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ABSTRACT

As large language models (LLMs) continue to scale, low-bit weight-only post-
training quantization (PTQ) offers a practical solution to their memory-efficient
deployment. Although block-wise PTQ is capable of matching the full-precision
(FP) baseline on basic language modeling and understanding, its quality is de-
graded for generative tasks—especially at longer responses and extended chains
of thought, which is critical in boosting task accuracy. We attribute this short-
fall to two factors: (i) the omission of the unembedding layer (the LM head) in
block-wise optimization and (ii) the reliance on the mean squared error (MSE)
objective. Both factors cause the token probability distribution of the quantized
model to misalign with that of the FP model, yielding notable accuracy drops on
text generation benchmarks. To rectify the discrepancy, we introduce Logit-aware
Final-block Quantization (LFQ), a simple yet effective enhancement to block-wise
PTQ that quantizes the final Transformer block by minimizing the cross-entropy
between the logits of the FP model and those of its quantized counterpart. By
aligning token probabilities at the logit level in the final block, LFQ consistently
improves the accuracy of complex generation tasks over state-of-the-art block-
wise PTQ across diverse model families and text generation tasks, while main-
taining parity with FP baselines on language modeling and understanding.

1 INTRODUCTION

The evident success of large language models (LLMs) (Grattafiori et al., 2024; Qwen et al., 2025;
Team et al., 2025) based on the decoder-only transformer (Vaswani et al., 2023) is largely attributed
to their ever-increasing number of parameters (Kaplan et al., 2020). However, the proportionally
increasing memory footprint of the model significantly impedes the cost-effective deployment of
LLMs. Not only is a large model difficult to fit in commercial devices, but the serving cost of
the model also increases sharply with the model size. To this end, quantization have been widely
adopted to increase the inference efficiency of LLMs by employing lower precision data types.

Recently, weight-only quantization (Frantar et al., 2023; Lin et al., 2024) has emerged as a partic-
ularly attractive methodology due to its high compression ratio and effective preservation of model
quality. By quantizing the LLM weights into low-precision but retaining difficult-to-quantize acti-
vations in full precision (FP), memory pressure is effectively relieved while reducing the accuracy
degradation. Low-bit weight-only quantization is obtained either via quantization-aware training
(QAT) or post-training quantization (PTQ). Although Liu et al. (2025) shows that QAT is capable of
restoring the degraded accuracy even under sub-4-bit settings, the computational resource required
to conduct QAT makes it prohibitively memory-intensive and time-consuming. On the other hand,
layer-wise PTQ can be conducted with a relatively small amount of resources, but suffers from
model quality degradation.

Block-wise PTQ (Lee et al., 2023; Shao et al., 2024; Cheng et al., 2024; Lee et al., 2025b; Chen et al.,
2025; Park et al., 2025) strikes an effective balance between the two ends, achieving effective and
efficient degradation recovery. By minimizing the mean squared error (MSE) between the outputs
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of an FP Transformer block and those of its quantized counterpart, cross-layer dependencies within
each transformer block are accounted for, recovering the performance comparable to FP baselines on
tasks such as language modeling (e.g. WikiText2 (Merity et al., 2016)) and general natural language
understanding (e.g. MMLU (Hendrycks et al., 2021)).

However, relatively little attention has been shed on the degradation of generation quality caused
by the low-bit quantization of LLMs. It is particularly alarming considering the increasing trend
towards generating longer responses for increased task performance. Emerging large reasoning
models (DeepSeek-AI et al., 2025; Aggarwal & Welleck, 2025) scale inference-time compute to
produce extended chains of thought, thereby achieving higher accuracy on complex multi-step rea-
soning tasks. As this trend toward generating more tokens continues in pursuit of increased accuracy,
serving costs rise sharply, necessitating a strong demand for an efficient quantization method that
can maintain the generation quality of FP baselines.

In this work, we uncover that the standard block-wise PTQ approach—while effective at language
modeling and understanding—suffers from the degradation of generation quality. The limitation is
attributed to the fact that block-wise PTQ only preserves the quality of output activations of a trans-
former block, rather than preserving the fidelity of the next-token sampling distribution. Specifically,
(i) existing block-wise PTQ methods completely ignore the unembedding layer (also known as the
LM head), and (ii) rely on the MSE as optimization objective. Even when the MSE between the
outputs of a quantized block and its FP counterpart is minimized, the actual probabilities assigned to
plausible tokens can be perturbed, producing substantial shifts in distribution. Such misalignment is
less observable on natural language understanding tasks, which does not involve autoregressive gen-
eration, but becomes pronounced in long-form generation as compounding probability distortions
steer the generation trajectory away from the FP baseline.

Motivated by the observations, we propose Logit-aware Final-block Quantization (LFQ), which en-
ables low-bit quantized LLMs to achieve performance close to FP baselines on text generation tasks
such as IFEval (Zhou et al., 2023), GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023),
and AIME (AIME, 2024). Unlike standard block-wise PTQ, LFQ quantizes the final Transformer
block by minimizing the cross-entropy loss between the logits of the FP model and those of its quan-
tized counterpart. Specifically, all Transformer blocks from the first to the penultimate are quantized
by minimizing the MSE between the outputs of the FP and quantized blocks, while the final block
is optimized using cross-entropy at the logit level, aligning token probabilities with the FP model
and thereby reproducing the token prediction probabilities of the FP model. Thanks to its simple
design, LFQ can be seamlessly applied to existing block-wise approaches. Moreover, LFQ consis-
tently improves the generation quality of block-wise PTQ methods, while maintaining performance
comparable to FP baselines on language modeling and understanding tasks.

Our contribution is threefold:

• To the best of our knowledge, we are the first to show that the conventional block-wise PTQ
objective—minimizing MSE at intermediate outputs—does not align with reproducing the
token predictions of FP models, thereby inducing non-negligible accuracy gaps between
FP baselines and their low-bit quantized counterparts on text generation tasks.

• We propose Logit-aware Final-block Quantization (LFQ), which quantizes the final Trans-
former block by minimizing the cross-entropy between the logits of the FP model and its
quantized counterpart, consistently improving the generation quality of low-bit quantized
LLMs across existing block-wise PTQ methods.

• We validate LFQ across diverse models—including Llama 3.1, Qwen2.5, and large reason-
ing models (e.g., L1-Max, DeepSeek-R1-Distill)—on text generation benchmarks such as
IFEval, GSM8K, MATH500, and AIME 2024. We further evaluate LFQ on WikiText2 and
MMLU to ensure that it performs comparably to, and in some cases better than, existing
block-wise PTQ techniques on language modeling and understanding tasks as well.

2 PROBLEM STATEMENT

Block-wise PTQ progressively quantizes each Transformer block by minimizing the mean squared
error (MSE), from the first to the final block. In this section, we focus our attention on the final block,
which is distinctive from the other blocks as it is directly attached to the LM head that produces the
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token sampling distribution. Below, we provide a brief overview of notations and assumptions used
for illustrative purposes throughout this paper.

Let WFP,Wq ∈ Rcin×cout denote the full-precision (FP) final Transformer block and its quantized
counterpart, and let X ∈ RL×cin represent the input to the final block, where L is the sequence
length. Let V denote the vocabulary, with size V = |V|. The LM head is then defined as WHead ∈
Rcout×V . For illustrative purposes only, however, we restrict the vocabulary to V = {t1, t2}, so that
WHead ∈ Rcout×2. Unless otherwise specified, we omit the normalization layer between the final
block and the LM head for simplicity.

First, to illustrate that minimizing the MSE between the outputs of a FP final Transformer block and
its quantized counterpart can adversely affect the generation quality of low-bit quantized LLMs, we
consider the case where cout = 2. The final block is quantized by minimizing ∥XWFP −XWq∥2F ,
yielding XWq = [0.7, 0.3] for XWFP = [0.8, 0.2] as an example. However, it is worth noting the
following example:

When WHead =

[
0.5 0.3
0.5 1.0

]
, XWFPWHead = [0.5, 0.44] and XWqWHead = [0.5,0.51] .

This result implies that the FP model predicts token t1, while its quantized counterpart instead
predicts the opposite token, t2. Consequently, even if the final block is quantized to minimize the
MSE between XWFP and XWq , ignoring the LM head during block-wise quantization can lead
the quantized model to produce different token predictions from the FP model.

Next, even when the LM head is considered, minimizing the MSE between the logits of the FP and
quantized models does not guarantee identical token predictions. For example, suppose we obtain

XWqWHead =

{
(i)

[
0.4,0.6

]
for XWFPWHead =

[
0.6, 0.4

]
(ii)

[
0.6, 0.4

]
for XWFPWHead =

[
0.9, 0.1

] . (1)

Then, the corresponding MSE values are given by

∥XWFPWHead −XWqWHead∥2F =

{
(i) (0.6− 0.4)2 + (0.4− 0.6)2 = 0.08

(ii) (0.9− 0.6)2 + (0.1− 0.4)2 = 0.18
.

Although the first case (i) yields the smaller MSE, it leads to the opposite token prediction, whereas
the second (ii)—despite having the larger MSE—produces the same token prediction as the FP
model. This therefore demonstrates that minimizing MSE at the logit level does not necessarily
align with reproducing the FP model’s token predictions. Consistently, Figure 1 (a) illustrates that
standard block-wise PTQ achieves a lower MSE yet predicts a different top-1 token than the FP
model, leading to an incorrect reasoning trajectory.

3 METHOD

As discussed in Section 2, ensuring that low-bit quantized LLMs reproduce the token predictions of
their full-precision (FP) counterparts requires explicitly accounting for the LM head and replacing
mean squared error (MSE) in the optimization objective of block-wise post-training quantization
(PTQ) methods. To this end, we propose Logit-aware Final-block Quantization (LFQ), which quan-
tizes the final Transformer block by minimizing the cross-entropy loss between the logits of the FP
model and those of its quantized counterpart.

3.1 LOGIT-AWARE FINAL-BLOCK QUANTIZATION (LFQ)

Even when the LM head is taken into account, minimizing the MSE does not guarantee that the
quantized model will predict the same token as the FP model. Since minimizing cross-entropy is
equivalent to minimizing KL divergence, and KL divergence is equal to zero if and only if two dis-
tributions are identical, minimizing cross-entropy at the logit level directly encourages the quantized
model’s token-level distribution to match its FP counterpart. Furthermore, as Bruch (2021) demon-
strates, cross-entropy can be used for learning to rank, which would also help the quantized model
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recover the FP model’s top-k token ordering. Accordingly, when optimizing the quantized final
Transformer block Wq , we minimize the cross-entropy between the FP model’s logits and those of
the quantized model to align the block-wise PTQ objective with the FP model’s token generation.
Specifically, while the first through penultimate Transformer blocks are quantized by minimizing
the MSE between the outputs of the FP and quantized blocks, the final block is quantized using the
following optimization objective:

min
Wq

LCE(XWFPWHead,XWqWHead) = −
L∑

i=1

V∑
j=1

softmax(XWFPWHead)i,j log(XWqWHead)i,j ,

(2)
where softmax(Z) =

exp(Zi,j)∑V
k=1 exp(Zi,k)

for Z = [Zi,j ]
L,V
i=1,j=1. We refer to Eq. 2 as “LFQ.”

The specific quantization parameters contained in Wq depend on the chosen block-wise PTQ
method. For example, when instantiating (1) FlexRound (Lee et al., 2023), (2) OmniQuant (Shao
et al., 2024), or (3) Block-AP (Chen et al., 2025), Eq. 2 specializes accordingly as:

(1) FlexRound: Wq = s1

⌊ WFP

s1 ⊙ S2 ⊙ s3

⌉
where s1, s3 ∈ R

cout×
cin
g

>0 , and S2 ∈ Rcout×cin
>0 , (3)

⇒ Eq. 2: min
Wq

LCE(XWFPWHead,XWqWHead) = min
s1,S2,s3

LCE(XWFPWHead,XWqWHead).

(2) OmniQuant: Wq = h
⌊WFP

h

⌉
where h =

γmax(WFP)− βmin(WFP)

2b − 1
with γ,β ∈ R

cout×
cin
g

[0,1] ,

(4)
⇒ Eq. 2: min

Wq

LCE(XWFPWHead,XWqWHead) = min
γ,β

LCE(XWFPWHead,XWqWHead).

(3) Block-AP: Wq = s
⌊WFP

s

⌉
where s ∈ R

cout×
cin
g

>0 , (5)

⇒ Eq. 2: min
Wq

LCE(XWFPWHead,XWqWHead) = min
s,WFP

LCE(XWFPWHead,XWqWHead).

Here, b denotes the low bit-width and g the group size (g = cin for per-channel quantization,
and g = 128 for group-wise quantization). Hereafter, we refer to Eq. 3, Eq. 4, and Eq. 5 as
“FlexRound+LFQ”, “OmniQuant+LFQ”, and “Block-AP+LFQ”.

Three points are worth highlighting here. First, since LFQ integrates the LM Head and cross-
entropy into the loss objective of standard block-wise PTQ, it is agnostic to the underlying block-
wise method and thus can be applied seamlessly. Second, because LFQ optimizes only the final
Transformer block by minimizing cross-entropy at the logit level, it is memory-efficient and thus can
be run on a single GPU like other block-wise PTQ techniques. Third, because LFQ modifies only
the optimization objective and leaves the quantization scheme unchanged, LFQ-quantized LLMs
remain fully compatible with existing packing/unpacking kernels (e.g., Frantar et al. (2023); Lin
et al. (2024); Park et al. (2024)) and can therefore be accelerated without additional effort.

3.2 EFFECT OF LFQ ON TOKEN GENERATION

To illustrate that cross-entropy better reproduces the FP model’s token predictions than MSE, we
revisit the example 1 in Section 2. The corresponding cross-entropy values are given as follows:

−
L,V∑
i,j=1

softmax(XWFPWHead)i,j log(XWqWHead)i,j =

{
(i) − 0.6 log(0.4)− 0.4 log(0.6) ≈ 0.75

(ii) − 0.9 log(0.6)− 0.1 log(0.4) ≈ 0.55

In contrast to the MSE—whose value in case (i) is smaller than in case (ii), even though case (i) pre-
dicts the opposite token while case (ii) predicts the same token as the FP model—the cross-entropy
assigns a smaller value to case (ii) than to case (i). This observation highlights that minimizing the
cross-entropy loss at the logit level is essential for guiding low-bit quantized LLMs to align with the
FP model’s token predictions.

To make this trend concrete, Figure 1 presents a reasoning trajectory generated by L1-Qwen-7B-
Max for Problem 28 of AIME 2024 and compares token-level probability distributions for the FP
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(a) Top-1 Token Flipping (b) Mis-calibrated Aha Token

KLMSE

0.070.09Block
PTQ

0.010.18LFQ
(ours)

0.00

0.25

0.50

0.75

"where" "here" ":"

Token Probability

FP BlockPTQ LFQ(ours)

0.00

0.25

0.50

"Wait" "But" " \n\n"

Token Probability

FP BlockPTQ LFQ(ours)

KLMSE

0.070.13Block
PTQ

0.030.28LFQ
(ours)

Let $N$ be the greatest four-digit positive integer with the property that whenever one of its digits is changed to $1$, the resulting number is 
divisible by $7$. Let $Q$ and $R$ be the quotient and remainder, respectively, when $N$ is divided by $1000$. Find $Q+R$.

Generation Trajectory

Problem (AIME 2024)

<think>\nOkay, … problem … So, 1000 + (N - 1000A) ≡ 0 mod 7. “Wait”···“where”

“here”

···

FP Top-k FP Top-k
···

WRONG
ANSWER

FP

BlockPTQ top-1

LFQ top-1
BlockPTQ

Discrepancy

Figure 1: Reasoning trajectory of L1-Qwen-7B-Max under greedy decoding on AIME 2024 Prob-
lem 28. We compare token-level probability distributions for the FP baseline, block-wise PTQ
(“blockPTQ” in the figure), and LFQ (ours) at two instants: (a) the first step where block-wise PTQ’s
top-1 token diverges from the FP baseline, and (b) the first “aha” moment guiding the reasoning onto
the correct path. In (a), block-wise PTQ’s top-1 ("here") corresponds to the FP baseline’s top-2,
yielding an incorrect answer, whereas LFQ’s top-1 ("where") matches the FP baseline’s top-1 and
thus reaches the correct answer. In (b), block-wise PTQ is overconfident in ("Wait") and under-
confident in the subsequent “aha” token, ("But"), while LFQ assigns probabilities to these “aha”
tokens that remain closer to the FP baseline.

baseline, block-wise PTQ, and LFQ at two key points: (a) the first instance where block-wise PTQ’s
top-1 token diverges from the FP baseline, and (b) the first “aha” moment that steers the reasoning
onto the correct path. In Figure 1 (a), although block-wise PTQ attains a smaller MSE than LFQ,
thanks to minimizing cross-entropy at the logit level, LFQ yields a smaller KL divergence from
the FP distribution. Consequently, LFQ reproduces the FP model’s top-1 token prediction (i.e.,
"where") and follows the correct trajectory to the right answer, whereas block-wise PTQ diverges
and thus fails to solve the problem.

Moreover, because the occurrence of an “aha” moment is pivotal for re-evaluating and correcting an
ongoing reasoning trajectory, the extent to which low-bit quantized models track the FP baseline on
such “aha” tokens—e.g., "Wait" and "But"—is a key determinant of their accuracy on complex
reasoning benchmarks. As shown in Figure 1 (b), even when the top-1 token for all three models is
"Wait", it is noteworthy that block-wise PTQ is overconfident in "Wait", leaving it underconfi-
dent in another “aha” token like "But". By contrast, LFQ allocates these probabilities closer to the
FP baseline, resulting in not only a smaller KL divergence but also higher accuracy than block-wise
PTQ as reported in Table 2.

4 EXPERIMENT

In this section, we verify the effectiveness of LFQ on Qwen2.5-7B-Instruct and Qwen2.5-14B-
Instruct (Qwen et al., 2025) under 4-bit per-channel and 3-bit group-wise weight-only quantization
settings on IFEval and MATH500 (Lightman et al., 2023). We also evaluate LFQ on large rea-
soning models—L1-Qwen-7B-Max (Aggarwal & Welleck, 2025) and DeepSeek-R1-Distill-Llama-
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Table 1: Performance of Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct with LFQ under block-
wise PTQ (FlexRound, OmniQuant, and Block-AP). Within each PTQ method, the best accuracy is
shown in bold. “W4” and “W3g128” denote 4-bit per-channel weight-only quantization and 3-bit
group-wise quantization (group size 128), respectively. LFQ yields consistent gains in generation
quality across block-wise PTQ, while preserving the language modeling and understanding perfor-
mance of existing methods.

Language Modeling/Understanding Text Generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

MATH500 (↑)
(greedy)

Qwen2.5-7B-Instruct BF16 6.85 73.49 70.79 74.2

FlexRound W4 7.23 72.50 69.50 72.6
FlexRound+LFQ (Ours) W4 7.21 72.48 71.35 73.4
FlexRound W3g128 7.63 70.13 66.54 65.6
FlexRound+LFQ (Ours) W3g128 7.58 70.26 67.84 68.0

OmniQuant W4 7.73 71.00 68.21 69.8
OmniQuant+LFQ (Ours) W4 7.53 70.99 69.50 71.6
OmniQuant W3g128 8.08 68.43 68.21 63.6
OmniQuant+LFQ (Ours) W3g128 7.91 68.39 68.58 64.4

Block-AP W4 7.87 69.60 66.73 68.0
Block-AP+LFQ (Ours) W4 7.77 69.94 68.02 69.0
Block-AP W3g128 8.70 67.09 61.00 60.0
Block-AP+LFQ (Ours) W3g128 8.18 67.06 63.77 61.8

Qwen2.5-14B-Instruct BF16 5.24 78.82 79.85 78.4

FlexRound W4 5.67 77.33 77.82 76.4
FlexRound+LFQ (Ours) W4 5.62 77.31 78.00 77.2
FlexRound W3g128 6.15 75.84 75.05 69.6
FlexRound+LFQ (Ours) W3g128 6.11 75.85 77.08 71.6

OmniQuant W4 5.93 76.64 73.94 73.4
OmniQuant+LFQ (Ours) W4 5.89 76.66 75.23 75.2
OmniQuant W3g128 6.43 75.62 74.31 70.4
OmniQuant+LFQ (Ours) W3g128 6.36 75.73 75.42 69.8

Block-AP W4 6.23 76.84 70.79 71.6
Block-AP+LFQ (Ours) W4 6.17 76.86 72.27 72.4
Block-AP W3g128 6.81 74.58 71.72 67.0
Block-AP+LFQ (Ours) W3g128 6.69 74.58 72.46 68.0

8B (DeepSeek-AI et al., 2025)—using MATH500 and AIME 2024 (AIME, 2024) (AIME′24 for
short). Finally, we empirically (i) demonstrate the importance of incorporating the LM head and
utilizing cross-entropy in the objective, (ii) validate that quantizing only the final Transformer block
via logit-level cross-entropy is sufficient (i.e., it is not a must to quantize multiple final blocks with
cross-entropy), and (iii) the comparison of LFQ against LoRA-based quantization error compensa-
tion (LQEC). These findings are established on Llama 3.1 8B Instruct (Grattafiori et al., 2024) using
IFEval (Zhou et al., 2023) and GSM8K (Cobbe et al., 2021) under 4-bit per-channel weight-only
quantization. Unless otherwise noted, we use group-wise quantization with a group size of 128.

We randomly select calibration sequences of length 2048 tokens from the C4 training set (Raffel
et al., 2020) for all experiments. We do so to emphasize that LFQ can preserve performance com-
parable to FP baselines on language modeling (e.g., WikiText-2 (Merity et al., 2016)) and under-
standing (MMLU (Hendrycks et al., 2021)), while consistently improving the generation quality of
block-wise PTQ methods. We report perplexity on WikiText2 using a sequence length of 4096, five-
shot accuracy on MMLU, prompt-level strict-accuracy on IFEval (following Qwen et al. (2025)),
8-shot accuracy on GSM8K, and zero-shot accuracy on MATH500 and AIME′24. For generation
tasks, we use greedy decoding to ensure a fair comparison between quantized models with and with-
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Table 2: Performance of L1-Max-Qwen-7B and DeepSeek-R1-Distill-Llama-8B with LFQ under
block-wise PTQ (FlexRound). Within the PTQ method, the best accuracy is shown in bold. “W4”
and “W3g128” denote 4-bit per-channel weight-only quantization and 3-bit group-wise quantization
(group size 128), respectively. LFQ yields consistent gains in generation quality across block-wise
PTQ, while preserving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method # Bits WikiText2 (↓) MMLU (↑) MATH500 (↑)
(greedy)

AIME′24 (↑)
(greedy)

AIME′24 (↑)
(pass@8)

L1-Qwen-7B-Max BF16 29.57 54.58 88.0 46.67 55.30

FlexRound W4 31.20 53.43 86.0 30.00 51.71
FlexRound+LFQ (Ours) W4 30.44 53.10 87.6 43.33 55.09
FlexRound W3g128 31.45 52.24 85.2 23.33 41.85
FlexRound+LFQ (Ours) W3g128 29.46 52.53 86.4 30.00 45.18

DeepSeek-R1-Distill-Llama-8B BF16 11.85 55.69 70.4 30.00 30.49

FlexRound W4 12.61 54.57 68.2 16.67 27.71
FlexRound+LFQ (Ours) W4 12.46 54.21 69.8 26.67 30.07
FlexRound W3g128 13.80 53.61 62.8 10.00 15.98
FlexRound+LFQ (Ours) W3g128 13.24 54.03 67.2 13.33 16.97

out LFQ. For AIME′24, to estimate pass@8 as well, we additionally use temperature 0.6 and top-p
0.95, and sample 16 responses per question with a maximum generation length of 4096 tokens.

4.1 QWEN2.5 ON IFEVAL AND MATH500

To assess whether LFQ can improve low-bit instruction-tuned LLMs on both natural language in-
struction following and challenging math word problems, we evaluate LFQ for Qwen2.5-7B-Instruct
and Qwen2.5-14B-Instruct on IFEval and MATH500 using greedy decoding. Table 1 shows that,
across different quantization configurations, LFQ consistently improves the generation quality of
instruction-tuned models quantized by FlexRound, OmniQuant, and Block-AP on both IFEval and
MATH500. Consequently, FlexRound+LFQ narrows the gap between 4-bit per-channel models and
their FP baselines to within 1 percentage point (pp) for Qwen2.5-7B-Instruct and within 2 pp for
Qwen2.5-14B-Instruct across all benchmarks considered (MMLU, IFEval, and MATH500).

4.2 LARGE REASONING MODELS ON MATH500 AND AIME 2024

To test whether LFQ can also perform well for large reasoning models that produce long chains
of thought by scaling test-time compute, we apply LFQ to L1-Qwen-7B-Max and DeepSeek-R1-
Distill-Llama-8B on MATH500 and AIME′24. Given that Table 1 identifies FlexRound+LFQ as
the most effective among FlexRound+LFQ, OmniQuant+LFQ, and Block-AP+LFQ, we focus on
FlexRound+LFQ here. Table 2 shows that standard block-wise PTQ suffers substantial degradation
under greedy decoding on AIME′24. In contrast, LFQ nearly matches the FP baseline on AIME′24,
indicating that it restores alignment with the FP model’s top-1 token predictions. Furthermore, LFQ
raises pass@8 to within 0.5 percentage points of the FP baselines. Taken together, these results
suggest that LFQ effectively aligns the token-level probabilities of low-bit quantized LLMs with
those of their FP counterparts.

4.3 ABLATION STUDY

Importance of LM Head and cross-entropy. To assess the impact of incorporating the LM head
and using cross-entropy in the loss objective when quantizing the final block, we incrementally
augment existing block-wise PTQ methods (FlexRound, OmniQuant, and Block-AP) with these
components. As shown in Table 3, adding the LM head alone generally improves accuracy on text
generation benchmarks (IFEval and GSM8K) as well as on language modeling and understanding.
With the LM head in place, employing cross-entropy rather than mean squared error (MSE) yields
further gains on text generation tasks. We therefore conclude that leveraging both the LM head and
cross-entropy, as in Eq. 2, is essential for boosting the generation quality of low-bit quantized LLMs.
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Table 3: Performance of Llama 3.1 8B Instruct when block-wise PTQ methods (FlexRound, Om-
niQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii)
using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within
each block-wise PTQ method, the best accuracy is shown in bold and the second-best is underlined.
Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and
cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while pre-
serving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method LM-
Head

Cross-
Entropy WikiText2 (↓) MMLU (↑) IFEval (↑)

(greedy)
GSM8K (↑)

(greedy)

Llama 3.1 8B Instruct N/A N/A 6.75 68.34 74.49 84.99

FlexRound X X 7.06 66.19 70.24 81.35

FlexRound+LFQ O X 7.08 66.75 71.53 81.58
O O 7.06 66.97 72.09 81.80

OmniQuant X X 7.49 64.87 70.61 78.17

OmniQuant+LFQ O X 7.48 64.77 71.35 78.32
O O 7.47 65.48 71.35 79.76

Block-AP X X 7.76 63.24 68.58 73.84

Block-AP+LFQ O X 7.74 63.54 68.39 74.00
O O 7.69 63.77 68.76 74.45

Sufficiency of quantizing solely the final block via logit-level cross-entropy. We ask whether
applying the logit-level cross-entropy objective to only the final block is sufficient. To test this, we
vary the number of topmost Transformer blocks optimized with LFQ (denoted as k) while keeping
the remaining blocks quantized via standard MSE reconstruction. For example, when k = 2, we
apply LFQ sequentially to the penultimate and final blocks. As shown in Figure 2, the average score
of IFEval and GSM8K remains almost constant even as k increases; k = 2 occasionally yields a
marginal gain on that average but at the cost of lower MMLU accuracy. These results indicate that
applying LFQ to the final block alone is sufficient and offers the best overall trade-off.

Comparison of LFQ against LQEC. As LQEC has emerged as a promising approach for miti-
gating memory bottleneck while recovering task accuracy, we compare LFQ with RILQ (Lee et al.,
2025a), a state-of-the-art LQEC method. For a fair comparison, we use only the C4 training set as
calibration data to initialize LoRA adapters on low-bit quantized models produced by FlexRound,
OmniQuant, and Block-AP. Table 4 reports the results. RILQ generally outperforms LFQ on lan-
guage modeling (WikiText2) and language understanding (MMLU) due to its use of LoRA adapters.
Nevertheless, LFQ consistently surpasses RILQ on text generation across all settings. We hypothe-
size that this stems from the fact that LQEC methods—including RILQ—optimizes MSE, an objec-
tive misaligned with matching the FP model’s token-level distribution (as elucidated in Section 2).

5 RELATED WORK

Quantization study is typically classified into quantization-aware training (QAT) and post-training
quantization (PTQ). As it is well known that QAT can match full-precision (FP) accuracy even
under sub-4-bit quantization configurations, it has been applied across domains—from computer
vision models (Esser et al., 2020; Lee et al., 2021) to natural language models (Liu et al., 2023;
2025). However, Liu et al. (2025) shows that QAT requires fine-tuning large language models
(LLMs) on billions of tokens at least, which is prohibitively memory-intensive and time-consuming.
Consequently, research attention has continued to focus more on advancing PTQ.

PTQ is commonly divided into layer-wise and block-wise methods. Layer-wise PTQ (e.g., Frantar
et al. (2023); Lin et al. (2024)) can be run fast on a single GPU and typically incurs marginal perfor-
mance degradation on relatively easy downstream tasks (e.g., commonsense reasoning). However,
as these techniques do not involve gradient-based optimization, unless task-specific calibration data
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Figure 2: Performance of Llama 3.1 8B Instruct as the number of topmost Transformer blocks
optimized with LFQ increases from 1 (ours) to 3, with the remaining blocks quantized via stan-
dard MSE reconstruction; shown for FlexRound (left), OmniQuant (center), and Block-AP (right).
In each subfigure, the left y-axis shows MMLU accuracy, while the right y-axis reports the IFE-
val+GSM8K average. All results use 4-bit per-channel weight-only quantization. The average of
IFEval and GSM8K (expressed as “(IFEval+GSM8K)/2”) stays roughly unchanged, regardless of
the number of topmost Transformer blocks optimized with LFQ.

Table 4: Comparison of LFQ (ours) against RILQ, a state-of-the-art LoRA-based quantization error
compensation method, on Llama 3.1 8B Instruct using block-wise PTQ (FlexRound, OmniQuant,
and Block-AP). Within each PTQ method, the best accuracy is shown in bold and the second best is
underlined. “W4” denotes 4-bit per-channel weight-only quantization.

Language modeling/understanding Text generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

GSM8K (↑)
(greedy)

Llama 3.1 8B Instruct BF16 6.75 68.34 74.49 84.99

FlexRound W4 7.06 66.19 70.24 81.35
FlexRound+RILQ W4 6.95 66.86 71.90 80.52
FlexRound+LFQ W4 7.06 66.97 72.09 81.80

OmniQuant W4 7.49 64.87 70.61 78.17
OmniQuant+RILQ W4 7.24 66.07 71.35 78.85
OmniQuant+LFQ W4 7.47 65.48 71.35 79.76

Block-AP W4 7.76 63.24 68.58 73.84
Block-AP+RILQ W4 7.43 64.62 68.58 73.92
Block-AP+LFQ W4 7.69 63.77 68.76 74.45

is utilized, they can suffer substantial accuracy degradation on more challenging benchmarks, par-
ticularly text generation (Li et al., 2025). On the other hand, block-wise PTQ approaches (Lee et al.,
2023; Shao et al., 2024; Cheng et al., 2024; Lee et al., 2025b; Chen et al., 2025) not only account
for cross-layer dependencies within a block but also optimize quantization parameters via gradient-
based iterative updates, and therefore often outperform layer-wise PTQ. Notwithstanding, we find
that existing block-wise PTQ can still exhibit non-negligible degradation in generation quality.

6 CONCLUSION

We show that block-wise PTQ can degrade generation quality due to (i) omitting the LM head from
block-wise optimization and (ii) relying on the MSE objective. To address this, we introduce Logit-
aware Final-block Quantization (LFQ), which quantizes the final Transformer block by aligning the
quantized model’s logits to the FP model’s via the cross-entropy loss. Across diverse model families
and generation tasks, LFQ consistently improves generation quality over existing block-wise PTQ
techniques, while preserving performance on language modeling and understanding.
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A ADDITIONAL ABLATION STUDIES OF LFQ FOR QWEN2.5-7B-INSTRUCT
AND LLAMA 3.2 3B INSTRUCT

Table 5: Performance of Qwen2.5-7B-Instruct when block-wise PTQ methods (FlexRound, Om-
niQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii)
using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within
each block-wise PTQ method, the best accuracy is shown in bold and the second-best is underlined.
Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and
cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while pre-
serving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method LM-
Head

Cross-
Entropy WikiText2 (↓) MMLU (↑) IFEval (↑)

(greedy)
MATH500 (↑)

(greedy)

Qwen2.5-7B-Instruct N/A N/A 6.85 73.49 70.79 74.2

FlexRound X X 7.23 72.50 69.50 72.6

FlexRound+LFQ O X 7.26 72.48 71.35 71.4
O O 7.21 72.48 71.35 73.4

OmniQuant X X 7.73 71.00 68.21 69.8

OmniQuant+LFQ O X 7.29 71.02 68.95 70.6
O O 7.53 70.99 69.50 71.6

Block-AP X X 7.87 69.60 66.73 68.0

Block-AP+LFQ O X 7.92 69.75 67.28 68.4
O O 7.77 69.94 68.02 69.0

Table 6: Performance of Llama 3.2 3B Instruct when block-wise PTQ methods (FlexRound, Om-
niQuant, and Block-AP) are incrementally augmented by (i) incorporating the LM head and (ii)
using a logit-level cross-entropy objective in order to quantize the final Transformer block. Within
each block-wise PTQ method, the best accuracy is shown in bold and the second-best is underlined.
Here, all results use 4-bit per-channel weight-only quantization. LFQ (with both LM Head and
cross-entropy, ours) yields consistent gains in generation quality across block-wise PTQ, while pre-
serving the language modeling and understanding performance of existing methods.

Language Modeling/Understanding Text Generation

Method LM-
Head

Cross-
Entropy WikiText2 (↓) MMLU (↑) IFEval (↑)

(greedy)
GSM8K (↑)

(greedy)

Llama 3.2 3B Instruct N/A N/A 10.14 61.34 71.72 77.48

FlexRound X X 10.72 59.93 65.80 72.40

FlexRound+LFQ O X 10.73 59.66 65.99 73.09
O O 10.72 59.84 67.28 73.01

OmniQuant X X 11.23 57.78 64.33 71.42

OmniQuant+LFQ O X 11.17 58.80 64.33 71.65
O O 11.16 58.94 66.54 71.49

Block-AP X X 11.61 56.47 62.29 66.11

Block-AP+LFQ O X 11.63 56.44 62.66 66.34
O O 11.61 56.38 63.77 66.41
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B EXPERIMENTAL SETTING OF LFQ

We sweep the LFQ learning rate as follows: {5e − 4, 1e − 3} with FlexRound; {1.5e − 3, 2e −
3, 5e − 3} with OmniQuant; and {1e − 5, 2e − 5, 3e − 5} with Block-AP. Across all block-wise
PTQ methods, calibration samples are drawn from C4: 800 for Llama-3.2-3B-Instruct; 600 for
Qwen2.5-7B-Instruct and L1-Max-Qwen-7B; 550 for Llama-3.1-8B-Instruct; 512 for DeepSeek-
R1-Distill-Llama-8B; and 400 for Qwen2.5-14B-Instruct. For the remaining hyperparameters, we
follow the experimental settings recommended in prior work (Lee et al., 2023; Shao et al., 2024;
Chen et al., 2025).

On a single A100 GPU, the LFQ process takes approximately 1.5 hours for Qwen2.5-7B-Instruct,
L1-Qwen-7B-Max, DeepSeek-R1-Distill-Llama-8B, and Llama 3.1 8B Instruct, and about 2 hours
for Qwen2.5-14B-Instruct.
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C FURTHER EVALUATION OF LFQ FOR LARGE REASONING MODELS
UNDER STOCHASTIC DECODING

Table 7: Avg@8 and standard deviation on MATH500 for L1-Qwen-7B-Max and DeepSeek-R1-
Distill-Llama-8B with LFQ under block-wise PTQ (FlexRound). Within the PTQ method, the best
accuracy is shown in bold. “W4” and “W3g128” denote 4-bit per-channel weight-only quantization
and 3-bit group-wise quantization (group size 128), respectively. We use a temperature of 0.6 and a
top-p of 0.95.

Method # Bits MATH500 (↑)
(Avg@8)

L1-Qwen-7B-Max BF16 89.05± 0.74

FlexRound W4 87.45± 0.75
FlexRound+LFQ (Ours) W4 88.40± 0.86
FlexRound W3g128 85.35± 0.64
FlexRound+LFQ (Ours) W3g128 86.50± 0.54

DeepSeek-R1-Distill-Llama-8B BF16 72.53± 1.16

FlexRound W4 70.10± 1.37
FlexRound+LFQ (Ours) W4 71.95± 1.20
FlexRound W3g128 67.00± 0.97
FlexRound+LFQ (Ours) W3g128 69.25± 0.85

To ensure a more robust evaluation of LFQ, we additionally measure Avg@8 on MATH500 for L1-
Qwen-7B-Max and DeepSeek-R1-Distill-Llama-8B with a temperature of 0.6 and a top-p of 0.95.

Table 7 shows that LFQ also improves the Avg@K score on MATH across different large reasoning
models, demonstrating that LFQ is effective under both greedy and stochastic decoding.
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D IMPORTANCE OF APPLYING LFQ TO THE LAST BLOCK

To emphasize that whether LFQ is applied to the final block is far more important than how many
blocks are optimized with LFQ, we conduct the following experiments for Llama 3.1 8B Instruct.
When k = 2, we apply LFQ to the second-to-last block, while for the last block we only minimize
∥XWFP −XWq∥2F without using either the LM head or cross-entropy (denoted as “k = 2 except
the last block”). When k = 3, we apply LFQ sequentially to the third- and second-to-last blocks,
and again, for the last block only, we minimize ∥XWFP − XWq∥2F without employing the LM
head or cross-entropy (denoted as “k = 3 except the last block”). We then compare these settings
with the original k = 2 and k = 3 configurations in Figure 2.

Table 8: Comparison of k = 2 and k = 3 except the last block with the original k = 2 and
k = 3 configurations in Figure 2. “LFQ@Last” indicates whether LFQ is applied to the last block.
Similarly, “LFQ@Last-1” and “LFQ@Last-2” indicate whether LFQ is applied to the second-to-last
and third-to-last blocks, respectively.

Method LFQ@Last LFQ@Last-1 LFQ@Last-2 MMLU (↑) (IFEval+GSM8K)/2 (↑)

Llama 3.1 8B Instruct N/A N/A N/A 68.34 79.74

FlexRound X X X 66.19 75.80
+ k = 2 except the last block X O X 66.97 76.17
+ k = 2 (Figure 2) O O X 66.99 77.13
+ k = 3 except the last block X O O 66.98 76.15
+ k = 3 (Figure 2) O O O 67.03 76.78

OmniQuant X X X 64.87 74.39
+ k = 2 except the last block X O X 65.29 74.47
+ k = 2 (Figure 2) O O X 65.40 75.32
+ k = 3 except the last block X O O 65.29 74.65
+ k = 3 (Figure 2) O O O 65.25 75.30

Block-AP X X X 63.24 71.21
+ k = 2 except the last block X O X 63.78 71.30
+ k = 2 (Figure 2) O O X 63.57 71.76
+ k = 3 except the last block X O O 63.81 71.24
+ k = 3 (Figure 2) O O O 63.64 71.52

As shown in Table 8, the MMLU score remains nearly unchanged regardless of whether LFQ is
applied to the final block. In contrast, when LFQ is not applied to the final block, the average of
IFEval and GSM8K (i.e., “(IFEval+GSM8K)/2”) consistently drops, approaching the performance
level of each underlying PTQ technique. These results indicate that, for improving the generation
quality of low-bit quantized LLMs, it is far more critical to apply LFQ to the final block than to
simply increase the number of blocks optimized with LFQ.
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E COMBINATION OF LFQ WITH RILQ

Table 9: Comparison of LFQ (ours) against RILQ, a state-of-the-art LoRA-based quantization error
compensation method, on Llama 3.1 8B Instruct using block-wise PTQ (FlexRound, OmniQuant,
and Block-AP). Within each PTQ method, the best accuracy is shown in bold and the second best is
underlined. “W4” denotes 4-bit per-channel weight-only quantization.

Language modeling/understanding Text generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

GSM8K (↑)
(greedy)

Llama 3.1 8B Instruct BF16 6.75 68.34 74.49 84.99

FlexRound W4 7.06 66.19 70.24 81.35
FlexRound+RILQ W4 6.95 66.86 71.90 80.52
FlexRound+LFQ W4 7.06 66.97 72.09 81.80
FlexRound+LFQ+RILQ W4 6.98 66.96 72.46 81.43

OmniQuant W4 7.49 64.87 70.61 78.17
OmniQuant+RILQ W4 7.24 66.07 71.35 78.85
OmniQuant+LFQ W4 7.47 65.48 71.35 79.76
OmniQuant+LFQ+RILQ W4 7.23 65.82 71.35 79.45

Block-AP W4 7.76 63.24 68.58 73.84
Block-AP+RILQ W4 7.43 64.62 68.58 73.92
Block-AP+LFQ W4 7.69 63.77 68.76 74.45
Block-AP+LFQ+RILQ W4 7.43 64.53 68.58 74.22

LFQ underperforms RILQ on WikiText2 perplexity (language modeling) and MMLU accuracy (lan-
guage understanding), while outperforming RILQ on IFEval and GSM8K (text generation), as
shown in Table 4. However, we emphasize that LFQ (quantization objective) and RILQ (LoRA
addition) address orthogonal aspects of the problem rather than competing with each other. Because
LFQ can be readily combined with RILQ in a complementary manner, we therefore explore their
joint application to leverage the strengths of both methods.

LFQ + RILQ performs comparably to RILQ on WikiText2 perplexity and MMLU accuracy, while
achieving results close to LFQ on IFEval and GSM8K. This indicates that LFQ + RILQ can effec-
tively inherit the strengths of both techniques.
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F COMPARISON OF BLOCK-WISE PTQ WITH AWQ

Table 10: Comparison of block-wise PTQ (FlexRound, OmniQuant, and Block-AP) with AWQ, one
of the mainstream layer-wise PTQ techniques. For each task, the worst accuracy is shown in red.
“W4” denotes 4-bit per-channel weight-only quantization.

Language modeling/understanding Text generation

Method # Bits WikiText2 (↓) MMLU (↑) IFEval (↑)
(greedy)

GSM8K (↑)
(greedy)

Llama 3.1 8B Instruct BF16 6.75 68.34 74.49 84.99

AWQ W4 7.96 63.57 67.84 73.54
FlexRound W4 7.06 66.19 70.24 81.35
OmniQuant W4 7.49 64.87 70.61 78.17
Block-AP W4 7.76 63.24 68.58 73.84

As demonstrated by several existing block-wise PTQ studies (Shao et al., 2024; Cheng et al., 2024;
Lee et al., 2025b), block-wise PTQ typically outperforms layer-wise PTQ methods such as AWQ
across a range of tasks, as shown in Table 10.
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