
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LFQ: LOGIT-AWARE FINAL-BLOCK QUANTIZATION
FOR BOOSTING THE GENERATION QUALITY OF LOW-
BIT QUANTIZED LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to scale, low-bit weight-only post-
training quantization (PTQ) offers a practical solution to their memory-efficient
deployment. Although block-wise PTQ is capable of matching the full-precision
(FP) baseline on basic language modeling and understanding, its quality is de-
graded for generative tasks—especially at longer responses and extended chains
of thought, which is critical in boosting task accuracy. We attribute this short-
fall to two factors: (i) the omission of the unembedding layer (the LM head) in
block-wise optimization and (ii) the reliance on the mean squared error (MSE)
objective. Both factors cause the token probability distribution of the quantized
model to misalign with that of the FP model, yielding notable accuracy drops on
text generation benchmarks. To rectify the discrepancy, we introduce Logit-aware
Final-block Quantization (LFQ), a simple yet effective enhancement to block-wise
PTQ that quantizes the final Transformer block by minimizing the cross-entropy
between the logits of the FP model and those of its quantized counterpart. By
aligning token probabilities at the logit level in the final block, LFQ consistently
improves the accuracy of complex generation tasks over state-of-the-art block-
wise PTQ across diverse model families and text generation tasks, while main-
taining parity with FP baselines on language modeling and understanding.

1 INTRODUCTION

The evident success of large language models (LLMs) (Grattafiori et al., 2024; Qwen et al., 2025;
Team et al., 2025) based on the decoder-only transformer (Vaswani et al., 2023) is largely attributed
to their ever-increasing number of parameters (Kaplan et al., 2020). However, the proportionally
increasing memory footprint of the model significantly impedes the cost-effective deployment of
LLMs. Not only is a large model difficult to fit in commercial devices, but the serving cost of
the model also increases sharply with the model size. To this end, quantization have been widely
adopted to increase the inference efficiency of LLMs by employing lower precision data types.

Recently, weight-only quantization (Frantar et al., 2023; Lin et al., 2024) has emerged as a partic-
ularly attractive methodology due to its high compression ratio and effective preservation of model
quality. By quantizing the LLM weights into low-precision but retaining difficult-to-quantize acti-
vations in full precision (FP), memory pressure is effectively relieved while reducing the accuracy
degradation. Low-bit weight-only quantization is obtained either via quantization-aware training
(QAT) or post-training quantization (PTQ). Although Liu et al. (2025) shows that QAT is capable of
restoring the degraded accuracy even under sub-4-bit settings, the computational resource required
to conduct QAT makes it prohibitively memory-intensive and time-consuming. On the other hand,
layer-wise PTQ can be conducted with a relatively small amount of resources, but suffers from
model quality degradation.

Block-wise PTQ (Lee et al., 2023; Shao et al., 2024; Cheng et al., 2024; Lee et al., 2025b; Chen et al.,
2025; Park et al., 2025) strikes an effective balance between the two ends, achieving effective and
efficient degradation recovery. By minimizing the mean squared error (MSE) between the outputs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of an FP Transformer block and those of its quantized counterpart, cross-layer dependencies within
each transformer block are accounted for, recovering the performance comparable to FP baselines on
tasks such as language modeling (e.g. WikiText2 (Merity et al., 2016)) and general natural language
understanding (e.g. MMLU (Hendrycks et al., 2021)).

However, relatively little attention has been shed on the degradation of generation quality caused
by the low-bit quantization of LLMs. It is particularly alarming considering the increasing trend
towards generating longer responses for increased task performance. Emerging large reasoning
models (DeepSeek-AI et al., 2025; Aggarwal & Welleck, 2025) scale inference-time compute to
produce extended chains of thought, thereby achieving higher accuracy on complex multi-step rea-
soning tasks. As this trend toward generating more tokens continues in pursuit of increased accuracy,
serving costs rise sharply, necessitating a strong demand for an efficient quantization method that
can maintain the generation quality of FP baselines.

In this work, we uncover that the standard block-wise PTQ approach—while effective at language
modeling and understanding—suffers from the degradation of generation quality. The limitation is
attributed to the fact that block-wise PTQ only preserves the quality of output activations of a trans-
former block, rather than preserving the fidelity of the next-token sampling distribution. Specifically,
(i) existing block-wise PTQ methods completely ignore the unembedding layer (also known as the
LM head), and (ii) rely on the MSE as optimization objective. Even when the MSE between the
outputs of a quantized block and its FP counterpart is minimized, the actual probabilities assigned to
plausible tokens can be perturbed, producing substantial shifts in distribution. Such misalignment is
less observable on natural language understanding tasks, which does not involve autoregressive gen-
eration, but becomes pronounced in long-form generation as compounding probability distortions
steer the generation trajectory away from the FP baseline.

Motivated by the observations, we propose Logit-aware Final-block Quantization (LFQ), which en-
ables low-bit quantized LLMs to achieve performance close to FP baselines on text generation tasks
such as IFEval (Zhou et al., 2023), GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023),
and AIME (AIME, 2024). Unlike standard block-wise PTQ, LFQ quantizes the final Transformer
block by minimizing the cross-entropy loss between the logits of the FP model and those of its quan-
tized counterpart. Specifically, all Transformer blocks from the first to the penultimate are quantized
by minimizing the MSE between the outputs of the FP and quantized blocks, while the final block
is optimized using cross-entropy at the logit level, aligning token probabilities with the FP model
and thereby reproducing the token prediction probabilities of the FP model. Thanks to its simple
design, LFQ can be seamlessly applied to existing block-wise approaches. Moreover, LFQ consis-
tently improves the generation quality of block-wise PTQ methods, while maintaining performance
comparable to FP baselines on language modeling and understanding tasks.

Our contribution is threefold:

• To the best of our knowledge, we are the first to show that the conventional block-wise PTQ
objective—minimizing MSE at intermediate outputs—does not align with reproducing the
token predictions of FP models, thereby inducing non-negligible accuracy gaps between
FP baselines and their low-bit quantized counterparts on text generation tasks.

• We propose Logit-aware Final-block Quantization (LFQ), which quantizes the final Trans-
former block by minimizing the cross-entropy between the logits of the FP model and its
quantized counterpart, consistently improving the generation quality of low-bit quantized
LLMs across existing block-wise PTQ methods.

• We validate LFQ across diverse models—including Llama 3.1, Qwen2.5, and large reason-
ing models (e.g., L1-Max, DeepSeek-R1-Distill)—on text generation benchmarks such as
IFEval, GSM8K, MATH500, and AIME 2024. We further evaluate LFQ on WikiText2 and
MMLU to ensure that it performs comparably to, and in some cases better than, existing
block-wise PTQ techniques on language modeling and understanding tasks as well.

2 PROBLEM STATEMENT

Block-wise PTQ progressively quantizes each Transformer block by minimizing the mean squared
error (MSE), from the first to the final block. In this section, we focus our attention on the final block,
which is distinctive from the other blocks as it is directly attached to the LM head that produces the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

token sampling distribution. Below, we provide a brief overview of notations and assumptions used
for illustrative purposes throughout this paper.

Let WFP,Wq ∈ Rcin×cout denote the full-precision (FP) final Transformer block and its quantized
counterpart, and let X ∈ RL×cin represent the input to the final block, where L is the sequence
length. Let V denote the vocabulary, with size V = |V|. The LM head is then defined as WHead ∈
Rcout×V . For illustrative purposes only, however, we restrict the vocabulary to V = {t1, t2}, so that
WHead ∈ Rcout×2. Unless otherwise specified, we omit the normalization layer between the final
block and the LM head for simplicity.

First, to illustrate that minimizing the MSE between the outputs of a FP final Transformer block and
its quantized counterpart can adversely affect the generation quality of low-bit quantized LLMs, we
consider the case where cout = 2. The final block is quantized by minimizing ∥XWFP −XWq∥2F ,
yielding XWq = [0.7, 0.3] for XWFP = [0.8, 0.2] as an example. However, it is worth noting the
following example:

When WHead =

[
0.5 0.3
0.5 1.0

]
, XWFPWHead = [0.5, 0.44] and XWqWHead = [0.5,0.51] .

This result implies that the FP model predicts token t1, while its quantized counterpart instead
predicts the opposite token, t2. Consequently, even if the final block is quantized to minimize the
MSE between XWFP and XWq , ignoring the LM head during block-wise quantization can lead
the quantized model to produce different token predictions from the FP model.

Next, even when the LM head is considered, minimizing the MSE between the logits of the FP and
quantized models does not guarantee identical token predictions. For example, suppose we obtain

XWqWHead =

{
(i)

[
0.4,0.6

]
for XWFPWHead =

[
0.6, 0.4

]
(ii)

[
0.6, 0.4

]
for XWFPWHead =

[
0.9, 0.1

] . (1)

Then, the corresponding MSE values are given by

∥XWFPWHead −XWqWHead∥2F =

{
(i) (0.6− 0.4)2 + (0.4− 0.6)2 = 0.08

(ii) (0.9− 0.6)2 + (0.1− 0.4)2 = 0.18
.

Although the first case (i) yields the smaller MSE, it leads to the opposite token prediction, whereas
the second (ii)—despite having the larger MSE—produces the same token prediction as the FP
model. This therefore demonstrates that minimizing MSE at the logit level does not necessarily
align with reproducing the FP model’s token predictions. Consistently, Figure 1 (a) illustrates that
standard block-wise PTQ achieves a lower MSE yet predicts a different top-1 token than the FP
model, leading to an incorrect reasoning trajectory.

3 METHOD

As discussed in Section 2, ensuring that low-bit quantized LLMs reproduce the token predictions of
their full-precision (FP) counterparts requires explicitly accounting for the LM head and replacing
mean squared error (MSE) in the optimization objective of block-wise post-training quantization
(PTQ) methods. To this end, we propose Logit-aware Final-block Quantization (LFQ), which quan-
tizes the final Transformer block by minimizing the cross-entropy loss between the logits of the FP
model and those of its quantized counterpart.

3.1 LOGIT-AWARE FINAL-BLOCK QUANTIZATION (LFQ)

Even when the LM head is taken into account, minimizing the MSE does not guarantee that the
quantized model will predict the same token as the FP model. Since minimizing cross-entropy is
equivalent to minimizing KL divergence, and KL divergence is equal to zero if and only if two dis-
tributions are identical, minimizing cross-entropy at the logit level directly encourages the quantized
model’s token-level distribution to match its FP counterpart. Furthermore, as Bruch (2021) demon-
strates, cross-entropy can be used for learning to rank, which would also help the quantized model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

recover the FP model’s top-k token ordering. Accordingly, when optimizing the quantized final
Transformer block Wq , we minimize the cross-entropy between the FP model’s logits and those of
the quantized model to align the block-wise PTQ objective with the FP model’s token generation.
Specifically, while the first through penultimate Transformer blocks are quantized by minimizing
the MSE between the outputs of the FP and quantized blocks, the final block is quantized using the
following optimization objective:

min
Wq

LCE(XWFPWHead,XWqWHead) = −
L∑

i=1

V∑
j=1

softmax(XWFPWHead)i,j log(XWqWHead)i,j ,

(2)
where softmax(Z) =

exp(Zi,j)∑V
k=1 exp(Zi,k)

for Z = [Zi,j]
L,V
i=1,j=1. We refer to Eq. 2 as “LFQ.”

The specific quantization parameters contained in Wq depend on the chosen block-wise PTQ
method. For example, when instantiating (1) FlexRound (Lee et al., 2023), (2) OmniQuant (Shao
et al., 2024), or (3) Block-AP (Chen et al., 2025), Eq. 2 specializes accordingly as:

(1) FlexRound: Wq = s1

⌊ WFP

s1 ⊙ S2 ⊙ s3

⌉
where s1, s3 ∈ R

cout×
cin
g

>0 , and S2 ∈ Rcout×cin
>0 , (3)

⇒ Eq. 2: min
Wq

LCE(XWFPWHead,XWqWHead) = min
s1,S2,s3

LCE(XWFPWHead,XWqWHead).

(2) OmniQuant: Wq = h
⌊WFP

h

⌉
where h =

γmax(WFP)− βmin(WFP)

2b − 1
with γ,β ∈ R

cout×
cin
g

[0,1] ,

(4)
⇒ Eq. 2: min

Wq

LCE(XWFPWHead,XWqWHead) = min
γ,β

LCE(XWFPWHead,XWqWHead).

(3) Block-AP: Wq = s
⌊WFP

s

⌉
where s ∈ R

cout×
cin
g

>0 , (5)

⇒ Eq. 2: min
Wq

LCE(XWFPWHead,XWqWHead) = min
s,WFP

LCE(XWFPWHead,XWqWHead).

Here, b denotes the low bit-width and g the group size (g = cin for per-channel quantization,
and g = 128 for group-wise quantization). Hereafter, we refer to Eq. 3, Eq. 4, and Eq. 5 as
“FlexRound+LFQ”, “OmniQuant+LFQ”, and “Block-AP+LFQ”.

Three points are worth highlighting here. First, since LFQ integrates the LM Head and cross-
entropy into the loss objective of standard block-wise PTQ, it is agnostic to the underlying block-
wise method and thus can be applied seamlessly. Second, because LFQ optimizes only the final
Transformer block by minimizing cross-entropy at the logit level, it is memory-efficient and thus can
be run on a single GPU like other block-wise PTQ techniques. Third, because LFQ modifies only
the optimization objective and leaves the quantization scheme unchanged, LFQ-quantized LLMs
remain fully compatible with existing packing/unpacking kernels (e.g., Frantar et al. (2023); Lin
et al. (2024); Park et al. (2024)) and can therefore be accelerated without additional effort.

3.2 EFFECT OF LFQ ON TOKEN GENERATION

To illustrate that cross-entropy better reproduces the FP model’s token predictions than MSE, we
revisit the example 1 in Section 2. The corresponding cross-entropy values are given as follows:

−
L,V∑
i,j=1

softmax(XWFPWHead)i,j log(XWqWHead)i,j =

{
(i) − 0.6 log(0.4)− 0.4 log(0.6) ≈ 0.75

(ii) − 0.9 log(0.6)− 0.1 log(0.4) ≈ 0.55

In contrast to the MSE—whose value in case (i) is smaller than in case (ii), even though case (i) pre-
dicts the opposite token while case (ii) predicts the same token as the FP model—the cross-entropy
assigns a smaller value to case (ii) than to case (i). This observation highlights that minimizing the
cross-entropy loss at the logit level is essential for guiding low-bit quantized LLMs to align with the
FP model’s token predictions.

To make this trend concrete, Figure 1 presents a reasoning trajectory generated by L1-Qwen-7B-
Max for Problem 28 of AIME 2024 and compares token-level probability distributions for the FP

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Top-1 Token Flipping (b) Mis-calibrated Aha Token

KLMSE

0.070.09Block
PTQ

0.010.18LFQ
(ours)

0.00

0.25

0.50

0.75

"where" "here" ":"

Token Probability

FP BlockPTQ LFQ(ours)

0.00

0.25

0.50

"Wait" "But" " \n\n"

Token Probability

FP BlockPTQ LFQ(ours)

KLMSE

0.070.13Block
PTQ

0.030.28LFQ
(ours)

Let N be the greatest four-digit positive integer with the property that whenever one of its digits is changed to 1, the resulting number is
divisible by 7. Let Q and R be the quotient and remainder, respectively, when N is divided by 1000. Find $Q+R$.

Generation Trajectory

Problem (AIME 2024)

<think>\nOkay, … problem … So, 1000 + (N - 1000A) ≡ 0 mod 7. “Wait”···“where”

“here”

···

FP Top-k FP Top-k
···

WRONG
ANSWER

FP

BlockPTQ top-1

LFQ top-1
BlockPTQ

Discrepancy

Figure 1: Reasoning trajectory of L1-Qwen-7B-Max under greedy decoding on AIME 2024 Prob-
lem 28. We compare token-level probability distributions for the FP baseline, block-wise PTQ
(“blockPTQ” in the figure), and LFQ (ours) at two instants: (a) the first step where block-wise PTQ’s
top-1 token diverges from the FP baseline, and (b) the first “aha” moment guiding the reasoning onto
the correct path. In (a), block-wise PTQ’s top-1 ("here") corresponds to the FP baseline’s top-2,
yielding an incorrect answer, whereas LFQ’s top-1 ("where") matches the FP baseline’s top-1 and
thus reaches the correct answer. In (b), block-wise PTQ is overconfident in ("Wait") and under-
confident in the subsequent “aha” token, ("But"), while LFQ assigns probabilities to these “aha”
tokens that remain closer to the FP baseline.

baseline, block-wise PTQ, and LFQ at two key points: (a) the first instance where block-wise PTQ’s
top-1 token diverges from the FP baseline, and (b) the first “aha” moment that steers the reasoning
onto the correct path. In Figure 1 (a), although block-wise PTQ attains a smaller MSE than LFQ,
thanks to minimizing cross-entropy at the logit level, LFQ yields a smaller KL divergence from
the FP distribution. Consequently, LFQ reproduces the FP model’s top-1 token prediction (i.e.,
"where") and follows the correct trajectory to the right answer, whereas block-wise PTQ diverges
and thus fails to solve the problem.

Moreover, because the occurrence of an “aha” moment is pivotal for re-evaluating and correcting an
ongoing reasoning trajectory, the extent to which low-bit quantized models track the FP baseline on
such “aha” tokens—e.g., "Wait" and "But"—is a key determinant of their accuracy on complex
reasoning benchmarks. As shown in Figure 1 (b), even when the top-1 token for all three models is
"Wait", it is noteworthy that block-wise PTQ is overconfident in "Wait", leaving it underconfi-
dent in another “aha” token like "But". By contrast, LFQ allocates these probabilities closer to the
FP baseline, resulting in not only a smaller KL divergence but also higher accuracy than block-wise
PTQ as reported in Table 2.

4 EXPERIMENT

In this section, we verify the effectiveness of LFQ on Qwen2.5-7B-Instruct and Qwen2.5-14B-
Instruct (Qwen et al., 2025) under 4-bit per-channel and 3-bit group-wise weight-only quantization
settings on IFEval and MATH500 (Lightman et al., 2023). We also evaluate LFQ on large rea-
soning models—L1-Qwen-7B-Max (Aggarwal & Welleck, 2025) and DeepSeek-R1-Distill-Llama-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance of Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct with LFQ under block-
wise PTQ (FlexRound, OmniQuant, and Block-AP). Within each PTQ method, the best accuracy is
shown in bold. “W4” and “W3g128” denote 4-bit per-channel weight-only quantization and 3-bit
group-wise quantization (group size 128), respectively. LFQ yields consistent gains in generation
quality across block-wise PTQ, while preserving the language modeling and understanding perfor-
mance of existing methods.

Language Modeling/Understanding Text Generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

MATH500 (↑)
(greedy)

Qwen2.5-7B-Instruct BF16 6.85 73.49 70.79 74.2

FlexRound W4 7.23 72.50 69.50 72.6
FlexRound+LFQ (Ours) W4 7.21 72.48 71.35 73.4
FlexRound W3g128 7.63 70.13 66.54 65.6
FlexRound+LFQ (Ours) W3g128 7.58 70.26 67.84 68.0

OmniQuant W4 7.73 71.00 68.21 69.8
OmniQuant+LFQ (Ours) W4 7.53 70.99 69.50 71.6
OmniQuant W3g128 8.08 68.43 68.21 63.6
OmniQuant+LFQ (Ours) W3g128 7.91 68.39 68.58 64.4

Block-AP W4 7.87 69.60 66.73 68.0
Block-AP+LFQ (Ours) W4 7.77 69.94 68.02 69.0
Block-AP W3g128 8.70 67.09 61.00 60.0
Block-AP+LFQ (Ours) W3g128 8.18 67.06 63.77 61.8

Qwen2.5-14B-Instruct BF16 5.24 78.82 79.85 78.4

FlexRound W4 5.67 77.33 77.82 76.4
FlexRound+LFQ (Ours) W4 5.62 77.31 78.00 77.2
FlexRound W3g128 6.15 75.84 75.05 69.6
FlexRound+LFQ (Ours) W3g128 6.11 75.85 77.08 71.6

OmniQuant W4 5.93 76.64 73.94 73.4
OmniQuant+LFQ (Ours) W4 5.89 76.66 75.23 75.2
OmniQuant W3g128 6.43 75.62 74.31 70.4
OmniQuant+LFQ (Ours) W3g128 6.36 75.73 75.42 69.8

Block-AP W4 6.23 76.84 70.79 71.6
Block-AP+LFQ (Ours) W4 6.17 76.86 72.27 72.4
Block-AP W3g128 6.81 74.58 71.72 67.0
Block-AP+LFQ (Ours) W3g128 6.69 74.58 72.46 68.0

8B (DeepSeek-AI et al., 2025)—using MATH500 and AIME 2024 (AIME, 2024) (AIME′24 for
short). Finally, we empirically (i) demonstrate the importance of incorporating the LM head and
utilizing cross-entropy in the objective, (ii) validate that quantizing only the final Transformer block
via logit-level cross-entropy is sufficient (i.e., it is not a must to quantize multiple final blocks with
cross-entropy), and (iii) the comparison of LFQ against LoRA-based quantization error compensa-
tion (LQEC). These findings are established on Llama 3.1 8B Instruct (Grattafiori et al., 2024) using
IFEval (Zhou et al., 2023) and GSM8K (Cobbe et al., 2021) under 4-bit per-channel weight-only
quantization. Unless otherwise noted, we use group-wise quantization with a group size of 128.

We randomly select calibration sequences of length 2048 tokens from the C4 training set (Raffel
et al., 2020) for all experiments. We do so to emphasize that LFQ can preserve performance com-
parable to FP baselines on language modeling (e.g., WikiText-2 (Merity et al., 2016)) and under-
standing (MMLU (Hendrycks et al., 2021)), while consistently improving the generation quality of
block-wise PTQ methods. We report perplexity on WikiText2 using a sequence length of 4096, five-
shot accuracy on MMLU, prompt-level strict-accuracy on IFEval (following Qwen et al. (2025)),
8-shot accuracy on GSM8K, and zero-shot accuracy on MATH500 and AIME′24. For generation
tasks, we use greedy decoding to ensure a fair comparison between quantized models with and with-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance of L1-Max-Qwen-7B and DeepSeek-R1-Distill-Llama-8B with LFQ under
block-wise PTQ (FlexRound). Within the PTQ method, the best accuracy is shown in bold. “W4”
and “W3g128” denote 4-bit per-channel weight-only quantization and 3-bit group-wise quantization
(group size 128), respectively. LFQ yields consistent gains in generation quality across block-wise
PTQ, while preserving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method # Bits WikiText2 (↓) MMLU (↑) MATH500 (↑)
(greedy)

AIME′24 (↑)
(greedy)

AIME′24 (↑)
(pass@8)

L1-Qwen-7B-Max BF16 29.57 54.58 88.0 46.67 55.30

FlexRound W4 31.20 53.43 86.0 30.00 51.71
FlexRound+LFQ (Ours) W4 30.44 53.10 87.6 43.33 55.09
FlexRound W3g128 31.45 52.24 85.2 23.33 41.85
FlexRound+LFQ (Ours) W3g128 29.46 52.53 86.4 30.00 45.18

DeepSeek-R1-Distill-Llama-8B BF16 11.85 55.69 70.4 30.00 30.49

FlexRound W4 12.61 54.57 68.2 16.67 27.71
FlexRound+LFQ (Ours) W4 12.46 54.21 69.8 26.67 30.07
FlexRound W3g128 13.80 53.61 62.8 10.00 15.98
FlexRound+LFQ (Ours) W3g128 13.24 54.03 67.2 13.33 16.97

out LFQ. For AIME′24, to estimate pass@8 as well, we additionally use temperature 0.6 and top-p
0.95, and sample 16 responses per question with a maximum generation length of 4096 tokens.

4.1 QWEN2.5 ON IFEVAL AND MATH500

To assess whether LFQ can improve low-bit instruction-tuned LLMs on both natural language in-
struction following and challenging math word problems, we evaluate LFQ for Qwen2.5-7B-Instruct
and Qwen2.5-14B-Instruct on IFEval and MATH500 using greedy decoding. Table 1 shows that,
across different quantization configurations, LFQ consistently improves the generation quality of
instruction-tuned models quantized by FlexRound, OmniQuant, and Block-AP on both IFEval and
MATH500. Consequently, FlexRound+LFQ narrows the gap between 4-bit per-channel models and
their FP baselines to within 1 percentage point (pp) for Qwen2.5-7B-Instruct and within 2 pp for
Qwen2.5-14B-Instruct across all benchmarks considered (MMLU, IFEval, and MATH500).

4.2 LARGE REASONING MODELS ON MATH500 AND AIME 2024

To test whether LFQ can also perform well for large reasoning models that produce long chains
of thought by scaling test-time compute, we apply LFQ to L1-Qwen-7B-Max and DeepSeek-R1-
Distill-Llama-8B on MATH500 and AIME′24. Given that Table 1 identifies FlexRound+LFQ as
the most effective among FlexRound+LFQ, OmniQuant+LFQ, and Block-AP+LFQ, we focus on
FlexRound+LFQ here. Table 2 shows that standard block-wise PTQ suffers substantial degradation
under greedy decoding on AIME′24. In contrast, LFQ nearly matches the FP baseline on AIME′24,
indicating that it restores alignment with the FP model’s top-1 token predictions. Furthermore, LFQ
raises pass@8 to within 0.5 percentage points of the FP baselines. Taken together, these results
suggest that LFQ effectively aligns the token-level probabilities of low-bit quantized LLMs with
those of their FP counterparts.

4.3 ABLATION STUDY

Importance of LM Head and cross-entropy. To assess the impact of incorporating the LM head
and using cross-entropy in the loss objective when quantizing the final block, we incrementally
augment existing block-wise PTQ methods (FlexRound, OmniQuant, and Block-AP) with these
components. As shown in Table 3, adding the LM head alone generally improves accuracy on text
generation benchmarks (IFEval and GSM8K) as well as on language modeling and understanding.
With the LM head in place, employing cross-entropy rather than mean squared error (MSE) yields
further gains on text generation tasks. We therefore conclude that leveraging both the LM head and
cross-entropy, as in Eq. 2, is essential for boosting the generation quality of low-bit quantized LLMs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of Llama 3.1 8B Instruct when block-wise PTQ methods (FlexRound, Om-
niQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii)
using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within
each block-wise PTQ method, the best accuracy is shown in bold and the second-best is underlined.
Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and
cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while pre-
serving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method LM-
Head

Cross-
Entropy WikiText2 (↓) MMLU (↑) IFEval (↑)

(greedy)
GSM8K (↑)

(greedy)

Llama 3.1 8B Instruct N/A N/A 6.75 68.34 74.49 84.99

FlexRound X X 7.06 66.19 70.24 81.35

FlexRound+LFQ O X 7.08 66.75 71.53 81.58
O O 7.06 66.97 72.09 81.80

OmniQuant X X 7.49 64.87 70.61 78.17

OmniQuant+LFQ O X 7.48 64.77 71.35 78.32
O O 7.47 65.48 71.35 79.76

Block-AP X X 7.76 63.24 68.58 73.84

Block-AP+LFQ O X 7.74 63.54 68.39 74.00
O O 7.69 63.77 68.76 74.45

Sufficiency of quantizing solely the final block via logit-level cross-entropy. We ask whether
applying the logit-level cross-entropy objective to only the final block is sufficient. To test this, we
vary the number of topmost Transformer blocks optimized with LFQ (denoted as k) while keeping
the remaining blocks quantized via standard MSE reconstruction. For example, when k = 2, we
apply LFQ sequentially to the penultimate and final blocks. As shown in Figure 2, the average score
of IFEval and GSM8K remains almost constant even as k increases; k = 2 occasionally yields a
marginal gain on that average but at the cost of lower MMLU accuracy. These results indicate that
applying LFQ to the final block alone is sufficient and offers the best overall trade-off.

Comparison of LFQ against LQEC. As LQEC has emerged as a promising approach for miti-
gating memory bottleneck while recovering task accuracy, we compare LFQ with RILQ (Lee et al.,
2025a), a state-of-the-art LQEC method. For a fair comparison, we use only the C4 training set as
calibration data to initialize LoRA adapters on low-bit quantized models produced by FlexRound,
OmniQuant, and Block-AP. Table 4 reports the results. RILQ generally outperforms LFQ on lan-
guage modeling (WikiText2) and language understanding (MMLU) due to its use of LoRA adapters.
Nevertheless, LFQ consistently surpasses RILQ on text generation across all settings. We hypothe-
size that this stems from the fact that LQEC methods—including RILQ—optimizes MSE, an objec-
tive misaligned with matching the FP model’s token-level distribution (as elucidated in Section 2).

5 RELATED WORK

Quantization study is typically classified into quantization-aware training (QAT) and post-training
quantization (PTQ). As it is well known that QAT can match full-precision (FP) accuracy even
under sub-4-bit quantization configurations, it has been applied across domains—from computer
vision models (Esser et al., 2020; Lee et al., 2021) to natural language models (Liu et al., 2023;
2025). However, Liu et al. (2025) shows that QAT requires fine-tuning large language models
(LLMs) on billions of tokens at least, which is prohibitively memory-intensive and time-consuming.
Consequently, research attention has continued to focus more on advancing PTQ.

PTQ is commonly divided into layer-wise and block-wise methods. Layer-wise PTQ (e.g., Frantar
et al. (2023); Lin et al. (2024)) can be run fast on a single GPU and typically incurs marginal perfor-
mance degradation on relatively easy downstream tasks (e.g., commonsense reasoning). However,
as these techniques do not involve gradient-based optimization, unless task-specific calibration data

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Performance of Llama 3.1 8B Instruct as the number of topmost Transformer blocks
optimized with LFQ increases from 1 (ours) to 3, with the remaining blocks quantized via stan-
dard MSE reconstruction; shown for FlexRound (left), OmniQuant (center), and Block-AP (right).
In each subfigure, the left y-axis shows MMLU accuracy, while the right y-axis reports the IFE-
val+GSM8K average. All results use 4-bit per-channel weight-only quantization. The average of
IFEval and GSM8K (expressed as “(IFEval+GSM8K)/2”) stays roughly unchanged, regardless of
the number of topmost Transformer blocks optimized with LFQ.

Table 4: Comparison of LFQ (ours) against RILQ, a state-of-the-art LoRA-based quantization error
compensation method, on Llama 3.1 8B Instruct using block-wise PTQ (FlexRound, OmniQuant,
and Block-AP). Within each PTQ method, the best accuracy is shown in bold and the second best is
underlined. “W4” denotes 4-bit per-channel weight-only quantization.

Language modeling/understanding Text generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

GSM8K (↑)
(greedy)

Llama 3.1 8B Instruct BF16 6.75 68.34 74.49 84.99

FlexRound W4 7.06 66.19 70.24 81.35
FlexRound+RILQ W4 6.95 66.86 71.90 80.52
FlexRound+LFQ W4 7.06 66.97 72.09 81.80

OmniQuant W4 7.49 64.87 70.61 78.17
OmniQuant+RILQ W4 7.24 66.07 71.35 78.85
OmniQuant+LFQ W4 7.47 65.48 71.35 79.76

Block-AP W4 7.76 63.24 68.58 73.84
Block-AP+RILQ W4 7.43 64.62 68.58 73.92
Block-AP+LFQ W4 7.69 63.77 68.76 74.45

is utilized, they can suffer substantial accuracy degradation on more challenging benchmarks, par-
ticularly text generation (Li et al., 2025). On the other hand, block-wise PTQ approaches (Lee et al.,
2023; Shao et al., 2024; Cheng et al., 2024; Lee et al., 2025b; Chen et al., 2025) not only account
for cross-layer dependencies within a block but also optimize quantization parameters via gradient-
based iterative updates, and therefore often outperform layer-wise PTQ. Notwithstanding, we find
that existing block-wise PTQ can still exhibit non-negligible degradation in generation quality.

6 CONCLUSION

We show that block-wise PTQ can degrade generation quality due to (i) omitting the LM head from
block-wise optimization and (ii) relying on the MSE objective. To address this, we introduce Logit-
aware Final-block Quantization (LFQ), which quantizes the final Transformer block by aligning the
quantized model’s logits to the FP model’s via the cross-entropy loss. Across diverse model families
and generation tasks, LFQ consistently improves generation quality over existing block-wise PTQ
techniques, while preserving performance on language modeling and understanding.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

AIME. Aime problems and solutions, 2024, 2024. URL https://artofproblemsolving.
com/wiki/index.php/AIME_Problems_and_Solutions.

Sebastian Bruch. An alternative cross entropy loss for learning-to-rank. In Proceedings of the
Web Conference 2021, WWW ’21, pp. 118–126, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3449794. URL https:
//doi.org/10.1145/3442381.3449794.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
EfficientQAT: Efficient quantization-aware training for large language models. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 10081–10100, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.498. URL https://aclanthology.
org/2025.acl-long.498/.

Wenhua Cheng, Weiwei Zhang, Haihao Shen, Yiyang Cai, Xin He, Lv Kaokao, and Yi Liu. Op-
timize weight rounding via signed gradient descent for the quantization of LLMs. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 11332–11350, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.662. URL
https://aclanthology.org/2024.findings-emnlp.662/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

10

https://arxiv.org/abs/2503.04697
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://doi.org/10.1145/3442381.3449794
https://doi.org/10.1145/3442381.3449794
https://aclanthology.org/2025.acl-long.498/
https://aclanthology.org/2025.acl-long.498/
https://aclanthology.org/2024.findings-emnlp.662/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S. Modha. Learned step size quantization, 2020. URL https://arxiv.org/abs/
1902.08153.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/
abs/2210.17323.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,

11

https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Geonho Lee, Janghwan Lee, Sukjin Hong, Minsoo Kim, Euijai Ahn, Du-Seong Chang, and Jung-
wook Choi. Rilq: Rank-insensitive lora-based quantization error compensation for boosting 2-bit
large language model accuracy, 2025a. URL https://arxiv.org/abs/2412.01129.

Jung Hyun Lee, Jihun Yun, Sung Ju Hwang, and Eunho Yang. Cluster-promoting quantization with
bit-drop for minimizing network quantization loss, 2021. URL https://arxiv.org/abs/
2109.02100.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. FlexRound: Learnable round-
ing based on element-wise division for post-training quantization. In Andreas Krause, Emma

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.01129
https://arxiv.org/abs/2109.02100
https://arxiv.org/abs/2109.02100

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 18913–18939. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/lee23h.html.

Jung Hyun Lee, Jeonghoon Kim, June Yong Yang, Se Jung Kwon, Eunho Yang, Kang Min
Yoo, and Dongsoo Lee. LRQ: Optimizing post-training quantization for large language mod-
els by learning low-rank weight-scaling matrices. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 7708–7743, Albuquerque, New Mexico, April 2025b. Association for Computa-
tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.393. URL
https://aclanthology.org/2025.naacl-long.393/.

Zhen Li, Yupeng Su, Runming Yang, Congkai Xie, Zheng Wang, Zhongwei Xie, Ngai Wong, and
Hongxia Yang. Quantization meets reasoning: Exploring llm low-bit quantization degradation for
mathematical reasoning, 2025. URL https://arxiv.org/abs/2501.03035.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models, 2023. URL https://arxiv.org/abs/2305.17888.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman
Krishnamoorthi, Tijmen Blankevoort, and Vikas Chandra. Paretoq: Scaling laws in extremely
low-bit llm quantization, 2025. URL https://arxiv.org/abs/2502.02631.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung
Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix multi-
plication based on luts for efficient inference in large-scale generative language models. In ICLR,
2024. URL https://openreview.net/forum?id=gLARhFLE0F.

Seungcheol Park, Jeongin Bae, Beomseok Kwon, Minjun Kim, Byeongwook Kim, Se Jung Kwon,
U Kang, and Dongsoo Lee. Unifying uniform and binary-coding quantization for accurate com-
pression of large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 28468–28488, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.1382. URL https://aclanthology.org/2025.acl-long.1382/.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

13

https://proceedings.mlr.press/v202/lee23h.html
https://aclanthology.org/2025.naacl-long.393/
https://arxiv.org/abs/2501.03035
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2502.02631
https://openreview.net/forum?id=gLARhFLE0F
https://aclanthology.org/2025.acl-long.1382/
https://arxiv.org/abs/2412.15115

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=8Wuvhh0LYW.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025. URL https://arxiv.org/abs/2507.20534.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

14

https://openreview.net/forum?id=8Wuvhh0LYW
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL ABLATION STUDIES OF LFQ FOR QWEN2.5-7B-INSTRUCT
AND LLAMA 3.2 3B INSTRUCT

Table 5: Performance of Qwen2.5-7B-Instruct when block-wise PTQ methods (FlexRound, Om-
niQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii)
using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within
each block-wise PTQ method, the best accuracy is shown in bold and the second-best is underlined.
Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and
cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while pre-
serving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method LM-
Head

Cross-
Entropy WikiText2 (↓) MMLU (↑) IFEval (↑)

(greedy)
MATH500 (↑)

(greedy)

Qwen2.5-7B-Instruct N/A N/A 6.85 73.49 70.79 74.2

FlexRound X X 7.23 72.50 69.50 72.6

FlexRound+LFQ O X 7.26 72.48 71.35 71.4
O O 7.21 72.48 71.35 73.4

OmniQuant X X 7.73 71.00 68.21 69.8

OmniQuant+LFQ O X 7.29 71.02 68.95 70.6
O O 7.53 70.99 69.50 71.6

Block-AP X X 7.87 69.60 66.73 68.0

Block-AP+LFQ O X 7.92 69.75 67.28 68.4
O O 7.77 69.94 68.02 69.0

Table 6: Performance of Llama 3.2 3B Instruct when block-wise PTQ methods (FlexRound, Om-
niQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii)
using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within
each block-wise PTQ method, the best accuracy is shown in bold and the second-best is underlined.
Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and
cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while pre-
serving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method LM-
Head

Cross-
Entropy WikiText2 (↓) MMLU (↑) IFEval (↑)

(greedy)
GSM8K (↑)

(greedy)

Llama 3.2 3B Instruct N/A N/A 10.14 61.34 71.72 77.48

FlexRound X X 10.72 59.93 65.80 72.40

FlexRound+LFQ O X 10.73 59.66 65.99 73.09
O O 10.72 59.84 67.28 73.01

OmniQuant X X 11.23 57.78 64.33 71.42

OmniQuant+LFQ O X 11.17 58.80 64.33 71.65
O O 11.16 58.94 66.54 71.49

Block-AP X X 11.61 56.47 62.29 66.11

Block-AP+LFQ O X 11.63 56.44 62.66 66.34
O O 11.61 56.38 63.77 66.41

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL SETTING OF LFQ

We sweep the LFQ learning rate as follows: {5e − 4, 1e − 3} with FlexRound; {1.5e − 3, 2e −
3, 5e − 3} with OmniQuant; and {1e − 5, 2e − 5, 3e − 5} with Block-AP. Across all block-wise
PTQ methods, calibration samples are drawn from C4: 800 for Llama-3.2-3B-Instruct; 600 for
Qwen2.5-7B-Instruct and L1-Max-Qwen-7B; 550 for Llama-3.1-8B-Instruct; 512 for DeepSeek-
R1-Distill-Llama-8B; and 400 for Qwen2.5-14B-Instruct. For the remaining hyperparameters, we
follow the experimental settings recommended in prior work (Lee et al., 2023; Shao et al., 2024;
Chen et al., 2025).

On a single A100 GPU, the LFQ process takes approximately 1.5 hours for Qwen2.5-7B-Instruct,
L1-Qwen-7B-Max, DeepSeek-R1-Distill-Llama-8B, and Llama 3.1 8B Instruct, and about 2 hours
for Qwen2.5-14B-Instruct.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C FURTHER EVALUATION OF LFQ FOR LARGE REASONING MODELS
UNDER STOCHASTIC DECODING

Table 7: Avg@8 and standard deviation on MATH500 for L1-Qwen-7B-Max and DeepSeek-R1-
Distill-Llama-8B with LFQ under block-wise PTQ (FlexRound). Within the PTQ method, the best
accuracy is shown in bold. “W4” and “W3g128” denote 4-bit per-channel weight-only quantization
and 3-bit group-wise quantization (group size 128), respectively. We use a temperature of 0.6 and a
top-p of 0.95.

Method # Bits MATH500 (↑)
(Avg@8)

L1-Qwen-7B-Max BF16 89.05± 0.74

FlexRound W4 87.45± 0.75
FlexRound+LFQ (Ours) W4 88.40± 0.86
FlexRound W3g128 85.35± 0.64
FlexRound+LFQ (Ours) W3g128 86.50± 0.54

DeepSeek-R1-Distill-Llama-8B BF16 72.53± 1.16

FlexRound W4 70.10± 1.37
FlexRound+LFQ (Ours) W4 71.95± 1.20
FlexRound W3g128 67.00± 0.97
FlexRound+LFQ (Ours) W3g128 69.25± 0.85

To ensure a more robust evaluation of LFQ, we additionally measure Avg@8 on MATH500 for L1-
Qwen-7B-Max and DeepSeek-R1-Distill-Llama-8B with a temperature of 0.6 and a top-p of 0.95.

Table 7 shows that LFQ also improves the Avg@K score on MATH across different large reasoning
models, demonstrating that LFQ is effective under both greedy and stochastic decoding.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D IMPORTANCE OF APPLYING LFQ TO THE LAST BLOCK

To emphasize that whether LFQ is applied to the final block is far more important than how many
blocks are optimized with LFQ, we conduct the following experiments for Llama 3.1 8B Instruct.
When k = 2, we apply LFQ to the second-to-last block, while for the last block we only minimize
∥XWFP −XWq∥2F without using either the LM head or cross-entropy (denoted as “k = 2 except
the last block”). When k = 3, we apply LFQ sequentially to the third- and second-to-last blocks,
and again, for the last block only, we minimize ∥XWFP − XWq∥2F without employing the LM
head or cross-entropy (denoted as “k = 3 except the last block”). We then compare these settings
with the original k = 2 and k = 3 configurations in Figure 2.

Table 8: Comparison of k = 2 and k = 3 except the last block with the original k = 2 and
k = 3 configurations in Figure 2. “LFQ@Last” indicates whether LFQ is applied to the last block.
Similarly, “LFQ@Last-1” and “LFQ@Last-2” indicate whether LFQ is applied to the second-to-last
and third-to-last blocks, respectively.

Method LFQ@Last LFQ@Last-1 LFQ@Last-2 MMLU (↑) (IFEval+GSM8K)/2 (↑)

Llama 3.1 8B Instruct N/A N/A N/A 68.34 79.74

FlexRound X X X 66.19 75.80
+ k = 2 except the last block X O X 66.97 76.17
+ k = 2 (Figure 2) O O X 66.99 77.13
+ k = 3 except the last block X O O 66.98 76.15
+ k = 3 (Figure 2) O O O 67.03 76.78

OmniQuant X X X 64.87 74.39
+ k = 2 except the last block X O X 65.29 74.47
+ k = 2 (Figure 2) O O X 65.40 75.32
+ k = 3 except the last block X O O 65.29 74.65
+ k = 3 (Figure 2) O O O 65.25 75.30

Block-AP X X X 63.24 71.21
+ k = 2 except the last block X O X 63.78 71.30
+ k = 2 (Figure 2) O O X 63.57 71.76
+ k = 3 except the last block X O O 63.81 71.24
+ k = 3 (Figure 2) O O O 63.64 71.52

As shown in Table 8, the MMLU score remains nearly unchanged regardless of whether LFQ is
applied to the final block. In contrast, when LFQ is not applied to the final block, the average of
IFEval and GSM8K (i.e., “(IFEval+GSM8K)/2”) consistently drops, approaching the performance
level of each underlying PTQ technique. These results indicate that, for improving the generation
quality of low-bit quantized LLMs, it is far more critical to apply LFQ to the final block than to
simply increase the number of blocks optimized with LFQ.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E COMBINATION OF LFQ WITH RILQ

Table 9: Comparison of LFQ (ours) against RILQ, a state-of-the-art LoRA-based quantization error
compensation method, on Llama 3.1 8B Instruct using block-wise PTQ (FlexRound, OmniQuant,
and Block-AP). Within each PTQ method, the best accuracy is shown in bold and the second best is
underlined. “W4” denotes 4-bit per-channel weight-only quantization.

Language modeling/understanding Text generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

GSM8K (↑)
(greedy)

Llama 3.1 8B Instruct BF16 6.75 68.34 74.49 84.99

FlexRound W4 7.06 66.19 70.24 81.35
FlexRound+RILQ W4 6.95 66.86 71.90 80.52
FlexRound+LFQ W4 7.06 66.97 72.09 81.80
FlexRound+LFQ+RILQ W4 6.98 66.96 72.46 81.43

OmniQuant W4 7.49 64.87 70.61 78.17
OmniQuant+RILQ W4 7.24 66.07 71.35 78.85
OmniQuant+LFQ W4 7.47 65.48 71.35 79.76
OmniQuant+LFQ+RILQ W4 7.23 65.82 71.35 79.45

Block-AP W4 7.76 63.24 68.58 73.84
Block-AP+RILQ W4 7.43 64.62 68.58 73.92
Block-AP+LFQ W4 7.69 63.77 68.76 74.45
Block-AP+LFQ+RILQ W4 7.43 64.53 68.58 74.22

LFQ underperforms RILQ on WikiText2 perplexity (language modeling) and MMLU accuracy (lan-
guage understanding), while outperforming RILQ on IFEval and GSM8K (text generation), as
shown in Table 4. However, we emphasize that LFQ (quantization objective) and RILQ (LoRA
addition) address orthogonal aspects of the problem rather than competing with each other. Because
LFQ can be readily combined with RILQ in a complementary manner, we therefore explore their
joint application to leverage the strengths of both methods.

LFQ + RILQ performs comparably to RILQ on WikiText2 perplexity and MMLU accuracy, while
achieving results close to LFQ on IFEval and GSM8K. This indicates that LFQ + RILQ can effec-
tively inherit the strengths of both techniques.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F COMPARISON OF BLOCK-WISE PTQ WITH AWQ

Table 10: Comparison of block-wise PTQ (FlexRound, OmniQuant, and Block-AP) with AWQ, one
of the mainstream layer-wise PTQ techniques. For each task, the worst accuracy is shown in red.
“W4” denotes 4-bit per-channel weight-only quantization.

Language modeling/understanding Text generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

GSM8K (↑)
(greedy)

Llama 3.1 8B Instruct BF16 6.75 68.34 74.49 84.99

AWQ W4 7.96 63.57 67.84 73.54
FlexRound W4 7.06 66.19 70.24 81.35
OmniQuant W4 7.49 64.87 70.61 78.17
Block-AP W4 7.76 63.24 68.58 73.84

As demonstrated by several existing block-wise PTQ studies (Shao et al., 2024; Cheng et al., 2024;
Lee et al., 2025b), block-wise PTQ typically outperforms layer-wise PTQ methods such as AWQ
across a range of tasks, as shown in Table 10.

20

	Introduction
	Problem Statement
	Method
	Logit-aware Final-block Quantization (LFQ)
	Effect of LFQ on Token Generation

	Experiment
	Qwen2.5 on IFEval and MATH500
	Large Reasoning Models on MATH500 and AIME 2024
	Ablation Study

	Related Work
	Conclusion
	blueAdditional Ablation Studies of LFQ for Qwen2.5-7B-Instruct and Llama 3.2 3B Instruct
	Experimental Setting of LFQ
	Further Evaluation of LFQ for Large Reasoning Models under Stochastic Decoding
	Importance of Applying LFQ to the Last Block
	Combination of LFQ with RILQ
	Comparison of Block-wise PTQ with AWQ

