
Under review as a conference paper at ICLR 2022

LEARNING COMPLEX GEOMETRIC STRUCTURES
FROM DATA WITH DEEP RIEMANNIAN MANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Deep Riemannian Manifolds, a new class of neural network param-
eterized Riemannian manifolds that can represent and learn complex geometric
structures. To do this, we first construct a neural network which outputs symmet-
ric positive definite matrices and show that the induced metric can universally
approximate all geometries. We then develop differentiable solvers for core man-
ifold operations like the Riemannian exponential and logarithmic map, allowing
us to train the manifold parameters in an end-to-end machine learning system.
We apply our method to learn 1) low-distortion manifold graph embeddings and
2) the underlying manifold of geodesic data. In addition to improving upon the
baselines, our ability to directly optimize the Riemannian manifold brings to light
new perspectives with which to view these tasks.

1 INTRODUCTION

Many complex structures in data are naturally captured by Riemannian geometry. For example,
weighted graphs (Linial et al., 1995), latent spaces of generative models (Chen et al., 2018a), and
natural science phenomena (Boyda et al., 2021) all naturally lie on non-Euclidean manifolds. Recent
efforts in deep learning have focused on exploiting this geometric structure to build better models in
the emerging field of Geometric Deep Learning (Bronstein et al., 2021).

Most successes in this area have focused on generalizing classic techniques to some fixed manifold
like the Poincaré n-ball (Nickel & Kiela, 2017), hyperspheres (Cohen et al., 2018), or smooth
surfaces (Masci et al., 2015). However, these methods are only capable of working with Riemannian
manifolds that are selected a priori, meaning that the geometry is assumed–not recovered–from the
data. Worse still, approaches which recover data geometry learn only with topological information.
Since manifolds can have the same topology but vastly different geometries (e.g. hyperbolic and
Euclidean space), this type of methodology is insufficient for capturing the true geometry.

In this paper, we overcome these limitations and introduce the first method for learning Riemannian
manifolds from geometric information. We start by introducing Deep Riemannian Manifolds, the
first neural-network parameterized Riemannian manifolds that are provably universal. Then, to work
with these manifolds, we develop differentiable Riemannian manifold operations using neural ODEs
(Chen et al., 2018b). In particular, for the manifold logarithmic map, we introduce Neural BVPs, a
new type of neural differential equation solver. Finally, we apply our method to two existing tasks in
the literature: learning graph embeddings and fitting geodesics. Our method improves over prior work
and provides further insight into these problems. In particular, for graph embeddings we prove that
our method is capable of solving the metric space embedding problem, and for the geodesic fitting
tasks we show that our novel ability to train with geometry is critical for recovering the underlying
manifold when data is more complicated.

2 DEEP RIEMANNIAN MANIFOLDS

In this section, we present Deep Riemannian Manifolds, our neural network parameterized Rieman-
nian manifolds. Then, we derive several properties of Deep Riemannian Manifolds; in particular, they
are able to universally approximate any geometric structure. Finally, we compare with other metrics
on both theoretical and empirical grounds. Here, we find that our method use parameters efficiently,
give stronger correctness guarantees, and exhibit traits that are amenable for geodesic-based training.

1

Under review as a conference paper at ICLR 2022

2.1 CONSTRUCTION

We construct our Deep Riemannian Manifolds as (Rn, gnn), where gnn is a Riemannian metric
parameterized by a neural network. We use Rn as our underlying manifold for computational
purposes and show that this is sufficient for representing complex geometries. The key to good
representation is how we construct gnn.

Recall that a Riemannian metric is a smoothly varying inner product on the tangent spaces TxM.
WhenM = Rn, it is instead a smoothly varying inner product on Rn because TxRn ∼= Rn. Since
inner products on Rn are given by x>Ax where A is a symmetric positive definite (SPD) matrix, a
Riemannian metric on Rn is a smooth function from Rn → S+n , the space of SPD matrices.

With this natural equivalence, to design a Riemannian metric we simply need to construct a smooth
map g : Rn → S+n using a neural network. The difficulty lies in representing outputs on the
Lie Group S+n (Gallier & Quaintance, 2020). Naive attempts for constraining the neural network
output (e.g. projection) are often parameter inefficient, computationally challenging, or difficult to
differentiate (Goulart et al., 2019). Instead, we follow more recent geometry-based representations
(Lezcano-Casado, 2019) and directly work with the Lie Group structure.

In particular, S+n is diffeomorphic to its Lie algebra Sn, the set of symmetric Rn×n matrices. To
see this, we can decompose an SPD matrix into PDP> for positive diagonal D and orthonormal P .
With this structure, log(PDP>) = P log(D)P>, so the matrix exponential is the diffeomorphism
between Sn and S+n . Compared with the nonlinear structure of S+n , Sn is a vector space of dimension
n(n+1)

2 (determined by the upper triangular portion of the matrix). This means that, with a proper
change of variables, a standard neural network can directly output values in Sn.

Let sym : R
n(n+1)

2 → Sn be the operator which takes a vector and outputs the matrix in Sn which has
an upper triangular part equal to the vector (under some constant reordering). Using the exponential
map, we can construct a Riemannian metric for a neural network fnn : Rn → R

n(n+1)
2 given by

g = exp ◦sym ◦ fnn (1)

2.2 THEORETICAL PROPERTIES

We verify that our Deep Riemannian Manifolds satisfies several desirable properties.
Prop 2.1 (Smoothness of Deep Metric). If fnn has a smooth activation function such as tanh, then
the metric given in equation 1 is smooth.

Next, we show that Deep Riemannian Manifolds have a nontrivial representational capacity. In
particular, they approximate all Riemannian manifolds with Rn as the underlying manifold.
Prop 2.2 (Universal Approximation of Riemannian Metrics on Rn). On a compact set D of Rn,
for any metric h and ε > 0 there exists a neural network metric g of the form in Equation 1 s.t.
supx∈D ‖gx − hx‖ < ε, where ‖·‖ is the standard `2 norm.

As a result, they are also able to universally approximate all Riemannian manifolds.
Theorem 2.3 (Universal Approximation of all Riemannian Manifolds). For a compact Riemannian
manifold (M, g) and any ε > 0, there exists a Deep Riemannian Manifold (Rn, gnn) with n =
2dimM and an embedding f :M→ Rn s.t. |dg(x, y)− dgnn(f(x), f(y))| < ε for all x, y ∈M.

The results are proven in Appendix A.

2.3 COMPARISON WITH OTHER METRICS

We compare against two other neural network based Riemannian metrics. The first, which we call
the “A>A” metric, takes a neural network fnn : Rn → R

n(n+1)
2 and the upper triangular reshape

ut to construct the metric g(x) = A>A where A = (ut ◦ fnn)(x). The second, which we call the
pullback metric, uses the differential of a neural network fnn : Rn → RN to construct a metric
g(x) = (Dxfnn)

>(Dxfnn).

Both schemes have previously appeared when representing Riemannian metrics. The A>A construc-
tion appears in Riemannian motion planning in robotics (Rana et al., 2019). The pullback metric is a

2

Under review as a conference paper at ICLR 2022

standard construction in Riemannian geometry (Do Carmo, 2016) and has been used when designing
Riemannian metrics for generative models (we cover these in more detail in Section 5.2.1).

2.3.1 REPRESENTATION

We first compare the representation ability of the metrics. In particular, we are concerned with 1)
mathematical correctness and 2) the number of output dimensions required for good representation.
The first concern is important to avoid singularities (even measure 0 sets may be traversed by our
differential equation solver), and the second directly controls the size of our neural networks.

Correctness. Our metric correctly defines an SPD matrix for each input point x. The A>A metric is
not necessarily correct (e.g. if a column of the output A is 0) and adding a small positive noise to the
diagonal restricts representation. The pullback metric is faithful if and only if fnn is immersion, but
this condition is difficult to maintain in a general fnn. Importantly, the A>A and pullback metrics
can not be considered valid metrics since they may not be correct.

Dimensions. Both our metric and the A>A metric use a fixed n(n+1)
2 dimensions. However, the

pullback metric requires approximately n2 + 5n+ 3 dimensions by the Nash Embedding Theorem.
Furthermore, it is unclear if the pullback metric provides universal approximation guarantees since
this method differentiates through a neural network.

2.3.2 STABLE GEODESICS

Due to the natural limitations of solvers, incorrectly evaluated geodesics greatly hamper training.
Therefore, we also consider the stability of the geodesics at initialization time, since incorrect initial
evaluations would stifle any attempt to learn. Previous work has shown that random Riemannian
metrics almost surely produce geodesics which are ill-conditioned (LaGatta & Wehr, 2014). Following
this analysis, we evaluate the metrics at initialization time for a random data point (visualized in
Figure 1) and analyze the noise in the matrices. We find that our proposed metric is the most noise-
free, so we hypothesize that it would produce the most stable geodesics in training. This theory holds
in practice: our proposed metric is the only metric that is capable of stable optimization for any of
our test tasks. The other metrics’ geodesics often fail to even evaluate at initialization.

(a) Euclidean (b) Our Metric (c) A>A (d) Pullback

Figure 1: The matrix form of various neural network parameterized metrics at initialization time (the
Euclidean metric is included as reference). Our metric is the most amenable for training since is has
the least random noise. By contrast, the A>A and pullback metrics are less amenable for training as
the diagonals are less pronounced and the matrices begin looking more like random noise.

3 DIFFERENTIABLE NUMERICAL MANIFOLD OPERATIONS

In this section we introduce ways to compute and differentiate through the core operations on
our Deep Riemannian Manifold, enabling gradient-based training. Specifically, we show how to
implement the exponential map, logarithmic map, manifold distance, and geodesic interpolation
functions in an autodifferentiation framework (Leal et al., 2018). These are all various solutions to
the geodesic equation (given below) under varying problem settings.

d2γi

dt2
+

∑
l

1

2
gil
(
∂gjl
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

) dγj

dt

dγk

dt
= 0, (2)

3

Under review as a conference paper at ICLR 2022

Exponential Map. The exponential map expx(v) is the time 1 solution to the differential equation
defined by the geodesic equation with initial value γ(0) = x, γ′(0) = v. Under our Deep Riemannian
Manifold, this is a standard initial value problem (IVP) in Rn; we can implement computation and
differentiation with a Neural ODE (Chen et al., 2018b) using a linearized version of Equation 2.

Logarithmic Map. The logarithmic map logx(y) is the initial velocity of the curve satisfying
Equation 2 with γ(0) = x, γ(1) = y. This is the inverse of the exponential map, so expx(logx(y)) =
y, logx(expx(v)) = v. For our Deep Riemannian Manifold, the logarithmic map is a boundary
valued problem (BVP); these differential equations have yet to be fully integrated into deep learning.
Therefore, we develop a BVP analogue of Neural ODEs, which we call Neural BVPs.

To solve our BVP, we use the Gaussian process based solver of Arvanitidis et al. (2019) which was
built for manifold geodesics. Compared to the methods such as bvp5c (Kierzenka & Shampine,
2008), Arvanitidis et al. (2019) produced more stable results with lower running time.

To differentiate through our BVP, we develop an adjoint sensitivity analysis based on implicit
differentiation. The manifold specific case is given below in Proposition 3.1, and the full result for
general BVPs with proof is given in Appendix A.
Prop 3.1 (Adjoint Sensitivity For Log Map). On the manifold (Rn, g) with x, y ∈ Rn, suppose that
logx(y) = v. Then

Dx log(x, y) = −(Dv expx(v))
−1 ◦Dx expx(v) (3)

and
Dy log(x, y) = −(Dv expx(v))

−1 (4)
For our manifold parameters θ, we also have that

Dθ logx(y) = −(Dv expx(v))
−1 ◦Dθ expx(v) (5)

The derivatives of expx can be computed through standard adjoint sensitivity analysis for IVPs.

Previous adjoint sensitivity analyses for BVPs often use the path from x to y for computation (Serban
& Petzold, 2002). Our derivation does not need this information, although it does significantly speed
up running time by allowing us to batch through function calls in D expx.

Geodesic Interpolation. A classic result of Riemannian geometry states that expx(tv) is the time t
solution to the IVP defining expx(v) (Lee, 1997). Therefore, interpolating between points x, y can
be done with expx(t logx(y)), which is fully differentiable with our above framework.

Manifold Distance. Given a minimal unit time geodesic γ from x to y, the distance function is
the integral

∫ 1

0

∥∥γ′(t)∥∥
g
dt. While this can be evaluated using a numerical integration method, this

is memory intensive and adds more numerical error. Instead, we use another classical result from
Riemannian geometry, namely dg(x, y) =

∥∥logx(y)∥∥g , to compute our distance (Do Carmo, 2016).

Pseudocode. We give the pseudocode for operations in Module 1. We let θ denote the neural network
parameters in our Deep Riemannian Manifold and GEOEQθ be the linearized version of Equation
2 with the metric determined by θ. The methods BVPSOLVE, ODEINT, ODEINTBACKWARDS are
black-box numerical differential equation solvers

4 MANIFOLD GRAPH EMBEDDINGS

Recent work has shown that non-Euclidean graph structures like trees or cycles naturally lie on
manifolds like hyperbolic or spherical space (De Sa et al., 2018; Sarkar, 2011). Motivated by this
approach, several methods have proposed using a variety of canonical manifolds–e.g. matrix or
product manifolds–to capture other types of graph constructs (Cruceru et al., 2020; Gu et al., 2019).
However, these methods are not capable of modelling all possible graph structures, and choosing
the correct manifold for graph data requires a heuristically driven hyperparameter search over all
possible (combinations of) manifolds (Gu et al., 2019).

We employ our Deep Riemannian Manifolds to learn graph embeddings and find that we are able
to overcome both of the aforementioned problems. We prove that theoretically our manifolds can
perfectly model all graphs using only three dimensions, and we empirically show that we can learn
these during training. These results provide the first approach which can theoretically solve the metric
space embedding problem and hint at a deeper connections between graphs and manifolds.

4

Under review as a conference paper at ICLR 2022

Module 1 Pseudocode for Deep Riemannian Manifold Operations.

function MANIFOLDLOG(x, y, θ)
v := BVPSOLVE(x, y,GEOEQθ)
save x, y, θ and v for the backwards pass.
return y

function LOGBACKWARDS(∇v)
ŷ := MANIFOLDEXP(x, v,GEOEQθ)
// Construct Jacobian Matrix J
for i := 1 to n do

, ji, = EXPBACKWARDS(ei)

J := [j1, . . . , jn]
>

dx, , dθ := EXPBACKWARDS(∇v)
∇x,∇θ := −(J−1)>dx,−(J−1)>dθ
∇y = −(J−1)>∇v
returns ∇x,∇y,∇θ

function MANIFOLDEXP(x, v, θ)
y := ODEINT(x, v,GEOEQθ)
save x, v, θ and y for the backwards pass.
return y

function EXPBACKWARDS(∇y)
∇x,∇v,∇θ := ODEINTBACKWARDS(∇y)
return ∇x,∇v,∇θ

function MANIFOLDINTERP(x, y, t, θ)
v := MANIFOLDLOG(x, y, θ)
return MANIFOLDEXP(x, tv, θ)

function MANIFOLDDISTANCE(x, y, θ)
return

∥∥MANIFOLDLOG(x, y, θ)
∥∥
gθ

4.1 THEORY

Given a connected finite graph G = (V,E) with edge costs c : E → R+, there exists a natural metric
space structure over G with points V and dG(v1, v2) = min

γ:path from v1→v2

∑
e∈γ

c(e). For a smooth output

metric space (X, dX), we seek to construct an embedding f : V → X that minimizes the distortion,
which takes an optimal minimum value of 1.

distortion(f) = max
i<j

dG(vi, vj)

dX(f(vi), f(vj))
·max
i<j

dX(f(vi), f(vj))

dG(vi, vj)
(6)

While classical methods find algorithmic ways to embed graph into Euclidean space (Linial et al.,
1995; Indyk & Matousek, 2004), a seminal result by Sarkar (2011) showed that trees could be
embedded into two-dimensional hyperbolic space with arbitrary low distortion, while the same does
not hold for Euclidean space of any dimension.
Theorem 4.1 (Sarkar). For a finite tree T = (V,E), there exists a sequence of embeddings fi : V →
H2
Ki

into two-dimensional hyperbolic space with varying curvature Ki s.t. lim
i→∞

distortion(fi)→ 1.

Inspired by this result, we prove an analogous theorem for embedding general graphs into general
manifolds. In particular, we show that our formulation of Deep Riemannian Manifolds
Theorem 4.2. For a finite graph G = (V,E), there exists a sequence of embeddings fi : V →
(R3, gi) s.t. lim

i→∞
distortion(fi) = 1. This can be done with R2 instead of R3 if the graph is planar.

We present a stronger version of the above theorem with proof in Appendix A. These types of
theorems are optimal since perfect distortion can not generally be achieved. For a perfect embedding,
any vertex of degree ≥ 3 implies splitting geodesics, which can not exist on a Riemannian manifold.

4.2 EXPERIMENTAL RESULTS

Motivated by our theoretical derivations, we empirically test our Deep Riemannian Manifolds
by embedding a variety of graphs and compare against pre-existing manifold graph embeddings.
Specifically, we test against common manifolds like hyperbolic and spherical space, their products,
and various matrix manifolds.

To train our embeddings, we optimize both the embeddings and manifold parameters using gradient
descent using stress as our surrogate loss function:

stress(f) =
∑
i<j

(dG(vi, vj)− dM(f(vi), f(vj)))
2 (7)

Further training details such as the network architecture are given in Appendix B.1.

5

Under review as a conference paper at ICLR 2022

4.2.1 SIMPLE GRAPHS

We begin by embedding simple graphs. We first consider trees and cycles from Cruceru et al. (2020)
since these structures embed canonically in hyperbolic and spherical space. We also consider two
non-traditional structures which resemble cubes. All graphs are visualized in Figure 2.

Our results are summarized in Table 1. As expected, hyperbolic and spherical spaces produce the best
embeddings for trees and cycles. However, for these spaces our Deep Riemannian Manifold is still
capable of learning reasonable embeddings. By contrast, our Deep Riemannian Manifold produces
the best embeddings for the non-canonical graphs.

We also visualize several of our learned embeddings in Figure 3. We examine the geodesics arising
from two dimensional embeddings of our datasets in Euclidean, hyperbolic space, and a Deep
Riemannian Manifold. The geometry learned by our Deep Riemannian Manifold is complex and
varies with the dataset.

Sphere100 Tree6 Tree40 Cycle10 Cube1 Cube2

Figure 2: The simple graphs we consider. The first four can be represented by canonical manifolds,
while the last two can not be captured by any known Riemannian manifold.

Sphere100 Tree6 Tree40 Cycle10 Cube1 Cube2
2 5 10 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

Euclidean 42.64± 21.88 2.85± 0.14 2.82± 0.08 3.14± 2.80 1.43± 0.07 1.51± 0.10 44.64± 19.64 7.85± 1.26 5.62± 0.39 1.67± 0.06 1.91± 0.12 1.79± 0.04 6.21± 1.27 1.83± 0.09 1.74± 0.16 4.37± 0.54 2.05± 0.07 1.98± 0.09

Poincare Ball 12.11± 0.60 2.42± 0.04 2.64± 0.05 1.65± 0.04 1.63± 0.00 1.63± 0.00 8.57± 2.13 3.45± 0.12 2.38± 0.12 1.93± 0.00 1.93± 0.00 1.94± 0.00 1.80± 0.01 1.81± 0.01 1.81± 0.01 2.66± 0.31 2.17± 0.01 2.16± 0.01

Lorentz 8.91±2.25 2.35±0.05 2.41±0.19 1.63± 0.5 1.29± 0.05 1.29± 0.04 9.84± 2.56 2.95±0.62 1.88±0.21 1.72± 0.01 1.73± 0.00 1.72± 0.00 5.32±0.25 1.58±0.02 1.62±0.05 4.66±0.48 2.23±0.12 2.21±0.02

Sphere 2.49± 0.00 2.11± 0.00 1.75± 0.01 1.69± 0.02 1.71± 0.01 1.71± 0.00 11.61± 0.94 6.83± 0.90 5.51± 0.23 1.31± 0.00 1.24± 0.00 1.21± 0.00 1.78± 0.05 1.76± 0.01 1.76± 0.01 2.48± 0.04 2.15± 0.05 2.10± 0.01

Deep Manifold 102.74± 62.74 2.41± 0.01 2.51± 0.06 2.01± 0.80 1.13± 0.04 1.13± 0.05 71.57± 15.44 4.47± 0.65 2.51± 0.37 8.23± 5.69 1.77± 0.55 1.34± 0.07 5.99± 1.49 1.55± 0.15 1.53± 0.09 3.69± 1.02 1.65± 0.03 1.58± 0.05

Table 1: Test Distortion for 2, 5, and 10 dimensional embeddings of the simple graphs. We report the
mean and standard deviation over 3 trials. We highlight the lowest distortion as well as any other
values which are within one standard deviation.

D
ee

p
Po

in
ca

re
E

uc
lid

ea
n

Figure 3: Geodesics and 2D embeddings on the graphs. Each column correspond to the geodesics
connected to a point (highlighted in red). The contours show the geodesic distances. The deep metric
accurately captures the node distances and induces non-trivial geodesics.

6

Under review as a conference paper at ICLR 2022

4.2.2 EMPIRICAL GRAPHS

We also test against several real world structures found in the Network Repository Rossi & Ahmed
(2015). The three datasets are i) a protein graph, ii) an unweighted version of a Hamiltonian circuit
simulation problem, and iii) a social network among southern women. We test on these graphs
because they represent a wide variety of real world phenomena and do not have a canonical structure.

We train and report distortion in Table 2. In addition to the standard model spaces, we also test on
product spaces and various matrix manifolds, namely the space of SPD matrices and the Grassmannian
Gr. Our Deep Riemannian Manifold is able to learn better embeddings than the preexisting methods,
which is expected due to the complexity of the graphs. We also visualize an embedding of the protein
graph in our Deep Riemannian Manifold in Figure 4. Finally, we note that, for the baseline, finding
the optimal manifold to embed into is challenging as the number of possible products increases
exponentially with dimension (and there is no heuristic for how matrix manifolds behave when
incorporated into a product manifold).

Figure 4: A visualization of our learned embed-
ding for the protein graph. We draw the graph
nodes (given in blue) and edges connecting neigh-
bors. Our method is able to capture the nontrivial
geometry of the graph.

dim M Protein Hamiltonian Social

5

E5 4.259± 0.721 5.512± 0.494 2.963± 0.279
H5 2.228± 0.033 3.969± 0.511 2.329± 0.083
S5 2.940± 0.373 5.596± 0.677 4.195± 0.440

E2 × H3 6.629± 0.607 6.545± 1.687 4.241± 0.290
E2 × S3 8.684± 0.784 6.184± 0.389 5.484± 1.825
H2 × S3 6.851± 0.926 6.414± 0.785 5.643± 1.638

Deep 2.008± 0.214 3.724± 0.315 2.212± 0.053

10

E10 3.380± 0.347 3.314± 0.238 2.359± 0.078
H10 2.178± 0.020 2.718± 0.029 2.229± 0.046
S10 2.219± 0.026 3.485± 0.218 2.834± 0.355

E5 × H5 3.339± 0.566 2.964± 0.565 2.523± 0.234
E5 × S5 3.621± 0.757 4.117± 0.251 3.423± 0.806
H5 × S5 2.709± 0.252 4.318± 0.391 3.506± 0.350
S+
4 3.498± 0.239 3.824± 0.599 2.503± 0.163

Gr(5, 2) 5.088± 1.338 5.228± 0.366 2.885± 0.113
Deep 1.958± 0.023 2.668± 0.218 2.152± 0.051

Table 2: Test distortions for 5 and 10 dimensional
embeddings of our empirical graphs. We report
the mean and standard deviation over 3 trials and
highlight the lowest and all values within one SD.
For all empirical graphs, our Deep Riemannian
Manifold achieves optimal results.

5 GEODESIC FITTING

Learning the geometric structure for optimal paths has long been a core problem in robotics. A
complete solution would allow agents to extrapolate shortest paths on new data points, allowing for a
better generalization and understanding of the world. When given a direct cost function to minimize,
classical techniques like trajectory optimization (Betts, 1998) and the calculus of variations (Morrey,
1966) suffice. But, one can not expect such a nice mathematical formulation in the real world. To
overcome this limitation, recent advances invoke the machine learning paradigm to instead learn the
geometry of the space from observations alone (Beik-Mohammadi et al., 2021; Rana et al., 2019;
Ratliff et al., 2018).

We first formalize the geodesic fitting task and prove that, under suitable conditions, the problem is
well-formulated. Then, we compare against the most recent baseline given in Beik-Mohammadi et al.
(2021), which is the only prior work which learns a Riemannian manifold to model the environment.
We find that their method is insufficient for more difficult problem settings since it only relies on
topological information. We show that our Deep Riemannian Manifold overcomes these issues by
providing the first geodesic fitting training method that relies on geometric information.

5.1 THEORY

We first formalize the problem and provide a guarantee. Given a finite collection of paths γi : [0, 1]→
Rd for i ∈ [n], we wish to recover a manifold (Rd, g) s.t. γi all satisfy the geodesic equation for the
metric g. The following theorem guarantees conditions for which a metric g can be found:

7

http://networkrepository.com/DD-g947.php
http://networkrepository.com/Hamrle1.php
http://networkrepository.com/Hamrle1.php
http://networkrepository.com/ia-southernwomen.php

Under review as a conference paper at ICLR 2022

Theorem 5.1 (Geodesic Fitting Viability (Informal)). If the curves all follow basic geodesic proper-
ties, ie smooth, injective, don’t branch, and each intersection point is well-behaved, then there exists
a Riemannian metric g s.t. all the curves are geodesics.

The full theorem and proof can be found in Appendix A. In addition to several results in Whiting
(2011) which characterize trajectory optimization as a geodesic on a Riemannian manifold, our
theorem shows that Riemannian manifolds are the natural model for geodesic fitting.

5.2 EXPERIMENTAL RESULTS

We employ our Deep Riemannian Manifolds to fit the geometric information directly. We propose to
instead fit a discretized version of the geodesic using `2 loss. Full details found in Appendix B.2).

5.2.1 COMPARISON WITH PREVIOUS METHODS

We first examine the baseline given in Beik-Mohammadi et al. (2021). The core approach, which was
developed in papers such as Arvanitidis et al. (2017); Hauberg (2019); Arvanitidis et al. (2020), learns
a stochastic-output VAE and uses the pullback Riemannian metric to determine geodesics. However,
the training procedure for the VAE completely disregards the temporal nature of the geodesic. This
is because it treats the geodesic as an unordered collection of points. Without the order, we do not
expect this method to work well with complex geometric information.

Concretely, we show this by comparing our method to a Euclidean space version of (Beik-Mohammadi
et al., 2021). We specifically test situations where a purely topological approach may not work, such
as learning a set of geodesics from one point to many points or from many points to many points.
To illustrate this, we construct simple test tasks of recovering the Euclidean metric on the plane. As
shown in our results in Figure 5, the topological approach of Beik-Mohammadi et al. (2021) struggles
while our geometric approach can easily match the geodesics.

Beik-Mohammadi et al. (2021) Deep Riemannian Manifold

Figure 5: Fitting simple Euclidean geodesics. The blue curves are the learned geodesics, and the gray
curves are the ground truth. On the left, the ground truth is warped by going through the VAE. Our
method is able to recover the Euclidean geodesics, while Beik-Mohammadi et al. (2021) produces
very inaccurate geodesics.

8

Under review as a conference paper at ICLR 2022

5.2.2 MODELLING ROBOTIC MOTION ON SE(2) True Geodesics Learned Geodesics

Figure 6: We learn the metric to recover
geodesics in SE(2)

We consider a more challenging task of learning the mo-
tion of robot with an end effector which moves on the
special Euclidean group SE(2). This is the group of
roto-rotations and has been extensively used in geometric
control and robotics (Bullo & Lewis, 2019; Elbanhawi &
Simic, 2014). We fit the geodesics with our Deep Rieman-
nian Manifolds and visualize the fitted geodesics in Figure
6. As expected, our learned geodesics closely match the
true geodesics.

6 DISCUSSION

Nontrivial Topology. In this work, we only considered Riemannian manifolds on Rn. While our
theory and results show that we can capture nontrivial topological structure, extending our method to
nontrivial topologies might be a useful inductive bias. The challenge that needs to be overcome is the
construction of the logarithmic map, as one would have to solve a BVP across different charts.

Computational Cost. We tested the time it took for us to compute a forward and backwards pass of
our logarithmic map (the core nontrivial operation). We found that it took between 2-3 seconds (on
an Nvidia 1080ti) when the geodesic was relatively stable. However, unstable geodesics tended to
degrade this performance rather substantially. The major bottlenecks are the solver and the Jacobian
construction in the logarithmic map backwards.

Accuracy of Geodesics. While it is near impossible to rigorously verify that our geodesics are
minimal, we examined the paths of several Deep Riemannian Manifolds by varying the solver’s
initial guess. We found that the solver would tend towards the same solution unless the geometry was
unstable, or when many geodesics would fail to evaluate.

7 RELATED WORK

Manifold Learning. Despite being similarly named, our work is mostly orthogonal to the field of
manifold learning. In particular, while manifold learning methods like t-SNE (van der Maaten &
Hinton, 2008) or Isomap (Tenenbaum et al., 2000) reduce dimensions and may or may not preserve
distances (Chari et al., 2021), our method is capable of learning a Riemannian manifold from distances
and much more general geometric data. However, our work is applicable to recent deep learning based
manifold learning approaches (Brehmer & Cranmer, 2020; Kalatzis et al., 2021) as an additional
method of optimizing with geometric information.

Differentiable Programming. Our work also incorporates aspects of differentiable programming.
In particular, the exponential map is an application of Neural ODEs (Chen et al., 2018b), and the
logarithmic map is developed using techniques from both Neural ODEs and implicit differentiation
(Domke, 2012; Gould et al., 2016; Agrawal et al., 2019; Amos & Kolter, 2017; Bai et al., 2020; Lou
et al., 2020). We hope that our introduction of Neural BVPs may also be of interest beyond our
logarithmic map use case.

8 CONCLUSION

We have presented Deep Riemannian Manifolds and have developed a methodology to optimize them
through geometric quantities like distance and interpolation. We then tested our method on graph
embeddings and geodesic fitting. In both cases, we showed that our method improves upon previous
work and sheds light on new angles to approach these problems.

We hope that our paper is the first step in working with and representing more general Riemannian
manifolds. In particular, many questions concerning topology and efficient, stable computation still
remain unsolved. Potential future researchers may also find fruitful avenues in building other machine
learning models on top of our Deep Riemannian Manifolds.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter.
Differentiable convex optimization layers. In Advances in Neural Information Processing Systems,
volume 32, pp. 9562–9574, 2019.

Brandon Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
ICML, 2017.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of
deep generative models. arXiv preprint arXiv:1710.11379, 2017.

Georgios Arvanitidis, Søren Hauberg, Philipp Hennig, and Michael Schober. Fast and robust shortest
paths on manifolds learned from data. arXiv preprint arXiv:1901.07229, 2019.

Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf. Geometrically enriched latent spaces.
arXiv preprint arXiv:2008.00565, 2020.

Shaojie Bai, V. Koltun, and J. Z. Kolter. Multiscale deep equilibrium models. ArXiv, abs/2006.08656,
2020.

H. Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, G. Neumann, and L. Rozo. Learning
riemannian manifolds for geodesic motion skills. ArXiv, abs/2106.04315, 2021.

John T. Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance Control
and Dynamics, 21:193–207, 1998.

S. Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on Automatic
Control, 58:2217–2229, 2013.

Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S. Albergo,
Kyle Cranmer, Daniel C. Hackett, and Phiala E. Shanahan. Sampling using su(n) gauge equivariant
flows. Physical Review D, 103(7), Apr 2021. ISSN 2470-0029. doi: 10.1103/physrevd.103.074504.
URL http://dx.doi.org/10.1103/PhysRevD.103.074504.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation.
arXiv preprint arXiv:2003.13913, 2020.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021.

Francesco Bullo and Andrew D Lewis. Geometric control of mechanical systems: modeling, analysis,
and design for simple mechanical control systems, volume 49. Springer, 2019.

Tara Chari, Joeyta Banerjee, and Lior Pachter. The specious art of single-cell genomics. bioRxiv,
2021.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and P. V. D. Smagt. Metrics
for deep generative models. In AISTATS, 2018a.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 6571–6583. Curran
Associates, Inc., 2018b.

R. Cohen, P. Eades, Tao Lin, and F. Ruskey. Three-dimensional graph drawing. In Graph Drawing,
1994.

T. Cohen, M. Geiger, Jonas Köhler, and M. Welling. Spherical cnns. ArXiv, abs/1801.10130, 2018.

Calin Cruceru, Gary Bécigneul, and Octavian-Eugen Ganea. Computationally tractable riemannian
manifolds for graph embeddings. arXiv preprint arXiv:2002.08665, 2020.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, 1989. doi: 10.1007/BF02551274. URL https://doi.
org/10.1007/BF02551274.

10

http://dx.doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

Under review as a conference paper at ICLR 2022

Christopher De Sa, Albert Gu, Christopher Ré, and Frederic Sala. Representation tradeoffs for
hyperbolic embeddings. Proceedings of machine learning research, 80:4460, 2018.

Manfredo P Do Carmo. Differential geometry of curves and surfaces: revised and updated second
edition. Courier Dover Publications, 2016.

Justin Domke. Generic methods for optimization-based modeling. In AISTATS, volume 22, pp.
318–326, 2012.

M. Elbanhawi and M. Simic. Sampling-based robot motion planning: A review. IEEE Access, 2:
56–77, 2014. doi: 10.1109/ACCESS.2014.2302442.

J. Gallier and J. Quaintance. Differential geometry and lie groups: A computational perspective.
2020.

P. Goulart, Y. Nakatsukasa, and Nikitas Rontsis. Accuracy of approximate projection to the semidefi-
nite cone. ArXiv, abs/1908.01606, 2019.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. 2016.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in product spaces. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HJxeWnCcF7.

Søren Hauberg. Only bayes should learn a manifold (on the estimation of differential geometric
structure from data), 2019.

P. Indyk and J. Matousek. Low-distortion embeddings of finite metric spaces. In Handbook of
Discrete and Computational Geometry, 2nd Ed., 2004.

Dimitris Kalatzis, Johan Ziruo Ye, Jesper Wohlert, and Søren Hauberg. Multi-chart flows, 2021.

J Kierzenka and Lawrence Shampine. A bvp solver that controls residual and error. European Society
of Computational Methods in Sciences and Engineering (ESCMSE) Journal of Numerical Analysis,
Industrial and Applied Mathematics, 3:27–41, 01 2008.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Tom LaGatta and Jan Wehr. Geodesics of random riemannian metrics. Communications in Mathe-
matical Physics, 327(1):181–241, Feb 2014. ISSN 1432-0916. doi: 10.1007/s00220-014-1901-8.
URL http://dx.doi.org/10.1007/s00220-014-1901-8.

Allan M. M. Leal et al. autodiff, a modern, fast and expressive C++ library for automatic differentia-
tion. https://autodiff.github.io, 2018. URL https://autodiff.github.io.

J.M. Lee. Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics.
Springer New York, 1997. ISBN 9780387982717. URL https://books.google.com/
books?id=ZRQgH7FQafgC.

Mario Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. In Advances
in Neural Information Processing Systems (NeurIPS), pp. 9154–9164, 2019.

N. Linial, E. London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15:215–245, 1995.

Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher De Sa.
Differentiating through the fréchet mean, 2020.

Jonathan Masci, D. Boscaini, Michael M. Bronstein, and Pierre Vandergheynst. Geodesic con-
volutional neural networks on riemannian manifolds. 2015 IEEE International Conference on
Computer Vision Workshop (ICCVW), pp. 832–840, 2015.

11

https://openreview.net/forum?id=HJxeWnCcF7
https://openreview.net/forum?id=HJxeWnCcF7
http://dx.doi.org/10.1007/s00220-014-1901-8
https://autodiff.github.io
https://books.google.com/books?id=ZRQgH7FQafgC
https://books.google.com/books?id=ZRQgH7FQafgC

Under review as a conference paper at ICLR 2022

Charles Bradfield Morrey. Multiple integrals in the calculus of variations. 1966.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
In Advances in neural information processing systems, pp. 6338–6347, 2017.

Muhammad Asif Rana, Anqi Li, Harish Chaandar Ravichandar, Mustafa Mukadam, S. Chernova,
Dieter Fox, Byron Boots, and Nathan D. Ratliff. Learning reactive motion policies in multiple task
spaces from human demonstrations. In CoRL, 2019.

Nathan D. Ratliff, Jan Issac, and Daniel Kappler. Riemannian motion policies. ArXiv, abs/1801.02854,
2018.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL http://networkrepository.com.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In Proceedings of the
19th International Conference on Graph Drawing, GD’11, pp. 355–366, Berlin, Heidelberg, 2011.
Springer-Verlag.

R. Serban and L. Petzold. Efficient computation of sensitivities for ordinary differential equation
boundary value problems. SIAM J. Numer. Anal., 40:220–232, 2002.

Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290 5500:2319–23, 2000.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605, 2008.

J. Whiting. Path optimization using sub-riemannian manifolds with applications to astrodynamics.
2011.

12

http://networkrepository.com

Under review as a conference paper at ICLR 2022

A STATEMENTS WITH PROOFS

Prop A.1 (Smoothness of Deep Metric). If fnn has a smooth activation function, then g :=
(exp ◦sym ◦ fnn) is smooth as well.

Proof. Since matrix multiplication is smooth and a composition of smooth functions is smooth, fnn
is smooth. sym is a smooth function since it is simple reshaping, and exp is smooth. Therefore g is
smooth.

Prop A.2 (Universal Approximation of Riemannian Metricson Rn). On a compact set D of Rn,
for any metric h and ε > 0 there exists a neural network metric g of the form in Equation 1 s.t.
supx∈D ‖gx − hx‖ < ε, where ‖·‖ is the standard `2 norm.

Proof. On a compact set, the exponential map is Lipschitz since it is continuous. Let K be the
Lipschitz constant. Let f : Rn → Rn(n+1)/2 be the function s.t. h = exp ◦sym ◦ f ; f is
well defined since exp and sym are bijective on our domains. Construct a neural network fnn
s.t. supx∈D

∥∥f(x)− fnn(x)∥∥ < ε
K (Cybenko, 1989). Then we see that supx∈D ‖hx − gx‖ ≤

K
∥∥f(x)− fnn(x)∥∥ < ε.

Theorem A.3 (Universal Approximation of all Riemannian Manifolds). For a compact Riemannian
manifold (M, g) and any ε > 0, there exists a Deep Riemannian Manifold (Rn, gnn) with n =
2dimM and an embedding f :M→ Rn s.t. |dg(x, y)− dgnn(f(x), f(y))| < ε for all x, y ∈M.

Proof. Let f be a Whitney embedding. For a point x ∈M we define a metric on Tf(x)Rn as follows.
For the Tf(x)f(M) component, let the metric just be g. For the normal space Nf(x)f(M), let the
metric be NgE, where gE is the Euclidean metric and N is some constant. Note that g is a proper
metric on f(M). We can extend this metric locally to an open neighborhood U of f(M). We also let
the metric on the manifold Rn \ f(M) be NgE. Using a smooth partition of unity, we can combine
these metrics to get a metric on Rn. As we take the limit as N goes to∞, the geodesic equation will
cause our geodesics between points on f(M) to adhere closer and closer to f(M). Note that f is an
isometry, so the distance on (Rn, gnn) will converge to the distance on the submanifold. In addition
to the previous proposition, this proves our result.

Theorem A.4 (Adjoint Sensitivity For BVPs). Suppose we are given a BVP B(x, y) with corre-
sponding IVP I(x, v) s.t. I(x,B(x, y)) = y. Suppose our solution to B(x0, y0) is b. Then

DxB(x0, y0) = −DvI(x0, b)
−1 ◦DxI(x0, b) (8)

DyB(x0, y0) = −DvI(x0, b)
−1 (9)

Note that the derivatives of I can be computed through the adjoint-sensitivity analysis. Furthermore,
if our ODE problems are controlled by some parameter θ, then

DθB(x0, y0) = −DvI(x0, b)
−1 ◦DθI(x0, b)

Proof. The core of this proof comes from the fact that I(x0, B(x0, y0)) = y0. Differentiating this
identity w.r.t y using the chain rule gives us

I = Dyy0

= (DyI)(x0, B(x0, y0))

=

[
DxI(x0, B(x0, y0))
DvI(x0, B(x0, y0))

] [
0 DyB(x0, y0)

]
= DvI(x0, B(x0, y0))DyB(x0, y0)

rearranging and setting b = B(x0, y0) gives us that DyB(x0, y0) = −DvI(x0, b)
−1, as desired.

For x, differentiating through the same identity gives us that

13

Under review as a conference paper at ICLR 2022

0 = Dxy0

= (DxI)(x0, B(x0, y0))

=

[
DxI(x0, B(x0, y0))
DvI(x0, B(x0, y0))

] [
I DxB(x0, y0)

]
= DxI(x0, B(x0, y0)) +DvI(x0, B(x0, y0))DxB(x0, y0)

and rearranging gives us that DxB(x0, y0) = −DvI(x0, b)
−1 ◦DxI(x0, b).

For θ, the proof is very similar to the proof for x. In particular, from the same differentiation we get
that

0 = Dθy0

= (DθI)(x0, B(x0, y0), θ)

=

DxI(x0, B(x0, y0))
DvI(x0, B(x0, y0))
DθI(x0, B(x0, y0))

 [0 DθB(x0, y0) I
]

= DvI(x0, B(x0, y0))DθB(x0, y0) +DθI(x0, B(x0, y0))

and rearranging gives us DθB(x0, y0) = −DvI(x0, b)
−1 ◦DθI(x0, b).

Theorem A.5 (Quasi-Isometric Finite Metric Space Embeddings into Riemannian Manifolds). Let
G = (V,E) be a finite connected graph. There exists a topological embedding f : V → R3 and a
sequence of Riemannian metrics g1, g2, . . . on R3 s.t. limn→∞ dgn(f(x), f(y)) = dG(x, y) for all
x, y ∈ V .

Proof. A quick note on notation. We assume that the absolute value |·| and the distance function
d(·, ·) refers to the distance in Euclidean space. All other distances (whether it be the graph distance
or distance induced by the Riemannian metric) will be marked as such.

Note that there always exists a topological embedding into R3 Cohen et al. (1994). So, it suffices to
construct the metrics given any such topological embedding f . The trivial case of |V | ≤ 2 is direct.
For the case |V | > 3, we proceed by defining “bump” metrics on the graph which gives the desired
length convergence.

To construct these bump metrics, we first consider a tubulur neighborhood of the graph that is
sufficiently small to avoid “undesirable” self-intersection. Then, we construct the metric locally using
bump functions on this neighborhood. Finally, we smooth this out.

We start by examining the topological embedding. For an edge e ∈ E with endpoints x, y ∈ V , let
f(e) be the line segment joining f(x) and f(y) and define |f(e)| = |f(x)− f(y)|. Define θ to be
the minimum angle formed by the intersection of any two f(e).

We construct the metrics gn as follows. Consider the conditions.

• 2 cot θ2
n > minx,y∈V,x 6=y,(x,y)∈E |f(x)− f(y)|

• 2
n > minx,y∈V,x 6=y |f(x)− f(y)|

• 2
n > mine1,e2∈E,e1∩e2=∅ |f(e1)− f(e2)|

• or maxe∈E
|e|
|f(e)| ≤

√
n

The first three condition happen when the tubular neighborhood we will construct around our graph
contains a self-intersection, while the last condition (and in particular our usage of the

√
n term)

control whether we can smooth out the graph. If any of these conditions hold, let gn be the Euclidean

14

Under review as a conference paper at ICLR 2022

metric gE (we throw it away with this default metric). Otherwise proceed as follows. For all e ∈ E
define hne (x) = (

√
n − |e|

|f(e)|)e
− 1

1/n2−d(x,f(e))2 · 1{d(x,f(e))<1/n}. This is a bump function with
support Dn

e = {x : d(x, f(e)) < 1/n}. Define a smooth partition of unity pne for the supports Dn
e

and let hn(x) =
√
n−

∑
e∈E h

n
e (x)p

n
e (x). Note that hn extends smoothly to R3 since hne (x) = 0

when pne is not defined. Define gn(x) = hn · gE.

By our conditions on n above, we note the following properties.

1. For each e, we there exists a set Dn
e ⊂ Dn

e \
⋃
e′∈E,e6=e′ D

n
e′ s.t. Dn

e ∩ f(V) = ∅, Dn
e

is connected, and sne = Dn
e ∩ f(e) is a connected sub-segment of f(e) with |sne | ≥

|f(e)| − 2 cot θ2
n . In particular Dn

e is a cylinder in between the two endpoinds of e, and we
can denote the endpoints of sne as x′ and y′ (which are closer to f(x) and f(y) respectively).

2. For each x ∈ V , f(x) ∈ Dn
e iff x ∈ e.

3. For e1 6= e2, Dn
e1 ∩D

n
e2 6= ∅ iff Dn

e1 ∩D
n
e2 is a connected neighborhood of f(e1 ∩ e2).

4. gn is a smooth Riemannian metric. This is because hn is smooth by construction and > 0.

First, we show that limn→∞ dgn(f(x), f(y)) ≤ dG(x, y). Let x = x1, x2, . . . , xm = y be the
path of a geodesic between x and y on the graph (V,E). Consider the images of the points
f(x1), . . . , f(xm) and the path γ created by following f(x1) → · · · → f(xm) through straight
line segments. For all i ∈ [m− 1], we have that

Lgn(f(xi, xi+1)) = L(sne) + L((f(x), x′)) + L((y′, f(y))

≤ |(xi, xi+1)|
|f((xi, xi+1))|

|sne |+
√
n(|(f(x), x′)|+ |(y′, f(y)|)

≤ |(xi, xi+1)|+
2 cot θ2√

n

Lgn(f(xi, xi+1)) ≥ L(sne)

≥ |(xi, xi+1)|
|f((xi, xi+1))|

(|f((xi, xi+1))| −
2 cot θ2
n

)

and so limn→∞ Lgn(γ) = dG(x, y). By taking a limit on dgn(f(x), f(y)) ≥ Lgn(γ), we get that
limn→∞ dgn(f(x), f(y)) ≤ dG(x, y).
Now, we show that limn→∞ dgn(f(x), f(y)) ≥ dG(x, y). Since gn is uniformly

√
n · gE on

(
⋃
e∈E D

n
e)
c, for a sufficiently large n no geodesic connecting points in f(V) will ever enter

(
⋃
e∈E D

n
e)
c. By properties 2 and 3, this implies that geodesic passes through Dn

e1 can only enter
Dn
e2 by passing through a neighborhood which uniquely contains f(e1 ∩ e2). For a geodesic under

gn from f(x) to f(y), it must pass through the neighorhoods U1, U2, . . . , Um which are indexed by
vertices xi ∈ V , uniquely contain f(xi), and satisfy x = x1, y = xm. Since the geodesic passes
through xi and xi+1 for i ∈ [m− 1], we note that it must pass through Dn

e . Since dgn(Ui, Ui+1) ≥
Lgn(s

n
(xi,xi+1)

), this means dgn(f(x), f(y)) ≥
∑m−1
i=1 dgn(Ui, Ui+1) ≥

∑m−1
i=1 Lgn(s

n
(xi,xi+1)

). In

particular, limn→∞ dgn(f(x), f(y)) ≥ limn→∞
∑m−1
i=1 Lgn(s

n
(xi,xi+1)

) =
∑m−1
i=1 |(xi, xi+1)| ≥

dG(x, y).

Therefore, we have proven the desired: limn→∞ dgn(f(x), f(y)) = dG(x, y).

Remark. The above theorem holds for an embedding into R2 if (V,E) is a planar graph. This
is because the construction of the bump metrics is agnostic to dimension as long as a topological
embedding is provided.

15

Under review as a conference paper at ICLR 2022

Theorem A.6 (Existence of Metric for Geodesics). Let n and d be positive integers and {γi : [0, 1]→
Rd}ni=1 be a set of smooth injective curves. Suppose that the intersection between any two curves
is a finite set. Furthermore, suppose that for all intersection points x with intersecting geodesics
γi1 , . . . , γim that the set {γ′ij (x)}

m
j=1 is linearly independent. Then there exists a Riemannian metric

g on Rd s.t. γi is a geodesic under g for all i.

To prove this, we make use of the following lemma:

Lemma A.7 (Extension of Linearly Independent Vector Fields). Suppose that vector fields
X1, . . . , Xn are defined on an open subset U of a manifold M and are linearly independent at
a point p. Then there is a local neighborhood V ⊂ U of p s.t. X1, . . . , Xn are linearly independent
for all p ∈ V .

Proof. First, assume dimM = n. Recall that the determinant is smooth, so the determinant of the
vector fields X1, . . . , Xn (which we denote d) is a smooth function on U . Since d(p) > 0, we can
use smoothness to find an open neighborhood V of p s.t. 0 /∈ d(V). This is exactly the set where
X1, . . . , Xn are linearly independent, as linear independence occurs exactly when d 6= 0.

When m = dimM > n, we can linearly extend Xi to a basis of TpM. We can smoothly extend
the vector fields Xn+1, . . . , Xm to a neighborhood U ′ around p. We would then apply the above
process to X1, . . . , Xm on the subset U ′ ∩ U to get a set V . In this set V , X1, . . . , Xm are linearly
independent, so X1, . . . , Xn are as well.

Proof of Thm A.6. We construct vector fields Xi defined on γi([0, 1]) by defining Xi to be γ′i(t). Our
goal is to extend these vector fields to a local neighborhood of the curves to define a metric.

Let Dε
i = {x : d(γi([0, 1]), x) < ε}. Let ε > 0 be sufficiently small s.t. Dε

i ∩ Dε
j consists only

of neighborhoods of the intersection points of γi and γj . By the conditions on our curves, we can
smoothly extend our vector fields Xi to all Dε

i .

Let x be an intersection point with γi1(x), . . . , γim(x) the intersecting geodesics. Define Ux to be the
neighborhood of x in

⋂m
j=1D

ε
ij

. We apply Lemma A.7 to Ux, x, and the vector fields Xi1 , . . . , Xim

to find local neighborhoods Vx s.t. Xi1 , . . . , Xim are linearly independent on each Vx.

Now, we shrink our radius ε to a suitable radius ε′ s.t. Dε′

i ∩Dε′

j ⊂
⋃
x∈γi∩γj Vx. This means that

around each intersection point the vector fields are linearly independent.

Around each intersection point, we extend the vector fields Xi1 , . . . , Xim of the intersecting curves to
a local frame Xi1 , . . . , Xim , Y1, . . . , Ym−n. We can extend these local frames to the rest of

⋃n
i=1D

ε′

i
s.t. the vector fields Xi remain basis vectors because the neighborhoods form a submanifold.

Now, we construct the metric on
⋃n
i=1D

ε′

i as g(Yi, Yj) = δij . This metric mimics the standard
Euclidean metric (except for our new vector field instead of the standard directions), so geodesics
have derivatives which are (a constant multiple of) Yi. In particular this means that the curves γi are
all geodesics.

Finally, we define the metric over all of Rd. We can patch together a metric on Rd \
⋃n
i=1D

ε′/2
i (say

the Euclidean metric) and our above metric on
⋃n
i=1D

ε′

i using a partition of unity to define a metric
on all of Rd. Under this metric, all γi are geodesics, as desired.

Remark. The condition is not tight. In particular, all we need is that the geodesics behave nicely
around intersection points, which our linear independence condition guarantees. This means that
there can be ≥ d geodesics intersecting at a point as long as they are well behaved.

B TRAINING DETAILS

B.1 MANIFOLD GRAPH EMBEDDINGS

For our graph tasks, we randomly initialize embeddings in Euclidean space with a mean 0 unit
variance normal distribution. We train for 500 epochs. For all methods, we use a batch size of 32

16

Under review as a conference paper at ICLR 2022

on larger graphs and 8 on smaller graphs in order to ensure proper mini-batching. We optimize the
embeddings with Riemannian SGD Bonnabel (2013) with a learning rate of 1e− 2.

For learned curvature models, we parameterize the curvature (which is either a positive or negative
value) with the exponential map. We update the curvature using the Adam Optimizer Kingma & Ba
(2015) with step size of 1e− 2, betas (0.9, 0.999), and cosine annealing.

For the Deep Riemannian Manifold, our metric neural network is a two-layer neural network with
hidden size 32 and tanh activation. We also update the manifold parameters with the same optimizer
as for the learned curvature models, although we have an initial learning rate of 5e− 3. In contrast to
the other manifolds, we initialize our embeddings in an initial “burnin” phase in which we optimize
for the Euclidean metric. This helps stabilize the initialization and prevents embeddings from overly
interfering with other geodesics.

B.2 GEODESIC FITTING

For our geodesics experiments, recall that we only learn the neural network parameters. We optimize
our neural network parameters with an Adam optimizer with learning rate 5e−3 and betas (0.9, 0.999).
Similar to the graph embedding example, we also bound the norm of the gradients by 5 to account
for gradient explosions before updating. Furthermore, for both experiments our neural network has 2
layers, tanh activation, and a hidden size of 32. We train our method with 50 epochs with a batch
size of 5.

To compare with Beik-Mohammadi et al. (2021), we generate two datasets of Euclidean geodesics.
The first is a set of 30 geodesics from (0, i) to (1, i), where i ranges from 0 to 1 at equal intervals. We
discretize the geodesic into 30 points. The first is a set of 30 geodesics from (0, 0) to (cos θ, sin θ),
where θ ranges from 0 to π/2 at equal intervals. We again discretize the geodesic into 30 points.

The baseline is taken from Arvanitidis et al. (2020), which is the Euclidean version of Beik-
Mohammadi et al. (2021). The VAE has a hidden layer size of 32 with 2 layers. The latent
space has dimension 2. The method is trained with the Adam optimizer (Kingma & Ba, 2015) for
500 epochs (with 175 epochs of warmup) with a learning rate of 1e− 3 and standard β. Batch size is
128. The RBF is trained for 5000 epochs and we use no ambient space metric since they produce no
notable change in quality.

For the SE(2) example, we train with 800 training examples in batches of size 128 and test with 200
test examples. We train for 50 epochs and take T = 10.

C ADDITIONAL EXPERIMENTS

We include additional geodesic visualizations here. In particular, we visualize geodesics emanating
from multiple points for one of the tree datasets. These are shown in Figure 7.

17

Under review as a conference paper at ICLR 2022

Figure 7: Geodesics and 2D embeddings on the Tree40 graph, where each column correspond to the
geodesics connected to a point (highlighted in red). The contours show the geodesic distances. The
deep metric accurately captures the node distances and induces non-trivial geodesics.

18

	1 Introduction
	2 Deep Riemannian Manifolds
	2.1 Construction
	2.2 Theoretical Properties
	2.3 Comparison with Other Metrics
	2.3.1 Representation
	2.3.2 Stable Geodesics

	3 Differentiable Numerical Manifold Operations
	4 Manifold Graph Embeddings
	4.1 Theory
	4.2 Experimental Results
	4.2.1 Simple Graphs
	4.2.2 Empirical Graphs

	5 Geodesic Fitting
	5.1 Theory
	5.2 Experimental Results
	5.2.1 Comparison with Previous Methods
	5.2.2 Modelling Robotic Motion on SE(2)

	6 Discussion
	7 Related Work
	8 Conclusion
	A Statements with Proofs
	B Training Details
	B.1 Manifold Graph Embeddings
	B.2 Geodesic Fitting

	C Additional Experiments

