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Abstract

We introduce a decoder-decoder architecture, YOCO, for large language models,
which only caches key-value pairs once. It consists of two components, i.e., a cross-
decoder stacked upon a self-decoder. The self-decoder efficiently encodes global
key-value (KV) caches that are reused by the cross-decoder via cross-attention.
The overall model behaves like a decoder-only Transformer, although YOCO only
caches once. The design substantially reduces GPU memory demands, yet retains
global attention capability. Additionally, the computation flow enables prefilling
to early exit without changing the final output, thereby significantly speeding up
the prefill stage. Experimental results demonstrate that YOCO achieves favorable
performance compared to Transformer in various settings of scaling up model
size and number of training tokens. We also extend YOCO to 1M context length
with near-perfect needle retrieval accuracy. The profiling results show that YOCO
improves inference memory, prefill latency, and throughput by orders of magnitude
across context lengths and model sizes.

1 Introduction

Decoder-only Transformer [40] has become the de facto architecture for language models. By caching
the previously computed key/value vectors, the model can reuse them for future generation steps. The
key-value cache avoids encoding the history again for each token, greatly improving the inference
speed. The compelling feature establishes the decoder-only architecture as the standard option.

However, as the number of serving tokens increases, the key-value (KV) caches occupy a lot of
GPU memory, rendering the inference of large language models memory-bounded [29]. For the
example of a 65B-size language model (augmented with grouped-query attention [1] and 8-bit KV
quantization), 512K tokens occupy about 86GB GPU memory, which is even larger than the capacity
of one H100-80GB GPU. In addition, the prefilling latency of long-sequence input is extremely high.
For instance, using four H100 GPUs, the 7B language model (augmented with Flash-Decoding [6]
and kernel fusion) requires about 110 seconds to prefill 450K tokens, and 380 seconds for 1M length.
The above bottlenecks make it difficult to deploy long-context language models in practice.

In this work, we propose a decoder-decoder architecture, YOCO, for large language models, which
only caches KV pairs once. Specifically, we stack cross-decoder upon self-decoder. Given an input
sequence, the self-decoder utilizes efficient self-attention to obtain KV caches. Then the cross-decoder
layers employ cross-attention to reuse the shared KV caches. The decoder-decoder architecture is
conceptually similar to encoder-decoder, but the whole model behaves more like a decoder-only
model from the external view. It naturally fits into autoregressive generation tasks, such as language
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modeling. First, because YOCO only caches once2, the GPU memory consumption of KV caches
is significantly reduced. Second, the computation flow of the decoder-decoder architecture enables
prefilling to early exit before entering the self-decoder. The nice property speeds up the prefill stage
dramatically, improving user experience for long-context language models. Third, YOCO allows for
more efficient system design for distributed long-sequence training. In addition, we propose gated
retention for self-decoder, which augments retention [35] with a data-controlled gating mechanism.

We conduct extensive experiments to show that YOCO achieves favorable language modeling perfor-
mance and has many advantages in terms of inference efficiency. Experimental results demonstrate
that YOCO can be scaled up with more training tokens, larger model size, and longer context length.
Specifically, we scale up the 3B YOCO model to trillions of training tokens, attaining results on par
with prominent Transformer language models, such as StableLM [39]. Moreover, the scaling curves
ranging from 160M to 13B show that YOCO are competitive compared to Transformer. We also
extend the context length of YOCO to 1M tokens, achieving near-perfect needle retrieval accuracy.
In the multi-needle test, YOCO obtains competitive results even compared to larger Transformers.

In addition to good performance on various tasks, the profiling results show that YOCO improves the
GPU memory footprint, prefill latency, throughput, and serving capacity. In particular, the memory of
KV caches can be reduced by about 80× for 65B models. Even for a 3B model, the overall inference
memory consumption can be reduced by two times for 32K tokens and by more than nine times for
1M tokens. The prefill stage is speeded up by 71.8× for the 1M context and 2.87× for the 32K input.
For example, for a 512K context, YOCO reduces the Transformer prefilling latency from 180 seconds
to less than six seconds. The results position YOCO as a strong candidate model architecture for
future large language models with native long-sequence support.

2 Related Work

Numerous efforts have been made to reduce KV caches for inference. Efficient attention mechanisms
are proposed, such as sparse Transformer [4], linear attention [18], and recurrent modeling [27, 13, 46,
3, 19]. Another strand of research drops KV caches to achieve sparsity [49, 43, 11]. In comparison,
we keep one global KV cache and still conduct full cross-attention for better long-context modeling.
Moreover, some previous methods are complementary to our proposed architecture. For example,
multi-/grouped-query attention [33, 1] and multi-latent attention [7] can be used in YOCO. Low-bit
KV quantization [14, 25, 34] can also be used together to reduce memory consumption. In addition,
the intriguing property of YOCO greatly speeds up the prefill stage.

3 You Only Cache Once (YOCO)

The proposed architecture, named YOCO, is designed for autoregressive modeling, such as large
language models (LLMs). As shown in Figure 1, the decoder-decoder architecture has two parts, i.e.,
self-decoder and cross-decoder. Specifically, YOCO is stacked with L blocks, where the first L

2 layers
are self-decoder while the rest modules are cross-decoder. Given an input sequence x = x1 · · ·x|x|,
the input embeddings are packed into X0 = [x1, · · · ,x|x|] ∈ R|x|×dmodel , where dmodel is hidden
dimension. We first obtain contextualized vector representations X l = Self-Decoder(X l−1), l ∈
[1, L

2 ], where XL/2 is used to produce KV caches K̂, V̂ for cross-decoder. Then we compute
X l = Cross-Decoder(X l−1, K̂, V̂ ), l ∈ [L2 + 1, L] to get the output vectors XL. After obtaining
XL, a softmax classifier performs next-token prediction over the vocabulary.

Both self- and cross-decoder follow a similar block layout (i.e., interleaved attention and feed-
forward network) as in Transformer [40]. We also include pre-RMSNorm [48], SwiGLU [32], and
grouped-query attention [1] as improvements. The difference between the two parts lies in attention
modules. Self-decoder uses efficient self-attention (e.g., sliding-window attention). In comparison,
cross-decoder uses global cross-attention to attend to the shared KV caches produced by the output
of the self-decoder. Notice that the whole model behaves like a decoder-only model. The tokens
generated by cross-decoder are also fed back to self-decoder.

2The word “once” refers to global KV cache. Strictly, self-decoder also needs to store a certain number of
caches. As the self-decoder utilizes an efficient attention module, the cache size is bounded to a constant, which
can be ignored compared to global caches when the sequence length is large.
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Figure 1: Overview of the decoder-decoder architecture. Self-decoder generates the global KV cache.
Then cross-decoder employs cross-attention to reuse the shared KV caches. Both self-decoder and
cross-decoder use causal masking. The overall architecture behaves like a decoder-only Transformer,
autoregressively generating tokens.

3.1 Self-Decoder

Self-decoder takes embeddings X0 as input and compute intermediate vector representation XL/2:

Y l = ESA(LN(X l)) +X l

X l+1 = SwiGLU(LN(Y l)) + Y l
(1)

where ESA(·) represents efficient self-attention, SwiGLU(X) = (swish(XWG)⊙XW1)W2, and
RMSNorm [48] is used for LN(·). Causal masking is used for efficient self-attention.

The key property of the efficient self-attention module is O(1) inference memory, i.e., constant
number of KV caches. For example, the cache size of sliding-window attention [4] depends on the
window size instead of the input length. More design choices (e.g., gated retention) of the efficient
self-attention module are detailed in Section 4.

3.2 Cross-Decoder

First, the output of the self-decoder XL/2 generates global KV caches K̂, V̂ for cross-decoder:

K̂ = LN(X
L/2)WK , V̂ = LN(X

L/2)WV (2)

where WK ,WV ∈ Rd×d are learnable. Then, cross-decoder layers are stacked after self-decoder to
obtain the final output XL. The KV caches K̂, V̂ are reused by all the L

2 cross-decoder modules:

Ql = LN(X l)W l
Q

Y l = Attention(Ql, K̂, V̂ ) +X l

X l+1 = SwiGLU(LN(Y l)) + Y l

(3)

where Attention(·) is standard multi-head attention [40], and W l
Q ∈ Rd×d is a learnable matrix.

Causal masking is also used for cross-attention. Because cross-attention is compatible with group
query attention [1], we can further save the memory consumption of KV caches.
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Figure 2: YOCO Inference. Prefill: encode input to-
kens in parallel. Generation: decode output tokens
one by one. The computation flow enables prefill-
ing to early exit without changing the final output,
thereby significantly speeding up the prefill stage.

KV Cache Memory
Transformer O(LND)
YOCO O((N + L)D)

Table 1: Inference memory complexity of KV
caches. N,L,D are the sequence length, num-
ber of layers, and hidden dimension.

Prefilling Time

Transformer O(LN2D)
YOCO O(LND)

Table 2: Prefilling time complexity of attention
modules. N,L,D are the same as above.

3.3 Inference Advantages

In addition to competitive language modeling results, YOCO significantly reduces serving costs and
improves inference performance. We report detailed inference comparisons in Section 5.4.

Saving GPU Memory and Serving More Tokens. Table 1 compares the memory complexity
between Transformers and YOCO. Specifically, because global KV caches are reused and efficient
self-attention needs constant caches, the number of caches is O(N + CL), where N is the input
length, C is a constant (e.g., sliding window size), and L is the number of layers. For long sequences,
CL is much smaller than N , so about O(N) caches are required, i.e., you only cache once. In
comparison, Transformer decoders have to store N × L keys and values during inference. So YOCO
roughly saves L times GPU memory for caches compared to Transformer. Because the bottleneck of
inference capacity becomes KV caches, our method enables us to serve many more tokens without
being out of GPU memory. The increased batch size is also beneficial to inference throughput.

Reducing Prefilling Time and Improving Throughput. As shown in Figure 2, because the
cross-decoder reuses the outputs of self-decoder, we can exit early before entering the cross-decoder
during the prefill stage. The intriguing property of computation dependency greatly accelerates the
prefilling speed. First, only half the layers are needed for forward computation, i.e., at least half
prefilling latency reduction. Second, the efficient attention modules of the self-decoder are usually
fast. For the example of 512K context length, we can decrease the prefilling latency from 180 seconds
(Transformer with optimized inference, such as Flash-Decoding) to less than 6 seconds (Figure 9).
Even for 32K length, YOCO has about three times speedup in terms of prefilling time. Table 2
compares prefilling time complexity of attention modules between Transformer and YOCO.

4 Design Choices of Self-Decoder

We can choose various efficient self-attention methods for self-decoder. As long as the module only
requires constant inference memory, the self-decoder’s cache memory complexity depends on the
number of layers. Moreover, a good module choice improves both training and deployment costs. In
this work, we use sliding-window attention (Section 4.1) or gated retention (Section 4.2).

4.1 Sliding-Window Attention

Sliding-window attention [4] restricts the attention range into a fixed window size C. In contrast,
vanilla Transformer decoders attend to all previous tokens. During inference, the KV cache memory
complexity can be reduced from O(N) to O(C), i.e., the memory usage is constant rather than
increasing with sequence length. Similar to multi-head self-attention [40], we compute the output of
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sliding-window attention via:

Q = XWQ, K = XWK , V = XWV

headi = softmax(Q[i]K
⊺
[i] +B)V, Bij =

{
0, i− C < j ≤ i

−∞, otherwise
SWA(X) = Concat(head1, · · · ,headh)WO

(4)

where WQ,WK ,WV ,WO ∈ Rd×d are learnable matrices, and the window causal mask B controls
each query only attends to the previous keys whose distances are less than C. The pre-normalization
and residual connection are also applied to the module.

4.2 Gated Retention

Gated retention (gRet, aka gRetNet) augments retention [35] with a data-dependent gating mechanism.
We use gRet as the default efficient self-attention module. The method unifies the parallel, recurrent,
and chunkwise recurrent computation paradigms, which are equivalent and can obtain the same
computation results. The training process usually uses the parallel or chunkwise recurrent paradigms,
while the inference stage can employ the recurrent paradigm for constant KV memory.

The Parallel Representation The gated retention is defined as:

Q = (XWQ)⊙Θ, K = (XWK)⊙Θ, V = XWV , Θn = einθ

γ = sigmoid(XWγ)
1/τ , Dnm =

{∏n

i=m+1
γi, n ≥ m

0, n < m

gRet(X) = (QK⊺ ⊙D)V

(5)

where WQ,WK ,WV ∈ Rd×d and Wγ ∈ Rd×1 are learnable weights, and the temperature term τ
encourages γ to 1 for better memorization [46]. The data-controlled decay is head-wise [19] rather
than element-wise so that the computation can fully utilize NVIDIA tensor cores. Refer to [35] for
more details about the other designs.

The Recurrent Representation Being equivalent to Equation (5), the output of gated retention can
be computed recurrently. For the n-th timestep, the output is obtained via:

Sn = γnSn−1 +K⊺
nVn

gRet(Xn) = QnSn, n = 1, · · · , |x| (6)

where Q,K, V, γ are the same as in Equation (5). During auto-regressive inference, the self-decoder
maintains Sn as the intermediate state for an efficient generation.

The Chunkwise Recurrent Representation The chunk-wise representation is a unified formulation
of recurrent and parallel representations. Given chunk size B, the outputs are computed chunk by
chunk. The computation is divided into inner-chunk and cross-chunk parts. Denote [i] as the i-th
chunk, i.e., x[i] = x(i−1)B+1, · · · , xiB , we compute the i-th chunk as:

β(i−1)B+j =

(i−1)B+j∏
k=(i−1)B+1

γk, D[i](j, k) =
β(i−1)B+k

β(i−1)B+j
if j ≤ k else 0

Ri = K⊺
[i](V[i] ⊙

βiB

β[i]
) + βiBRi−1, β[i](j, k) = β(i−1)B+j

gRet(X) = (Q[i]K
⊺
[i] ⊙D[i])V[i]︸ ︷︷ ︸

Inner-Chunk

+(Q[i]Ri−1)⊙ β[i]︸ ︷︷ ︸
Cross-Chunk

(7)

where Ri is the intermediate state of the i-th chunk, and β summarizes the data-controlled decay γ.
Appendix B proves the equivalence between the computation paradigms. The chunkwise paradigm
combines the best of parallelism and recurrence, i.e., saving FLOPs compared to fully parallel com-
putation and reducing iterations compared to recurrent computation. During the training and prefill
stages, the chunk-wise representation increases throughput and reduces GPU memory consumption.
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Model ARC-C ARC-E BoolQ Hellaswag OBQA PIQA Winogrande SciQ Avg
Training with 1T tokens

OpenLLaMA-3B-v2 [12] 0.339 0.676 0.657 0.700 0.260 0.767 0.629 0.924 0.619
StableLM-alpha-3B-v2 [38] 0.324 0.673 0.646 0.686 0.264 0.760 0.621 0.921 0.612
StableLM-3B-4E1T [39] — 0.666 — — — 0.768 0.632 0.914 —
YOCO-3B 0.379 0.731 0.645 0.689 0.298 0.763 0.639 0.924 0.634

Training with 1.6T tokens
StableLM-3B-4E1T [39] — 0.688 — — — 0.762 0.627 0.913 —
YOCO-3B 0.396 0.733 0.644 0.698 0.300 0.764 0.631 0.921 0.636

Extending context length to 1M tokens
YOCO-3B-1M 0.413 0.747 0.638 0.705 0.300 0.773 0.651 0.932 0.645

Table 3: Eval Harness [10] accuracy compared with well-trained Transformer language models. We
scale the 3B model to 1.6 trillion training tokens. The 1T and 1.6T results of StableLM-3B-4E1T are
taken from its technical report [39]. YOCO-3B-1M is extended to the context length of 1M tokens.

Multi-Head Gated Retention Similar to multi-head attention [40] and multi-scale retention [35],
we apply gated retention to each head and combine the outputs together:

headi = gRet(X)

Y = GroupNormh(Concat(head1, · · · ,headn))
MHGR(X) = (swish(XWG)⊙ Y )WO

(8)

where WG,WO ∈ Rd×d are learnable matrices, and GroupNorm [42] normalizes each head [41].
We also apply swish gate to increase non-linearity [35].

5 Experiments

We evaluate YOCO for large language models from the following perspectives. First, we follow the
setting of StableLM-3B-4E1T [39] to scale up training tokens (Section 5.1). Second, we present the
scaling curves of the proposed architectures (Section 5.2). Third, we scale up the YOCO model to 1M
context length and evaluate its long-sequence modeling capability (Section 5.3). Fourth, we analyze
the deployment advantages, including GPU memory footprint, serving capacity, prefilling time, and
throughput (Section 5.4). Experimental results show that YOCO achieves competitive performance
in various evaluation metrics and significantly reduces the inference cost.

5.1 Language Modeling Evaluation

We train a 3B-size YOCO language model by scaling up the number of training tokens. Then we
compare the checkpoints with strong Transformer-based language models. We use a similar training
recipe to that in StableLM-3B-4E1T [39]. Detailed hyperparameters are described in Appendix D.

Results Table 3 compares YOCO with OpenLLaMA-v2-3B [12], StableLM-base-alpha-3B-v2 [38],
and StableLM-3B-4E1T [39]. We use LM Eval Harness [10] to evaluate zero-shot performance on
various downstream tasks. OpenLLaMA-v2-3B and StableLM-base-alpha-3B-v2 are trained with 1T
tokens. The intermediate numbers of StableLM-3B-4E1T are taken from its technical report [39].
Experimental results indicate that YOCO achieves comparable results with previous well-tuned
Transformer language models. Both the checkpoints trained with 1T tokens and 1.6T tokens obtain a
consistent trend. Moreover, the results show that YOCO is scalable in terms of training tokens.

5.2 Scalability Compared with Transformers

We compare the scaling curves between Llama Transformer [40, 37], YOCO with gated retention
(YOCOgRet; Section 4.2), and YOCO with sliding-window attention (YOCOSWA; Section 4.1). We
train language models of various sizes (i.e., 160M, 400M, 830M, 1.4B, 2.7B, 6.8B, and 13B) using
the same training data and settings. We augment the Transformer architecture with Llama [37]
improvements, such as RMSNorm [48], SwiGLU [32], and removing bias. The sliding window size
of YOCOSWA is 1,024. The training batch size is 0.25M tokens with a 2k sequence length. We train
the models with 40k steps, i.e., 10B tokens. In practice, we find that the setting is effective for loss
convergence, and scaling laws can be well-fitted. More hyperparameters are detailed in Appendix E.
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Results Figure 3 reports the validation loss with various parameter counts. We also fit the scaling
curves as in [17]. YOCO obtains comparable performance from 160M to 13B compared to the
Llama-optimized transformer architecture. The findings demonstrate that YOCO scales effectively
with respect to model size. Moreover, YOCOgRet outperforms Transformer and YOCOSWA. The
gains come from hybrid architectures of attention and retention, whose inductive biases tend to be
complementary to each other. Recent hybrid architectures [21] also confirm similar findings.

5.3 Long-Context Evaluation

We extend the context length of YOCO-3B (Section 5.1) to 1M tokens. We continue the model
training with longer lengths progressively. The length schedule is 64K, 256K, and 1M tokens.
Training data is up-sampled according to sequence length [9]. For a fair comparison, we do not use
long-instruction tuning data. More training details are described in Appendix F.

Needle In A Haystack with 1M Context The pressure test evaluates whether models can retrieve
“needles” from a long document [16]. We follow the evaluation setting of Gemini 1.5 [30] and
LWM [24]. The needles are constructed as a city with a magic number. We run 10 times at the same
depth and length. The average accuracy is reported. Figure 4 shows that YOCO-3B-1M passes the
Needle-In-A-Haystack test with near perfect accuracy. The results indicate that YOCO has strong
long-context modeling capability.

Multi-Needle Retrieval Besides single-needle retrieval, we conduct a multi-needle evaluation.
We compare YOCO-3B-1M with previous long-context language models, including MiniCPM-
128K [15], ChatGLM3-128K [47], YaRN-Mistral-128K [28], and LWM-1M-text [24]. The evaluation
is conducted in 128K sequence length, because most previous models are tuned with this length.

Table 4 presents accuracy results with N needles. LWM-1M-text and YOCO-3B-1M are trained with
a 1M context length, while the others are of 128K length. Although LWM-1M-text continues training
of Llama-2-7B, YOCO-3B-1M can still achieve comparable performance with half the model size.
Moreover, the 7B-size YaRN-Mistral-128K [28] obtained by position interpolation lags behind the
other models. Compared to MiniCPM-128K and ChatGLM3-128K, YOCO-3B-1M also outperforms
these well-trained language models.

Model Size N = 1 N = 2 N = 4 N = 8

YaRN-Mistral-128K [28] 7B 0.02 0.12 0.08 0.20
LWM-1M-text [24] 7B 1.00 0.90 0.76 0.62
MiniCPM-128K [15] 2.4B 1.00 1.00 0.54 0.56
ChatGLM3-128K [47] 6B 0.94 0.72 0.52 0.44
YOCO-3B-1M 3B 0.98 0.98 0.84 0.56

Table 4: Multi-needle retrieval accuracy. N indicates the number of needles. N = 1 is single-needle
retrieval used as a reference, and N > 1 indicates the multi-needle test. The evaluation is conducted
in 128K length, because most previous long-context models are tuned with this length.
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(a) Book data. (b) Repository-level code data.

Figure 5: Cumulative average negative log-likelihood on book and repository-level code. We filter
the validation examples that are longer than 1M tokens. YOCO achieves improved performance with
longer context, i.e., utilizing long-distance information for language modeling.

Perplexity over Long Sequences Figure 5 shows the cumulative average negative log-likelihood
(NLL) as a function of context length. We evaluate both book and repository-level code data. We
follow the setting of [30] and filter validation data that are longer than 1M tokens. NLL decreases
consistently with longer sequence length. The results indicate that YOCO can effectively utilize
long-distance dependency for language modeling. We also observe that the NLL-length curves tend
to fit the power law, where the gaps are affected by the noise within the validation examples.

5.4 Inference Advantages

We analyze inference efficiency from various perspectives, such as GPU memory footprint, prefilling
latency, throughput, and serving capacity. We show that YOCO reduces the deployment cost by
orders of magnitude, especially for long-sequence inference. More importantly, the user experience
(such as latency) is improved while maintaining good performance and reducing expenses.

We compare YOCOgRet with Transformer. The default model configuration follows Section 5.1.
Notice that Transformer uses grouped-query attention [1], Flash-Decoding [6], and kernel fusion for a
fair comparison. As described in Section 4.2, gated retention uses the chunk-recurrent representation
in the prefill stage, and the recurrent representation in the generation stage. The chunk size is set to
256. We implement a Triton [36] kernel for gated retention. The evaluation sequence length ranges
from 32K to 1M. The last 1,024 tokens are supposed to be generated, while the previous tokens are
given input context. The experiments are conducted with H100-80GB GPU cards.
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Figure 6: Breakdown memory con-
sumption in 1M context length.

GPU Memory The inference memory consumption is made up
of three parts, namely model weights, intermediate activation,
and KV cache. Figure 6 presents the breakdown memory profil-
ing results. Along with an increase in context length, the main
memory bottleneck becomes KV caches, while model weights
consume constant memory. The results show that YOCOgRet
alleviates the activation cost and KV cache memory footprint.

As shown in Figure 7, the memory cost is significantly reduced
using YOCO. Moreover, the memory consumption of YOCO
increases slowly along the sequence length. For example of
1M length, the overall inference memory usage is only 12.4GB,
while Transformers occupy 9.4× GPU memory. YOCO makes
it feasible to deploy long-sequence modeling on customer-level
GPUs. Even with a 32K sequence length, YOCO requires about
2× less memory than Transformer. Although we compare 3B-size models here, the reduction ratio
becomes larger as the number of layers increases.

Figure 8 reports the GPU memory consumption of KV cache for each token. As YOCO only caches
one layer of global key-value pairs, it needs roughly L times less memory compared to Transformer.

8



32K 256K 512K 1M
Length

20

40

60

80

100

120

GP
U 

M
em

or
y 

(G
B)

4.16x
6.39x

9.38x32K 64K 128K0

15

30

1.95x2.32x 3.01x
Transformer
YOCO

Figure 7: Inference memory of Transformer and
YOCO across various lengths.

1.2B 6.4B 13B 30B 65B
Model Size

0

200

400

600

KV
 C

ac
he

 M
em

or
y 

 (K
B 

/ T
ok

en
)

24x
32x 40x

64x

80x

Transformer
YOCO

Figure 8: GPU memory of KV cache for each
token with different model size.

32K 256K 512K 1M
Length

0

100

200

300

Pr
ef

illi
ng

 T
im

e 
(s

)

15.55x
30.3x

71.82x32K 64K 128K0

50

2.87x5.05x
8.36x

Transformer
YOCO

Figure 9: Prefilling latency for different lengths.
Transformer’s time grows quadratically while
YOCO’s grows linearly.

32K 64K 128K 256K 512K
Context Length

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (t

ok
en

/s
)

2.72x

2.57x

2.77x
4.37x 9.56x

Transformer
YOCO

Figure 10: Inference throughput of Transformer
and YOCO varying the context length.

For example, YOCO can serve 128K tokens with 1GB GPU memory, while Transformer with
GQA [1] can only support 1.6K tokens at 65B model size.

Prefilling Latency In the prefill stage, the model encodes input tokens in parallel. As shown in
Figure 9, the prefilling latency is a pain point of user experience for long-context models. For 512K-
and 1M-length input sequences, Transformer needs about 180 seconds and 300 seconds, respectively.
The computational complexity of Transformer is O(N2), which requires a large number of FLOPs
for long context. In contrast, YOCO’s prefilling time is O(N), growing linearly (Section 3.3) along
the sequence length. Figure 9 shows that YOCO reduces the Transformer prefilling time from 180
seconds to less than 6 seconds for 512K context. As described in Section 3.3, the prefill stage can
early exit before entering cross-decoder. So, there is at least two times speedup of prefilling latency
even for short context. For example, YOCO is 2.87× faster than Transformer for 32K length.

Throughput The throughput indicates how many tokens the model can process per second, involving
both pre-filling and generation time. Figure 10 shows that YOCO achieves higher throughput across
context lengths compared to Transformer. For the example of 512K queries, Transformer’s throughput
is 4.5 token/s while YOCO reaches 43.1 token/s, i.e., achieving 9.6× speedup. The throughput is
improved for the following reasons. First, YOCO decreases the time required for prefilling as
previously demonstrated. Second, as the memory consumption is reduced, we can use larger batch
size for inference, which also contributes to the throughput improvement.

5.5 Comparisons with Transformer Variants

We compare YOCOgRet and YOCOSWA with Transformer and other variants, including H3 [5],
RetNet [35], Mamba [13], and gRetNet (Section 4.2). All models have 160M parameters with 12
layers and a hidden dimension of 768. The weights of word embedding and softmax projection are
shared. For Mamba, we follow the details in [13], where double-SSM layers are implemented instead
of “SSM + SwiGLU”. For H3, the experiment uses a hybrid version following the original paper [5],
where two attention layers are inserted after the first and L

2 -th layers.
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Figure 11: Long sequence task perplexity decreases along with the increasing input length.

Valid. Set↓ AR-Hit↓ First-Occur↓
Mamba [13] 3.645 1.555 4.126
RetNet [35] 3.633 1.466 4.131
Hybrid H3 [5] 3.591 1.251 4.130
gRetNet 3.600 1.354 4.116
Transformer 3.564 1.219 4.104

YOCOSWA 3.553 1.202 4.094
YOCOgRet 3.530 1.199 4.067

Table 5: Fine-grained LM perplexity results.

Fine-Grained LM Perplexity Table 5 re-
ports the fine-grained validation perplexity for
language modeling. Following Zoology [2],
we divide the perplexity into “Ar-Hit” and
“First-Occur”. Specifically, “Ar-Hit” consid-
ers the predicted tokens that are bigrams previ-
ously seen in the previous context, which eval-
uates the associative recall capability. “First-
Occur” considers the tokens that cannot be
recalled from the context.

Long-Context Evaluation Figure 11 reports the answer perplexity with varying context length
(ranging from 4K to 16K) on the ZeroSCROLLS [31] benchmark. We continue training the above
models in 16,384 length with 2B tokens. The rotation base scaling [44] is used for length extension.
For sparse Transformer, we use the context window of 2,048 and keep RoPE θ unmodified. As shown
in Figure 11, YOCO and Transformer consistently outperform other methods across tasks and lengths,
which is consistent with the findings in Section 5.3. Moreover, the results highlight the importance of
global attention for long-context modeling. Notice that the 12K and 16K results in Qasper are similar
because the lengths of most documents are shorter than 16K.

5.6 Ablation Studies

Valid. Set↓ AR-Hit↓ First-Occur↓
YOCO[1:1] 3.530 1.199 4.067

YOCO[3:1] 3.526 1.207 4.060
YOCO[1:3] 3.565 1.230 4.102
YOCO[0:1] 3.898 1.827 4.374
Unstacked YOCO[1:1] 3.531 1.188 4.071
Interleaved & Hybrid 3.542 1.204 4.081

Table 6: Fine-grained LM perplexity results. “[s:c]” is
the ratio of self-decoder to cross-decoder layers.

As shown in Table 6, we explore dif-
ferent layout configurations for YOCO.
First, we compare the ratio of self-decoder
to cross-decoder layers. For example,
YOCO[1:1] is the default setting, where
each module contains L/2 layers. The
results show that YOCO[1:1] is compara-
ble to YOCO[3:1] and outperforms both
YOCO[1:3] and YOCO[0:1]. We use [1:1]
as the default layout. Future work can re-
fine a scaling law to guide the choice of
layer ratio. Second, the setting “Unstacked YOCO[1:1]” uses word embeddings X0 as input to
the cross-decoder, rather than stacking cross-decoder upon self-decoder (i.e., using XL/2 in Equa-
tion (3)). Third, the model “Interleaved & Hybrid” is a hybrid architecture that interleaves gRetNet
and Transformer layers.

6 Conclusion

In this work, we propose a decoder-decoder architecture (YOCO) for large language modeling.
YOCO achieves significantly better inference efficiency and competitive performance compared to
Transformers. Experimental results demonstrate that YOCO achieves favorable results for large
language models in various settings, i.e., scaling up the number of training tokens, scaling up model
size, and scaling up context length to 1M tokens. Profiling results also show that YOCO improves
inference efficiency by orders of magnitude, especially for long-sequence modeling.
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A Chunk Parallelism for Long-Sequence Training of YOCO

We introduce chunk parallelism for YOCO to reduce the communication frequency, accelerating
long-sequence training in Section 5.3. Dividing long sequences into different devices is essential
when the training length is extremely long [20, 8]. However, the overall throughput tends to be
bounded by GPU communication [23]. Cross-decoder disentangles self-attention dependency while
preserving modeling capability, bringing intriguing advantages to distributed long-sequence training.

𝑋
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Self-Decoder
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GPU 1                                      GPU 2

Figure 12: Chunk parallelism of YOCO training on two GPU devices. The training strategy is to
partition the sequence into different chunks. M denotes the intermediate representation XL/2, i.e.,
the output of self-decoder. The keys and values in the cross-decoder are only gathered once.

In self-decoder, the dependency only exists in the adjacent devices. For example, gated retention
only requires the hidden state Sn in Equation (6), and sliding-window attention attends to tokens
within the context window. Therefore, the communication amount of self-decoder is relatively small.
In the cross-decoder, the all-gather operation is only triggered once for the KV cache, rather than
communicating in each layer. The hardware-friendly architecture gives more flexibility to distributed
long-sequence training.

B Chunk-wise Representation of Gated Retention

We illustrate the equivalence between recurrent representation and chunkwise recurrent representation
of gated retention. For the output On, n can be split as n = kB + r where B is the chunk size:

On =

n∑
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n∏
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γiQnK
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⊺
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kB+1:n ⊙ ΓkB+1:n)VkB+1:n

kB∑
m=1

n∏
i=m+1

γiQnK
⊺
mVm = (Qn

n∏
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i=kB+1

γi)Ri−1

(9)
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where Γi =
∏n

k=i+1 γi, ζ[c](j, k) =
∏cB

i=(c−1)B+j+1 γi, αi =
∏iB

j=(i−1)B+1 γj , [i] indicates the i-th
chunk, i.e., x[i] = [x(i−1)B+1, · · · , xiB ]. Rn is written as a recurrent function:

Ri = K⊺
[i](V[i] ⊙ ζ[i]) + αiRi−1 (10)

Denote [i] as the i-th chunk, i.e., x[i] = [x(i−1)B+1, · · · , xiB ], β(i−1)B+j =
∏(i−1)B+j

k=(i−1)B+1,
β[i](j, k) = β(i−1)B+j , We concatenate the output in a block together:

O[n] =

[n]∑
m=kB+1

β[n]Q[n]K
⊺
mVm +

kB∑
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β[n]Q[n]

n∏
i=m+1

γiK
⊺
mVm

[n]∑
m=kB+1

β[n]Q[n]K
⊺
mVm = (Q[n]K

⊺
[n] ⊙D[n])V[n], D[n](j, k) =

β(n−1)B+k

β(n−1)B+j
if j ≤ k else 0

kB∑
m=1

β[n]Q[n]

n∏
i=m+1

γiK
⊺
mVm = β[n]Q[n]Ri−1, Ri = K⊺

[i](V[i] ⊙
βiB

β[i]
) + βiBRi−1,

O[n] = (Q[n]K
⊺
[n] ⊙D[n])V[n]︸ ︷︷ ︸

Inner-Chunk

+(Q[n]Rn−1)⊙ β[n]︸ ︷︷ ︸
Cross-Chunk

(11)

Finally, we show that the chunkwise recurrent representation of gated retention is equivalent to the
other two representations.

C Pseudo Code of Gated Retention

We present pseudocode for the three computation paradigms of gated retention (Section 4.2). Parallel
implementation enables training parallelism to fully utilize GPUs. The recurrent paradigm enables
low-cost inference. Chunkwise retention combines the above advantages (i.e., parallel within each
chunk and recurrent across chunks), which has linear memory complexity for long sequences.

def ParallelRetention(
q, # bsz ∗ num_head ∗ len ∗ dim
k, # bsz ∗ num_head ∗ len ∗ dim
v, # bsz ∗ num_head ∗ len ∗ dim
gt): # bsz ∗ num_head ∗ len
retention = q @ k.transpose(−1, −2)
causal_mask = torch.full([q.shape[−2], q.shape[−2]], float("−inf"), device=q.device).

triu(1).type_as(q)
gt = F.logsigmoid(gt).cumsum(−1) / gate_logit_normalizer
mask = (g[..., None] − g[..., None, :] + causal_mask).exp()

retention = retention ∗ mask
output = retention @ v
output = group_norm(output)
return output

def RecurrentRetention(
q, k, v, # bsz ∗ num_head ∗ dim
past_kv, # bsz ∗ num_head ∗ dim ∗ dim
gt # bsz ∗ num_head ∗ 1 ∗ 1
):
gt = F.logsigmoid(gt) / gate_logit_normalizer
current_kv = gt.exp() ∗ past_kv + k.unsqueeze(−1) ∗ v.unsqueeze(−2)
output = torch.sum(q.unsqueeze(−1) ∗ current_kv, dim=−2)
output = group_norm(output)
return output, current_kv
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def ChunkwiseRetention(
q, k, v, # bsz ∗ num_head ∗ chunk_size ∗ dim
past_kv, # bsz ∗ num_head ∗ dim ∗ dim
gt): # bsz ∗ num_head ∗ chunk_size
gt = F.logsigmoid(gt).cumsum(−1) / gate_logit_normalizer
cross_retention = (q @ past_kv) ∗ gt[..., None].exp()
inner_retention = ParallelRetention(q, k, v, gt)
retention = inner_retention + cross_retention
output = group_norm(retention)

value_decay = (−gt + gt[:, :, :, −1, None]).exp()[..., None]
chunk_decay = gt[..., −1].exp()
current_kv = chunk_decay ∗ past_kv + k.transpose(−1, −2) @ (v ∗ value_decay)
return output, current_kv

D Hyperparameters for YOCO-3B (Section 5.1)

We adjust the head dimension to 128 instead of 80 as in StableLM for better kernel support. To
keep the model size unchanged, we set the hidden size to 3072 and the number of layers to 26.
Grouped-query attention [1] is used, where the number of query heads is 24, and the number of
key-value heads is 8. We train YOCO with gated retention (Section 4.2). The non-embedding
parameter count is 2.8B. In comparison, StableLM-3B-4E1T is 2.7B and OpenLLaMA-v2-3B [12] is
3.2B. The training sequence length is 4096. The batch size is 4M tokens. We use the AdamW [26]
optimizer with β = 0.9, 0.95. The maximal learning rate is 3.2e-4 with 1000 warmup steps and
linear decay to 1.28e-5. The total schedule is set to 5T tokens. Given the resource budget, we
train the model with 400k steps (1.6T tokens). The curated training corpus is similar to [39]. We
use tiktoken-cl100k_base as the tokenizer. The hidden dimension is set to 3072. The number
of layers is 26. The number of query heads is 24, and the number of key/value heads is 8 with
grouped-query attention [1]. The total number of parameters without embedding is 2.83B. The
training batch size is 4M tokens. We use 4096 training length. The optimizer is AdamW [26] with
β = (0.9, 0.95). The learning rate is 3.2×10−4 with 1000 warmup steps. We set a 5T-token learning
rate schedule with linear decay to 1.28× 10−5.

Params Values
Layers 26
Hidden size 3072
FFN size 8192
Vocab size 100,288
Heads 24
Key-value heads 8
Adam β (0.9, 0.95)
LR 3.2× 10−4

Batch size 4M
Warmup steps 1000
Weight decay 0.1

Table 7: Hyperparamters used for the YOCO-3B model in Section 5.1.

E Hyperparameters for Scaling Curves (Section 5.2)

Table 8 reports the hidden dimension, number of layers, and number of heads used for different model
sizes. The head dimension of gated retention is set to 256. To align the number of parameters, the
FFN size for Transformer is 8

3d while the FFN size for YOCO is 3d. The training length is set to 2048.
The batch size is set to 0.25M tokens. We use the AdamW [26] optimizer with β1 = 0.9, β2 = 0.98.
The learning rate is 1.5× 10−4 for 160M to 1.4B sizes and 7.5× 10−5 for 2.7B to 13B sizes. The
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warmup step is 375 with linear rate decay. The weight decay is set to 0.05. We train the models with
40k steps, i.e., 10B tokens.

Size Hidden Dim. #Layers #Heads
160M 768 12 12
400M 1024 24 16
830M 1536 24 12
1.4B 2048 24 16
2.7B 2560 32 20
6.8B 4096 32 32
13B 5120 40 40

Table 8: Model size and hyper-parameters used for scaling curves in Section 5.2.

F Hyperparameters for Length Extension

We progressively extend the context length to 1M tokens in Section 5.3. The length schedule is 64K,
256K, and 1M. We up-sample the documents that are longer than the training length [9]. Table 9
shows that we use different RoPE θ and learning rate for each stage.

Training Length 65,536 262,144 1,048,576

Learning Rate 8× 10−5 4× 10−5 2× 10−5

RoPE θ 640K 5M 80M
Training Tokens 6B 4B 1.5B

Table 9: Hyperparamters used for length extension in Section 5.3.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction is carefully written.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There is no theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiment can be easily reproduced based on the model description,
hyperparameter, and any well-known pre-training corpus.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code will be released in camera-ready version. All of the data we use is
public-available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Hyperparameters are attached in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: For large language models, the variance between different runs is negligible.
Moreover, the evaluation pipeline is deterministic.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The corresponding resources are stated in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics in the research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We work on fundamental research that has no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose safety risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We carefully follow the licenses of open-source code, data, and models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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