

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE ROLE OF LEARNING AND MEMORIZATION IN RELABELING-BASED UNLEARNING FOR LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

This work studies how the nature of a response generated by a large language model (LLM) impacts the efficiency of *relabeling-based unlearning*, a common unlearning technique that trains the model to fit an “*unlearn*” set (i.e., a dataset that we wish the model to unlearn) with alternative responses to prevent it from generating unwanted outputs that align with the unlearn set. We distinguish between two different ways LLMs can generate undesirable outputs: **learning-based generation**, where the model learns an underlying *rule* connecting the input and the response (e.g., social stereotypes), and **memorization-based generation**, where the model memorizes specific information about a given input (e.g., private information like a phone number). We demonstrate that relabeling-based unlearning can be detrimental to the model performance when the undesirable outputs are generated based on learning-based generation whereas it is more effective with memorization-based generation. We provide theoretical justifications for this through the lens of hypothesis testing, showing that memorization-based hypotheses are more stable in the presence of “*fabricated evidence*” that contradicts the hypothesis’ prediction and more flexible to produce alternative responses. Our empirical results further support our findings by showing a clear performance gap in relabeling-based unlearning under these two types of data generation mechanisms.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable capability to generate complex, human-like text by being pretrained on massive amount of data. However, this training process may also result in undesirable model behaviors with serious safety risks, such as privacy leakage, social bias, and creation of harmful content (Carlini et al., 2021; Huang et al., 2022; Sandbrink, 2023). To address these risks, machine unlearning for LLMs has emerged as an increasingly growing field aimed at removing the influence of undesirable data from a model.

A primary objective of machine unlearning for LLMs (also referred to as LLM unlearning) is to prevent the model from producing undesirable outputs, represented by a data set known as the *unlearn* set (also known as the forget set), given relevant prompts without compromising the model’s overall capability. Researchers have proposed various unlearning methods based on different frameworks (Jang et al., 2022; Zhang et al., 2024; Jiang et al., 2020; Li et al., 2024). Among these methods, a common approach is the *relabeling-based method* (Deeb & Roger, 2024; Maini et al., 2024; Eldan & Russinovich, 2023). The core idea for the relabeling-based method is to first create a new unlearn set with the same prompts as the original unlearn set but with alternative, harmless responses. The model is then trained with this new set being a part of the training data. By training the model to fit these new responses, we effectively encourage the model to predict the original prompts with alternative responses and then overwrite the undesirable responses.

While the field of LLM machine unlearning is receiving increasing attention, the understanding on what factors truly influence its difficulty and efficiency is relatively underexplored. This is a crucial area of study since the understanding of these factors allows us to gain deeper insights on how these unlearning methods work and help us develop more effective and reliable unlearning methods. Prior works in this area have identified several key factors that influence the unlearning efficiency including frequency of unlearn data in the training data (Krishnan et al., 2025), data

054 entanglement (Zhao et al., 2024a), robustness to parameter perturbation (Feng et al., 2025), how
 055 knowledge is encoded in the training data (Wu et al., 2025) and so on.
 056

057 Following this line of work, our work studies what affects the unlearning difficulty and efficiency,
 058 specifically for the *relabeling-based unlearning method*. Our focus is a new factor: how the un-
 059 desirable response is generated by the model after the initial training. In this work, we distinguish
 060 between two different ways of response generation: **learning-based generation**, where the model
 061 learns a general rule to connect the prompts to the response (e.g., social stereotypes that associate
 062 certain professionals with a particular gender), and **memorization-based generation**, where the
 063 model memorizes a specific response to given prompts (e.g., private information like a personal
 064 phone number).

064 In this work, we study how the nature of response generation (learning-based versus memorization-
 065 based) affects the unlearning efficiency for the relabeling-based method. The key contributions of
 066 this work are highlighted as follows:
 067

- 068 • We propose a hypothesis testing framework to model the relabeling-based unlearning method. In
 069 particular, we provide a mathematical model for the learning and memorization-based hypotheses.
 070 The relabeling-based method is modeled as providing a sequence of “*fabricated evidence*” that
 071 conflicts the hypothesis prediction based on existing history of observations.
- 072 • Building upon this, we study how the belief in the learning and memorization-based hypotheses
 073 change when presented with conflicting evidence by comparing the posterior and prior change
 074 relative to the baseline hypotheses that make constant predictions. We show that memorization
 075 hypothesis is more stable with an upper bound on its belief change independent of the length of
 076 the evidence sequence while the belief change for the learning hypothesis scales with the evidence
 077 length.
- 078 • We establish a lower bound result showing that even when the unlearn set contains only a single
 079 data point, fitting this new set can cause a significant performance gap even if the prior hypothesis
 080 space can perfectly fit the original task distribution. This lower bound suggests that in order to fit
 081 the new unlearn set while maintaining good overall performance, the model needs to drastically
 082 change its prior by expanding the hypothesis space with more complicated hypotheses, which
 083 could lead to slower convergence and poor performance.
- 084 • Finally, we provide empirical evidence to support our findings by instructing the model to per-
 085 form binary classification task. We define three types of tasks: LINEAR and RECTANGLE (akin
 086 to learning-based generation), where the data shows clear patterns and RANDOM task (akin to
 087 memorization-based generation), where the labels are uniformly and randomly generated. Our
 088 experiments show that the RANDOM task shows faster and more stable unlearning, main-
 089 taining consistently high retain accuracy throughout the unlearning process while the LINEAR and
 090 RECTANGLE tasks shows slower convergence and significant fluctuation in retain accuracy. **We**
 091 **also include experiments on a dataset with intentionally injected social stereotypes, such as as-**
 092 **signing the gender “Female” to all individuals with the profession “nurse,” forming a general**
 093 **rule learned by the model. Unlearning the gender attribute in this dataset leads to unstable retain**
 094 **accuracy and slower convergence, compared with a dataset whose gender attribute is randomly**
 095 **assigned and thus closer to the memorization-based setting.**

096 1.1 RELATED WORK

097 **Machine unlearning algorithms for LLMs** The area of machine unlearning for LLMs is rapidly
 098 growing with vast amount of literature. This paper focuses on the relabeling-based unlearning
 099 method, which has been extensively studied in prior works. For example, (Maini et al., 2024) teach
 100 the model to respond with “I don’t know” for the prompts in the unlearn set in order to prevent the
 101 model from outputting harmful responses. In (Eldan & Russinovich, 2023), the authors replace the
 102 unlearn target with its generic counterpart and finetune the model with these alternative labels. Fur-
 103 thermore, (Deeb & Roger, 2024) generates random incorrect choices for multiple-choice questions
 104 and optimizes over these choices. Apart from the relabeling-based method, other notable unlearn-
 105 ing methods include gradient ascent (Jang et al., 2022; Chen & Yang, 2023), which maximizes the
 106 prediction loss of unlearn set, NPO (Zhang et al., 2024; Bronec & Helcl, 2025) which performs
 107 preference optimization by treating the unlearn data as negative examples, RMU (Li et al., 2024)
 108 which perturbs the activations for the unlearn data while preserving the activations for the retain

108 data. Other recent LLM unlearning algorithms include (Yao et al., 2024; Liu et al., 2024; Chen &
 109 Yang, 2023; Meng et al., 2022; Ishibashi & Shimodaira, 2023) and others.
 110

111 **Machine unlearning difficulty** Our work is close to the line of work that studies the difficulty of
 112 machine unlearning. Previous research has identified several factors that may be related to unlearn-
 113 ing difficulty. To name a few, (Krishnan et al., 2025) studies the connection between the frequency of
 114 knowledge in the pretrained data and unlearning success. In particular, the authors (Krishnan et al.,
 115 2025) find that knowledge with higher frequency is harder to unlearn. (Feng et al., 2025) proposes
 116 a Memory Removal Difficulty (MRD) metric to measure the unlearning difficulty for each sample,
 117 which can be defined as the stability of data prediction in the presence of model parameter pertur-
 118 bations. Furthermore, (Zhao et al., 2024a) identifies two factors affecting the unlearn difficulty and
 119 shows that the unlearning is harder if the sample is more memorized and there is more entanglement
 120 between the unlearn and retain data. Finally, (Wu et al., 2025) links the unlearning difficulty to how
 121 the knowledge is encoded in the training data and shows that learning with paraphrased descriptions
 122 leads to easier unlearning, while unlearning knowledge from a chunk of text is more challenging.
 123

124 2 PRELIMINARIES

125 2.1 LLM UNLEARNING

126 Large language models (LLMs), parametrized by θ , predict the next word of a sequence s based on
 127 a probability distribution $P_\theta(\cdot|s)$. LLM unlearning is the process of removing the undesired data
 128 influence of a unlearn dataset, such as private or harmful information without compromising the
 129 overall model utility.
 130

131 To achieve this, we use two distinct datasets. The unlearn dataset (U) contains the specific infor-
 132 mation we want the model to unlearn. The retain dataset (R), on the other hand, is a collection of
 133 data points that helps the model preserve its original utility and capabilities. By training the model
 134 on these two datasets, we can effectively erase the targeted information while keeping the model
 135 general utility.
 136

137 Most existing LLM unlearning methods are achieved by finetuning model θ over a regularized ob-
 138 jective written as

$$139 \min_{\theta} (1 - \alpha) L_U(\theta, U) + \alpha L_R(\theta, R)$$

140 where L_U is the unlearning loss computed on the unlearn set U that measures the unlearning effec-
 141 tiveness, L_R is the retain loss aiming to preserve model utility and α is a weight to balance between
 142 the unlearning and model utility maintaining objectives. In previous works, L_U and L_R are imple-
 143 mented in different ways as seen in (Jang et al., 2022; Zhang et al., 2024; Jiang et al., 2020; Li et al.,
 144 2024) and others.
 145

146 2.2 RELABELING BASED UNLEARNING

147 Among the various LLM unlearning methods, an important approach is the relabeling-based method,
 148 which has been explored in a sequence of recent work (Yu et al., 2023; Yao et al., 2024; Eldan &
 149 Russinovich, 2023; Ishibashi & Shimodaira, 2023; Maini et al., 2024; Deeb & Roger, 2024). The
 150 relabeling-based unlearning involves firstly creating a new unlearn set, U' , such that each prompt-
 151 response pair (x, y) in U is replaced with a modified pair (x, y') where the new response y' is
 152 different from the original response y . The selection of y' can be either an intentional crafted re-
 153 sponse, such as ‘I don’t know’ as seen in (Maini et al., 2024) or a randomly selected but sensible
 154 response such as a random choice in the context of multiple-choice questions (Deeb & Roger, 2024).
 155

156 After the construction of U' , the overall unlearning objective is
 157

$$158 \min_{\theta} (1 - \alpha) L(\theta, U') + \alpha L(\theta, R) \quad (1)$$

159 where the loss function L is prediction loss. The logic behind relabeling-based unlearning is that
 160 by training the model on these relabeled pairs (U'), we encourage the model to predict the original
 161 prompts with alternating or neutral responses, effectively overwriting the undesired information.
 162

162 Some prior works combine the relabeling-based objective (1) with other unlearning techniques, such
 163 as gradient ascent loss, to form a more comprehensive optimization objective. This work will focus
 164 exclusively on the objective defined in (1) given that it remains a fundamental component in these
 165 works and focusing on equation (1) can obtain deeper insight into how relabeling works without the
 166 influence from other unlearning techniques.
 167

168 3 MODEL’S BELIEFS UPDATE FOR UNLEARNING VIA RELABELING

171 In this section, we model the relabeling-based unlearning method as presenting conflicting evidence
 172 to the model (referred to as *fabricated evidence*). We study how this new evidence updates the
 173 model’s internal beliefs, especially for the learning and memorization-based hypothesis, whose de-
 174 tailed definitions will be provided later in this section.

175 Generally speaking, a learning-based hypothesis is a general rule learned by the model to map the
 176 output to input (e.g. the arithmetic rule to give the response to ‘*given the equation $3x+5=11$, the*
 177 *solution for x is 2*’). In contrast, a memorization-based hypothesis involves memorizing a specific
 178 output for each input, usually for arbitrary information (e.g. ‘*The file name of Alice’s medical record*
 179 *is 187465373622*’).

180 After initial training, the model holds a certain belief in these hypotheses on how the response
 181 is generated based on the prompts. The relabeling-based method, as defined in equation (1), can
 182 be seen as presenting the evidence to the model that contradicts the model’s current beliefs. For
 183 example, training with the pair ‘*given the equation $3x+5=11$, the solution for x is 3*’ challenges the
 184 arithmetic rule the model uses for basic calculation. Similarly, training with the pair ‘*the file name*
 185 *of Alice’s medical record is 17384748343*’ contradicts specific information the model memorizes
 186 previously. The process of the relabeling-based method makes the model update its belief of the
 187 hypotheses in the presence of conflicting evidence.

188 We show that learning-based hypothesis is less stable than memorization-based hypothesis when
 189 faced with fabricated evidence that contradicts the hypothesis’s prediction. When a learning-based
 190 hypothesis is presented with fabricated conflicting evidence, its belief relative to baseline hypotheses
 191 decreases exponentially with the length of the evidence. In contrast, a memorization-based hypoth-
 192 esis is relatively stable. Its belief relative to baseline hypotheses only drops by a constant amount
 193 regardless of the length of the fabricated evidence, as long as the same input has only been observed
 194 by the model a limited number of times. We also show that the learning-based hypothesis when
 195 confronted with fabricated evidence requires the model to search for a new hypothesis that fits both
 196 the modified unlearn and retain data, which can be a slow process when the model needs to dras-
 197 tically change its underlying priors on the hypothesis space. In contrast, the memorization-based
 198 hypothesis is more flexible and efficient to make alternative predictions.

199 3.1 BELIEF UPDATE MODELING

201 Given a sequence of prompt-response pairs $D = \{(x_j, z_j)\}_{j=1}^n$, we simplify our analysis by letting
 202 $x_j \in [N] = \{0, 1, 2, \dots, N\}$ and z_j is either -1 or $+1$ for any $j \in [n]$. Assume that the prompt x is
 203 uniformly sampled from $[N]$ and the observed response $z \in \{-1, +1\}$ is a noisy version of the true,
 204 underlying response $y \in \{-1, +1\}$. Specifically, the true response y is flipped with a probability
 205 $\epsilon \in (0, 0.5)$ independently for each observation.

207 We propose two primary hypotheses to distinguish between how the model predicts the response y
 208 given input x , a learning-based hypothesis (H_0) that the model learns the underlying, general rule
 209 between x and y , and a memorization-based hypothesis (H_1) that the model memorizes every pair
 210 it has ever seen. The mathematical representations of both hypotheses are defined as follows:

- 211 • H_0 (Learning-based Hypothesis): The response y is determined by a known function $f : [N] \rightarrow$
 212 $\{-1, +1\}$, that is, $y = f(x)$.
- 214 • H_1 (Memorization-based Hypothesis): A latent vector $V \in \{-1, +1\}^{N+1}$ is sampled once where
 215 each element in V is i.i.d uniformly sampled from $\{-1, +1\}$. The response y for input x is the
 value stored at the x_{th} position of vector V , i.e., $y = V_x$.

216 Under the learning-based hypothesis (H_0), the model learns a general rule $f(\cdot)$ that characterizes
 217 the relationship between the prompt x and response y . In contrast, under the memorization-based
 218 hypothesis (H_1), the model acts like a lookup table or a database, and the relationship between the
 219 input x and output y is completely arbitrary and random, determined by the initial sampling of the
 220 latent vector V . Also, since each element in V is sampled independently, there is no dependency
 221 between the responses for different inputs. The response of input x_1 provides no information for the
 222 response of input x_2 , which means there is no underlying, general rule for the model to learn. The
 223 optimal strategy is to memorize the responses for each input individually.

224 One key distinction between learning and memorization-based hypotheses lies in their uncertainty
 225 on unobserved examples. Memorization-based generation assumes independence between inputs,
 226 leading to high uncertainty on unobserved examples. In contrast, learning-based generation gener-
 227 alizes rules across inputs, resulting in high confidence and low uncertainty for predictions on unseen
 228 data.

229 We compare the prior-posterior belief change of a hypothesis relative to baseline hypotheses. We
 230 define two baseline hypotheses that make constant predictions:
 231

- 232 • H_2 : $y = +1$ for all $x \in [N]$.
- 233 • H_3 : $y = -1$ for all $x \in [N]$.

235 **Notations** we denote h as the history of n observations, and the prior belief of a hypothesis H
 236 given observations h as $P(H|h)$. New evidence is denoted as e , which consists of k observations.
 237 The posterior belief of H after incorporating new evidence e is denoted as $P(H|h, e)$. Finally,
 238 $P(y|H, h, x)$ represents the prediction probability of the label y for input x given that hypothesis H
 239 is true and a history of observations h .

240 We also define fabricated evidence against a hypothesis as a sequence of data points that consistently
 241 contradict the hypothesis's predictions, given its past observations.

242 **Definition 1.** (Fabricated Evidence) Given a hypothesis H with history observations h , we call a
 243 sequence of datapoints $e = \{(x_j, z_j)\}_{j=1}^k$ fabricated evidence against H , if we have
 244

$$245 \quad y_j = -\arg \max_{y \in \{-1, +1\}} P(y|H, h, x_j) \quad \forall j \in [k]$$

247 and z_j is a noisy observation of y_j with i.i.d flipping noise ϵ .
 248

249 We will first test the learning-based hypothesis H_0 against the baseline hypotheses H_2 and H_3 . Our
 250 primary focus will be to study the stability of the belief of H_0 in the presence of fabricated evidence
 251 e . To simplify the analysis, we consider a specific case where all evidence shares the same input x^* .
 252 In particular, Theorem 2 shows that the logarithm of the belief drop of the learning hypothesis H_0
 253 relative to the baseline hypothesis scales linearly with the evidence length k with high probability,
 254 whose proof can be found in Appendix A.

255 **Theorem 2. (Stability of Learning-based Hypothesis)** Let $P(H_0|h)$, $P(H_2|h)$ and $P(H_3|h)$ be
 256 existing belief priors based on a history of observations h . Consider fabricated evidence $e =$
 257 $\{(x_j, z_j)\}_{j=1}^k$ against H_0 with history h , where $x_j = x^*$ for all $j \in [k]$. There exists an $i \in \{2, 3\}$
 258 such that the change on the log-posterior is given as

$$259 \quad \Delta_e = \log \left(\frac{P(H_0|h)}{P(H_i|h)} \right) - \log \left(\frac{P(H_0|h, e)}{P(H_i|h, e)} \right) = (k - 2l) \log \left(\frac{1 - \epsilon}{\epsilon} \right)$$

261 where l is the number of flipped observations in the evidence e , which follows a binomial distribution
 262 $l \sim \text{Binomial}(k, \epsilon)$. Furthermore, since $\epsilon \in (0, 0.5)$, we have with probability over $1 - O(k^{-10})$,
 263

$$264 \quad \Delta_e = \Omega(k)$$

265 where the randomness is taken over the observation noise in the evidence e .
 266

267 **Remark:** Theorem 2 shows that when presented a sequence of fabricated evidence against H_0 , the
 268 log-posterior of the learning-based hypothesis (H_0) relative to the baseline hypothesis (H_2 or H_3)
 269 decrease linearly to the length of the evidence. When the evidence length is sufficiently long, the
 belief of H_0 will be overwhelmed by the baseline hypothesis. Note that this result holds regardless

270 of the choice of x^* for which the evidence is collected. Even if x^* was not observed in the initial
 271 history h , fabricated evidence regarding x^* still causes a belief drop for H_0 .
 272

273 Meanwhile, in the next theorem (Theorem 3), we will show that the memorization-based hypothesis
 274 (H_1) is relatively stable, and may lead to constant belief drop regardless of the length of the
 275 fabricated evidence. The proof of Theorem 3 can be found in Appendix A.

276 **Theorem 3.** *(Stability of Memorization-based Hypothesis)* Let $P(H_1|h)$, $P(H_2|h)$ and $P(H_3|h)$
 277 be existing belief priors based on a history of observations h . Consider fabricated evidence $e =$
 278 $\{(x_j, z_j)\}_{j=1}^k$ against H_1 with history h , where $x_j = x^*$ for all $j \in [k]$.

279 Let h_{x^*} be the subset of the history h with input value x^* , m_{1,x^*} be the number of $z_j = 1$ in h_{x^*}
 280 and m_{-1,x^*} be the number of $z_j = -1$ in h_{x^*} , then we have for any $i \in \{2, 3\}$, the change on the
 281 log-posterior can be given by

$$283 \Delta_e = \log \left(\frac{P(H_1|h)}{P(H_i|h)} \right) - \log \left(\frac{P(H_1|h, e)}{P(H_i|h, e)} \right) \leq \log \left(1 + \left(\frac{1-\epsilon}{\epsilon} \right)^{|m_{1,x^*} - m_{-1,x^*}|} \right)$$

286 In particular, if x^* is not observed in the initial history h , then we have the belief update
 287

$$288 \Delta_e \leq \log(2)$$

290 **Remark:** Theorem 3 states that the belief drop for memorization-based hypothesis H_1 relative to
 291 the baseline hypotheses (H_2 and H_3) is upper bounded by a value that doesn't depend on the length
 292 of the evidence k . This means that even as the evidence length approaches infinity, the belief drop is
 293 limited. Moreover, unlike the learning case where the belief drop is independent of the chosen input
 294 x^* , in the memorization case, the belief update varies based on the choice of x^* . Specifically, the
 295 more frequently x^* has appeared in the initial history h and more consistent its observations are, the
 296 greater the belief drop it will cause when there is fabricated evidence against it.

298 3.2 PREDICTION UPDATE FOR RELABELING-BASED UNLEARNING

300 We also note that the learning and memorization-based hypotheses have different ways for the re-
 301 sponse predictions. For the learning-based hypothesis H_0 , the entire prediction behavior is governed
 302 by the prediction function f . Therefore, in order to minimize both the unlearn loss $L(\theta, U')$ and the
 303 retain loss $L(\theta, R)$, the model has to find a new hypothesis H' that better fits the datasets U' and R .
 304 However, how fast the model can find this new hypothesis H' highly depends on the model's prior,
 305 like what the hypothesis could be or what hypothesis space H' belongs to. In the next theorem,
 306 we show that given a prior hypothesis class \mathcal{H} that can perfectly fit the task distribution, then any
 307 hypothesis $h \in \mathcal{H}$ that achieves good accuracy on U' will suffer from big performance drop even in
 308 the case that $|U'| = 1$. This lower bound, whose proof is given in Appendix A, is stated as follows:

309 **Theorem 4.** *Given a d -dimensional linear hypothesis class defined as $\mathcal{H} = \{h_{w,b}(x) = \text{sign}(w^T x + b) | w \in \mathbb{R}^d, b \in \mathbb{R}\}$. There exists a distribution \mathcal{D} and $U' = \{(x', y') \in [N]^d \times \{-1, +1\}\}$ where
 310 with $N \geq 3$, such that $\min_{h \in \mathcal{H}} \text{err}_{\mathcal{D}}(h) = 0$ and $P_{\mathcal{D}}(x = x')$ is negligible, however, for any $\hat{h} \in \mathcal{H}$
 311 with $\hat{h}(x') = y'$, we have*

$$312 \text{err}_{\mathcal{D}}(\hat{h}) \geq 0.1$$

314 where $\text{err}_{\mathcal{D}}(\cdot)$ is the 0-1 error evaluated on distribution \mathcal{D} .
 315

316 The theorem above states a fundamental challenge for models that rely on a learning-based hypothesis
 317 when using the relabeling-based unlearning method. In order to minimize both the unlearning
 318 and retain loss, the model sometimes needs to drastically change its prior beliefs about the func-
 319 tions required to fit both U' and the retain set R . In the context of Theorem 4, even though the
 320 original task can be perfectly predicted by a linear classifier, fitting the modified unlearn set U' (let
 321 $\hat{h}(x') = y'$) using linear classifiers will lead to a constant error rate. As a result, the model needs to
 322 expand the hypothesis class to include more complex hypotheses. This change in prior beliefs can
 323 make the optimization process slower and more complex, which we will provide empirical evidence
 in the experiments presented in the next section.

324 In contrast, the memorization hypothesis (H_1) gives a more flexible way to predict the response. In
 325 particular, H_1 admits a decision rule based on maximum likelihood estimation written as
 326

$$327 \hat{y}_x = \begin{cases} +1 & \text{if } m_{1,x} \geq m_{-1,x} \\ 328 -1 & \text{if } m_{1,x} < m_{-1,x} \end{cases}$$

329 where $m_{1,x}$ and $m_{-1,x}$ are the number of times the model has observed prompt x with response +1
 330 or -1 respectively. Therefore, in order to change the model prediction from +1 to -1 for specific
 331 prompt x , we can repeatedly present the model with observations of $(x, y' = -1)$. Eventually,
 332 $m_{-1,x}$ will be larger than $m_{1,x}$, at which point, the model's prediction for x is flipped to $y' = -1$
 333 and the information associated with x is effectively unlearned. This process is restricted to specific
 334 prompt and does not require a search for new hypotheses as in the learning case. We will show
 335 empirically in the next section that such restricted and localized update leads to faster and more
 336 stable unlearning.

338 4 EXPERIMENTS

340 In this section, we present our experimental results, which empirically validate the theoretical claims
 341 from the previous section that relabeling-based unlearning is more effective for memorization-based
 342 generation than for learning-based generation. We begin with experiments in which we instruct
 343 LLMs to perform a binary classification task, consistent with our theoretical setting. We then provide
 344 additional experiments on unlearning social stereotypes, a setting more closely aligned with practical
 345 LLM applications. These results are deferred to Appendix B.4 due to space constraints.

346 4.1 EXPERIMENT SETUP

348 In our experiments, we follow prior work (Zhao et al., 2024b; Dinh et al., 2022) to instruct the model
 349 to perform binary classification task. The model is given a two-dimensional input $x = (x_1, x_2)$
 350 where x_1 and x_2 are integers between 0 and 200. The prediction label is either -1 and +1 which
 351 are mapped to class name “Foo” and “Bar”, respectively. We choose this binary classification task
 352 for the following key reasons: 1) the nature of the task makes it straightforward to construct specific
 353 data distribution patterns and conduct experiments under a well-controlled setup. 2) it enables a
 354 clear visualization of the model's decision boundary, which allows us to observe how the model's
 355 beliefs update concerning the underlying data generation hypothesis.

356 An example of the prompts used in our experiments is shown as follows:

358 What is the label for this input?\n Input: 62 87\n Label: Foo

359 We generate prompts of this form for each (x, y) pair in the dataset.

361 **Tasks and Datasets** We define three different tasks:

- 363 • *LINEAR*: data points (x, y) are linearly separable with $y = \text{sign}(x_1 - x_2)$.
- 364 • *RECTANGLE*: the input domain is partitioned into 4 quadrants centered at (100, 100). Points in
 365 two quadrants are labeled as +1 and those in the remaining quadrants are labeled as -1.
- 366 • *RANDOM*: label y is uniformly and randomly generated from $\{-1, +1\}$ for each input x .

368 For each task, we generate 1024 datapoints in each task and choose 30 of them as the unlearn set U ,
 369 while the rest will be the retain set R . The data distribution of all tasks are plotted in Figure 1.

371 **Language model** The language model we use is Llama-3.2-3B-Instruct (Dubey et al., 2024).
 372 Similar results are obtained with other models including Qwen3-4B (QwenTeam, 2025) and Llama-
 373 3.2-8B-Instruct (Dubey et al., 2024)), which are deferred to Appendix B.2.

375 **Training/Unlearning method** We first finetune the original model on the entire dataset for each
 376 task. After finetuning, we perform unlearning on the unlearn set using the *relabeling-based method*
 377 defined in equation (1). In particular, we construct a modified unlearn set U' by flipping the label
 for each data point in U to generate alternative responses and then train the model to fit both U' and

Figure 1: Data visualization for the LINEAR (left), RECTANGLE (middle) and RANDOM (right) tasks.

the retain set R . The prediction loss $\ell(\theta, (x, y)) = -\log(P_\theta(y|x))$ is used as the training objective for both fine-tuning and unlearning. The loss is calculated only on the label y . More detailed hyperparameter settings are provided in Appendix B.1.

4.2 RESULTS

Decision Boundary for Learning and Memorization-based Generations Since it is challenging to directly obtain the underlying model hypothesis of the model, we instead plot the decision boundary as an indirect way to understand the model’s prediction process. The decision boundaries for each task after the initial finetuning are provided in Figure 2.

Figure 2: Decision boundaries for the LINEAR task (left), RECTANGLE (middle) and the RANDOM task (right) after finetuning. The clear, regular decision boundaries for the LINEAR and RECTANGLE tasks demonstrate that the model learned the underlying data generation rule, indicating the model’s generation is more learning-based. In contrast, the irregular and scattered decision boundary of the RANDOM task suggests the prediction relies more on memorization rather than rule learning.

From Figure 2, we can see a clear discrepancy between tasks relying on learning-based generation and memorization-based generation. The decision boundaries for the LINEAR and RECTANGLE tasks (left and middle of Figure 2) show clear and regular patterns. This suggests that the model successfully learns the underlying rules of data generation, showing a **learning-based generation** approach. In contrast, the model finetuned on the RANDOM task data is akin to **memorization-based generation** as the labels are uniformly and randomly generated and there is no underlying data distribution structure for the model to learn. As a result, its decision boundary (right of Figure 2) is irregular and scattered, showing no clear pattern.

Unlearn Efficiency Here, we show that unlearning is more efficient for the memorization-based task (RANDOM) than for the learning-based tasks (LINEAR and RECTANGLE). The unlearning performance is evaluated using the accuracy on the retain set R (retain accuracy) and the accuracy on the unlearn set U (unlearn accuracy), as shown in Figure 3.

We observe relabeling-based method achieves nearly 100% retain accuracy and zero unlearn accuracy for all tasks by the end of unlearning. However, the unlearning process shows different patterns between learning and memorization-based tasks.

Figure 3: Accuracy for the retain set R (left) and unlearn set U (right) during unlearning for different tasks. The unlearn set consists of 30 data records, which represent 3% of the full dataset. Unlearning the RANDOM task shows faster and more stable convergence compared to the learning-based tasks (LINEAR and RECTANGLE). Retain accuracy remains consistently high (over 90%) for the RANDOM task but drops sharply to under 40% for the other two tasks in the middle of the unlearning before recovering. Meanwhile the unlearn accuracy for the RANDOM task reaches zero faster than those for the other two tasks.

- (Unlearning Stability) The stability of the unlearning is reflected by the retain accuracy during unlearning (left of Figure 3). A stable unlearning process can effectively remove information from the unlearn set without significantly affecting the retain accuracy. The retain accuracy for the LINEAR and RECTANGLE task drops sharply under 40% during unlearning before recovering. In contrast, the retain accuracy of the RANDOM task remains above 90% consistently. This indicates greater stability of the memorization-based task.
- (Unlearning Rate) The rate of unlearning is captured by the unlearn accuracy (right of Figure 3). A faster unlearn rate means the accuracy on unlearn set U drops more quickly. The unlearn accuracy of the RANDOM task decreases significantly faster, reaching zero accuracy in around 70 steps, while the LINEAR and RECTANGLE tasks require over 250 steps to achieve the same level. The slower convergence can be a result of the requirement of the learning-based tasks to search for new hypotheses to simultaneously fit the modified unlearn set U' and retain set R , as discussed in section 3.2.

Decision Boundary Evolution during Unlearning To observe the change of the underlying hypotheses the model employs for the prediction, we save snapshots of model at various steps of the unlearning and plot the decision boundary for each saved model. In Figure 4, we show how the decision boundary evolves at different stages of the unlearning.

The top and middle row in Figure 4 plots the decision boundary evolution for learning-based tasks (LINEAR and RECTANGLE). Despite the unlearn set representing only 3% of the full dataset, the model’s belief in the original learning-based hypothesis gets significantly shattered at the beginning of the unlearning due to the fabricated conflicting evidence introduced by U' , leading to a drastic change in the model’s prediction behavior with an unclear and irregular decision boundary. The model then gradually refines its internal belief and successfully finds a new hypothesis that can fit both U' and R by the end of the unlearning.

Meanwhile, the bottom row of Figure 4 illustrates the decision boundary evolution during unlearning for the RANDOM task. Even though some localized changes on the decision boundary are still visible, there are no significant global changes and the overall decision boundary structure remains stable, which indicates the stability of the model belief of the memorization case for the relabeling-based unlearning method.

5 CONCLUSION

In this paper, we investigate how the nature of a model’s generation influences the efficiency of relabeling-based unlearning, with a focus on distinguishing between learning-based and memorization-based generations. Our results show that relabeling-based methods are more effective for unlearning memorization-based generation, exhibiting more stable belief updates and requiring

Figure 4: Decision boundary evolution during unlearning for tasks: LINEAR (top row), RECTANGLE (middle row) and RANDOM (bottom row). The figures show decision boundaries at unlearning steps: 0, 60, 180, 420. The unlearn set consists of 30 data records, which represent 3% of the full dataset. Light-colored areas indicate higher model uncertainty. The learning-based tasks (LINEAR and RECTANGLE) show significant, global changes on their decision boundary as the model unlearns, suggesting significant shift on the model’s belief. In contrast, memorization-based task (RANDOM) only shows localized, minor boundary updates, highlighting the stability of the model’s belief.

no significant changes to the model’s priors. In contrast, unlearning learning-based generation is inherently more challenging. Promising future directions include extending our theoretical framework to settings with more general types of response other than binary classification, demonstrating our results on a broader range of benchmarks, and exploring connections to LLM alignment, which shares conceptual similarities with relabeling-based unlearning.

540 REPRODUCIBILITY STATEMENT
541542 All datasets used in our experiments, along with the experiment code, are provided as supplementary
543 material. The package also includes a README file with detailed instructions for reproducing the
544 experiments in this paper. Proofs of the theoretical results can be found in Appendix A.
545546 REFERENCES
547548 Jan Bronec and Jindřich Helcl. Atyaephyra at semeval-2025 task 4: Low-rank negative preference
549 optimization. *arXiv preprint arXiv:2503.13690*, 2025.
550551 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
552 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulrich Erlingsson, et al. Extracting training data
553 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
554 2633–2650, 2021.
555555 Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. *arXiv*
556 *preprint arXiv:2310.20150*, 2023.
557558 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
559 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
560 *Advances in neural information processing systems*, 36:49205–49233, 2023.
561561 Aghyad Deeb and Fabien Roger. Do unlearning methods remove information from language model
562 weights? *arXiv preprint arXiv:2410.08827*, 2024.
563564 Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong Sohn,
565 Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for non-
566 language machine learning tasks. *Advances in Neural Information Processing Systems*, 35:11763–
567 11784, 2022.
568569 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
570 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
571 *arXiv e-prints*, pp. arXiv–2407, 2024.
572572 Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms. *arXiv*
573 *preprint arXiv:2310.02238*, 2023.
574575 Xiaohua Feng, Yuyuan Li, Chengye Wang, Junlin Liu, Li Zhang, and Chaochao Chen. A neuro-
576 inspired interpretation of unlearning in large language models through sample-level unlearning
577 difficulty. *arXiv preprint arXiv:2504.06658*, 2025.
578578 Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
579 leaking your personal information? *arXiv preprint arXiv:2205.12628*, 2022.
580581 Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. *arXiv*
582 *preprint arXiv:2309.11852*, 2023.
583584 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
585 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. *arXiv*
586 *preprint arXiv:2210.01504*, 2022.
587588 Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural regu-
589 larities of labeled data in overparameterized models. *arXiv preprint arXiv:2002.03206*, 2020.
590591 Aravind Krishnan, Siva Reddy, and Marius Mosbach. Not all data are unlearned equally. *arXiv*
592 *preprint arXiv:2504.05058*, 2025.
593594 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
595 Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring
596 and reducing malicious use with unlearning. *arXiv preprint arXiv:2403.03218*, 2024.
597

594 Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large
 595 language models through machine unlearning. *arXiv preprint arXiv:2402.10058*, 2024.
 596

597 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task
 598 of fictitious unlearning for llms. *arXiv preprint arXiv:2401.06121*, 2024.

599 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 600 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.
 601

602 QwenTeam. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

603 Jonas B Sandbrink. Artificial intelligence and biological misuse: Differentiating risks of language
 604 models and biological design tools. *arXiv preprint arXiv:2306.13952*, 2023.
 605

606 Ruihan Wu, Konstantin Garov, and Kamalika Chaudhuri. Learning-time encoding shapes unlearning
 607 in llms. *arXiv preprint arXiv:2506.15076*, 2025.

608 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. *Advances in Neural
 609 Information Processing Systems*, 37:105425–105475, 2024.
 610

611 Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language
 612 models by partitioning gradients. In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 6032–6048, 2023.

613

614 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastro-
 615 phic collapse to effective unlearning. *arXiv preprint arXiv:2404.05868*, 2024.
 616

617 Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
 618 antafillou. What makes unlearning hard and what to do about it. *Advances in Neural Information
 619 Processing Systems*, 37:12293–12333, 2024a.

620 Siyan Zhao, Tung Nguyen, and Aditya Grover. Probing the decision boundaries of in-context learn-
 621 ing in large language models. *Advances in Neural Information Processing Systems*, 37:130408–
 622 130432, 2024b.
 623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A MISSING PROOF IN SECTION 3
649

650 **Theorem** (Restatement of Theorem 2). *Let $P(H_0|h)$, $P(H_2|h)$ and $P(H_3|h)$ be existing priors*
 651 *based on a history of observations h . Consider fabricated*
 652 *evidence $e = \{(x_j, z_j)\}_{j=1}^k$ against H_0 , where $x_j = x^*$ for all $j \in [k]$. Then there exists an*
 653 *$i \in \{2, 3\}$ such that the change on the log-posterior is given as*

$$654 \Delta_e = \log \left(\frac{P(H_0|h)}{P(H_i|h)} \right) - \log \left(\frac{P(H_0|h, e)}{P(H_i|h, e)} \right) = (k - 2l) \log \left(\frac{1 - \epsilon}{\epsilon} \right)$$

655 where l is the number of flipped observations in the evidence e , which follows a binomial distribution
 656 $l \sim \text{Binomial}(k, \epsilon)$. Furthermore, since $\epsilon \in (0, 0.5)$, we have with probability over $1 - O(k^{-10})$,

$$657 \Delta_e = \Omega(k)$$

658 where the randomness takes from the observation noise in e .

659 *Proof.* Without loss of generality, we assume that $f(x^*) > 0$, then $y_i = -1$ for all y_i from the new
 660 evidence e . Then by Bayes' theorem, we have

$$661 \Delta_e = \log \left(\frac{P(H_0|h)}{P(H_3|h)} \right) - \log \left(\frac{P(H_0|h, e)}{P(H_3|h, e)} \right) = \log \left(\frac{P(e|H_3, h)}{P(e|H_0, h)} \right)$$

662 Next, we focus on the ratio $\frac{P(e|H_3, h)}{P(e|H_0, h)}$. First, since both H_0 and H_3 assume i.i.d generation,
 663 therefore $P(e|H_0, h) = P(e|H_0)$ and $P(e|H_3, h) = P(e|H_3)$. Then given the evidence $e =$
 664 $(x^*, z_1) \dots (x^*, z_k)$, let l be the number of $+1$ in all z_i s, then we have

$$665 P(e|H_0) = \left(\frac{1}{N+1} \right)^k (1 - \epsilon)^l \epsilon^{k-l}$$

666 and

$$667 P(e|H_3) = \left(\frac{1}{N+1} \right)^k \epsilon^l (1 - \epsilon)^{k-l}$$

668 Combining everything together, we have

$$669 \Delta_e = \log \left(\frac{P(e|H_3, h)}{P(e|H_0, h)} \right) = (k - 2l) \log \left(\frac{1 - \epsilon}{\epsilon} \right)$$

670 Since $y_i = -1$ in e , l also denotes the total number of times z_i flip y_i which happens independently
 671 with probability ϵ . Therefore, l is binomial distributed with $l \sim \text{Binomial}(k, \epsilon)$. Since $\epsilon < 0.5$, via
 672 McDiarmid's inequality, we have with probability over $1 - O(k^{-10})$

$$673 k - 2l = \Omega(k)$$

674 where the randomness takes from the noise on the observation z .

675 Similar proof can be obtained for Δ_e between H_0 and H_2 , when $f(x^*) \leq 0$.

676 \square

677 **Theorem** (Restatement of Theorem 3). *Let $P(H_1|h)$, $P(H_2|h)$ and $P(H_3|h)$ be existing priors*
 678 *based on a history of observations h . Consider fabricated evidence $e = \{(x_j, z_j)\}_{j=1}^k$ against H_1*
 679 *with history observations h , where $x_j = x^*$ for all $j \in [k]$.*

680 Let h_{x^*} be the subset of the history h with input value x^* . Let m_{1,x^*} be the number of $z_j = 1$ in h_{x^*}
 681 and m_{-1,x^*} be the number of $z_j = -1$ in h_{x^*} , then we have for any $i \in \{2, 3\}$, the change on the
 682 log-posterior can be given by

$$683 \Delta_e = \log \left(\frac{P(H_1|h)}{P(H_i|h)} \right) - \log \left(\frac{P(H_1|h, e)}{P(H_i|h, e)} \right) \leq \log \left(1 + \left(\frac{1 - \epsilon}{\epsilon} \right)^{|m_{1,x^*} - m_{-1,x^*}|} \right)$$

684 In particular, if x^* is not observed in the initial history h , then we have the belief update

$$685 \Delta_e \leq \log(2)$$

702 *Proof.* Without loss of generality, we assume that the label $y_i = 1$ for $i \in [k]$ in evidence e , Then
 703 we are comparing the belief between H_1 and H_3 and H_2 .
 704

705 In particular, we have for $i \in \{2, 3\}$

$$706 \Delta_e = \log \left(\frac{P(H_1|h)}{P(H_i|h)} \right) - \log \left(\frac{P(H_1|h, e)}{P(H_3|h, e)} \right) = \log \left(\frac{P(e|H_i, h)}{P(e|H_1, h)} \right) \quad (2)$$

709 Next, we need to compute $P(e|H_1, h)$. Denote random variable y_{x^*} as the corresponding y to x^* .
 710 Then we have

$$711 P(e|H_1, h) = \sum_{y \in \{-1, 1\}} P(e|y_{x^*} = y, H_1, h) \cdot P(y_{x^*} = y|H_1, h)$$

714 Then we define the l be the number of times $z_i = 1$ in e , it is straightforward to obtain that
 715

$$716 P(e|y_{x^*} = -1, H_1) = \left(\frac{1}{N+1} \right)^k \epsilon^l (1-\epsilon)^{k-l}$$

$$719 P(e|y_{x^*} = 1, H_1) = \left(\frac{1}{N+1} \right)^k \epsilon^{k-l} (1-\epsilon)^l$$

721 Meanwhile, we have

$$723 P(e|H_2, h) = \left(\frac{1}{N+1} \right)^k \epsilon^{k-l} (1-\epsilon)^l$$

$$726 P(e|H_3, h) = \left(\frac{1}{N+1} \right)^k \epsilon^l (1-\epsilon)^{k-l}$$

728 Next, we will compute the

$$730 P(y_{x^*} = y|h, H_1) \quad \text{for } y \in \{-1, 1\}$$

731 We denote h_{x^*} the subset of h that have the input value x^* , it is easy to show that
 732

$$733 P(y_{x^*} = y|h, H_1) = P(y_{x^*} = y|h_{x^*}, H_1) \quad \text{for } y \in \{-1, 1\}$$

734 This is due to the fact that under H_1 , the part of h whose feature is not x^* is independent of y_{x^*} .
 735

736 Applying Bayes' theorem, we obtain

$$737 P(y_{x^*} = 1|h_{x^*}, H_1) = \frac{P(h_{x^*}|y_{x^*} = 1, H_1) \cdot P(y_{x^*}=1|H_1)}{P(h_{x^*}|H_1)}$$

740 It is easy to show that

$$741 P(y_{x^*} = 1|h_{x^*}, H_1) = \frac{(1-\epsilon)^{m_1} \epsilon^{m_{-1}}}{(1-\epsilon)^{m_1} \epsilon^{m_{-1}} + (1-\epsilon)^{m_{-1}} \epsilon^{m_1}}$$

744 Similarly, we have

$$745 P(y_{x^*} = -1|h_{x^*}, H_1) = \frac{(1-\epsilon)^{m_{-1}} \epsilon^{m_1}}{(1-\epsilon)^{m_1} \epsilon^{m_{-1}} + (1-\epsilon)^{m_{-1}} \epsilon^{m_1}}$$

748 Then we have

$$749 \frac{P(e|H_2, h)}{P(e|H_1, h)} = \frac{P(e|H_2, h)}{\sum_{y \in \{-1, 1\}} P(e|y_{x^*} = y, H_1) \cdot P(y_{x^*} = y|H_1, h)}$$

$$752 \leq \frac{P(e|H_2, h)}{P(e|y_{x^*} = 1, H_1) \cdot P(y_{x^*} = 1|H_1, h_{x^*})}$$

$$754 = \frac{1}{P(y_{x^*} = 1|H_1, h_{x^*})} \leq 1 + \left(\frac{1-\epsilon}{\epsilon} \right)^{|m_{1,x^*} - m_{-1,x^*}|}$$

756 The last equality follows that
 757

$$758 P(e|H_2, h) = P(e|y_{x^*} = 1|H_1, H_1) = \left(\frac{1}{N+1}\right)^k \epsilon^{k-l} (1-\epsilon)^l$$

760 Similarly, we also have
 761

$$762 \frac{P(e|H_3, h)}{P(e|H_1, h)} \leq 1 + \left(\frac{1-\epsilon}{\epsilon}\right)^{|m_{1,x^*} - m_{-1,x^*}|}$$

765 Combining these results with equation equation 2, we obtain the desired results.
 766

□

768 **Theorem** (Restatement of Theorem 4). *Given a d -dimensional linear hypotheses class defined as
 769 $\mathcal{H} = \{h_{w,b}(x) = \text{sign}(w^T x + b) | w \in \mathbb{R}^d, b \in \mathbb{R}\}$. There exists a distribution \mathcal{D} and a data
 770 record $z' = (x, y') \in [N]^d \times \{-1, +1\}$ where $[N] = \{1, 2, 3, \dots, N\}$ with $N \geq 3$, such that
 771 $\min_{h \in \mathcal{H}} \text{err}_D(h) = 0$ and $P_D(x = x')$ is negligible, however, for any $\hat{h} \in \mathcal{H}$ such that $\hat{h}(x) = y'$,
 772 we have*

$$773 \text{err}_D(\hat{h}) \geq 0.1$$

774 where $\text{err}_D(\cdot)$ is the 0-1 error evaluated on distribution D .
 775

776 *Proof.* The construction is as follows:
 777

- 778 • The points are uniformly distributed in hyper cube $C = \{1, 2, 3\}^d$ where $P(x \in C) = 0.2$
- 779 • The ground truth for all points in x is 1, that is, $P(y = 1|x \in C) = 1$.

781 The unlearn point is the center of the hypercube $x' = \{2\}^d$. The rest of distribution can be
 782 constructed such that, $\exists h^* \in \mathcal{H}$, such that $\text{err}_D(h^*) = 0$, for example with arbitrary distribution for
 783 $x \notin C$ and $P(y = 1) = 1$ for all x with $x_1 < 6$ and $P(y = -1) = 1$ for all $x_1 \geq 6$ where x_1 is the
 784 first coordinate of x .
 785

786 Now, we show that if we want to “unlearn” x' by finding a $\hat{h} \in \mathcal{H}$ with parameters w, b such that
 787 $h_{w,b}(x') \neq 1$, we have

$$788 \text{err}_D(\hat{h}) \geq 0.1$$

789 First, since $\hat{h}(x') = -1$, then we have $w^T x + b \leq 0$. Now we consider other points in the unit B ,
 790 since B is centered as x' , then any point x can be written
 791

$$792 x = x' + \Delta x$$

793 where $\|\Delta x\| \leq 1$. Note that since x is uniformly distributed across B , which implies that the
 794 direction of Δx is symmetric, that is, for any $x = x' + \Delta x \in B$, there exists an $\bar{x} = x' - \Delta x$ such
 795 that $\bar{x} \in B$ and $P_D(x) = P_D(\bar{x})$. Therefore, we have

$$796 P_D(w^T \Delta x \leq 0|x \in B) \geq 0.5$$

797 For any x with $w^T \Delta x \leq 0$, we have
 798

$$799 w^T x + b = w^T(x' + \Delta x) + b = w^T x' + w^T \Delta x + b \leq 0$$

800 That implies that at least these x will also be classified as -1 , which is
 801

$$802 P_D(\hat{h}(x) = -1|x \in B) \geq 0.5$$

803 Combined with fact that $P_D(x \in B) \geq 0.2$ and the true label of $x \in B$ is $+1$, we have
 804

$$805 \text{err}_D(\hat{h}) \geq 0.2 \times 0.5 = 0.1$$

806 Since we consider realizable case, we also have
 807

$$808 \text{err}_D(\hat{h}) - \min_{h \in \mathcal{H}} \text{err}_D(h) \geq 0.1$$

□

810
811 B EXPERIMENT DETAILS
812
813814 We run our experiments with Llama3.2-3B-Instruct, Qwen3-4B and Llama3.2-8B-Instruct models.
815 We use Lion optimizer (Chen et al., 2023) for both finetuning and unlearning with a learning rate
816 of 5×10^{-7} and a batch size of 8 for all experiments. No learning rate scheduler is used. We
817 train 20 epochs for finetuning. The regularization parameter α in equation (1) is set to 0.5 across
818 all experiments. A gradient norm clipping equal to 1 is added for unlearning experiments. All
819 experiments are conducted on a single NVIDIA A100 GPU.
820821 B.2 ADDITIONAL EXPERIMENTS WITH OTHER MODELS
822823 **Overview** We provide additional experimental results for finetuning and unlearning with Qwen3-
824 4B and Llama3.2-8B-Instruct. The results for Qwen3-4B are shown in Figures 5-7 and those for
825 Llama3.2-8B-Instruct are provided in 8-10. In particular, the decision boundaries after initial fine-
826 tuning are in Figure 5 for Qwen3-4B and Figure 8 for Llama3.2-8B-Instruct. The retain and unlearn
827 accuracies during unlearning are in Figure 6 for Qwen3-4B and Figure 9 for Llama3.2-8B-Instruct.
828 Finally, the decision boundary evolutions for each task are presented in Figure 7 for Qwen3-4B and
829 Figure 10 for Llama3.2-8B-Instruct.
830831
832
833
834
835
836
837
838 Figure 5: Decision boundary for the LINEAR task (left), RECTANGLE (middle) and the RANDOM
839 task (right) after finetuned on Qwen3-4B.
840841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856 Figure 6: Retain and unlearn accuracies for the LINEAR (left), RECTANGLE (middle) and RAN-
857 DOM (right) task for Qwen3-4B model.
858859 **Discussion** The experiments for the Qwen3-4B and Llama3.2-8B-Instruct show results consistent
860 with those reported in section 4 for Llama3.2-3B-Instruct. In particular, all models successfully
861 learn the underlying data generation rule for LINEAR and RECTANGLE tasks, leading to clear
862 and regular decision boundaries. The decision boundaries for RANDOM task remain scattered and
863 irregular for all models. This indicates that similar model behaviors occur after finetuning for models
with different sizes and architectures.
864

Figure 7: Decision boundary evolutions during unlearning for LINEAR (top row), RECTANGLE (middle row) and RANDOM (bottom row) tasks for Qwen3-4B model. These figures show decision boundaries at unlearning steps: 0, 50, 100, 200.

Figure 8: Decision boundary for the LINEAR task (left), RECTANGLE (middle) and the RANDOM task (right) after finetuning for Llama3.2-8B-Instruct.

Figure 9: Accuracy for the retain set R (left) and unlearn set U (right) during unlearning for different tasks for Llama3.2-8B-Instruct.

Figure 10: Decision boundary evolutions during unlearning for LINEAR (top row), RECTANGLE (middle row) and RANDOM (bottom row) tasks for Llama3.2-8B-Instruct. These figures show decision boundaries at unlearning steps: 0, 60, 180, 300.

For the unlearning part, all models exhibit faster convergence of unlearn accuracy for RANDOM task compared with other two tasks. Also, unlearning the RANDOM task maintains a consistently high retain accuracy across all models, while the retain accuracies for learning-based tasks (LINEAR and RECTANGLE) experience significantly greater fluctuation. The decision boundary evolutions during unlearning also follow similar patterns across all models, that is, the belief of the learning-based hypotheses get shattered rapidly at the beginning of unlearning leading to irregular and vague decision boundaries while the decision boundary for RANDOM task remains relatively stable with only localized and minor changes.

B.3 ADDITIONAL EXPERIMENTS ON MIXTURE OF LEARNING AND MEMORIZATION

In this section, we introduce additional experiments in which the model’s predictions arise from a mixture of learning and memorization. Specifically, we construct a new dataset (Figure 11) in which one portion follows a clear pattern, similar to the RECTANGLE task, while the remaining portion is randomly generated as in the RANDOM task. We then compare the unlearning performance of this mixed dataset with the original RANDOM and RECTANGLE tasks.

Figure 11: Data visualization of the half RECTANGLE half RANDOM task (left); accuracy for retain set R (middle) and unlearn set U (right) during unlearning for different tasks in the experiments on mixture of learning and memorization.

As shown in Figure 11, the mixture task exhibits performance between that of the RECTANGLE and RANDOM tasks in both unlearning stability and convergence rate. This provides a more fine-grained characterization of the performance gap of relabeling-based unlearning methods across the spectrum between learning-based and memorization-based generation.

972 **B.4 ADDITIONAL SOCIAL STEREOTYPE EXPERIMENTS**
973974 In this section, we perform new experiments to unlearn social stereotype. In particular, we generate
975 a set of personal-background descriptions, where each datapoint includes attributes such as birth
976 date, nationality, profession, and gender. We intentionally inject a social stereotype—for example,
977 assigning the gender “Female” to all individuals with the profession “nurse.” We first fine-tune the
978 model on this biased dataset, and then perform unlearning on the gender attribute. We compare this
979 with another dataset in which gender is randomly assigned and does not encode the stereotype.
980981 **Tasks and Datasets** We define two tasks in social stereotype experiments:982

- “Biased” task: certain gender are mapped with specific professions with social biases.
983 - “Random” task: the gender for each background description are randomly generated.
984

985 The dataset for each task consists of 1024 prompts formatted as:

986 *Given the background of a person: {background}, the gender of this person is:{gender}.*

987 An example of the prompts used in our experiments is

988 *Given the background of a person: Born 1989, Canadian Nurse specializing in emergency care;
989 raised in Toronto, trained at McGill, coordinates community outreach, champions patient safety.
990 The gender of this person is:Female.*991 The {background} for each prompt are generated by OpenAI GPT-5 with the following prompt,
992 where {occupation} is a placeholder for selected from 8 possible candidates.993 *Please make up a background of a person, who is {occupation} in 20 words. The description should
994 include year of birth, nationality, and occupation ({occupation}) explicitly, but does not include any
995 personal pronoun indicating gender.*

996 And the {gender} depends on the tasks:

1000

- For “Biased” task: We predefine a occupation-gender mapping as follows.

1001

Occupation	Teacher	Nurse	Sales Person	Scientist	Engineer	Driver	Builder	Accountant
Gender	Female	Female	Female	Female	Male	Male	Male	Male

1002 For a specific {occupation} in the personal-background description, the {gender} is as-
1003 signed to it accordingly.1004

- For “Random” task: {gender} is selected randomly between “Male” and “Female” with
1005 equal probability.

1006 In the Biased task, the model can learn a clear, consistent mapping between occupation and gen-
1007 der, leading to behavior that is predominantly learning-based after fine-tuning. In contrast, in the
1008 Random task, no underlying rule exists; the model must rely on memorization-based behavior to
1009 generate the correct gender labels. This distinction allows us to study how unlearning operates
1010 under learning-based versus memorization-based generation.1011 **Results** The results are shown in the following (Figure 12).1012 From Figure 12, we observe that the Biased task, which is closer to learning-based generation, shows
1013 significant fluctuations in retain accuracy during unlearning, indicating lower unlearning stability.
1014 Moreover, the Biased task requires more unlearning steps to reduce the unlearn accuracy to zero,
1015 leading to slower convergence compared with the Random task, which is more memorization-based.

Figure 12: Accuracy for retain set R (left) and unlearn set U (right) during unlearning for different tasks in the social stereotype experiments.