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Figure 1: Comparison of 3DGS, 2DGS, and our EGGS. While 3DGS achieves high-fidelity ap-
pearance, it often produces inaccurate geometry, with imprecise surfaces and blurred edges. 2DGS
improves geometric consistency across views but suffers from reduced appearance quality due to
over-smoothed surfaces and loss of detail. In contrast, EGGS employs an exchangeable hybrid
Gaussian representation that achieves both accurate geometry and high-quality appearance.

Abstract

Novel view synthesis (NVS) is crucial in computer vision and graphics, with wide
applications in AR, VR, and autonomous driving. While 3D Gaussian Splatting
(3DGS) enables real-time rendering with high appearance fidelity, it suffers from
multi-view inconsistencies, limiting geometric accuracy. In contrast, 2D Gaussian
Splatting (2DGS) enforces multi-view consistency but compromises texture details.
To address these limitations, we propose Exchangeable Gaussian Splatting (EGGS),
a hybrid representation that integrates 2D and 3D Gaussians to balance appearance
and geometry. To achieve this, we introduce Hybrid Gaussian Rasterization for uni-
fied rendering, Adaptive Type Exchange for dynamic adaptation between 2D and
3D Gaussians, and Frequency-Decoupled Optimization that effectively exploits
the strengths of each type of Gaussian representation. Our CUDA-accelerated
implementation ensures efficient training and inference. Extensive experiments
demonstrate that EGGS outperforms existing methods in rendering quality, geomet-
ric accuracy, and efficiency, providing a practical solution for high-quality NVS.
Code and demo available at https://github.com/Fobow/EGGS.

1 Introduction

Novel view synthesis (NVS) is a fundamental task in computer graphics and computer vision, with
broad applications in augmented reality (AR), virtual reality (VR), and autonomous driving
2l 3. Neural Radiance Fields (NeRF) [4] reconstruct implicit radiance fields via differentiable
volume rendering. Despite achieving photorealistic appearance and accurate geometry, NeRF-based
methods [5] 16 [7, 8, Ol [10] typically suffer from long training times and slow rendering speeds.
3D Gaussian Splatting (3DGS) [11]] has emerged as an efficient alternative, leveraging anisotropic
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Figure 2: Left: Comparison of 3DGS and 2DGS in appearance and geometry metrics. Right:

Comparison between EGGS and related works. Prior works either use only single representation or
do not explore complementary advantages of 3D and 2D Gaussians. * Gaussian Surfel [[15] directly
sets the z-scale of 3D Gaussian to zero and uses the rasterizer from 3DGS. * HybridGS [17] uses
image-frame single-view 2D Gaussians [[19, 20]] instead of 2D Gaussians in the 3D space [12]].

3D Gaussians for real-time, high-quality rendering. While 3DGS excels in appearance fidelity, its
anisotropic nature often leads to multi-view inconsistencies, limiting geometric accuracy [12,[13]. As
shown in Figure[] this can lead to inaccurate edges and surfaces.

Following 3DGS, a line of work has focused on improving its geometric accuracy and reconstruction
quality through additional regularization and novel representations, as shown in Figure [2] (right).
SUGAR [14] and GaussianPro [[13] introduce normal-based regularization, such as planar loss, to
align Gaussian normals and encourage flatter shapes, thereby improving surface consistency. Gaussian
Surfles [15] and GOF [21]] incorporate additional geometry-aware constraints to enhance spatial
coherence. 2D Gaussian Splatting (2DGS)[12] replaces 3D ellipsoids with 2D surfels, significantly
improving multi-view consistency and geometric accuracy, as shown in Figure [2] (left). However,
this comes at the cost of degraded appearance quality, as surfel-based representations struggle to
preserve high-frequency details. TextureGS [16] attempts to decouple appearance and geometry
within the 2DGS framework, but the single representation still limits overall rendering performance.
Recently, HybridGS [17] combines 3DGS with image-space 2D Gaussians to address transient
objects, but its radiance field remains fully represented by 3D Gaussians. HorizonGS [18]], designed
for varying-altitude scenes, decodes 2D Gaussians for surface reconstruction and 3D Gaussians for
view synthesis separately via an MLP in ScaffoldGS [22]. While effective in their target domains,
these methods do not explore a unified hybrid radiance representation. As a result, the complementary
strengths of 2DGS and 3DGS in geometry and appearance remain underutilized.

Effectively combining 3D and 2D Gaussians to jointly improve appearance and geometry is non-trivial,
as simply mixing the two representations does not necessarily improve reconstruction quality [[18]].
To start, the geometric accuracy of 2D Gaussians relies on a ray—splat—intersection-based rasterizer
designed to enforce multi-view consistency. Using the projection-based 3DGS rasterizer to render 2D
Gaussians can lead to suboptimal geometry [15]. Moreover, Gaussian parameters change significantly
during training. For instance, 3D Gaussians may flatten to approximate surfaces, while 2D Gaussians
may expand volumetrically to capture thin structures or translucent effects. Fixing the Gaussian type
throughout optimization can limit the model’s expressiveness. Finally, relying solely on photometric
loss is insufficient to balance geometry and appearance. Additional regularization is required to
guide the optimization of hybrid representations. Most importantly, the regularization strategy should
account for the distinct characteristics of 3D and 2D Gaussians.

In response to these challenges, we introduce Exchangeable Gaussian Splatting (EGGS), an adaptive
hybrid representation that unifies 2D and 3D Gaussian splatting in a single framework. EGGS
provides a practical and efficient solution for high-quality novel view synthesis and 3D reconstruction.
Our main contributions are as follows:

» To preserve the complementary strengths of 3D and 2D Gaussians, we develop Hybrid Gaus-
sian Rasterization, a unified rendering framework that supports both projection-based and
ray—splat—intersection-based rasterization. We implement this framework with CUDA for efficient
optimization, and ensure compatibility with existing 3DGS and 2DGS pipelines.

* We propose Adaptive Type Exchange, which enables an exchangeable hybrid of 2D and 3D
Gaussians. We use effective rank as an auxiliary criterion to determine whether each Gaussian
should dynamically switch its type during training, resulting in a more flexible and content-
adaptive representation. 5



* To better balance geometry and appearance, we introduce Frequency-Decoupled Optimization, a
regularization strategy in the frequency domain. Using the Discrete Wavelet Transform (DWT),
we extract low-frequency components to guide scene geometry and high-frequency components
to refine appearance. We supervise 3D and 2D Gaussians asymmetrically to exploit their distinct
characteristics, where high-frequency signals guide 3D Gaussians toward detailed appearance,
while low-frequency signals supervise 2D Gaussians for geometric consistency.

* We conduct extensive experiments demonstrating that EGGS significantly improves the trade-off
between appearance fidelity and geometric accuracy. It outperforms both 3DGS and 2DGS in
appearance quality, while achieving geometric accuracy and multi-view consistency comparable
to 2DGS. Moreover, EGGS serves as a versatile representation that performs well in challenging
scenarios such as few-shot and out-of-distribution view synthesis.

2 Related Works

Radiance Fields for Novel View Synthesis. Neural Radiance Fields (NeRF) [4]] have emerged as a
fundamental approach for novel view synthesis [23]], representing scenes as continuous volumetric
functions optimized via differentiable rendering. While NeRF achieves high-fidelity reconstruction,
it requires dense sampling and significant computational resources. Subsequent works have improved
either quality [24}[25] or efficiency [S} (7,126, 6], but the excessive training and rendering time remains
a major bottleneck. To address this, recent efforts have explored more efficient alternatives, such as
3D Gaussian Splatting (3DGS) [11]], which represents scenes using a set of 3D Gaussians that can be
efficiently rasterized and optimized for real-time rendering. To further improve the performance and
efficiency of 3DGS, several extensions have been proposed. ScaffoldGS [22]) introduces a voxel-based
representation where an MLP is used to decode 3D Gaussians within each voxel. 3DGS-MCMC [27]
formulates Gaussian densification as a Markov Chain Monte Carlo sampling process, enabling a
more efficient and adaptive distribution of Gaussians across the scene.

Geometry-Appearance-Balanced Gaussian Splatting. While 3DGS achieves high appearance
fidelity and is efficient in both training and rendering, the anisotropic nature of 3D Gaussians often
exhibits multi-view inconsistency, resulting in limited geometric accuracy. To address this, several
works propose geometry regularization techniques. SUGAR [14] and GaussianPro [[13[] introduce
normal-based regularization to encourage flatter Gaussians that better align with scene surfaces.
Gaussian Surfels [15] and GOF [28] further enforce depth accuracy and normal consistency to
enhance geometric reconstruction. Instead of relying solely on regularization, 2DGS [12] adopts
a 2D surfel representation with a specialized ray—splat—intersection rasterizer, ensuring multi-view
consistency and significantly improving geometric accuracy compared to 3DGS. It also incorporates
additional depth and normal regularization. However, this comes at the cost of reduced appearance
quality, as 2D surfels struggle to preserve high-frequency detail. TextureGS [[L6] attempts to decouple
geometry and appearance modeling within the 2DGS framework, but its appearance fidelity remains
limited due to the inherent drawbacks of the 2D representation.

As demonstrated in Figure 2] (left), 3D Gaussians achieve better appearance quality in PSNR, SSIM,
and LPIPS. In contrast, 2D Gaussians offer superior view consistency and geometric fidelity, resulting
in more robust PSNR under out-of-distribution (OOD) conditions, improved point cloud accuracy in
Chamfer Distance (CD), and higher depth accuracy in F1 score. As shown in Figure[2] (right), most
existing methods [12} [111 {14} 113129} 130} 22, |31} 132|133} 134]] rely on a single Gaussian representation
to reconstruct radiance fields, which limits their flexibility and adaptability. Although HybridGS [17]
incorporates both 3D Gaussians and image-space 2D Gaussians to better handle transient content, its
radiance field remains solely represented by 3D Gaussians. A radiance field that jointly leverages
both 2D and 3D Gaussians remains largely unexplored. It is still unclear how 2D and 3D Gaussians
can be made exchangeable during training and how to fully exploit their complementary strengths in
appearance and geometry. We provide a more detailed discussion in Appendix [B]

3 Method

We provide an overview of the EGGS framework in Figure [3] To enable the joint training of 2D
and 3D Gaussians within a unified framework, we first introduce Hybrid Gaussian Rasterization
in Section [3.T] which supports both ray—splat—intersection-based rendering for 2D Gaussians and
projection-based rendering for 3D Gaussians. Next, we present Adaptive Type Exchange in Section[3.2]
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Figure 3: Overview of the EGGS framework. We initialize 2D and 3D Gaussians from sparse points
obtained via structure-from-motion (SfM) [35} [36]]. Their parameters are then jointly optimized using
our CUDA-accelerated differentiable hybrid rasterization. To enhance the flexibility of the hybrid
representation, Adaptive Type Exchange is introduced to allow each Gaussian to switch between
2D and 3D types during training. Finally, we apply Discrete Wavelet Transform (DWT) [37] and
introduce Frequency-Decoupled Optimization to balance geometric accuracy and appearance fidelity.

which enables dynamic switching between 2D and 3D types during optimization. Finally, to optimize
the hybrid model for balanced geometric consistency and appearance fidelity, we propose Frequency-
Decoupled Optimization in Section [3.3] a supervision strategy that leverages the distinct frequency
characteristics of 2D and 3D Gaussians.

3.1 Hybrid Gaussian Rasterization

Differentiable rasterization was introduced in 3DGS to enable gradient-based optimization of Gaus-
sian parameters using a projection-based pipeline for real-time rendering. 2DGS later developed a
ray—splat—intersection-based rasterizer tailored to 2D surfel representations, improving multi-view
consistency and geometric accuracy. However, the architectural distinction between these two ras-
terization pipelines makes it non-trivial to render and optimize a hybrid model within a unified
framework. While 2D Gaussians can be viewed as degenerate 3D Gaussians with zero scale along
the z-axis, directly rendering them with the 3D rasterizer leads to geometric inaccuracies [12]. This
is due to the affine projection approximation used in 3DGS, which introduces distortion at all points
except the Gaussian center. We further analyze this issue in Section[d.2]

To leverage the complementary strengths of 3D and 2D Gaussians, it is necessary to render them
within a unified framework. To this end, we propose Hybrid Gaussian Rasterization, which integrates
both projection-based and ray—splat—intersection-based pipelines. In our rasterizer, each Gaussian
primitive G is parameterized by a center i € R?, scale s € R, rotation quaternion r € R*, opacity
a € R, and spherical harmonic (SH) color coefficients f € R3 x(+1* where [ is the degree of
view-dependent color. The view-dependent RGB color ¢ is decoded from f. The Gaussian shape is
defined by the covariance matrix ¥ = RSS TRT, where R € R3*3 is the rotation matrix derived
from 7, and S = diag(s,, sy, s.) € R3*3 is the scaling matrix. We augment each Gaussian with a
type specifier ¢ € {0, 1} to indicate whether it is a 2D (¢ = 0) or 3D (¢ = 1) Gaussian. 2D Gaussians
are initialized with s, = 0, while the remaining parameters follow the initialization of 3DGS.

As shown in Figure [d] we rasterize Gaus-
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where gy a,; and 3; are the projected center and
covariance of the 3D Gaussian computed via affine projection, and u;(x,) and v;(x,) denote the
coordinates of the intersection between the ray through z, and the 2D Gaussian. The distance d; can
be computed simultaneously for both 3D and 2D Gaussians. The final contribution of each Gaussian



is then computed uniformly as &; = aie~ 2% where q is the opacity of the ¢-th Gaussian. With the
above formulation, both 3D and 2D Gaussians can be rendered in a single c-blending pass:

~ i —1 .

Clzp) = Yien i [[21(1 - ay) ()
where the final color at pixel x,, is computed from color ¢; and contribution &; of each Gaussian
primitive. To support efficient and parallel rendering, we implement our hybrid rasterizer in CUDA.
More details on initialization and densification are provided in Appendix [A} and those on projection-
based and ray—splat—intersection-based rasterization procedures are deferred to Appendix [C]

3.2 Adaptive Type Exchange

While the type specifier introduced in Section[3.1]enables unified rendering of 2D and 3D Gaussians,
each Gaussian primitive is initialized with a fixed type. Such fixed type assignment can limit the
expressiveness of the model, as Gaussians may naturally deviate from their initial type during
optimization. For example, 3D Gaussians may become increasingly flat to better model surfaces,
while 2D Gaussians may take on more volumetric properties to capture semi-transparent regions. To
fully exploit the flexibility of the hybrid model, the type of each Gaussian should dynamically adapt
to its evolving geometric characteristics. To this end, we propose Adaptive Type Exchange, which
allows each Gaussian to switch between 2D and 3D types during training.

The key to Adaptive Type Exchange is detecting discrepancies between a Gaussian’s assigned type
and its effective geometric dimensionality. Therefore, we introduce the effective rank (erank) [38/[39]
as an indicator of this dimensionality, allowing the model to determine when type switching is needed
during training. Given a Gaussian G with scaling s = (s, S, 5»), we define its effective rank as:

2 i i
erank(G) = exp <— >izo T log ”gﬁ) ,  where ¢ = (52,57, 52). 3)

As illustrated in Figure 5] erank provides a principled signal for deciding when to switch types. A
perfectly isotropic 3D Gaussian has erank = 3, while a flattened Gaussian approaches erank = 2.
If a Gaussian primitive G; is assigned as 3D (¢; = 1) but its effective rank falls below a threshold
0., we mark it for conversion to 2D by setting ¢; = 0. Similarly, we update 2D Gaussians to 3D
(t; = 1) when their effective rank exceeds the threshold. Yet, merely flipping the type specifier can
lead to unstable parameter transitions, as the s, scale is treated as least significant in 2D Gaussians.
To ensure stable conversion, we reparameterize the covariance of 3D Gaussians during switching and
adjust gradient flow to s, for 2D Gaussians.

Reparameterization. (3D — 2D) All three scales of a 3D Gaussian are initially opti-
mized, whereas 2D Gaussians ignore the s, scale during ray—splat—intersection-based rasteri-
zation. Accordingly, when converting a 3D Gaussian to 2D, only s; and s, are retained and
s, is discarded. However, directly discarding s, can lead to instability during training when
it is not the least significant scale. To prevent this, we reparameterize the 3D Gaussian be-
fore conversion so that s, corresponds to the smallest axis. The key to stable conversion
is aligning s, with the least significant scale while preserving covariance ¥ = RSSTR”.
We first construct the converted scaling matrix S™ using a permutation matrix P that moves
the least significant scale to the z-axis:
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Figure 5: Tllustration of Adaptive Type Exchange.

Then, to ensure the covariance X remain un-

changed in * = R*S*S*R*", we set the rotation of 2D Gaussian as R* = RP”. We note that
R” is converted to quaternions during optimization. To ensure a valid conversion, the rotation matrix
R" must be orthogonal with a positive determinant. P, and P, are designed to preserve these
properties. Additional details are provided in Appendix

Scale Modulation. (2D — 3D) When converting 2D Gaussians to 3D, all parameters are retained
with the type specifier flipped. However, as mentioned above, the s, scale of 2D Gaussians is not



optimized during rasterization. However, to allow 2D Gaussians to develop volumetric capacity
and transition to 3D when needed, gradient flow must also be introduced along the z-axis. To
support this, we incorporate s, into the computation graph via a soft modulation based on opacity «,
aligning geometric expressiveness with visual

transparency. The intuition behind this design is Ground Truth Tter. 1.5K Tter. 7K

that 2D-to-3D transitions often occur in regions SRl > j
with semi-transparent or volumetric effects that
flat primitives cannot represent well. This mod-
ulation enables s, to be optimized throughout
training, while ensuring its updates remain sta-
ble and smoothly conditioned on opacity:

af = qze x5 (6)

where s} denotes the activated z-axis scale, com- Hich F - y
B . R igh Freq. Error Map Error Map
puted via a soft gating function: ) ) ) )
Figure 6: Illustration of reconstruction error during
s = sigmoid (szT—ez ) s, (7 training. In early iterations., thf; model focuses on
? overall scene geometry, while high-frequency local

The soft scale modulation allows a 2D Gaussian d€tails are progressively refined in later stages.

to remain effectively two-dimensional when s,

is insignificant, in which case s} approaches zero. Conversely, as a 2D Gaussian evolves toward a more
volumetric form, an increasing s, leads to reduced opacity, effectively enabling the representation
of semi-transparent or volumetric effects. Additional details on the effective rank threshold, 3D
Gaussian reparameterization and permutation, and 2D Gaussian scale modulation are provided in

Appendix D}

3.3 Frequency-Decoupled Optimization

With our hybrid rasterization and adaptive type exchange mechanism, 2D and 3D Gaussians can be
jointly optimized within a unified and flexible framework. However, relying solely on photometric loss
is insufficient to effectively optimize the hybrid model for balanced geometry and appearance. 2D and
3D Gaussians exhibit distinct characteristics during optimization and specialize in different aspects
of the scene. 2D Gaussians are better suited for enforcing geometric consistency, while 3D Gaussians
excel at capturing high-frequency appearance details. To fully leverage these complementary strengths,
we introduce Frequency-Decoupled Optimization, a supervision strategy that decouples low- and
high-frequency components and assigns them asymmetrically to 2D and 3D Gaussians, respectively.

Frequency Decoupling via Discrete Wavelet Transform. As shown in Figure [ scene in-
formation can be effectively separated in the frequency domain. High-frequency components
typically correspond to fine details that are refined in later training stages (e.g., 7K iterations),
while low-frequency components capture overall scene geometry and are optimized earlier. This
frequency-based separation aligns well with the complementary roles of 3D Gaussians in mod-
eling appearance and 2D Gaussians in capturing geometry. Motivated by this, we introduce
Frequency-Decoupled Optimization to supervise the hybrid model in the frequency domain. We
apply DWT [37] to decompose the ground truth image Z into low- and high-frequency components:
7Z,,Z;, = DWT(Z). The same transformation is applied to the rendered image 7 to obtain fl and fh.

The frequency loss is defined as £; = ||Z; — Z;|2
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projection. We project gradients from high-
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dients from low-frequency for 2D Gaussians.

where Liow and Lyign are applied equally to all 2D
and 3D Gaussians. While supervision is decoupled
in the frequency domain, this approach overlooks the
distinctions of each representation.



Asymmetrical Gradient Update with Projected Conflicts. We denote the gradients to G; from

Leotors Liow and Lyigh as gf"lo”, géow and g? igh respectively. As illustrated in Figure |7} conflict-
ing gradients can arise when losses from different frequency components are directly applied
to update Gaussian parameters (i.e., Eq.(8)), diminishing the effectiveness of frequency-based
regularization. Such conflicts stem from the distinct characteristics of 2D and 3D Gaussians.
2D Gaussians are more effective at capturing overall geometry and ensuring multi-view consis-
tency, where low-frequency signals offer more relevant guidance, while high-frequency gradi-
ents may counteract this by encouraging appearance-driven updates. Conversely, 3D Gaussians
specialize in modeling fine-scale appear-
ance and benefit more from high-frequency
supervision, whereas low-frequency sig- Require :Gaussians {G;}¥ ', appearance 10ss Lcolor
nals contribute less to their performance. frequency loss Liow and Lpigh.

color low high .
- — Vgl Vo Liow, Vg Lhnigh;
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Algorithm 1: Frequency-Decoupled Optimization

quency supervision based on Gaussian // There are confliet Gradients in different frequencies
type, as shown in Algorithm [I] For each ifglo” - g"9" < 0 then
Gaussian, we check for potential gradi- if {; == 0 then o
ent conflicts by computi}?ghthe inner prod- ghioh  ghioh _ gug%”? glow; )
1 .
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most relevant to the Gaussian type and L _
project the other. Specifically, for 2D Gaus- | AG; = gf*'" 4 glov + g'"o"
sians, we preserve supervision from low-  return Update AG

frequency and remove the conflicting com-

ponent of high-frequency by projecting g?igh onto the normal vector of g, as shown in Eq.(9).

Similarly, for 3D Gaussians, we retain g;"gh and project gl°¥ as indicated in Eq.(10). This asym-
metrical supervision ensures each Gaussian is updated along its most informative direction while
minimizing interference from less relevant frequency signals. More details on DWT and the gradient

projection strategy are provided in Appendix [E|and Appendix [F} respectively.

4 Experiments

Datasets and Metrics. We evaluate EGGS on several widely used benchmarks. For appearance
evaluation, we use Mip-NeRF360 [25], LLFF [41], Tanks&Temples [42]], and DTU [43]. For
geometry evaluation, we use DTU, which provides ground-truth point clouds, and Tanks&Temples,
which offers ground-truth depth maps. Additional dataset details are provided in Appendix [A]
Following prior work [25) [11} [13} [12]], we report PSNR, SSIM [44]], and LPIPS [435] to evaluate the
appearance quality of synthesized novel views. For geometry, we follow [12}|39]] and report Chamfer
Distance [46] on DTU to assess reconstruction accuracy.

Baselines. To demonstrate the effectiveness of EGGS, we compare against several single-
representation methods that use either 3D or 2D Gaussians. For 3D Gaussian-based methods,
we include vanilla 3DGS [[11], GaussianPro [13]] and GOF [28]], which incorporate geometric regu-
larization, and FreGS [47], which introduces frequency-based supervision. For 2D Gaussian-based
methods, we consider vanilla 2DGS [12] and TextureGS [[16], which improves the appearance fidelity
of 2D Gaussians. Additional discussion of related methods is provided in Appendix [B]

Implementation. We implement our hybrid rasterizer based on the CUDA rasterization code of
3DGS [[11]]. We used the Haar filter for the DWT [37, 148]]. For Frequency-Decoupled Optimization,
we set the weight for the frequency components as Ay, = 0.2 and A;,, = 0.4. For Adaptive Type
Switch, we set the erank threshold as 2.05. We offer more details about our training pipeline and
parameter setting in Appendix [A] All experiments are conducted on an A5000 GPU.
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Figure 8: Qualitative comparison on LLFF, Tanks&Temples, and Mip-NeRF360. 3DGS suffers from inaccurate
scene geometry. While 2DGS improves geometric fidelity, it overlooks texture and local details. EGGS recovers
more accurate geometry while preserving high-frequency details. Additional visual results and videos are
available in the supplementary material and project website,

Table 1: Quantitative comparison on Mip-NeRF360, LLFF and Tanks&Temples datasets. The best, second-best,

and third-best entries are marked in 'red , orange , and yellow , respectively.

Method Mip-NeRF360 LLFF Tanks& Temples
etho
PSNRT SSIM1 LPIPS| PSNRT SSIMT LPIPS| PSNR1 SSIM?T LPIPS |

2DGS sreerapr24 [12] 26.81 0.796 0.297 24.93 0.815 0.147 22.96 0.802 0.195
TextureGS gccvr2a 27.14 0.803 0.285 25.58 0.837 0.117 22.43 0.811 0.189
3DGS sreerapn»23 11 27.43 0.814 0.257 26.12 0.865 0.099 23.85 0.833 0.168
GOF 1g¢024 [28] 27.42 0.826 0.234 25.57 0.854 0.121 2241 0.831 0.172
GaussianPro reur.>24 27.92 0.825 0.208 26.53 0.867 0.105 23.92 0.855 0.162
FreGS cyprr24 [471 27.85 0.826 0.209 26.11 0.860 0.102 23.96 0.849 0.178
Ours 27.96 0.851 0.192 27.34 0.895 0.083 24.41 0.923 0.153

4.1 Results

Appearance. Figure [8|and Table[T|show qualitative and quantitative comparisons on Mip-NeRF360,
LLFF, and Tanks&Temples. 3D Gaussian-based methods generally achieve better PSNR, SSIM, and
LPIPS but often produce blurred geometry due to anisotropic Gaussians. GaussianPro and FreGS
improve reconstruction via geometric or frequency regularization but still lack geometric accuracy.
2DGS produces cleaner edges and better geometry, yet oversmooths details and underperforms in
appearance. TextureGS enhances 2D appearance but remains inferior to 3D-based methods. In
contrast, EGGS outperforms all baselines by combining the strengths of 2D and 3D Gaussians. It
recovers more accurate geometry while preserving high-frequency visual details.

Geometry. We evaluate geometry reconstruction quality on Tanks&Temples and DTU. As shown in
Figure[9] both 2DGS and EGGS produce more accurate depth maps than 3DGS, with sharper surfaces
and clearer edges. However, 2DGS sacrifices appearance fidelity due to the lack of high-frequency
detail. In contrast, EGGS improves geometry over 3DGS while also preserving appearance quality.
Table 2] reports Chamfer Distance on the DTU dataset, where EGGS outperforms 3DGS and SUGAR.
Note that SUGAR, 2DGS, and GOF prioritize surface reconstruction and mesh extraction, often at
the cost of appearance. Although 2DGS is slightly more accurate geometrically, EGGS achieves a
better trade-off, offering stronger appearance quality alongside competitive geometry.

Efficiency. Table [3|compares the model size and training time of EGGS with 3DGS, 2DGS, and
GaussianPro on LLFF and Tanks&Temples. While 2DGS uses the fewest Gaussians, its training time
exceeds that of 3DGS. GaussianPro enhances appearance quality over 3DGS but incurs significantly
higher training cost. In contrast, EGGS strikes a favorable balance, requiring fewer Gaussians than
both 3DGS and GaussianPro, while achieving the shortest training time among all methods.
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Figure 9: Qualitative comparison on Tanks& Temples. EGGS achieves better overall reconstruction quality,
producing more accurate depth maps than 3DGS and recovering high-frequency details better than 2DGS.

Table 3: Comparison on efficiency. # Gaus- ~ Table 4: Ablation study. Repr. stands for the Gaus-
sians is the average number of Gaussians. sian type, Hyb. for hybrid rasterization, Ex. for type
Dataset Method PSNR #Gaussians Training eXChange’ and Freq~ for frequency regularization.

3DGS 26.12 919K 10min D Repr. Hyb. Ex. Freq. ‘ PSNRT SSIM1 LPIPS |
2DGS 24.93 343K 11min ]
LLFF GaussainPro =~ 26.53 933K 20min ! 3D 26.12 0.865 0.099
EGGS 2734 581K Omin i  3D+2D 26.01 0.859 0.105
. iii  3D+2D v 26.23 0.867 0.097
3DGS 23.85 1502K 13min v 3D+2D v v 26.58 0.874 0.093
Tanks& 2DGS 22.96 416K 15min v 3D v 26.19 0.867 0.101
Temples GaussainPro = 23.92 1381K 35min vi  3D+2D v v 26.41 0.871 0.096
EGGS 24.41 754K 11min vii  3D+2D v v v 27.34 0.895 0.083

4.2 Ablation and Generalization Analysis

Ablation Study. We evaluate the effectiveness of each component in EGGS in Table[d] Row i is the
vanilla 3DGS baseline. In row ii, we adopt a hybrid 2D/3D representation but rasterize all Gaussians
using the 3DGS rasterizer, which leads to performance degradation. Row iii incorporates our hybrid
rasterizer, which renders Gaussians according to their type. However, this setting still lacks flexibility
and regularization. Row iv incorporates adaptive type exchange to enhance the flexibility. Rows v—vii
study frequency-based supervision, which provides only limited gains for non-hybrid 3DGS (row v)
but is more effective in the hybrid setting. The full model in row vii achieves the best performance,
indicating that decoupled frequencies more effectively exploit the strengths of the exchangeable
hybrid representation. We provide more ablation and analysis in Appendix [f|

Generalization Analysis. We evaluate the robustness of =
EGGS in challenging scenarios, including few-shot and
out-of-distribution (OOD) settings. Following prior work,
we use LLFF [41]] for few-shot evaluation [49] [50] and
OOD-NVS [51] for OOD evaluation [52]. More details
are provided in Appendix [A] As shown in Table [IT]and
Figure[I0] EGGS achieves robust performance in both set-
tings, benefiting from its balanced multi-view consistency : i
and appearance fidelity. This indicates that the hybrid rep- Ground Truth 3DGS 2DGS Ours
resentation generalizes better than single-type baselines. ~ Figure 10: Comparison in the OOD setting.
Table 5: Generalization performance.

Training View

5
2|5
=
Z
&

We also emphasize that EGGS serves as a general un-

. . . . . . Settin Method ~ PSNRT  SSIMT  LPIPS |
derlying representation and is compatible with various e

S . . . g 3DGS 19.52 0.719 0.279
optimization strategies developed for specialized set- Few-shot ~ 2DGS 1850  0.661 0321
tings [49] 50} [53] 54} [55} 51]]. We discuss these orthogonal EGGS 2043 0735 0258
techniques in Appendix [B] and provide further remarks on oop s M3 ome  ois
limitations and broader impacts in Appendix EGGS 2407 0907 0451

Table 2: Quantitative Geometry Comparison on DTU. Chamfer Distance (CD) is reported per scene. mCD and
PSNR denote the mean Chamfer Distance and mean PSNR across all scenes, respectively.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 | mCD PSNR

3DGS 214 153 208 1.68 349 221 143 207 222 175 179 255 153 152 150| 1.96 32.82
SUGAR 147 133 1.13 061 225 1.71 1.15 163 162 107 079 245 098 0.88 079 | 1.33 31.59
2DGS 048 091 (039 039 101 083 081 136 127 076 [0.70 140 040 0.76 0.52 | 0.80 3243
GOF 050 082 037 037 1.2 078 073 1.18 129 071 0.77 090 044 069 049 | 074 3258
Ours 0.65 0.77 058 053 1.08 1.01 09 131 145 0.72 0.88 153 0.67 0.83 0.66 | 091 | 33.65




5 Conclusion

This paper presents EGGS, a hybrid Gaussian Splatting framework that combines the appearance
fidelity of 3D Gaussians with the geometric accuracy of 2D Gaussians. The design integrates Hybrid
Gaussian Rasterization for unified rendering, Adaptive Type Exchange for flexible representation,
and Frequency-Decoupled Optimization to balance geometry and appearance. EGGS outperforms
both 2D- and 3D-only baselines across multiple benchmarks. Future work includes extending the
hybrid representation to more diverse and challenging scenarios.
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Appendix

Table of contents:

* Appendix |A} Implementation Details. Additional information on the training pipeline,
parameter settings, and evaluation datasets and protocols used in our experiments.

* Appendix [B} Related Works. Extended discussion on the distinctions between our method
and other related approaches, including hybrid and task-specific splatting methods.

» Appendix [C; Differentiable Rasterization for 2D/3D Gaussian Splatting. Technical
details of the rasterization procedures used in 3DGS and 2DGS, which serve as the building
blocks for our Hybrid Gaussian Rasterization module.

» Appendix D} Effective Rank and Adaptive Type Exchange. More ablations and analysis
on the effective rank threshold. We also detail the design of permutation-based reparameteri-
zation, and report the evolution and distribution of Gaussian types during training.

» Appendix [E} Discrete Wavelet Transform. A detailed explanation of the DWT used in our
Frequency-Decoupled Optimization, including mathematical formulation and visualization
of decomposed frequency components.

* Appendix [F} Gradient Conflict Analysis in Frequency-Decoupled Optimization. In-
depth analysis of gradient conflicts arising from different frequency components, supported
by empirical statistics. We also compare different loss application strategies and highlight
the benefits of our projection-based solution.

* Appendix [H} Discussion. Discussion on limitations, broader impacts, and the generalization
potential of our hybrid representation in more diverse scenarios.

A Implementation Details

Training Pipeline and Parameter Setting. Our training setup closely follows 3DGS [11]. We
assume camera poses are provided or can be estimated using structure-from-motion (SfM) [33].
Initial sparse point clouds are generated via COLMAP [35 [36]. All methods, including EGGS
and baselines, are trained for 30K iterations. Learning rates for Gaussian parameters follow the
default configurations from 3DGS and 2DGS. We adopt the densification strategy from 3DGS, which
refines Gaussian distributions by pruning or duplicating them in under- or over-reconstructed regions.
Densification begins at iteration 500, ends at iteration 15K, and is performed every 100 iterations.

In EGGS, we employ Hybrid Gaussian Rasterization, where each Gaussian is rendered according
to its assigned type. Gaussian types are randomly initialized. To enable flexible representation, we
introduce Adaptive Type Exchange, which is performed every 500 iterations from step 500 to 30K.
During type switching, we set the effective rank threshold 6, to 2.05. For scale modulation, which
allows 2D Gaussians to evolve into 3D Gaussians as the s, scale becomes more significant, we
use 0, = 1.05 and temperature 7" = 0.001 in Eq.[/] Additionally, we incorporate frequency-based
supervision using the Discrete Wavelet Transform (DWT). More details on Frequency-Decoupled
Optimization are provided in Appendix [F]

Datasets and Evaluation Protocols. We evaluate the performance of EGGS and baselines on several
widely used datasets, including Mip-NeRF360 [25]], LLFF [41]], Tanks&Temples [42], DTU [43]],
and OOD-NVS [51]]. We follow the standard train/test splits used in prior work [25], with additional
dataset statistics provided in Table @ To ensure fair comparison with baselines [[11} [12} 28], we
downsample input images using the same factors as in [52]]. All datasets provide RGB images for
evaluating appearance quality. DTU additionally offers ground-truth point clouds for computing
Chamfer Distance, while Tanks&Temples provides ground-truth depth maps for depth accuracy
evaluation. Beyond standard dense-view evaluation, we also perform evaluation under few-shot
settings using 3 views from LLFF, and out-of-distribution (OOD) setting using OOD-NVS.

B Related Works

Following 3DGS [[11]], a line of work has been proposed to enhance the geometry accuracy and
reconstruction quality. As discussed in the related work section, most existing methods are based on
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Table 6: Details on the datasets used for evaluation of appearance and geometry.

Dataset Ground Truth Evaluation Metric Evaluation Protocol Factor
Mip-NeRF 360 (outdoor) [25] RGB image Appearance Standard 4
Mip-NeRF 360 (indoor) [25] RGB image Appearance Standard 2
LLFF [41] RGB image Appearance Standard and Few-shot 8
Tanks&Temples [42] RGB image; Depth Appearance and Geometry (F1) Standard 2
DTU [43] RGB image; Point Cloud Geometry (chamfer distance) Standard 2
OOD-NVS [51] RGB image Appearance OOD 1

a single representation [[14} 13} (12} 15,28} 116}147]. Here, we further expand on several recent efforts
that aim to exploit the advantages of 3D and 2D Gaussians, as summarized in Table[7] We consider a
method to be general if the training pipeline follows the standard 3DGS.

HybridGS [17] proposes to combine 3D Gaussians and image-space 2D Gaussians to remove transient
objects during reconstruction. However, the 2D Gaussians in HybridGS are defined in the image
frame, lacking the multi-view consistency provided by 2DGS [12]. Additionally, HybridGS employs
a three-stage training pipeline specifically designed for transient object removal, making it less
general than pipelines based on 3DGS. Moreover, since the training code of HybridGS is not publicly
available, a direct comparison with EGGS is not feasible.

HorizonGS [18]], on the other hand, is built upon ScaffoldGS, where voxel-based MLPs are used
to decode Gaussian primitives. HorizonGS generates 3D Gaussians from MLPs for novel view
synthesis and 2D Gaussians for surface reconstruction. Thus, it still follows a single-representation
scheme. Furthermore, HorizonGS is specifically designed for aerial-ground scenarios and introduces
a two-stage training pipeline to address conflicts from varying altitudes. Similar to HybridGS, this
design is task-specific and less generalizable.

In contrast to HybridGS and HorizonGS, we note that several recent optimization techniques are more
general and adhere to the 3DGS training pipeline, such as ScaffoldGS [22] and 3DGS-MCMC [27].
ScaffoldGS improves efficiency by introducing voxel-based MLPs, while 3DGS-MCMC enhances
the densification process by reformulating 3D Gaussians as Markov Chain Monte Carlo (MCMC)
samples. These methods are orthogonal to EGGS. Since EGGS serves as a general underlying
representation, we believe such orthogonal optimizations can be incorporated to further enhance our
framework. Exploring the potential of integrating these techniques with our exchangeable hybrid
representation is a promising direction for future work.

In this work, we assume that camera poses are either available or can be estimated using structure-
from-motion (SfM) [35]], and that initial sparse point clouds can be generated using COLMAP [35/136].
However, in practice, recovering geometric information such as camera poses and point clouds re-
mains challenging. Recently, 3D Geometric Foundation Models (GFMs) have emerged as a promising
approach to improve the generalizability of 3D reconstruction [56]]. Feed-forward models such as
DUSt3R [57]], MASt3R [58], and VGGT [359] can predict robust geometric attributes in a single
forward pass, even when the input multi-view images exhibit minimal or no overlap. Incorporating
GFMs can potentially enhance the reconstruction quality of our method in open-world scenarios.

Table 7: Comparison of the setting with related works.

Method Gaussian Type Setting Training Pineline
3DGS [L1] 3D General Single-stage
2DGS [12] 2D General Single-stage
HybridGS [17]] 3D+2D Transient Three-stage
HorizonGS [18] 3D/2D Varying-altitude Two-stage
ScaffoldGS [22] 3D General Single-stage
3DGS-MCMC [27] 3D General Single-stage
EGGS 3D+2D General Single-stage
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C Differentiable Rasterization for 2D/3D Gaussians Splatting

In this section, we detail the differentiable rasterization procedures used in 3DGS [11] and 2DGS [12],
focusing on how the intermediate coordinates in Eq.(I]) are computed. In both methods, images are
rendered by computing the color at each screen-space pixel z,, from a set of N Gaussians {G; ivzf)l.
The final pixel color is obtained by rasterizing the Gaussians onto the image plane, but the rasterization

procedures differ significantly between 3DGS and 2DGS.

3DGS employs an affine approximation to the projective transformation for rasterization. For a 3D
Gaussian G3¢ with type ¢; = 1, it is first projected onto the image plane via affine projection [[T1].
The resulting projected Gaussian is denoted as G}, with 2D center 4, ; and covariance 3 in the
image plane. The projected covariance is computed as:

S =Jws,wTJT, an

where J is the Jacobian matrix of the affine projection, and W accounts for the world-to-camera
transformation [I1]]. Once X is obtained, the projected center p, ; can be computed accordingly.

On the other hand, 2DGS applies ray—splat—intersection to rasterize 2D Gaussians. For a 2D Gaussian
G2d with t; = 0, it is not directly projected onto the image plane. Instead, to preserve the geometric
accuracy of G4, the pixel Zp is unprojected into the local tangent frame defined by the Gaussian [12].
This is done by computing the intersection between the ray passing through x;, and the tangent plane
of G24, resulting in the local coordinates:
h2h} — hih2 hihy — hihs

where h,, and h, are derived from the homogeneous plane equations associated with the pixel
xp = (x,y) as:

12)

ho = (WH) hy, h, = (WH)"h,. (13)

More details about the homogeneous transformation matrices H and W can be found in 2DGS [12].
By solving Eq. , we obtain the 2D position of x,, in the tangent frame, denoted as u;(z,) =
(ui(zp), vi(xp)). Note that the center py, ; of G2 is defined as the origin of this tangent frame.

With the projected center pi5; , and covariance X; for 3D Gaussians, and the intersection coordinates
w;(xp) and v;(z) for 2D Gaussians, we can perform hybrid rasterization as described in Section 3.1}

D Effective Rank and Type Switch

In this section, we provide additional details about Adaptive Type Exchange. We focus on the effective

rank threshold and the design choices behind 3D Table 8: Ablation on different erank thresholds.

Gaussian reparameterization and 2D Gaussian
scale modulation. We also present statistics on We evalua}te th_e appearance of EGGS on the LLFF
dataset with different erank thresholds.

the distribution of Gaussian types over training

iterations. erank threshold PSNR SSIM LPIPS
Effective Rank Threshold. As described in 1.9 26.15 0.871  0.103
Section [3.2] we use the effective rank (erank) 1.95 2623 0868  0.101
to assess the mismatch between a Gaussian’s 2 2649 0874 0.097
assigned type and its actual geometric dimen- 2.05 2724 0.885 0.086

. . . 2.1 2637 0.844 0.113
sionality. We set the erank threshold to 2.05 in 215 2578 0831 0.126

our experiments and study its effect in Table[§]
When a 3D Gaussian becomes increasingly flat and its erank drops below the threshold, it is converted
to a 2D Gaussian. Conversely, if a 2D Gaussian’s erank exceeds the threshold, it is switched to 3D.
A higher threshold causes more 3D Gaussians to be converted to 2D, as more will fall below the
threshold. This can degrade performance when the threshold is set too high. In contrast, a lower
threshold (e.g., 1.9) results in fewer 3D Gaussians being converted to 2D, causing the model to behave
more like the 3DGS baseline and limiting the benefits of hybrid representation.

While the erank metric has been previously introduced [38|[39], our contribution lies in its integration
into a dynamic type exchange mechanism for hybrid Gaussian representation. We acknowledge that
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erank is a heuristic measure of effective dimensionality and may not behave monotonically in all
scenarios. When a Gaussian has scales (1, 1, s,) with the first two scales fixed, the erank increases
with s, initially but may drop as s, becomes dominant (e.g., erank returns to 2 when s, ~ 2.6). In
such cases, a volumetric Gaussian could technically fall below the threshold 6, and be converted to
2D. Howeyver, we note that such configurations are rare in practice. All three scales are updated jointly
during training, and our method includes reparameterization and soft modulation to ensure that type
transitions remain stable and consistent with the evolving shape. Although the erank threshold does
not come with theoretical guarantees for all edge cases, it demonstrates empirical effectiveness across
diverse datasets.
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Figure 11: The number 3D and 2D Gaussians in different iterations during training.

Permutation-Based Reparameterization. The key to reparameterization is preserving the covariance
during type switching. We achieve this using permutation matrices P, and P, designed to be
orthogonal with a positive determinant. Specifically, we define:

01 0 0 0 1
pP,=0 0 1|, P,=|1 0 0 (14)
1 0 0 0 1 0

where PPT = I and I is the identity matrix, and det(P) = 1. During conversion, the new S*
scaling and rotation R* are computed using these permutation matrices to ensure that the transformed
covariance ¥ = RSSR’ remains unchanged:

S* = PSP" and R* = RP" (15)
It is easy to see the converted covariance is unchanged:
st — R*S*§*TR*T
=RP".PSP". PSTPT. PR"
=R (P"P).-S-(P'P)-ST . (P"P)-R”
= RSSTR"
=3 (16)

In addition to preserving the covariance, the permutation must ensure that the converted rotation
matrix R has a positive determinant. This is important because R is converted into a quaternion
during optimization, and most 3D graphics frameworks assume right-handed coordinate systems [46].
A negative determinant implies a reflection, which cannot be represented by a unit quaternion. Given
that the original rotation matrix R satisfies det(R) > 0, and the permutation matrices P, and P,
are orthogonal with det(P) = 1, the determinant of the converted rotation R* = RP7 is given by:
det(R*) = det(R) - det(P") = det(R) - det(P) = det(R) > 0. Therefore, P, and P,, preserve
both the covariance and the positive determinant of the rotation matrix, ensuring compatibility with
quaternion-based optimization.

Gaussian-Type Distribution. Figure[IT|shows the distribution of 2D and 3D Gaussians throughout
training. As described in Appendix |A] we randomly initialize Gaussian types, resulting in roughly
equal numbers of 2D and 3D Gaussians at the start. During optimization, both types increase due
to densification, with a more significant rise in 3D Gaussians. This trend can be attributed to the
SfM-initialized points already containing geometric structure, allowing 2D Gaussians to capture
coarse geometry in early iterations. Notably, the number of 2D Gaussians gradually decreases in
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the later stages of training, especially after densification ends at 15K iterations. This suggests that
many 2D Gaussians are being converted to 3D Gaussians, likely to better recover under-reconstructed
regions and capture finer scene details.

Gaussian-Type Initialization. A key feature of EGGS is its exchangeable representation, which
allows each Gaussian primitive to change its type as needed, regardless of its initial type. To verify
this capability, we conduct a simple experiment by investigating three initialization scenarios: we
initialize all Gaussians as 2D, all as 3D, or with random type assignments, and observe the distribution
of Gaussian types throughout training. Below, we show the percentage of 3D Gaussians at different
iterations. As shown in Table[9] even when the model is initialized entirely with 2D Gaussians, part
of the Gaussians are converted to 3D Gaussians during training, leading to a hybrid model in the final
stage. This demonstrates that 2D Gaussians can indeed transition to 3D types during training, despite
potentially incorrect initialization, and vice versa.

E Discrete Wavalet Transformation

S N~ il ﬁ
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Figure 12: Tllustration of the level-1 Discrete Wavalet Transformation.

In this section, we provide additional details on the Discrete Wavelet Transform (DWT) used in
our Frequency-Decoupled Optimization. DWT is a widely adopted technique for frequency-domain
analysis. Given an image Z, DWT decomposes it into four sub-bands: one low-frequency component
and three high-frequency components corresponding to horizontal, vertical, and diagonal directions.
Formally, we define the low-pass filter matrix L as:

v bo 0

L= 1 o b a7

where £ is the 1D low-pass wavelet filter. Similarly, the high-pass matrix H is derived from the
1D high-pass wavelet filter h. We use orthogonal 1D wavelet filters such that £ and h are the
same [37,/48]). The four sub-bands are computed as:

I = LIL";
M — grL7,
THE = LTHT;
7HH — HTHT, (18)

We provide illustrative example in Figure We extract the low-frequency feature as 7; = Z**, and
the high-frequency component Z;, as the composition of directional details: ZX# (horizontal), ZH
(vertical), and Z*# (diagonal). In our implementation, we use a level-1 Haar filter for the DWT.
Table 9: Effect of 3D Gaussian percentage on reconstruction quality. PSNR denotes the peak signal-to-noise
ratio at each iteration step under different initialization strategies.

Tter. 0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 PSNR

All 2D initialization 0.0%  19.0% 29.1% 337% 350% 389% 398% 41.4% 432% 457% 478% 2725
All 3D initialization 100.0% 86.2% 753% 69.0% 639% 59.7% 58.7% 58.0% 57.4% 57.0% 57.0% 2751
Random initialization ~ 49.9%  58.1% 59.9% 57.3% 55.1% 523% 52.5% 529% 529% 53.1% 542% 27.86
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Figure 13: The number of Gaussians with conflicted gradients in different iterations during training.

F Gradient Conflict Analysis in Frequency-Decoupled Optimization.

We provide additional details on Frequency-Decoupled Optimization and Algorithm[T] After applying
DWT, both 3D and 2D Gaussians receive gradients from the high-frequency and low-frequency losses.
As discussed in Section 33| the distinct roles of 3D and 2D Gaussians—where 3D Gaussians
prioritize fine detail and 2D Gaussians emphasize geometric structure—can lead to conflicting
gradient directions.

We empirically analyze this in Figure [[3] where “conflicted Gaussians™ are defined as those with
negative inner product between low- and high-frequency gradients, i.e., gi°" - g?lgh < 0 in Algo-
rithm ] In early training (e.g., before 15K iterations), about 45% of Gaussians exhibit such conflicts.

Although the conflict ratio gradually decreases
as training progresses, around 20% of Gaussians Table 10: Ablation on different use of the frequency

still experience conflicts at convergence. This loss. FDO stands for Frequency-Decoupled Optimiza-
supports our motivation that naively combining tion.

Liow and Lyigpn as Eq.@ for all Gaussians pro-

. : .. Method PSNR SSIM LPIPS
vides suboptimal supervision, and underscores
the need for the proposed asymmetrical update ~ 3DGS 2612 0.865  0.099
strategy. In Table [T0] we compare different ~EGGS w/o FDO 26.58 0874 0.093
strategies for applying frequency-based super- gggg ;’V/; g¥¥ + mask %gg% ggg 8823
vision. As baselines, we include vanilla 3DGS EGGS 2734 0895 0083

and EGGS without Frequency-Decoupled Opti-

mization (EGGS w/o FDO), which includes hybrid rasterization and type exchange but no frequency
regularization. EGGS w/ DWT applies frequency losses directly as in Eq.(§), yielding only marginal
gains due to unresolved gradient conflicts (FigurdI3). A simple alternative is to mask out conflicting
frequency gradients—for example, ignoring high-frequency gradients for 2D Gaussians. We denote
this variant as EGGS w/ DWT + mask. While masking helps reduce conflicts, it may discard useful
gradient signals. In contrast, our full method achieves the best performance by leveraging gradient
projection to suppress only the conflicting components while retaining informative gradients. For
theoretical background on gradient projection and conflict resolution, we refer readers to [40].

Table 11: Comparison of inference efficiency. We report the average FPS in each dataset.

Method | LLFF  Tanks&Temples  Mip-NeRF360.
3DGS 323 158 145
2DGS 187 59 76
GaussianPro 308 166 121
EGGS 268 125 104

G Inference Efficiency

As shown in Table[TT] we compare the rendering efficiency of different methods in terms of frames
per second (FPS). During training, the number of parameters significantly impacts performance,
as backpropagation and parameter updates are computationally expensive. In contrast, inference
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efficiency is primarily determined by the rasterization strategy. 3DGS-based methods, including
GaussianPro, employ affine projection-based rasterization, which is efficient but less accurate,
resulting in higher FPS at inference. Since both 3DGS and GaussianPro use the same projection-based
rasterization pipeline, the difference in their inference speed mainly arises from model size—that is,
the number of Gaussians used. While the number of primitives affects performance, its influence
remains moderate given the similar scale of models.

In contrast, 2DGS adopts a ray—splat—intersection rasterization pipeline, which provides improved
geometric accuracy but is more computationally intensive, resulting in slower rendering. EGGS
integrates both 2DGS and 3DGS rasterization strategies in a hybrid manner, achieving a favorable
balance between accuracy and efficiency. While EGGS ’s FPS is slightly lower than that of 3DGS, it
remains significantly faster than 2DGS. Additionally, EGGS benefits from a shorter training time
than 3DGS, owing to its reduced model size and more effective optimization dynamics.

H Discussion

Broader Impact. This work introduces an exchangeable hybrid Gaussian splatting framework that
improves the trade-off between geometry accuracy and appearance fidelity in neural rendering. By
enabling flexible type adaptation and frequency-aware supervision, our method can enhance 3D
reconstruction quality in both synthetic and real-world scenarios. Potential applications include au-
tonomous driving, augmented reality, and robotics, where accurate scene geometry and photorealism
are both essential. While our approach primarily targets academic benchmarks, it may inform future
developments in real-time perception systems.

Limitations. The current initialization of Gaussian types is random and does not incorporate semantic
or structural cues from the sparse point cloud, which may limit early-stage optimization. Incorporating
semantic priors could improve convergence and final quality. Additionally, as a general-purpose
representation, our method has not been explicitly tested under extreme conditions such as low-light
environments, highly reflective surfaces, or scenes with significant transient content. Evaluating and
adapting the framework to such challenging scenarios may further demonstrate the robustness and
versatility of the hybrid representation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction clearly align with the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are explicitly discussed in the discussion section, providing a
clear understanding of the work’s boundaries.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions for each theoretical result are clearly stated, and the correct-
ness is analyzed in detail in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method and algorithms are clearly explained, with parameters and experi-
mental settings provided to ensure reproducibility of the main results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The evaluation primarily uses public datasets cited and explained in the
experimental setting section, and the code is available in the anonymous repository with
sufficient instructions for reproduction.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: The experimental setting is clearly explained, including all necessary training
and test details to understand the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports results as averages across scenes and independent runs,
following standard practices in the field and providing appropriate statistical reliability.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources are discussed in the Implementation section,
providing sufficient information to reproduce the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully conforms with the NeurIPS Code of Ethics in all respects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The discussion section addresses both potential societal impacts of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used in the paper are properly cited, with licenses and
terms of use respected.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

25



13.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is provided in the anonymous URL and includes accompanying
documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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