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Ada2I: Enhancing Modality Balance for Multimodal
Conversational Emotion Recognition

Anonymous Authors

ABSTRACT
Multimodal Emotion Recognition in Conversations (ERC) is a typi-
cal multimodal learning task in exploiting various data modalities
concurrently. Prior studies on effective multimodal ERC encounter
challenges in addressing modality imbalances and optimizing learn-
ing across modalities. Dealing with these problems, we present a
novel framework named Ada2I, which consists of two inseparable
modules namely Adaptive Feature Weighting (AFW) and Adaptive
Modality Weighting (AMW) for feature-level and modality-level
balancing respectively via leveraging both Inter- and Intra-modal
interactions. Additionally, we introduce a refined disparity ratio
as part of our training optimization strategy, a simple yet effective
measure to assess the overall discrepancy of the model’s learning
process when handling multiple modalities simultaneously. Experi-
mental results validate the effectiveness of Ada2Iwith state-of-the-
art performance compared against baselines on three benchmark
datasets including IEMOCAP,MELD, and CMU-MOSEI, particularly
in addressing modality imbalances.

CCS CONCEPTS
• Information systems→ Sentiment analysis; • Computing
methodologies→Discourse, dialogue andpragmatics; •Human-
centered computing → Human computer interaction (HCI).

KEYWORDS
Multimodal Emotion Recognition, Imbalance Modality, Adaptive
Feature Weighting, Adaptive Modality Weighting, Disparity ratio

1 INTRODUCTION
Multimodal learning is an approach to building models that can pro-
cess and integrate information from multiple heterogeneous data
modalities [2, 20, 21], including image, text, audio, video, and table.
Since numerous tasks in the real world involve multiple modali-
ties, multimodal learning has become increasingly important and
attracted widespread attention as an effective way to accomplish
these tasks. In recent years, the field of Emotion Recognition in
Conversations (ERC) has witnessed a surge in effective models
[8, 26, 29]. Moving beyond unimodal recognition, the utilization of
multimodal data offers a multidimensional perspective for more nu-
anced emotion discernment [9, 19, 24]. Consequently, the incorpora-
tion ofmultimodal data is a natural evolution for enhancing emotion
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Figure 1: (a) Weighted F1 scores for the multimodal set-
ting (T+A+V) compared with each unimodal encoder, and
(b) batch-average unimodal-logit scores.

recognition in conversations. However, the widespread adoption
of multimodal learning has revealed underlying challenges, with
a primary focus on modality imbalances. These imbalances entail
disparities in the contributions of individual modalities to the final
decision-making process.

As illustrated in Figure. 1, the text modality quickly addresses
the overall model performance and the joint logit scores, whereas
the visual and audio modalities remain under-optimized through-
out the training process. In addressing modality imbalance, diverse
terminologies have emerged to characterize this phenomenon and
explore its underlying causes. Terms such as “greedy nature” [38],
“modality collapse” [15], and “modality imbalance” [6, 22] have
been employed in various studies. These terms are associated with
factors such as the “suppression of dominant modalities” [25], “dif-
ferent convergence rates” [35], “diminishing modal marginal utility”
[36], or “modality competition” [14]. In essence, two primary per-
spectives emerge regarding this problem [36]: firstly, modalities
exhibit varying levels of dominance, with models often overly re-
liant on a dominant modality with the highest convergence speed,
thereby impeding the full utilization of other modalities with slower
convergence speeds. Secondly, modal encoder optimization varies,
necessitating the adoption of multiple strategies. Some approaches
[7, 25] attempt to modulate the learning rates of different modali-
ties based on the fusion modality. However, these approaches often
overlook the impact of intra-modal data enhancement [44]. For in-
stance, right from the initial representations through the modal
encoder, the outputs can lead to misleading final results, resulting

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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in its weakened position across all modalities. Hence, from the
outset, it is crucial to enhance representations for each modality,
regardless of whether they are weak or strong, as it can affect the
imbalance in learning across modalities.

Moreover, current methodologies primarily focus on interactions
between pairs of modalities [6, 22, 25, 39], resulting in complex com-
putations and inadequate treatment across all modalities. These
methods are commonly applied in tasks such as audio-visual learn-
ing [25, 39] and multimodal affective computing [44], often using
datasets related to sarcasm detection, sentiment analysis, or humor
detection. However, there is a lack of methods explicitly tailored
for multimodal emotion recognition in conversation, especially for
well-known multimodal datasets like IEMOCAP [3], MELD [27],
and CMU-MOSEI [1]. Additionally, in recent prominent studies
[17, 32], while overall performance for multimodal emotion recog-
nition tasks has notably increased, a closer examination of the
“importance of modality” reveals that pairwise modalities consis-
tently fail to achieve satisfactory performance, creating a significant
gap compared to leveraging all three modalities simultaneously.
Therefore, it is crucial to simultaneously leverage learning from
all modalities while also significantly enhancing the capabilities of
weaker modalities to improve the overall learning performance of
multimodal emotion recognition models in practical applications.

In this paper, we propose a novel framework named Ada2I that
addresses imbalances in learning across audio, text, and visual
modalities for multimodal ERC. It consists of two primary mod-
ules including Adaptive Feature Weighting (AFW) and Adaptive
Modality Weighting (AMW) for feature-level andmodality-level bal-
ancing respectively in the consideration of Inter- and Intra-modal
interactions. Focusing on feature-level balancing using Adaptive
Feature Weighting (AFW), we apply tensor contraction to infer
feature-aware attention weights for each modality, which aims to
produce a feature-level balanced representation for each conversa-
tion. As an important component of AFW, Attention Mapping Net-
work controls the balancing via maximizing the alignment between
unimodal features and their corresponding attention coefficients.
For modality-level balancing using Adaptive Modality Weighting
(AMW), we further exploit feature-level balanced representations
from the preceding AFW module to generate modality-level bal-
anced ones through modality-wise normalization of features and
learning weights before being used to enhance the emotion recogni-
tion. Additionally, we utilize the concept of disparity ratio, although
with modifications compared to the study by Peng et al. [25], called
OGM-GE, as a value to supervise the training process and evaluate
the model. Specifically, while OGM-GE [25] introduced gradient
modulation for pairs of modalities, we refine it to handle all three
modalities simultaneously—textual, visual, and audio—in the Multi-
modal emotion recognition in conversation task. This adjustment
reduces model complexity and overall processing time, leading to
enhanced efficiency.

To summarize, our contributions are as follows:
• We propose an end-to-end framework named Ada2I that
addresses the issue of imbalance learning across modali-
ties comprehensively for the multimodal ERC task. It not
only considers modality-level imbalances but also leverages
feature-level representations to contribute to the balancing
step in the learning process.

• With twomodules intricately designed yet inseparable, Adap-
tive Feature Weighting (AFW) is crafted to enhance the rep-
resentation of each conversation at the feature level, while
Adaptive Modality Weighting (AMW) is proposed to opti-
mize the modality-level learning weights during training.
Additionally, we redefine the disparity ratio, a simple yet
effective measure, to assess the overall discrepancy of the
model’s learning process when simultaneously handlingmul-
tiple modalities, rather than just two as in the original ap-
proach from [25].

• Our empirical experiments illustrate the effectiveness and
enhancements provided by our method in comparison to
existing approaches across three prevalent multimodal ERC
datasets: IEMOCAP [3], MELD [27], and CMU-MOSEI [1].

The paper is structured as follows: Section 2 presents related
work while we descibe the proposed framework Ada2I in Section
3. Experiment settings are explained in Section 4, and Section 5
covers the experimental evaluation and results. Finally, Section 6
summarizes findings.

2 RELATEDWORK
2.1 Multimodal Emotion Recognition in

Conversation
Multi-modal Emotion Recognition (ERC) has emerged as a focal
point within the affective computing community, garnering sig-
nificant attention in recent years. The integration of multimodal
data provides a multidimensional perspective, enabling a more
nuanced understanding of emotions. Moreover, researchers have
increasingly turned to multimodal fusion techniques, combining
text, audio, and visual cues to enhance multimodal ERC perfor-
mance [9, 10, 16, 18, 24]. ICON [9] employs two Gated Recurrent
Units (GRUs) to capture speaker information, supplemented by
global GRUs to track changes in emotional states throughout con-
versations. Similarly, MMGCN [37] utilizes Graph Convolutional
Networks (GCNs) to capture contextual information, effectively
leveraging multimodal dependencies and speaker information. On
the other hand, Multilogue-Net [30] introduces a solution utilizing
a context-aware RNN and employing pairwise attention as a fu-
sion mechanism. TBJE [4], adopts a transformer-based architecture
with modular co-attention to jointly encode multiple modalities.
Additionally, COGMEN [16] is a multimodal context-based graph
neural network that integrates both local (speaker information) and
global (contextual information) aspects of conversation. Moreover,
CORECT [24] employs relational temporal Graph Neural Networks
(GNNs) with cross-modality interaction support, effectively captur-
ing conversation-level interactions and utterance-level temporal
relations. GraphMFT [18] utilizes multiple enhanced graph atten-
tion networks to capture intra-modal contextual information and
inter-modal complementary information. More recently, DF-ERC
[17] emphasizes both feature disentanglement and fusion while tak-
ing into account both multimodalities and conversational contexts.
Moreover, AdaIGN [32] employs the Gumbel Softmax trick to adap-
tively select nodes and edges, enhancing intra- and cross-modal
interactions. While these methods primarily focus on designing
model structures, they overlook the challenges posed by modality
imbalance during multimodal learning.
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2.2 Imbalanced multimodal learning
Despite the suggestion by [13] that integrating multiple modalities
could enhance the accuracy of latent space estimations, thereby im-
proving the efficacy of multimodal models, our investigation within
the multimodal ERC task reveals a phenomenon contradicting this
notion. The problem of modality imbalance persists as a signifi-
cant challenge in multimodal learning frameworks, particularly in
tasks like multimodal Emotion Recognition in Conversations (ERC).
Conventional methods often prioritize one modality over others,
assuming that certain types of sensory data are more relevant for a
given task. For example, textual cues may receive greater emphasis,
while visual or audio cues alone might be prioritized [16, 24, 37].

Current methodologies for addressing imbalanced multimodal
learning primarily focus on tasks such as audio-visual learning
with a focus on optimizing pairwise modality learning [6, 25, 39],
sentiment analysis, and sarcasm detection [44]. However, these
approaches often have task-specific limitations and framework re-
strictions, limiting their broader applicability. For instance, Wang
et al. [35] identified that different modalities overfit and general-
ize at different rates, leading to suboptimal solutions when jointly
trained using a unified optimization strategy. Peng et al. [25] pro-
posed OGM-ME method where the better-performing modality
dominates the gradient update, suppressing the learning process
of other modalities. MMCosine [39] employs normalization tech-
niques on features and weights to promote balanced and improved
fine-grained learning across multiple modalities. Notably, there
is a lack of specific approaches tailored for multimodal Emotion
Recognition in Conversations (ERC) apart from the work by Wang
et al. [36]. Recently, Wang et al. [36] observed a phenomenon re-
ferred to as “diminishing modal marginal utility” and proposed fine-
grained adaptive gradient modulation, which was applied to ERC,
while I2MCL considers both data difficulty and modality balance
for multimodal learning based on curriculum learning for affective
computing, though not specifically for emotion recognition. To
comprehensively address the challenge of modality imbalance in
multimodal ERC, we propose an end-to-end model that ensures
balance among text, audio, and visual modalities during training.

3 METHODOLOGY
In the context of a conversation𝐶 with𝑁 utterances {𝑢1, 𝑢2, . . . , 𝑢𝑁 },
the task of Emotion Recognition in Conversations (ERC) is to pre-
dict the emotion label for each utterance in the conversation from
a predefined emotion category set E. Each utterance is associated
with𝑀 modalities, i.e. textual (t), audio (a), and visual (v) modalities,
represented as:

𝑢𝑖 = {𝑢𝑡𝑖 , 𝑢
𝑎
𝑖 , 𝑢

𝑣
𝑖 }, 𝑖 ∈ {1, . . . , 𝑁 } (1)

where 𝑢𝑖 ∈ R𝑀×𝑑 , 𝑑 signifies the dimension of modal features. For
each modality𝑚, we derive multimodal features {X𝑚}𝑚∈{𝑡,𝑎,𝑣} ∈
R𝑑𝑚×𝑁 for the conversation 𝐶 . Here, {𝑑𝑚}𝑚∈{𝑡,𝑎,𝑣} is the feature
dimension of each modality.

In this section, we outline our proposed model Ada2I, including
its main sub-modules: Modality Encoder, Adaptive Feature Weight-
ing and Adaptive Modality Weighting. We also refine the disparity
ratio metric as part of our Training Optimization Strategy. The
architecture of our model is shown in Figure 2.

3.1 Modality Encoder
Given a conversation𝐶 , a Transformer [33] network is utilized as
the encoder to generate a unimodal representation Z𝑚 ∈ R𝑁×𝑑𝑚

respecting to the modality𝑚 as:

Z𝑚 = 𝜙 (𝜃 (𝑚) ,X𝑚),𝑚 ∈ {𝑡, 𝑎, 𝑣} (2)

where the function 𝜙 (𝜃 (𝑚) ) is the Transformer network with learn-
able parameter 𝜃 (𝑚) .

3.2 Adaptive Feature Weighting (AFW)
3.2.1 Tensor-based Multimodal Interaction Representation. Moti-
vated by the tensor-ring decomposition method introduced by
[42], we extend the traditional attention mechanism by replac-
ing the query (Q) and key (K) representations with tensor-ring
decomposition-based counterparts. This modification results in
query tensor-ring representation G𝑄 and key tensor-ring repre-
sentation G𝐾 , which facilitate the acquisition of more compact
modality representations. Additionally, inspired by [31], we inte-
grate a tensor-based multi-way interaction transformer architec-
ture into our model. This enhancement allows the model to capture
multi-way interactions among modalities, thereby enhancing its
capability to discern intricate multimodal relationships.

We employ a tensor-ring-based generation function to retrieve
the multi-interaction multimodal query tensor Q and key tensorK
from the input modality presentations Z𝑚 . Specifically, we compute
Q and K as follows:{

Q = Tr{G (𝑡 )
𝑄

,G (𝑎)
𝑄

,G (𝑣)
𝑄

} ∈ R𝑑𝑡×𝑑𝑎×𝑑𝑣

K = Tr{G (𝑡 )
𝐾

,G (𝑎)
𝐾

,G (𝑣)
𝐾

} ∈ R𝑑𝑡×𝑑𝑎×𝑑𝑣
(3)

Here,Tr{.} represents the tensor-ring decomposition function, which
naturally provides the low-rank core tensor representations G𝑚

𝑄

and G𝑚
𝐾

for each modality.
To perform multimodal attention in the tensor space, we need

to compute the attention coefficient matrix, Θ, from the tensorized
input. To achive this, we can first compute the Tensor-ring Key
representation and Tensor-ring Query representation of input data,
G𝑚
𝑄

∈ R𝑑𝑚×𝑟𝑠×𝑟𝑤 and G𝑚
𝐾

∈ R𝑑𝑚×𝑟𝑠×𝑟𝑤 , where𝑚 ∈ {𝑡, 𝑎, 𝑣}, the
index 𝑠,𝑤 ∈ {1, 2, 3}, and 𝑠 ≠ 𝑤 . The attention coefficient matrix Θ
of modality𝑚 is formulated as follows:

Θ𝑚 = softmax

(
1√︁
𝑑𝑘

G𝑚𝑄 ⊙ G𝑚𝐾

)
(4)

where ⊙ denotes the element-wise product,
√︁
𝑑𝑘 is a scaling factor.

More specifically, the modality𝑚 core tensor G𝐾 and G𝑄 are
expressed as follows:{

G𝑚
𝑄

= 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
(
(Z𝑚𝑊 (1)

𝑄𝑚
) ⊗1 (Z𝑚𝑊 (2)

𝑄𝑚
)
)

G𝑚
𝐾

= 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
(
(Z𝑚𝑊 (1)

𝐾𝑚
) ⊗1 (Z𝑚𝑊 (2)

𝐾𝑚
)
) (5)

where 𝑚 ∈ {𝑡, 𝑎, 𝑣}, 𝑊 (1)
𝑄𝑚

∈ R𝑑𝑚×𝑟𝑠 ,𝑊 (2)
𝑄𝑚

∈ R𝑑𝑚×𝑟𝑤 , 𝑊 (1)
𝐾𝑚

∈

R𝑑𝑚×𝑟𝑠 ,𝑊 (2)
𝐾𝑚

∈ R𝑑𝑚×𝑟𝑤 are the linear transformation matrix; ⊗1
denotes the mode-1 Khatri-Rao product.
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Figure 2: Illustration of Ada2I framework during the training phase

3.2.2 Adaptive Feature Weighting (AFW). This module addresses
the varying impact of each modality on inter-modality and intra-
modality interactions using attentionmechanism. First, we calculate
the attention pooling matrices A(𝑚) ∈ R𝑟𝑠×𝑟𝑤 by averaging Θ(𝑚)

across the modality dimension 𝑑𝑚 ,𝑚 ∈ {𝑡, 𝑎, 𝑣}. Inspired by MMT
[31], the feature-aware attention matrix𝐴𝑡𝑡𝑚 ∈ R𝑁×𝑑𝑚 for a given
modality𝑚 is computed as follows:

𝐴𝑡𝑡𝑚 = Linear
(
Θ𝑚 ×1

3 A
(𝑡 ) ×1

3 A
(𝑎) ×1

3 A
(𝑣)

)
(6)

where ×1
3 is the𝑚𝑜𝑑𝑒 − (13) tensor contraction. The feature-aware

balanced representation Z𝑓 −𝑎𝑑𝑎𝑝𝑡𝑚 ∈ R𝑁×𝑑𝑚 of the conversation C
for a given modality m is computed as:

Z𝑓 −𝑎𝑑𝑎𝑝𝑡𝑚 = 𝐴𝑡𝑡𝑚Z𝑚 + 𝛽Z𝑚 (7)
where 𝛽 ∈ [0, 1] is a balancing parameter to regulate the contribu-
tion of the original unimodal feature vector Z𝑚 .

3.3 Adaptive Modality Weighting (AMW)
Our key focus is to achieve balanced contributions from eachmodal-
ity during the training. Similar to [39], we observe the imbalance
problem in multimodal ERC through experiments analyzing the
modality-wise weight in norm of each label during training. Appar-
ently, the dominant unimodal encoder, e.g., text, tends to have its

weight in norm increase much faster than the weaker modalities,
i.e., audio and visual, leading to divergent unimodal logit scores and
distorting the joint fusion representation. Inspired by [34, 43], we
propose to incorporate modality-wise L2 normalization to properly
weight features, mitigating imbalances arising from differing data
distributions and noise levels across modalities. This dynamic ad-
justment prevents any single modality from dominating the fusion
process, thus enhancing overall performance.

Therefore, the modality-level balanced representation Z𝑚−𝑎𝑑𝑎𝑝𝑡

of the given conversation is calculated as follows:

Z𝑚−𝑎𝑑𝑎𝑝𝑡 =
{𝑡,𝑎,𝑣}∑︁
𝑚

𝑊𝑚Z𝑓 −𝑎𝑑𝑎𝑝𝑡𝑚

∥𝑊𝑚 ∥∥Z𝑓 −𝑎𝑑𝑎𝑝𝑡𝑚 ∥
+ 𝑏 (8)

where𝑊𝑚 ∈ R𝑑𝑚×|E | symbolizes the output matrix of the model
pertaining to modality𝑚, and E is the set of emotion classes.

For emotion recognition, we feedZ𝑚−𝑎𝑑𝑎𝑝𝑡 , into the mulilayer
preceptron (MLP) with ReLU activation function to compute the
output 𝑦𝑖 ∈ R𝑁×|E | .

𝑦𝑖 = MLP(Z𝑚−𝑎𝑑𝑎𝑝𝑡 ) (9)

The output 𝑦𝑖 is utilized to predict emotion labels.
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3.4 Learning
First, we investigate the standard cross-entropy loss for this down-
stream task, i.e., mutilmodal ERC as:

L𝑐𝑙𝑠 = − 1
𝐵

𝐵∑︁
𝑖

𝑦𝑖𝑙𝑜𝑔𝑦𝑖 (10)

where 𝐵 is the batch size.
Second, in order to align between the original unimodal repre-

sentation of modality𝑚 and its respective feature-aware attention
weights as Eq (6), we employ Attention Mapping Network as fol-
lows:

𝐴𝑡𝑡𝑚 = Φ𝑚 (Z𝑚,𝜓 (𝑚) ),𝑚 ∈ {𝑡, 𝑎, 𝑣} (11)

where Φ𝑚 (·) is a feed-forward neural network with the parameter
𝜓 (𝑚) ,𝐴𝑡𝑡𝑚 ∈ R𝑁×𝑑𝑚 is the feature-aware self-attention weights of
the modality𝑚. To enhance feature-level balance across all modali-
ties, we introduce a L1-norm loss L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 as:

L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 =
1
𝐵

𝐵∑︁
𝑖

©«
{𝑡,𝑎,𝑣}∑︁
𝑚

|𝐴𝑡𝑡𝑖𝑚 −𝐴𝑡𝑡
𝑖
𝑚 |ª®¬ (12)

Additionally, we also consider the modality-level balance loss
L𝑚𝑜𝑑𝑎𝑙 , which is computed as:

L𝑚𝑜𝑑𝑎𝑙 = − 1
𝐵

𝐵∑︁
𝑖

log
𝑒Z

𝑚−𝑎𝑑𝑎𝑝𝑡
𝑖∑ | E |

𝑗=1 𝑒
Z𝑚−𝑎𝑑𝑎𝑝𝑡
𝑗

(13)

where Z𝑚−𝑎𝑑𝑎𝑝𝑡
𝑗

represents the output of the 𝑗-th class for the 𝑖-th
sample. Finally, we combine the all loss functions into a joint objec-
tive function, which is used to optimize all trainable parameters in
an end-to-end manner.

L𝑚𝑎𝑖𝑛 = L𝑚𝑜𝑑𝑎𝑙 + L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 + L𝑐𝑙𝑠 (14)

Training Optimization Strategy
Recent studies have brought attention to the challenge of han-

dling imbalanced optimization in joint learning models, particularly
when dealingwithmultiplemodalities. Peng et al. [25] introduce the
OGM-GE method to address optimization imbalances encountered
during the simultaneous training of dual-modal systems, i.e., visual
and audio. However, directly applying the OGM-GE method to our
framework is not practical as it only deals with two modalities. In
contrast, our framework caters to more than two modalities across
different domains, specifically tailored for the multimodal ERC task.
Therefore, leanrable parameter of encoder layer is optimized during
training process as the following strategy:

𝜃
(𝑚)
𝑡+1 = 𝜃

(𝑚)
𝑡 − 𝜂.𝑔(𝜃 (𝑚)

𝑡 ) (15)

where 𝑔(𝜃𝑚𝑡) = 1
𝑜

∑
𝑥 ∈ 𝐵𝑡∇𝜃𝑚𝑡 𝓁(𝑥, 𝜃 (𝑖 )𝑡 ) represents an unbiased

estimation of the full gradient ∇𝜃𝑚𝑡 𝓁(𝑥, 𝜃 (𝑖 )𝑡 ) using a random mini-
batch 𝐵𝑡 chosen at the 𝑡-th step with size 𝑜 . The term ∇𝜃𝑚𝑡 𝓁(𝑥, 𝜃 (𝑖 )𝑡 )
denotes the gradient with respect to 𝐵𝑡 .

We adjust the balance of modalities through gradient parameter
adjustments. For each output at step 𝑡 , we compute the discrepancy
ratio for each modality using the softmax of the cosine similarity

Algorithm 1 Ada2I Training Procedure

Input: The training set D = {(𝑥𝑡
𝑖
, 𝑥𝑎
𝑖
, 𝑥𝑣
𝑖
), 𝑦𝑖 }𝑁𝑖=1,𝑚 ∈ {𝑡, 𝑎, 𝑣}

Output: Prediction emotion label 𝑦
for each training epoch do

for minibatch B = {(𝑥𝑡
𝑖
, 𝑥𝑎
𝑖
, 𝑥𝑣
𝑖
), 𝑦𝑖 }𝑁𝑖=1} sampled from D do

#Refer to Subsection 3.1
Encode unimodal feature X𝑚 to Z𝑚 as Eq (2)
#Refer to Subsection 3.2
Multimodal feature representation as Eq (3)
Calculate coefficient matrix Θ𝑚 as Eq (4)
Calculate modality-aware attention 𝐴𝑡𝑡𝑚 as Eq (6)
Compute fused feature Z𝑓 −𝑎𝑑𝑎𝑝𝑡𝑚 with 𝛽 using Eq (7)
#Refer to Subsection 3.3
Compute logit output Z𝑚−𝑎𝑑𝑎𝑝𝑡 with modality-wise L2

normalization as Eq (8)
Produce prediction of multimodal data 𝑦𝑖 as Eq (9)
#Refer to Subsection 3.4
Use cross-entropy loss to calculate L𝑐𝑙𝑠 as Eq (10)
Use 𝐿1 to calculate L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 as Eq (12)
Use cross-entropy to calculate L𝑚𝑜𝑑𝑎𝑙 as Eq (13)
Add L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 , L𝑚𝑜𝑑𝑎𝑙 and L𝑐𝑙𝑠 to compute L𝑚𝑎𝑖𝑛 as

Eq (14)
Compute discrepancy ratio 𝜌𝑚𝑡 =

𝑠𝑚𝑡

min𝑚∈{𝑡,𝑎,𝑣} (𝑠 𝑗𝑡 )
Compute modulation coefficient 𝑘𝑚𝑡
Update using 𝜃 (𝑖 )

𝑡+1 = 𝜃
(𝑖 )
𝑡 − 𝜂 · 𝑔(𝜃 (𝑖 )𝑡 ) · 𝑘𝑖𝑡 + 𝜂 · ℎ(𝜃 (𝑖 )𝑡 )

end for
end for

between the output weights and the corresponding feature vectors:

𝑠𝑚𝑡 =

𝐿∑︁
𝑗=1

E∑︁
𝑘=1
I𝑘=𝑦 𝑗 softmax(𝑐𝑜𝑠 ⟨𝑊𝑚

𝑘
,Z𝑚
𝑘
⟩ + 𝑏𝑘

𝑀
) 𝑗𝑘 (16)

where I𝑘=𝑦 𝑗 equals 1 if 𝑘 = 𝑦 𝑗 and 0 otherwise, and softmax(.)
estimates the unimodal performance of the multimodal model,𝑀
denotes the count of modalities. Specifically, for the Multimodal
ERC task under consideration, we delineate three modalities: text
(𝑡 ), audio (𝑎), and visual (𝑣). The discrepancy ratio is calculated as:

𝜌𝑚𝑡 =
𝑠𝑚𝑡

min𝑚∈{𝑡,𝑎,𝑣} (𝑠
𝑗
𝑡 )

(17)

The learnable parameters are updated according to:

𝜃
(𝑚)
𝑡+1 = 𝜃

(𝑚)
𝑡 − 𝜂.𝑔(𝜃 (𝑚)

𝑡 ).𝑘𝑚𝑡 (18)

where the modulation coefficient 𝑘𝑚𝑡 is determined by 1 − tanh(𝛼 ·
𝜌𝑚𝑡 ) if 𝜌𝑚𝑡 > 1, and 1 otherwise. Here, 𝛼 is a hyperparameter
controlling the degree of modulation. Additionally, to enhance
the adaptability of the modulation process, Gaussian noise ℎ(𝜃 (𝑖 )𝑡 )
sampled from a distribution N(0,∑𝑠𝑔𝑑 (𝜃 (𝑖 )𝑡 )) is introduced after
parameter updates:

𝜃
(𝑖 )
𝑡+1 = 𝜃

(𝑖 )
𝑡 − 𝜂 · 𝑔(𝜃 (𝑖 )𝑡 ) · 𝑘𝑖𝑡 + 𝜂 · ℎ(𝜃 (𝑖 )𝑡 ) (19)

The training process of Ada2I is illustrated in Algorithm 1.
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4 EXPERIMENTIAL SETUP
4.1 Datasets

Datasets: We consider three benchmark datasets for multimodal
ERC namely: IEMOCAP [3], MELD [27], and CMU-MOSEI [1]. The
dataset statistics are illustrated in Table 1.

IEMOCAP. This datasset offers 12 hours of video recordings
capturing dyadic conversations involving 10 speakers. Each video
contains a single dialogue, segmented into utterances, resulting
in a total of 7,433 utterances across 151 dialogues. Notably, each
utterance is annotated with one of six emotion labels: happy, sad,
neutral, angry, excited, or frustrated.

MELD. This dataset is based on the TV series Friends, includes
13,709 video clips featuring multi-party conversations, each labeled
with one of Ekman’s six universal emotions: joy, sadness, fear, anger,
surprise, and disgust.

CMU-MOSEI:. This dataset is a prominent resource for sentiment
and emotion analysis, comprises 3,228 YouTube videos divided
into 23,453 segments, featuring contributions from 1,000 speakers
covering 250 topics. It includes six emotion categories: happy, sad,
angry, scared, disgusted, and surprised, with sentiment intensity
ranging from -3 to 3.

Table 1: Data Statistics

Datasets Dialogues Utterances

train valid test train valid test

IEMOCAP 120 31 5,810 1,623
MELD 1,039 114 280 9,989 1,109 2,610

CMU-MOSEI 2,248 300 676 16,326 1,871 4,659

4.2 Baselines and Evaluation Metrics
Baselines: Ada2I is compared against several state-of-the-art

(SOTA) baseline approaches for evaluating performance in multi-
modal ERC, particularly addressing modality imbalance problems.
For the IEMOCAP and MELD datasets, we consider baseline models
such as DialogueRNN [23], DialogueGCN [8], MMGCN [37], BiD-
DIN [40], and MM-DFN [11]. We report the best results obtained
from [36], which enhanced these models to address modality imbal-
ance. Additionally, we consider other SOTA models for multimodal
ERC that do not explicitly address modality imbalance, including
COGMEN [16], CORECT [24], GraphMFT [18], DF-ERC [17], and
AdaIGN [32]. For the CMU-MOSEI dataset, we evaluated various
baseline models for sentiment classification tasks, which include
both 2-class sentiment, featuring only positive and negative senti-
ment, and 7-class sentiment, ranging from highly negative (-3) to
highly positive (+3). These baseline models include Multilouge-Net
[30], TBJE [4], COGMEN [16], CORECT [24], OGM-GE [25], and
I2MCL [44]. Notably, OGM-GE and I2MCL specifically address the
issue of imbalanced modalities in multimodal ERC, whereas the
other baseline models do not.

Evaluation Metrics: Similar to prior studies [23, 36, 37], we eval-
uate the effectiveness of emotion recognition using Accuracy (Acc)
and Weighted F1 Score (WF1) as our primary evalucation metrics.

4.3 Experimental Settings
We derive multimodal features for each utterance from acoustic,
lexical, and visual modalities using a combination of models and
pre-trained models, as outlined in Table 2. We employ PyTorch1 for
training our architecture and Comet2 for logging all experiments,
leveraging its Bayesian optimizer for hyperparameter tuning. Addi-
tional parameters can be found in Table 2.

Table 2: Hyper-parameter settings

Parameter/Module IEMOCAP MELD CMU-MOSEI

Text Feature Extraction sBERT3
Audio Feature Extraction Wave2vec-Large [28], OpenSmile [5]
Visual Feature Extraction MTCNN [41], MA-Net4, DenseNet [12]

Text embedding dim. 𝑑𝑡 768 768 768
Audio embedding dim. 𝑑𝑎 512 300 512
Visual embedding dim. 𝑑𝑣 1024 342 1024

hidden dim 300 200 500
tensor rank 11 6 10

𝛼 0.037 0.4 0.4
𝛽 0.01 0.55 0.2

learning rate 1.7e-4 1.2e-4 1.9e-4
batch size 10 10 32
epoch 50 50 30

5 RESULTS AND DISCUSSION
5.1 Performance Comparison against Baselines
IEMOCAP and MELD dataset: As depicted in Table 3, our model
Ada2I performs better than the previous SOTA baselines in the con-
text of balanced modality consideration on all modality combina-
tions on both datasets. Indeed, in the AVmodality pair on the MELD
dataset, traditionally deemed the weakest, we observe a substan-
tial performance boost in Multimodal ERC. Specifically, there is a
noteworthy enhancement of 10.77% onWF1 and 6.98% on Accuracy
compared to the previous SOTA model. This progress effectively
reduces the performance discrepancy compared to modality pairs
where text plays a dominant role.

We also compare Ada2I with SOTA baseline models for multi-
modal ERC, particularly those focusing solely on multimodal fusion
and architectural design without addressing modality imbalance.
Figure 3b demonstrates that our proposed Ada2I significantly re-
duces the performance gap in WF1 between learning from all three
modalities simultaneously (T+A+V) and pair-wise modality com-
binations on the MELD dataset. Most notably, with the weaker

1https://pytorch.org/
2https://comet.ml
3https://www.sbert.net/
4https://github.com/zengqunzhao/MA-Net
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Table 3: Comparison results in the multimodal setting of Ada2I with the modal-balanced baseline model enhanced by FAGM
[36]. The best performance is marked in bold, and the second best performance is indicated by underlining.

Methods
IEMOCAP MELD

TAV TA TV AV TAV TA TV AV

W-F1 Acc W-F1 Acc W-F1 Acc W-F1 Acc W-F1 Acc W-F1 Acc W-F1 Acc W-F1 Acc

DialogueRNN† 61.31 61.61 61.90 61.98 60.19 59.95 48.31 50.71 56.42 58.05 56.46 58.01 55.67 57.39 40.46 45.39
DialogueGCN† 62.76 63.22 64.36 64.39 61.25 62.23 49.20 49.85 54.61 58.96 54.80 57.28 55.26 57.10 10.02 44.44

BiDDIN† 58.81 58.84 58.88 58.16 59.04 58.96 46.36 46.77 57.47 59.18 56.56 58.05 56.93 58.10 44.39 48.62
MM-DFN† 64.92 64.57 63.91 64.20 61.02 60.60 54.48 55.03 55.75 60.8 57.10 60.00 57.73 60.65 42.05 48.66
MMGCN† 64.53 64.51 63.25 63.40 61.02 61.06 54.14 54.90 58.48 61.15 57.59 60.69 57.14 59.46 43.49 48.43

Ada2I 68.97 68.76 66.91 67.28 65.48 65.43 55.16 55.64 60.38 63.03 60.08 62.64 58.62 61.95 55.16 55.64
Δ ↑4.05 ↑4.19 ↑2.55 ↑2.89 ↑4.23 ↑3.20 ↑0.68 ↑0.61 ↑1.90 ↑1.88 ↑2.49 ↑1.95 ↑0.89 ↑1.30 ↑10.77 ↑6.98

modality pair (audio+visual) consistently lagging behind in per-
formance compared to the full modality combination (i.e., with
AdaIGN, this gap is 23.12%), Ada2I boosts the model and short-
ens the gap to only 5.22%. Similarly, with the text+audio (T+A)
and text+visual (T+V) pairs, this gap is also substantially reduced,
indicating that the model has learned in a more balanced man-
ner, leveraging additional useful information from non-dominant
modalities. The significant improvement is similarly observed on
the IEMOCAP dataset in Figure 3a.
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Figure 3: Performance gap visualizations between the multi-
modal setting (T+A+V) and pair-wise modality combinations
are evaluated using theWF1metric across the IEMOCAP and
MELD datasets.

Table 4: Results on the CMU-MOSEI dataset. The best per-
formance is highlighted in bold. For cells displaying "-", the
results were not provided in the paper. † denotes results ob-
tained from running the provided code in original paper.

Methods 2-class 7-class

TAV TA TV AV TAV TA TV AV

Multilouge-Net [30] 82.10 80.18 80.06 75.16 44.83 - - -
TBJE [4] 81.50 82.40 - - 44.40 45.50 - -

COGMEN† [16] 82.95 85.00 82.99 65.95 43.90 44.31 42.68 24.27
CORECT† [24] 83.98 84.28 82.83 68.89 46.31 44.89 43.76 24.55

I2MCL [44] 81.05 - - - - - - -
OGM-GE† [25] 84.58 84.03 83.67 71.53 45.43 43.68 44.44 31.53

Ada2I 85.25 85.08 85.21 74.93 47.71 47.35 47.37 34.64
Δ ↑0.67 ↑0.08 ↑1.54 ↓0.23 ↑2.28 ↑1.85 ↑2.93 ↑3.11

CMU-MOSEI dataset: Table 4 shows that Ada2I outperforms all
baseline models. Specifically, when compared to OGM-GE and
I2MCL, two models proposed for addressing modality imbalance
during training, Ada2I demonstrates superior performance across
all modality combinations. When compared to other baseline mod-
els that do not consider modality balancing, Ada2I also demon-
strates significant balancing capabilities, reducing the performance
gap between modality pairs. For instance, in the CORECT model,
the gap between T+A+V and A+V is 15.09% for 2-class sentiment,
and this figure increases to 21.76% for 7-class sentiment. However,
with Ada2I, these gaps are significantly reduced to 10.32% and
13.07%, respectively, underscoring the effectiveness of Ada2I in
addressing modality imbalances.

5.2 Ablation Study
5.2.1 Balancing Interpretation. We conduct ablation studies with
the two main modules of the model, AMW and AFW, to assess their
impact on the Ada2I model. Additionally, through the Discrepancy
Ratio, we interpret the model’s balancing by observing its changes.
A smaller Discrepancy Ratio indicates a more balanced optimization
process. Figure 4 shows that the discrepancy ratios 𝜌𝑡 , 𝜌𝑣 , and 𝜌𝑎

significantly decrease when both AMW and AFW are combined
within Ada2I, with all ratios approaching approximately 1 on the
IEMOCAP dataset. In contrast, when one of the modules is ablated,
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Figure 4: The change of the discrepancy ratio 𝜌𝑡 , 𝜌𝑎, 𝜌𝑣 on the IEMOCAP and MELD datasets during training, along with various
ablation tests including without AMW and without AFW, are compared to the Ada2I model.

the ratios for audio (𝜌𝑎) and visual (𝜌𝑣 ) are approximately 1.5,
while for text, it increases to around 3. Similarly, on the MELD
dataset, our proposed model Ada2I has reduced this discrepancy
ratio of text from over 4 (w/o AFW) to approximately half, reaching
around 2, while for audio and visual, it brings them close to the 1
mark. In summary, the combined design of both modules AMW and
AFW enhances balanced learning across modalities during training,
highlighting the significance and inseparability of feature-level and
modality-level balancing.
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Figure 5: The observation of modality-wise weights for each
label normalized for the IEMOCAP dataset

5.2.2 Effect of Weight Normalization. As mentioned earlier, the
unimodal weights also directly influence the encoder updating
process. The imbalanced weight components induce gradients and
subsequently lead to the inconsistent convergence of unimodalities.
Here, we provide a clearer visualization of these unimodal weights
before imbalance processing (Only Encoder) and in the Ada2I model
in Figure 5 for the IEMOCAP dataset. It is evident that with Only
Encoder, the text encoder (dominant modality) weight in norm
grows much faster than audio and visual. After balancing, our
model exhibits a more balanced optimization process.

6 CONCLUSION
In this work, we present Ada2I, a framework designed to address
modality imbalances and optimize learning in multimodal ERC. We
identify and analyze existing issues in current ERC models that
overlook the imbalance problem. From there, we propose a solution
comprising integral modules: Adaptive Feature Weighting (AFW)
and Adaptive Modality Weighting (AMW). The former enhances
intra-modal representations for feature-level balancing, while the
latter optimizes inter-modal learning weights with the balancing
at modality level. Furthermore, we introduce a refined disparity
ratio to optimize training, offering a straightforward yet effective
measure to evaluate the model’s overall discrepancy when handling
multiple modalities simultaneously. Extensive experiments on the
IEMOCAP, MELD, and CMU-MOSEI datasets validate its effective-
ness, showcasing SOTA performance. In the future, we anticipate
enhancing the efficiency of the framework and maximizing the
utilization of emotional cues.
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