THE ROLE OF LEARNING AND MEMORIZATION IN RELABELING-BASED UNLEARNING FOR LLMS

Anonymous authorsPaper under double-blind review

ABSTRACT

This work studies how the nature of a response generated by a large language model (LLM) impacts the efficiency of relabeling-based unlearning, a common unlearning technique that trains the model to fit an "unlearn" set (i.e., a dataset that we wish the model to unlearn) with alternative responses to prevent it from generating unwanted outputs that align with the unlearn set. We distinguish between two different ways LLMs can generate undesirable outputs: learning-based gen**eration**, where the model learns an underlying *rule* connecting the input and the response (e.g., social stereotypes), and memorization-based generation, where the model memorizes specific information about a given input (e.g., private information like a phone number). We demonstrate that relabeling-based unlearning can be detrimental to the model performance when the undesirable outputs are generated based on learning-based generation whereas it is more effective with memorization-based generation. We provide theoretical justifications for this through the lens of hypothesis testing, showing that memorization-based hypotheses are more stable in the presence of "fabricated evidence" that contradicts the hypothesis' prediction and more flexible to produce alternative responses. Our empirical results further support our findings by showing a clear performance gap in relabeling-based unlearning under these two types of data generation mechanisms.

1 Introduction

Large language models (LLMs) have shown remarkable capability to generate complex, human-like text by being pretrained on massive amount of data. However, this training process may also result in undesirable model behaviors with serious safety risks, such as privacy leakage, social bias, and creation of harmful content (Carlini et al., 2021; Huang et al., 2022; Sandbrink, 2023). To address these risks, machine unlearning for LLMs has emerged as an increasingly growing field aimed at removing the influence of undesirable data from a model.

A primary objective of machine unlearning for LLMs (also referred to as LLM unlearning) is to prevent the model from producing undesirable outputs, represented by a data set known as the *unlearn* set (also known as the forget set), given relevant prompts without compromising the model's overall capability. Researchers have proposed various unlearning methods based on different frameworks (Jang et al., 2022; Zhang et al., 2024; Jiang et al., 2020; Li et al., 2024). Among these methods, a common approach is the *relabeling-based method* (Deeb & Roger, 2024; Maini et al., 2024; Eldan & Russinovich, 2023). The core idea for the relabeling-based method is to first create a new unlearn set with the same prompts as the original unlearn set but with alternative, harmless responses. The model is then trained with this new set being a part of the training data. By training the model to fit these new responses, we effectively encourage the model to predict the original prompts with alternative responses and then overwrite the undesirable responses.

While the field of LLM machine unlearning is receiving increasing attention, the understanding on what factors truly influence its difficulty and efficiency is relatively underexplored. This is a crucial area of study since the understanding of these factors allows us to gain deeper insights on how these unlearning methods work and help us develop more effective and reliable unlearning methods. Prior works in this area have identified several key factors that influence the unlearning efficiency including frequency of unlearn data in the training data (Krishnan et al., 2025), data

entanglement (Zhao et al., 2024a), robustness to parameter perturbation (Feng et al., 2025), how knowledge is encoded in the training data (Wu et al., 2025) and so on.

Following this line of work, our work studies what affects the unlearning difficulty and efficiency, specifically for the *relabeling-based unlearning method*. Our focus is a new factor: how the undesirable response is generated by the model after the initial training. In this work, we distinguish between two different ways of response generation: **learning-based generation**, where the model learns a general rule to connect the prompts to the response (e.g., social stereotypes that associate certain professionals with a particular gender), and **memorization-based generation**, where the model memorizes a specific response to given prompts (e.g., private information like a personal phone number).

In this work, we study how the nature of response generation (learning-based versus memorization-based) affects the unlearning efficiency for the relabeling-based method. The key contributions of this work are highlighted as follows:

- We propose a hypothesis testing framework to model the relabeling-based unlearning method. In particular, we provide a mathematical model for the learning and memorization-based hypotheses. The relabeling-based method is modeled as providing a sequence of "fabricated evidence" that conflicts the hypothesis prediction based on existing history of observations.
- Building upon this, we study how the belief in the learning and memorization-based hypotheses change when presented with conflicting evidence by comparing the posterior and prior change relative to the baseline hypotheses that make constant predictions. We show that memorization hypothesis is more stable with an upper bound on its belief change independent of the length of the evidence sequence while the belief change for the learning hypothesis scales with the evidence length.
- We establish a lower bound result showing that even when the unlearn set contains only a single data point, fitting this new set can cause a significant performance gap even if the prior hypothesis space can perfectly fit the original task distribution. This lower bound suggests that in order to fit the new unlearn set while maintaining good overall performance, the model needs to drastically change its prior by expanding the hypothesis space with more complicated hypotheses, which could lead to slower convergence and poor performance.
- Finally, we provide empirical evidence to support our findings by instructing the model to perform binary classification task. We define three types of tasks: LINEAR and RECTANGLE (akin to learning-based generation), where the data shows clear patterns and RANDOM task (akin to memorization-based generation), where the labels are uniformly and randomly generated. Our experiments show that the RANDOM task shows faster and more stable unlearning, maintaining consistently high retain accuracy throughout the unlearning process while the LINEAR and RECTANGLE tasks shows slower convergence and significant fluctuation in retain accuracy.

1.1 RELATED WORK

Machine unlearning algorithms for LLMs The area of machine unlearning for LLMs is rapidly growing with vast amount of literature. This paper focuses on the relabeling-based unlearning method, which has been extensively studied in prior works. For example, (Maini et al., 2024) teach the model to respond with "I don't know" for the prompts in the unlearn set in order to prevent the model from outputting harmful responses. In (Eldan & Russinovich, 2023), the authors replace the unlearn target with its generic counterpart and finetune the model with these alternative labels. Furthermore, (Deeb & Roger, 2024) generates random incorrect choices for multiple-choice questions and optimizes over these choices. Apart from the relabeling-based method, other notable unlearning methods include gradient ascent (Jang et al., 2022; Chen & Yang, 2023), which maximizes the prediction loss of unlearn set, NPO (Zhang et al., 2024; Bronec & Helcl, 2025) which performs preference optimization by treating the unlearn data as negative examples, RMU (Li et al., 2024) which perturbs the activations for the unlearn data while preserving the activations for the retain data. Other recent LLM unlearning algorithms include (Yao et al., 2024; Liu et al., 2024; Chen & Yang, 2023; Meng et al., 2022; Ishibashi & Shimodaira, 2023) and others.

Machine unlearning difficulty Our work is close to the line of work that studies the difficulty of machine unlearning. Previous research has identified several factors that may be related to unlearn-

ing difficulty. To name a few, (Krishnan et al., 2025) studies the connection between the frequency of knowledge in the pretrained data and unlearning success. In particular, the authors (Krishnan et al., 2025) find that knowledge with higher frequency is harder to unlearn. (Feng et al., 2025) proposes a Memory Removal Difficulty (MRD) metric to measure the unlearning difficulty for each sample, which can be defined as the stability of data prediction in the presence of model parameter perturbations. Furthermore, (Zhao et al., 2024a) identifies two factors affecting the unlearn difficulty and shows that the unlearning is harder if the sample is more memorized and there is more entanglement between the unlearn and retain data. Finally, (Wu et al., 2025) links the unlearning difficulty to how the knowledge is encoded in the training data and shows that learning with paraphrased descriptions leads to easier unlearning, while unlearning knowledge from a chunk of text is more challenging.

2 Preliminaries

2.1 LLM UNLEARNING

Large language models (LLMs), parametrized by θ , predict the next word of a sequence s based on a probability distribution $P_{\theta}(\cdot|s)$. LLM unlearning is the process of removing the undesired data influence of a unlearn dataset, such as private or harmful information without compromising the overall model utility.

To achieve this, we use two distinct datasets. The unlearn dataset (U) contains the specific information we want the model to unlearn. The retain dataset (R), on the other hand, is a collection of data points that helps the model preserve its original utility and capabilities. By training the model on these two datasets, we can effectively erase the targeted information while keeping the model general utility.

Most existing LLM unlearning methods are achieved by finetuning model θ over a regularized objective written as

$$\min_{\theta} (1 - \alpha) L_U(\theta, U) + \alpha L_R(\theta, R)$$

where L_U is the unlearn loss computed on the unlearn set U that measures the unlearn effectiveness, L_R is the retain loss aiming to preserve model utility and α is a weight to balance between the unlearning and model utility maintaining objectives. In previous works, L_U and L_R are implemented in different ways as seen in (Jang et al., 2022; Zhang et al., 2024; Jiang et al., 2020; Li et al., 2024) and others.

2.2 RELABELING BASED UNLEARNING

Among the various LLM unlearning methods, an important approach is the relabeling-based method, which has been explored in a sequence of recent work (Yu et al., 2023; Yao et al., 2024; Eldan & Russinovich, 2023; Ishibashi & Shimodaira, 2023; Maini et al., 2024; Deeb & Roger, 2024). The relabeling-based unlearning involves firstly creating a new unlearn set, U', such that each prompt-response pair (x, y) in U is replaced with a modified pair (x, y') where the new response y' is different from the original response y. The selection of y' can be either an intentional crafted response, such as 'I don't know' as seen in (Maini et al., 2024) or a randomly selected but sensible response such as a random choice in the context of multiple-choice questions (Deeb & Roger, 2024).

After the construction of U', the overall unlearning objective is

$$\min_{\theta} (1 - \alpha) L(\theta, U') + \alpha L(\theta, R) \tag{1}$$

where the loss function L is prediction loss. The logic behind relabeling-based unlearning is that by training the model on these relabeled pairs (U'), we encourage the model to predict the original prompts with alternating or neutral responses, effectively overwriting the undesired information.

Some prior works combine the relabeling-based objective (1) with other unlearning techniques, such as gradient ascent loss, to form a more comprehensive optimization objective. This work will focus exclusively on the objective defined in (1) given that it remains a fundamental component in these works and focusing on equation (1) can obtain deeper insight into how relabeling works without the influence from other unlearning techniques.

3 MODEL'S BELIEFS UPDATE FOR UNLEARNING VIA RELABELING

In this section, we model the relabeling-based unlearning method as presenting conflicting evidence to the model (referred to as *fabricated evidence*). We study how this new evidence updates the model's internal beliefs, especially for the learning and memorization-based hypothesis, whose detailed definitions will be provided later in this section.

Generally speaking, a learning-based hypothesis is a general rule learned by the model to map the output to input (e.g. the arithmetic rule to give the response to 'given the equation 3x+5=11, the solution for x is 2'). In contrast, a memorization-based hypothesis involves memorizing a specific output for each input, usually for arbitrary information (e.g. 'The file name of Alice's medical record is 187465373622').

After initial training, the model holds a certain belief in these hypotheses on how the response is generated based on the prompts. The relabeling-based method, as defined in equation (1), can be seen as presenting the evidence to the model that contradicts the model's current beliefs. For example, training with the pair 'given the equation 3x+5=11, the solution for x is 3' challenges the arithmetic rule the model uses for basic calculation. Similarly, training with the pair 'the file name of Alice's medical record is 17384748343' contradicts specific information the model memorizes previously. The process of the relabeling-based method makes the model update its belief of the hypotheses in the presence of conflicting evidence.

We show that learning-based hypothesis is less stable than memorization-based hypothesis when faced with fabricated evidence that contradicts the hypothesis's prediction. When a learning-based hypothesis is presented with fabricated conflicting evidence, its belief relative to baseline hypotheses decreases exponentially with the length of the evidence. In contrast, a memorization-based hypothesis is relatively stable. Its belief relative to baseline hypotheses only drops by a constant amount regardless of the length of the fabricated evidence, as long as the same input has only been observed by the model a limited number of times. We also show that the learning-based hypothesis when confronted with fabricated evidence requires the model to search for a new hypothesis that fits both the modified unlearn and retain data, which can be a slow process when the model needs to drastically change its underlying priors on the hypothesis space. In contrast, the memorization-based hypothesis is more flexible and efficient to make alternative predictions.

3.1 Belief Update Modeling

Given a sequence of prompt-response pairs $D = \{(x_j, z_j)\}_{j=1}^n$, we simplify our analysis by letting $x_j \in [N] = \{0, 1, 2, \dots N\}$ and z_j is either -1 or +1 for any $j \in [n]$. Assume that the prompt x is uniformly sampled from [N] and the observed response $z \in \{-1, +1\}$ is a noisy version of the true, underlying response $y \in \{-1, +1\}$. Specifically, the true response y is flipped with a probability $\epsilon \in (0, 0.5)$ independently for each observation.

We propose two primary hypotheses to distinguish between how the model predicts the response y given input x, a learning-based hypothesis (H_0) that the model learns the underlying, general rule between x and y, and a memorization-based hypothesis (H_1) that the model memorizes every pair it has ever seen. The mathematical representations of both hypotheses are defined as follows:

- H_0 (Learning-based Hypothesis): The response y is determined by a known function $f:[N] \to \{-1,+1\}$, that is, y=f(x).
- H_1 (Memorization-based Hypothesis): A latent vector $V \in \{-1, +1\}^{N+1}$ is sampled once where each element in V is i.i.d uniformly sampled from $\{-1, +1\}$. The response y for input x is the value stored at the x_{th} position of vector V, i.e., $y = V_x$.

Under the learning-based hypothesis (H_0) , the model learns a general rule $f(\cdot)$ that characterizes the relationship between the prompt x and response y. In contrast, under the memorization-based hypothesis (H_1) , the model acts like a lookup table or a database, and the relationship between the input x and output y is completely arbitrary and random, determined by the initial sampling of the latent vector V. Also, since each element in V is sampled independently, there is no dependency between the responses for different inputs. The response of input x_1 provides no information for the response of input x_2 , which means there is no underlying, general rule for the model to learn. The optimal strategy is to memorize the responses for each input individually.

To serve as baselines for hypothesis testing, we also define two additional hypotheses that make constant predictions:

• H_2 : y = +1 for all $x \in [N]$.

• H_3 : y = -1 for all $x \in [N]$.

Notations we denote h as the history of n observations, and the prior belief of a hypothesis H given observations h as P(H|h). New evidence is denoted as e, which consists of k observations. The posterior belief of H after incorporating new evidence e is denoted as P(H|h,e). Finally, P(y|H,h,x) represents the prediction probability of the label y for input x given that hypothesis H is true and a history of observations h.

We also define fabricated evidence against a hypothesis as a sequence of data points that consistently contradict the hypothesis's predictions, given its past observations.

Definition 1. (Fabricated Evidence) Given a hypothesis H with history observations h, we call a sequence of datapoints $e = \{(x_j, z_j)\}_{i=1}^k$ fabricated evidence against H, if we have

$$y_j = -\arg\max_{y \in \{-1, +1\}} P(y|H, h, x_j) \quad \forall j \in [k]$$

and z_i is a noisy observation of y_i with i.i.d flipping noise ϵ .

We will first test the learning-based hypothesis H_0 against the baseline hypotheses H_2 and H_3 . Our primary focus will be to study the stability of the belief of H_0 in the presence of fabricated evidence e. To simplify the analysis, we consider a specific case where all evidence shares the same input x^* . In particular, Theorem 2 shows that the logarithm of the belief drop of the learning hypothesis H_0 relative to the baseline hypothesis scales linearly with the evidence length k with high probability, whose proof can be found in Appendix A.

Theorem 2. (Stability of Learning-based Hypothesis) Let $P(H_0|h)$, $P(H_2|h)$ and $P(H_3|h)$ be existing belief priors based on a history of observations h. Consider fabricated evidence $e = \{(x_j, z_j)\}_{j=1}^k$ against H_0 with history h, where $x_j = x^*$ for all $j \in [k]$. There exists an $i \in \{2, 3\}$ such that the change on the log-posterior is given as

$$\Delta_e = \log\left(\frac{P(H_0|h)}{P(H_i|h)}\right) - \log\left(\frac{P(H_0|h,e)}{P(H_i|h,e)}\right) = (k-2l)\log\left(\frac{1-\epsilon}{\epsilon}\right)$$

where l is the number of flipped observations in the evidence e, which follows a binomial distribution $l \sim Binomial(k, \epsilon)$. Furthermore, since $\epsilon \in (0, 0.5)$, we have with probability over $1 - O(k^{-10})$,

$$\Delta_e = \Omega(k)$$

where the randomness is taken over the observation noise in the evidence e.

Remark: Theorem 2 shows that when presented a sequence of fabricated evidence against H_0 , the log-posterior of the learning-based hypothesis (H_0) relative to the baseline hypothesis $(H_2 \text{ or } H_3)$ decrease linearly to the length of the evidence. When the evidence length is sufficiently long, the belief of H_0 will be overwhelmed by the baseline hypothesis. Note that this result holds regardless of the choice of x^* for which the evidence is collected. Even if x^* was not observed in the initial history h, fabricated evidence regarding x^* still causes a belief drop for H_0 .

Meanwhile, in the next theorem (Theorem 3), we will show that the memorization-based hypothesis (H_1) is relatively stable, and may lead to constant belief drop regardless of the length of the fabricated evidence. The proof of Theorem 3 can be found in Appendix A.

Theorem 3. (Stability of Memorization-based Hypothesis) Let $P(H_1|h)$, $P(H_2|h)$ and $P(H_3|h)$ be existing belief priors based on a history of observations h. Consider fabricated evidence $e = \{(x_j, z_j)\}_{j=1}^k$ against H_1 with history h, where $x_j = x^*$ for all $j \in [k]$.

Let h_{x_*} be the subset of the history h with input value x^* , m_{1,x^*} be the number of $z_j = 1$ in h_{x^*} and m_{-1,x^*} be the number of $z_j = -1$ in h_{x^*} , then we have for any $i \in \{2,3\}$, the change on the log-posterior can be given by

$$\Delta_e = \log \left(\frac{P(H_1|h)}{P(H_i|h)} \right) - \log \left(\frac{P(H_1|h,e)}{P(H_i|h,e)} \right) \le \log \left(1 + \left(\frac{1-\epsilon}{\epsilon} \right)^{|m_{1,x^*} - m_{-1,x^*}|} \right)$$

In particular, if x^* is not observed in the initial history h, then we have the belief update

$$\Delta_e \le \log(2)$$

Remark: Theorem 3 states that the belief drop for memorization-based hypothesis H_1 relative to the baseline hypotheses (H_2 and H_3) is upper bounded by a value that doesn't depend on the length of the evidence k. This means that even as the evidence length approaches infinity, the belief drop is limited. Moreover, unlike the learning case where the belief drop is independent of the chosen input x^* , in the memorization case, the belief upate varies based on the choice of x^* . Specifically, the more frequently x^* has appeared in the initial history h and more consistent its observations are, the greater the belief drop it will cause when there is fabricated evidence against it.

3.2 PREDICTION UPDATE FOR RELABELING-BASED UNLEARNING

We also note that the learning and memorization-based hypotheses have different ways for the response predictions. For the learning-based hypothesis H_0 , the entire prediction behavior is governed by the prediction function f. Therefore, in order to minimize both the unlearn loss $L(\theta, U')$ and the retain loss $L(\theta, R)$, the model has to find a new hypothesis H' that better fits the datasets U' and R. However, how fast the model can find this new hypothesis H' highly depends on the model's prior, like what the hypothesis could be or what hypothesis space H' belongs to. In the next theorem, we show that given a prior hypothesis class $\mathcal H$ that can perfectly fit the task distribution, then any hypothesis $h \in \mathcal H$ that achieves good accuracy on U' will suffer from big performance drop even in the case that |U'|=1. This lower bound, whose proof is given in Appendix A, is stated as follows:

Theorem 4. Given a d-dimensional linear hypothese class defined as $\mathcal{H} = \{h_{w,b}(x) = sign(w^Tx + b) | w \in \mathbb{R}^d, b \in \mathbb{R}\}$. There exists a distribution \mathcal{D} and $U' = \{(x', y')\} \in [N]^d \times \{-1, +1\}$ where with $N \geq 3$, such that $\min_{h \in \mathcal{H}} err_D(h) = 0$ and $P_D(x = x')$ is negligible, however, for any $\hat{h} \in \mathcal{H}$ with $\hat{h}(x') = y'$, we have

$$err_D(\hat{h}) \ge 0.1$$

where $err_{\mathcal{D}}(\cdot)$ is the 0-1 error evaluated on distribution \mathcal{D} .

The theorem above states a fundamental challenge for models that rely on a learning-based hypothesis when using the relabeling-based unlearning method. In order to minimize both the unlearning and retain loss, the model sometimes needs to drastically change its prior beliefs about the functions required to fit both U' and the retain set R. In the context of Theorem 4, even though the original task can be perfectly predicted by a linear classifier, fitting the modified unlearn set U' (let $\hat{h}(x') = y'$) using linear classifiers will lead to a constant error rate. As a result, the model needs to expand the hypothesis class to include more complex hypotheses. This change in prior beliefs can make the optimization process slower and more complex, which we will provide empirical evidence in the experiments presented in the next section.

In contrast, the memorization hypothesis (H_1) gives a more flexible way to predict the response. In particular, H_1 admits a decision rule based on maximum likelihood estimation written as

$$\hat{y}_x = \begin{cases} 1 & \text{if } m_{1,x} \ge m_{-1,x} \\ -1 & \text{if } m_{1,x} < m_{-1,x} \end{cases}$$

where $m_{1,x}$ and $m_{-1,x}$ are the number of times the model has observed prompt x with response 1 or -1 respectively. Therefore, in order to change the model prediction form 1 to -1 for specific prompt x, we can repeatedly present the model with observations of (x,y'=-1). Eventually, $m_{-1,x}$ will be larger than $m_{1,x}$, at which point, the model's prediction for x is flipped to y'=-1 and the information associated with x is effectively unlearned. This process is restricted to specific prompt and does not require a search for new hypotheses as in the learning case. We will show empirically in the next section that such restricted and localized update leads to faster and more stable unlearning.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

In our experiments, we follow prior work (Zhao et al., 2024b; Dinh et al., 2022) to instruct the model to perform binary classification task. The model is given a two-dimensional input $x=(x_1,x_2)$ where x_1 and x_2 are integers between 0 and 200. The prediction label is either -1 and +1 which are mapped to class name "Foo" and "Bar", respectively. We choose this binary classification task for the following key reasons: 1) the nature of the task makes it straightforward to construct specific data distribution patterns and conduct experiments under a well-controlled setup. 2) it enables a clear visualization of the model's decision boundary, which allows us to observe how the model's beliefs update concerning the underlying data generation hypothesis.

An example of the prompts used in our experiments is shown as follows:

What is the label for this input?\n Input: 62 87\n Label: Foo

We generate prompts of this form for each (x, y) pair in the dataset.

Tasks and Datasets We define three different tasks:

- LINEAR: data points (x, y) are linearly separable with $y = \text{sign}(x_1 x_2)$.
- RECTANGLE: the input domain is partitioned into 4 quadrants centered at (100, 100). Points in two quadrants are labeled as +1 and those in the remaining quadrants are labeled as -1.
- RANDOM: label y is uniformly and randomly generated from $\{-1,+1\}$ for each input x.

For each task, we generate 1024 datapoints in each task and choose 30 of them as the unlearn set U, while the rest will be the retain set R. The data distribution of all tasks are plotted in Figure 1.

Figure 1: Data visualization for the LINEAR (left), RECTANGLE (middle) and RANDOM (right) tasks.

Language model The language model we use is Llama-3.2-3B-Instruct (Dubey et al., 2024). Similar results are obtained with other models including Qwen3-4B (QwenTeam, 2025) and Llama-3.2-8B-Instruct (Dubey et al., 2024)), which are deferred to Appendix B.2.

Training/Unlearning method We first finetune the original model on the entire dataset for each task. After finetuning, we perform unlearning on the unlearn set using the *relabeling-based method* defined in equation (1). In particular, we construct a modified unlearn set U' by flipping the label for each data point in U to generate alternative responses and then train the model to fit both U' and the retain set R. The prediction loss $\ell(\theta,(x,y)) = -\log(P_{\theta}(y|x))$ is used as the training objective for both fine-tuning and unlearning. The loss is calculated only on the label y. More detailed hyperparameter settings are provided in Appendix B.1.

4.2 RESULTS

Decision Boundary for Learning and Memorization-based Generations Since it is challenging to directly obtain the underlying model hypothesis of the model, we instead plot the decision boundary as an indirect way to understand the model's prediction process. The decision boundaries for each task after the initial finetuning are provided in Figure 2.

Figure 2: Decision boundaries for the LINEAR task (left), RECTANGLE (middle) and the RAN-DOM task (right) after finetuning. The clear, regular decision boundaries for the LINEAR and RECTANGLE tasks demonstrate that the model learned the underlying data generation rule, indicating the model's generation is more learning-based. In contrast, the irregular and scattered decision boundary of the RANDOM task suggests the prediction relies more on memorization rather than rule learning.

From Figure 2, we can see a clear discrepancy between tasks relying on learning-based generation and memorization-based generation. The decision boundaries for the LINEAR and RECTANGLE tasks (left and middle of Figure 2) show clear and regular patterns. This suggests that the model successfully learns the underlying rules of data generation, showing a **learning-based generation** approach. In contrast, the model finetuned on the RANDOM task data is akin to **memorization-based generation** as the labels are uniformly and randomly generated and there is no underlying data distribution structure for the model to learn. As a result, its decision boundary (right of Figure 2) is irregular and scattered, showing no clear pattern.

Unlearn Efficiency Here, we show that unlearning is more efficient for the memorization-based task (RANDOM) than for the learning-based tasks (LINEAR and RECTANGLE). The unlearning performance is evaluated using the accuracy on the retain set R (retain accuracy) and the accuracy on the unlearn set U (unlearn accuracy), as shown in Figure 3.

Figure 3: Accuracy for the retain set R (left) and unlearn set U (right) during unlearning for different tasks. The unlearn set consists of 30 data records, which represent 3% of the full dataset. Unlearning the RANDOM task shows faster and more stable convergence compared to the learning-based tasks (LINEAR and RECTANGLE). Retain accuracy remains consistently high (over 90%) for the RANDOM task but drops sharply to under 40% for the other two tasks in the middle of the unlearning before recovering. Meanwhile the unlearn accuracy for the RANDOM task reaches zero faster than that for the other two tasks.

We observe relabeling-based method achieves nearly 100% retain accuracy and zero unlearn accuracy for all tasks by the end of unlearning. However, the unlearning process shows different patterns between learning-based and memorization-based tasks.

(Unlearning Stability) The stability of the unlearning is reflected by the retain accuracy during
unlearning (left of Figure 3). A stable unlearning process can effectively remove information
from the unlearn set without significantly affecting the retain accuracy. The retain accuracy for
the LINEAR and RECTANGLE task drops sharply under 40% during unlearning before recov-

 ering. In contrast, the retain accuracy of the RANDOM task remains above 90% consistently. This indicates greater stability of the memorization-based task.

• (Unlearning Rate) The rate of unlearning is captured by the unlearn accuracy (right of Figure 3). A faster unlearn rate means the accuracy on unlearn set U drops more quickly. The unlearn accuracy of the RANDOM task decreases significantly faster, reaching zero accuracy in around 70 steps, while the LINEAR and RECTANGLE tasks require over 250 steps to achieve the same level. The slower convergence can be a result of the requirement of the learning-based tasks to search for new hypotheses to simultaneously fit the modified unlearn set U' and retain set R, as discussed in section 3.2.

Figure 4: Decision boundary evolution during unlearning for tasks: LINEAR (top row), RECT-ANGLE (middle row) and RANDOM (bottom row). The figures show decision boundaries at unlearning steps: 0, 60, 180, 420. The unlearn set consists of 30 data records, which represent 3% of the full dataset. Light-colored areas indicate higher model uncertainty. The learning-based tasks (LINEAR and RECTANGLE) show significant, global changes on their decision boundary as the model unlearns, suggesting significant shift on the model's belief. In contrast, memorization-based task (RANDOM) only shows localized, minor boundary updates, highlighting the stability of the model's belief.

Decision Boundary Evolution during Unlearning To observe the change of the underlying hypotheses the model employs for the prediction, we save snapshots of model at various steps of the unlearning and plot the decision boundary for each saved model. In Figure 4, we show how the decision boundary evolves at different stages of the unlearning.

The top and middle row in Figure 4 plots the decision boundary evolution for learning-based tasks (LINEAR and RECTANGLE). Despite the unlearn set representing only 3% of the full dataset, the model's belief in the original learning-based hypothesis gets significantly shattered at the beginning of the unlearning due to the fabricated conflicting evidence introduced by U', leading to a drastic change in the model's prediction behavior with an unclear and irregular decision boundary. The model then gradually refines its internal belief and successfully finds a new hypothesis that can fit both U' and R by the end of the unlearning.

Meanwhile, the bottom row of Figure 4 illustrates the decision boundary evolution during unlearning for the RANDOM task. Even though some localized changes on the decision boundary are still visible, there are no significant global changes and the overall decision boundary structure remains stable, which indicates the stability of the model belief of the memorization case for the relabeling-based unlearning method.

REPRODUCIBILITY STATEMENT

All datasets used in our experiments, along with the experiment code, are provided as supplementary material. The package also includes a README file with detailed instructions for reproducing the experiments in this paper. Proofs of the theoretical results can be found in Appendix A.

REFERENCES

- Jan Bronec and Jindřich Helcl. Atyaephyra at semeval-2025 task 4: Low-rank negative preference optimization. *arXiv preprint arXiv:2503.13690*, 2025.
- Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp. 2633–2650, 2021.
- Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. *arXiv* preprint arXiv:2310.20150, 2023.
- Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms. *Advances in neural information processing systems*, 36:49205–49233, 2023.
- Aghyad Deeb and Fabien Roger. Do unlearning methods remove information from language model weights? *arXiv preprint arXiv:2410.08827*, 2024.
- Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for non-language machine learning tasks. Advances in Neural Information Processing Systems, 35:11763–11784, 2022.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.
- Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms. *arXiv* preprint arXiv:2310.02238, 2023.
- Xiaohua Feng, Yuyuan Li, Chengye Wang, Junlin Liu, Li Zhang, and Chaochao Chen. A neuro-inspired interpretation of unlearning in large language models through sample-level unlearning difficulty. *arXiv preprint arXiv:2504.06658*, 2025.
- Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models leaking your personal information? *arXiv preprint arXiv:2205.12628*, 2022.
- Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. *arXiv* preprint arXiv:2309.11852, 2023.
- Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. *arXiv* preprint arXiv:2210.01504, 2022.
- Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural regularities of labeled data in overparameterized models. *arXiv preprint arXiv:2002.03206*, 2020.
- Aravind Krishnan, Siva Reddy, and Marius Mosbach. Not all data are unlearned equally. *arXiv* preprint arXiv:2504.05058, 2025.
 - Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring and reducing malicious use with unlearning. *arXiv* preprint arXiv:2403.03218, 2024.

- Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large language models through machine unlearning. *arXiv preprint arXiv:2402.10058*, 2024.
 - Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of fictitious unlearning for llms. *arXiv* preprint arXiv:2401.06121, 2024.
 - Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.
 - QwenTeam. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
 - Jonas B Sandbrink. Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. *arXiv preprint arXiv:2306.13952*, 2023.
 - Ruihan Wu, Konstantin Garov, and Kamalika Chaudhuri. Learning-time encoding shapes unlearning in llms. *arXiv preprint arXiv:2506.15076*, 2025.
 - Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. *Advances in Neural Information Processing Systems*, 37:105425–105475, 2024.
 - Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language models by partitioning gradients. In *Findings of the Association for Computational Linguistics: ACL* 2023, pp. 6032–6048, 2023.
 - Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic collapse to effective unlearning. *arXiv preprint arXiv:2404.05868*, 2024.
 - Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Triantafillou. What makes unlearning hard and what to do about it. *Advances in Neural Information Processing Systems*, 37:12293–12333, 2024a.
 - Siyan Zhao, Tung Nguyen, and Aditya Grover. Probing the decision boundaries of in-context learning in large language models. *Advances in Neural Information Processing Systems*, 37:130408–130432, 2024b.

A MISSING PROOF IN SECTION 3

Theorem (Restatement of Theorem 2). Let $P(H_0|h)$, $P(H_2|h)$ and $P(H_3|h)$ be existing priors based on a history of observations h. based on a history of observations h. Consider fabricated evidence $e = \{(x_j, z_j)\}_{j=1}^k$ against H_0 , where $x_j = x^*$ for all $j \in [k]$. Then there exists an $i \in \{2,3\}$ such that the change on the log-posterior is given as

$$\Delta_e = \log\left(\frac{P(H_0|h)}{P(H_i|h)}\right) - \log\left(\frac{P(H_0|h,e)}{P(H_i|h,e)}\right) = (k-2l)\log\left(\frac{1-\epsilon}{\epsilon}\right)$$

where l is the number of flipped observations in the evidence e, which follows a binomial distribution $l \sim Binomial(k, \epsilon)$. Furthermore, since $\epsilon \in (0, 0.5)$, we have with probability over $1 - O(k^{-10})$,

$$\Delta_e = \widetilde{\Omega}(k)$$

where the randomness takes from the observation noise in e.

Proof. Without loss of generality, we assume that $f(x^*) > 0$, then $y_i = -1$ for all y_i from the new evidence e. Then by Bayes' theorem, we have

$$\Delta_e = \log \left(\frac{P(H_0|h)}{P(H_3|h)} \right) - \log \left(\frac{P(H_0|h,e)}{P(H_3|h,e)} \right) = \log \left(\frac{P(e|H_3,h)}{P(e|H_0,h)} \right)$$

Next, we focus on the ratio $\frac{P(e|H_3,h)}{P(e|H_0,h)}$. First, since both H_0 and H_3 assume i.i.d generation, therefore $P(e|H_0,h) = P(e|H_0)$ and $P(e|H_3,h) = P(e|H_3)$. Then given the evidence $e = (x^*,z_1)\dots(x^*,z_k)$, let l be the number of +1 in all z_l s, then we have

$$P(e|H_0) = \left(\frac{1}{N+1}\right)^k (1-\epsilon)^l \epsilon^{k-l}$$

and

$$P(e|H_3) = \left(\frac{1}{N+1}\right)^k \epsilon^l (1-\epsilon)^{k-l}$$

Combining everything together, we have

$$\Delta_e = \log\left(\frac{P(e|H_3, h)}{P(e|H_0, h)}\right) = (k - 2l)\log\left(\frac{1 - \epsilon}{\epsilon}\right)$$

Since $y_i = -1$ in e, l also denotes the total number of times z_i flip y_i which happens independently with probability ϵ . Therefore, l is binomial distributed with $l \sim Binomial(k, \epsilon)$. Since $\epsilon < 0.5$, via McDiarmid's inequality, we have with probability over $1 - O(k^{-10})$

$$k - 2l = \widetilde{\Omega}(k)$$

where the randomness takes from the noise on the observation z.

Similar proof can be obtained for Δ_e between H_0 and H_2 , when $f(x^*) \leq 0$.

Theorem (Restatement of Theorem 3). Let $P(H_1|h)$, $P(H_2|h)$ and $P(H_3|h)$ be existing priors based on a history of observations h. Consider fabricated evidence $e = \{(x_j, z_j)\}_{j=1}^k$ against H_1 with history observations h, where $x_j = x^*$ for all $j \in [k]$.

Let h_{x_*} be the subset of the history h with input value x^* . Let m_{1,x^*} be the number of $z_j = 1$ in h_{x^*} and m_{-1,x^*} be the number of $z_j = -1$ in h_{x^*} , then we have for any $i \in \{2,3\}$, the change on the log-posterior can be given by

$$\Delta_e = \log \left(\frac{P(H_1|h)}{P(H_i|h)} \right) - \log \left(\frac{P(H_1|h,e)}{P(H_i|h,e)} \right) \le \log \left(1 + \left(\frac{1-\epsilon}{\epsilon} \right)^{|m_{1,x^*} - m_{-1,x^*}|} \right)$$

In particular, if x^* is not observed in the initial history h, then we have the belief update

$$\Delta_e \leq \log(2)$$

Proof. Without loss of generality, we assume that the label $y_i = 1$ for $i \in [k]$ in evidence e, Then we are comparing the belief between H_1 and H_3 and H_2 .

In particular, we have for $i \in \{2, 3\}$

$$\Delta_e = \log\left(\frac{P(H_1|h)}{P(H_i|h)}\right) - \log\left(\frac{P(H_1|h,e)}{P(H_3|h,e)}\right) = \log\left(\frac{P(e|H_i,h)}{P(e|H_1,h)}\right) \tag{2}$$

Next, we need to compute $P(e|H_0,h)$. Denote random variable y_{x^*} as the corresponding y to x^* . Then we have

$$P(e|H_1, h) = \sum_{y \in \{-1, 1\}} P(e|y_{x^*} = y, H_1, h) \cdot P(y_{x^*} = y|H_1, h)$$

Then we define the l be the number of times $z_i = 1$ in e, it is straightforward to obtain that

$$P(e|y_{x^*} = -1, H_1) = \left(\frac{1}{N+1}\right)^k \epsilon^l (1-\epsilon)^{k-l}$$

$$P(e|y_{x^*} = 1, H_1) = \left(\frac{1}{N+1}\right)^k \epsilon^{k-l} (1-\epsilon)^l$$

Meanwhile, we have

$$P(e|H_2, h) = \left(\frac{1}{N+1}\right)^k \epsilon^{k-l} (1-\epsilon)^l$$

$$P(e|H_3, h) = \left(\frac{1}{N+1}\right)^k \epsilon^l (1-\epsilon)^{k-l}$$

Next, we will compute the

$$P(y_{r^*} = y | h, H_1)$$
 for $y \in \{-1, 1\}$

We denote h_{x^*} the subset of h that have the input value x^* , it is easy to show that

$$P(y_{x^*} = y | h, H_1) = P(y_{x^*} = y | h_{x^*}, H_1)$$
 for $y \in \{-1, 1\}$

This is due to the fact that under H_1 , the part of h whose feature is not x^* is independent of y_{x^*} .

Applying Bayes' theorem, we obtain

$$P(y_{x^*} = 1 | h_{x^*}, H_1) = \frac{P(h_{x^*} | y_{x^*} = 1, H_1) \cdot P(y_{x^*=1} | H_1)}{P(h_{x^*} | H_1)}$$

It is easy to show that

$$P(y_{x^*} = 1 | h_{x^*}, H_1) = \frac{(1 - \epsilon)^{m_1} \epsilon^{m_{-1}}}{(1 - \epsilon)^{m_1} \epsilon^{m_{-1}} + (1 - \epsilon)^{m_{-1}} \epsilon^{m_1}}$$

Similarly, we have

$$P(y_{x^*} = -1|h_{x^*}, H_1) = \frac{(1-\epsilon)^{m_{-1}}\epsilon^{m_1}}{(1-\epsilon)^{m_1}\epsilon^{m_{-1}} + (1-\epsilon)^{m_{-1}}\epsilon^{m_1}}$$

Then we have

$$\begin{split} \frac{P(e|H_2,h)}{P(e|H_1,h)} &= \frac{P(e|H_2,h)}{\sum_{y \in \{-1,1\}} P(e|y_{x^*} = y, H_1) \cdot P(y_{x^*} = y|H_1,h)} \\ &\leq \frac{P(e|H_2,h)}{P(e|y_{x^*} = 1, H_1) \cdot P(y_{x^*} = 1|H_1, h_{x^*})} \\ &= \frac{1}{P(y_{x^*} = 1|H_1, h_{x^*})} \leq 1 + \left(\frac{1-\epsilon}{\epsilon}\right)^{|m_{1,x^*} - m_{-1,x^*}|} \end{split}$$

The last equality follows that

$$P(e|H_2,h) = P(e|y_{x^*} = 1|H_1,H_1) = \left(\frac{1}{N+1}\right)^k \epsilon^{k-l} (1-\epsilon)^l$$

Similarly, we also have

$$\frac{P(e|H_3, h)}{P(e|H_1, h)} \le 1 + \left(\frac{1 - \epsilon}{\epsilon}\right)^{|m_{1,x^*} - m_{-1,x^*}|}$$

Combining these results with equation equation 2, we obtain the desired results.

Theorem (Restatement of Theorem 4). Given a d-dimensional linear hypotheses class defined as $\mathcal{H} = \{h_{w,b}(x) = sign(w^Tx + b)|w \in \mathbb{R}^d, b \in \mathbb{R}\}$. There exists a distribution \mathcal{D} and a data record $z' = (x, y') \in [N]^d \times \{-1, +1\}$ where $[N] = \{1, 2, 3, \dots N\}$ with $N \geq 3$, such that $\min_{h \in \mathcal{H}} err_D(h) = 0$ and $P_D(x = x')$ is negligible, however, for any $\hat{h} \in \mathcal{H}$ such that $\hat{h}(x) = y'$, we have

$$err_D(\hat{h}) \ge 0.1$$

where $err_D(\cdot)$ is the 0-1 error evaluated on distribution D.

Proof. The construction is as follows:

- The points are uniformly distributed in hyper cube $C = \{1, 2, 3\}^d$ where $P(x \in C) = 0.2$
- The ground truth for all points in x is 1, that is, $P(y=1|x\in C)=1$.

The unlearn point is the center of the hypercube $x'=\{2\}^d$. The rest of distribution can be constructed such that, $\exists h^* \in \mathcal{H}$, such that $err_D(h^*)=0$, for example with arbitrary distribution for $x \notin C$ and P(y=1)=1 for all x with $x_1 < 6$ and P(y=-1)=1 for all $x_1 \ge 6$ where x_1 is the first coordinate of x.

Now, we show that if we want to "unlearn" x' by finding a $\hat{h} \in \mathcal{H}$ with parameters w, b such that $h_{w,b}(x') \neq 1$, we have

$$err_D(\hat{h}) \ge 0.1$$

First, since $\hat{h}(x') = -1$, then we have $w^T x + b \le 0$. Now we consider other points in the unit B, since B is centered as x', then any point x can be written

$$x = x' + \Delta x$$

where $\|\Delta x\| \leq 1$. Note that since x is uniformly distributed across B, which implies that the direction of Δx is symmetric, that is, for any $x = x' + \Delta x \in B$, there exits an $\bar{x} = x' - \Delta x$ such that $\bar{x} \in B$ and $P_D(x) = P_D(\bar{x})$. Therefore, we have

$$P_D(w^T \Delta x \le 0 | x \in B) \ge 0.5$$

For any x with $w^T \Delta x \leq 0$, we have

$$\boldsymbol{w}^T\boldsymbol{x} + \boldsymbol{b} = \boldsymbol{w}^T(\boldsymbol{x}' + \Delta \boldsymbol{x}) + \boldsymbol{b} = \boldsymbol{w}^T\boldsymbol{x}' + \boldsymbol{w}^T\Delta \boldsymbol{x} + \boldsymbol{b} \leq 0$$

That implies that at least these x will also be classified as -1, which is

$$P_D(\hat{h}(x) = -1|x \in B) \ge 0.5$$

Combined with fact that $P_D(x \in B) \ge 0.2$ and the true label of $x \in B$ is +1, we have

$$err_D(\hat{h}) \ge 0.2 \times 0.5 = 0.1$$

Since we consider realizable case, we also have

$$err_D(\hat{h}) - \min_{h \in \mathcal{H}} err_D(h) \ge 0.1$$

B EXPERIMENT DETAILS

B.1 EXPERIMENT SETUP

We run our experiments with Llama3.2-3B-Instruct, Qwen3-4B and Llama3.2-8B-Instruct models. We use Lion optimizer (Chen et al., 2023) for both finetuning and unlearning with a learning rate of 5×10^{-7} and a batch size of 8 for all experiments. No learning rate schedule is used. We train 20 epochs for finetuning. The regularization parameter α in equation (1) is set to 0.5 across all experiments. A norm clipping equal to 1 is added for unlearning experiments. All experiments are conducted on a single NVIDIA A100 GPU.

B.2 ADDITIONAL EXPERIMENTS WITH OTHER MODELS

Overview We provide additional experimental results for finetuning and unlearning with Qwen3-4B and Llama3.2-8B-Instruct. The results for Qwen3-4B are shown in Figures 5-7 and those for Llama3.2-8B-Instruct are provided in 8-10. In particular, the decision boundaries after initial finetuning are in Figure 5 for Qwen3-4B and Figure 8 for Llama3.2-8B-Instruct. The retain and unlearn accuracies during unlearning are in Figure Figure 6 for Qwen3-4B and Figure 9 Llama3.2-8B-Instruct. Finally, the decision boundary evolutions for each task are presented in Figure 7 for Qwen3-4B and Figure 10 for Llama3.2-8B-Instruct.

Figure 5: Decision boundary for the LINEAR task (left), RECTANGLE (middle) and the RANDOM task (right) after finetuned on Qwen3-4B.

Figure 6: Retain and unlearn accuracies for the LINEAR (left), RECTANGLE (middle) and RAN-DOM (right) task for Owen3-4B model.

Discussion The experiments for the Qwen3-4B and Llama3.2-8B-Instruct shows results consistent with those reported in section 4 for Llama3.2-3B-Instruct. In particular, all models successfully learns the underlying data generation rule for LINEAR and RECTANTGLE tasks, leading to clear and regular decision boundaries. The decision boundaries for RANDOM task remain scattered and irregular for all models. That indicates that similar model behaviors occur after finetuning for models with different sizes and architectures.

Figure 7: Decision boundary evolution during unlearning for LINEAR (top row), RECTANGLE (middle row) and RANDOM (bottom row) tasks for Qwen3-4B model. The figures shows decision boundaries at unlearning steps: 0, 50, 100, 200.

Figure 8: Decision boundary for the LINEAR task (left), RECTANGLE (middle) and the RANDOM task (right) after finetuning for Llama3.2-8B-Instruct.

Figure 9: Accuracy for the retain set R (left) and unlearn set U (right) during unlearning for different tasks for Llama3.2-8B-Instruct

Figure 10: Decision boundary evolution during unlearning for LINEAR (top row), RECTANGLE (middle row) and RANDOM (bottom row) tasks for Llama3.2-8B-Instruct. The figures shows decision boundaries at unlearning steps: 0, 60, 180, 300

For the unlearning part, all models exhibit faster convergence of unlearn accuracy for RANDOM task compared with other two tasks. Also, unlearning the RANDOM task maintains a consistently high retain accuracy across all models, while the retain accuracy for learning-based tasks (LINEAR and RECTANGLE) experiences significantly greater fluctuation. The decision boundary evolution during unlearning also follows similar patterns across all models, that is, the belief of the learning-based hypotheses get shattered rapidly at the beginning of unlearning leading to irregular and vague

decision boundaries while the decision boundary for RANDOM task remains relatively stable with

only localized and minor changes.