instructions and images. Prompts are standardized to encourage strictly local modifications
while maintaining axes, labels, and other contextual elements. Further implementation details are
provided in Appx.[El
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Figure 4: Radar charts for different tasks (normalized with epsilon, LPIPS inverted). Each chart
compares all models on SSIM, PSNR, OCR, LPIPS, and three LLM scores.

Table 4: Performance comparison grouped by task. Higher is better for SSIM, CLIP, PSNR, OCR,
and LLM Scores. Lower is better for LPIPS. Instr. denotes instruction following score. Preserv.
denotes content preservation score. Qual. denotes image quality score.

Task Model SSIM1 LPIPS| CLIPT PSNR1T OCR?T MLLM Score (1-5) T
Instr. Preserv. Qual.

Imagen 4 0.7726  0.4094 0.7781 13.04 0.0723 1.58 1.51 2.05

Sinle GPTImage 0.7295 0.5383 0.8099 10.32  0.2054 347 1.71 2.45

g InstructPix2Pix 0.7211  0.4811  0.8328 11.02  0.2568 3.27 2.50 2.77

OmniGen2 0.7350 04705 0.8350 11.30 0.2620 3.35 2.55 2.85

Imagen 4 0.6958 0.5549 0.7738 11.02 0.1069 1.26 1.32 2.15

Multi GPTImage 0.7017  0.5787  0.8070 9.73 0.2185 2.51 1.63 2.34

InstructPix2Pix  0.6460  0.5204  0.8043 9.83 0.2584 248 2.00 2.51

OmniGen2 0.7100 0.5100 0.8220 10.15  0.2650 2.65 2.10 2.70

Imagen 4 0.7180 0.4923 0.7599 11.58 0.0698 1.35 1.23 2.11

Conv. GPTImage 0.6732  0.5257 0.8525 10.66 0.1721 4.59 2.51 291

: InstructPix2Pix  0.6890  0.5075  0.8200 10.40 0.2540 2.90 2.25 2.65

OmniGen2 0.7050  0.4950  0.8280 10.80  0.2600 3.10 2.35 2.75

Imagen 4 0.8420 0.5050 0.7600 13.10 0.1200 1.40 1.35 2.20

Visual GPTImage 0.8355 0.5207 0.8444 1285 0.4665 2.39 3.16 3.95

InstructPix2Pix  0.7380  0.5220 0.8190 10.90 0.2200 1.85 2.20 2.80

OmniGen2 0.7508 0.5236  0.8187 8.98 0.1806 1.19 1.85 2.74

Imagen 4 0.8500 0.4800 0.7700 14.00 0.1300 1.30 1.25 2.15

Transfer GPTImage 0.8438  0.4934  0.8054 13.81  0.5092 3.06 3.57 4.16

InstructPix2Pix  0.7960  0.5020 0.8160 1290  0.2400 2.20 2.60 3.10

OmniGen2 0.8246  0.4376 0.8127 12.08 03147 1.53 2.14 2.64

4.1 MAIN RESULTS

Overall performance across tasks. Tab. f] summarizes the performance of representative editing
models across the five evaluation settings. Imagen 4 achieves consistently high scores on SSIM and
PSNR, reflecting strong pixel-level resemblance to the input figures, but its instruction-following
and preservation scores are the lowest among all models. GPT-Image excels in conversational and
transfer settings, showing the highest instruction-following scores, but often sacrifices content fi-
delity. OmniGen?2 strikes a balance, performing reliably across most tasks with solid LLM scores
and relatively stable OCR accuracy. InstructPix2Pix remains competitive but generally underper-
forms OmniGen2, particularly on complex edits, while still clearly surpassing Imagen 4 on semantic
alignment. These results highlight that strong performance on pixel-based similarity metrics does
not necessarily translate into correct or faithful edits.
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Limitations of classic metrics. Fig. 4| provides a more detailed comparison of multi-edit and
conversational tasks. Classic metrics such as SSIM and PSNR exaggerate the performance of pixel-
oriented models like Imagen 4, while LLM-based scores and OCR accuracy reveal significant se-
mantic errors. The radar plots make this gap visually explicit: models that appear strong under pixel
similarity collapse when judged by whether the requested edits were actually applied. This finding
is consistent with the qualitative evidence in Fig. [3|and reinforces the need for evaluation protocols
that go beyond pixel resemblance.

Per-instruction breakdown. We further analyze performance at the level of individual instruc-
tions in Appx. |F| These results confirm the same trend: models often achieve high SSIM or PSNR
even when edits such as adding datapoints or changing axis labels are not correctly applied.

4.2 ANALYSIS

The gap between pixel-level similarity and semantic correctness. Fig.[2|and Tab. 4| highlight a
consistent limitation of classic image metrics in the context of figure editing. Models such as Imagen
4 and OmniGen2 can obtain high SSIM and PSNR scores, yet their outputs often fail to apply the
intended transformation. As illustrated in Fig.[2] edits may preserve overall appearance while the in-
struction is ignored, the figure is distorted, or key content is changed. Tab. 4|shows the same pattern
across tasks: pixel-based metrics remain strong, but instruction-following and content-preservation
scores from LLM-based evaluation drop sharply, especially for multi-step and conversational edits.
These results indicate that similarity at the pixel level is not a reliable indicator of semantic correct-
ness. They also motivate the need for benchmarks that evaluate edits at the level of data and visual
encodings rather than image resemblance alone.

No single model dominates across tasks. Tab. 4| shows that performance is highly fragmented: no
model achieves consistently strong results across all task types or metrics. Imagen 4 tends to lead
on low-level pixel fidelity metrics such as SSIM and PSNR, yet it performs poorly on instruction-
following and semantic preservation, indicating that its edits often look visually smooth but fail to
reflect the requested change. GPT-Image shows the opposite trend: it excels in instruction scores,
especially in conversational and transfer settings, but lags behind on PSNR and OCR accuracy, sug-
gesting weaker robustness to text-heavy or layout-sensitive edits. InstructPix2Pix performs compet-
itively on some semantic metrics but is generally less reliable than OmniGen2, which offers a more
balanced profile. However, OmniGen?2 also struggles with visual-guided and transfer edits, high-
lighting its limitations in cross-instance reasoning. These results reveal that current models overfit
to specific task structures or metric types, and that strong performance on classic pixel-level metrics
does not guarantee reliable edit satisfaction in more challenging scenarios.

Qualitative study. Fig. [3]illustrates representative failure cases in figure editing. Across different
instructions: removing a datapoint, changing a background color, or adding a new element, cur-
rent models frequently produce outputs that appear visually similar yet fail to realize the requested
transformation. These cases mirror the quantitative results: classic pixel-level metrics often remain
high even when semantic correctness is violated. The examples highlight how generative editors,
optimized for perceptual similarity, struggle with structure-preserving transformations, reinforcing
the need for evaluation protocols and benchmarks that explicitly target semantic consistency. More
cases can be found in Appx.[5

5 CONCLUSION

We introduced FigEdit, a large-scale benchmark for scientific figure editing that treats editing as a
structured transformation problem grounded in graphical grammar. The benchmark spans diverse
chart types and task settings, and it provides both figure outputs and executable specifications to
support reliable evaluation. Our experiments show that existing models perform poorly when edits
require semantic consistency, which reveals a clear gap between current approaches and the needs
of figure editing. By offering a task-structured and semantics-aware evaluation protocol, FigEdit
establishes a foundation for developing future models that can perform faithful, data-aligned, and
auditable edits.
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6 ETHICS STATEMENT & REPRODUCIBILITY STATEMENT

This work adheres to standard academic research practices. All data used are either publicly avail-
able or synthetically generated, and the study is intended solely for scientific and educational pur-
poses. We do not foresee any ethical concerns arising from the content or methodology presented.
For reproducibility, we have included sufficient technical details in the paper to allow other re-
searchers to replicate our experiments. The dataset statistics, task definitions, and evaluation pro-
tocols are described in detail, and we aim to facilitate further exploration and extension by the
community.
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A EXTENDED RELATED WORK

Text-to-Image Generation. The rapid progress of diffusion-based models has revolutionized
text-conditioned image generation, enabling results that are both high-fidelity and prompt-faithful
(Ramesh et al.| 2022; [Rombach et al.,[2022). ControlNet and related approaches expand controllabil-
ity by incorporating structural or spatial priors (Zhang et al.,2023). Yet these advances have focused
primarily on natural imagery. Scientific figures remain relatively neglected, despite their demand for
symbolic precision, calibrated spatial relationships, and embedded textual fidelity. Evaluations show
mainstream systems often fail in data accuracy and layout coherence for scientific use cases (Zhang
et al.; 2024b). In response, specialized methods such as OCR-aware generative frameworks (Ro-
driguez et al |2023b)) and programmatic vector-graphic synthesis (Belouadi et al., [2024) highlight
the need for tailored solutions.

Image Editing. Instruction-based editing has evolved from GANs and encoder-based systems to-
ward diffusion-driven methods, which better balance realism with semantic alignment. A survey
by |Huang et al.| (2025) provides a comprehensive overview of this transition. Representative works
include LEDITS++ (Brack et al., 2024)), which extends text-driven editing to unconstrained trans-
formations; Emu Edit (Sheynin et al., |2024), which integrates recognition for localized precision;
and Liu et al. (Liu et al.l [2024a), which probe attention mechanisms to preserve semantic fidelity.
More recent works push toward interactivity and compositionality: SmartEdit (Huang et al.,2024b)
employs multimodal LLMs to compose edits, ProxEdit (Han et al.| 2024)) stabilizes transformations
without tuning, and DragDiffusion (Shi et al., 2024b)) enables point-based manipulation. AnyEdit
(Yu et al} [2025) exemplifies the broader trajectory toward unified, general-purpose editing frame-
works.

Scientific Chart Editing. Unlike natural images, charts encode structured data, calibrated axes, and
embedded text, requiring semantic consistency and readability throughout editing. While a broad
literature addresses diffusion-based editing of natural scenes (Brooks et al.l [2023a; Huang et al.,
2024b; Han et al., 2024} |Sheynin et al., [2024; Brack et al.l [2024; [Shi et al., 2024b; 'Yu et al.| 2025;
Huang et al.| [2025), research specific to scientific figures is limited. ScImage investigates the limita-
tions of multimodal LLMs for figure generation (Zhang et al.,|2024b); AutomaTikZ explores text-to-
vector generation under programmatic constraints (Belouadi et al.,2024); and ChartEdit formulates
chart editing as a multimodal evaluation benchmark (Zhao et al.| [2025a). A common limitation in
existing work is reliance on intermediate code (e.g., matplotlib) as the target of modification. While
this guarantees structural validity, it reduces evaluation to code executability and neglects perceptual
quality and user-facing usability. Thus, the field lacks benchmarks that jointly measure instruction
adherence, semantic fidelity, and visual clarity in an end-to-end setting, motivating figure editing as
a distinct line of inquiry.

B BASE FIGURE SOURCING AND GENERATION

As discussed in Sec. @], base figures are generated for chart classes C (bar, stacked-bar, line, area,
box, violin, donut, pie, dot, scatter) using dataset names from a curated whitelist A (see Appx. @
For each class ¢ € C, a preference list P(c) C A guides the assignment toward semantically coherent
themes.

LLM-guided spec proposal. A chat model M is instructed to output a single JSON object
o = {vega_spec = o, dataset = d}, cecX,dc A,

where A is the set of allowed dataset names. Any mismatch with the requested dataset d triggers
rejection and re-sampling. Each prompt includes a class hint H(c), a preferred dataset list P(c), an
exemplar specification F. (style only), and an avoid—terms block derived from recent generations.
The sampling temperature is fixed to 7 = 0.55 to balance validity and diversity. Detailed prompt
template is shown below:
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System Message (Part 1)

I You return ONLY a valid JSON object with exactly two fields:

2 - vega_spec: a VALID Vega v6 specification JSON object

3 - dataset: ONE string chosen ONLY from the allowed set (see
Appendix A, Table X)

4

5 Return exactly one JSON object. Do not add any prefix, suffix, or

code fences.

6 No Markdown, no explanations, no backticks.

7

8§ vega_spec requirements:

9 — Use "$schema": "https://vega.github.io/schema/vega/v6.json".

10 — Base data on a popular public dataset; URLs are disallowed.
Include a small

11 inline sample in "values".

12 — The chosen dataset MUST naturally support category->value or

13 category x series->value aggregation suitable for bar/stacked/

grouped charts.

14 — Match the requested chart class:

15 * bar: one categorical field + one quantitative field

16 * stacked-bar: category + series + value (stacked)

17 * grouped-bar: category + series + value (side-by-side)

18 — Include all necessary components (data, scales, axes, marks) so
it renders.

19 — Do NOT include extra meta fields inside vega_spec.

System Message (Part 2)

I Self-check before responding:

2 — Prefer a specific dataset name from the allowed set that
credibly aligns
3 with field/entity names (full whitelist in Appendix A, Table X,

see \ref{appx:allowed-datasets}) .

4 — Use "unknown" only if no credible alignment exists.

5

6 Output rules:

7 — Return EXACTLY one JSON object containing { "vega_spec": ..., "
dataset": ... }.

8 - vega_spec must be a valid Vega v6 JSON object with inline "
values" (no "url").

9 - No Markdown, no commentary, no extra keys.
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User Template (Bar, excerpt)

1 Task:

> — Chart class: {chart_class}

3 — Instruction: {class_hint}

4 — Generate a JSON object with two fields: vega_spec (Vega v6 spec)

and dataset
5 (string from the allowed set or 'unknown').

7 Hard constraint for this sample:

8 — You MUST set "dataset" EXACTLY to: {dataset_target}

9 - Field names and inline 'values' must be plausible for {
dataset_target}.

11 Data requirements:
12— Include inline 'wvalues' only (no 'url'); fit bar => category +

value.
13 — Use 5..12 categories; numeric magnitudes should be plausible for
the dataset.

15 Diversity controls:

16 — Avoid reusing identical numeric multisets for the same field set.
17 — Avoid terms seen recently:

18 {avoid_terms}

20 Preferred datasets for this class (see Appendix A, Table X for the
full 1list):
{preferred_datasets}

Output:
4 — ONLY one JSON object: { "vega_spec": ..., "dataset": ... }.

RIS

. J

Scheduling and validity. A scheduler balances dataset usage by always selecting the least-used
candidate for each chart class, based on compatibility heuristics (e.g., time series — line/area; survey
data — bar/pie/dot). Returned specifications are checked for Vega v6 schema, completeness (data,
marks, scales, axes), and type-specific field patterns (e.g., bar requires {category, numeric};
stacked—bar requires {category, series, numeric}). Invalid proposals are rejected and resampled.

Shape validation. Beyond generic schema checks, additional constraints enforce meaningful con-
tent. For example, bar charts must contain at least one categorical and one numeric field, while
stacked—bar charts must include two categorical fields and one numeric field. Other chart types are
validated using generic rules.

Duplicate and near-duplicate control. For every o, we compute four signatures over its inline
data and structure:

hexact (0) = SHA256 (@w

humusi (o) = SHA256(numeric multiset per field set) ,
Sval(0) = SHA256(per—field histograms with b=6 and (p1, o)) ,
Sstruct (0) = SHA256(size buckets, mark types, scale types/flags, axis orients, legend presence) ,

where SHA256 is a cryptographic hash function that produces a fixed 256-bit digest with extremely
low collision probability. A specification is rejected if hexact OF hmuiti has been observed previously,
or if both sy,) and sg¢yct have appeared before. This eliminates duplicates and near—duplicates while
permitting controlled variability.

sorted Vega rows) ,

Semantic diversity via term overlap. Categorical fields are inferred from scales and encodings,
forming a token set 7'(0). A sliding window W of the last k& samples (default & = 16) is maintained,
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and the Jaccard overlap ratio

[T(e) N U]
r = y U: U S
|T (o) UU| sow

is computed. A candidate is rejected if » > 6 (default 6 = 0.70) and |T'(c) \ U| < m (default
m = 2). The current union U is injected back into subsequent prompts as an avoid—terms block,
enforcing semantic diversity across generations.

Additional mechanisms. Further enhancements improve robustness: malformed completions are
handled by stripping Markdown fences or extracting JSON blocks; provenance is logged into a
JSON index with raw outputs for debugging. Together, these mechanisms ensure quality, diversity,
and reproducibility of the generated base figures.

C EDITING OPERATIONS

As briefly discussed in Sec.[3.4] this section provides extended details of the editing operations and
annotation pipeline. We describe how we generated single and multi-edit supervision, conversational
annotations, visual-guidance assets, and style-transfer pairs. Representative prompt excerpts are also
included. We first define a canonical operation set:

change_datapoint_color, increase_text_size,
decrease_text_size, change_background_color,

0= increase_category_spacing, decrease_category._spacing,
add_title, add_datapoint,

remove_datapoint

C.1 SINGLE & MULTI EDIT GENERATION

For each chart specification we select a feasible subset O(c), filtering out inapplicable edits (e.g.,
spacing operations for charts without band/point scales, or removals when only one data row exists).
An LLM is prompted to return exactly one sentence instruction followed by explicit OP tags, as
well as the edited Vega v6 specification. We canonicalize op names, infer missing keys (such as
axis_label_size,new_color, new_bg,or new_padding), and apply minimal but determin-
istic edits to ensure the modification is visually effective. Validation includes schema conformance,
key completeness, and visible effect realization. Detailed prompt is shown below:
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Z;g Prompt (Single/Multi, Part 1)

974

975 I Return ONLY a JSON object (no markdown) with keys:

976 2 - "instruction": ONE English sentence that describes exactly N

edits (N in {1,2,3}),

o followed by EXACTLY N tag lines in order:

978 [#0P1 op=<...>; keyl=valuel; key2=value2; ...]

979 [#0P2 op=<...>; ...]

980 [#0OP3 op=<...>; ...] (only if N==3)

981 - "ops": array of length N; each item has "op" in:

982 ["change_datapoint_color","increase_text_size", "decrease_text_size
"

983 !

9 "change_background_color", "increase_category_spacing","
oea decrease_category_spacing",
985 10 "add_title","add_datapoint", "remove_datapoint"]
986 11 — "edited_spec": a VALID Vega v6 JSON spec that keeps "$schema" v6
987 and uses inline "values" only
988 12 (strictly no "url").

989 =
990 14 Required keys per operation (inside each [#O0Pi ...] tag):

991 15 — change_background_color:

16 new_pbg=<css-or-#hex>
992 17 — dincrease_text_size / decrease_text_size:
993 18 axis_label_size=<int in 6..30>; tick_size=<int> (optional);
994 title_size=<int> (optional)
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

® N o A~ W
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Prompt (Single/Multi, Part 2)

- increase_category_spacing / decrease_category_spacing:

1

2 scale=auto|x|y; new_padding=<float in [0,0.9]>

3 — add_title:

4 title_text=<non-empty>; title_size=<int> (optional)

5 - change_datapoint_color:

6 target_category=<label>; target_series=<label> (omit if not
applicable);

7 new_color=<css-or-#hex not used in original>

8 — add_datapoint:

9 If single-series:

10 position=before:<existing>|after:<existing>|end;

11 category=<new_label>; value=<number>

12 If multi-series:

13 position=...; category=<cat_label>; series=<series_label>;

value=<number>

14 — remove_datapoint:

15 If single-series:

16 category=<existing_label>

17 If multi-series:

18 category=<existing_label>; series=<existing_series>

20 Editing rules and checks:

21 — Apply minimal, deterministic edits; ensure each step has a
visible effect.

22 — Maintain inline data only; never introduce "url".

3 — Sizes must be >= 6; band/point padding must be within [0,0.9].

24 — New colors must not collide with original literal colors.

s — For add/remove datapoint, edit exactly one row and keep row-count

accounting consistent:
26 rows (edited) = rows(original) + adds - removes
27 — Preserve unrelated content (data, labels, titles) unless the step

explicitly changes them.

28

29 For Single set N=1; for Multi set N in {2,3}. Output exactly one
JSON object.

C.2 CONVERSATIONAL ANNOTATIONS

To simulate multi-turn editing, we align each two-op edit with its corresponding single-op edits.
Given a two-op edit (01, 02), we locate the two single edits with the same operations, generate inter-
mediate ground truth images, and concatenate them into a two-round dialogue. Each conversational
sample therefore contains: (i) the original figure, (ii) turn-1 with an instruction and intermediate
ground truth, and (iii) turn-2 with a follow-up instruction and the final ground truth. This design
yields per-round supervision and enables evaluation of temporal consistency. Detailed prompt is
shown below:
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Prompt (Conversation)

I You are a strict formatter that assembles a 2-turn conversation
object

> from provided edit annotations. You MUST return ONLY one JSON
object.

3
4 Inputs (conceptual):

5 — original: the unedited chart (spec+image).

6 — single-edits: two entries, each has:

7 op (atomic op name),

8 instruction (one sentence + [#OPx ...] tags),
9 edited_spec (Vega v6, inline values only),

10 edited_image.

11— multi-edit (2-step): has:

12 ops=[opl, op2] in the exact execution order,
13 edited_spec (final target),

14 edited_image,

15 instruction (one sentence + tags).

17 Formatting rules:

18 1) Preserve execution order strictly as [opl, op2].

19 2) Use the single-edits whose op matches opl and op2, respectively.

20 3) For each turn i in {0,1}:

21 — instruction: copy the corresponding single's instruction
verbatim,

22 trimming leading/trailing whitespace only.

23 - gt: spec=image=the corresponding single's ground truth (

intermediate) .

24 - op: the corresponding op (opl for turn 0, op2 for turn 1).

final: use the multi-edit's edited_spec and edited_image.

Include the multi-edit's instruction as multi_instruction.

Do NOT invent or rewrite text; do NOT change specs.

Output must be a single JSON object with the following fields:

1)
>N
~ o U

31 "chart_type": "<string>",

32 "figure_id": "<string>",

33 "ops": ["<opl>", "<op2>"],

34 "original": {"spec": <json>, "image": "<path-or-id>"},
35 "turns": [

36 {

37 "turn_idx": O,

38 "Op": “<Opl>",

39 "instruction": "<singlel_instruction_trimmed>",
40 "gt": {"spec": <json>, "image": "<path-or-id>"}
41 b o

42 {

43 "turn_idx": 1,

44 "Op": "<Op2>"[

45 "instruction": "<single2_instruction_trimmed>",
46 "gt": {"spec": <json>, "image": "<path-or-id>"}
47 }

48 1o

49 "final": {"spec": <json>, "image": "<path-or-id>"},
50 "multi_instruction": "<multi_instruction_trimmed>"

51}

53 Return exactly this one JSON object and nothing else.

21



Under review as a conference paper at ICLR 2026

C.3 VISUAL-GUIDANCE ASSETS

For selected atomic operations (notably datapoint color changes and datapoint removals), we con-
struct visual-guided variants by highlighting the target region directly in the original chart. To pro-
duce the overlays, we employ a vision—language model (GPT-Image) instructed to draw a thin red
circle around the specified element while leaving the rest of the chart untouched. This yields paired
data: (i) a natural-language instruction referencing the circled element, and (ii) a visually annotated
chart. Such assets allow evaluation of multimodal understanding, where the model must integrate
textual instructions with explicit visual cues. Detailed prompt is shown below:

Prompt (Visual Guidance)

I You are an image editor. Given a chart image and a target
description,

> draw a thin red circle around exactly one target element. Do not
change

3 any chart content.

4

5 Inputs:

6 — Image: the original chart may be letterboxed on a plain
background.

7 — Chart noun: {bar|slice|point |mark}.

§ — Target condition (optional but preferred):

9 category == "<CATEGORY>"

10 series == "<SERIES>"

11

12 Task:

13 — Locate the single element that satisfies the target condition (if

given) .

14 — If no explicit condition is given, use the instruction sentence
prefix

15 as a hint to identify the most likely target element.

16 — Draw exactly one circle that tightly encloses the target element.

18 Rendering constraints:
19 — Stroke color: #FF0000 (pure red).

20 — Stroke style: thin line, no glow, no shadow.

21 — Circle only; no arrows, no text, no highlights or masks.

22 — Do not crop, scale, or move the chart content.

23 — If the image is letterboxed, ignore padding/margins/borders and
place

24 the circle over the chart area only.

5 — Preserve the original resolution and aspect ratio.

6 — Do not alter colors, fonts, or data marks other than the added
circle.

27

28 Output:

29 — Return a single edited image where the only modification is the
thin

30 red circle tightly around the target element.

C.4 STYLE-TRANSFER SINGLES

We further derive one-shot style-transfer supervision by linking existing single edits to style sources.
For each single edit, we identify another original chart whose current style attribute already matches
the target attribute of the edited chart. We construct a natural instruction such as “Make this bar
chart use the same background color as the reference chart,” and pair it with the corresponding OP
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tag. This produces style-transfer pairs across both same-type and cross-type chart classes, enabling
evaluation of style generalization. Detailed prompt is shown below:

Prompt (Style Transfer)

I You are writing ONE natural-language instruction for a style
transfer (single attribute).
Inputs you are given (out of band)

- target chart class and image,
- a SINGLE-OP edit already chosen for the target
line),
5 — a reference chart ("the reference chart")
the target style value.

include:

ENERC )

(with its OP tag

that already exhibits

7 Task:

8§ — Write exactly ONE concise English sentence that asks to make the
target chart

9 use the SAME style attribute as the reference chart.

10 — Use phrasing like:

11

"Make this <chart noun> use the
reference chart."
"Make this <chart noun> use the
reference chart."
"Make this <chart noun> use the
reference chart."
"Match the datapoint color used
"Add a title with the same font

same background color as the
same axis label font size as the
same category spacing as the

in the reference chart."
size as the reference chart."

16 — Do NOT mention internal ids. Say "the reference chart" or "the

example chart".

18 After the sentence, append EXACTLY ONE OP tag line,
provided tag VERBATIM:

19 [#0P1 op=<one_of_allowed_ops>;
20

21 Allowed ops
22 change_background_color |

|

23 increase_category_spacing | decrease_category_spacing |
24 add_title | change_datapoint_color
2

keeping the

keyl=valuel; key2=value2; ...]
(single attribute only):

increase_text_size | decrease_text_size

26 Hard constraints:

27— Output ONLY the final instruction text
the single OP tag line.

8 — Do NOT return JSON. Do NOT include edited_spec.
keys or values.

29 — Preserve the original OP tag exactly as given

(one sentence) followed by
Do NOT invent new

(verbatim) .

Through these pipelines, each figure can appear as (i) atomic edits (single/multi), (ii) conversational
trajectories, (iii) visually guided variants, and (iv) style-transfer pairs. All assets are designed to be
reproducible, diverse, and machine-readable, while supporting multimodal evaluation settings.

D EVALUATION METRICS

As discussed in Sec. [3.6] we report both classic image metrics and an LLM-based score to capture
semantic correctness.

SSIM. Structural Similarity Index [Wang et al.| (2004) is applied on grayscale renderings with Gaus-
sian weighting to emphasize local structure. This metric accounts for luminance, contrast, and
structure, making it more perceptually meaningful than raw pixel errors.
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PSNR. Peak Signal-to—Noise Ratio |[Hore & Ziou| (2010) is computed with pixel values clipped to
[0, 255] and averaged across RGB channels. It quantifies the logarithmic ratio between the maximum
possible signal and mean squared error.

LPIPS. Learned Perceptual Image Patch Similarity Zhang et al.|(2018]) is computed using the official
framework, with AlexNet as the default backbone. Images are normalized to [—1, 1] before feature
extraction. LPIPS captures perceptual discrepancies such as texture or shape distortions.

CLIP similarity. We use CLIP ViT-L/14 |Radford et al.|(2021) to extract image embeddings and
report cosine similarity between I and I*. This provides a semantic-level measure of alignment
beyond pixel similarity.

OCR similarity. We extract text from both images using Tesseract OCR [Smith| (2007). Similarity
is measured as the normalized edit distance:

EditDist(sz, s7+)
max(|szl, [sr+]) ’

SimOCR =1-

where s7 and sy« are the concatenated OCR strings. This metric emphasizes correctness of labels,
legends, and annotations.

LLM-based 1nstruct10n score. To directly evaluate editing success, we prompt a large language

model (O m 4) with (i) the original chart and instruction (I, u), (ii) the edited output I, and
(iii) the ground truth I*. The model issues binary judgments on:

* Instruction satisfaction: whether the requested edit is applied.
* Content preservation: whether the underlying chart data remain intact.

* Visual quality: whether the rendering is artifact-free and coherent.

Responses are parsed into structured JSON objects, which are aggregated into per-instance and per-
model scores. Trimmed prompt examples are provided below:

LLM Score (System Message, Part 1)

I You are an expert AI assistant specializing in data visualization
evaluation.
Your task is to evaluate how well an AI-generated chart follows a
given text instruction.
You will be given an instruction, a reference "Ground Truth" image,
and the "Generated Image" to evaluate.

()

w

5 Evaluate the generated image based on the following three criteria:

7 1. Instruction Following (score_instruction): How accurately was
the specific
8 instruction executed? (e.g., if asked to change color to orange,
is it orange?)
9 2. Content Preservation (score_preservation): Were all other
elements of the
10 chart preserved correctly without unwanted changes? (e.g., data

values,
11 labels, and titles are unchanged unless specified).
12 3. Image Quality (score_quality): Is the generated image free of
major artifacts,
13 distortions, or unreadable text?
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LLM Score (System Message, Part 2)

I For each of the above, assign a score from 1 (very poor) to 5 (
excellent) .

2> Then compute a total score (score) as the average of the three
above,

3 rounded to the nearest integer.

4

5 Your response MUST be a JSON object with the following keys:
6 — "score_instruction": Integer [1-5]

7 — "score_preservation": Integer [1-5]

8§ — "score_quality": Integer [1-5]

9 — "score": Integer [1-5], the average of the above

10 — "reasoning": One-sentence explanation justifying the scores

12 Example Response:
13 {

14 "score_instruction": 5,

15 "score_preservation": 4,

16 "score_quality": 5,

17 "score": 5,

18 "reasoning”": "The instruction was followed perfectly, content
was mostly

19 preserved, and the image quality is excellent."

LLM Score (User Template)

*xInstruction: =

1
2> <instruction text>

3

4 xxReference Image (Ground Truth) :x*x*

5 <data:image/png;base64d,...>

6

7 xxGenerated Image (to be evaluated) :*x*
3 <data:image/png;base6d, ...>

E ADDITIONAL EXPERIMENTAL DETAILS

Pre- and Post-Processing. To ensure consistent inputs, all charts are letterboxed into a square can-
vas before inference. After editing, outputs are mapped back to the original resolution using contain
resizing, which preserves the full layout without cropping. This procedure guarantees that models
are evaluated under identical geometric conditions while avoiding distortion of axes or labels.

Prompt Construction. For all tasks, prompts explicitly instruct the model to make localized mod-
ifications while leaving unrelated elements unchanged. In Visual tasks, prompts additionally em-
phasize that only the circled region should be modified. For Transfer tasks, the prompt specifies a
two-panel setup, where only the left (base) panel is editable and the right (reference) panel serves as
a style guide.

Baselines. For comparison, we include four representative baselines that capture the current state of
instruction-driven image editing: (1) GPT-Image 2025). A commercial instruction—driven
editing system provided by OpenAl. It supports free-form natural language instructions and has
been widely used for general-purpose editing tasks. Although proprietary, it reflects the strongest

available commercial option. (2) Imagen 4 2025). A proprietary diffusion—based editor
developed by Google and released via the Vertex Al platform. Imagen 4 is optimized for control-
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Output Figure

Input Figure Instruction .
Imagen 4 GPT-Image OmniGen 2

Remove the datapoint
for the year 2017 and
season Fall with
precipitation value 140.

Add a new datapoint
for 'Brazil' with an
export value of 1000 at
the end of the figure.

i

.
- - .
i - In(':rez.ise the text size of
axis titles to 16.
——

== Add a title to the chart with
R " the text ‘GDP Growth Rates
I Over Years‘, and increase b
T~ the spacing between e R
= — categories on the x-axis to 30. =

) o °

y * Remove the point in the red i
circle.

b allan Rnlla

Figure 5: Additional qualitative examples of figure editing results. Each row shows an input figure
(left), the corresponding natural language instruction (middle), and the output figures generated by
Imagen 4, GPT-Image, and OmniGen 2 (right). The cases cover representative edit types, includ-
ing data point removal, data point addition, axis text scaling, layout adjustments, and targeted point
deletion. While the models sometimes produce visually consistent outputs, they often fail to accu-
rately execute the requested transformation, highlighting the limitations of current instruction-based
figure editing systems.

o Remove the point in the red
1] circle.

e sy

eo8 MU ks s
§ 88888 E8E

Gy s Gt o o o
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lable, high-fidelity image generation and editing, though its design is primarily tuned for natural
image content. (3) OmniGen 2 (Wu et al [2025). An open—source multimodal model recently in-
troduced for text-guided and image-guided editing. It supports multi-turn interaction and has shown
promising results for chart and figure editing. We use the official released checkpoint and infer-
ence pipeline. (4) InstructPix2Pix (Brooks et al, 2023b). An open—source approach that finetunes
a diffusion backbone on paired instruction—image data. It was among the first methods to explicitly
align natural language instructions with image translation, and remains a strong research baseline
for instruction-conditioned editing.

Together, these baselines span both closed and open ecosystems, diffusion and multimodal
paradigms, and commercial and academic settings. They represent the strongest available
instruction-driven editing approaches at the time of writing.
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Table 5: Per-instruction performance comparison (Part 1/2). Higher is better for SSIM, CLIP, PSNR,
OCR, and LLM Scores. Lower is better for LPIPS. Instr. denotes instruction following score.
Preserv. denotes content preservation score. Qual. denotes image quality score.

SSIM+ LPIPS| CLIP1 PSNR1 OCR?{ LLM Score (1-5) 1

Instr. Preserv. Qual.

Model

Instruction: Change the colors of the data point

InstructPix2Pix  0.736 0.52 0.84 10.7 0.25 2.66 2.76 2.76
OmniGen2 0.748 0.48 0.85 11.1 0.26 3.63 3.32 3.66
GPT-Image 0.733 0.54 0.87 10.4 0.22 4.34 3.84 4.29
Imagen 4 0.772 0.41 0.80 13.1 0.08 2.09 1.84 2.72
Instruction: Add a new title

InstructPix2Pix  0.741 0.47 0.83 11.0 0.17 1.09 291 3.07
OmniGen2 0.744 0.46 0.84 11.2 0.29 3.34 3.14 3.36
GPT-Image 0.728 0.53 0.88 10.5 0.36 491 4.43 4.41
Imagen 4 0.769 0.40 0.79 13.0 0.07 1.00 1.41 2.07
Instruction: Increase font size

InstructPix2Pix  0.735 0.50 0.84 10.8 0.26 2.48 2.10 2.83
OmniGen2 0.747 0.47 0.85 11.1 0.30 2.12 3.02 3.27
GPT-Image 0.729 0.52 0.86 10.3 0.27 4.05 4.05 4.40
Imagen 4 0.771 0.39 0.81 13.2 0.26 1.74 1.50 2.26
Instruction: Decrease font size

InstructPix2Pix  0.748 0.49 0.85 11.1 0.27 2.02 1.77 2.58
OmniGen2 0.752 0.46 0.84 114 0.31 2.10 3.05 3.38
GPT-Image 0.734 0.51 0.86 10.6 0.24 2.70 4.15 4.00
Imagen 4 0.773 0.38 0.81 13.2 0.18 1.61 1.50 2.18

F MORE RESULTS

As we discussed in Sec. aggregate results already show a clear gap between pixel similarity and
semantic correctness. Tab. [5] and Tab. [] provide a more fine-grained view, breaking down perfor-
mance by specific instruction types.

A recurring pattern is that edits involving numbers, such as adding or adjusting datapoints, are often
the hardest to get right. Models may place a new bar or point, but the actual value is off, the axis
scale shifts incorrectly, or the legend does not update. Edits that change the overall layout or chart
type also tend to expose structural weaknesses: grouped bars converted to stacked bars often result
in overlapping marks, or the scales fail to adjust.

By contrast, stylistic edits like changing background colors are sometimes handled better, though
even here models often stop short of a full update. For example, the background changes, but the
legend or axis elements remain inconsistent. Text edits such as axis labels or titles show the partial
benefit of OCR, but issues like misplaced text, font mismatches, or truncated labels still appear.

G DATASETS USED FOR BASE FIGURES

Tab. [7| and Tab. [8|list all datasets from which we sampled base figures. These sources span public
machine learning repositories, official statistical agencies, open data portals, and journalism/sports
archives. We include the identifier strings exactly as used in our pipeline.

H USE oF LLMS

In addition to conventional data collection and analysis, we made use of LLMs at several stages
of our work. First, LLMs were applied during the writing process to assist with polishing and
improving the clarity of the manuscript. Second, LLMs were also leveraged to support certain
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Table 6: Per-instruction performance comparison (Part 2/2). Higher is better for SSIM, CLIP, PSNR,
OCR, and LLM Scores. Lower is better for LPIPS. Instr. denotes instruction following score.
Preserv. denotes content preservation score. Qual. denotes image quality score.

SSIM+ LPIPS| CLIP1 PSNR1 OCR?{ LLM Score (1-5) 1

Model Instr. Preserv. Qual.

Instruction: Increase margin
InstructPix2Pix  0.726 0.49 0.83 10.9 0.25 2.70 2.55 3.35

OmniGen2 0.739 0.47 0.84 11.1 029 275 2.90 3.75
GPT-Image 0.731 0.52 0.87 10.3 022 295 3.60 4.05
Imagen 4 0.769 0.41 0.79 13.0 0.08 237 1.68 2.42

Instruction: Decrease margin
InstructPix2Pix  0.728 0.48 0.84 11.2 0.27  2.60 2.60 3.55

OmniGen2 0.742 0.46 0.83 11.4 030 230 2.80 3.65
GPT-Image 0.733 0.51 0.86 10.5 0.23 3.15 3.50 4.05
Imagen 4 0.771 0.40 0.80 13.1 0.09  2.00 1.56 275

Instruction: Add a new data point
InstructPix2Pix  0.724 0.50 0.82 10.8 0.24 1.21 2.66 3.14

OmniGen2 0.737 0.48 0.83 11.0 0.28 1.86 2.10 3.14
GPT-Image 0.730 0.53 0.87 10.4 0.21 3.07 3.69 4.07
Imagen 4 0.768 0.42 0.79 13.2 0.08 1.04 1.61 2.39

Instruction: Remove an existing data point
InstructPix2Pix  0.727 0.49 0.83 11.1 0.25 1.59 1.83 2.83

OmniGen2 0.740 0.47 0.82 11.3 0.27 1.38 1.59 241
GPT-Image 0.732 0.52 0.86 10.5 022  3.10 3.34 4.28
Imagen 4 0.770 0.40 0.80 13.0 0.07 1.41 1.68 241

aspects of dataset construction, where they were used to generate and refine synthetic examples in a
controlled manner. These uses were complementary to our primary methodology and were limited
to auxiliary tasks such as language editing and expanding data diversity, without affecting the core
experimental design or evaluation.
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Table 7: Allowed datasets (part A). See Tablefor continuation.

Datasets (Part A)

Kaggle: Titanic

Kaggle: House Prices

Kaggle: Instacart Market Basket

Kaggle: NYC Taxi Trip Duration

Kaggle: Amazon Reviews

Kaggle: Yelp Reviews

Kaggle: IMDB Reviews

Kaggle: Mercari Price Suggestion

Kaggle: Quora Insincere Questions

Kaggle: Toxic Comment Classification

Kaggle: Porto Seguro Safe Driver

Kaggle: Santander Customer Transaction
Kaggle: Santander Value Prediction

Kaggle: Global Temperature Time Series
Kaggle: COVID-19 Global Dataset

Kaggle: World Happiness Report

Kaggle: FIFA Player Statistics

Kaggle: Air Quality UCI

Kaggle: US Accidents Dataset

Kaggle: Zomato Restaurants Dataset

Kaggle: Video Game Sales

Kaggle: Netflix Movies and TV Shows

Kaggle: New York City Airbnb Open Data
Kaggle: Google Play Store Apps

Kaggle: Bike Sharing Demand

Kaggle: Rossmann Store Sales

Kaggle: Store Item Demand Forecasting Challenge
Kaggle: Walmart Recruiting - Store Sales Forecasting
Kaggle: Retailrocket Recommender System Dataset
Kaggle: 311 Service Requests - NYC

Kaggle: Chicago Crime

Kaggle: Austin Bikeshare Trips

Kaggle: Seattle Weather

Kaggle: Daily Delhi Climate

Kaggle: US Economic Indicators

Kaggle: S&P 500 Companies and Prices

Kaggle: Times Higher Education World University Rankings
Kaggle: Global Terrorism Database

Kaggle: World Development Indicators

Kaggle: Airline On-Time Performance

Kaggle: Avito Demand Prediction

Kaggle: TalkingData AdTracking Fraud Detection
Kaggle: IEEE-CIS Fraud Detection

Kaggle: Home Credit Default Risk

Kaggle: Give Me Some Credit

Kaggle: Loan Prediction III

Kaggle: Credit Card Fraud Detection

Kaggle: Telco Customer Churn

Kaggle: Bank Marketing

Kaggle: Student Performance

Kaggle: Heart Disease UCI

Kaggle: Breast Cancer Wisconsin (Diagnostic)
Kaggle: Pima Indians Diabetes Database
Kaggle: Stroke Prediction Dataset

Kaggle: FIFA 19 Player Dataset

Kaggle: NBA Player Stats

Kaggle: International Football Results
Kaggle: European Soccer Database

Kaggle: 120 years of Olympic history (athletes & results)
Kaggle: Netflix Stock Price

Kaggle: Bitcoin Historical Data

Kaggle: Cryptocurrency Historical Prices
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Table 8: Allowed datasets (part B). Continuation of Table

Datasets (Part B)
UCI: Iris

UCI: Wine

UCI: Adult

UCI: Car Evaluation

UCI: Abalone

UCI: Seeds

UCI: Student Performance
UCI: Heart Disease Dataset
UCI: Bank Marketing Dataset
UCI: Forest Fires Dataset
UCI: Yeast Dataset

World Bank WDI

OECD PISA Scores

US Census ACS

US Bureau of Labor Statistics

US Bureau of Economic Analysis

UN COMTRADE

WHO Mortality Database

NHANES Survey Data

FRED Economic Data

US Energy Information Administration
Global Carbon Project

NOAA Climate Data

Berkeley Earth Temperature

Johns Hopkins COVID-19 Time Series
FAO Food Price Index

USDA Crop Production Data
OpenFlights Airport and Routes
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