
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AVIARY: TRAINING LANGUAGE AGENTS ON CHAL-
LENGING SCIENTIFIC TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving complex real-world tasks requires cycles of actions and observations. This
is particularly true in science, where tasks require many cycles of hypothesis, exper-
imentation, and analysis. Language agents hold promise for automating intellectual
tasks in science because they can interact with tools via natural language or code.
However, their flexibility creates conceptual and practical challenges for software
implementations, since agents may comprise non-standard components such as
internal reasoning, planning, tool usage, as well as the inherent stochasticity of
temperature-sampled language models. Here, we introduce Aviary, an extensible
gymnasium for language agents. We formalize agents as policies solving language-
grounded partially observable Markov decision processes, which we term language
decision processes. We then implement five environments, including three chal-
lenging scientific environments: (1) manipulating DNA constructs for molecular
cloning, (2) answering research questions by accessing scientific literature, and
(3) engineering protein stability. These environments were selected for their focus
on multi-step reasoning and their relevance to contemporary biology research.
Finally, with online training and inference-time compute scaling, we show that
language agents based on open-source, non-frontier LLMs can match and exceed
both frontier LLM agents and human experts on multiple tasks at up to 100x lower
inference cost.

Figure 1: An overview of the five implemented Aviary environments and the language decision
process (LDP) framework. The term language decision process here jointly refers to our theoretical
description of the class of problems solved by language agents, as well as a software framework
for implementing language agents based on a stochastic computation graph that enables training
of language agent components such as LLM weights, prompts, memories, and LLM sampling
parameters such as temperature.

1 INTRODUCTION

Language agents (Mialon et al., 2023; Xi et al., 2023; Gao et al., 2023; Sumers et al., 2024) are
AI agents (Russell & Norvig, 2016) that integrate LLMs (Brown et al., 2020; Achiam et al., 2023;
Bowman, 2023) as core components. LLMs excel at zero-shot generalization (Zeng et al., 2023a;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Szot et al., 2024), providing a notable advantage over traditional AI agents, such as those based
on handcrafted rules or reinforcement learning, which often struggle to generalize to new envi-
ronments (Lake et al., 2017). While LLMs can exhibit flawed reasoning and logic when used in
isolation (Creswell et al., 2023; Frieder et al., 2024b;a), constructing a language agent by grounding
LLMs in an environment with observational feedback can mitigate these issues. Early work on
language agents used LLMs to directly output actions in the external environment (Brohan et al.,
2023; Huang et al., 2022; Dasgupta et al., 2022), while more recently, language agents have been
augmented with internal reasoning (Yao et al., 2023; Shinn et al., 2024) and planning procedures (Hao
et al., 2023; Yao et al., 2024), as well as long-term memory storage (Park et al., 2023; Wang et al.,
2024a).

An emergent research challenge is to pose a theoretical description of the learning problem solved by
language agents (Sumers et al., 2024; Zhuge et al., 2024) and to develop efficient methods to optimize
the components of a language agent (Zhuge et al., 2024; Yuksekgonul et al., 2024; Cheng et al., 2024).
Here, we define common language agent tasks as language decision processes (LDPs) and frame
language agents as stochastic computation graphs (Schulman et al., 2015) that may be trained to
solve LDPs. We show that pre-existing agents (Yao et al., 2023; Shinn et al., 2024; Yao et al., 2024)
can be implemented within our stochastic computation graph framework and introduce a simple and
extensible software package named LDP that enables modular interchange of environments, agents,
and optimizers, simplifying experimentation across a variety of settings.

In the problems we consider, we use the term optimization of language agents in the reinforce-
ment sense to encompass procedures that yield iterative improvement of the language agent over
time through feedback from an environment. An example of one such optimization algorithm is
expert iteration (EI) (Anthony et al., 2017; Anthony, 2021; Havrilla et al., 2024) which achieves
learning through successive rounds of supervised fine-tuning on (self-) generated trajectories from a
progressively stronger language agent.

In what follows, we introduce our definition of an environment, a language decision process, and
optimization of agents within a stochastic computation graph. We recast popular benchmarks such
as GSM8K (Cobbe et al., 2021) and HOTPOTQA (Yang et al., 2018) as environments and integrate
three scientific environments related to challenging tasks in the natural sciences. The scientific
environments are (1) DNA construct engineering, where the task is to answer questions pertaining to
molecular cloning (Laurent et al., 2024), (2) scientific literature question answering, where the task is
to answer a multiple choice question by finding a specific passage from the scientific literature (Lála
et al., 2023; Skarlinski et al., 2024), and (3) protein design, where the goal is to propose mutations to
improve the stability of a given protein sequence (Gao et al., 2020; Khakzad et al., 2023). On the
DNA construct design and scientific literature question answering environments, we demonstrate that
language agents based on the small, open-source Llama-3.1-8B-Instructmodel, when trained
with expert iteration and using inference-time majority vote sampling, can exceed the performance of
both human experts and frontier LLMs.

The environment framework described in this work, Aviary, is available at the anonymous GitHub link
aviary and the stochastic computation graph framework together with language agent implementations
and training code is available at the link ldp. The relationship between the Aviary and LDP frameworks
is illustrated in Figure 1.

2 RELATED WORK

Language Agent Formalisms Although language agents have achieved impressive empirical
performance across a range of applications (Mialon et al., 2023; Skarlinski et al., 2024; Huang
et al., 2024a), there is still no universally agreed upon theoretical framework for defining a language
agent. In terms of conceptual models, the cognitive architectures for language agents (CoALA)
framework (Sumers et al., 2024), inspired by ideas from production systems and cognitive architec-
tures, taxonomizes agents according to their information storage (working and long-term memories),
decision-making procedures e.g. planning, and action space (divided into internal and external
actions). Similarly, in Weng (2023), the author describes language agents as consisting of memory,
planning, and tool usage components. Theoretically, many works represent language agents as
partially observable Markov decision processes (POMDPs) (Carta et al., 2023; Christianos et al.,
2023; Wen et al., 2024b;a; Nguyen et al., 2024; Zhai et al., 2024; Song et al., 2024) yet differ in

2

https://anonymous.4open.science/r/aviary
https://anonymous.4open.science/r/ldp3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

their treatment of the action space e.g. in Christianos et al. (2023) the authors partition the action
space into internal and external actions in a similar fashion to CoALA where internal actions are a
family of functions that operate on the agent’s memory and external actions elicit an interaction with
the environment. By contrast, in Wen et al. (2024b) the authors do not make a distinction between
internal and external actions. In Chen et al. (2024c) the authors introduce a general framework for
studying the design and analysis of LLM-based algorithms based on a computational graph where
they assume LLM nodes are stateless, leaving consideration of aspects of language agents such as
memory to future work.

Language Agent Optimization Frameworks Optimization of language agents may entail the
learning of prompts, parametrized tools, LLM weights, inference hyperparameters, as well as
more exotic parameters such as edges between nodes in computation graphs. Frameworks such as
LangChain (Chase, 2022) and LlamaIndex (Liu, 2022) support manual optimization of prompts via
human editing. Optimizers such as EcoOptiGen (Wang et al., 2023a) leverage black-box optimization
schemes to learn LLM inference hyperparameters. Prompt optimization comprises the optimization
of white-box LLMs and black-box LLMs (API-based models that cannot be differentiated through).
In white-box prompt optimization (Shin et al., 2020; Li & Liang, 2021; Jia et al., 2022; Chen et al.,
2022) numerical gradients can be taken over soft prompts (Qin & Eisner, 2021), the embedding
representation of the text-based ‘hard’ prompt. In black-box prompt optimization a multitude of
techniques have been applied to overcome the absence of gradients (Guo et al., 2024a; Ma et al.,
2024a; Zhang et al., 2024; Cheng et al., 2023; Yang et al., 2024; Lin et al., 2024a; Hu et al., 2024b; Wu
et al., 2024c; Lin et al., 2024b; Chen et al., 2024b; Zhou et al., 2023; Pryzant et al., 2023; Sabbatella
et al., 2024; Chen et al., 2023b; Wang et al., 2024c; Mañas et al., 2024; Do et al., 2023; Sordoni et al.,
2024; Sabbatella et al., 2023; Wen et al., 2024c; Ye et al., 2023; Wu et al., 2024a). Tool learning
(Qu et al., 2024; Schick et al., 2024) can be attempted through in-context demonstrations (Qin et al.,
2023) or by finetuning LLM weights on example demonstrations of appropriate tool usage (Havrilla
et al., 2024; Yin et al., 2024) using techniques such as expert iteration (Anthony et al., 2017; Anthony,
2021). We discuss further related work on language agent optimization frameworks and benchmarks
in Appendix D.

Our principal contributions are: (1) A precise definition of language decision processes (LDPs) for
language agent tasks that encompass many proposed agent architectures as stochastic computation
graphs. (2) We introduce Aviary, a gym framework that emphasizes multi-step reasoning and tool
usage featuring five gym implementations (including three for scientific tasks). (3) We demonstrate
that non-frontier LLMs, trained online with inference time sampling, can match or exceed the
performance of frontier models on these tasks with a modest compute budget. (4) We release Aviary
and our LDP framework as open-source software libraries to enable broader use and experimentation.

3 METHODOLOGY

Below we describe novel aspects of our methodology in Aviary and LDP. In Appendix B we
provide background on pre-existing methods such as behavior cloning, expert iteration, and inference
compute scaling that we employ for our experiments. Appendix F includes an example of an Aviary
environment and rollout with an LDP agent.

3.1 LANGUAGE DECISION PROCESSES

A language decision process (LDP) is a Partially-Observable Markov Decision Process
(POMDP) (Åström, 1965) whose action and observation spaces are represented in natural lan-
guage. More concretely, a LDP can be defined using the tuple (V,S,A,O, T, Z,R, γ). Here, V is a
non-empty alphabet1, S is the state space, A ⊆ V∗ is the action space2, T (s′|s, a) : S ×A 7→ P(S)
is the transition function, R(s, a) : S ×A 7→ P(R) is the reward function,O ⊆ V∗ is the observation
space, Z(o|s′) : S ×A 7→ P(O) is the observation function3, and γ ∈ [0, 1] is the discount factor.

1In all LDPs we consider, V is the set of unicode characters, since Aviary is implemented in Python 3.
2Where V∗ def

=
⋃∞

n=0 V
n is the Kleene closure of a set V (Kleene, 1956; Meister et al., 2023).

3In all LDPs we consider, a state s′ ∈ S uniquely defines an observation o ∈ O. Unless otherwise specified,
we omit the observation function Z.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Unlike traditional reinforcement learning agents, feedback for language agents is “grounded” in
the sense that environment observations must be converted to text (Wu et al., 2024b). As such, the
alphabet V is an important component of the LDP definition and follows other works (Carta et al.,
2023; Wen et al., 2024b;a). The solution to an LDP is a policy πθ : O 7→ A, where θ denotes the
set of policy parameters we wish to learn. The parameter set θ is abstract and encapsulates any
optimizable parameter of the language agent that may impact the action chosen such as LLM weights,
inference hyperparameters such as temperature, as well as parametrized procedures such as internal
reasoning.

In contrast to previous works which demarcate between internal and external actions (Sumers et al.,
2024; Christianos et al., 2023), where internal actions include reasoning and memory retrieval, in
our problem framing we consider the action space to strictly constitute interactions with the external
environment, allowing our parameter set θ to subsume optimizable procedures that are internal to the
language agent such as memory retrieval and internal reasoning. Practically, it is worth noting that
the complexity of our environments is such that we do not expect to obtain the globally optimal π∗

θ .
Our more modest goal is to be able to optimize θ in a direction that improves πθ over time.

In all environments we consider, observations are deterministic functions of the state and so the
reader may assume Z = 1 henceforth. For example, the environment may involve code execution
where the observation consists of side-effects of the code. In this case, the state S includes all
information necessary to induce the Markov property of the transition function such as the file system,
package versions, environment variables, and hardware. However, the observation is simply the
output message of the executed code.

3.2 STOCHASTIC COMPUTATION GRAPHS

In the general case, a language agent may include both stochastic and deterministic operations. We
build on the formalism of stochastic computation graphs (SCG) (Schulman et al., 2015): directed,
acyclic graphs with nodes corresponding to computations and edges corresponding to arguments.

A deterministic node v corresponds to a function fv , and the node’s output o(v) is defined as:

o(v) = fv({o(w) |w ∈ parents(v)}). (1)

A stochastic node u is a distribution pu, with output:

o(u) ∼ pu(· | {o(w) |w ∈ parents(v)}). (2)

Note that inputs to the SCG are treated as constant, deterministic nodes; outputs are leaf nodes.

A language agent’s policy is an SCG with a string input (the observation) and string output (the
action). Language agent architectures can easily be expressed as SCGs by combining deterministic
and stochastic nodes. The SCGs of some common agents are provided in Appendix A.

4 ENVIRONMENTS

Here, we provide an overview of the environments implemented in Aviary. Further details may be
found in Appendix C.

4.1 GSM8K

The GSM8K environment is based on the GSM8K dataset introduced in Cobbe et al. (2021), which
consists of linguistically diverse grade school math word problems designed to assess multi-step
mathematical reasoning. The dataset comprises a train set (7,473 questions) and a test set (1,319).
The environment exposes a calculator tool.

4.2 HOTPOTQA

The HOTPOTQA environment is based on the HOTPOTQA dataset introduced in Yang et al. (2018),
which was subsequently extended to a language agent environment in Yao et al. (2023). The dataset
comprises 112,779 question-answer pairs. We evaluate agent performance on the 7,405 question eval
subset. The environment provides tools to search for and extract information from Wikipedia articles.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.3 PAPERQA

PaperQA (Lála et al., 2023; Skarlinski et al., 2024) was developed for literature research and
question answering. By pairing agentic retrieval augmented generation with reranking and contextual
summarization, PaperQA attained superhuman-level precision and human-level accuracy on the
LitQA2 dataset (Laurent et al., 2024).

We refactored PaperQA into an Aviary environment, modifying the toolset as needed. We modified
the paper search tool to center on local storage of PDF, text, and HTML files and omitted the
citation traversal tool for this local setting. A complete tool was added to support agents
that require at least one tool selection, and allow the agent to declare if the answer addresses all parts
of the question.

For the sake of comparison against Skarlinski et al. (2024), we obtained LitQA2’s private test
questions through correspondence with the authors4, and used an 80\20 split on the 199 public
questions for train and eval splits.

4.4 MOLECULAR CLONING

Molecular cloning is a fundamental technique for manipulating DNA in biomedical science, enabling
basic research into gene function, transgenic models, and recombinant proteins (Bertero et al., 2017;
Sharma et al., 2014). The molecular cloning process results in a DNA “construct,” which is a general
term for DNA that encodes for the desired biologic molecule or genes.

The molecular cloning environment comprises the main tools used by laboratory scientists: (1) an
annotation tool for predicting the function of plasmid segments (2) a natural language search tool that
retrieves sequences given text, and (3) tools required to plan protocols. A complete list of tools is
provided in Appendix C.

The specific tasks used for evaluation come from the SeqQA benchmark (Laurent et al., 2024), which
consists of textbook-style multiple-choice questions on molecular cloning. The SeqQA train set
comprises 500 questions from Laurent et al. (2024) as well as 150 new test questions we introduce
specifically for the Aviary SeqQA environment5.

4.5 PROTEIN STABILITY

We introduce the protein stability environment as a sandbox for training agents to integrate knowledge
from physics-based models, biochemical principles, and pre-trained protein models, with the potential
to leverage experimental results. We assess the language agent’s performance on forty proteins
randomly selected from the megascale protein stability dataset, excluding any that are mentioned in
the text of Tsuboyama et al. (2023). Proposed mutations are evaluated using the Rosetta cart ddg
protocol (Frenz et al., 2020). Note that we only perform inference time evaluation of language agents
on the protein stability task and as such, we do not maintain a train set.

5 EXPERIMENTS

We assess the capabilities of tool-equipped language agents to solve problems in the aforementioned
environments. We subsequently explore behavior cloning and expert iteration (described in Ap-
pendix B) to train agents on specific tasks in environments. Finally, we explore the effect of majority
vote sampling at inference-time.

An overview of the models and their performance is provided in Figure 2. The trained (de-
scribed below) and frontier language models versions are claude-3-5-sonnet-20241022,
gpt-4o-08-06, and Llama-3.1-8B-Instruct. Our agents are:

4The test set is private to prevent leakage to frontier models. The test split may be made available to the
reviewers upon request pending permission from the original authors.

5These questions are maintained in a private repository to prevent test set leakage to frontier LLMs and can
be made available to the reviewers upon request.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• Zero-shot Claude 3.5 Sonnet: The LLM is prompted to solve the tasks without access to the
environment. No example output or formatting instructions are given.

• Claude 3.5 Sonnet agent: A language agent prompted to call environment tools until the
task is solved. It uses the Anthropic API tool-calling schema (Anthropic, 2024).

• LDP-trained language agent: An LDP agent trained to solve tasks using environment tools.
This can either be based on fine-tuned GPT-4o (GSM8K, HOTPOTQA) or Llama-3.1-8B-
Instruct (SeqQA, LitQA2).

• Majority voting: We sample 32 trajectories from an agent using their consensus as the task
solution. For protein stability, we do oracle-verification/pass@k, as in protein engineering
one typically tests a batch and only keeps the most successful (Brown et al., 2024).

The set of existing benchmarks and closed-source models were chosen to demonstrate the flexibility
of the Aviary software. Claude 3.5 Sonnet was the best frontier LLM across tasks, and was thus
used as the benchmark for comparison. With the exception of GSM8K, all agents improve over the
zero-shot baseline when given access to the environment. In the case of GSM8K, we hypothesize
that a sequence of calculator calls (with no intermediate reasoning) is out-of-distribution with respect
to the LLMs’ training data, which also contains math word problems. This is consistent with
recent findings (Mirzadeh et al., 2024), where modifying elements of the original questions or
adding irrelevant information caused performance degradation, as such changes similarly introduce a
distribution shift.

Training LDP agents improves performance over untrained agents of the same architecture. On
challenging tasks (SeqQA, LitQA2), a relatively small model (Llama-3.1-8B-Instruct) can be trained
to match performance of a much larger frontier model (Claude 3.5 Sonnet). Majority voting yields a
further large gain at the cost of increased inference compute. The protein stability task sees a large
improvement for pass@16, which is a well-known effect for oracle-verified problems(Brown et al.,
2024). These results are described in detail below.

Figure 2: Ability of LLMs and language agents to solve tasks using Aviary environments. All LDP-
trained agents are optimized using behavior cloning and expert iteration. For GSM8K and HOTPOTQA,
EI is performed on GPT-4o; SeqQA and LitQA2 use Llama-3.1-8B-Instruct (see subsection 5.1). The
difference in GSM8K zero-shot reported here (89%) vs Anthropic benchmarks (Anthropic, 2024)
(96.5%) is likely because Anthropic’s use of chain-of-thought prompting, which we did not use. All
agents are rolled out on the environment for a maximum of 10 steps, with the exception of PaperQA
(18 steps) and protein stability (20).

5.1 BEHAVIOR CLONING AND EXPERT ITERATION

Using LDP, we train language agents in the environments described in section 4. Since these
environments are challenging, expert iteration initially rejects the majority of trajectories, leading
to very slow learning. We therefore begin with behavior cloning, using high-quality trajectories
collected by rejection-sampling from a larger LLM. Once the language agent can solve a reasonable
fraction of training problems, we switch to expert iteration. All experiments are conducted with
Llama-3.1-8B-Instruct (Grattafiori et al., 2024) as the base language model, using Nvidia A100
GPUs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In Figure 3A, we show the results of training an agent (Llama-3.1-8B EI) to solve SeqQA tasks
using the molecular cloning environment. Expert iteration is seeded with 2841 valid trajectories
(behavior cloning), followed by 8 further EI epochs. Behavior cloning provides a large initial jump
in performance, with a further 14% (absolute) improvement from EI. In Appendix E we study the
distribution of trajectories explored by a trained language agent.

In Figure 3B, we show the results of a similar procedure applied to LitQA2 questions in the PaperQA
environment. In this case, the untrained Llama-3.1-8B agent has non-trivial performance (30%
accuracy), but still significantly improves from behavior cloning (430 trajectories). We aimed to focus
training on the more difficult LitQA2 questions, so during expert iteration, we sample trajectories
from each task in the dataset with probability:

P (task k) =
wk∑
j wj

; wk = M · (1− fk
pass), (3)

where fk
pass is a moving average of task k’s pass rate as the agent is trained and M is a scaling factor

(set to 20). With this, EI produces a small improvement beyond behavior cloning, up to 72% on the
test set.

Figure 3: Training language agents to solve (A) SeqQA tasks using the molecular cloning environment
and (B) LitQA2 questions using the PaperQA environment. The first epoch (red points) is behavior
cloning, followed by expert iteration. These experiments use multiple workers to asynchronously
collect trajectories and train the model, so GPU-hours measures the total time spent sampling and
training. An untrained Llama-3.1-8B agent solves 1% of SeqQA tasks, so we omit the data point at
GPU-hours=0 in panel A.

5.2 INFERENCE COMPUTE SCALING

We assess majority voting on two sets of multiple-choice tasks: SeqQA, and LitQA2, with the results
in Figure 4. Majority voting generally affords large improvements, achieving ∼20 percentage points
(p.p.) of accuracy gain. Figure 4B demonstrates that non-agentic LLMs benefit as well, with a ∼10
p.p. gain for zero-shot Claude.

Figure 4C shows that majority voting on LitQA2 with a Claude 3.5 Sonnet agent reaches 89%
accuracy on the test set, significantly exceeding previously reported scores of 67% from Skarlinski
et al. (2024) and the human performance reported in Laurent et al. (2024). The Llama-3.1-8B EI
agent performs well, matching human and previously reported best at only a single sample. Three
samples exceeds those marks, but cannot match the Sonnet agent if it also uses majority voting on
more than one sample. Nevertheless, exceeding a frontier LLM in the single sample setting on unseen
data with a small model is a surprising result.

Figure 4A shows that majority voting with the Llama-3.1-8B EI agent significantly exceeds a Claude
3.5 Sonnet agent across all sample counts. SeqQA is more structured than LitQA2, requiring
more consistent and longer tool call sequences. The Llama-3.1-8B EI agent can be sampled from
cheaply, and so we run 945 rollouts (Figure 4A inset). We observe improvement up to 100s of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 4 8 12 16 20 24 28 32
Inference Samples

0.25

0.50

0.75

1.00

Li
tQ

A2
Ac

cu
ra

cy

C)
Claude 3.5 Sonnet Agent
Llama-3.1-8B EI Agent
Human
Skarlinski et. al
Claude 3.5 Sonnet

0.25

0.50

0.75

1.00

Se
qQ

A
Ac

cu
ra

cy

A)

100 101 102 103
0.5

1.0

Llama-3.1-8B EI Agent
Claude 3.5 Sonnet Agent
Joint AISI Report
Human
Claude 3.5 Sonnet

Op
ti

on
 1

Op
ti

on
 2

Un
su

re

Fa
il

ed

0
3
6
9
12
15
18
21

Ou
tc

om
es

 o
n

PQ
A

Qu
es

ti
on

 1

D)

0.0

0.1

0.2

 A
cc

ur
ac

y

B)

Figure 4: A) majority voting accuracy in SeqQA as a function of number of sampled trajectories.
With 32 samples, performance exceeds previously-reported scaffolded agents (Joint AISI Report
(US AI Safety Institute, 2024)). The “Claude 3.5 Sonnet” line refers to the zero-shot setting. The
inset shows further gains from 0.86 to 0.89 from 32 to 945 samples. B) shows SeqQA improvement
from majority voting with an LLM without tools vs. a language agent. C) majority voting accuracy
on LitQA2. Both agents significantly exceed previously-measured human and agent performance
(Skarlinski et al., 2024). Claude 3.5-Sonnet Agent plateaus at 90% accuracy. D) shows an example
question voting on LitQA2 (question id 3e6d7a54). Option 1 is the correct response, option 2 is
incorrect, and failure is because the agent did not submit an answer prior to trajectory termination.
Error bars are computed by bootstrap resampling.

samples, yielding a final accuracy of 89%. The highest previously reported result was from a
joint technical report from the US and UK AI Safety Institutes on pre-deployment evaluation of
claude-3.5-sonnet-20241022 at 87% accuracy.

5.3 INFERENCE COST SCALING

The results of the previous sections demonstrate how the performance of different agents scales as
training time and sampled trajectories are increased. In this section, we consider a more practical
metric: inference cost. This becomes especially relevant in a high-throughput setting, in which agents
are tasked to solve thousands of problems in parallel. We focus our comparison on the Claude 3.5
Sonnet agent versus the Llama-3.1-8B EI agent. At the time of writing, Claude 3.5 Sonnet’s input
tokens cost $3/1M and output tokens cost $15/1M 6. We price Llama 3.1-8B inference at $0.03/1M
input and output tokens, typical in the LLM inference market7, which we use as a reasonable estimate
for EI-trained model inference. In Figure 5, we report performance and inference cost on SeqQA and
LitQA2. While majority voting with the Claude 3.5 Sonnet agent clearly outperforms other settings,
this requires O($1) per task. We reach the same SeqQA accuracy using the Llama-3.1-8B EI agent
for 100x less cost. While this was not achievable for LitQA2, we note that majority voting with
Llama-3.1-8B EI still exceeds single-rollout with Sonnet at 3x less cost.

6 DISCUSSION AND LIMITATIONS

We were motivated to design Aviary and LDP by (a) a need to implement language interfaces to
complex scientific environments and (b) a need to optimize agents in these environments. In this work,
we have focused on benchmark tasks that are easy to evaluate across five different environments.
A surprising, but welcome outcome of our experiments is that trained agents based on relatively

6https://www.anthropic.com/pricing#anthropic-api
7https://lambdalabs.com/inference#pricing

8

https://www.anthropic.com/pricing#anthropic-api
https://lambdalabs.com/inference#pricing

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Accuracy vs. inference cost of two agents (Claude 3.5 Sonnet and Llama-3.1-8B EI)
on the SeqQA and LitQA2 tasks. For both agents, the single-rollout and majority-voting settings
are considered. Note that all inference settings here outperform human performance (reported
in Skarlinski et al. (2024) and Laurent et al. (2024)).

small language models can compete with or even beat frontier model-based agents. While out of
scope for this paper, we anticipate that future work can extend these conclusions by leveraging more
sophisticated policy optimization methods (compared to EI) and inference-time scaling (compared to
majority voting). To that end, we hope that LDP serves as a useful framework for experimenting with
such algorithms.

Small, trained agents reduce inference costs substantially. For reference, our SeqQA tasks require
7-10 LLM calls (Figure 7) and cost $0.07 on average per trajectory with Claude 3.5 Sonnet and
$0.00066 with Llama-3.1-8B EI. The human PhD contractors that represent the human data series
in Figure 4 cost between $4 and $12 per question (see Laurent et al. (2024) for details). In summary,
trained agents can exceed the accuracy of human and frontier models at 100x cheaper cost.

There are some limitations in this work. Several of our benchmarks are new or introduce new data
and so we are intentionally gating access to the test sets to avoid leakage into pre-training corpora.
Our human performance comparison comes with the caveat that human evaluators do not always
have access to the exact same toolset. Laurent et al. (2024) gave incentives for correct answers, ample
time, and only restricts the use of AI tools. Nevertheless, it is always possible that humans could have
been given more expansive or precise technology for the task. Ultimately, the test of these language
agents is their ability to make novel scientific discoveries and not simply to achieve high scores on
benchmarks.

7 CONCLUSION

We have presented Aviary, a gymnasium for language agents. Aviary currently contains five envi-
ronments, three of which focus on challenging scientific tasks. Language agents implemented in
these environments exceed the performance of zero-shot frontier LLMs on the SeqQA, HOTPOTQA,
LitQA2, and protein stability tasks. Language agents also exceed human performance on SeqQA and
LitQA2.

We have introduced the language decision process (LDP) framework for formally describing lan-
guage agent tasks and showed that language agents can be cast as stochastic computation graphs.
Through behavior cloning, expert iteration, and inference-time sampling, we demonstrated that
trained Llama-3.1-8B EI agents can match and exceed the performance of humans and frontier
LLMs in the LitQA2 and SeqQA benchmarks at significantly lower cost. Thus, we have demonstrated
that modest compute budgets and model sizes can be competitive at solving realistic scientific tasks.
The reported trained Llama-3.1-8B EI agents are compute efficient and exceed human-level
performance, enabling high-throughput automation of meaningful scientific tasks across biology.

Both the Aviary (aviary) and LDP (ldp) frameworks are open source and should serve as useful
libraries for implementing environments and language agents.

9

https://anonymous.4open.science/r/aviary
https://anonymous.4open.science/r/ldp3

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

310.ai. 310 copilot. 2024. URL https://310.ai.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical
Report. arXiv preprint arXiv:2303.08774, 2023.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 5366–5376, 2017.

Thomas William Anthony. Expert iteration. PhD thesis, UCL (University College London), 2021.

Anthropic. Introducing the next generation of Claude, 2024. https://www.anthropic.com/news/
claude-3-family.

Karl Johan Åström. Optimal control of Markov processes with incomplete state information I.
Journal of Mathematical Analysis and Applications, 10:174–205, 1965.

Michael Bain and Claude Sammut. A framework for behavioural cloning. Machine Intelligence, 15:
103–129, 1995.

Bebop. Poly: A library for DNA sequence design. https://github.com/bebop/poly, 2025. Accessed:
29-Jan-2025.

Alessandro Bertero, Stephanie Brown, and Ludovic Vallier. Methods of Cloning, pp. 19–39. Elsevier,
2017. ISBN 9780128030776. doi: 10.1016/b978-0-12-803077-6.00002-3. URL http://dx.
doi.org/10.1016/B978-0-12-803077-6.00002-3.

Samuel R Bowman. Eight things to know about large language models. arXiv preprint
arXiv:2304.00612, 2023.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as I can, not as I say: grounding language
in robotic affordances. In Conference on Robot Learning, pp. 287–318. PMLR, 2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Roger A Chambers and Donald Michie. Man-machine co-operation on a learning task. Computer
Graphics: Techniques and Applications, pp. 179–186, 1969.

Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-ai/
langchain.

Angelica Chen, Samuel D Stanton, Robert G Alberstein, Andrew M Watkins, Richard Bonneau,
Vladimir Gligorijevi, Kyunghyun Cho, and Nathan C Frey. LLMs are highly-constrained biophysi-
cal sequence optimizers. arXiv preprint arXiv:2410.22296, 2024a.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
FireAct: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023a.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. InstructZero: Effi-
cient instruction optimization for black-box large language models. In Forty-first International
Conference on Machine Learning, 2024b. URL https://openreview.net/forum?id=
rADFNrIss3.

10

https://310.ai
http://dx.doi.org/10.1016/B978-0-12-803077-6.00002-3
http://dx.doi.org/10.1016/B978-0-12-803077-6.00002-3
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://openreview.net/forum?id=rADFNrIss3
https://openreview.net/forum?id=rADFNrIss3

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si,
and Huajun Chen. Knowprompt: Knowledge-aware prompt-tuning with synergistic optimization
for relation extraction. In Proceedings of the ACM Web conference 2022, pp. 2778–2788, 2022.

Yanxi Chen, Yaliang Li, Bolin Ding, and Jingren Zhou. On the Design and Analysis of LLM-Based
Algorithms. arXiv preprint arXiv:2407.14788, 2024c.

Yuyan Chen, Zhihao Wen, Ge Fan, Zhengyu Chen, Wei Wu, Dayiheng Liu, Zhixu Li, Bang Liu, and
Yanghua Xiao. MAPO: Boosting large language model performance with model-adaptive prompt
optimization. In The 2023 Conference on Empirical Methods in Natural Language Processing,
2023b. URL https://openreview.net/forum?id=paUJOst3OE.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the New AutoDiff–unlocking efficient
optimization of computational workflows. arXiv preprint arXiv:2406.16218, 2024.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, and Minlie
Huang. Black-box prompt optimization: Aligning large language models without model training.
arXiv preprint arXiv:2311.04155, 2023.

Filippos Christianos, Georgios Papoudakis, Matthieu Zimmer, Thomas Coste, Zhihao Wu, Jingxuan
Chen, Khyati Khandelwal, James Doran, Xidong Feng, Jiacheng Liu, et al. Pangu-Agent: A
fine-tunable generalist agent with structured reasoning. arXiv preprint arXiv:2312.14878, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: exploiting large
language models for interpretable logical reasoning. In The Eleventh International Conference on
Learning Representations, 2023.

Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix Hill,
and Rob Fergus. Collaborating with language models for embodied reasoning. In NeurIPS 2022
Foundation Models for Decision Making Workshop, 2022.

Xuan Long Do, Yiran Zhao, Hannah Brown, Yuxi Xie, James Xu Zhao, Nancy F Chen, Kenji
Kawaguchi, Michael Shieh, and Junxian He. Prompt optimization via adversarial in-context
learning. arXiv preprint arXiv:2312.02614, 2023.

Brandon Frenz, Steven M Lewis, Indigo King, Frank DiMaio, Hahnbeom Park, and Yifan Song.
Prediction of protein mutational free energy: Benchmark and sampling improvements increase
classification accuracy. Front. Bioeng. Biotechnol., 8:558247, October 2020.

Simon Frieder, Jonas Bayer, Katherine M Collins, Julius Berner, Jacob Loader, András Juhász, Fabian
Ruehle, Sean Welleck, Gabriel Poesia, Ryan-Rhys Griffiths, et al. Data for mathematical copilots:
Better ways of presenting proofs for machine learning. arXiv preprint arXiv:2412.15184, 2024a.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of ChatGPT. Advances in Neural
Information Processing Systems, 36, 2024b.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong
Li. Large language models empowered agent-based modeling and simulation: A survey and
perspectives. arXiv preprint arXiv:2312.11970, 2023.

Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J. Gray. Deep learning in protein
structural modeling and design. Patterns, 1(9):100142, December 2020. ISSN 2666-3899. doi:
10.1016/j.patter.2020.100142. URL http://dx.doi.org/10.1016/j.patter.2020.
100142.

Alireza Ghafarollahi and Markus J Buehler. ProtAgents: protein discovery via large language model
multi-agent collaborations combining physics and machine learning. Digital Discovery, 2024.

11

https://openreview.net/forum?id=paUJOst3OE
http://dx.doi.org/10.1016/j.patter.2020.100142
http://dx.doi.org/10.1016/j.patter.2020.100142

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Adi Goldenzweig and Sarel J Fleishman. Principles of protein stability and their application in
computational design. Annu. Rev. Biochem., 87:105–129, June 2018.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, and Aiesha Letman et. al. The Llama 3 herd of models, 2024. URL https://arxiv.
org/abs/2407.21783.

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul
Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim
Benechehab, et al. Large language models orchestrating structured reasoning achieve Kaggle
grandmaster level. arXiv preprint arXiv:2411.03562, 2024.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran
Pan, Teng Wu, Jiaqian Yu, et al. BLADE: Benchmarking language model agents for data-driven
science. In Empirical Methods in Natural Language Processing, 2024.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-Agent: Au-
tomated data science by empowering large language models with case-based reasoning. arXiv
preprint arXiv:2402.17453, 2024b.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8154–8173, 2023.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024a.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiangqiang Lin, Zhongxiang Dai, See-Kiong
Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. arXiv preprint
arXiv:2403.02993, 2024b.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, et al. InfiAgent-DABench: Evaluating agents on data analysis tasks. In
Forty-first International Conference on Machine Learning, 2024c.

Kaixuan Huang, Yuanhao Qu, Henry Cousins, William A Johnson, Di Yin, Mihir Shah, Denny Zhou,
Russ Altman, Mengdi Wang, and Le Cong. CRISPR-GPT: An LLM agent for automated design of
gene-editing experiments. arXiv preprint arXiv:2404.18021, 2024a.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating language
agents on machine learning experimentation. In Forty-first International Conference on Machine
Learning, 2024b.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022.

Quickwit Inc. tantivy, October 2024. URL https://github.com/quickwit-oss/
tantivy.

John B. Ingraham, Maxim Baranov, Zak Costello, et al. Illuminating protein space with a pro-
grammable generative model. Nature, 623:1070–1078, 2023. doi: 10.1038/s41586-023-06728-8.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=ZG3RaNIsO8
https://github.com/quickwit-oss/tantivy
https://github.com/quickwit-oss/tantivy

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peter Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi Mishra, Bod-
hisattwa Prasad Majumder, Oyvind Tafjord, and Peter Clark. DISCOVERYWORLD: A Virtual
Environment for Developing and Evaluating Automated Scientific Discovery Agents. In Advances
in Neural Information Processing Systems, 2024.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng LYU, Kevin Blin, Fer-
nando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard Schölkopf. CLad-
der: A benchmark to assess causal reasoning capabilities of language models. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=e2wtjx0Yqu.

Hamed Khakzad, Ilia Igashov, Arne Schneuing, Casper Goverde, Michael Bronstein, and Bruno
Correia. A new age in protein design empowered by deep learning. Cell Systems, 14(11):925–939,
2023.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive NLP. arXiv preprint arXiv:2212.14024, 2022.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful Haq,
Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. DSPy: Compiling
Declarative Language Model Calls into State-of-the-Art Pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

SC Kleene. Representation of events in nerve nets and finite automata. Automata Studies: Annals of
Mathematics Studies. Number 34, 34:3, 1956.

Josef Laimer, Heidi Hofer, Marko Fritz, Stefan Wegenkittl, and Peter Lackner. MAESTRO–multi
agent stability prediction upon point mutations. BMC Bioinformatics, 16(1):116, April 2015.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017.

Jakub Lála, Odhran O’Donoghue, Aleksandar Shtedritski, Sam Cox, Samuel G Rodriques, and
Andrew D White. PaperQA: Retrieval-augmented generative agent for scientific research. arXiv
preprint arXiv:2312.07559, 2023.

Timothy M Lauer, Neeraj J Agrawal, Naresh Chennamsetty, Kamal Egodage, Bernhard Helk, and
Bernhardt L Trout. Developability index: a rapid in silico tool for the screening of antibody
aggregation propensity. J. Pharm. Sci., 101(1):102–115, January 2012.

Jon M Laurent, Joseph D Janizek, Michael Ruzo, Michaela M Hinks, Michael J Hammerling, Sid-
dharth Narayanan, Manvitha Ponnapati, Andrew D White, and Samuel G Rodriques. LAB-Bench:
Measuring capabilities of language models for biology research. arXiv preprint arXiv:2407.10362,
2024.

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Yurong Wu, Chenhao Ma, Jian-
Guang Lou, and Reynold Cheng. Tapilot-Crossing: Benchmarking and evolving llms towards
interactive data analysis agents. arXiv preprint arXiv:2403.05307, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

13

https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang
Low. Prompt optimization with human feedback. arXiv preprint arXiv:2405.17346, 2024a.

Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Use your INSTINCT: INSTruction optimization for LLMs
using neural bandits coupled with transformers. In Forty-first International Conference on Machine
Learning, 2024b. URL https://openreview.net/forum?id=RLENZ8pNnn.

Jerry Liu. LlamaIndex, November 2022. URL https://github.com/jerryjliu/llama_
index.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, and Yansong Feng. Are LLMs capable of
data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning with
data. arXiv preprint arXiv:2402.17644, 2024.

Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan Du, Tao Gui, Qi Zhang, and Xuanjing Huang.
Are large language models good prompt optimizers? arXiv preprint arXiv:2402.02101, 2024a.

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu, Shuohang Wang, Liangming Pan, Yujiu Yang,
Yixin Cao, and Aixin Sun. SciAgent: Tool-augmented language models for scientific reasoning.
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
2024b.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
DiscoveryBench: Towards data-driven discovery with large language models. arXiv preprint
arXiv:2407.01725, 2024.

Oscar Mañas, Pietro Astolfi, Melissa Hall, Candace Ross, Jack Urbanek, Adina Williams, Aishwarya
Agrawal, Adriana Romero-Soriano, and Michal Drozdzal. Improving text-to-image consistency
via automatic prompt optimization. arXiv preprint arXiv:2403.17804, 2024.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling. Transac-
tions of the Association for Computational Linguistics, 11:102–121, 2023.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al.
Augmented language models: a survey. Transactions on Machine Learning Research, 2023.

D. Michie, M. Bain, and J. Hayes-Michie. Cognitive models from subcognitive skills, chapter Chapter
5, pp. 71–99. The Institution of Engineering and Technology, 1990. doi: 10.1049/PBCE044E ch5.

Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Benedict Emoekabu, Aswanth Krishnan, Mara
Wilhelmi, Macjonathan Okereke, Juliane Eberhardt, Amir Mohammad Elahi, Maximilian Greiner,
et al. Are large language models superhuman chemists? arXiv preprint arXiv:2404.01475, 2024.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Dang Nguyen, Viet Dac Lai, Seunghyun Yoon, Ryan A Rossi, Handong Zhao, Ruiyi Zhang, Puneet
Mathur, Nedim Lipka, Yu Wang, Trung Bui, et al. DynaSaur: Large language agents beyond
predefined actions. arXiv preprint arXiv:2411.01747, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Dean A Pomerleau. ALVINN: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with ”gradient descent” and beam search. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://openreview.net/forum?
id=WRYhaSrThy.

14

https://openreview.net/forum?id=RLENZ8pNnn
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://openreview.net/forum?id=WRYhaSrThy
https://openreview.net/forum?id=WRYhaSrThy

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 5203–5212, 2021.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv preprint
arXiv.2304.08354, 10, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool learning with large language models: A survey. arXiv preprint arXiv:2405.17935,
2024.

Mayk Caldas Ramos, Christopher Collison, and Andrew D White. A review of large language models
and autonomous agents in chemistry. Chemical Science, 2024.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Antonio Sabbatella, Andrea Ponti, Antonio Candelieri, Ilaria Giordani, and Francesco Archetti.
A Bayesian approach for prompt optimization in pre-trained language models. arXiv preprint
arXiv:2312.00471, 2023.

Antonio Sabbatella, Andrea Ponti, Ilaria Giordani, Antonio Candelieri, and Francesco Archetti.
Prompt optimization in large language models. Mathematics, 12(6):929, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. Advances in Neural Information Processing Systems, 28, 2015.

Kamal Sharma, Ajay Kumar Mishra, Vikram Mehraj, and Ganesh Selvaraj Duraisamy. Advances
and applications of molecular cloning in clinical microbiology. Biotechnology and Genetic
Engineering Reviews, 30(1):65–78, 2014. ISSN 2046-5556. doi: 10.1080/02648725.2014.921501.
URL http://dx.doi.org/10.1080/02648725.2014.921501.

Roger A Sheldon and John M Woodley. Role of biocatalysis in sustainable chemistry. Chemical
reviews, 118(2):801–838, 2018.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, 2020.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Arnav Singhvi, Manish Shetty, Shangyin Tan, Christopher Potts, Koushik Sen, Matei Zaharia, and
Omar Khattab. DSPy assertions: Computational constraints for self-refining language model
pipelines. arXiv preprint arXiv:2312.13382, 2023.

Michael D Skarlinski, Sam Cox, Jon M Laurent, James D Braza, Michaela Hinks, Michael J
Hammerling, Manvitha Ponnapati, Samuel G Rodriques, and Andrew D White. Language agents
achieve superhuman synthesis of scientific knowledge. arXiv preprint arXiv:2409.13740, 2024.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for LLM agents. arXiv preprint arXiv:2403.02502,
2024.

Alessandro Sordoni, Eric Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang Xiao,
Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux. Joint prompt optimization of stacked
LLMs using variational inference. Advances in Neural Information Processing Systems, 36, 2024.

15

http://dx.doi.org/10.1080/02648725.2014.921501

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Martin Steinegger and Johannes Söding. MMseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature Biotechnology, 35(11):1026–1028, 2017.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
for language agents. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=1i6ZCvflQJ. Survey Certification.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie
Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable
policies for embodied tasks. In The Twelfth International Conference on Learning Representations,
2024.

Kotaro Tsuboyama, Justas Dauparas, Jonathan Chen, Elodie Laine, Yasser Mohseni Behbahani,
Jonathan J. Weinstein, Niall M. Mangan, Sergey Ovchinnikov, and Gabriel J. Rocklin. Mega-
scale experimental analysis of protein folding stability in biology and design. Nature, 620(7973):
434–444, Aug 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06328-6. URL https:
//doi.org/10.1038/s41586-023-06328-6.

UK AI Safety Institute US AI Safety Institute. Pre-deployment evaluation of Anthropic’s upgraded
Claude 3.5 Sonnet. Technical Report, 2024.

Chi Wang, Xueqing Liu, and Ahmed Hassan Awadallah. Cost-effective hyperparameter optimization
for large language model generation inference. In International Conference on Automated Machine
Learning, pp. 21–1. PMLR, 2023a.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2024a.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei
Chen, Lionel M Ni, et al. OpenR: An open source framework for advanced reasoning with large
language models. arXiv preprint arXiv:2410.09671, 2024b.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. ScienceWorld:
Is your agent smarter than a 5th grader? In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 11279–11298, 2022.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. PromptAgent: Strategic planning with language models enables expert-level
prompt optimization. In The Twelfth International Conference on Learning Representations, 2024c.
URL https://openreview.net/forum?id=22pyNMuIoa.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Muning Wen, Cheng Deng, Jun Wang, Weinan Zhang, and Ying Wen. Entropy-regularized token-level
policy optimization for large language models. arXiv preprint arXiv:2402.06700, 2024a.

Muning Wen, Ziyu Wan, Weinan Zhang, Jun Wang, and Ying Wen. Reinforcing language agents via
policy optimization with action decomposition. arXiv preprint arXiv:2405.15821, 2024b.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Advances in Neural Information Processing Systems, 36, 2024c.

Lilian Weng. LLM-powered autonomous agents. lilianweng.github.io, Jun 2023. URL https:
//lilianweng.github.io/posts/2023-06-23-agent/.

B Widrow and FW Smith. Computer and Information Sciences, chapter Pattern recognising control
systems. Clever Hume Press, 1964.

16

https://openreview.net/forum?id=1i6ZCvflQJ
https://doi.org/10.1038/s41586-023-06328-6
https://doi.org/10.1038/s41586-023-06328-6
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=1PL1NIMMrw
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, and Jian Peng. High-resolution de novo structure
prediction from primary sequence. bioRxiv, 2022. doi: 10.1101/2022.07.21.500999. URL https:
//www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis N
Ioannidis, Karthik Subbian, Jure Leskovec, and James Zou. AvaTaR: Optimizing LLM agents for
tool-assisted knowledge retrieval. arXiv preprint arXiv:2406.11200, 2024a.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and reap
the rewards: Learning to play Atari with the help of instruction manuals. Advances in Neural
Information Processing Systems, 36, 2024b.

Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Prompt optimization with EASE? Efficient ordering-aware
automated selection of exemplars. arXiv preprint arXiv:2405.16122, 2024c.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. arXiv preprint arXiv:2311.05661, 2023.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent Lumos: Unified and modular training for open-source language agents. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12380–12403,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.670. URL https://aclanthology.org/2024.acl-long.670.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. TextGrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Andy Zeng, Maria Attarian, Krzysztof Marcin Choromanski, Adrian Wong, Stefan Welker, Federico
Tombari, Aveek Purohit, Michael S Ryoo, Vikas Sindhwani, Johnny Lee, et al. Socratic mod-
els: Composing zero-shot multimodal reasoning with language. In The Eleventh International
Conference on Learning Representations, 2023a.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. AgentTuning:
Enabling generalized agent abilities for LLMs. arXiv preprint arXiv:2310.12823, 2023b.

17

https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999
https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999
https://openreview.net/forum?id=Bb4VGOWELI
https://aclanthology.org/2024.acl-long.670

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Yuanzhao Zhai, Tingkai Yang, Kele Xu, Feng Dawei, Cheng Yang, Bo Ding, and Huaimin Wang.
Enhancing decision-making for LLM agents via step-level q-value models. arXiv preprint
arXiv:2409.09345, 2024.

Tuo Zhang, Jinyue Yuan, and Salman Avestimehr. Revisiting OPRO: The Limitations of Small-Scale
LLMs as Optimizers. arXiv preprint arXiv:2405.10276, 2024.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=92gvk82DE-.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

18

https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A STOCHASTIC COMPUTATION GRAPHS FOR SELECTED LANGUAGE AGENT
ARCHITECTURES

The SCGs of the following simple language agents are presented in Figure 6:

(a) Language model as policy: a single stochastic node corresponding to sampling from the
language model.

(b) Retrieval-augmented generation (RAG): a deterministic node (document retrieval) leading
to a stochastic node (LLM sampling).

(c) Rejection sampling from LLM: several stochastic nodes (LLM samples), all leading to a
deterministic node (selecting the preferred sample).

(d) ReAct (Yao et al., 2023): two consecutive stochastic nodes, corresponding to sampling a
reasoning string and an action (tool call).

ot

at ∼ pLLM(· | ot)

(a) Language model as policy

ot

kNN
at ∼ pLLM(· | ot,KNN(ot))

(b) Retrieval-augmented generation

ot

a1t ∼ pLLM(· | ot)

a2t ∼ pLLM(· | ot)

at = argmax q(ot, a
i
t)

(c) Rejection sampling from language
model

ot

x ∼ pLLM(· | ot)

at ∼ pLLM(· | ot, x)

(d) ReAct

Figure 6: Simple language agent architectures represented as stochastic computation graphs. Deter-
ministic nodes are solid rectangles; stochastic nodes are dashed. Note that we augment the graphs
with a deterministic input node to indicate how the observation ot is consumed.

B TRAINING METHODS

Below we describe commonly-used imitation learning (Widrow & Smith, 1964; Chambers & Michie,
1969; Pomerleau, 1988) methods employed to improve language agent performance on our environ-
ments. These training methods do not optimize the SCG graph directly, instead we optimize only the
language model node in the SCG.

Behavior cloning (BC) BC (Michie et al., 1990; Bain & Sammut, 1995) refers to a general imitation
learning technique that derives a policy by supervised learning on high quality trajectories termed
expert demonstrations. In the context of language agents this is typically achieved by supervised fine-
tuning (SFT) of an LLM on either human trajectories or trajectories generated from a stronger LLM
(Christianos et al., 2023; Chen et al., 2023a; Zeng et al., 2023b; Yin et al., 2024; Song et al., 2024).
In the context of our experiments, we use BC to initialize the trajectory buffer for an expert iteration
loop on Llama-3.1-8B-Instruct, due to its inability to self-generate successful trajectories
prior to training.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Expert iteration (EI) EI (Anthony et al., 2017; Anthony, 2021; Havrilla et al., 2024) performs
behavior cloning in an iterative fashion, improving the demonstration data each iteration. The inputs
to the EI algorithm are a base LLM represented as an initial policy π0 and a trajectory buffer D0,
which may either be empty or consist of an initial set of demonstrations generated by a human
expert or a stronger LLM. At each round of EI, first a batch B of trajectories are sampled from the
current policy πi (via rollout). Then these trajectories {τ (j)i }Bj=1 are filtered (the rejection sampling
step (Yuan et al., 2023)) based on return R exceeding a threshold value ρ. The filtered trajectories
are then appended to the trajectory buffer Di and the current LLM, πi, is fine-tuned on Di using
cross-entropy loss. Pseudocode for EI is provided in Algorithm 1.

Algorithm 1 Expert Iteration with Rejection Sampling Fine-Tuning

1: Inputs: initial policy π0, iteration rounds N , batch size B, return threshold ρ, trajectory buffer
D0

2: for i = 1, . . . N do
3: Ti ← rollout(πi−1)

4: Di ← Di−1 ∪ {(τ (j)i , R
(j)
i)| τ (j)i ∈ Ti, R

(j)
i > ρ, j = 1, . . . , B} {Rejection sample trajecto-

ries}
5: πi ← SFT(Di) {SFT on updated trajectory buffer}
6: end for

Inference Compute Scaling Scaling inference-time compute to improve LLM performance is now
a frequently-employed technique (Brown et al., 2024; Wang et al., 2023b). There are two common
settings: oracle-verified (pass@k) and majority vote (consensus@k). As shown in Brown et al. (2024),
if an oracle verifier can identify any correct solution – namely, if you can obtain just one correct
answer among k – then it is possible to scale across multiple orders of magnitude. Without an oracle
verifier, majority voting can be used (Wang et al., 2023b). Majority voting is simply the consensus
response, which requires some natural binning of responses. Although oracle verification scales
to very large numbers of completions (Li et al., 2022), majority voting plateaus more quickly than
oracle verification (Brown et al., 2024). In this work, we omit any ”unsure” or truncated trajectories
(trajectories for which the agent did not submit an answer) from majority voting.

C ENVIRONMENT DETAILS

Below we expand on the details of the environments comprising Aviary including example questions,
available tools, and their framing as instances of Language Decision Processes (LDPs). Environment
details already mentioned in the main paper are repeated here for clarity. As a reminder, an LDP is
defined as follows:

LDP (V,S,A,O, T, Z,R, γ)

• V is an alphabet, a non-empty set, consisting of tokens w ∈ V .
• S is the state space.
• A ⊆ V∗ is the action space.a

• T (s′|s, a) : S ×A 7→ P(S) is the transition function.
• R(s, a) : S ×A 7→ P(R) is the reward function.
• O ⊆ V∗ is the observation space.
• Z(o|s′) : S ×A 7→ P(O) is the observation function.b

• γ ∈ [0, 1] is the discount factor.

aWhere V∗ def
=

⋃∞
n=0 V

n is the Kleene closure of a set V (Kleene, 1956; Meister et al., 2023).
bIn all POMDPs we consider, a state s ∈ S uniquely defines an observation o ∈ O. Unless

otherwise stated, we will omit Z.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.1 GSM8K

The GSM8K environment is based on the GSM8K dataset introduced in Cobbe et al. (2021), which
consists of linguistically diverse grade school math word problems designed to assess multi-step
mathematical reasoning. The GSM8K dataset comprises a training set of 7,473 questions and a test
set of 1,319 questions. The GSM8K environment is fully observable and hence reduces to the LDP
(V,S,A, T , R, γ).

Example Task: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes
of babysitting. How much did she earn?

Tools:

1. Calculator[Expression]: Return the result of a numerical expression.
2. Submit[Answer]: Return the answer.

LDP:

• V : Unicode characters.
• S : GSM8K question, current step in the reasoning process.
• A : {calculator, submit}.
• T : The deterministic transition function.
• R : The reward function:

R =

1 if the action submits a correct answer,
−1 if the action is an invalid tool call,
0 otherwise.

• γ : Takes on a value of 1.

C.2 HOTPOTQA

The HOTPOTQA environment is based on the HOTPOTQA dataset introduced in Yang et al. (2018),
which was subsequently extended to a language agent environment in Yao et al. (2023). The
HOTPOTQA dataset comprises 112,779 question-answer pairs. We run evals on the 7,405 eval subset
of questions. In the HOTPOTQA environment, the agent is provided with a Wikipedia API and tasked
with answering the questions. The agent is not provided with any context and the API supports full
access to all articles and sections on Wikipedia.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Example Task: The Battle of Gettysburg was fought in which state and in which year?

Tools:

1. Search[Entity]: Search for an entity on Wikipedia. If a Wikipedia page exists, the
first 5 sentences of the page are returned, otherwise the top-5 similar entities from
the Wikipedia search engine are returned.

2. Lookup[Keyword]: Return the first sentence featuring the keyword in the current
Wikipedia page, simulating Ctrl + F functionality in the web browser.

3. Finish[Answer]: Return the answer.

LDP:

• V : Unicode characters.
• S :{HOTPOTQA question, current Wikipedia page}.
• A : {Search, Lookup, Finish}.
• T : The deterministic transition function.
• R : The reward function:

R =

{
1 if the action produces a correct answer,
0 otherwise.

• O : The current paragraph (following Search) or sentence (following Lookup) in the
Wikipedia page.

• Z : Is 1 in all cases as observations arise deterministically conditioned on the action
taken.

• γ : Takes on a value of 1.

C.3 PAPERQA

PaperQA2 (Lála et al., 2023; Skarlinski et al., 2024) is a language agent/environment pairing
developed for scientific literature research and question answering. The environment exposes
tools for full text literature search (paper search), citation traversal (citation traversal),
reranking and contextual summarization (gather evidence), and answer given ranked contextual
summaries (generate answer). This pairing demonstrated superhuman-level precision and
human-level accuracy on version 2 of a multiple choice literature question and answering task, called
LitQA2 (Laurent et al., 2024).

To implement this in Aviary, we refactored the agent/environment pairing into a standalone PaperQA
environment. This environment is similar to the one used in PaperQA2, with three differences. First,
to make it easy for the ML community to use, we modified the paper search tool to center on
local storage containing a set of PDF, text, and HTML files using tantivy (Inc., 2024). Second, the
citation traversal tool was omitted for this local setting. And third, a complete tool was
added to allow the agent to declare if the answer addresses all parts of the question.

We evaluate agents on their ability to use the PaperQA environment to solve LitQA2 questions.
LitQA2 features 248 questions, 199 of which are publicly available and the remaining 49 were held
out as a test set. For the sake of comparison against Skarlinski et al. (2024) we obtain the private
test set through correspondence with the authors8. The public dataset of 199 questions is randomly
partitioned into an 80\20 split with 149 train questions and 40 eval questions.

To build the tantivy search indices, we (1) aggregated all paper search or citation traversal results
from many PaperQA2 invocations, (2) binned the results corresponding to each LitQA2 question,
and (3) combined bins based our train, evaluation, and test split LitQA2 questions. The end result is

8The test set is private to prevent test set leakage to frontier models. The test split may be made available to
the reviewers upon request pending permission from the original authors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

18955 DOIs in the train split, 5457 DOIs in the evaluation split, and 5519 DOIs in the test split9. The
large number of distractor papers in each split’s index forms a learnable retrieval task for language
agents. To avoid copyright infringement of the underlying papers, we only distribute the paper DOIs,
and not the parsed texts used by the environment.

Finally, we note that our local PaperQA environment is capable of tasks beyond LitQA2. For example,
it can do literature review writing and contradiction detection as reported in Skarlinski et al. (2024).

Example Task: Which base editor has been shown to be the most efficient for inducing the
mutation K352E in CD45 in human T-cells?

A) ABE8e-NG
B) ABE8e–SpRY
C) SPACE-NG
D) ABE8e-SpG
E) Insufficient information to answer this question

Tools:

1. paper search(query: str, min year: int | None,
max year: int | None) - Full-text semantic search through a local search
index.

2. gather evidence(question: str) - Perform LLM reranking and contex-
tual summarization given a question on paper search results.

3. gen answer() - Attempt to answer given the top ranked contextual summaries.
4. complete(has successful answer: bool) - Terminate using the last pro-

posed answer, with the argument declaring whether the answer addressed all parts
of the question.

LDP:

• V : Unicode characters.
• S :{paper chunks, metadata, ranked contextual summaries and final answer}.
• A : {paper search, gather evidence, gen answer, complete}.
• T : Nondeterministic, as the gather evidence and gen answer tools rely on

LLM completions.
• R :

1 correct answer,
−1 incorrect answer,
0.1 unsure answer.

• O : Same as S.
• Z : Controlled by the stochasticity of LLM temperature sampling in
gather evidence and gen answer.

• γ : Takes on a value of 0.9.

C.4 MOLECULAR CLONING

Molecular cloning is a fundamental technique for manipulating DNA in biomedical science, enabling
basic research into gene function, transgenic models, and recombinant proteins (Bertero et al., 2017;
Sharma et al., 2014). The molecular cloning process results in a DNA “construct,” which is a general
term for DNA that encodes for the desired biologic molecule or genes. Molecular cloning involves
assembling DNA fragments, ligating them into vectors, introducing the recombinant DNA into host
organisms, and screening for desired clones (Bertero et al., 2017). The steps in molecular cloning are

9The train, evaluation, and test split DOIs can be made available to the reviewers upon request.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

usually undertaken using a combination of human planning, specialized software, and databases of
known purchasable components.

The molecular cloning environment comprises the main tools used by laboratory scientists: (1)
an annotation tool for predicting the function of plasmid segments (2) a natural language search
tool that retrieves sequences given text, and (3) tools required to plan protocols. Applications for
protocol-specific tools include PCR primer design, ligation, codon optimization, Gibson or Golden
gate assembly, and fetching genes from standard organisms. Many implementations use or are derived
from the Go Poly library (Bebop, 2025). The annotation tools were built using MMSeqs2 (Steinegger
& Söding, 2017).

The specific tasks used for evaluation come from the SeqQA benchmark (Laurent et al., 2024), which
consists of textbook-style multiple-choice questions broken down into 15 subtasks designed to cover
diverse properties of DNA, RNA, and protein sequences, as well as common tasks in molecular
biology workflows such as restriction digests and polymerase chain reactions (PCR). The SeqQA
train set comprises 500 questions from Laurent et al. (2024) as well as 150 new test questions we
introduce specifically for the Aviary SeqQA environment10. The SeqQA task is solvable using only
a subset of the tools, and the tools have not been engineered specifically for the conventions of
SeqQA. For example, SeqQA questions assume 1-indexing, but the tools are 0-indexed and thus the
language agent needs to learn to convert indices. Another example illustrating that that the tools are
not engineered specifically for SeqQA is that SeqQA only considers coding open reading frames, but
the tools may consider both reading frames.

In the molecular cloning environment, it is worth nothing that the combination of tools for manipu-
lating DNA constructs, annotating sequences or plasmids, and searching for DNA components in
databases facilitates tasks beyond SeqQA. The environment also supports working with “CloningSce-
narios,” which is a multiple-choice benchmark for working with DNA constructs derived from real
laboratory notebooks (Laurent et al., 2024). One can also perform more normative plasmid tasks, an
example prompt being, “Clone the given protein [protein] into [plasmid] to express in yeast with a
GFP fusion (check annotations above, plus GFP in correct relative orientation).”

Example Task:

Which of the following RNA sequences contains an ORF that is most likely to have high
translation efficiency in a human cell?

A) [RNA sequence 1]
B) [RNA sequence 2]
C) [RNA sequence 3]
D) [RNA sequence 4]
E) Insufficient information to answer this question

Tools:

1. search(query: str) - Search Plasmid and NCBI nucleotide databases.
2. annotate(sequence: Sequence) - Annotate proteins, ORFs, restriction

sites in a DNA sequence.
3. gibson(sequences: list[Sequence]) - Simulate gibson assembly.
4. goldengate(sequences: list[Sequence], enzyme: str) - Simu-

late golden gate assembly.
5. simulate pcr(sequence: Sequence, forward primer: Sequence | None,

forward primer name: str | None) - Simulate polymerase chain reaction.
6. optimize translation(sequence: Sequence, cg content: int,

codon table: int, min repeat length: int) - Codon optimization.
7. separate(sequences: list[Sequence]) - Simulate gel electrophoresis.

10These questions are maintained in a private repository to prevent test set leakage to frontier LLMs and can
be made available to the reviewers upon request.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

8. enzyme cut(sequence: Sequence, enzyme: str) - Simulate restric-
tion digest.

9. search(query: str) - Search Plasmid and NCBI nucleotide databases.
10. annotate(sequence: Sequence) - Annotate proteins, ORFs, restriction

sites in a DNA sequence.
11. gibson(sequences: list[Sequence]) - Simulate gibson assembly.
12. goldengate(sequences: list[Sequence], enzyme: str) - Simu-

late golden gate assembly.
13. simulate pcr(sequence: Sequence, forward primer: Sequence | None,

forward primer name: str | None) - Simulate polymerase chain reaction.
Primers can be sequence (by ref) or name of enzyme or sequence value.

14. optimize translation(sequence: Sequence, cg content: int,
codon table: int, min repeat length: int) - Codon optimization.

15. separate(sequences: list[Sequence]) - Simulate gel electrophoresis.
16. enzyme cut(sequence: Sequence, enzyme: str) - Simulate restric-

tion digest.
17. find sequence overlap(sequence1: Sequence,

sequence2: Sequence, reverse: bool) - Find overlapping regions
between two sequences.

18. find orfs(sequence: Sequence, min length: int,
codon table: int, strand: int) - Find open reading frames in a
DNA sequence.

19. design primers(sequence: Sequence, target tm: float,
forward overhang name: str, reverse overhang name: str)
- Design PCR primers for a sequence.

20. merge(sequences: list[Sequence]) - Combine multiple sequences,
needed to do assembly simulation.

21. add(sequence1: Sequence, sequence2: Sequence) - Add two se-
quences together.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Tools Continued:

22. slice sequence(sequence: Sequence, start: int, end: int,
name: str) - Extract a subsequence.

23. view translation(sequence: Sequence) - View the amino acid transla-
tion of a DNA sequence.

24. view sequence stats(sequence: Sequence) - View sequence statistics.
25. view restriction sites(sequence: Sequence) - View restriction en-

zyme cut sites.
26. view sequence(sequence: Sequence) - View the raw sequence.
27. submit answer(answer: str)

LDP:

• V : Unicode characters.
• S : A set of reference DNA sequences, provided by the task or obtained from

previous actions. A protocol with the steps taken so far. Current reward.
• A : A text sequence generated using the vocabulary, which should specify a tool

to use and its parameters, though not all sequences will necessarily form valid or
usable actions.

• T : A transition function that executes the selected action and as a result can add
more reference DNA sequences, extend the protocol, or propose a final answer.

• R :
1 correct answer,
−1 incorrect answer,
0.1 unsure answer.

• O : A list of names and statistics of sequences in S .
• Z : 1.0 in all cases as observations arise deterministically from the state.
• γ : Takes on a value of 1.0.

C.5 PROTEIN STABILITY

Engineering proteins with increased stability is a crucial task in protein engineering, with broad
applications in enzyme engineering and drug design (Sheldon & Woodley, 2018). Protein engineering
remains challenging, however, due to the complex interplay of sequence, structure, and biological
factors (Goldenzweig & Fleishman, 2018). Integrating sequence and structure-based methods,
including tools such as Rosetta, affords a more comprehensive pipeline for improving protein stability
(Laimer et al., 2015).

We introduce the protein stability environment as a framework for training agents that can effectively
integrate knowledge from physics-based models, biochemical principles, and pre-trained protein
models with the potential to leverage experimental results to improve protein stability. The protein
stability environment consists of tools commonly used by human experts for analyzing protein
sequences and structures, including (1) a biochemical description tool to identify residue bond types,
(2) a sequence property tool to calculate molecular weight, aromaticity, instability index, isoelectric
point, sequence charge, and hydropathy, (3) a secondary structure annotation tool, and (4) a Rosetta-
based tool to calculate the aggregation propensity scores per residue (Lauer et al., 2012). We assess
the language agent’s performance on 40 proteins randomly selected from the megascale protein
stability dataset, excluding any that are mentioned in the text of Tsuboyama et al. (2023). Proposed
mutations are evaluated using the Rosetta cart ddg protocol (Frenz et al., 2020). Note that we only
perform inference time evaluation of language agents on the protein stability task and as such, we do
not maintain a train set.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Prior work on utilizing LLMs for protein design include 310.ai (2024), which introduced a chat-based
interface for protein design, and ProtAgents (Ghafarollahi & Buehler, 2024), a multi-agent platform
for protein design that integrates deep learning models trained on protein structure data (Ingraham
et al., 2023; Wu et al., 2022) with physics-based simulations. LLMs have also proven effective as
biological sequence optimizers (Chen et al., 2024a).

Example Task: Design at least 3 mutations and a maximum of 7 mutations to the protein
sequence MKVMIRKTATGHSAYVAKKDLEELIVEMENPALWGGKVTLANGWQLEL-
PAMAADTPLPITVEARKL that would improve its stability. The sequence of this protein is
provided in the text file located at {input txt path}, and the structure of the protein can be
found in the PDB file located at {input pdb path}.

Tools:

1. get bond types between(residues: list[int],
bond type: str) - Describes all instances of the specified bond type
among a given list of residues as outlined in the function description.

2. get secondary structure(pdb string: str) - Describes secondary
structure elements found in the protein structure by residue.

3. get sequence properties(mutations: list[str],
return wt: bool) - Describes properties like instability index, molar
extinction coefficient, fraction of charged residues, iso-electric point.

4. get distance between residues(mutation: list[str]) - Get pair-
wise distances between list of residues.

5. get residue at position(residues: list[int]) - Returns the
residue present at a specific position and describes whether it is acidic or basic or
charged, polar or aliphatic or aromatic.

6. get hydrophobicity score(local pdb file: str) - Calculates ag-
gregation propensity by residue using Rosetta.

7. get mutant protein sequence(mutations: list[str]) - Returns
the sequence of the protein after the mutations are applied to the sequence.

8. complete(mutations: list[str]) - Terminate after proposing mutations
to the protein sequence

LDP:

• V : Unicode characters.
• S : path to a .pdb file containing the protein structure renumbered from 1, path to a

.txt file containing the protein sequence and list of mutations proposed.
• A : {get bond types between, get secondary structure,
get sequence properties, get distance between residues,
get residue at position, get hydrophobicity score,
get mutant protein sequence, complete}

• T : A transition function that executes the selected action and as a result can update
the proposed stabilizing mutations to the protein sequence.

• R : {
1 if Rosetta∆∆G < 0,

0 otherwise.

• O : sequence or structure descriptions of wild type sequence or proposed mutations
• Z : 1.0 in all cases as observations arise deterministically from the state.
• γ : Takes on a value of 1.0.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D FURTHER RELATED WORK

Below we discuss further related work on language agent optimization frameworks and benchmarks.

Language Agent Optimization Frameworks Continued Amongst methods that jointly optimize
language agent components, the TextGrad framework (Yuksekgonul et al., 2024) backpropagates
feedback received from an LLM. Zhou et al. (2024) also backpropagate textual feedback by creating
natural language simulacra of weights, losses, and gradients. Hu et al. (2024a) uses a metaprompt
to encourage an LLM to perform discrete optimization of an agent architecture. The OptoPrime
optimizer in the Trace framework (Cheng et al., 2024) passes code execution traces and uses an LLM
to perform updates. DSPy (Khattab et al., 2022; Singhvi et al., 2023; Khattab et al., 2024) parametrizes
a computational graph for language agents and automatically generates useful demonstrations for in-
context learning. In the multi-agent setting, GPTSwarm (Zhuge et al., 2024) introduces a computation
graph and performs binary edge-level optimization and node-level optimization over prompts. Lastly,
OpenR (Wang et al., 2024b) is a framework for LLM reinforcement learning and inference-time
scaling, but is targeted at token-level optimization, not tool usage.

Language Agent Benchmarks Existing language agent benchmarks feature a broad range of
applications including machine learning tasks (Huang et al., 2024b), data science (Guo et al., 2024b;
Grosnit et al., 2024), data analysis (Hu et al., 2024c; Li et al., 2024), quantitative reasoning (Liu et al.,
2024), and causal reasoning (Jin et al., 2023). In Aviary, we place particular focus on scientific tasks.
Relevant work in this area has included DiscoveryBench, a benchmark for data-driven hypothesis
generation (Majumder et al., 2024), ChemBench (Mirza et al., 2024) which focuses on chemistry tasks,
BLADE (Gu et al., 2024) which is concerned with data-driven science, SciAgent (Ma et al., 2024b) a
benchmark for scientific reasoning, DISCOVERYWORLD (Jansen et al., 2024) which concentrates
on cycles of scientific discovery, and ScienceWorld (Wang et al., 2022) which is concerned with
scientific reasoning. For a review focused on scientifically-relevant agents the reader is directed to
Ramos et al. (2024). In Aviary, we focus on sequential decision-making tasks that necessitate multiple
steps of agent-environment interactions. We construct environments from the pre-existing datasets
such as GSM8K (Cobbe et al., 2021), HOTPOTQA (Yang et al., 2018), and LitQA2 (Skarlinski et al.,
2024) by casting them as parametrizable tools manipulating an environment state.

E DISTRIBUTION OF TRAINED LANGUAGE AGENT TRAJECTORIES

In Figure 7, we study the distribution of SeqQA trajectories explored by a trained language agent in
a Sankey diagram of the tool call patterns. The demonstration trajectories (all successful) heavily
feature assembly simulations and are relatively long. The trained agent was initially cloned from the
demonstrations, but through online learning discovered significantly different ways to solve SeqQA
tasks. The agent’s trajectories are generally shorter and less diverse, suggesting that self-training
tends to converge on a subset of possible paths.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 7: Patterns of tool calls across trajectories. Colored boxes represent different tool categories,
and edges between boxes represent consecutive actions taken in a trajectory, with darker edges
implying a greater number of trajectories. In panel (A), we show the demonstration trajectories used
for behavior cloning. Panels (B) and (C) show the trajectories sampled from the Llama-3.1-8B
EI agent after expert iteration.

F CODE EXAMPLES

Below is an example of a simple Aviary environment that maintains an integer counter. More realistic
and complex examples are provided in the codebase and associated documentation.

from collections import namedtuple
from aviary.core import Environment, Message, ToolRequestMessage, Tool

State in this example is simply a counter
CounterEnvState = namedtuple('CounterEnvState', ['count'])

class CounterEnv(Environment[CounterEnvState]):
"""A simple env that allows an agent to modify a counter."""

async def reset(self):
self.state = CounterEnvState(count=0)
self.tools = [

Parse signatures and docstrings
into Tool objects housing tool schemae
Tool.from_function(self.incr),
Tool.from_function(self.decr),

]
return [Message(content=f"counter={self.state.count}")], self.tools

async def step(self, action: ToolRequestMessage):
obs = self.exec_tool_calls(action)
reward = self.state.count ** 2
Returns observations, reward, done, truncated
return obs, reward, reward < 0, False

def incr(self):
"""Increment the counter."""
self.state.count += 1
return f"counter={self.state.count}"

def decr(self):
"""Decrement the counter."""
self.state.count -= 1
return f"counter={self.state.count}"

Building on this, below is an example of a simple LDP agent illustrating how to sample trajectories
in an environment.

from ldp.agent import Agent
from ldp.graph import LLMCallOp

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

from ldp.runners import RolloutManager

class AgentState:
def __init__(self, messages, tools):

self.messages = messages
self.tools = tools

class SimpleAgent(Agent):
def __init__(self, **kwargs):

self.llm_call_op = LLMCallOp(**kwargs)

async def init_state(self, tools):
return AgentState([], tools)

async def get_asv(self, agent_state, obs):
action = await self.llm_call_op(

config={"model": "gpt-4o", "temperature": 0.1},
msgs=agent_state.messages + obs,
tools=agent_state.tools,

)
new_state = AgentState(

messages=agent_state.messages + obs + [action],
tools=agent_state.tools,

)
Return action, state, value (hence get_asv)
return action, new_state, 0.0

agent = SimpleAgent(config={"model": "my_llm_endpoint"})
runner = RolloutManager(agent=agent)
trajectories = await runner.sample_trajectories(

environment_factory=CounterEnv,
batch_size=2,

)

30

	Introduction
	Related Work
	Methodology
	Language Decision Processes
	Stochastic Computation Graphs

	Environments
	GSM8K
	hotpotQA
	PaperQA
	Molecular Cloning
	Protein Stability

	Experiments
	Behavior Cloning and Expert Iteration
	Inference Compute Scaling
	Inference Cost Scaling

	Discussion and Limitations
	Conclusion
	Stochastic Computation Graphs for Selected Language Agent Architectures
	Training Methods
	Environment Details
	GSM8K
	hotpotQA
	PaperQA
	Molecular Cloning
	Protein Stability

	Further Related Work
	Distribution of Trained Language Agent Trajectories
	Code Examples

