

000 001 LFQ: LOGIT-AWARE FINAL-BLOCK QUANTIZATION 002 FOR BOOSTING THE GENERATION QUALITY OF LOW- 003 BIT QUANTIZED LLMs 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 As large language models (LLMs) continue to scale, low-bit weight-only post-
014 training quantization (PTQ) offers a practical solution to their memory-efficient
015 deployment. Although block-wise PTQ is capable of matching the full-precision
016 (FP) baseline on basic language modeling and understanding, its quality is de-
017 graded for *generative* tasks—especially at longer responses and extended chains
018 of thought, which is critical in boosting task accuracy. We attribute this short-
019 fall to two factors: (i) the omission of the unembedding layer (the LM head) in
020 block-wise optimization and (ii) the reliance on the mean squared error (MSE)
021 objective. Both factors cause the token probability distribution of the quantized
022 model to misalign with that of the FP model, yielding notable accuracy drops on
023 text generation benchmarks. To rectify the discrepancy, we introduce *Logit-aware*
024 *Final-block Quantization (LFQ)*, a simple yet effective enhancement to block-wise
025 PTQ that quantizes the final Transformer block by minimizing the cross-entropy
026 between the logits of the FP model and those of its quantized counterpart. By
027 aligning token probabilities at the logit level in the final block, LFQ consistently
028 improves the accuracy of complex generation tasks over state-of-the-art block-
029 wise PTQ across diverse model families and text generation tasks, while main-
030 taining parity with FP baselines on language modeling and understanding.
031

1 INTRODUCTION

035 The evident success of large language models (LLMs) (Grattafiori et al., 2024; Qwen et al., 2025;
036 Team et al., 2025) based on the decoder-only transformer (Vaswani et al., 2023) is largely attributed
037 to their ever-increasing number of parameters (Kaplan et al., 2020). However, the proportionally
038 increasing memory footprint of the model significantly impedes the cost-effective deployment of
039 LLMs. Not only is a large model difficult to fit in commercial devices, but the serving cost of
040 the model also increases sharply with the model size. To this end, quantization have been widely
041 adopted to increase the inference efficiency of LLMs by employing lower precision data types.

042 Recently, weight-only quantization (Frantar et al., 2023; Lin et al., 2024) has emerged as a partic-
043 ularly attractive methodology due to its high compression ratio and effective preservation of model
044 quality. By quantizing the LLM weights into low-precision but retaining difficult-to-quantize acti-
045 vations in full precision (FP), memory pressure is effectively relieved while reducing the accuracy
046 degradation. Low-bit weight-only quantization is obtained either via quantization-aware training
047 (QAT) or post-training quantization (PTQ). Although Liu et al. (2025) shows that QAT is capable of
048 restoring the degraded accuracy even under sub-4-bit settings, the computational resource required
049 to conduct QAT makes it prohibitively memory-intensive and time-consuming. On the other hand,
050 layer-wise PTQ can be conducted with a relatively small amount of resources, but suffers from
051 model quality degradation.

052 Block-wise PTQ (Lee et al., 2023; Shao et al., 2024; Cheng et al., 2024; Lee et al., 2025b; Chen et al.,
053 2025; Park et al., 2025) strikes an effective balance between the two ends, achieving effective and
efficient degradation recovery. By minimizing the mean squared error (MSE) between the outputs

of an FP Transformer block and those of its quantized counterpart, cross-layer dependencies within each transformer block are accounted for, recovering the performance comparable to FP baselines on tasks such as language modeling (e.g. WikiText2 (Merity et al., 2016)) and general natural language understanding (e.g. MMLU (Hendrycks et al., 2021)).

However, relatively little attention has been shed on the degradation of *generation* quality caused by the low-bit quantization of LLMs. It is particularly alarming considering the increasing trend towards generating longer responses for increased task performance. Emerging large reasoning models (DeepSeek-AI et al., 2025; Aggarwal & Welleck, 2025) scale inference-time compute to produce extended chains of thought, thereby achieving higher accuracy on complex multi-step reasoning tasks. As this trend toward generating more tokens continues in pursuit of increased accuracy, serving costs rise sharply, necessitating a strong demand for an efficient quantization method that can maintain the generation quality of FP baselines.

In this work, we uncover that the standard block-wise PTQ approach—while effective at language modeling and understanding—suffers from the degradation of generation quality. The limitation is attributed to the fact that block-wise PTQ only preserves the quality of output activations of a transformer block, rather than preserving the fidelity of the next-token sampling *distribution*. Specifically, (i) existing block-wise PTQ methods completely ignore the unembedding layer (also known as the LM head), and (ii) rely on the MSE as optimization objective. Even when the MSE between the outputs of a quantized block and its FP counterpart is minimized, the actual probabilities assigned to plausible tokens can be perturbed, producing substantial shifts in distribution. Such misalignment is less observable on natural language understanding tasks, which does not involve autoregressive generation, but becomes pronounced in long-form generation as compounding probability distortions steer the generation trajectory away from the FP baseline.

Motivated by the observations, we propose *Logit-aware Final-block Quantization (LFQ)*, which enables low-bit quantized LLMs to achieve performance close to FP baselines on text generation tasks such as IFEval (Zhou et al., 2023), GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), and AIME (AIME, 2024). Unlike standard block-wise PTQ, LFQ quantizes the final Transformer block by minimizing the cross-entropy loss between the logits of the FP model and those of its quantized counterpart. Specifically, all Transformer blocks from the first to the penultimate are quantized by minimizing the MSE between the outputs of the FP and quantized blocks, while the final block is optimized using cross-entropy at the logit level, aligning token probabilities with the FP model and thereby reproducing the token prediction probabilities of the FP model. Thanks to its simple design, LFQ can be seamlessly applied to existing block-wise approaches. Moreover, LFQ consistently improves the generation quality of block-wise PTQ methods, while maintaining performance comparable to FP baselines on language modeling and understanding tasks.

Our contribution is threefold:

- To the best of our knowledge, we are the first to show that the conventional block-wise PTQ objective—minimizing MSE at intermediate outputs—does not align with reproducing the token predictions of FP models, thereby inducing non-negligible accuracy gaps between FP baselines and their low-bit quantized counterparts on text generation tasks.
- We propose Logit-aware Final-block Quantization (LFQ), which quantizes the final Transformer block by minimizing the cross-entropy between the logits of the FP model and its quantized counterpart, consistently improving the generation quality of low-bit quantized LLMs across existing block-wise PTQ methods.
- We validate LFQ across diverse models—including Llama 3.1, Qwen2.5, and large reasoning models (e.g., L1-Max, DeepSeek-R1-Distill)—on text generation benchmarks such as IFEval, GSM8K, MATH500, and AIME 2024. We further evaluate LFQ on WikiText2 and MMLU to ensure that it performs comparably to, and in some cases better than, existing block-wise PTQ techniques on language modeling and understanding tasks as well.

2 PROBLEM STATEMENT

Block-wise PTQ progressively quantizes each Transformer block by minimizing the mean squared error (MSE), from the first to the final block. In this section, we focus our attention on the final block, which is distinctive from the other blocks as it is directly attached to the LM head that produces the

108 token sampling distribution. Below, we provide a brief overview of notations and assumptions used
 109 for illustrative purposes throughout this paper.

110 Let $\mathbf{W}_{\text{FP}}, \mathbf{W}_q \in \mathbb{R}^{c_{in} \times c_{out}}$ denote the full-precision (FP) final Transformer block and its quantized
 111 counterpart, and let $\mathbf{X} \in \mathbb{R}^{L \times c_{in}}$ represent the input to the final block, where L is the sequence
 112 length. Let \mathcal{V} denote the vocabulary, with size $V = |\mathcal{V}|$. The LM head is then defined as $\mathbf{W}_{\text{Head}} \in$
 113 $\mathbb{R}^{c_{out} \times V}$. For illustrative purposes only, however, we restrict the vocabulary to $\mathcal{V} = \{t_1, t_2\}$, so that
 114 $\mathbf{W}_{\text{Head}} \in \mathbb{R}^{c_{out} \times 2}$. Unless otherwise specified, we omit the normalization layer between the final
 115 block and the LM head for simplicity.

116 First, to illustrate that minimizing the MSE between the outputs of a FP final Transformer block and
 117 its quantized counterpart can adversely affect the generation quality of low-bit quantized LLMs, we
 118 consider the case where $c_{out} = 2$. The final block is quantized by minimizing $\|\mathbf{X}\mathbf{W}_{\text{FP}} - \mathbf{X}\mathbf{W}_q\|_F^2$,
 119 yielding $\mathbf{X}\mathbf{W}_q = [0.7, 0.3]$ for $\mathbf{X}\mathbf{W}_{\text{FP}} = [0.8, 0.2]$ as an example. However, it is worth noting the
 120 following example:

121 When $\mathbf{W}_{\text{Head}} = \begin{bmatrix} 0.5 & 0.3 \\ 0.5 & 1.0 \end{bmatrix}$, $\mathbf{X}\mathbf{W}_{\text{FP}}\mathbf{W}_{\text{Head}} = [0.5, 0.44]$ and $\mathbf{X}\mathbf{W}_q\mathbf{W}_{\text{Head}} = [0.5, 0.51]$.

122 This result implies that the FP model predicts token t_1 , while its quantized counterpart instead
 123 predicts the opposite token, t_2 . Consequently, even if the final block is quantized to minimize the
 124 MSE between $\mathbf{X}\mathbf{W}_{\text{FP}}$ and $\mathbf{X}\mathbf{W}_q$, ignoring the LM head during block-wise quantization can lead
 125 the quantized model to produce different token predictions from the FP model.

126 Next, even when the LM head is considered, minimizing the MSE between the logits of the FP and
 127 quantized models does not guarantee identical token predictions. For example, suppose we obtain

$$131 \quad \mathbf{X}\mathbf{W}_q\mathbf{W}_{\text{Head}} = \begin{cases} (i) [0.4, \mathbf{0.6}] & \text{for } \mathbf{X}\mathbf{W}_{\text{FP}}\mathbf{W}_{\text{Head}} = [\mathbf{0.6}, 0.4] \\ (ii) [\mathbf{0.6}, 0.4] & \text{for } \mathbf{X}\mathbf{W}_{\text{FP}}\mathbf{W}_{\text{Head}} = [\mathbf{0.9}, 0.1] \end{cases} \quad . \quad (1)$$

132 Then, the corresponding MSE values are given by

$$133 \quad \|\mathbf{X}\mathbf{W}_{\text{FP}}\mathbf{W}_{\text{Head}} - \mathbf{X}\mathbf{W}_q\mathbf{W}_{\text{Head}}\|_F^2 = \begin{cases} (i) (0.6 - 0.4)^2 + (0.4 - 0.6)^2 = 0.08 \\ (ii) (0.9 - 0.6)^2 + (0.1 - 0.4)^2 = 0.18 \end{cases} \quad .$$

134 Although the first case (i) yields the smaller MSE, it leads to the opposite token prediction, whereas
 135 the second (ii)—despite having the larger MSE—produces the same token prediction as the FP
 136 model. This therefore demonstrates that minimizing MSE at the logit level does not necessarily
 137 align with reproducing the FP model’s token predictions. Consistently, Figure 1 (a) illustrates that
 138 standard block-wise PTQ achieves a lower MSE yet predicts a different top-1 token than the FP
 139 model, leading to an incorrect reasoning trajectory.

140 3 METHOD

141 As discussed in Section 2, ensuring that low-bit quantized LLMs reproduce the token predictions of
 142 their full-precision (FP) counterparts requires explicitly accounting for the LM head and replacing
 143 mean squared error (MSE) in the optimization objective of block-wise post-training quantization
 144 (PTQ) methods. To this end, we propose *Logit-aware Final-block Quantization (LFQ)*, which quan-
 145 tizes the final Transformer block by minimizing the cross-entropy loss between the logits of the FP
 146 model and those of its quantized counterpart.

147 3.1 LOGIT-AWARE FINAL-BLOCK QUANTIZATION (LFQ)

148 Even when the LM head is taken into account, minimizing the MSE does not guarantee that the
 149 quantized model will predict the same token as the FP model. Since minimizing cross-entropy is
 150 equivalent to minimizing KL divergence, and KL divergence is equal to zero if and only if two dis-
 151 tributions are identical, minimizing cross-entropy at the logit level directly encourages the quantized
 152 model’s token-level distribution to match its FP counterpart. Furthermore, as Bruch (2021) demon-
 153 strates, cross-entropy can be used for learning to rank, which would also help the quantized model

recover the FP model’s top-k token ordering. Accordingly, when optimizing the quantized final Transformer block \mathbf{W}_q , we minimize the cross-entropy between the FP model’s logits and those of the quantized model to align the block-wise PTQ objective with the FP model’s token generation. Specifically, while the first through penultimate Transformer blocks are quantized by minimizing the MSE between the outputs of the FP and quantized blocks, the final block is quantized using the following optimization objective:

$$\min_{\mathbf{W}_q} \mathcal{L}_{\text{CE}}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}}, \mathbf{XW}_q\mathbf{W}_{\text{Head}}) = - \sum_{i=1}^L \sum_{j=1}^V \text{softmax}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}})_{i,j} \log(\mathbf{XW}_q\mathbf{W}_{\text{Head}})_{i,j}, \quad (2)$$

where $\text{softmax}(\mathbf{Z}) = \frac{\exp(Z_{i,j})}{\sum_{k=1}^V \exp(Z_{i,k})}$ for $\mathbf{Z} = [Z_{i,j}]_{i=1,j=1}^{L,V}$. We refer to Eq. 2 as “LFQ.”

The specific quantization parameters contained in \mathbf{W}_q depend on the chosen block-wise PTQ method. For example, when instantiating (1) FlexRound (Lee et al., 2023), (2) OmniQuant (Shao et al., 2024), or (3) Block-AP (Chen et al., 2025), Eq. 2 specializes accordingly as:

$$(1) \text{ FlexRound: } \mathbf{W}_q = \mathbf{s}_1 \left\lfloor \frac{\mathbf{W}_{\text{FP}}}{\mathbf{s}_1 \odot \mathbf{S}_2 \odot \mathbf{s}_3} \right\rfloor \text{ where } \mathbf{s}_1, \mathbf{s}_3 \in \mathbb{R}_{>0}^{c_{\text{out}} \times \frac{c_{\text{in}}}{g}}, \text{ and } \mathbf{S}_2 \in \mathbb{R}_{>0}^{c_{\text{out}} \times c_{\text{in}}}, \quad (3)$$

$$\Rightarrow \text{Eq. 2: } \min_{\mathbf{W}_q} \mathcal{L}_{\text{CE}}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}}, \mathbf{XW}_q\mathbf{W}_{\text{Head}}) = \min_{\mathbf{s}_1, \mathbf{S}_2, \mathbf{s}_3} \mathcal{L}_{\text{CE}}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}}, \mathbf{XW}_q\mathbf{W}_{\text{Head}}).$$

$$(2) \text{ OmniQuant: } \mathbf{W}_q = \mathbf{h} \left\lfloor \frac{\mathbf{W}_{\text{FP}}}{\mathbf{h}} \right\rfloor \text{ where } \mathbf{h} = \frac{\gamma \max(\mathbf{W}_{\text{FP}}) - \beta \min(\mathbf{W}_{\text{FP}})}{2^b - 1} \text{ with } \gamma, \beta \in \mathbb{R}_{[0,1]}^{c_{\text{out}} \times \frac{c_{\text{in}}}{g}}, \quad (4)$$

$$\Rightarrow \text{Eq. 2: } \min_{\mathbf{W}_q} \mathcal{L}_{\text{CE}}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}}, \mathbf{XW}_q\mathbf{W}_{\text{Head}}) = \min_{\gamma, \beta} \mathcal{L}_{\text{CE}}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}}, \mathbf{XW}_q\mathbf{W}_{\text{Head}}).$$

$$(3) \text{ Block-AP: } \mathbf{W}_q = \mathbf{s} \left\lfloor \frac{\mathbf{W}_{\text{FP}}}{\mathbf{s}} \right\rfloor \text{ where } \mathbf{s} \in \mathbb{R}_{>0}^{c_{\text{out}} \times \frac{c_{\text{in}}}{g}}, \quad (5)$$

$$\Rightarrow \text{Eq. 2: } \min_{\mathbf{W}_q} \mathcal{L}_{\text{CE}}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}}, \mathbf{XW}_q\mathbf{W}_{\text{Head}}) = \min_{\mathbf{s}, \mathbf{W}_{\text{FP}}} \mathcal{L}_{\text{CE}}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}}, \mathbf{XW}_q\mathbf{W}_{\text{Head}}).$$

Here, b denotes the low bit-width and g the group size ($g = c_{\text{in}}$ for per-channel quantization, and $g = 128$ for group-wise quantization). Hereafter, we refer to Eq. 3, Eq. 4, and Eq. 5 as “FlexRound+LFQ”, “OmniQuant+LFQ”, and “Block-AP+LFQ”.

Three points are worth highlighting here. First, since LFQ integrates the LM Head and cross-entropy into the loss objective of standard block-wise PTQ, it is agnostic to the underlying block-wise method and thus can be applied seamlessly. Second, because LFQ optimizes only the final Transformer block by minimizing cross-entropy at the logit level, it is memory-efficient and thus can be run on a single GPU like other block-wise PTQ techniques. Third, because LFQ modifies only the optimization objective and leaves the quantization scheme unchanged, LFQ-quantized LLMs remain fully compatible with existing packing/unpacking kernels (e.g., Frantar et al. (2023); Lin et al. (2024); Park et al. (2024)) and can therefore be accelerated without additional effort.

3.2 EFFECT OF LFQ ON TOKEN GENERATION

To illustrate that cross-entropy better reproduces the FP model’s token predictions than MSE, we revisit the example 1 in Section 2. The corresponding cross-entropy values are given as follows:

$$- \sum_{i,j=1}^{L,V} \text{softmax}(\mathbf{XW}_{\text{FP}}\mathbf{W}_{\text{Head}})_{i,j} \log(\mathbf{XW}_q\mathbf{W}_{\text{Head}})_{i,j} = \begin{cases} \text{(i)} & -0.6 \log(0.4) - 0.4 \log(0.6) \approx 0.75 \\ \text{(ii)} & -0.9 \log(0.6) - 0.1 \log(0.4) \approx 0.55 \end{cases}$$

In contrast to the MSE—whose value in case (i) is smaller than in case (ii), even though case (i) predicts the opposite token while case (ii) predicts the same token as the FP model—the cross-entropy assigns a smaller value to case (ii) than to case (i). This observation highlights that minimizing the cross-entropy loss at the logit level is essential for guiding low-bit quantized LLMs to align with the FP model’s token predictions.

To make this trend concrete, Figure 1 presents a reasoning trajectory generated by L1-Qwen-7B-Max for Problem 28 of AIME 2024 and compares token-level probability distributions for the FP

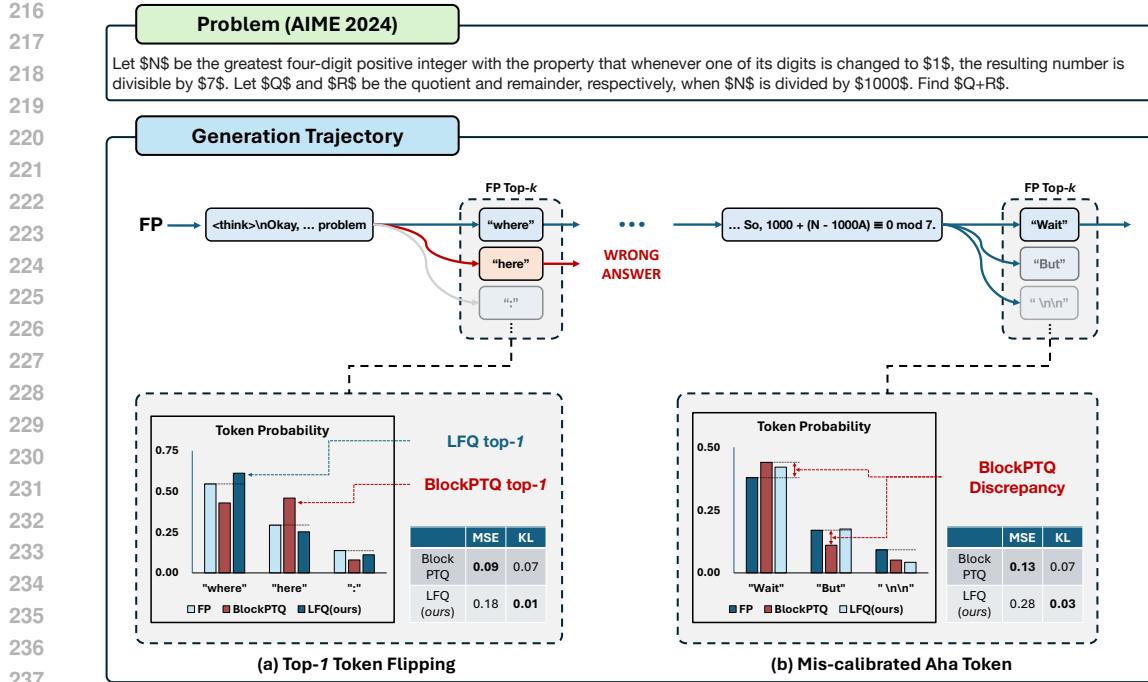


Figure 1: Reasoning trajectory of L1-Qwen-7B-Max under greedy decoding on AIME 2024 Problem 28. We compare token-level probability distributions for the FP baseline, block-wise PTQ (“blockPTQ” in the figure), and LFQ (ours) at two instants: (a) the first step where block-wise PTQ’s top-1 token diverges from the FP baseline, and (b) the first “aha” moment guiding the reasoning onto the correct path. In (a), block-wise PTQ’s top-1 (“here”) corresponds to the FP baseline’s top-2, yielding an incorrect answer, whereas LFQ’s top-1 (“where”) matches the FP baseline’s top-1 and thus reaches the correct answer. In (b), block-wise PTQ is overconfident in (“Wait”) and underconfident in the subsequent “aha” token, (“But”), while LFQ assigns probabilities to these “aha” tokens that remain closer to the FP baseline.

baseline, block-wise PTQ, and LFQ at two key points: (a) the first instance where block-wise PTQ’s top-1 token diverges from the FP baseline, and (b) the first “aha” moment that steers the reasoning onto the correct path. In Figure 1 (a), although block-wise PTQ attains a smaller MSE than LFQ, thanks to minimizing cross-entropy at the logit level, LFQ yields a smaller KL divergence from the FP distribution. Consequently, LFQ reproduces the FP model’s top-1 token prediction (i.e., “where”) and follows the correct trajectory to the right answer, whereas block-wise PTQ diverges and thus fails to solve the problem.

Moreover, because the occurrence of an “aha” moment is pivotal for re-evaluating and correcting an ongoing reasoning trajectory, the extent to which low-bit quantized models track the FP baseline on such “aha” tokens—e.g., “Wait” and “But”—is a key determinant of their accuracy on complex reasoning benchmarks. As shown in Figure 1 (b), even when the top-1 token for all three models is “Wait”, it is noteworthy that block-wise PTQ is overconfident in “Wait”, leaving it underconfident in another “aha” token like “But”. By contrast, LFQ allocates these probabilities closer to the FP baseline, resulting in not only a smaller KL divergence but also higher accuracy than block-wise PTQ as reported in Table 2.

4 EXPERIMENT

In this section, we verify the effectiveness of LFQ on Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct (Qwen et al., 2025) under 4-bit per-channel and 3-bit group-wise weight-only quantization settings on IFEval and MATH500 (Lightman et al., 2023). We also evaluate LFQ on large reasoning models—L1-Qwen-7B-Max (Aggarwal & Welleck, 2025) and DeepSeek-R1-Distill-Llama-

270
271 Table 1: Performance of Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct with LFQ under block-
272 wise PTQ (FlexRound, OmniQuant, and Block-AP). Within each PTQ method, the best accuracy is
273 shown in **bold**. “W4” and “W3g128” denote 4-bit per-channel weight-only quantization and 3-bit
274 group-wise quantization (group size 128), respectively. LFQ yields consistent gains in generation
275 quality across block-wise PTQ, while preserving the language modeling and understanding perfor-
276 mance of existing methods.

Method	# Bits	Language Modeling/Understanding		Text Generation	
		WikiText2 (↓)	MMLU (↑)	IFEval (↑) (greedy)	MATH500 (↑) (greedy)
Qwen2.5-7B-Instruct	BF16	6.85	73.49	70.79	74.2
FlexRound	W4	7.23	72.50	69.50	72.6
FlexRound+LFQ (Ours)	W4	7.21	72.48	71.35	73.4
FlexRound	W3g128	7.63	70.13	66.54	65.6
FlexRound+LFQ (Ours)	W3g128	7.58	70.26	67.84	68.0
OmniQuant	W4	7.73	71.00	68.21	69.8
OmniQuant+LFQ (Ours)	W4	7.53	70.99	69.50	71.6
OmniQuant	W3g128	8.08	68.43	68.21	63.6
OmniQuant+LFQ (Ours)	W3g128	7.91	68.39	68.58	64.4
Block-AP	W4	7.87	69.60	66.73	68.0
Block-AP+LFQ (Ours)	W4	7.77	69.94	68.02	69.0
Block-AP	W3g128	8.70	67.09	61.00	60.0
Block-AP+LFQ (Ours)	W3g128	8.18	67.06	63.77	61.8
Qwen2.5-14B-Instruct	BF16	5.24	78.82	79.85	78.4
FlexRound	W4	5.67	77.33	77.82	76.4
FlexRound+LFQ (Ours)	W4	5.62	77.31	78.00	77.2
FlexRound	W3g128	6.15	75.84	75.05	69.6
FlexRound+LFQ (Ours)	W3g128	6.11	75.85	77.08	71.6
OmniQuant	W4	5.93	76.64	73.94	73.4
OmniQuant+LFQ (Ours)	W4	5.89	76.66	75.23	75.2
OmniQuant	W3g128	6.43	75.62	74.31	70.4
OmniQuant+LFQ (Ours)	W3g128	6.36	75.73	75.42	69.8
Block-AP	W4	6.23	76.84	70.79	71.6
Block-AP+LFQ (Ours)	W4	6.17	76.86	72.27	72.4
Block-AP	W3g128	6.81	74.58	71.72	67.0
Block-AP+LFQ (Ours)	W3g128	6.69	74.58	72.46	68.0

309
310 8B (DeepSeek-AI et al., 2025)—using MATH500 and AIME 2024 (AIME, 2024) (AIME’24 for
311 short). Finally, we empirically (i) demonstrate the importance of incorporating the LM head and
312 utilizing cross-entropy in the objective, (ii) validate that quantizing only the final Transformer block
313 via logit-level cross-entropy is sufficient (i.e., it is not a must to quantize multiple final blocks with
314 cross-entropy), and (iii) the comparison of LFQ against LoRA-based quantization error compen-
315 sation (LQEC). These findings are established on Llama 3.1 8B Instruct (Grattafiori et al., 2024) using
316 IFEval (Zhou et al., 2023) and GSM8K (Cobbe et al., 2021) under 4-bit per-channel weight-only
317 quantization. Unless otherwise noted, we use group-wise quantization with a group size of 128.

318 We randomly select calibration sequences of length 2048 tokens from the C4 training set (Raffel
319 et al., 2020) for all experiments. We do so to emphasize that LFQ can preserve performance com-
320 parable to FP baselines on language modeling (e.g., WikiText-2 (Merity et al., 2016)) and under-
321 standing (MMLU (Hendrycks et al., 2021)), while consistently improving the generation quality of
322 block-wise PTQ methods. We report perplexity on WikiText2 using a sequence length of 4096, five-
323 shot accuracy on MMLU, prompt-level strict-accuracy on IFEval (following Qwen et al. (2025)),
324 8-shot accuracy on GSM8K, and zero-shot accuracy on MATH500 and AIME’24. For generation
325 tasks, we use greedy decoding to ensure a fair comparison between quantized models with and with-

324
 325 Table 2: Performance of L1-Max-Qwen-7B and DeepSeek-R1-Distill-Llama-8B with LFQ under
 326 block-wise PTQ (FlexRound). Within the PTQ method, the best accuracy is shown in **bold**. “W4”
 327 and “W3g128” denote 4-bit per-channel weight-only quantization and 3-bit group-wise quantization
 328 (group size 128), respectively. LFQ yields consistent gains in generation quality across block-wise
 329 PTQ, while preserving the language modeling and understanding performance of existing methods.

Method	# Bits	Language Modeling/Understanding		Text Generation		
		WikiText2 (\downarrow)	MMLU (\uparrow)	MATH500 (\uparrow) (greedy)	AIME’24 (\uparrow) (greedy)	AIME’24 (\uparrow) (pass@8)
L1-Qwen-7B-Max	BF16	29.57	54.58	88.0	46.67	55.30
FlexRound	W4	31.20	53.43	86.0	30.00	51.71
FlexRound+LFQ (Ours)	W4	30.44	53.10	87.6	43.33	55.09
FlexRound	W3g128	31.45	52.24	85.2	23.33	41.85
FlexRound+LFQ (Ours)	W3g128	29.46	52.53	86.4	30.00	45.18
DeepSeek-R1-Distill-Llama-8B	BF16	11.85	55.69	70.4	30.00	30.49
FlexRound	W4	12.61	54.57	68.2	16.67	27.71
FlexRound+LFQ (Ours)	W4	12.46	54.21	69.8	26.67	30.07
FlexRound	W3g128	13.80	53.61	62.8	10.00	15.98
FlexRound+LFQ (Ours)	W3g128	13.24	54.03	67.2	13.33	16.97

342
 343 out LFQ. For AIME’24, to estimate pass@8 as well, we additionally use temperature 0.6 and top-p
 344 0.95, and sample 16 responses per question with a maximum generation length of 4096 tokens.
 345

346 4.1 QWEN2.5 ON IFEVAL AND MATH500

347 To assess whether LFQ can improve low-bit instruction-tuned LLMs on both natural language in-
 348 struction following and challenging math word problems, we evaluate LFQ for Qwen2.5-7B-Instruct
 349 and Qwen2.5-14B-Instruct on IFEval and MATH500 using greedy decoding. Table 1 shows that,
 350 across different quantization configurations, LFQ consistently improves the generation quality of
 351 instruction-tuned models quantized by FlexRound, OmniQuant, and Block-AP on both IFEval and
 352 MATH500. Consequently, FlexRound+LFQ narrows the gap between 4-bit per-channel models and
 353 their FP baselines to within 1 percentage point (pp) for Qwen2.5-7B-Instruct and within 2 pp for
 354 Qwen2.5-14B-Instruct across all benchmarks considered (MMLU, IFEval, and MATH500).
 355

356 4.2 LARGE REASONING MODELS ON MATH500 AND AIME 2024

357 To test whether LFQ can also perform well for large reasoning models that produce long chains
 358 of thought by scaling test-time compute, we apply LFQ to L1-Qwen-7B-Max and DeepSeek-R1-
 359 Distill-Llama-8B on MATH500 and AIME’24. Given that Table 1 identifies FlexRound+LFQ as
 360 the most effective among FlexRound+LFQ, OmniQuant+LFQ, and Block-AP+LFQ, we focus on
 361 FlexRound+LFQ here. Table 2 shows that standard block-wise PTQ suffers substantial degradation
 362 under greedy decoding on AIME’24. In contrast, LFQ nearly matches the FP baseline on AIME’24,
 363 indicating that it restores alignment with the FP model’s top-1 token predictions. Furthermore, LFQ
 364 raises pass@8 to within 0.5 percentage points of the FP baselines. Taken together, these results
 365 suggest that LFQ effectively aligns the token-level probabilities of low-bit quantized LLMs with
 366 those of their FP counterparts.
 367

368 4.3 ABLATION STUDY

369 **Importance of LM Head and cross-entropy.** To assess the impact of incorporating the LM head
 370 and using cross-entropy in the loss objective when quantizing the final block, we incrementally
 371 augment existing block-wise PTQ methods (FlexRound, OmniQuant, and Block-AP) with these
 372 components. As shown in Table 3, adding the LM head alone generally improves accuracy on text
 373 generation benchmarks (IFEval and GSM8K) as well as on language modeling and understanding.
 374 With the LM head in place, employing cross-entropy rather than mean squared error (MSE) yields
 375 further gains on text generation tasks. We therefore conclude that leveraging both the LM head and
 376 cross-entropy, as in Eq. 2, is essential for boosting the generation quality of low-bit quantized LLMs.
 377

378
 379 Table 3: Performance of Llama 3.1 8B Instruct when block-wise PTQ methods (FlexRound, OmniQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii)
 380 using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within
 381 each block-wise PTQ method, the best accuracy is shown in **bold** and the second-best is underlined.
 382 Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and
 383 cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while pre-
 384 serving the language modeling and understanding performance of existing methods.
 385

Method	Language Modeling/Understanding			Text Generation	
	LM- Head	Cross- Entropy	WikiText2 (↓)	MMLU (↑)	IFEval (↑) (greedy)
Llama 3.1 8B Instruct	N/A	N/A	6.75	68.34	74.49
FlexRound	X	X	<u>7.06</u>	66.19	70.24
FlexRound+LFQ	O	X	<u>7.08</u>	<u>66.75</u>	<u>71.53</u>
	O	O	7.06	66.97	72.09
OmniQuant	X	X	7.49	64.87	70.61
OmniQuant+LFQ	O	X	<u>7.48</u>	<u>64.77</u>	<u>71.35</u>
	O	O	7.47	65.48	71.35
Block-AP	X	X	7.76	63.24	68.58
Block-AP+LFQ	O	X	<u>7.74</u>	<u>63.54</u>	<u>68.39</u>
	O	O	7.69	63.77	68.76
					74.45

400
 401 **Sufficiency of quantizing solely the final block via logit-level cross-entropy.** We ask whether
 402 applying the logit-level cross-entropy objective to only the final block is sufficient. To test this, we
 403 vary the number of topmost Transformer blocks optimized with LFQ (denoted as k) while keeping
 404 the remaining blocks quantized via standard MSE reconstruction. For example, when $k = 2$, we
 405 apply LFQ sequentially to the penultimate and final blocks. As shown in Figure 2, the average score
 406 of IFEval and GSM8K remains almost constant even as k increases; $k = 2$ occasionally yields a
 407 marginal gain on that average but at the cost of lower MMLU accuracy. These results indicate that
 408 applying LFQ to the final block alone is sufficient and offers the best overall trade-off.
 409

410 **Comparison of LFQ against LQEC.** As LQEC has emerged as a promising approach for miti-
 411 gating memory bottleneck while recovering task accuracy, we compare LFQ with RILQ (Lee et al.,
 412 2025a), a state-of-the-art LQEC method. For a fair comparison, we use only the C4 training set as
 413 calibration data to initialize LoRA adapters on low-bit quantized models produced by FlexRound,
 414 OmniQuant, and Block-AP. Table 4 reports the results. RILQ generally outperforms LFQ on lan-
 415 guage modeling (WikiText2) and language understanding (MMLU) due to its use of LoRA adapters.
 416 Nevertheless, LFQ consistently surpasses RILQ on text generation across all settings. We hypothe-
 417 size that this stems from the fact that LQEC methods—including RILQ—optimizes MSE, an objec-
 418 tive misaligned with matching the FP model’s token-level distribution (as elucidated in Section 2).
 419

5 RELATED WORK

420 Quantization study is typically classified into quantization-aware training (QAT) and post-training
 421 quantization (PTQ). As it is well known that QAT can match full-precision (FP) accuracy even
 422 under sub-4-bit quantization configurations, it has been applied across domains—from computer
 423 vision models (Esser et al., 2020; Lee et al., 2021) to natural language models (Liu et al., 2023;
 424 2025). However, Liu et al. (2025) shows that QAT requires fine-tuning large language models
 425 (LLMs) on billions of tokens at least, which is prohibitively memory-intensive and time-consuming.
 426 Consequently, research attention has continued to focus more on advancing PTQ.
 427

428 PTQ is commonly divided into layer-wise and block-wise methods. Layer-wise PTQ (e.g., Frantar
 429 et al. (2023); Lin et al. (2024)) can be run fast on a single GPU and typically incurs marginal per-
 430 formance degradation on relatively easy downstream tasks (e.g., commonsense reasoning). However,
 431 as these techniques do not involve gradient-based optimization, unless task-specific calibration data

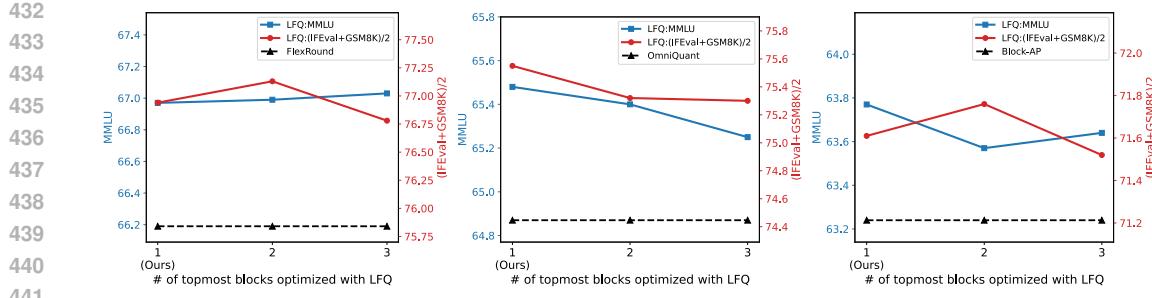


Figure 2: Performance of Llama 3.1 8B Instruct as the number of topmost Transformer blocks optimized with LFQ increases from 1 (ours) to 3, with the remaining blocks quantized via standard MSE reconstruction; shown for FlexRound (left), OmniQuant (center), and Block-AP (right). In each subfigure, the left y-axis shows MMLU accuracy, while the right y-axis reports the IFEval+GSM8K average. All results use 4-bit per-channel weight-only quantization. The average of IFEval and GSM8K (expressed as “(IFEval+GSM8K)/2”) stays roughly unchanged, regardless of the number of topmost Transformer blocks optimized with LFQ.

Table 4: Comparison of LFQ (ours) against RILQ, a state-of-the-art LoRA-based quantization error compensation method, on Llama 3.1 8B Instruct using block-wise PTQ (FlexRound, OmniQuant, and Block-AP). Within each PTQ method, the best accuracy is shown in **bold** and the second best is underlined. “W4” denotes 4-bit per-channel weight-only quantization.

Method	# Bits	Language modeling/understanding		Text generation	
		WikiText2 (↓)	MMLU (↑)	IFEval (↑) (greedy)	GSM8K (↑) (greedy)
Llama 3.1 8B Instruct	BF16	6.75	68.34	74.49	84.99
FlexRound	W4	7.06	66.19	70.24	81.35
FlexRound+RILQ	W4	<u>6.95</u>	<u>66.86</u>	<u>71.90</u>	80.52
FlexRound+LFQ	W4	<u>7.06</u>	66.97	72.09	81.80
OmniQuant	W4	7.49	64.87	70.61	78.17
OmniQuant+RILQ	W4	<u>7.24</u>	<u>66.07</u>	<u>71.35</u>	78.85
OmniQuant+LFQ	W4	<u>7.47</u>	<u>65.48</u>	71.35	79.76
Block-AP	W4	7.76	63.24	68.58	73.84
Block-AP+RILQ	W4	<u>7.43</u>	<u>64.62</u>	<u>68.58</u>	73.92
Block-AP+LFQ	W4	<u>7.69</u>	<u>63.77</u>	68.76	74.45

is utilized, they can suffer substantial accuracy degradation on more challenging benchmarks, particularly text generation (Li et al., 2025). On the other hand, block-wise PTQ approaches (Lee et al., 2023; Shao et al., 2024; Cheng et al., 2024; Lee et al., 2025b; Chen et al., 2025) not only account for cross-layer dependencies within a block but also optimize quantization parameters via gradient-based iterative updates, and therefore often outperform layer-wise PTQ. Notwithstanding, we find that existing block-wise PTQ can still exhibit non-negligible degradation in generation quality.

6 CONCLUSION

We show that block-wise PTQ can degrade generation quality due to (i) omitting the LM head from block-wise optimization and (ii) relying on the MSE objective. To address this, we introduce Logit-aware Final-block Quantization (LFQ), which quantizes the final Transformer block by aligning the quantized model’s logits to the FP model’s via the cross-entropy loss. Across diverse model families and generation tasks, LFQ consistently improves generation quality over existing block-wise PTQ techniques, while preserving performance on language modeling and understanding.

486 REFERENCES
487

488 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
489 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.04697>.

490 AIME. Aime problems and solutions, 2024, 2024. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

491 492 Sebastian Bruch. An alternative cross entropy loss for learning-to-rank. In *Proceedings of the*
493 *Web Conference 2021*, WWW '21, pp. 118–126, New York, NY, USA, 2021. Association for
494 Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3449794. URL <https://doi.org/10.1145/3442381.3449794>.

495 496 Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
497 EfficientQAT: Efficient quantization-aware training for large language models. In Wanxiang Che,
498 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
499 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
500 pp. 10081–10100, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
501 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.498. URL <https://aclanthology.org/2025.acl-long.498>.

502 503 Wenhua Cheng, Weiwei Zhang, Haihao Shen, Yiyang Cai, Xin He, Lv Kaokao, and Yi Liu. Optimize
504 weight rounding via signed gradient descent for the quantization of LLMs. In Yaser
505 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for*
506 *Computational Linguistics: EMNLP 2024*, pp. 11332–11350, Miami, Florida, USA, November 2024.
507 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.662. URL
508 <https://aclanthology.org/2024.findings-emnlp.662>.

509 510 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
511 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
512 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

513 514 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
515 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
516 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
517 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
518 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
519 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
520 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
521 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
522 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
523 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
524 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
525 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
526 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
527 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
528 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
529 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
530 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
531 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
532 aosh Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
533 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
534 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
535 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
536 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
537 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
538 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
539 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

540 Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
 541 mendra S. Modha. Learned step size quantization, 2020. URL <https://arxiv.org/abs/1902.08153>.

543 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
 544 quantization for generative pre-trained transformers, 2023. URL <https://arxiv.org/abs/2210.17323>.

546 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 547 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 548 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 549 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 550 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 551 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 552 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 553 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 554 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 555 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 556 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 557 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 558 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 559 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 560 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 561 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 562 soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 563 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 564 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 565 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 566 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 567 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 568 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 569 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 570 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 571 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 572 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 573 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 574 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 575 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 576 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 577 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 578 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 579 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 580 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 581 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 582 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 583 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 584 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 585 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 586 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 587 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 588 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 589 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 590 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 591 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 592 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 593 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo,
 Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,

594 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 595 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 596 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 597 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 598 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 599 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 600 son Rudolph, Helen Suk, Henry Aspereen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 601 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 602 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 603 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 604 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 605 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 606 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 607 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 608 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 609 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 610 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 611 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 612 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 613 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 614 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 615 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 616 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 617 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 618 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 619 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 620 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 621 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 622 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 623 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 624 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 625 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 626 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 627 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 628 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 629 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 630 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 631 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 632 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 633 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 634 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 635 <https://arxiv.org/abs/2407.21783>.

636 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 637 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
 638 tional Conference on Learning Representations (ICLR)*, 2021.

639 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 640 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 641 models. *arXiv preprint arXiv:2001.08361*, 2020.

642 Geonho Lee, Janghwan Lee, Sukjin Hong, Minsoo Kim, Euijai Ahn, Du-Seong Chang, and Jung-
 643 woong Choi. Rilq: Rank-insensitive lora-based quantization error compensation for boosting 2-bit
 644 large language model accuracy, 2025a. URL <https://arxiv.org/abs/2412.01129>.

645 Jung Hyun Lee, Jihun Yun, Sung Ju Hwang, and Eunho Yang. Cluster-promoting quantization with
 646 bit-drop for minimizing network quantization loss, 2021. URL <https://arxiv.org/abs/2109.02100>.

647 Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. FlexRound: Learnable round-
 648 ing based on element-wise division for post-training quantization. In Andreas Krause, Emma

648 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
 649 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Pro-
 650 ceedings of Machine Learning Research*, pp. 18913–18939. PMLR, 23–29 Jul 2023. URL
 651 <https://proceedings.mlr.press/v202/lee23h.html>.

652
 653 Jung Hyun Lee, Jeonghoon Kim, June Yong Yang, Se Jung Kwon, Eunho Yang, Kang Min
 654 Yoo, and Dongsoo Lee. LRQ: Optimizing post-training quantization for large language
 655 models by learning low-rank weight-scaling matrices. In Luis Chiruzzo, Alan Ritter, and Lu Wang
 656 (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
 657 Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 658 Papers)*, pp. 7708–7743, Albuquerque, New Mexico, April 2025b. Association for Compu-
 659 tational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.393. URL
 660 <https://aclanthology.org/2025.naacl-long.393/>.

661
 662 Zhen Li, Yupeng Su, Runming Yang, Congkai Xie, Zheng Wang, Zhongwei Xie, Ngai Wong, and
 663 Hongxia Yang. Quantization meets reasoning: Exploring llm low-bit quantization degradation for
 664 mathematical reasoning, 2025. URL <https://arxiv.org/abs/2501.03035>.

665
 666 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 667 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
 668 <https://arxiv.org/abs/2305.20050>.

669
 670 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 671 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 672 llm compression and acceleration, 2024. URL <https://arxiv.org/abs/2306.00978>.

673
 674 Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
 675 Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
 676 training for large language models, 2023. URL <https://arxiv.org/abs/2305.17888>.

677
 678 Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
 679 Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman
 680 Krishnamoorthi, Tijmen Blankevoort, and Vikas Chandra. Paretoq: Scaling laws in extremely
 681 low-bit llm quantization, 2025. URL <https://arxiv.org/abs/2502.02631>.

682
 683 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 684 models, 2016.

685
 686 Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung
 687 Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix multi-
 688 plication based on luts for efficient inference in large-scale generative language models. In *ICLR*,
 689 2024. URL <https://openreview.net/forum?id=gLARhFLE0F>.

690
 691 Seungcheol Park, Jeongin Bae, Beomseok Kwon, Minjun Kim, Byeongwook Kim, Se Jung Kwon,
 692 U Kang, and Dongsoo Lee. Unifying uniform and binary-coding quantization for accurate com-
 693 pression of large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 694 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 695 for Computational Linguistics (Volume 1: Long Papers)*, pp. 28468–28488, Vienna, Austria, July
 696 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 697 2025.acl-long.1382. URL <https://aclanthology.org/2025.acl-long.1382/>.

698
 699 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 700 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 701 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 702 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 703 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 704 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 705 URL <https://arxiv.org/abs/2412.15115>.

706
 707 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 708 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 709 transformer. *The Journal of Machine Learning Research*, 21(1):5485–5551, 2020.

702 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 703 Peng Gao, Yu Qiao, and Ping Luo. Omnipoint: Omnidirectionally calibrated quantization for
 704 large language models. In *The Twelfth International Conference on Learning Representations*,
 705 2024. URL <https://openreview.net/forum?id=8Wuvhh0LYW>.

706 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 707 Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
 708 Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
 709 Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
 710 Guo, Hao Hu, Xiaorui Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
 711 Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
 712 Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
 713 Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
 714 Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
 715 Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
 716 Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
 717 Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
 718 Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
 719 Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
 720 Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
 721 Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
 722 Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
 723 Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
 724 Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
 725 Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
 726 Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
 727 Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
 728 Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
 729 Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
 730 2025. URL <https://arxiv.org/abs/2507.20534>.

730 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 731 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

733 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 734 and Le Hou. Instruction-following evaluation for large language models, 2023. URL <https://arxiv.org/abs/2311.07911>.

756 **A ADDITIONAL ABLATION STUDIES OF LFQ FOR QWEN2.5-7B-INSTRUCT**
 757 **AND LLAMA 3.2 3B INSTRUCT**
 758

760
 761 Table 5: Performance of Qwen2.5-7B-Instruct when block-wise PTQ methods (FlexRound, OmniQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii) using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within 763 each block-wise PTQ method, the best accuracy is shown in **bold** and the second-best is underlined. Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and 765 cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while 766 preserving the language modeling and understanding performance of existing methods.
 767

Method	Language Modeling/Understanding			Text Generation	
	LM-Head	Cross-Entropy	WikiText2 (↓)	MMLU (↑)	IFEval (↑) (greedy)
Qwen2.5-7B-Instruct	N/A	N/A	6.85	73.49	70.79
FlexRound	X	X	<u>7.23</u>	72.50	69.50
FlexRound+LFQ	O	✗	<u>7.26</u>	<u>72.48</u>	<u>71.35</u>
	O	O	7.21	<u>72.48</u>	71.35
OmniQuant	X	X	7.73	71.00	68.21
OmniQuant+LFQ	O	✗	<u>7.29</u>	71.02	<u>68.95</u>
	O	O	<u>7.53</u>	70.99	69.50
Block-AP	X	X	<u>7.87</u>	69.60	66.73
Block-AP+LFQ	O	✗	<u>7.92</u>	<u>69.75</u>	<u>67.28</u>
	O	O	7.77	69.94	68.02
					69.0

781
 782 Table 6: Performance of Llama 3.2 3B Instruct when block-wise PTQ methods (FlexRound, OmniQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii) using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within 785 each block-wise PTQ method, the best accuracy is shown in **bold** and the second-best is underlined. Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and 787 cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while 788 preserving the language modeling and understanding performance of existing methods.
 789

Method	Language Modeling/Understanding			Text Generation	
	LM-Head	Cross-Entropy	WikiText2 (↓)	MMLU (↑)	IFEval (↑) (greedy)
Llama 3.2 3B Instruct	N/A	N/A	10.14	61.34	71.72
FlexRound	X	X	<u>10.72</u>	59.93	65.80
FlexRound+LFQ	O	✗	<u>10.73</u>	<u>59.66</u>	<u>65.99</u>
	O	O	10.72	<u>59.84</u>	67.28
OmniQuant	X	X	11.23	57.78	64.33
OmniQuant+LFQ	O	✗	<u>11.17</u>	<u>58.80</u>	<u>64.33</u>
	O	O	11.16	58.94	66.54
Block-AP	X	X	<u>11.61</u>	56.47	62.29
Block-AP+LFQ	O	✗	<u>11.63</u>	<u>56.44</u>	<u>62.66</u>
	O	O	11.61	56.38	63.77
					66.41

B EXPERIMENTAL SETTING OF LFQ

We sweep the LFQ learning rate as follows: $\{5e - 4, 1e - 3\}$ with FlexRound; $\{1.5e - 3, 2e - 3, 5e - 3\}$ with OmniQuant; and $\{1e - 5, 2e - 5, 3e - 5\}$ with Block-AP. Across all block-wise PTQ methods, calibration samples are drawn from C4: 800 for Llama-3.2-3B-Instruct; 600 for Qwen2.5-7B-Instruct and L1-Max-Qwen-7B; 550 for Llama-3.1-8B-Instruct; 512 for DeepSeek-R1-Distill-Llama-8B; and 400 for Qwen2.5-14B-Instruct. For the remaining hyperparameters, we follow the experimental settings recommended in prior work (Lee et al., 2023; Shao et al., 2024; Chen et al., 2025).

On a single A100 GPU, the LFQ process takes approximately 1.5 hours for Qwen2.5-7B-Instruct, L1-Qwen-7B-Max, DeepSeek-R1-Distill-Llama-8B, and Llama 3.1 8B Instruct, and about 2 hours for Qwen2.5-14B-Instruct.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
 865 **C FURTHER EVALUATION OF LFQ FOR LARGE REASONING MODELS**
 866 **UNDER STOCHASTIC DECODING**
 867

868
 869 Table 7: Avg@8 and standard deviation on MATH500 for L1-Qwen-7B-Max and DeepSeek-R1-
 870 Distill-Llama-8B with LFQ under block-wise PTQ (FlexRound). Within the PTQ method, the best
 871 accuracy is shown in **bold**. “W4” and “W3g128” denote 4-bit per-channel weight-only quantization
 872 and 3-bit group-wise quantization (group size 128), respectively. We use a temperature of 0.6 and a
 873 top-p of 0.95.

Method	# Bits	MATH500 (\uparrow) (Avg@8)
L1-Qwen-7B-Max	BF16	89.05 ± 0.74
FlexRound	W4	87.45 ± 0.75
FlexRound+LFQ (Ours)	W4	88.40 ± 0.86
FlexRound	W3g128	85.35 ± 0.64
FlexRound+LFQ (Ours)	W3g128	86.50 ± 0.54
DeepSeek-R1-Distill-Llama-8B	BF16	72.53 ± 1.16
FlexRound	W4	70.10 ± 1.37
FlexRound+LFQ (Ours)	W4	71.95 ± 1.20
FlexRound	W3g128	67.00 ± 0.97
FlexRound+LFQ (Ours)	W3g128	69.25 ± 0.85

888 To ensure a more robust evaluation of LFQ, we additionally measure Avg@8 on MATH500 for L1-
 889 Qwen-7B-Max and DeepSeek-R1-Distill-Llama-8B with a temperature of 0.6 and a top-p of 0.95.
 890

891 Table 7 shows that LFQ also improves the Avg@K score on MATH across different large reasoning
 892 models, demonstrating that LFQ is effective under both greedy and stochastic decoding.

918 **D IMPORTANCE OF APPLYING LFQ TO THE LAST BLOCK**
919

920 To emphasize that whether LFQ is applied to the final block is far more important than how many
921 blocks are optimized with LFQ, we conduct the following experiments for Llama 3.1 8B Instruct.
922 When $k = 2$, we apply LFQ to the second-to-last block, while for the last block we only minimize
923 $\|XW_{FP} - XW_q\|_F^2$ without using either the LM head or cross-entropy (denoted as “ $k = 2$ except
924 the last block”). When $k = 3$, we apply LFQ sequentially to the third- and second-to-last blocks,
925 and again, for the last block only, we minimize $\|XW_{FP} - XW_q\|_F^2$ without employing the LM
926 head or cross-entropy (denoted as “ $k = 3$ except the last block”). We then compare these settings
927 with the original $k = 2$ and $k = 3$ configurations in Figure 2.
928

929 Table 8: Comparison of $k = 2$ and $k = 3$ except the last block with the original $k = 2$ and
930 $k = 3$ configurations in Figure 2. “LFQ@Last” indicates whether LFQ is applied to the last block.
931 Similarly, “LFQ@Last-1” and “LFQ@Last-2” indicate whether LFQ is applied to the second-to-last
932 and third-to-last blocks, respectively.
933

934

Method	LFQ@Last	LFQ@Last-1	LFQ@Last-2	MMLU (\uparrow)	(IFEval+GSM8K)/2 (\uparrow)
Llama 3.1 8B Instruct	N/A	N/A	N/A	68.34	79.74
FlexRound	X	X	X	66.19	75.80
+ $k = 2$ except the last block	X	O	X	66.97	76.17
+ $k = 2$ (Figure 2)	O	O	X	66.99	77.13
+ $k = 3$ except the last block	X	O	O	66.98	76.15
+ $k = 3$ (Figure 2)	O	O	O	67.03	76.78
OmniQuant	X	X	X	64.87	74.39
+ $k = 2$ except the last block	X	O	X	65.29	74.47
+ $k = 2$ (Figure 2)	O	O	X	65.40	75.32
+ $k = 3$ except the last block	X	O	O	65.29	74.65
+ $k = 3$ (Figure 2)	O	O	O	65.25	75.30
Block-AP	X	X	X	63.24	71.21
+ $k = 2$ except the last block	X	O	X	63.78	71.30
+ $k = 2$ (Figure 2)	O	O	X	63.57	71.76
+ $k = 3$ except the last block	X	O	O	63.81	71.24
+ $k = 3$ (Figure 2)	O	O	O	63.64	71.52

949
950 As shown in Table 8, the MMLU score remains nearly unchanged regardless of whether LFQ is
951 applied to the final block. In contrast, when LFQ is not applied to the final block, the average of
952 IFEval and GSM8K (i.e., “(IFEval+GSM8K)/2”) consistently drops, approaching the performance
953 level of each underlying PTQ technique. These results indicate that, for improving the generation
954 quality of low-bit quantized LLMs, it is far more critical to apply LFQ to the final block than to
955 simply increase the number of blocks optimized with LFQ.
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **E COMBINATION OF LFQ WITH RILQ**
973
974
975

976 Table 9: Comparison of LFQ (ours) against RILQ, a state-of-the-art LoRA-based quantization error
977 compensation method, on Llama 3.1 8B Instruct using block-wise PTQ (FlexRound, OmniQuant,
978 and Block-AP). Within each PTQ method, the best accuracy is shown in **bold** and the second best is
underlined. “W4” denotes 4-bit per-channel weight-only quantization.
979

980

Method	# Bits	Language modeling/understanding		Text generation	
		WikiText2 (↓)	MMLU (↑)	IFEval (↑) (greedy)	GSM8K (↑) (greedy)
Llama 3.1 8B Instruct	BF16	6.75	68.34	74.49	84.99
FlexRound	W4	7.06	66.19	70.24	81.35
FlexRound+RILQ	W4	<u>6.95</u>	66.86	71.90	80.52
FlexRound+LFQ	W4	7.06	66.97	<u>72.09</u>	81.80
FlexRound+LFQ+RILQ	W4	<u>6.98</u>	66.96	72.46	81.43
OmniQuant	W4	7.49	64.87	70.61	78.17
OmniQuant+RILQ	W4	<u>7.24</u>	66.07	71.35	78.85
OmniQuant+LFQ	W4	7.47	65.48	<u>71.35</u>	79.76
OmniQuant+LFQ+RILQ	W4	7.23	65.82	71.35	79.45
Block-AP	W4	7.76	63.24	68.58	73.84
Block-AP+RILQ	W4	<u>7.43</u>	64.62	68.58	73.92
Block-AP+LFQ	W4	7.69	63.77	68.76	74.45
Block-AP+LFQ+RILQ	W4	7.43	64.53	<u>68.58</u>	74.22

998 LFQ underperforms RILQ on WikiText2 perplexity (language modeling) and MMLU accuracy (language
999 understanding), while outperforming RILQ on IFEval and GSM8K (text generation), as
1000 shown in Table 4. However, we emphasize that LFQ (quantization objective) and RILQ (LoRA
1001 addition) address orthogonal aspects of the problem rather than competing with each other. Because
1002 LFQ can be readily combined with RILQ in a complementary manner, we therefore explore their
1003 joint application to leverage the strengths of both methods.
1004

1005 LFQ + RILQ performs comparably to RILQ on WikiText2 perplexity and MMLU accuracy, while
1006 achieving results close to LFQ on IFEval and GSM8K. This indicates that LFQ + RILQ can effec-
1007 tively inherit the strengths of both techniques.
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 F COMPARISON OF BLOCK-WISE PTQ WITH AWQ

1029
 1030 Table 10: Comparison of block-wise PTQ (FlexRound, OmniQuant, and Block-AP) with AWQ, one
 1031 of the mainstream layer-wise PTQ techniques. For each task, the worst accuracy is shown in red.
 1032 “W4” denotes 4-bit per-channel weight-only quantization.

1035 Method	# Bits	1034 Language modeling/understanding		Text generation	
		1036 WikiText2 (↓)	1037 MMLU (↑)	1038 IFEval (↑) (greedy)	1039 GSM8K (↑) (greedy)
1037 Llama 3.1 8B Instruct	1038 BF16	6.75	68.34	74.49	84.99
1038 AWQ	1039 W4	7.96	63.57	67.84	73.54
1039 FlexRound	1040 W4	7.06	66.19	70.24	81.35
1040 OmniQuant	1041 W4	7.49	64.87	70.61	78.17
1041 Block-AP	1042 W4	7.76	63.24	68.58	73.84

1043 As demonstrated by several existing block-wise PTQ studies (Shao et al., 2024; Cheng et al., 2024;
 1044 Lee et al., 2025b), block-wise PTQ typically outperforms layer-wise PTQ methods such as AWQ
 1045 across a range of tasks, as shown in Table 10.